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Abstract. We consider a loss model of an unbuffered resource having C channels, which are
shared by several different types of service connections. Connections of each type arrive in a Poisson
stream and request a number of channels, which depends on the type. An arriving connection is
blocked and lost if there are not enough free channels. Otherwise, the channels are held for the
duration of the connection, and the holding period is generally distributed. It is assumed that C
and the traffic intensities are proportionately large, and that the resource is critically loaded. The
admission control problem is considered for specified upper bounds on the blocking probabilities,
and the boundary of the admissible set is investigated asymptotically. It is shown that the boundary
of the admissible set is not convex, although only very slightly so. This completes the investigation
of a critically loaded resource, initiated in [J. A. Morrison and D. Mitra, SIAM J. Appl. Math., to
appear], which also investigated overloaded and underloaded resources.
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1. Introduction. We consider an unbuffered resource having C channels, which
are shared by J different types of connections. Connections of type j arrive in a Pois-
son stream with mean rate λj , and they require dj channels. An arriving connection
is blocked and lost if there are fewer than dj free channels. Otherwise, dj channels
are held for the duration of the connection, and the holding period is generally dis-
tributed with mean 1/µj and is independent of earlier arrival and holding times. The
traffic intensity of type j connections is ρj = λj/µj , and the product form and the
insensitivity property hold [3], [4], [6]; i.e., the joint stationary distribution of the
number of active connections of each type depends on the distributions only through
ρi, i = 1, . . . , J . The blocking probabilities Lj for type j connections satisfy Lj > 0
for ρj > 0 and, assuming that C ≥ maxi di, Lj → 0+ only if ρi → 0+, i = 1, . . . , J .
The admissible set in R

J contains all combinations of ρj , j = 1, . . . , J , such that the
blocking probability for each connection type satisfies specified bounds, i.e., Lj ≤ �j ,
j = 1, . . . , J , where �j is a prescribed function of C.

Characterization of the admissible set is extremely useful, not only for connection-
level admission control, which is the context in which this topic has typically been
considered in the past, but also for higher level objectives, such as network economics
and network design and operations. The asymptotic view of the admissible set is
particularly appropriate for the latter, where the fine details are not as important as
the qualitative properties of the shape of the set and tractability of the numerical
calculations for large systems.

Special importance is attached to admissible regions with linear boundaries; the
solution space is determined by its vertices, which are relatively easy to compute.
Optimizations within such spaces are also much easier computationally. Network eco-
nomics applications are given in [5]. In one such example, the objective function is the
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profit of a service provider giving several quality of service (QoS) levels at prices that
are the solution to the corresponding optimization problem. The admissible region of
solutions is defined by a collection of inequalities imposed by available capacity, one
for each QoS level. For further details see [5], and for other such applications see [2],
[7], [17], and references therein. See [1], [10] for applications to routing and control.
For recent work on loss models of optical networking see [15] and [16].

Convexity is also important, since the tangent hyperplane at points on the bound-
ary of the admissible set intersects the positive axes. Hence, if the boundary of the
admissible set is convex, then the region in the positive orthant bounded by the tan-
gent hyperplane at a point on the boundary is admissible and may be used in an
approximate optimization.

Mitra and Morrison [9] considered our model here (as well as the finite-sources
version), and they investigated the case where C and the traffic intensities ρj = αjC,
j = 1, . . . , J , are proportionately large, so that αj = O(1) is bounded away from
zero. They derived uniform asymptotic approximations to the blocking probabilities
Lj , j = 1, . . . , J , for type j connections. The results for Poisson arrivals are obtained
from the finite-sources version as a limiting case. They presented numerical results
for J = 2 and J = 3 types for the finite-sources model. These results constitute a
numerical procedure but do not provide a characterization of the admissible set, nor
do they resolve specific questions on the linearity and convexity of the boundary.

Consequently, Morrison and Mitra [12] investigated the boundary of the admis-
sible set in the case of Poisson arrivals. The uniform asymptotic approximations to
the blocking probabilities are specialized [9] to three regimes in which their behav-
ior is markedly different, namely, the overloaded, the critically loaded, and the un-
derloaded regimes, corresponding to

∑J
j=1 djαj > 1,

∑J
j=1 djαj − 1 = O(1/

√
C), and∑J

j=1 djαj < 1, respectively. The corresponding blocking probabilities Lj are O(1),

O(1/
√
C), and exponentially small in C, respectively, so that the critically loaded

regime is of greatest interest. In [12], the shape of the admissible set is investigated
separately for each of the three regimes.

In the asymptotic limit C → ∞, with ρj = αjC, j = 1, . . . , J , the boundary of
the admissible set lies in a hyperplane if the resource is critically loaded or overloaded.
If the resource is underloaded, the boundary of the admissible set, in the limit C → ∞,
is convex, but not strictly so, except when J = 2.

Refined results, which pertain to C � 1, are derived in [12]. The correction terms
are O(1/C) if the resource is overloaded or underloaded and O(1/

√
C) if the resource

is critically loaded. In general, the boundary of the admissible set is not convex. If
J = 2, then the boundary is slightly convex if the resource is critically loaded, but
slightly concave if the resource is overloaded. For J = 2, the convexity is maintained
from the C → ∞ limit for an underloaded resource. Unfortunately, for J ≥ 3, the
boundary of the admissible set is not convex, although only slightly so, whether the
resource is overloaded or underloaded. The case of a critically loaded resource requires
further investigation, which is carried out in this paper.

In section 2 we first state the refined result obtained in [12] for the critically
loaded regime, which is based on refined asymptotic approximations [13] to the block-
ing probabilities. This illustrates why a further refinement is required. We then state
the further refined result, which is based on the refined uniform asymptotic approx-
imations [14] to the blocking probabilities. The result establishes that the boundary
of the admissible set is not convex, although only very slightly so. In spite of this
negative result, it is important that the practitioner be aware of it. Moreover, since
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the boundary is only slightly nonconvex, a slightly smaller admissible region with a
convex boundary may be used by the practitioner.

In section 3, we derive a refined asymptotic approximation to the boundary of
the admissible set, based on the refined uniform asymptotic approximations [14] to
the blocking probabilities. In section 4, we express the boundary of the admissible set
in appropriate coordinates with respect to the tangent hyperplane at a point on the
boundary. In section 5, we show that the discriminant of the quadratic form which
arises is negative, and hence that the boundary of the admissible set is not convex.

2. Refined results. Throughout the paper, we assume that

C � 1; ρj = αjC, j = 1, . . . , J,(2.1)

where C is an integer and αj > 0 is O(1) and bounded away from zero. We also assume
that dj , j = 1, . . . , J , are distinct positive integers, not large relative to C, and that
the greatest common divisor of d1, . . . , dJ is 1. The admissible set corresponds to

Lj (α1, . . . , αJ ; C) ≤ �j , j = 1, . . . , J,(2.2)

where the function Lj gives the blocking probability for type j connections. It is
shown [12], in all three regimes, that asymptotically

∂Lj
∂αk

> 0, j, k = 1, . . . , J,(2.3)

and the boundary of the admissible set is expressed in the form

αJ = αJ(α;C), α = (α1, . . . , αJ−1) .(2.4)

If
√
Cmin

j
�j = O (1)(2.5)

is bounded below by a positive constant, then on the boundary of the admissible set
the resource is critically loaded. The boundary satisfies

J∑
j=1

djαj = 1 +O
(
1/
√
C
)
,(2.6)

which in the asymptotic limit C → ∞ lies in a hyperplane.
We have the following refined approximation [12] to the boundary of the admis-

sible set.
Proposition 2.1. If (2.5) holds, then
(i) if J = 2, then 0 > dα2/dα1 = O(1) and 0 < d2α2/dα

2
1 = O(1/

√
C), so that

the boundary of the admissible set is convex, although only slightly so;
(ii) we consider the case when

dJ√
C �J

− di√
C �i

� 1√
C
, i = 1, . . . , J − 1 .(2.7)

With this assumption the boundary of the admissible set is given by LJ = lJ . Let

(α(0), α
(0)
J ), where corresponding to (2.4) α

(0)
J = αJ(α

(0);C), be a point on the bound-
ary of the admissible set. If J ≥ 3, the linear transformation of variables

ζJ = dJ

[
αJ − α

(0)
J −

J−1∑
i=1

∂αJ
∂αi

(
α(0)

)(
αi − α

(0)
i

)]
,(2.8)
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ζJ−1 =

J−1∑
i=1

di(di − dJ)
(
αi − α

(0)
i

)
,(2.9)

ζJ−2 =

J−1∑
i=1

di
(
d2
i − d2

J

) (
αi − α

(0)
i

)
,(2.10)

and

ζi = αi − α
(0)
i , i = 1, . . . , J − 3 (J ≥ 4),(2.11)

is nonsingular, and ζJ = 0 corresponds to the tangent hyperplane to the boundary of
the admissible set at α = α(0). From (2.6) and (2.8) we have

ζJ =

J∑
j=1

dj

(
αj − α

(0)
j

)
+O

(
1√
C

)
.(2.12)

Let

σ2
0 = 2

J∑
j=1

d2
jα

(0)
j , σ0 > 0 .(2.13)

If αi − α
(0)
i = O(ε), 0 < ε � 1, i = 1, . . . , J − 1, then

ζJ =
ζ2
J−1

2
√
C

[
P2(σ0) +O

(
1√
C

)
+O (ζJ−1)

]
(2.14)

+
ζJ−1ζJ−2

C
[R2(σ0) +O(ζJ−1)] +O

(
ε2

C
√
C

)

and P2(σ0) > 0.
If ζJ−1 = O(ε/

√
C), then the leading terms in (2.14) are all O(ε2/C

√
C). Hence,

the next order term in the asymptotic expansion in powers of 1/
√
C is needed to

investigate whether or not the boundary of the admissible set is convex. In this paper
we establish the following.

Proposition 2.2. Assume that (2.5) and (2.7) hold. If in (2.9)

ζJ−1 = ZJ−1/
√
C,(2.15)

where ZJ−1 = O(1), then

ζJ =
1

2C3/2

[
P2(σ0)Z

2
J−1 + 2R2(σ0)ZJ−1ζJ−2 + T2(σ0)ζ

2
J−2

]
+O

(
1

C2

)
.(2.16)

Moreover, the discriminant of the quadratic form in (2.16) is negative. Hence, asymp-
totically, the boundary of the admissible set is not convex, although only very slightly
so.

We note that in this result we do not need αi − α
(0)
i = O(ε), 0 < ε � 1, i =

1, . . . , J − 1.
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3. Boundary of the admissible set. To derive the appropriate refinement of
(2.14), we make use of the refined uniform asymptotic approximations [14] to the
blocking probabilities, which we now summarize. Let

f(z) =
J∑
j=1

αj(z
dj − 1)− log z,(3.1)

and let z∗ be the unique positive solution of f ′(z) = 0, so that

J∑
j=1

αjdj(z
∗)dj = 1, z∗ > 0.(3.2)

Since f ′(z∗) = 0,

v � (z∗)2f ′′(z∗) =
J∑
j=1

αjd
2
j (z

∗)dj ,(3.3)

τ � (z∗)3f (3)(z∗) =
J∑
j=1

αjd
2
j (dj − 3)(z∗)dj ,(3.4)

and

y � (z∗)4f (4)(z∗) =
J∑
j=1

αjd
2
j (d

2
j − 6dj + 11)(z∗)dj .(3.5)

Next, let

K =
1

(1− z∗)
−

√
v sgn(1− z∗)√−2f(z∗) , z∗ 	= 1,(3.6)

hj(z) =
(zdj − 1)
z(z − 1) , z 	= 1, hj(1) = dj ,(3.7)

and

Nj =
z∗

8v

(
y

v
− 5τ2

3v2

)
hj(z

∗) +
τ(z∗)2

2v2
h′
j(z

∗)− (z∗)3

2v
h′′
j (z

∗).(3.8)

Since f(1) = 0, f ′(z∗) = 0, and (z∗)2f ′′(z∗) = v, the expression for K in (3.6) remains
finite as z∗ → 1. We define

Ω =

√
πv

2
e−Cf(z

∗) Erfc
[
sgn(1− z∗)

√
−Cf(z∗)

]
,(3.9)

where the complementary error function is given by

Erfc (x) =
2√
π

∫ ∞

x

e−ξ
2

dξ.(3.10)
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Then [14], the blocking probabilities are asymptotically given by

Lj =
[z∗hj(z∗) +Nj/C +O(1/C2)]

[Ω
√
C +K +O(1/C)]

.(3.11)

We consider the case where

dJ√
C�J

− di√
C�i

� 1√
C
, i = 1, . . . , J − 1,(3.12)

and let

κ =
dJ√
C�J

.(3.13)

We assume that (2.5) holds, so that κ = O(1). Since z∗ − 1 = O(1/
√
C) in the

critically loaded regime, Lj is asymptotically proportional to dj , to lowest order, and
[12] the boundary of the admissible set is given by LJ = �J . Hence, from (3.11) and
(3.13),

Ω =
κ

dJ

[
z∗hJ(z∗) +

NJ

C

]
− K√

C
+O

(
1

C3/2

)
.(3.14)

We define

φ(w) =

√
π

2
ew

2

Erfc (−w) .(3.15)

Then, from (3.9) and (3.14),

φ
[
sgn(z∗ − 1)

√
−Cf(z∗)

]
=

1√
2v

{
κ

dJ

[
z∗hj(z∗) +

NJ

C

]
− K√

C
+O

(
1

C3/2

)}
.

(3.16)
But, from (3.10) and (3.15),

φ(w) = ew
2

∫ ∞

−w
e−ξ

2

dξ =

∫ ∞

0

e2wue−u
2

du .(3.17)

Hence φ′(w) > 0, −∞ < w < ∞, so that φ(w) has a unique inverse
w(y) = φ−1(y), y > 0.(3.18)

It follows from (3.16) that

sgn(z∗ − 1)
√
−Cf(z∗) = w

[
1√
2v

{
κ

dJ

[
z∗hJ(z∗) +

NJ

C

]
− K√

C
+O

(
1

C3/2

)}]
.

(3.19)
We let

1−
J∑
j=1

αjdj =
δ√
C
,(3.20)

where δ = O(1) from (2.6), and we define

σ2 = 2

J∑
j=1

αjd
2
j , σ > 0,(3.21)
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and

η =

J∑
j=1

αjd
3
j , ρ =

J∑
j=1

αjd
4
j .(3.22)

It is shown in Appendix A that

sgn(z∗ − 1)
√
−Cf(z∗) =

δ

σ
− 2δ2η

3σ5
√
C
+

δ3

9σ9C
(16η2 − 3σ2ρ) +O

(
1

C3/2

)
,(3.23)

and

1√
2v

{
κ

dJ

[
z∗hJ(z∗) +

NJ

C

]
− K√

C

}
(3.24)

=
κ

σ
+

κδ

σ5
√
C
[(dJ − 1)σ2 − 2η]− 1

6σ3
√
C
(2η + 3σ2)

+
κδ2

σ9C

[
1

3
(dJ − 1)(2dJ − 1)σ4 − 4(dJ − 1)σ2η + 2(5η2 − σ2ρ)

]

+
κ

σ7C

(
1

2
σ2ρ+ 2σ2η − σ4 − 5

3
η2

)

+
κh′

J(1)

dJσ5C
(2η − 3σ2)− κh′′

J(1)

dJσ3C

+
δ

6σ7C
(σ4 − 3σ2ρ+ 6σ2η + 10η2) +O

(
1

C3/2

)
.

The boundary of the admissible set is asymptotically given in terms of α1, . . . , αJ
by substituting (3.23) and (3.24) into (3.19) and using (3.20)–(3.22).

4. Behavior of the boundary. We now scale by ζJ−1 = ZJ−1/
√
C, where

ZJ−1 = O(1). The goal is to express the boundary of the admissible set in the form
(2.4). From (2.9) and (2.15) we have

J−1∑
i=1

di(di − dJ)(αi − α
(0)
i ) =

ZJ−1√
C

.(4.1)

But, from (2.6),

J∑
j=1

dj(αj − α
(0)
j ) = O

(
1√
C

)
,(4.2)

and, from (2.13) and (3.21),

σ2 − σ2
0 = 2

J∑
j=1

d2
j (αj − α

(0)
j ).(4.3)

If we use (4.2) to eliminate αJ − α
(0)
J to lowest order, it follows from (4.1) that

σ2 − σ2
0 = O(1/

√
C), and hence σ = σ0 +O(1/

√
C).

From (3.19), (3.23), and (3.24),

δ = σw(κ/σ) +O

(
1√
C

)
.(4.4)
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Hence,

δ = δ0 +O

(
1√
C

)
, δ0 = σ0w(κ/σ0),(4.5)

and, from (3.20),

J∑
j=1

dj(αj − α
(0)
j ) = O

(
1

C

)
.(4.6)

If we use (4.6) to eliminate αJ − α
(0)
J , it follows from (4.1) and (4.3) that

σ = σ0 +
ZJ−1

σ0

√
C
+O

(
1

C

)
.(4.7)

Also, from (2.10) and (3.22), we obtain

η − η0 =

J∑
j=1

d3
j (αj − α

(0)
j ) = ζJ−2 +O

(
1

C

)
(4.8)

and

ρ− ρ0 =

J−1∑
j=1

dj(d
3
j − d3

J)(αj − α
(0)
J ) +O

(
1√
C

)
.(4.9)

Now, from (3.19), (3.23), and (3.24),

δ = σw
(κ
σ

)
+

2δ2η

3σ4
√
C

(4.10)

+
w′(κ/σ)√

C

[
κδ

σ2

(
dJ − 1− 2η

σ2

)
−
(
1

2
+

η

3σ2

)]
+O

(
1

C

)
.

We define

δ1 =
2δ2

0η0

3σ4
0

+ w′
(

κ

σ0

)[
κδ0
σ2

0

(
dJ − 1− 2η0

σ2
0

)
−
(
1

2
+

η0

3σ2
0

)]
,(4.11)

a =

{
1

σ

d

dσ

[
σw
(κ
σ

)]}
σ=σ0

=
1

σ0

[
w

(
κ

σ0

)
− κ

σ0
w′
(

κ

σ0

)]
,(4.12)

and

b =
2δ2

0

3σ4
0

− 1

σ2
0

w′
(

κ

σ0

)(
2κδ0
σ2

0

+
1

3

)
.(4.13)

Then, from (4.5), (4.7), (4.8), and (4.10), we obtain

δ = δ0 +
1√
C
(δ1 + aZJ−1 + bζJ−2) +O

(
1

C

)
.(4.14)
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Next, from (3.20) and (4.14),

J∑
j=1

dj(αj − α
(0)
j ) = − 1

C
(aZJ−1 + bζJ−2) +O

(
1

C3/2

)
.(4.15)

If we use (4.15) to eliminate αJ − α
(0)
J , it follows from (4.1) and (4.3) that

1

2
(σ2 − σ2

0) =
ZJ−1√

C
− dJ

C
(aZJ−1 + bζJ−2) +O

(
1

C3/2

)
.(4.16)

Hence,

σ = σ0 +
ZJ−1

σ0

√
C

− 1

σ0C

[
dJ(aZJ−1 + bζJ−2) +

Z2
J−1

2σ2
0

]
+O

(
1

C3/2

)
.(4.17)

We are now in a position to obtain a further refinement of the expression for δ,
from (3.19), (3.23), and (3.24), with the help of (4.8), (4.9), and (4.17). Some of the
details are given in Appendix B. Since we are interested only in the quadratic terms,
we do not give the linear terms explicitly. After considerable algebra, it is found that

δ = (linear terms)− w(κ/σ0)

2σ3
0C

Z2
J−1(4.18)

+
w′′(κ/σ0)

2σ5
0C

[
κZJ−1 +

(
2κδ0
σ2

0

+
1

3

)
ζJ−2

]2

+
w′(κ/σ0)

σ5
0C

{
1

2
κσ0Z

2
J−1 + 2σ0ZJ−1ζJ−2

(
1

3
− κa+

4κδ0
σ2

0

)

+ ζ2
J−2

[
5

(
2κδ2

0

σ3
0

− κ

3σ0
+

δ

3σ0

)
− 2κσ0b

]}

+
4δ0
3σ4

0C
ζJ−2

[(
a− 2δ0

σ2
0

)
ZJ−1 +

(
b− 4δ2

0

3σ4
0

)
ζJ−2

]
+O

(
1

C3/2

)
.

The linear terms include δ0 in (4.14).
We define

P = w

(
κ

σ0

)
− κ

σ0
w′
(

κ

σ0

)
−
(

κ

σ0

)2

w′′
(

κ

σ0

)
,(4.19)

Q =
4δ0
3σ0

(
2δ0
σ0

− σ0a

)
− κ

σ0
w′′
(

κ

σ0

)(
2κδ0
σ2

0

+
1

3

)
(4.20)

− 2w′
(

κ

σ0

)(
1

3
− κa+

4κδ0
σ2

0

)
,

and

R =
8δ0
3σ0

(
4δ2

0

3σ2
0

− σ2
0b

)
− w′′

(
κ

σ0

)(
2κδ0
σ2

0

+
1

3

)2

(4.21)

+ 2w′
(

κ

σ0

)[
2κσ0b− 5

(
2κδ2

0

σ3
0

− κ

3σ0
+

δ0
3σ0

)]
.
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Then, from (2.8) and (3.20), it follows that

ζJ =
1

2σ5
0C

3/2

(
Pσ2

0Z
2
J−1 + 2Qσ0ZJ−1ζJ−2 +Rζ2

J−2

)
+O

(
1

C2

)
.(4.22)

If we let

P = σ3
0P2(σ0), Q = σ4

0R2(σ0), R = σ5
0T2(σ0),(4.23)

then we obtain (2.16). In Appendix C we show that the expressions for P2(σ0) and
R2(σ0) are consistent with those obtained in [12].

In the next section we consider

D = PR−Q2 ,(4.24)

which is proportional to the discriminant of the quadratic form in (4.22).

5. Nonconvexity of the boundary. We first express P , Q, and R as functions
of w(κ/σ0). From (3.18), we have

φ[w(y)] = y.(5.1)

It follows that

w′ =
1

φ′(w)
, w′′ = − φ′′(w)

[φ′(w)]3
.(5.2)

But, from (4.5), (4.12), and (4.13), with w = w(κ/σ0) and the argument w of φ
suppressed,

δ0
σ0
= w, σ0a = w − φ

φ′(5.3)

and

σ2
0b =

2

3
w2 − 1

φ′

(
2wφ+

1

3

)
.(5.4)

Then, from (4.19)–(4.21), we obtain

P = w − φ

φ′ +
φ2φ′′

(φ′)3
,(5.5)

Q =
4

3
w2 − 2

3φ′ (1 + 7wφ)− 2
(

φ

φ′

)2

+
φφ′′

(φ′)3

(
1

3
+ 2wφ

)
,(5.6)

and

R =
16

9
w3 +

φ′′

(φ′)3

(
1

3
+ 2wφ

)2

− 4φ

(φ′)2

(
1

3
+ 2wφ

)
(5.7)

+
2

φ′

(
5φ

3
− 11w

9
− 6w2φ

)
.



CRITICALLY LOADED MULTISERVICE SHARED RESOURCE 11

We now consider the behavior of P , Q, and R for −w � 1. From (3.15) and [8],

φ(w) = − 1

2w
+

1

4w3
− 3

8w5
+O

(
1

w7

)
, − w � 1.(5.8)

Hence,

φ′(w) =
1

2w2
− 3

4w4
+
15

8w6
+O

(
1

w8

)
, − w � 1,(5.9)

and

φ′′(w) = − 1

w3
+
3

w5
− 45

4w7
+O

(
1

w9

)
, − w � 1.(5.10)

After some straightforward algebra, which we omit, it is found that

P = − 2

w3
+O

(
1

w5

)
, Q = −2 +O

(
1

w2

)
,(5.11)

R = −8w +O

(
1

w

)
, − w � 1.

It follows from (4.24) that

D = −4 +O

(
1

w2

)
, − w � 1.(5.12)

Next, we consider the behavior of P , Q, and R for w � 1. From (3.15) and [8],

φ(w) =
√
πew

2

[
1− 1

2
Erfc (w)

]
=

√
πew

2

+O

(
1

w

)
, w � 1.(5.13)

Hence,

φ′(w) = 2
√
πwew

2

+O

(
1

w2

)
, w � 1,(5.14)

and

φ′′(w) = 2
√
π(1 + 2w2)ew

2

+O

(
1

w3

)
, w � 1.(5.15)

It follows from (5.5)–(5.7) that

P = w +O

(
1

w3

)
, Q =

4

3
(w2 − 1) +O

(
1

w2

)
,(5.16)

R =
16

9
w3 − 4w +O

(
1

w

)
, w � 1.

Hence, from (4.24), we obtain

D = −4
9
w2 +O(1), w � 1.(5.17)
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Fig. 1. Plot of D as a function of w.

If we differentiate (3.17) with respect to w and integrate by parts, we find that

φ′ = 1 + 2wφ, φ′′ = 2(φ+ wφ′).(5.18)

The quantities φ, φ′, and φ′′ can be evaluated numerically from (3.15) and (5.18).
Then, P , Q, R, and D can be obtained numerically from (5.5)–(5.7) and (4.24).
Figure 1 depicts −D as a function of w for −5 ≤ w ≤ 4, and it is seen that −D > 0
in that range. Since, from (5.12) and (5.17), D < 0 for −w � 1 and for w � 1, we
conclude that D < 0 for −∞ < w < ∞. This completes the proof of Proposition 2.2.

We note, as is evident from (5.11) and (5.16), that Q must change sign for some
real value of w. If D < 0, then (4.24) implies that PR < 0 when Q = 0. However,
we know that P > 0 for −∞ < w < ∞. Hence, R < 0 when Q = 0. Figure 2 depicts
Q and R for 0 ≤ w ≤ 2, and it is seen that R < 0 in a range of w which includes the
value for which Q = 0.

Appendix A. We derive here the expressions in (3.23) and (3.24). If we substi-
tute

z∗ = 1 +
c1√
C
+

c2
C
+

c3

C
√
C
+O

(
1

C2

)
(A.1)

in (3.2) and use (3.20)–(3.22), we obtain, after some algebra,

c1 =
2δ

σ2
, c2 =

2δ2

σ6
(σ2 − 2η), c3 =

4δ3

3σ10

[
σ4 − 2σ2(ρ+ 3η) + 12η2

]
.(A.2)

Since f(1) = 0 and f ′(z∗) = 0,

0 = f(z∗) +
1

2
(1− z∗)2f ′′(z∗) +

1

6
(1− z∗)3f (3)(z∗)(A.3)

+
1

24
(1− z∗)4f (4)(z∗) +O[(1− z∗)5].
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If we expand the expressions for the derivatives of f(z) at z = z∗, given by (3.3)–(3.5),
in powers of z∗ − 1 and use (A.1) and (A.2), we obtain, after considerable algebra,

−Cf(z∗) =
δ2

σ2

[
1− 4δη

3σ4
√
C
+

2δ2

3σ8C
(6η2 − σ2ρ) +O

(
1

C3/2

)]
.(A.4)

This result was checked by using the Taylor series expansion of f(z∗) about z∗ = 1
and calculating the derivatives of f(z) at z = 1 from (3.1). It follows from (A.1) and
(A.2) that

sgn(z∗ − 1) = sgn δ.(A.5)

Hence, from (A.4), since σ > 0, we obtain (3.23).
Next, from (3.3), (A.1), and (A.2), we find that

2v = σ2

[
1 +

4δη

σ4
√
C
+
4δ2

σ8C
(σ2ρ− 2η2) +O

(
1

C3/2

)]
,(A.6)

and hence

1√
2v
=
1

σ

[
1− 2δη

σ4
√
C
+
2δ2

σ8C
(5η2 − σ2ρ) +O

(
1

C3/2

)]
.(A.7)

Also,

[(z∗)dJ − 1]
(z∗ − 1)(A.8)

= dJ +
δ

σ2
√
C
dJ(dJ − 1) + δ2

3σ6C
dJ(dJ − 1) [(2dJ − 1)σ2 − 6η]+O

(
1

C3/2

)
.
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From (3.7), (A.7), and (A.8), we obtain

z∗hJ(z∗)
dJ

√
2v

(A.9)

=
1

σ
+

δ

σ5
√
C

[
(dJ − 1)σ2 − 2η]

+
δ2

σ9C

[
1

3
(dJ − 1)(2dJ − 1)σ4 − 4(dJ − 1)σ2η + 2(5η2 − σ2ρ)

]
+O

(
1

C3/2

)
.

Next, from (3.4), (3.5), (3.21), and (3.22), we have

τ = η − 3

2
σ2 +O

(
1√
C

)
, y = ρ− 6η + 11

2
σ2 +O

(
1√
C

)
.(A.10)

Hence, from (3.8), since 2v = σ2 +O(1/
√
C), we obtain

NJ√
2v
=

dJ
σ7

(
1

2
σ2ρ+ 2σ2η − σ4 − 5

3
η2

)
(A.11)

+
h′
J(1)

σ5
(2η − 3σ2)− h′′

J(1)

σ3
+O

(
1√
C

)
.

From (3.23),

sgn(z∗ − 1)√−Cf(z∗)
(A.12)

=
σ

δ
+

2η

3σ3
√
C
+

δ

3σ7C
(σ2ρ− 4η2) +O

(
1

C3/2

)
,

and, from (A.1) and (A.2),

1√
C(z∗ − 1) =

σ2

2δ
− 1

2σ2
√
C
(σ2 − 2η)(A.13)

+
δ

6σ6C
(σ4 + 4σ2ρ− 12η2) +O

(
1

C3/2

)
.

Hence, from (A.7), we obtain

1√
2Cv(z∗ − 1) =

σ

2δ
− 1

2σ
√
C
+

δ

6σ7C
(σ4−2σ2ρ+6σ2η+6η2)+O

(
1

C3/2

)
.(A.14)

Finally, from (3.6), (A.12), and (A.14), we have

K√
2Cv

=
1

6σ3
√
C
(2η + 3σ2)(A.15)

− δ

6σ7C
(σ4 − 3σ2ρ+ 6σ2η + 10η2) +O

(
1

C3/2

)
.

Now (3.24) follows from (A.9), (A.11), and (A.15).
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Appendix B.We here give some of the details of the derivation of the expression
for δ given in (4.18). From (4.14) and (4.17), it follows that

1

σ
=
1

σ0

{
1− ZJ−1

σ2
0

√
C
+

1

σ2
0C

[
dJ(aZJ−1 + bζJ−2) +

3Z2
J−1

2σ2
0

]}
+O

(
1

C3/2

)
,(B.1)

δ

σ3
√
C
=

δ0

σ3
0

√
C
+

1

σ3
0C

(
δ1 + aZJ−1 + bζJ−2 − 3δ0

σ2
0

ZJ−1

)
+O

(
1

C3/2

)
,(B.2)

and, from (4.8),

δη

σ5
√
C
=

[
δ0

σ5
0

√
C
+

1

σ5
0C

(
δ1 + aZJ−1 + bζJ−2 − 5δ0

σ2
0

ZJ−1

)]
(η0+ζJ−2)+O

(
1

C3/2

)
(B.3)
and

η

σ3
√
C
=

1

σ3
0

√
C

(
1− 3ZJ−1

σ2
0

√
C

)
(η0 + ζJ−2) +O

(
1

C3/2

)
.(B.4)

Hence, from (3.24), (4.9), and (B.1)–(B.4), we obtain

1√
2v

{
κ

dJ

[
z∗hJ(z∗) +

NJ

C

]
− K√

C

}
(B.5)

=
κ

σ0
− κZJ−1

σ3
0

√
C
+
3κZ2

J−1

2σ5
0C

+O

(
1

C

)
× (linear terms)

+
κδ0

σ3
0

√
C
(dJ − 1)− 2κδ0

σ5
0

√
C
(η0 + ζJ−2)

− 2κ

σ5
0C

ζJ−2

(
aZJ−1 + bζJ−2 − 5δ0

σ2
0

ZJ−1

)

− 1

3σ3
0

√
C
(η0 + ζJ−2) +

ZJ−1ζJ−2

σ5
0C

− 1

2σ0

√
C

+
10κδ2

0

σ9
0C

ζ2
J−2 −

5κ

3σ7
0C

ζ2
J−2 +

5δ0
3σ7

0C
ζ2
J−2 +O

(
1

C3/2

)
.

Next, from (4.17) and (B.5), it follows that

σw

(
1√
2v

{
κ

dJ

[
z∗hJ(z∗) +

NJ

C

]
− K√

C

})
(B.6)

= (linear terms)− w(κ/σ0)

2σ3
0C

Z2
J−1

+
w′(κ/σ0)

σ5
0C

{
1

2
κσ0Z

2
J−1 + 2σ0ZJ−1ζJ−2

(
1

3
− κa+

4κδ0
σ2

0

)

+ζ2
J−2

[
5

(
2κδ2

0

σ3
0

− κ

3σ0
+

δ0
3σ0

)
− 2κσ0b

]}

+
w′′(κ/σ0)

2σ5
0C

[
κZJ−1 +

(
2κδ0
σ2

0

+
1

3

)
ζJ−2

]2
+O

(
1

C3/2

)
.
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Also, from (4.8), (4.14), and (4.17), we obtain

δ2η

σ4
√
C
= (linear terms)(B.7)

+
2δ0
σ4

0C
ζJ−2

(
aZJ−1 + bζJ−2 − 2δ0

σ2
0

ZJ−1

)
+O

(
1

C3/2

)

and, from (4.9),

δ3

σ8C
(16η2 − 3σ2ρ) = (linear terms) +

16δ3
0

σ8
0C

ζ2
J−2 +O

(
1

C3/2

)
.(B.8)

The expression for δ in (4.18) now follows from (3.19), (3.23), (3.24), and (B.6)–(B.8).

Appendix C.We here reconcile the expressions for P2(σ0) and R2(σ0), given by
(4.19), (4.20), and (4.23), with those obtained in [12]. Corresponding to [12], we let

w(κ/σ) = χ(σ),(C.1)

where w(y) is given by (3.18). Then,

− κ

σ2
w′
(κ
σ

)
= χ′(σ),

κ2

σ4
w′′
(κ
σ

)
=
2

σ
χ′(σ) + χ′′(σ).(C.2)

Hence, from (4.19) and (4.23), we obtain

σ3
0P2(σ0) = χ(σ0)− σ0χ

′(σ0)− σ2
0χ

′′(σ0),(C.3)

which is consistent with the definition in [12].
Next, from (4.5), (4.12), (4.13), and (4.20), we find that

Q =
4

3
w2 − 2

3

(
1 +

7κ

σ0
w

)
w′ − 2

(
κ

σ0
w′
)2

− κ

σ0

(
1

3
+
2κ

σ0
w

)
w′′,(C.4)

where we have suppressed the argument κ/σ0 of w. As in [12], we let

G(σ) = χ′(σ)
[
2χ(σ)

σ

{
1− 2

3
[χ(σ)]2

}
+
1

3κ
{1− 2[χ(σ)]2}

]
.(C.5)

Hence, from (C.1) and (C.2),

G(σ) =
1

σ2
w′
(κ
σ

)[2κ
σ
w
(κ
σ

){2
3

[
w
(κ
σ

)]2
− 1
}
+
1

3

{
2
[
w
(κ
σ

)]2
− 1
}]

.(C.6)

But, from (5.1), (5.2), and (5.18), we have

w′
(κ
σ

)[
1 +

2κ

σ
w
(κ
σ

)]
= 1.(C.7)

It follows from (C.6) that

G(σ) =
2

3σ2

[
w
(κ
σ

)]2
− 1

σ2

[
1

3
+
2κ

σ
w
(κ
σ

)]
w′
(κ
σ

)
.(C.8)

If we differentiate (C.8) and set σ = σ0, we find from (4.23) and (C.4) that

σ0R2(σ0) = −G′(σ0),(C.9)

which is consistent with the definition in [12].
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STEADY MOTION OF A DROP ALONG A LIQUID INTERFACE∗
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Abstract. We investigate the motion of a liquid drop as it flows along the interface of a liquid
film. Steady, two-dimensional solutions are found in the lubrication limit for a horizontal and inclined
plane. The effects of the physical parameters on the interface shapes are studied. When the plane is
inclined, solutions are found only for a special set of parameter values.

Key words. thin films, triple junctions, free boundaries

AMS subject classifications. 76Dxx, 76Txx

DOI. 10.1137/S0036139901400215

1. Introduction. Spreading of one liquid over another occurs in many inter-
esting and important physical processes, with applications in various fields. Specific
examples include liquid waste spills on bodies of water (e.g., oil spreading on the sea
or chemical waste spills on ponds), spills into partially saturated porous materials,
polymer-polymer coextrusion, and aerosol delivery of bronchial medicated mists. In
each of these situations, the spreading process is strongly influenced by the surface
tension of the liquid interfaces and the physics of the triple junction, where the three
phases intersect. In order to obtain a better understanding of the effect of the triple
junction on the dynamics of the flow, we consider here a model problem of the spread-
ing of a liquid droplet along a thin liquid film flowing down an inclined plane. We
assume that the fluids are immiscible and that the motion is two-dimensional, and
we obtain steady solutions in the lubrication limit. These steady solutions are found
only for a limited set of parameter values when the plane is inclined. The effects of
the physical parameters on the steady solutions are investigated.

If a drop of one liquid is placed on top of a second immiscible liquid, a three-phase
point can exist at the gas/liquid/liquid intersection. We refer to this point as the triple
junction. Clearly, for a droplet resting on a liquid interface in two dimensions, there
are two triple junctions. The boundary conditions imposed at the triple junction
have a major influence on how one liquid spreads over another. For example, if
the spreading coefficient is positive, an equilibrium solution is impossible without
additional assumptions [14]. If a droplet is spreading over a base liquid bounded
above by air, a positive spreading coefficient, S > 0, indicates that the surface tension
of the base liquid with air, ΣF , is larger than the sum of the surface tension of the
droplet with air, ΣD, and the surface tension between the liquid and the droplet,
ΣDF ; i.e., S = ΣF − ΣD − ΣDF > 0. Because of the relative strength of the surface
tension ΣF , the droplet will completely wet the second liquid in such a case. Such
a situation has been investigated by DiPietro, Huh, and Cox [3], DiPietro and Cox
[4], and Foda and Cox [5], who developed a theory for the spreading of a droplet in
the completely wetting case. Their model included the additional effect of a leading
precursor (monolayer) film. The addition of the precursor film to the model allowed
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DMS-0104935.
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Fig. 1. Sketch of the physical system.

them to obtain steady and similarity solutions. The positive spreading coefficient
case has also been investigated by Joanny [8] in the lubrication limit. By adding van
der Waals forces into his model, he was able to make statements concerning steady
state solutions and spreading rates. In particular, he showed that the radius of a
wetting droplet will increase like t1/7, where t is time. These results were confirmed
experimentally by Fraaije and Cazabat [6]. Also recently, Brochard-Wyart, Debregeas,
and de Gennes [2] have examined the spreading of a viscous droplet on a nonviscous
liquid and determined that the droplet radius should increase like t1/4.

Less work has been done for negative spreading coefficients, S < 0. In this case
an equilibrium situation is possible without the additional assumption of a monolayer
precursor film. An example of such a situation would be seen in a water droplet on
top of a pool of carbon tetrachloride or nearly any other organic liquid. Equilibrium
solutions of droplets resting on a liquid interface were computed by Pujado and Scriven
[13]. Recently, a lubrication model was used by Wilson and Williams [17] to study
the problem of a dragged film emerging through the free surface of a second liquid.
They determined the final thickness of the coating film as a function of the density
ratio and the surface tension of the interfaces. Also recently, a similarity solution
for the dynamics of a triple junction was investigated by Miksis and Vanden-Broeck
[11]. They were able to determine the location of the triple junction and the resulting
capillary waves along the interface as a function of the physical parameters. The
models used in these investigations forced equilibrium boundary conditions, i.e., zero
net force, at the triple junction. The zero-net-force condition will also be assumed
here.

2. Physical description. We consider the two-dimensional flow of a two-phase
system consisting of a liquid drop floating on a liquid substrate which completely
coats a flat solid surface, as illustrated in Figure 1. The fluids are Newtonian, incom-
pressible, and immiscible, forming a well defined interface between the drop and film.
We assume that the gas above the drop and film is passive, with sufficiently small
viscosity and density so as to impose no effect upon the system.

Our primary concern is to study the behavior of the interfaces: H̄(X̄, T̄ ), the
surface of the film; Ā(X̄, T̄ ), the upper surface of the drop; and B̄(X̄, T̄ ), the interface
between the drop and film. Here, X̄ is the spatial coordinate parallel to the solid
surface, and T̄ is time. The surface tensions associated with the interfaces are ΣF
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Fig. 2. Region near the right contact point.

for the film, ΣD for the drop, and ΣDF for the interface between the drop and film.
These surface tensions are such that

1

ΣF
[
ΣF − ΣD − ΣDF

]
= S < 0.(1)

Here, S is the dimensionless spreading parameter. We assume that ΣF , ΣD, ΣDF ,
and S are well defined for our two liquids, and that they remain constant for all time.
The validity of these assumptions is discussed in [7].

Consider the two triple junctions, or contact points, X̄ = X̄L,R(T̄ ). We assume
that the three interfaces meet here at a well defined massless point. The point bears
no mass, and so the surface tension forces must sum to zero, in accordance with
Newton’s laws. Using the notation shown in Figure 2, this fact is written as

ΣF sin θF +ΣD sin θD +ΣDF sin θDF= 0,(2)

ΣF cos θF +ΣD cos θD +ΣDF cos θDF= 0.

This force balance is sometimes illustrated through the use of the Neumann triangle,
a discussion of which can be found in [14].

Our task is now to determine the dynamics of the droplet illustrated in Figure 1.
The liquids are assumed to be viscous, incompressible, and to obey the Navier–Stokes
equations. The boundary conditions are no-slip along the solid walls, the continuity
of tangential stress at the liquid interfaces, plus the condition that the jump in normal
stress is given by the surface tension times the curvature of the interface. Finally, the
boundary conditions (2) are assumed to hold at each of the triple junctions. This
is a difficult free boundary problem. To simplify matters, we will assume that the
liquids are thin, so that the lubrication approximation may be applied. The resulting
simplified system of equations for the interface shapes can then be more readily solved.

3. Lubrication approximation. Beyond considering our spreading parameter
to be negative, we further assume that it is very small in magnitude,

−S = ε2 � 1.

If the spreading parameter were identically zero, then (2) would indicate that
θD = θDF = θF + π. That is, in the neighborhood of the contact point, the three
interfaces would fall upon one shared line. Because S does not vanish, but is very
close to zero, we expect that

(
θD − θF − π

)
and

(
θDF − θF − π

)
should not vanish,

but they should be very small. If we assume that θF is small in magnitude, then θD
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and θDF must be very near π, and so all the interface slopes are very small at the
contact points.

Since H̄(X̄, T̄ ), Ā(X̄, T̄ ), and B(X̄, T̄ ) all vary slowly in X̄ near the triple junc-
tions, we seek solutions for H̄, Ā, and B̄ that vary slowly in X̄ everywhere. This
suggests that we use a long-wave theory, or, equivalently, that we use the lubrication
equations. In order to formally derive the lubrication equations, we introduce two
distinct length scales. If the thickness of the film or drop can be characterized by a
distance d, we seek solutions that vary over a distance of L, which might characterize
the length of the drop, and we seek solutions for which d/L = ε � 1. Choosing this
lubrication ratio equal to

√−S leads to a consistent, simplified system. The details
of this derivation for our problem can be found in [9]. Here we give only an outline of
the derivation and the resulting nonlinear system of evolution equations for the film
interfaces.

In order to obtain the leading order lubrication equations in the small parameter
ε, the Navier–Stokes equation along with the boundary conditions are made dimen-
sionless by the change of variables

X =
X̄

L
, y =

Ȳ

d
, T =

ερF gdT̄

3µF
,

h =
H̄

d
, b =

B̄

d
, a =

Ā

d
,

XL =
X̄L

L
, XR =

X̄R

L
.

Here µi and ρi are the viscosity and density of the film (i = F ) and drop (i = D), and
g is the gravitational acceleration. Following the standard lubrication assumptions
[1], [9], the velocity in the direction normal to the plane is assumed to be one order
higher in ε than the velocity tangent to the plane. In addition, we need to introduce
the dimensionless density ratio, viscosity ratio, and Reynolds number,

β =
ρD

ρF
, λ =

µD

µF
, Re =

ε2(ρF )2gL3

3(µF )2
.

We assume that this Reynolds number is o(1). The dimensionless parameter

C =
εΣF

ρF gL2

measures the importance of surface tension. We assume that this parameter, which is
the reciprocal of a Bond number, is O(1). Finally, we introduce dimensionless surface
tension ratios

ΣD

ΣF
= σD,

ΣDF

ΣF
= σDF + ε2.

We seek solutions of the dependent variables in the dimensionless equations of
motion as regular perturbation expansions in ε. To order O(ε), the resulting partial
differential equations that describe the evolution of the interfaces are (see [9])
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hT =
∂

∂X

{
h3 [ε cosαhX − ChXXX − sinα]

}
,

bT =
∂

∂X

{
b3
[
ε(1− β) cosα bX − CσDF bXXX

]
+

1

2
b2(3a− b)

[
εβ cosαaX − CσDaXXX

]
+sinα

[(
3β

2
− 1

)
b3 − 3β

2
ab2
]}

,(3)

aT =
∂

∂X

{
1

2
b2(3a− b)

[
ε(1− β) cosα bX − CσDF bXXX

]
+

[(
1− λ

λ

)
(a− b)3 + a3

] [
εβ cosαaX − CσDaXXX

]
+sinα

[
−β

λ
a3 + 3β

(
1− λ

λ

)
a2b+

(
3β

2
− 1

2
− β

λ

)
b2(3a− b)

]}
.

Note that the derivation of these equations parallels the calculation for a single liquid
thin film along a substrate; see, e.g., Oron, Davis, and Bankoff [12]. The difference in
the calculation occurs in the region where there are two liquid interfaces. The leading
order equations from the Navier–Stokes equations are similar to the single-phase case,
but when the boundary conditions across the drop/fluid interface are applied, the fluid
motion in both liquid regions becomes coupled, resulting in the second two equations
in (3).

In order to solve the evolution equations (3), we must supply boundary conditions
at the contact points (triple junctions), far-field information, and initial conditions.
It is important to keep in mind that the leading order equations we derive have an
associated length scale. The equations are therefore really valid only away from the
triple junctions, and care also needs to be taken when discussing the far-field. Hence, a
proper matched asymptotic analysis needs to be done that accounts for the behavior of
the solutions in these different regions. The leading order contact and balance of force
conditions at the triple junction follow from a straightforward matched asymptotic
analysis, while the derivation of the other conditions local to the triple junction can
be found in [9].

The first condition imposed at the triple junctions is continuity of the interfaces.
To leading order at X = XR,L these are

h = b,(4)

h = a.

The balance of surface tension forces (2) must also be imposed at the triple junctions.
At O(1), the force balance at the contact line (2) implies

1− σD− σDF = 0,(5)

while by pursuing the same equations to O(ε) and O(ε2), we obtain the boundary
conditions at X = XR,L ,

hX − σDaX − σDF bX = 0,

h2
X − σDa2

X − σDF b2X = −2.
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These conditions affect our leading order system and may be rephrased as

bX = hX −
√
2
σD

σDF
at X = XL,(6)

aX = hX +

√
2
σDF

σD
at X = XL,

bX = hX +

√
2
σD

σDF
at X = XR,

aX = hX −
√
2
σDF

σD
at X = XR.

The final conditions at the contact points are determined by imposing continu-
ity of pressure and horizontal velocity through the triple junction. To O(ε2), these
conditions imply

hXX − σDaXX − σDF bXX = 0,(7)

C
[
hXXX − σDaXXX − σDF bXXX

]
= ε cosα [hX − βaX − (1− β)bX ] .

We must also supply some information about h(X,T ) far upstream and down-
stream. We will seek solutions for which h(X,T ) tends to a constant height, hup,
far upstream. Initial conditions for the problem consist of the interface shapes them-
selves at T = 0. A final piece of information that proves to be useful is the speed of
the contact points, d

dTXL,R. It is clear that these speeds must be equivalent to the
horizontal component of the velocity of the fluid in the drop at these points. It can
be shown that

d

dT
XL,R =

3

2

[
h2 (ChXXX + sinα− ε cosαhX)

]∣∣∣∣
X=XL,R

.(8)

4. Steady equations and rescaling.

4.1. Equations of motion. The system (3)–(8) has been derived in part by
introducing two different length scales, L and d. We have used as our dimensionless
horizontal coordinate X = X̄/L, and T = ερF gdT̄ /3µF as our dimensionless measure
of time. If, instead, we use d as our only length scale, and if we employ

x =
X̄

d
, t =

ρF gdT̄

3µF

as our dimensionless variables, then (3)–(8) are somewhat transformed. Introducing

Bo =
ε3

C
=

ρF gd2

ΣF

as the Bond number and

xr,l(t) =
X̄R,L

d

as the dimensionless locations of the contact points, the transformed system of the
partial differential equations can be obtained.

We wish to investigate here only the possibility of steady solutions. Such a solu-
tion represents a drop of constant shape moving at a constant speed over the substrate.
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The conditions under which such a solution is possible must be determined, as must
the speed of the drop and the shape of all interfaces.

The system resulting from the above rescaling may be posed in a moving frame
by substituting xnew = xold + Ut, where U is the speed of either contact point. For
steady solutions, the shape of each interface does not vary in time, and so all time
derivatives vanish. Upon integrating the resulting equations, we find that

h3
[
Bo−1h′′′ − cosαh′ + sinα

]− Uh = −M,

b3
[
σDF

Bo
b′′′ − (1− β) cosα b′

]
+

1

2
b2(3a− b)

[
σD

Bo
a′′′ − β cosαa′

]

+sinα

[(
1− 3β

2

)
b3 +

3β

2
ab2
]
− Ub = −M,(9)

1

2
b2(3a− b)

[
σDF

Bo
b′′′ − (1− β) cosα b′

]

+

[(
1− λ

λ

)
(a− b)3 + a3

] [
σD

Bo
a′′′ − β cosαa′

]

+sinα

[
β

λ
a3 − 3β

(
1− λ

λ

)
a2b+

(
3β

2
− 1

2
− β

λ

)
b2(b− 3a)

]
− Ua = −M,

where primes denote differentiation with respect to x. The boundary conditions (4)
and (7) have been used in the integration of the differential equations (3) to evaluate
the constant of integration M = Uhup − h3

up sinα, which is the flux of the lower film.
The fact that the film thickness approaches the constant hup far upstream has also
been used. The boundary conditions needed to supplement (9) at the contact points
are

h− a = 0,(10)

h− b = 0,

b′ = h′ ∓
√
−2S σD

σDF
,

a′ = h′ ±
√
−2S σDF

σD
,

h′′ − σDa′′ − σDF b′′ = 0.

It should be noted that, by evaluating the first of the equations (9) at the contact
points and using the expressions (8), the frame speed U can be simply written as

U =
3h3

up sinα

3hup − h(xl)
=

3h3
up sinα

3hup − h(xr)
,(11)

which implies

h(xl) = h(xr)(12)

so long as α �= 0. We see that, for a solution to be steady, the height of both contact
points must be the same.
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In seeking steady solutions, we need not concern ourselves with the initial condi-
tions of the system. We must, however, specify the volume of the drop, V :∫ xr

xl

(a− b)dx = V.(13)

More properly, of course, this volume is actually an area.
A few points should be kept in mind as we solve the system (9)–(13). First,

we have assumed that S is very small in deriving our system, and so a small value
should be used if the results are to be meaningful. Second, we should expect that
our solutions will vary slowly in x. For example, the slopes of our solutions such as
hx should be O(

√|S|), since we have assumed that the slopes written as hX would
be O(1). Third, because our solutions should be slowly varying in space, we expect
surface tension effects to be important when Bo is small, namely, O(|S|3/2). Finally,
in deriving our system, we have retained terms to O(ε). The O(ε) quantities have
manifested themselves in the cosα terms. Later, the importance of these presumably
small terms is investigated.

4.2. Far-field conditions. In order to solve (9), we must provide some far-field
information. Far upstream away from the drop, we have assumed that h(x) approaches
the value hup. Far downstream, we expect h(x) to tend to a limiting value hdn. From
the first of the equations (9), we see that hdn must satisfy the algebraic equation

sinαh3
dn − Uhdn + Uhup − sinαh3

up = 0,

which has solutions

hdn = hup, −hup
2

±
√
3

2
hup

√
hup + h(xl)

3hup − h(xl)
.(14)

We observe that at most two of these solutions are positive and physically significant.
If h(x) does tend to a limiting value far downstream, it must asymptote to one of
these two allowable values if there is to be a steady solution. A discussion of third
order ODEs similar to these can be found in Tuck and Schwartz [15].

In an effort to understand the behavior of h(x) for large values of |x|, we seek
solutions of the form h(x) ∼ h∞+ ζ(x), where h∞ is one of the two values hup or hdn
and ζ � 1. We substitute this form into the steady equation (9) and retain only linear
terms in ζ. The equation admits solutions ζ = erx, where r satisfies the characteristic
equation

r3 −Bo cosα r +
3Bo sinα[2h∞ − h(xl)]

h∞[3h∞ − h(xl)]
= 0,

which has solutions r = r1, r2, r3. This fact is written as (r− r1)(r− r2)(r− r3) = 0,
or, by expanding,

r3 − (r1 + r2 + r3)r
2 + (r1r2 + r1r3 + r2r3)r − r1r2r3 = 0.

By comparing this cubic equation with the characteristic equation, we first can note
that r1 + r2 + r3 = 0. Also, we see that the sign of r1r2r3 is determined by the sign
of the quotient

Q =
sinα[h(xl)− 2h∞]

3h∞ − h(xl)
.(15)
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If Q �= 0, then we can be sure that none of the roots are zero. Because we are
solving a cubic equation with real coefficients, we are certain that at least one of the
roots is real. The fact that the sum of the roots vanishes suggests that one of the
roots, r1, has a negative real part, while another of the roots, r2, has a positive real
part.

If Q < 0, then the product of the roots is negative. For the product of the roots
to be negative, r1 must be real, and r3 must be either the complex conjugate of r2
or a positive real number, provided that r2 is real. In summary, r1 is a negative real
number, while the other roots are either positive real numbers or complex conjugates
with positive real parts.

If, for the time being, we assume that our steady solution has a contact point
height such that h(xl) < 2hup, we see that Q < 0. By the preceding analysis, we see
in this case that there is one growing mode as x → −∞. Far downstream, h(x) can
approach one of two values, hdn. If, for the time being, we assume that our steady
solution has a contact point height such that h(xl) < 2hdn as well, we see that Q < 0.
By the preceding analysis, we see in this case that there are two growing modes as
x → ∞. Additional discussion of the roots for nonnegative values of Q can be found
in Kriegsmann [9].

We will apply the conclusions of the linear analysis to our nonlinear problem and
assume that Q < 0. To suppress the growth mode far upstream, we require only that

lim
x→−∞h′(x) = 0,(16)

while far downstream we require that

lim
x→∞h′(x) = 0,(17)

lim
x→∞h(x) = hdn,

to eliminate both growth modes. It should be understood that these boundary con-
ditions are to be imposed numerically on a finite computational domain. Note that
we have assumed that the upstream height hup and the downstream height hdn both
take on values such that Q < 0. This fact must be checked in all calculated solutions.
Later, the possibility for solutions where this constraint is not met is discussed.

Our steady problem is now fully stated. The differential equations (9) must
be solved with boundary conditions (10), extra conditions (11)–(13), and numerical
boundary conditions (16)–(17). It should be noted that there are eight free parame-
ters, α, Bo, σD, S, β, λ, hup, and V , while σDF = 1− σD, as given by (5).

Finally, we should remark about the behavior of the interfaces near the contact
point. For the steady problem, Kriegsmann [9] has shown that the interfaces have
finite first, second, and third derivatives at the triple junction, but in the time depen-
dent case only the second derivative is known to be finite. He also showed that this
model implies integrable stresses in the neighborhood of the triple junction.

5. Zero-tilt-angle solutions.

5.1. Equations. We now consider steady solutions when α = 0. These are
presented to illustrate the effects of the physical parameters in our model. Pujado and
Scriven [13] calculated such steady solutions for a more general drop-film system. They
permited the interfaces to vary on a length scale similar to the thickness, and they
also found both two-dimensional and three-dimensional solutions. We consider only
two-dimensional solutions that vary on a length scale much larger than the thickness.
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For any such solution, the frame speed U and the flux M must vanish. The steady
equations (9) simplify considerably. In order to solve the system, an origin must be
selected. This is done by selecting the midpoint of the drop so that the contact points
are located at x = ±xc. In addition to the conditions at the contact points and the
volume constraint we must also impose the constraint limx→−∞ h0 = hup. Note that
we will denote the zero-tilt-angle solutions with a zero subscript. The resulting system
is linear in h0, b0, and a0, but it is nonlinear in xc. This can be seen by rescaling x so
that the contact points would be located at x = ±1. The differential equations would
then have factors of x2

c present.
The zero-tilt-angle version of (9) can be integrated, yielding

h0 = Ch + Chhe
−√

Box for x > xc,(18)

h0 = Ch + Chhe
√
Box for x < −xc,

b0 =




Cb + Cbb cosh
√

(1−β)Bo
σDF x if β < 1,

Cb + Cbb cos
√

(β−1)Bo
σDF x if β > 1,

Cb + Cbbx
2 if β = 1,

a0 = Ca + Caa cosh

√
βBo

σD
x,

where we have retained only symmetric terms. Enforcing the boundary conditions at
only one contact point and also the condition for x → −∞, we are left with seven
algebraic equations to solve for the seven unknown variables Ch, Chh, Cb, Cbb, Ca,
Caa, and xc. This algebraic system is linear in all the variables except xc and is solved
numerically (see Kriegsmann [9] for details).

One should note that, of our eight free parameters for the steady problem, α, Bo,
σD, S, β, λ, hup, and V , we set α to zero, but the rest are free. For some values of
the parameters, the solutions might not be realizable. For example, the drop might
dip below the solid surface. In general, however, we may choose the parameters as we
please. One should also note that the zero-tilt-angle solutions do not depend upon
our choice of λ in any way. This could be anticipated. Since there is no fluid motion,
viscosity should not come into play, and λ is a measure of viscosity.

5.2. Solutions. Some zero-tilt-angle solutions are shown in Figure 3. The film
height monotonically approaches the value hup both upstream and downstream, though
this is not obvious in every graph. The views of the drop and film are chosen as such
so that the drop can be seen in greater detail. Also, the labeling conventions shown
in the first graph hold for all of the solutions shown in this paper.

In an effort to understand the importance of the density ratio, β is varied while
the other dimensionless parameters are held constant. As we consider drops which are
progressively more dense, the drops sink progressively lower into the liquid substrate.
In the case when β = 0.7, we see that the film has a constant height h(x) = hup for
|x| > xc. This is true in any situation when β = σD (see [9]). If β �= σD, the film
height h(x) is not constant but is an exponential function, as stated earlier. If β > σD,
we see that the contact points dip below hup, and if β < σD, the contact points rest
above hup.

Next, we investigate the importance of the relative surface tensions by varying
σD. Figure 4 shows such solutions. Recalling the relationship (5) between σD and
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Fig. 3. Zero-tilt-angle solutions for Bo = 0.1, σD = 0.7, S = −0.1, hup = 1, and V = 1. The
density ratio β is varied as shown.

σDF, σD+ σDF = 1, as the tension of the upper surface of the drop is increased, the
tension of the lower surface of the drop is necessarily decreased. This is not to say that
the surface tensions are dependent on one another; rather a limitation of our model
demands that we consider only interactions between liquids for which our assumption
(5) is met, i.e., interactions with small spreading coefficients.

That having been said, it can be seen from the solutions that when the tension
on the upper surface of the drop is relatively low, the upper surface deforms more
dramatically than the lower surface, as expected. On the other hand, if the tension
on the upper surface of the drop is relatively high, the upper surface deforms less
dramatically than the lower surface.

Figure 5 illustrates the dependence of solutions on the spreading parameter S. It
should be remembered that S is the basis of our lubrication approximation. We have
agreed to study cases in which S is very small, and we have argued that because of
the small magnitude, solutions should vary slowly in x. Because we have derived our
equations in this limit, it is pushing the limits of reason to consider a solution to our
equations if S = −1. Nevertheless, the solutions depicted in Figure 5 show that as
the magnitude of S is increased, the width of the drops becomes shorter. This is to
be expected, as we have assumed that the ratio of the film thickness to the width of
the drop is O(

√−S).
Finally, we investigate the importance of overall surface tension by varying the

Bond number. As the value of Bo is decreased, the surface tension associated with
each interface becomes greater and the deformation of each interface is lessened, as
shown in Figure 6.
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Fig. 4. Zero-tilt-angle solutions for Bo = 0.1, S = −0.1, β = 0.5, hup = 1, and V = 1. The
surface tension ratio σD is varied as shown.

The solutions shown thus far are all accurate solutions of the mathematical system
(9)–(13), though they do not all necessarily reflect accurate physical solutions. In the
extreme case shown in Figure 3, with β = 4, we have found a mathematical solution
for which the slopes are not small. Nevertheless, by pressing the domains of validity
to the extreme, we are easily able to see trends in the solutions.

6. Finite-tilt-angle solutions. We now seek steady solutions when α is greater
than zero. The zero-tilt-angle solutions we have found thus far all share the trait
that the film height far downstream tends to the upstream height, i.e., hdn = hup.
Although we will not impose this far-field condition, the solutions we have found for
nonzero tilt-angle all share this trait. Hence in this section we will use hup when
referring to both the downstream and upstream heights. Here we will assume that
the height of the contact point is less than 2hup, and so it is necessary to apply the
boundary conditions (16), (17).

6.1. Numerical method. In order to numerically approximate solutions, we
follow a multiple-step procedure. Since we are free to select an origin, we pick it
halfway between the contact points so that xr = −xl = xc. Next, we guess at the
values of h(xc), h′(−xc), b′(xc), a′(xc), and xc that are to be held by the steady
solution. We further recall that b(xc), a(xc), b(−xc), a(−xc), h(−xc), and h(xc) are
all equal by the boundary conditions (10), (12).

We now solve for the interface shapes individually. Here we only briefly outline
the numerical method; details are given in Kriegsmann [9]. To begin, we solve the first
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Fig. 5. Zero-tilt-angle solutions for Bo = 0.1, σD = 0.7, β = 0.5, hup = 1, and V = 1. The
spreading parameter S is varied as shown.

of the differential equations (9) for x < −xc, given the facts that h
′(x) approaches zero

for large |x| and that h(−xc) and h′(−xc) take on their guessed values. As mentioned
earlier, for the film to the left of the drop we impose two boundary conditions at the
contact point and one at the end of the computational domain. Next, we solve the
same differential equation for x > xc, given the facts that h(x) tends to hup for large
x, its slope similarly tends to zero, and that h(xc) takes on its assumed value. Again
as previously mentioned, for the film to the right of the drop, we impose one boundary
condition at the contact point and two conditions at the end of the computational
domain. Finally, we solve the two coupled differential equations for a and b in (9),
with the conditions that b(−xc), a(−xc), b(xc), and a(xc) take on their guessed height,
while b′(xc) and a′(xc) are equal to their assumed values.

Given these tentative interface solutions, we check to see whether they satisfy
all of the conditions (10), (13). By our construction, the first two conditions of (10)
are satisfied at each contact point, leaving us with three conditions at each contact
point in addition to the volume constraint. We have made a guess for five different
scalars, and we see that seven equations (constraints) must be satisfied. We suspect
that there is not always a solution for a given set of physical parameters. In this case,
we expect that we may freely select six of the eight physical parameters, for example,
α, Bo, σD, S, hup, and V , and that there exists a solution only for certain values
of λ and β. The viscosity ratio λ and the density ratio β are selected arbitrarily as
the two auxiliary dependent variables. The values of the seven scalars, λ, β, h(xc),
h′(−xc), b

′(xc), a′(xc), and xc, are then systematically adjusted by a multidimensional
Newton’s method to satisfy the seven constraints.
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Fig. 6. Zero-tilt-angle solutions for σD = 0.7, S = −0.1, β = 0.5, hup = 1, and V = 1. The
Bond number Bo is varied as shown.
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Fig. 7. Steady solution for α = 0.05, Bo = 0.1, σD = 0.9, S = −0.1, hup = 1, V = 1,
β = 0.172, and λ = 0.148.

6.2. Numerical results.

6.2.1. Small-angle solutions. We begin by considering a steady solution for
a very small tilt-angle. Figure 7 shows a steady solution for α = 0.05, Bo = 0.1,
σD= 0.9, S = −0.1, hup = 1, V = 1, β = 0.172, and λ = 0.148. In this graph, as in
most of the graphs to follow in this paper, the computational domain is not shown in
its entirety, so that the details near the drop may be observed. Figure 8 illustrates
an even closer view of the same solution compared with a solution to the linearized
problem, as found by Kriegsmann [9], and a solution to the zero-tilt-angle problem.
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Fig. 8. Comparison between the zero-tilt-angle solution (dotted), solution to the linearized
problem (dashed), and solution to the nonlinear problem (solid).

By linearized, we imply solutions close to the zero-tilt-angle results, valid in the limit
of a small tilt-angle. For the zero-tilt-angle problem, all the same parameters are used,
with the exception of α = 0. For the linearized problem, the same parameter values
are used except for the viscosity ratio, for which the required value is slightly altered,
λ = 0.150. We can see that the solution to the linearized problem is, as expected, a
small perturbation away from the zero-tilt-angle solution. The solution to the fully
nonlinear problem is reasonably close to the linear solution in this case, for α = 0.05.
This is to be expected, as solutions to the linearized problem should be accurate in
the limit α � 1.

6.2.2. Large-tilt-angle solutions I. Several nonlinear solutions are shown in
Figure 9. The surface tension ratio σD is varied, and so the required values of β and λ
change as well. In varying σD, we see in the steady solutions the same trend present
in the zero-tilt-angle solutions. That is, when the surface tension on the upper surface
of the drop is relatively low, the upper surface deforms more dramatically than the
lower surface. Conversely, when the surface tension on the upper surface of the drop
is relatively high, the upper surface deforms less dramatically than the lower surface
of the drop.

In fact, the other trends discussed earlier in reference to the zero-tilt-angle solu-
tions are present in the nonlinear finite-tilt-angle solutions as well. As the value of S
is raised, the width of the drops becomes shorter. As the Bond number is decreased,
the deformation of each interface is lessened. Although these trends are shared by
the zero-tilt-angle and finite-tilt-angle solutions, and in truth the solutions even look
quite similar, there are quantitative differences. Also, although it is not obvious to
the naked eye, the finite-tilt-angle solutions, unlike the zero-tilt-angle solutions, are
asymmetric.

As repeatedly mentioned, we have been able to find steady translating solutions
only for select sets of physical parameters. In the eight-dimensional parameter space
described by α, Bo, σD, S, hup, V , β, and λ, we have found steady solutions only on
a six-dimensional manifold. To gain an understanding of this manifold, Figures 10–13
reveal numerous cross sections. Each point on the β vs. σD and λ vs. σD curves
represents a steady solution. The final graph in each figure shows the speed of the
drop.

Several features can be seen in Figures 10–13. For example, solutions have been
found only for β < σD. This may be related to the behavior of zero-tilt-angle solutions.
The concavity of the zero-tilt-angle steady film interfaces, h0(x), depends only upon



STEADY MOTION OF A DROP ALONG A LIQUID INTERFACE 33

 -10.0 0.0 10.0
0.0

0.5

1.0

1.5

 -10.0 0.0 10.0
0.0

0.5

1.0

1.5

 -10.0 0.0 10.0
0.0

0.5

1.0

1.5

 -10.0 0.0 10.0
0.0

0.5

1.0

1.5

σD
=0.3

β=0.295

λ=1.93

σD
=0.5

β=0.475

λ=1.03

σD
=0.7

β=0.596

λ=0.585

σD
=0.9

β=0.317

λ=0.148

Fig. 9. Steady solutions for α = 0.5, Bo = 0.1, S = −0.1, hup = 1, and V = 1. The values of
σD, β, and λ are varied as shown.

the sign of (β−σD). Furthermore, for reasonably small values of σD, we find solutions
only if β is very near σD and if λ approaches a value which depends almost entirely
on σD. In this limit, we also observe that the steady solutions found for α �= 0 are
almost identical to the zero-tilt-angle solutions found for the same set of parameters,
but with α = 0. We see from Figure 14 that, for relatively large σD, the value of
β is far from σD, and the steady solution differs somewhat from the zero-tilt-angle
solution. Figure 15 shows that, for relatively small σD, the value of β is close to σD,
and the steady solution is almost identical to the zero-tilt-angle solution.

Figures 10–13 further reveal that the necessary value of β depends strongly upon
the values of σD and hup but only weakly upon the value of the Bond number. Also,
we may note that the required value of λ depends weakly upon all parameters except
σD and β. Finally, we can see that the speed of the drop depends almost exclusively
upon α and hup.

Given that the steady solutions never stray too far from the zero-tilt-angle solu-
tions, this final fact is somewhat intuitive. The speed of the drop has been written
as

U =
3h3

up sinα

3hup − h (xc)
.

For the zero-tilt-angle solutions, the contact point height h (xc) is seen to depend most
strongly on the relation between β and σD (see Figures 3–6). The steady solutions,
which are similar to the corresponding zero-tilt-angle solutions, all include as part
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Fig. 10. Given Bo = 0.1, S = −0.1, hup = 1, V = 1, and α, σD having values as shown,
steady solutions are found only for the special values of β, λ shown. Also, the speed of the drop is
displayed.
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Fig. 11. Given α = 0.5, S = −0.1, hup = 1, V = 1, and Bo, σD having values as shown,
steady solutions are found only for the special values of β, λ shown. Also, the speed of the drop is
displayed.
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Fig. 12. Given α = 0.5, Bo = 0.1, hup = 1, V = 1, and S, σD having values as shown, steady
solutions are found only for the special values of β, λ shown. Also, the speed of the drop is displayed.

of the solution a value of β such that the contact point height h (xc) is on the same
order as the upstream film thickness hup. Since this is true, the drop speed can be
approximated:

U ≈ 3

2
h2
up sinα.

This value is the same as the speed of a fluid element on the surface of a perfectly
flat film of thickness hup, and it matches the speeds shown in Figures 10–13 almost
exactly.

6.2.3. Large-tilt-angle solutions II. The steady finite-tilt-angle solutions found
thus far have been to some degree tame. The solutions exist only for a restricted choice
of parameters, which conspire to keep the interfaces near those of the corresponding
zero-tilt-angle solutions. In some cases, the steady finite-tilt-angle solutions are indis-
tinguishable from the zero-tilt-angle solutions, and in all cases, the drop moves down
the plane almost exactly with the surface speed of the undisturbed film.

In order to locate each of these steady solutions, we have considered λ and β as
dependent variables. We can also seek solutions by designating different parameters
as dependent variables. By choosing hup and λ as such, we are now free to specify the
value of β. Many of the solutions described by Figures 10–13 require that β be very
near σD, and these solutions are somewhat uninteresting, in that they very closely
resemble zero-tilt-angle solutions. We may now dictate that β be far from σD and
hope for more interesting solutions.

Figure 16 shows a family of steady solutions, which are calculated by specifying
all the parameters except hup and λ. By comparing the steady solutions for α = 0.5
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Fig. 13. Given α = 0.5, Bo = 0.1, S = −0.1, V = 1, and hup, σD having values as shown,
steady solutions are found only for the special values of β, λ shown. Also, the speed of the drop is
displayed.
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Fig. 14. Steady solutions for Bo = 0.1, σD = 0.9, S = −0.1, hup = 1, V = 1, β = 0.317, and
λ = 0.148. The tilt-angle is set to α = 0.5 (solid) and α = 0 (dashed).

with the zero-tilt-angle solutions for α = 0, it is clear once again that, if the value
of β is near that of σD, the steady solution and zero-tilt-angle solution are nearly
identical. By reducing β far below σD, we see that the steady solution does differ
somewhat from the zero-tilt-angle solution, though the two configurations are quite
similar in character.

It is interesting to note that for the solutions shown in Figure 16, the required
value of hup increases with β. On the other hand, the solutions themselves are still un-
exciting, in that they closely resemble zero-tilt-angle solutions. Also, steady solutions
still have not been found for β > σD.
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Fig. 15. Steady solutions for Bo = 0.1, σD = 0.3, S = −0.1, hup = 1, V = 1, β = 0.295, and
λ = 1.93. The tilt-angle is set to α = 0.5 (solid) and α = 0 (dashed). The two solutions are nearly
indistinguishable.
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Fig. 16. Steady solutions for Bo = 0.1, σD = 0.9, S = −0.1, and V = 1. The values of β,
λ, and hup are varied as shown. Solutions for α = 0.5 (solid) are compared to the zero-tilt-angle
solutions with α = 0 (dashed).

6.2.4. Importance of O(ε) terms. In section 4 it is observed that, in deriving
our system, we retained terms to O(ε), and that these O(ε) effects are felt in the cosα
terms. Very little difference is noticed in the solutions obtained with and without the
O(ε) term, except for α near zero; this is illustrated in Figure 17, where we plot the
values that β and λ must assume for the existence of a steady solution if the O(ε)
terms are retained or discarded. We see that for α = π/2 the cosα terms obviously
have no effect. For α very near zero, we see that the removal of the cosα terms
changes the results noticeably. In such a limit, we could not have been justified in
neglecting these terms in the formulation of our lubrication equations (seeAcheson
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Fig. 17. Required values of β and λ for existence of solution. The angle α is varied, while
Bo = 0.1, σD = 0.5, S = −0.1, hup = 1, and V = 1. The O(ε) terms are discarded (solid) and
retained (dashed).

[1]). For intermediate values of α, the inclusion of the O(ε) terms only perturbs our
results. It seems proper to have included the cosα terms in our formulation. The
terms are necessary for very small α, and for larger values of α the O(ε) terms simply
provide small corrections.

6.2.5. A singular limit. At this point, it seems as though we have reached
another unexpected result. We have found that, although it is possible to realize a
steady zero-tilt-angle solution for any given values of Bo, σD, S, hup, V , β, and λ,
if α is increased slightly, then we can find a steady solution only if the parameters
take on special values. Figure 17 shows that, although we can find a zero-tilt-angle
solution for any values of β and λ, this limit is singular, since β and λ take on single
limiting values as α → 0.

To view this result from another angle, consider the case when Bo = 0.1, σD= 0.5,
S = −0.1, hup = 1, V = 1, β = 0.465, and λ = 0.999. If α = 0, a steady solution
can be found. If α is increased slightly, our claim thus far is that there is no steady
solution. If α is further increased to 0.1, then we find that there is a steady solution.
Our computations show that the profiles of these two solutions are nearly identical,
yet if we perturb α slightly away from 0.1, there is no steady solution. Alternatively,
if we perturb any other parameter, there is no steady solution for α = 0.1. It would
seem reasonable to expect a steady solution if α were between 0 and 0.1, yet we have
not found this to be the case.

7. Discussion. In finding all of the preceding finite-tilt-angle solutions, we have
found that the downstream film height tends to hup, the upstream film height, and
we have assumed that the value of hup is such that the quotient Q is negative (see
(15)). These two conditions are not violated by any of the preceding solutions, and
so our solution process has been self-consistent.

Previous research (e.g., [10], [16]) has shown that when an external pressure acts
on a thin film, in general the downstream height tends to a different value than
the upstream height. The case we have considered, where hdn = hup, is more the
exception than the rule, according to these sources. It is true that our problem is
different than one involving a simplified external forcing; in our problem, the drop
shape and speed are unknowns coupled with the film dynamics, while in [10], the
external forcing is prescribed. Nevertheless, there exists the distinct possibility that
we have found solutions that are exceptions to the general rule, and we must consider
cases when hdn �= hup.
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It seems possible that a steady solution might exist for which 2hdn < h(xl) <
2hup. In this case, we see from (15) that Q is negative upstream and positive down-
stream. The arguments presented in section 4.2 suggest that there is now only one
growth mode both upstream and downstream, and that we need only impose reduced
far-field conditions, limx→−∞ h′(x) = 0 and limx→∞ h′(x) = 0, numerically at the
ends of the finite computational domain. Hence, it may now be possible to find so-
lutions with hdn �= hup. Although neither hup nor hdn, the value of which is given
by (14), is specified directly through boundary conditions, the values are felt through
the flux and speed quantities in the differential equations.

In this situation, following the discussion of our numerical method, we now may
guess at six scalars to satisfy seven equations, and so solutions might presumably be
found as a one-parameter family. For example, β could now be chosen arbitrarily,
while λ alone would be a dependent function of the other parameters. Such a result
was found in the linearized case by Kriegsmann [9]. If hup is instead chosen as the
auxiliary dependent variable, it seems possible that steady solutions could be found
for relatively arbitrary choices of the other physical parameters. The time dependent
solutions in [10] show, for a simpler problem, the possibility of a film’s evolving towards
a steady state with adjusted heights upstream and downstream. These heights are
determined as part of the steady solution.

In summary, we note that here we have found steady solutions only for certain
select parameter sets. The effects of surface tension, spreading coefficient, and vis-
cosity on the solutions have been studied. We speculate that, in the cases for which
the parameter sets are chosen differently, there may be steady solutions for which
hdn �= hup.
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Abstract. We show how existing models for the sedimentation of monodisperse flocculated
suspensions and of polydisperse suspensions of rigid spheres differing in size can be combined to
yield a new theory of the sedimentation processes of polydisperse suspensions forming compressible
sediments (“sedimentation with compression” or “sedimentation-consolidation process”). For N solid
particle species, this theory reduces in one space dimension to an N × N coupled system of quasi-
linear degenerate convection-diffusion equations. Analyses of the characteristic polynomials of the
Jacobian of the convective flux vector and of the diffusion matrix show that this system is of strongly
degenerate parabolic-hyperbolic type for arbitrary N and particle size distributions. Bounds for the
eigenvalues of both matrices are derived. The mathematical model for N = 3 is illustrated by a
numerical simulation obtained by the Kurganov–Tadmor central difference scheme for convection-
diffusion problems. The numerical scheme exploits the derived bounds on the eigenvalues to keep
the numerical diffusion to a minimum.
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1. Introduction. Mathematical models for the (controlled) sedimentation of
polydisperse suspensions of small particles, which belong to a finite number of species
differing in size or density and are suspended in a viscous fluid, are important to
many applications such as the chemical engineering, ceramic, pulp and paper, and
food industries, mineral processing, wastewater treatment, and medicine [3, 50, 88, 89,
101, 122]. The characteristic behavior of such mixtures is differential sedimentation,
which leads to areas of different composition if an initially homogeneous suspension
is allowed to settle. In this paper, we consider the additional property that the solid
particles possibly form a compressible sediment layer. A mathematical model for
polydisperse suspensions forming compressible sediments is developed, analyzed, and
simulated, focusing on three different aspects.

First, we show how two existing sedimentation models—one for monodisperse
flocculated suspensions, which are described by scalar strongly degenerate parabolic-
hyperbolic equations, and one for polydisperse suspensions of rigid spheres differing
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in size, which lead to first-order systems of conservation laws—can be combined into
a model of sedimentation of polydisperse suspensions of particles (or flocs) forming
compressible sediments.

Secondly, we prove that this model gives rise to strongly degenerate parabolic-
hyperbolic systems of PDEs. (A precise definition of that type property is given
below.) This type characterization is valid for arbitrary numbers N of sizes of equal-
density particles. The application considered thus provides provably strongly degen-
erate parabolic-hyperbolic systems of arbitrary size. The well-posedness analysis and
design of numerical schemes for such equations has received considerable interest in
recent years, but, especially in the system (nonscalar) case, only a few applications
are known. The present paper provides such an application.

Finally, for N = 3 we illustrate the model by numerical examples using the
high-resolution Kurganov–Tadmor central difference scheme [64]. Its exposition in
[64] is biased towards systems of conservation laws but also suggests an extension
to parabolic-hyperbolic systems. This paper presents the first (to our knowledge)
application of that extension to a realistic model.

In what follows, we outline the paper and put it in perspective relative to the
existing literature. In section 2, we derive a set of spatially multidimensional model
equations for the sedimentation of polydisperse suspensions forming compressible sed-
iments (also called a sedimentation-consolidation process). The modeling starts from
the usual mass and linear momentum balance equations for the N solids species (each
regarded as one phase) and the fluid. The generic material properties of the sus-
pension are introduced by constitutive assumptions concerning the solid and fluid
stress tensors and the solid-fluid interaction forces. In particular, the solid phase
pressures and the fluid pressure are replaced by the effective solid stress σe and the
pore pressure. Here we assume that σe is a function of the total solids concentration
φ := φ1 + · · ·+ φN only, where φi is the concentration of species i having diameter di
and density �i. The way in which σe depends on φ1 to φN determines the resulting
diffusion matrix of the above-mentioned degenerate system. Specifying the solid-fluid
interaction force for each species and finally performing a dimensional analysis, which
permits our neglecting several terms of the linear momentum balance equations, we
obtain explicit expressions for the solid-fluid relative velocity (or slip velocity) of each
species as a function of Φ := (φ1, . . . , φN )T and ∇Φ, which in turn yield the fluxes
of the continuity equations. The final (spatially multidimensional) model equations
form a strongly degenerate system of N convection-diffusion equations for φ1, . . . , φN
coupled to the divergence-free condition of the volume-average mixture velocity and
a three-component equation for the motion of the mixture. These last two equa-
tions account for viscous effects and reduce for Φ ≡ 0 to the Stokes system for an
incompressible fluid. Finally, we check that for N = 1 the strongly degenerate system
reduces to the known scalar equation for monodisperse suspensions [26]. An overview
of the analysis, numerics, and applications of strongly degenerate parabolic equations
is given in section 5. For incompressible sediments, i.e., when σe ≡ 0, the model
reduces to the Masliyah–Lockett–Bassoon (MLB) model [71, 73] for polydisperse sus-
pensions of rigid spheres.

The effect of compressible sediment in polydisperse sedimentation has been stud-
ied only infrequently [98, 102]. Unfortunately, these treatments are incomplete in
that they are not embedded in the appropriate mathematical PDE framework or
are limited to N = 2. We assume that the mixture forms a compressible sediment
layer whenever the cumulative solids concentration φ exceeds a critical value (or “gel
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point”) φc, and is in hindered settling for φ ≤ φc. In [102], however, the transition
between the hindered settling zone (where φ ≤ φc) and the compression region (where
φ > φc) is introduced by an artificial moving boundary condition, which we avoid by
the concept of a degenerate diffusion equation. Our model also describes the rela-
tive movement of the solids species against each other within the sediment under the
influence of the effective solid stress. This is unlike any previous treatment. Thus,
our model is new and therefore derived completely in section 2. On the other hand,
we essentially combine arguments that have been discussed extensively in previous
works that focus on modeling either flocculated monodisperse [26, 27, 35] or nonfloc-
culated polydisperse suspensions [14, 19, 22]. Thus the presentation in section 2 is
fairly concise, and we refer to the cited papers for additional details and justification.

To continue the discussion, we need a precise definition of strongly degenerate
parabolic-hyperbolic systems. In fact, in recent years we have seen an increased
interest in quasi-linear systems of PDEs that in one space dimension can be written
as

∂u

∂t
+
∂ϕ(u)

∂x
=

∂

∂x

(
D(u)

∂u

∂x

)
, x ∈ R, t > 0,(1.1)

where u : R × R
+ → D ⊂ R

N is the sought solution vector, ϕ : D → R
N is a

flux vector, and D : D → R
N×N is a diffusion matrix. We allow the system to be

degenerate in the sense that D(u) = 0 for u ∈ D′ ⊂ D; i.e., the system reduces to
first order on D′. The system is called strongly degenerate if D′ is of nonzero N -
dimensional measure. Moreover, we recall that the system (1.1) is strictly parabolic
at a point u0 ∈ D if D(u0) > 0; i.e., the matrix D(u0) has only positive eigenvalues.
On the other hand, if u0 is chosen such that D(u0) = 0, then, according to the
usual terminology for conservation laws, the system (1.1) is called hyperbolic if the
Jacobian Jϕ(u0) hasN real eigenvalues, and strictly hyperbolic if these eigenvalues are
moreover pairwise distinct. Finally, we shall call (1.1) a strongly degenerate parabolic-
hyperbolic system if, at any point u0 belonging to the interior D0 of D, the system
(1.1) is either strictly parabolic or strictly hyperbolic in the sense given above and the
set D0 ∩ D′ on which the system is strictly hyperbolic is of nonzero N -dimensional
measure. We emphasize here that points u ∈ D\D0, which are on the boundary of the
physically relevant region D, do not enter the type characterization [59]. Note that
a strictly hyperbolic first-order system of conservation laws, for which the right-hand
side of (1.1) vanishes identically, is included as a special case. Of course, solutions
of (1.1) are in general discontinuous, even for smooth initial data. Further properties
are discussed in section 5.

If the multidimensional sedimentation equations developed in section 2 are re-
stricted to one space dimension, the motion of the mixture is determined by the
velocity at one end of the computational domain. For a closed vessel, this velocity is
zero, and only the degenerate system for φ1, . . . , φN needs to be solved. This system
of second-order PDEs can then be written as

∂Φ

∂t
+
∂f(Φ)

∂z
=

∂

∂z

(
A(Φ)

∂Φ

∂z

)
,(1.2)

where t is time and z is height. In section 2, we assume that σe = 0 for φ ≤ φc. This
assumption implies A(Φ) = 0 for φ ≤ φc. In this case, the system (1.2) is reduced to
the first-order system

∂Φ

∂t
+
∂f(Φ)

∂z
= 0.(1.3)
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We consider the system (1.2) for vectors Φ ∈ Dφmax , where 0 < φmax ≤ 1 denotes the
maximum admissible cumulative solids concentration, and we define for 0 < φM ≤ 1

DφM
:=
{
Φ = (φ1, . . . , φN ) ∈ R

N : φ1 ≥ 0, . . . , φN ≥ 0; φ1 + · · ·+ φN ≤ φM

}
.

Moreover, we denote by D0
φM

the interior of DφM , that is,

D0
φM

:=
{
Φ = (φ1, . . . , φN ) ∈ R

N : φ1 > 0, . . . , φN > 0; φ1 + · · ·+ φN < φM

}
.

Obviously, the type of (1.2) is determined by the properties of A(Φ) for φc <
φ < φmax and by those of the vector f(Φ) (more precisely, of its Jacobian Jf (Φ)) for
0 < φ ≤ φc and φ = φmax. Since every component of f(Φ) = (f1(Φ), . . . , fN (Φ))T

depends nonlinearly on every component of Φ, and sinceJf (Φ) is unsymmetric, it is by
no means obvious that the system (1.3) is strictly hyperbolic. Since all entries ofA(Φ)
are nonzero on D0

φmax
\Dφc , it is not apparent either that the system (1.2) is strictly

parabolic for φ ∈ D0
φmax

\Dφc
. The core of this paper is formed by sections 3 and 4,

where these properties are established by analyzing the characteristic polynomials of
Jf (Φ) and A(Φ), respectively, where the vector f(Φ) and the matrix A(Φ) are chosen
according to the model developed in section 2. Moreover, for the analysis of section 3,
we assume that the particles all have the same density and that the species differ in
size only. Our treatment has in part been inspired by Rosso and Sona’s recent analysis
of equations modeling the separation of oil-water dispersions [87]. In section 3, we
discuss the properties of the system (1.3) with f(Φ) = fM(Φ),

∂φi
∂t

+
∂fM

i (Φ)

∂z
= 0, i = 1, . . . , N,(1.4)

which arises from the model derived in section 2 by considering one space dimension
and a closed settling vessel and assuming that the effective solid stress vanishes (σe ≡
0). The “M” indicates that the constitutive assumptions in section 2 have been chosen
according to the MLB approach [22, 71, 73] (see [14, 22] for alternate equations for
f(Φ)). The analysis of section 3 leads to the type of the system (1.2) for φ ≤ φc

and fully determines its type for σe ≡ 0, that is, for a suspension of rigid particles
[14, 19, 22]. The main result is that in the equal-density case, the system (1.4) is
indeed strictly hyperbolic for all Φ ∈ D0

φmax
for 0 < φmax ≤ 1. Strict hyperbolicity

holds for all N and arbitrary particle sizes d1 > d2 > · · · > dN > 0.
To outline the significance of the analysis of section 3 in nontechnical terms,

let us first say that hyperbolicity of a first-order system of conservation laws like
(1.3) is in general a desirable property. In fact, the existence of a complete set of
pairwise-distinct eigenvalues at each relevant point Φ of the state space ensures that
the solution of (1.3) involves (simple) waves, i.e., solutions which essentially involve
one eigenvalue of the Jacobian Jf (Φ) and a corresponding eigenvector; see [51] for
details. The important point is that each eigenvalue represents a finite propagation
speed of solution information. For a mixture of flowing phases (in our case, the N
“particulate” phases and the fluid), we should expect not only that a good model pre-
dicts finite speeds of propagation, but that moreover no solution information travels
faster than any of the physical phases. We shall show later (Lemma 6.1 in section 6.3)
that the MLB model for equal-density spheres and dilute to moderately concentrated
suspensions indeed satisfies this requirement.

To put the hyperbolicity result in the proper perspective, let us now look at the
opposite situation. Loss of hyperbolicity for a given vector Φ ∈ R

N means that system
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(1.4) has at least one pair of complex-conjugate eigenvalues. For N = 2, we then say
that the system is elliptic. In most cases, for vectors Φ chosen from some subregion of
the relevant state space, the system (1.4) is nonhyperbolic or elliptic and is hyperbolic
elsewhere. Such systems are called mixed systems; see [47] for a survey of applications.
In some applications, such as multiphase flow in porous media, the significance of
mixed systems is essentially unclear, and loss of hyperbolicity is sometimes related
to a model error. For polydisperse sedimentation, however, it is shown in [22] that
for arbitrary N the degeneracy into nonhyperbolic type is a criterion for the possible
occurrence of horizontal structures like fingers, columns, or blobs during sedimenta-
tion. This interpretation of nonhyperbolicity generalizes a criterion formulated in [4]
for N = 2. Such instabilities have been observed in experiments [4, 117] at certain
initial concentrations and are particularly likely to occur in suspensions including one
species that is heavier and one that is lighter than the fluid. On the other hand,
instabilities have never been observed with equal-density particles.

For a given polydisperse sedimentation model, expressed by the specific algebraic
form of the flux vector f(Φ), the ellipticity region (which usually has to be deter-
mined numerically [22]) for given particle densities and sizes should agree with those
concentration regions for which instabilities have been observed experimentally. On
the other hand, the model equations should be strictly hyperbolic for arbitrary N
and equal-density particles. In [22] we show that the MLB model satisfies the first
of these properties and is, in particular, not hyperbolic in general for suspensions in
which two or more species have different densities. However, in [22] we were able to
prove strict hyperbolicity for the system (1.4) with equal-density particles in the case
N = 2 only. We indicated in [22] that numerical tests with N = 3 never produced
an instability region, and we conjectured that the MLB equations were hyperbolic for
arbitrary N , which is now proved in the present paper.

The properties of the MLB model contrast with those of several other models.
For example, the model proposed by Davis and Gecol [38] again leads to a system
of the form (1.4), but which for equal-density particles is hyperbolic only for small
values of d1/d2 (for example, for N = 2 the restriction is d1/d2 < 5; see [22]),
and for which the size of the ellipticity region drastically increases when d1/d2 is
increased. Since no instabilities have been observed experimentally with equal-density
suspensions, these ellipticity regions are unphysical and limit the use of the Davis and
Gecol model to small values of d1/d2. We refer to [22] for a thorough discussion
of mixed systems modeling polydisperse sedimentation and the consequences for the
mathematical analysis.

In section 4, we consider the right-hand side of (1.2) using the diffusion matrix
A(Φ) derived in section 2. While it is obvious thatA(Φ) = 0 on Dφc , it is not apparent
that A(Φ) is positive definite on D0

φmax
\Dφc . The hyperbolicity and parabolicity

properties of (1.2) associated with the matrices JfM(Φ) and A(Φ) are controlled
by the independent model functions V (φ) and σe(φ), but their entries are analogous.
Thus, the formula for the characteristic polynomial of JfM(Φ) derived in section 3 also
provides (after substitutions) a formula for that of A(Φ). It is then straightforward
to prove that A(Φ) has N distinct nonnegative eigenvalues, which are positive if
φc < φ < φmax. Thus, (1.2) is strictly parabolic for φc < φ < φmax, which is the main
result of section 4.

In contrast to the hyperbolicity of the first-order system (1.4), the parabolicity
property established in section 4 does not admit a direct physical interpretation.
Rather, parabolicity is a condition ensuring the well-posedness (existence, uniqueness,
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and stability) of systems of PDEs of the form (1.2). It should, however, be pointed out
that mathematically rigorous well-posedness results are available for certain special
cases of (1.2) only. These include, on one hand, scalar strongly degenerate parabolic-
hyperbolic equations [6, 7, 8, 17, 25, 31, 61, 62, 72, 118], and, on the other hand,
certain uniformly parabolic systems, that is, systems that do not degenerate into first-
order type [42, 49, 63, 66]. A closed mathematical theory for the strongly degenerate
systems considered in this paper is not available despite the increased interest this
kind of equation has attained in recent years. Section 5 provides a short overview of
the existing literature on mathematical and numerical theory for strongly degenerate
parabolic problems.

In section 6, we first describe the central difference scheme due to Kurganov and
Tadmor [64], which is used in this paper. The system (1.2) is discretized by a high-
resolution central difference (Riemann solver free) scheme for the convection part
(corresponding to the first-order equation (1.4)) combined with a central difference
discretization of the parabolic parts (the right-hand side of (1.2)). Then we illus-
trate the (new) model of polydisperse sedimentation with compression by numerical
examples with N = 3 and compare the results with simulations of the two (conven-
tional) models of settling of monodisperse flocculated and polydisperse rigid-sphere
suspensions (where σe ≡ 0). We refer to [14, 19] for the application of similar numer-
ical schemes to first-order systems like (1.4) describing sedimentation of polydisperse
suspensions without compression effects.

The closing section 7 discusses various aspects of the paper. We first show that
the type analysis of sections 3 and 4 is also valid in several space dimensions. Next, we
briefly comment on the possible extension of the model to polydisperse suspensions
with particles of different densities, and we furthermore provide a physical interpre-
tation of one of the eigenvalue bounds derived in section 3. One frequent topic in
the sedimentation literature is hydrodynamic diffusion, which is associated with par-
ticle velocity fluctuations. We give a brief survey of the literature on hydrodynamic
diffusion and provide justification for not including this effect in our model. An im-
portant new property of the model is the prediction of diffusive relative movement
of the different solids species within the sediment. This effect is clearly visible in
the numerical simulations, which correspond to a hypothetical material, and may be
less pronounced for real materials. We therefore discuss several alternative gradual
and structural modifications of the present model that could reduce sediment diffu-
sivity. Finally, some applications in which the sediment compressibility is important
are discussed.

2. Derivation of the model of polydisperse sedimentation with com-
pression.

2.1. Mass and linear momentum balance equations. A suspension may be
represented as a superposition of continuous media, each following its own movement
with the only restrictions imposed by the interaction between components. Each
component obeys the laws of conservation of mass and momentum, incorporating
terms to account for the interchange between components [27]. We assume that there
is no mass transfer between species.

The local mass balance equations of the solid species and of the fluid can be
written as

∂φi
∂t

+∇ · (φivi) = 0, i = 1, . . . , N, −∂φ

∂t
+∇ · ((1− φ)vf

)
= 0,(2.1)
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where vi is the phase velocity of solids species i, i = 1, . . . , N , and vf is the fluid phase
velocity. Defining the volume-average velocity of the mixture q := (1−φ)vf +φ1v1 +
· · ·+φNvN and the relative velocities or slip velocities ui := vi−vf for i = 1, . . . , N ,
we derive easily that

φivi = φi
(
ui + q− (φ1u1 + · · ·+ φNuN )

)
, i = 1, . . . , N ;(2.2)

hence the solids mass balance equations can be rewritten in terms of q and u1, . . . ,uN
as

∂φi
∂t

+∇ · (φiui + φiq− φi(φ1u1 + · · ·+ φNuN )
)
= 0, i = 1, . . . , N.(2.3)

The sum of all equations in (2.1) produces the simple mass balance of the mixture,
∇·q = 0. The momentum balance equations for the N solid species and the fluid are

�iφi
Dvi
Dt

= ∇ ·Ti + �iφib+mf
i +ms

i , i = 1, . . . , N,(2.4)

�f(1− φ)
Dvf

Dt
= ∇ ·Tf + �f(1− φ)b− (mf

1 + · · ·+mf
N ).(2.5)

Here �f is the mass density of the fluid, Ti denotes the stress tensor of particle species i,
i = 1, . . . , N , Tf that of the fluid, b is the body force, mf

i and ms
ij are the interaction

forces per unit volume between solid species i and the fluid and between the solid
species i and j, respectively, ms

i := ms
i1+ · · ·+ms

iN is the particle-particle interaction
term of species i, and we use the standard notation Dv/Dt := ∂v/∂t+ (v · ∇)v.

2.2. Solid and fluid stress tensors. We assume that the stress tensors of
the solid and fluid phases can be written as Ti = −piI + TE

i for i = 1, . . . , N and
Tf = −pfI+TE

f , respectively, where pi denotes the phase pressure of particle species i,
pf that of the fluid, I denotes the identity tensor, andTE

i andTE
f are the corresponding

extra (or viscous) stress tensors, all of which could be given by expressions that
correspond, for example, to a viscous-linear fluid. Since the focus here is on the
continuity equations for the solids and we assume that viscous effects due to the
motion of the mixture are not dominant, all viscous effects are assigned to the fluid
extra-stress tensor. To make this simplification visible in the dimensional analysis,
we assume that νf

0 and νs
0 < νf

0 are characteristic viscosities associated with the fluid
and the solid species, respectively.

2.3. Partial pressures, pore pressure, and effective solid stress. The
phase pressures p1, . . . , pN and pf are theoretical variables (arising from the averaging
procedure [27]), which cannot be measured experimentally. As in [26], they are re-
placed by the pore pressure p and the effective solid stress σe, which are measurable.
We assume that σe is given by a constitutive equation σe = σe(Φ), that is, as a func-
tion of the local composition of the sediment. To our knowledge (see also [102]), no
suitable function σe = σe(Φ) for the polydisperse case has been derived either theoreti-
cally or empirically so far. However, most researchers utilize formulas that relate σe to
the sediment porosity or, equivalently, to the total volumetric solids concentration φ
[74, 98].

In stating the generic assumptions on σe, we follow [81, 92] and consider that
during sedimentation, when φ ≤ φc, there is no permanent contact between the
particles (or aggregates of them), and the momentum transfer between the particles
occurs entirely through the fluid or through collisions (although in a moment we shall
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show that the latter effect is negligible here). This means that the total stress of the
mixture, pt, which can be decomposed in two different ways as

pt = pf + p1 + · · ·+ pN = p+ σe(φ),(2.6)

equals the pore pressure, and therefore σe(φ) = 0 for φ ≤ φc. (The second equality
in (2.6) reflects the well-known effective-stress principle [39].) During consolidation,
when φ > φc, permanent contact is established between the solid particles, and the
contact forces are transmitted through solid-solid contacts. Moreover, it can be as-
sumed that the part of the total stress supported by the skeleton of networked solid
particles is an increasing function of their concentration φ, i.e., σ′

e(φ) := dσe(φ)/dφ > 0
for φ > φc. These generic assumptions on σe(φ) can be summarized as

σe(φ)

{
= 0 for φ ≤ φc,

> 0 for φ > φc,
σ′
e(φ)

{
= 0 for φ ≤ φc,

> 0 for φ > φc;
(2.7)

a specific example is given in section 6. Our concept of effective solid stress has been
adopted from soil consolidation theory [81, 92] but is consistent with and in some
cases mathematically equivalent to the concepts of compressive yield stress [52, 67],
effective pressure [40], or yield pressure [54] utilized by research workers with a focus
on solid-liquid separation. All these papers have in common that it is assumed that
the effective stress takes positive values if and only if the particles are networked, and
that this occurs when φ > φc, where φc is a distinct critical concentration, also called
the “threshold value” or “gel point.”

We now relate the fluid and solid phase pressures pf and p1, . . . , pN to the effective
solid stress σe and the pore pressure p. While p is defined within the fluid filling the
interstices between the solids, the partial fluid pressure pf is defined in the fluid
component occupying the whole volume of the mixture. Let S be the cross-section of
a settling column and Sf ⊂ S be its part that is filled out by the fluid in the porous
medium, and let ε denote the surface porosity ε := |Sf |/|S|, i.e., dSf = εdS. Then the
surface forces exerted on the fluid in a cross section of the sediment are∫

S

pf dS =

∫
Sf

p dSf =

∫
S

p(εdS).(2.8)

Since we may assume that the surface porosity equals the volume porosity [22], we
may replace ε by 1 − φ, and as a consequence of the localization theorem [53], we
obtain pf = (1− φ)p from (2.8).

The effective solid stress σe is that part of the total stress pt which acts on the
porous network formed by the solid particles. Assuming that the cross-sectional sur-
face area fraction of each solids species equals its volume fraction [22], we may conclude
that (φi/φ)σe(φ) is that part of σe which acts on species i. In view of pf = (1 − φ)p,
(2.6) may be rewritten as

p1 + · · ·+ pN = φp+
φ1 + · · ·+ φN

φ
σe(φ).

Thus, the phase pressure pi is related to p and σe by pi = (φi/φ)(φp + σe(φ)) for
i = 1, . . . , N .

2.4. Body force, solid-fluid, and particle-particle interaction forces. We
assume that the only body force is gravity, b = −gk, where g is the acceleration of
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gravity and k is the upwards-pointing unit vector. Furthermore, for a monodisperse
suspension [26, 27, 34, 35], the interaction force m between the fluid and the unique
solid phase can be modeled by

m = α(φ)u+ β(φ)∇φ,(2.9)

where α is the resistance coefficient and u := vs − vf is the solid-fluid relative or
slip velocity. Equation (2.9) follows from the theorem of representation of isotropic
functions [70, 99, 115, 115A, 115B] if we require that m be given as the most general
linear function of u, φ, and ∇φ. A similar result is obtained in [41], and (2.9) is
also presented in [82] within a discussion of general principles for the formulation of
constitutive equations. The function β(φ) can be shown to coincide with the pore
pressure p (see [26]). In the present case, we analogously assume that the solid-fluid
interaction term related to species i is given by mf

i = αi(Φ)ui + βi(Φ)∇φi, where αi
is the resistance coefficient for the transfer of momentum between the fluid and solid
phase species i, i = 1, . . . , N .

The interaction force between the different solid particle species could be specified
by the Nakamura and Capes formula [1, 76, 98]:

ms
ij =

3

2
ϕe
�i�jφiφj(di + dj)

2

�id3
i + �jd3

j

‖vi − vj‖ (vi − vj), i, j = 1, . . . , N, i �= j,

where the parameter ϕe accounts for non–head-on collisions [98] and its value depends
on whether these are plastic or elastic. Typical values of ϕe vary between 0 and 5
[1, 76], and numerical simulations have not turned out to be sensitive to ϕe (see [1]).
Nevertheless, the elimination of the termms

i = ms
i1+· · ·+ms

iN due to the dimensional
analysis (see section 2.5) is not dependent on any particular formula, since there is
considerable experimental and theoretical evidence (summarized in [22]) that ms

ij can
be neglected at the very low Reynolds numbers considered here.

To determine β1(Φ), . . . , βN (Φ), we insert the constitutive assumptions into (2.4)
and (2.5) and consider the mixture at equilibrium (t → ∞) in a settling column. This
state is characterized by vf = 0, u1 = · · · = uN = 0, and ∇p = −�fgk, and we obtain
β1(Φ) = · · · = βN (Φ) = p; i.e., the functions βi are all constant with respect to Φ
[22, 26]. The linear momentum balances now read

�iφi
Dvi
Dt

= −�iφigk+∇ ·TE
i − φi∇p+ αi(Φ)ui +ms

i −∇
(
φi
φ
σe(φ)

)
,

i = 1, . . . , N,(2.10)

∇p = −�fgk− 1

1− φ

(
α1(Φ)u1 + · · ·+ αN (Φ)uN

)− �f
Dvf

Dt
+

1

1− φ
∇ ·TE

f .(2.11)

2.5. Dimensional analysis. We introduce dimensionless (starred) variables by
referring all densities to �f , all velocities to the velocity U , all lengths to a typical
length L, all solid and fluid viscosities to νs

0 and νf
0, respectively, and all pressures

to the hydrostatic pressure �fgL. Here, we assume that U is the settling velocity of
a single particle of the fastest settling species in an unbounded medium, and L is
the depth of the settling vessel. A characteristic time is then given by T = L/U . A
dimensionless gradient of a variable u is defined by ∇∗u = L∇u, and a dimensionless
time derivative by ∂u/∂t∗ = T∂u/∂t = (L/U)∂u/∂t. Using the Froude number of the
flow Fr := U2/(gL) and the sedimentation Reynolds number Re := dU/νf

0, where d
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is the size of the largest particles, we obtain from (2.4) and (2.11) the dimensionless
equations

�∗iφiFr
Dv∗

i

Dt∗
=− �∗iφik+

d

L

νs
0

νf
0

Fr

Re
∇∗ · (TE

i

)∗ − φi∇∗p∗ + α∗
i (Φ)u

∗
i

+
L

d
Fr(ms

i)
∗ −∇∗

(
φi
φ
σ∗
e (φ)

)
, i = 1, . . . , N,

(2.12)

∇∗p∗ = −k− 1

1− φ

(
α∗

1(Φ)u
∗
1 + · · ·+ α∗

N (Φ)u∗
N

)− Fr
Dv∗

f

Dt∗
+

1

1− φ

d

L

Fr

Re
∇∗ · (TE

f

)∗
.

(2.13)

The values d = 10−4 m, g = 10m/s2, L = 1m (height of a settling vessel), U =
10−4 m/s (settling velocity of a particle of the fastest species in an unbounded fluid),
and νf

0 = 10−6 m2/s (kinematic viscosity of water) are typical for the particulate
systems considered here and imply Fr = 10−9, Re = 10−2, and d/L = 10−4. Since
all viscous effects have been moved onto the fluid extra-stress tensor, we can assume
νs
0/ν

f
0 � 1. We assume that all dimensionless variables are of the order of magnitude

O(1). Then we obtain, by discarding from (2.12) all terms that have a coefficient
that is 10−5 or smaller, and discarding the advective acceleration term from (2.13)
but retaining the viscous term, the following simplified linear momentum balances:

αi(Φ)ui = �iφigk+ φi∇p+∇
(
φi
φ
σe(φ)

)
, i = 1, . . . , N,(2.14)

∇p = −�fgk− 1

1− φ

(
α1(Φ)u1 + · · ·+ αN (Φ)uN

)
+

1

1− φ
∇ ·TE

f ,(2.15)

which are written again in their dimensional forms. The small viscous term ∇ · TE
f

is retained in (2.15) when this equation acts as an equation for the motion of the
mixture. We shall comment on the necessity of viscous terms in the multidimensional
case in section 2.7.

The term∇·TE
f is, however, deleted when (2.15) is inserted into (2.14), in order to

produce a solvable linear system for the slip velocities u1, . . . ,uN . Thus, this system
can be written as

αi(Φ)(1− φ)

φi
ui +

N∑
j=1

αj(Φ)uj

= (1− φ)

[
(�i − �f) gk+

1

φi
∇
(
φi
φ
σe(φ)

)]
, i = 1, . . . , N.

(2.16)

2.6. Explicit formula for the slip velocities ui. Let �(Φ) := (1 − φ)�f +
φ1�1 + · · · + φN�N denote the local density of the mixture, and note that φ1(�1 −
�f) + · · ·+ φN (�N − �f) = �(Φ)− �f . Then the following explicit equation for the slip
velocities ui as functions of Φ is obtained as the solution of the system (2.16), which
follows from the Sherman–Morrison formula [22]:

ui =
φi

αi(Φ)

[(
�i − �(Φ)

)
gk+

σe(φ)

φi
∇
(φi
φ

)
+

1− φ

φ
∇σe(φ)

]
, i = 1, . . . , N.(2.17)

Following [22] and being consistent with Masliyah [73] and Lockett and Bassoon [71],
we choose φi/αi(Φ) = −d2

iV (Φ)/(18µf), where µf is the viscosity of the pure fluid, and
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the hindered settling factor V (Φ) can, for example, be chosen as V (Φ) = (1−φ)n(Φ)−2

[86]. Since the dependence of n on Φ is through wall effects, which are small when d is
very small compared to the diameter of the settling vessel, we may limit the analysis
to formulas of the type V (Φ) = V (φ) and obtain

ui = − d2
i

18µf
V (φ)

[(
�i − �(Φ)

)
gk+

σe(φ)

φi
∇
(φi
φ

)
+

1− φ

φ
∇σe(φ)

]
, i = 1, . . . , N.

(2.18)

The generic assumption to ensure hyperbolicity, which is satisfied by V (φ) = (1 −
φ)n−2, n > 2, is

V (φ) > 0, V ′(φ) < 0 for 0 < φ < φmax.(2.19)

2.7. Final form of the model equations. The final model equations are the
continuity equations of the solids species and of the mixture (∇ · q = 0), the linear
momentum balance of the fluid (2.15), and the equations (2.18) for the slip velocities
ui derived from the linear momentum balances of the solid species. To derive explicit
expressions for the fluxes φ1v1, . . . , φNvN appearing in these equations, we introduce
the reduced densities �̄s := �s−�f , where �s is the density of the solid particles if they
differ only in size, �̄i := �i − �f , i = 1, . . . , N , the vector �̄ := (�̄1, . . . , �̄N )T, and the
parameters µ := −gd2

1/(18µf) and δi := d2
i /d

2
1, i = 1, . . . , N , such that (2.18) reads

ui = µδiV (φ)

[
(�̄i − �̄TΦ)k+

σe(φ)

gφi
∇
(φi
φ

)
+

1− φ

gφ
∇σe(φ)

]
, i = 1, . . . , N.(2.20)

From (2.2), we get φivi = fM
i (Φ)k+φiq−ai(Φ,∇Φ) for i = 1, . . . , N , where the com-

ponents of fM(Φ) (corresponding to the MLB model for suspensions of rigid spheres)
are given by

fi(Φ) = fM
i (Φ) = µV (φ)φi

[
δi(�̄i − �̄TΦ)−

N∑
k=1

δkφk(�̄k − �̄TΦ)

]
, i = 1, . . . , N.

(2.21)

If we let δ := (δ1, . . . , δN )T, then the vectors ai(Φ,∇Φ) are given by

ai(Φ,∇Φ) = −µV (φ)

g

{
(1− φ)φi

φ
(δi − δTΦ)∇σe(φ)

+ σe(φ)

[
δi∇

(φi
φ

)
− φi

(
δ1∇

(φ1

φ

)
+ · · ·+ δN∇

(φN
φ

))]}
, i = 1, . . . , N.

(2.22)

The continuity equations for the solids, i.e., for the N unknowns φ1 to φN , can then
be written as

∂φi
∂t

+∇ · (φiq+ fM
i (Φ)k

)
= ∇ · ai(Φ,∇Φ), i = 1, . . . , N.(2.23)

Due to the property (2.7), ai(Φ,∇Φ) = 0 wherever φ ≤ φc. At these concentrations,
the system (2.23) turns into the first-order system of N scalar equations analyzed in
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[22]. The final coupled set of model equations, valid in several space dimensions, is
given by (2.23) and the equations

∇ · q = 0,(2.24)

∇p =−∇σe(φ)− (�f + �̄ · Φ)gk+
1

1− φ
∇ ·TE

f

≡−∇σe(φ)− �(Φ)gk+
1

1− φ
∇ ·TE

f .

(2.25)

Before discussing the role of (2.25), we set N = 1 to check consistency with the model
of sedimentation of monodisperse flocculated suspensions [26]. With

fM(φ) = −gd2�̄s

18µf
V (φ)φ(1− φ)2, a(φ,∇φ) = a(φ)∇φ = −fM(φ)

�̄sgφ
∇σe(φ),

a(φ) = −fM(φ)σ′
e(φ)

�̄sgφ
,

we see that (2.23) indeed reduces to the scalar equation

∂φ

∂t
+∇ · (φq+ fM(φ)k

)
= ∇ · (a(φ)∇φ)(2.26)

derived in [26]. It is easy to see that (2.26) is first-order hyperbolic for φ ≤ φc and
φ = 1, and second-order parabolic for φc < φ < 1, and therefore a strongly degenerate
parabolic equation.

Noting that vf = q − (φ1u1 + · · · + φNuN ), we can rewrite TE
f in terms of the

mixture velocity q and the slip velocities ui, which are now given functions of Φ. For
example, if we use the expression TE

f = µ(φ)[∇vf + (∇vf)
T − (2/3)(∇ · vf)I] as for a

standard viscous-linear fluid but with a concentration-dependent viscosity function,
then (2.25) can be rewritten in the form

∇p = −�(Φ)gk+
1

1− φ

[(∇µ(φ))T(∇q+ (∇q)T
)
+ µ(φ)∆q

]
+ g(Φ,∇Φ,∇2Φ),

(2.27)

where g is a function depending on Φ and the derivatives of its components of up to
second order. For pure fluid, i.e., when Φ ≡ 0 (and thus q ≡ vf), (2.24) and (2.25)
form the Stokes system for an incompressible fluid for the velocity q and the pressure p.

We now comment on the necessity of retaining a viscosity term, such as µ(φ)∆q in
(2.25) or (2.27). In fact, deleting all terms which are expected to be small according
to the dimensional analysis would require that we consider the following equation
instead of (2.25):

∇p = −∇σe(φ)− �(Φ)gk.(2.28)

To elucidate the consequences of (2.28), we take the curl of (2.28), which leads to
∂�(Φ)/∂x = ∂�(Φ)/∂y = 0, such that the local density of the mixture depends on
height only [93]. For N = 1, the implications of this observation are well known [23,
93]. Although the concentration waves (kinematic waves) are one-dimensional, they
are embedded in the three-dimensional mixture flow field q. Since q does not appear in
the field equation (2.28), the coupling between the flow field and the kinematic waves
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has to be modeled by boundary conditions, which requires introducing boundary layers
of sediment or streaming liquid. The resulting kinematic-wave theory has been useful
in explaining the behavior of relatively dilute suspensions in vessels with inclined
walls [93] or in centrifuges [90, 91]. In [23], this approach is extended to monodisperse
suspensions with compressible sediments, for which numerical solutions can be readily
obtained. However, it is also shown in [23] that the kinematic-wave theory does not
lead to a mathematically well-posed problem, and that this shortcoming is due to the
absence of the aforementioned coupling between kinematic waves and the flow field in
(2.28). On the other hand, in [24], energy estimates for slight variants of the coupled
system (2.23)–(2.25) with N = 1 are obtained. These estimates lead to existence and
stability results, and follow from the viscosity term in (2.25).

We now consider one space dimension, for which we get ∂q/∂z = 0, and only
(2.23) needs to be solved, since q is given by boundary conditions and (2.25) turns
into an equation for the pore pressure p, which permits us to calculate this quantity
a posteriori from φ1, . . . , φN .

2.8. Initial and boundary conditions in one space dimension. In a closed
one-dimensional vessel, the mixture velocity at the bottom vanishes; hence q ≡ 0, and
the remaining equations that actually have to be solved are the system of convection-
diffusion equations

∂φi
∂t

+
∂fM

i (Φ)

∂z
=

∂

∂z

[
ai

(
Φ,

∂Φ

∂z

)]
, i = 1, . . . , N,(2.29)

together with an initial concentration distribution and zero flux boundary conditions,
i.e.,

Φ(z, 0) = Φ0(z) ∈ Dφmax , 0 ≤ z ≤ L,(2.30)

φivi = fM
i (Φ)− ai

(
Φ,

∂Φ

∂z

)
= 0 for z = 0 and z = L, i = 1, . . . , N .(2.31)

3. Hyperbolicity of the first-order system. We now assume �1 = · · · =
�N = �s, so that the components of fM(Φ) are

fM
i (Φ) = µ�̄sV (φ)(1− φ)(δi − δTΦ)φi, i = 1, . . . , N,(3.1)

and we denote by P (λ) the characteristic polynomial of J := (µ�̄s)
−1JfM(Φ), where

JfM(Φ) = (∂fM
i (Φ)/∂φj)i,j=1,...,N is the Jacobian of fM(Φ). We now derive a closed

algebraic expression for P (λ). We can write (µ�̄s)
−1∂fM

i (Φ)/∂φj = γij(Φ)φi+γ
i(Φ)δij

for i, j = 1, . . . , N , where

γi(Φ) :=V (φ)(1− φ)(δi − δTΦ), i = 1, . . . , N,(3.2)

γij(Φ) :=
(
V (φ)(1− φ)

)′
(δi − δTΦ)− V (φ)(1− φ)δj , i, j = 1, . . . , N.(3.3)

The characteristic polynomial can be written as

P (λ) := det(J− λI) =

∣∣∣∣∣∣∣∣∣

γ1
1φ1 + γ1 − λ γ1

2φ1 · · · γ1
Nφ1

γ2
1φ2 γ2

2φ2 + γ2 − λ · · · γ2
Nφ2

...
...

. . .
...

γN1 φN γN2 φN · · · γNN φN + γN − λ

∣∣∣∣∣∣∣∣∣
.(3.4)
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In what follows, we omit the argument Φ and, for later use, note that γi − γl =
V (φ)(1−φ)(δi− δl), which due to δ1 > δ2 > · · · > δN implies γN < γN−1 < · · · < γ1.
Moreover, we observe that

γ1
j − γ1

k = · · · = γNj − γNk = −V (φ)(1− φ)(δj − δk), j, k = 1, . . . , N,

γj1 − γk1 = · · · = γjN − γkN =
(
V (φ)(1− φ)

)′
(δj − δk), j, k = 1, . . . , N.

The common values of γij−γik and γji −γki for all i = 1, . . . , N , j, k = 1, . . . , N , will be
denoted by γj,k and γj,k, respectively. Since JfM(Φ) and A(Φ) have similar structure
and therefore similar characteristic polynomials, it is convenient for later use to prove
the following lemma separately.

Lemma 3.1. The polynomial P (λ) defined in (3.4) satisfies

P (λ) =

{
1 +

N∑
m=1

φmγ
m
m

γm − λ
−

N∑
m=1

φm
γm − λ

N∑
l=1

φlγl,Nγ
l,m

γl − λ

}
N∏
k=1

(γk − λ).(3.5)

Proof. In this proof we merely use the definitions of γj,k and γj,k in terms of the
γij ’s and γj ’s. Subtracting column N from columns 1 to N − 1 in (3.4) yields

P (λ) =

∣∣∣∣∣∣∣∣∣

γ1,Nφ1 + γ1 − λ · · · γN−1,Nφ1 γ1
Nφ1

...
. . .

...
...

γ1,NφN−1 · · · γN−1,NφN−1 + γN−1 − λ γN−1
N φN−1

γ1,NφN − γN + λ · · · γN−1,NφN − γN + λ γNN φN + γN − λ

∣∣∣∣∣∣∣∣∣
.(3.6)

Expanding this determinant on the last row, we get

P (λ) = X + (γN − λ)(−1)N
(
Y1 − Y2 + Y3 − · · ·+ (−1)NYN−1

)
,(3.7)

where X and Ym are the determinants obtained from the determinant in (3.6) by
replacing the last row by (γ1,NφN , . . . , γN−1,NφN , γ

N
N φN + γN − λ) and by deleting

the last row and the mth column, m = 1, . . . , N − 1, respectively. Multiplying the
last row in X with (−φi/φN ) and adding the result to the ith row, i = 1, . . . , N − 1,
leads to

X =

∣∣∣∣∣∣∣∣∣

γ1 − λ · · · 0 φ1

(
γ1,N − (γN − λ)/φN

)
...

. . .
...

...
0 · · · γN−1 − λ φN−1

(
γN−1,N − (γN − λ)/φN

)
γ1,NφN · · · γN−1,NφN γNN φN + γN − λ

∣∣∣∣∣∣∣∣∣
.

Expanding X on the last row yields

X =

(
γNN φN + γN − λ− φN

N−1∑
m=1

φmγm,N
γm − λ

(
γm,N − γN − λ

φN

))N−1∏
k=1

(γk − λ).(3.8)
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Furthermore, we have Ym = (−1)N−1−mỸm, where

Ỹm =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

γ1,Nφ1

+ γ1 − λ
· · · γm−1,Nφ1 γm+1,Nφ1 · · · γN−1,Nφ1 γ1

Nφ1
...

. . .
...

...
...

...

γ1,Nφm−1 · · · γm−1,Nφm−1

+ γm−1 − λ
γm+1,Nφm−1 · · · γN−1,Nφm−1 γm−1

N φm−1

γ1,Nφm+1 · · · γm−1,Nφm+1
γm+1,Nφm+1

+ γm+1 − λ
· · · γN−1,Nφm+1 γm+1

N φm+1
...

...
...

. . .
...

...

γ1,NφN−1 · · · γm−1,NφN−1 γm+1,NφN−1 · · · γN−1,NφN−1

+ γN−1 − λ
γN−1
N φN−1

γ1,Nφm · · · γm−1,Nφm γm+1,Nφm · · · γN−1,Nφm γmN φm

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

,

which implies

Ym = (−1)N−1−m φm
γm − λ

(
γmN −

N−1∑
l=1

γl,Nγ
l,mφl

γl − λ

)
N−1∏
k=1

(γk − λ),

m = 1, . . . , N − 1.(3.9)

Inserting (3.8) and (3.9) into (3.7), we get

P (λ) =

{
γNN φN + γN − λ− φN

N−1∑
m=1

φm
γm − λ

γm,N

(
γm,N − γN − λ

φN

)

+ (γN − λ)

N−1∑
m=1

φm
γm − λ

(
γmN −

N−1∑
l=1

φl
γl,Nγ

l,m

γl − λ

)}
N−1∏
k=1

(γk − λ)

=

{
1− φN

γN − λ

N−1∑
m=1

φmγm,Nγ
m,N

γm − λ
+

N−1∑
m=1

φmγm,N
γm − λ

+

N∑
m=1

φmγ
m
N

γm − λ
−
N−1∑
m=1

φm
γm − λ

N−1∑
l=1

φlγl,Nγ
l,m

γl − λ

}
N∏
l=1

(γl − λ).

(3.10)

The upper index of summation in the second sum in the second equation of (3.10)
can be changed to N since γN,N = 0, and the second and third sum can be combined
into one using γm,N + γmN = γmm . Furthermore, the first and the fourth sums can be
combined into one by changing the upper index of summation for m in the fourth
sum from N − 1 to N , from which we obtain (3.5).

We can now prove the following lemma.
Lemma 3.2. Let λ ∈ R and δ(λ) := (V (φ)(1−φ))−1λ+δTΦ. Then P (λ) is given

by

P (λ) =

{
V (φ)(1− φ) +

N∑
m=1

φm
δm − δ(λ)

[
−δmV (φ)(1− φ) +

(
V (φ)(1− φ)

)′

×
(
δm − δTΦ+

N∑
l=1

δlφl(δl − δm)

δl − δ(λ)

)]}(
V (φ)(1− φ)

)N−1
N∏
k=1

(
δk − δ(λ)

)
.(3.11)

This expression is also well defined for λ ∈ {γ1, . . . , γN} and reads for k = 1, . . . , N as

P (γk) = φkδk

{(
V (φ)(1− φ)

)′ − V (φ)
}(
V (φ)

)N−1
(1− φ)N

N∏
l=1
l �=k

(δl − δk).(3.12)
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Proof. Using γm − λ = (δm − δ(λ))V (φ)(1 − φ) and the definitions of γl,N and
γl,m, we get

P (λ) =

{
1 +

N∑
m=1

φm[(V (φ)(1− φ))′(δm − δTΦ)− V (φ)(1− φ)δm]

V (φ)(1− φ)(δm − δ(λ))
+

(V (φ)(1− φ))′

V (φ)(1− φ)

×
N∑
m=1

N∑
l=1

φmφl(δ
2
l − δlδm − δlδN + δmδN )

(δm − δ(λ))(δl − δ(λ))

}(
V (φ)(1− φ)

)N N∏
k=1

(
δk − δ(λ)

)

=

{
V (φ)(1− φ) +

N∑
m=1

φm
δm − δ(λ)

[
−V (φ)(1− φ)δm +

(
V (φ)(1− φ)

)′

×
(
δm − δTΦ+

N∑
l=1

δlφl(δl − δm)

δl − δ(λ)

)]}(
V (φ)(1− φ)

)N−1
N∏
k=1

(
δk − δ(λ)

)
,

(3.13)

which is (3.11). This expression can be rewritten as

P (λ) =

N∏
l=1

(γl − λ)

+

{
N∑
m=1

φm

[
−δmV (φ)(1− φ) +

(
V (φ)(1− φ)

)′
(δm − δTΦ)

] N∏
l=1
l �=m

(
δl − δ(λ)

)

+
(
V (φ)(1− φ)

)′ N∑
m=1

N∑
l=1

φmφlδl(δl − δm)

N∏
n=1

n�=m,l

(
δn − δ(λ)

)}
V (φ)(1− φ)N−1.

For λ = γk the first product vanishes, and in the first sum only the summand with
m = k and in the second sum only the summands with m = k or l = k do not vanish.
This implies

P (γk) =

{
φk

[
−δkV (φ)(1− φ) +

(
V (φ)(1− φ)

)′
(δk − δTΦ)

] N∏
l=1
l �=k

(δl − δk)

+
(
V (φ)(1− φ)

)′[
φk

N∑
l=1

(
δlφl(δl − δk)

N∏
n=1

n�=k,l

(δn − δk)

)

+

N∑
m=1

(
φmδkφk(δk − δm)

N∏
n=1

n�=k,m

(δn − δk)

)]}(
V (φ)(1− φ)

)N−1

=
{
−δkφkV (φ)(1− φ) + δkφk

(
V (φ)(1− φ)

)′ − φkδ
TΦ
(
V (φ)(1− φ)

)′
+ φkδ

TΦ
(
V (φ)(1− φ)

)′ − δkφkφ
(
V (φ)(1− φ)

)′}

× (V (φ)(1− φ)
)N−1

N∏
l=1
l �=k

(δl − δk),

from which (3.12) can be read off immediately.
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Theorem 3.3. If �1 = · · · = �N = �s, δ1 > δ2 > · · · > δN , and Φ ∈ D0
φmax

, then
the system (1.4) is strictly hyperbolic; i.e., the Jacobian JfM(Φ) has N distinct real
eigenvalues.

Proof. From (3.12) we see that

P (γk) = Ck
(
V (φ)

)N−1
(1− φ)N

N∏
m=1
m�=k

(δm − δk), k = 1, . . . , N,

with Ck := δkφk(V
′(φ)(1−φ)−2V (φ)). Since C1, . . . , CN < 0 on D0

φmax
due to (2.19),

we have

sgn
(
P (γk)

)
= − sgn

(
N∏

m=1
m�=k

(δm − δk)

)
= − sgn

(
N∏

m=k+1

(δm − δk)

)
= (−1)N−k+1.

Consequently, we have shown that sgn(P (γi)) = (−1)N+1−i for i = 1, . . . , N . Whether
N is even or odd, we have P (λ) → ∞ as λ → −∞ and P (γN ) < 0. In view of
γN < γN−1 < · · · < γ1 and since P (γN ) < 0, there exists a number λN < γN

with P (λN ) = 0. Furthermore, sgn(P (γi)) = (−1)N+1−i implies that there exist
N − 1 numbers λi ∈ (γi+1, γi), i = 1, . . . , N − 1, with P (λi) = 0. This shows that
P (λ) = det(J− λI) has N roots λ1, . . . , λN satisfying

λN < γN < λN−1 < γN−1 < · · · < λ2 < γ2 < λ1 < γ1.(3.14)

Thus the system (1.4) is strictly hyperbolic for all Φ ∈ D0
φmax

, and Theorem 3.3 is
proved.

The statement of Theorem 3.3 can still be improved. In fact, it is desirable to
have lower and upper bounds for all eigenvalues of JfM(Φ). However, in (3.14) a
lower bound for the eigenvalue λN of J is still lacking. The following theorem shows
that by evaluating P (λ) at a suitable number γ∞ < γ1 it is indeed possible to provide
that bound.

Theorem 3.4. Define γ∞ := −2δTΦV (φ)(1−φ)+(V (φ)(1−φ))′(δTΦ+φ). Then,
under the conditions of Theorem 3.3, the eigenvalues ν1(Φ), . . . , νN (Φ) of JfM(Φ)
satisfy

νi(Φ) ∈
(
µ�̄sV (φ)(1− φ)(δi − δTΦ), µ�̄sV (φ)(1− φ)(δi+1 − δTΦ)

)
,

i = 1, . . . , N − 1,(3.15)

νN (Φ) ∈ (µ�̄sV (φ)(1− φ)(δN − δTΦ), µ�̄sγ
∞).(3.16)

Proof. We first evaluate P (λ) assuming that δ(λ) < 0. Moreover, to estimate
the factor in curled brackets in the second equation of (3.13), we use (V (φ)(1 −
φ))′/V (φ)(1− φ) < 0 to justify deleting −δm and replacing δ2l by δl in the last sum.
Furthermore, we use 1/(δm− δ(γ∞)) < −1/δ(γ∞) in several instances, which leads to

1 +

N∑
m=1

φm
δm − δ(λ)

[
−δm +

(V (φ)(1− φ))′

V (φ)(1− φ)

(
δm − δTΦ+

N∑
l=1

δlφl(δl − δm)

δl − δ(λ)

)]

≥ 1− δTΦ

δ(λ)

(
(V (φ)(1− φ))′

V (φ)(1− φ)
− 1

)

+
(V (φ)(1− φ))′

V (φ)(1− φ)

(
φ

δ(λ)2

N∑
l=1

δlφl − δTΦ

N∑
m=1

φm
δm − δ(λ)

)
.
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If we delete the last sum, the left-hand part of this inequality will remain positive
whenever

δ2(λ) + δ(λ)δTΦ

[
1− (V (φ)(1− φ))′

V (φ)(1− φ)

]
+ δTΦφ

(V (φ)(1− φ))′

V (φ)(1− φ)
> 0.

This can be achieved by letting λ = γ∞ such that

δ(γ∞) = δTΦ

[
(V (φ)(1− φ))′

V (φ)(1− φ)
− 1

]
+

(V (φ)(1− φ))′

V (φ)(1− φ)
φ.

In fact, making obvious simplifications, we then obtain φ(φ + δTΦ) > 0, and the
inequality is proved. Since γ∞ < γN , P (γN ) < 0, and P (γ∞) > 0, the smallest
eigenvalue λN of J satisfies γ∞ < λN < γN . Combining this with (3.14) and recalling
that the eigenvalues νi of JfM(Φ) are given by νi = µ�̄sλi, i = 1, . . . , N , we obtain
the statement of Theorem 3.4.

4. Properties of the diffusion matrix. Using

∂

∂z

(
φi
φ

)
=

1

φ

∂φi
∂z

− φi
φ2

(
∂φ1

∂z
+ · · ·+ ∂φN

∂z

)
=

1

φ

{
∂φi
∂z

− φi
φ

(
∂φ1

∂z
+ · · ·+ ∂φN

∂z

)}

for i = 1, . . . , N and defining W (φ) := −µV (φ)/(gφ) and

ηij(Φ) :=W (φ)

{
(1− φ)φi(δi − δTΦ)σ′

e(φ) +

[
δiδij − δjφi − φi

φ
(δi − δTΦ)

]
σe(φ)

}(4.1)

for i, j = 1, . . . , N , where δij = 1 if i = j and δij = 0 otherwise, we get from (2.22)

ai

(
Φ,

∂Φ

∂z

)
= ηi1(Φ)

∂φ1

∂z
+ · · ·+ ηiN (Φ)

∂φN
∂z

, i = 1, . . . , N.(4.2)

Defining the matrix A(Φ) := (ηij(Φ))1≤i,j≤N and taking f = fM, we can rewrite
(2.29) in the form (1.2). We show that the eigenvalues of A(Φ) are positive and
pairwise distinct on D0

φmax
\Dφc

by evaluating the characteristic polynomial in a fash-
ion similar to section 3. To this end, we first provide an explicit expression for
S(λ) := det(W (φ)−1A(Φ)− λI).

Lemma 4.1. Let δ∗(λ) := λ/σe(φ). Then the polynomial S(λ) is given by

S(λ) =

{
σe(φ) +

N∑
m=1

φm
δm − δ∗(λ)

[
−δmσe(φ) +

(
(1− φ)σ′

e(φ)−
σe(φ)

φ

)

×
(
δm − δTΦ+

N∑
l=1

φlδl(δl − δm)

δl − δ∗(λ)

)]}(
σe(φ)

)N−1
N∏
k=1

(
δk − δ∗(λ)

)
.

(4.3)

Proof. We write ηij(Φ)/W (φ) = sijφi + siδij for 1 ≤ i, j ≤ N , where we define

si := σe(φ)δi, sij := (1− φ)(δi − δTΦ)σ′
e(φ)−

(
δj +

1

φ
(δi − δTΦ)

)
σe(φ)
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for i, j = 1, . . . , N . Consequently, S(λ) can be written as

S(λ) =

∣∣∣∣∣∣∣∣∣

s11φ1 + s1 − λ s12φ1 . . . s1Nφ1

s21φ2 s22φ2 + s2 − λ . . . s2Nφ2

...
...

. . .
...

sN1 φN sN2 φN . . . sNNφN + sN − λ

∣∣∣∣∣∣∣∣∣
.

Observe that the numbers sij satisfy

sij − sik = −σe(φ)(δj − δk), sji − ski = (δj − δk)

[
(1− φ)σ′

e(φ)−
σe(φ)

φ

]
,

i = 1, . . . , N ;(4.4)

i.e., the right-hand parts of (4.4) do not depend on i. Therefore, we may introduce

sj,k := s1j − s1k = · · · = sNj − sNk , sj,k := sj1 − sk1 = · · · = sjN − skN , j, k = 1, . . . , N.

We can now easily provide an explicit expression for S(λ) in terms of the s’s, since
the rules for the s’s correspond to those for the γ’s. Thus, replacing V (φ)(1− φ) by
σe(φ), (V (φ)(1 − φ))′ by (1 − φ)σ′

e(φ) − σe(φ)/φ, δ(λ) by δ∗(λ) = λ/σe(φ), we obtain
(4.3) by closely following the proofs of Lemma 3.1 and of (3.11) in Lemma 3.2.

To localize the eigenvalues of A(Φ), we need to evaluate S(λ) at λ = 0 and
λ = s1, . . . , sN . Using the analogy between P (λ) and S(λ), we can easily prove the
following lemma.

Lemma 4.2. The determinant of A(Φ) is given by det(A(Φ)) = (W (φ))NS(0),
where

S(0) = δ1 · · · δN
(
σe(φ)

)N−1
σ′
e(φ)φ(1− φ)2 for 0 ≤ φ ≤ φmax and N ≥ 2.(4.5)

Moreover, for k = 1, . . . , N we have

S(sk) =φkδk

{
(1− φ)

[
(1− φ)σ′

e(φ)−
σe(φ)

φ

]
− σe(φ)

}(
σe(φ)

)N−1
N∏

m=1
m �=k

(δm − δk).

(4.6)

Proof. We set λ = δ∗(λ) = 0 in (4.3). Then (4.5) follows from

S(0) =

{
σe(φ) +

N∑
m=1

φm
δm

[
−δmσe(φ) +

(
(1− φ)σ′

e(φ)−
σe(φ)

φ

)

× (δm − δTΦ+ δTΦ− δmφ)

]}(
σe(φ)

)N−1
δ1 · · · δN

=

{
σe(φ)− φσe(φ) + (1− φ)φ

(
(1− φ)σ′

e(φ)−
σe(φ)

φ

)}(
σe(φ)

)N−1
δ1 · · · δN .

(4.7)

Equation (4.6) can then be derived by closely following the proof of (3.12) in Lemma
3.2.

Theorem 4.3. Let G(φ) := φ(1 − φ)2σ′
e(φ) − σe(φ), and assume that V (φ) �= 0

for φ < φmax and V (φ) = 0 otherwise. Then, for all Φ ∈ D0
φmax

\Dφc , the matrix
A(Φ) has N distinct positive eigenvalues Λ1, . . . ,ΛN ; i.e., the system (1.2) is strictly
parabolic on D0

φmax
\Dφc . Moreover, we have the following:
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(a) If Φ is chosen such that G(φ) > 0, then these eigenvalues satisfy

0 < W (φ)σe(φ)δN < ΛN < W (φ)σe(φ)δN−1 < ΛN−1

< · · · < W (φ)σe(φ)δ1 < Λ1 < W (φ)δ1φ(1− φ)2σ′
e(φ).

(4.8)

(b) At those points Φ where G(φ) < 0, we have

0 < W (φ)δNφ(1− φ)2σ′
e(φ) < ΛN < W (φ)σe(φ)δN < ΛN−1

< W (φ)σe(φ)δN−1 < · · · < Λ1 < W (φ)σe(φ)δ1.
(4.9)

(c) If G(φ) = 0, then the eigenvalues are given by Λi = W (φ)σe(φ)δi for i =
1, . . . , N .

Proof. Using the function G(φ), we can rewrite (4.6) as

S(sk) =
φk
φ
δkG(φ)

(
σe(φ)

)N−1
N∏

m=1
m �=k

(δm − δk), k = 1, . . . , N.(4.10)

This implies

sgn
(
S(sk)

)
= sgn

(
G(φ)

) · sgn
(

N∏
m=1
m�=k

(δm − δk)

)

= (−1)N−k sgn
(
G(φ)

)
, k = 1, . . . , N.

(4.11)

Recall first that, for φ > φc and due to δ1 > δ2 > · · · > δN , we have 0 < sN < sN−1 <
· · · < s1. If sgn(G(φ)) = 1, then S(sN ) > 0, S(sN−1) < 0, and so on, until we obtain
S(s2) > 0 and S(s1) < 0 if N is even and S(s2) < 0 and S(s1) > 0 if N is odd. Thus
there exist N − 1 values

0 < sN < λN < sN−1 < λN−1 < sN−2 < · · · < λ3 < s2 < λ2 < s1 < λ1(4.12)

with S(λ2) = · · · = S(λN ) = 0. Moreover, S(λ) → ∞ for λ → ∞ if N is even and
S(λ) → −∞ if N is odd. Thus there exists an Nth number λ1 > s1 with S(λ1) = 0.
Since the determinant of a matrix is the product of its eigenvalues, which are all
positive here, (4.7) implies

λ1 =
S(0)

λ2 · · ·λN <
S(0)

s2 · · · sN =
φ(1− φ)2σ′

e(φ)(σe(φ))
N−1δ1 · · · δN

δ2 · · · δN (σe(φ))N−1

= δ1φ(1− φ)2σ′
e(φ).

(4.13)

If sgn(G(φ)) = −1, then S(sN ) < 0, S(sN−1) > 0, and so on, and S(s2) < 0,
S(s1) > 0 if N is even, and S(s2) > 0, S(s1) < 0 if N is odd. This means that we
have N − 1 values

sN < λN−1 < sN−1 < λN−2 < sN−2 < · · · < λ1 < s1(4.14)

with S(λ1) = · · · = S(λN−1) = 0. Since S(sN ) < 0 but S(0) > 0 due to Lemma 4.2,
there exists an Nth value λN ∈ (0, sN ) satisfying S(λN ) = 0, and we have

λN =
S(0)

λ1 · · ·λN−1
>

S(0)

s1 · · · sN−1
=

φ(1− φ)2σ′
e(φ)(σe(φ))

N−1δ1 · · · δN
δ1 · · · δN−1(σe(φ))N−1

= δNφ(1− φ)2σ′
e(φ).

(4.15)
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The eigenvalues of A(Φ) are given by Λi = W (φ)λi, i = 1, . . . , N . Thus, parts (a)
and (b) of Theorem 4.3 follow from (4.12)–(4.15). Part (c) is the common limit for
G(φ) ↑ 0 and G(φ) ↓ 0.

Since the eigenvalues Λ1, . . . ,ΛN are positive independent of the sign of G(φ), we
see that the system (1.2) is strictly parabolic for all Φ satisfying φc < φ < 1, although,
due to the properties of σe and W , at least N − 1 of these eigenvalues approach zero
as φ ↓ φc or φ ↑ φmax.

5. Strongly degenerate parabolic problems. We have demonstrated that
polydisperse sedimentation models taking into account compression effects give rise
to strongly degenerate parabolic (also known as mixed hyperbolic-parabolic) systems
of PDEs. The general theory of uniformly parabolic systems is an old subject and is by
now well developed; see [42, 63, 104]. One can consult [100] for some special uniformly
parabolic systems, as well as [36, 58, 85] for some results on parabolic systems with
weaker parabolicity conditions. The general mathematical theory of hyperbolic sys-
tems is also fairly well developed (at least in one spatial dimension); see, for example,
[32] and the references therein. On the other hand, to date there exists no general the-
ory for strongly degenerate parabolic systems. However, the mathematical theory for
scalar strongly degenerate parabolic equations has advanced significantly in the last
few years. It is well known that nonlinear degenerate parabolic equations exhibit “hy-
perbolic phenomena” like finite speed of propagation or the appearance of interfaces.
These effects are consequences of the partial loss of parabolicity. Strongly degenerate
parabolic equations (e.g., those arising in the theory of sedimentation-consolidation
processes) exhibit even more novel hyperbolic features such as the appearance of shock
waves, loss of uniqueness, and the need for entropy conditions. Recall that a simple
example of a strongly degenerate equation is a hyperbolic equation. Hence, strongly
degenerate parabolic equations will in general possess discontinuous (weak) solutions.
Moreover, discontinuous solutions are not uniquely determined by their initial (and
boundary) data. In fact, an additional condition—the entropy condition—is needed
to single out the physically relevant weak solution of the problem.

An entropy condition for strongly degenerate parabolic equations was first pro-
posed in [118], which also established existence of an entropy solution by passing to
the limit in a parabolic regularization. In the one-dimensional case, uniqueness of
the entropy solution was proved in [119, 120]; see also [6, 7, 8]. Uniqueness of en-
tropy solutions for multidimensional equations was obtained in the recent work [28]
for a particular homogeneous boundary value problem. Extensions of this uniqueness
result to the initial value problem can be found in [61, 62] for bounded entropy solu-
tions (of more general equations). Uniqueness for unbounded entropy solutions and
kinetic solutions is studied in [30] and [31], respectively. The inhomogeneous Dirichlet
boundary value problem is treated in [72]. Some other boundary value problems aris-
ing in the theory of sedimentation-consolidation processes are studied in [17, 21, 25].
Weakly coupled systems of (strongly) degenerate parabolic equations are treated in
[57].

Following up the recent development of a well-posedness theory for scalar strongly
degenerate parabolic equations, there has also been a lot of activity on the design and
analysis of numerical methods for such equations. Most of this activity can be seen as
natural extensions of ideas and techniques from the hyperbolic numerical literature.
Let us here mention the studies on monotone finite difference schemes [45], operator
splitting methods (see [44] for an overview), finite volume schemes [46, 80], central
finite difference schemes [64], the local discontinuous Galerkin method [33], and BGK
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schemes [2, 12]. Numerical methods for parabolic systems (with weak degeneracy)
are studied and analyzed in [60, 68]. Applications of operator splitting methods and
finite difference schemes to scalar sedimentation-consolidation models can be found
in [18] and [20], respectively.

In the next section, we will present and apply certain numerical schemes for
systems of strongly degenerate parabolic equations. Except for [2], the available nu-
merical literature has so far dealt with scalar strongly degenerate parabolic equations.
Let us add that the generality in [2] is such that it does not include systems of the
form considered in the present paper.

6. Numerical results. The Kurganov–Tadmor (KT) scheme [64] can be re-
garded as a refinement of the essentially nonoscillatory Nessyahu–Tadmor scheme
[77], where the improvement is based on local estimates of the propagation velocities
of the Riemann fan emerging from the cell boundaries during each time step. Thus,
the accuracy of the resulting scheme depends on how accurately the eigenvalues of
the Jacobian of the flux vector are determined. Since only for small systems can these
eigenvalues be determined exactly, it is important for large N that sharp estimates can
be obtained with low computational effort. The analysis of section 3 indeed provides
sharp estimates for the first-order system of equations. Given the importance of these
analytical results for the KT scheme, we give in what follows a rather compressed but
complete description of this scheme. A general introduction to central schemes for
systems of conservation laws is given in [103].

6.1. General difference scheme. Consider the computational domain QT :=
[0, 1] × [0, T ] and a rectangular grid defined by zj := j∆z, j = 0, . . . , J , where J
is an even integer and ∆z := 1/J is the width of a half-cell, and tn := n∆t, n =
0, . . . ,N , where ∆t := T/N , N ∈ N, and λ := ∆t/(2∆z) is the fixed mesh-size
ratio. (Thus, all grid-point indices are integers.) The (approximate) cell average of
φi, i = 1, . . . , N , with respect to the cell [zj , zj+2] at time tn is denoted by φ̄ni,j , and
we define Φ̄nj := (φ̄n1,j , . . . , φ̄

n
N,j)

T, j = 1, 3, . . . , J − 1, n = 0, 1, . . . ,N . We assume
that at time t = tn, n = 0, 1, . . . ,N − 1, the vector Φ̄nj either has been calculated
from the previous time step (for n ≥ 1) or is given by the discretization of the initial
condition,

φ̄0
i,j :=

1

2∆z

∫ zj+1

zj−1

φ0
i (ζ) dζ, j = 1, 3, . . . , J − 1, i = 1, . . . , N.

For the interior cells, the general scheme (“interior scheme”) is of the type

Φ̄n+1
j = Φ̄nj − λ(hnj+1 − hnj−1) + λ(pnj+1 − pnj−1),

j = 3, 5, . . . , J − 3,
n = 0, . . . ,N − 1,

(6.1)

where hnj±1 and pnj±1 are approximations of the “hyperbolic” and “parabolic” fluxes

fM and a, respectively, through the boundaries of cell Ij := [zj−1, zj+1] at time tn. The
detailed computation of these fluxes from the solution values at time tn is described
in section 6.2.

While the interior scheme (6.1) approximates the field equation (1.2), the bound-
ary conditions (2.31) are discretized by setting hn0 − pn0 = 0 and hnJ − pnJ = 0 for
n = 0, . . . ,N − 1. Inserting this into (6.1), where we set j = 1 and j = J − 1, we
obtain the following “boundary scheme”:

Φ̄n+1
1 = Φ̄n1 − λhn2 + λpn2 , Φ̄n+1

J−1 = Φ̄nJ−1 + λhnJ−2 − λpnJ−2,

n = 0, . . . ,N − 1.(6.2)
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The extension of the CFL stability condition for the explicit KT scheme stated in [64]
for scalar equations to the present case of a strongly degenerate parabolic-hyperbolic
problem reads

∆t

∆z
max
Dφmax

ρ
(Jf (Φ)

)
+

∆t

2∆z2
max
Dφmax

ρ
(
A(Φ)

) ≤ 1

4
,(6.3)

where ρ(·) denotes the spectral radius. We view (6.3) as a necessary condition for
the present explicit KT scheme to produce a physically relevant numerical result, and
we emphasize that no rigorous convergence result is associated with (6.3). For that
matter, an existence and uniqueness theory for the system (1.1) is still lacking.

6.2. Computation of the numerical fluxes. Given the vectors Φ̄nj , j =
1, 3, . . . , J − 1, we calculate a piecewise linear reconstruction of the solution values at
time tn by determining the slope vector Φ′

j = (φ′
1,j , . . . , φ

′
N,j)

T, j = 1, 3, . . . , J − 1,
whose components are defined by

φ′
i,j :=



0 for j = 1 and j = J − 1,

MM
(
θ(φ̄ni,j − φ̄ni,j−2), (φ̄

n
i,j+2 − φ̄ni,j−2)/2,

θ(φ̄ni,j+2 − φ̄ni,j)
)

for j = 3, 5, . . . , J − 3

for i = 1, . . . , N . Here MM(·, ·, ·) is the minmod function given by MM(a, b, c) =
min(a, b, c) if a, b, c > 0, MM(a, b, c) = max(a, b, c) if a, b, c < 0, and MM(a, b, c) = 0
otherwise. The extrapolated values of Φ at the cell boundaries zj , j = 2, 4, . . . , J − 2,
are then given by

Φ∓
j := Φ̄nj∓1 ±

1

2
Φ′
j∓1, j = 2, 4, . . . , J − 2,

and are used to calculate the local speeds of propagation

anj := max
{
ρ
(Jf (Φ

−
j )
)
, ρ
(Jf (Φ

+
j )
)}

, j = 2, 4, . . . , J − 2.(6.4)

Of course, it is feasible only for small N to use exact eigenvalues here. However, the
analysis of section 3 provides estimates of the eigenvalues that can be used here (see
section 6.3). Observe that, for each cell Ij , the solution of (1.4) with the piecewise
linear initial data defined by Φ̄nj and the slope vectors Φ′

j remains smooth for tn ≤
t ≤ tn+1 in the subinterval [zj−1 + anj−1∆t, zj+1 − anj+1∆t] for j = 1, . . . , J . Equipped
with the numbers anj and the vectors Φ′

j , we next calculate the following vectors,
which represent the parts of the cell averages pertaining to the left and right half-cells
adjacent to z = zj that are mapped onto a smooth solution:

Φnj,L := Φ̄nj−1 +

(
1

2
− λanj

)
Φ′
j−1, Φnj,R := Φ̄nj+1 −

(
1

2
− λanj

)
Φ′
j+1

for j = 2, 4, . . . , J − 2. The vectors Φnj,L and Φnj,R are used to calculate the flux slope
vectors

f ′(Φnj,c) =
(
f ′
1(Φ

n
j,c), . . . , f

′
N (Φnj,c)

)T
, c = L,R, j = 2, 4, . . . , J − 2,

whose components are defined by

f ′
i(Φ

n
2,L) = f ′

i(Φ
n
J−2,L) = 0, f ′

i(Φ
n
2,R) = f ′

i(Φ
n
J−2,R) = 0,
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and

f ′
i

(
Φnj,c

)
:=MM

(
θ
(
fi(Φ

n
j,c)− fi(Φ

n
j−2,c)

)
,
(
fi(Φ

n
j+2,c)− fi(Φ

n
j−2,c)

)
/2,

θ
(
fi(Φ

n
j+2,c)− fi(Φ

n
j,c)
))

for c = L,R, i = 1, . . . , N , and j = 4, 6, . . . , J − 4. We then calculate the predictor
solution values

Φ
n+1/2
j,c := Φnj,c −

λ

2
f ′
(
Φnj,c

)
, c = L,R, j = 2, 4, . . . , J − 2,

at which the flux vector f is evaluated in order to calculate the new approximate
values Ψ̄n+1

j , j = 2, 3, . . . , J − 1, J , of the solution at time tn+1, which are referred to
a nonuniform grid as follows. For j = 2, 4, . . . , J − 2, approximate cell averages Ψ̄n+1

j

referring to the intervals [zj − anj∆t, zj + anj∆t], j = 2, 4, . . . , J − 2, are calculated by

Ψ̄n+1
j =

1

2

(
Φ̄nj−1 + Φ̄nj+1

)
+

1− λanj
4

(
Φ′
j−1 − Φ′

j+1

)− 1

2anj

[
f
(
Φ
n+1/2
j,R

)− f
(
Φ
n+1/2
j,L

)]
,

while the second family of approximate cell averages Ψ̄n+1
j refers to the nonuniform

cells [zj−1 + anj−1∆, zj+1 − anj+1∆t] ⊂ Ij , j = 3, 5, . . . , J − 3, and is calculated by

Ψ̄n+1
j =Φ̄nj − λ

2

(
anj+1 − anj−1

)
Φ′
j −

λ

1− λ(anj−1 + anj+1)

[
f(Φ

n+1/2
j+1,L )− f(Φ

n+1/2
j−1,R )

]
.

Using both families of nonuniform approximate cell averages, we determine the vec-
tor of discrete derivatives Ψ′

j = (Ψ′
1,j , . . . ,Ψ

′
N,j)

T for j = 2, 4, . . . , J − 2, setting
Ψ′

2 = Ψ′
J−2 = 0 and

Ψ′
i,j =

1

∆z
MM

(
θ

Ψ̄n+1
i,j − Ψ̄n+1

i,j−1

1 + λ(anj − anj−2)
,

Ψ̄n+1
i,j+1 − Ψ̄n+1

i,j−1

2 + λ(2anj − anj−2 − anj+2)
, θ

Ψ̄n+1
i,j+1 − Ψ̄n+1

i,j

1 + λ(anj − anj+2)

)

for i = 1, . . . , N and j = 4, 6, . . . , J − 4, where θ ∈ [0, 2] is a parameter. Finally, we
can calculate the desired numerical flux vectors

hnj =
1

2

[
f
(
Φ
n+1/2
j,R

)
+ f
(
Φ
n+1/2
j,L

)]− anj
2

(
Φ̄nj+1 − Φ̄nj−1

)
+
anj (1− λanj )

4

(
Φ′
j−1 +Φ′

j+1

)
+ λ∆z

(
anj
)2
Ψ′
j , j = 2, 4, . . . , J − 2.

For the diffusion part, we approximate ∂Φ/∂z(zj , tn) by the slope vector

Φ̃′
j = (φ̃′

1,j , . . . , φ̃
′
N,j)

T

defined by (φ̄ni,j+1 − φ̄ni,j−1)/(2∆z) for j = 2, 4, . . . , J − 2 and i = 1, . . . , N . Using the
diffusion vector a(Φ, ∂Φ/∂z) given by (4.2), we can calculate the numerical diffusion
vectors by

pnj =
1

2

[
a
(
Φ̄j−1, Φ̃

′
j

)
+ a
(
Φ̄j+1, Φ̃

′
j

)]
, j = 2, 4, . . . , J − 2.(6.5)
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6.3. Application to the model of polydisperse sedimentation with com-
pression. In the numerical examples, we consider the standard Richardson and Zaki
[86] hindered settling factor

V (φ) =

{
0 for φ ≤ 0 and φ ≥ φmax,

(1− φ)n−2, n > 2, otherwise
(6.6)

and the widely used power-law effective solid-stress formula

σe(φ) =

{
0 for φ ≤ φc,

σ0

(
(φ/φc)

k − 1
)

for φ > φc,
i.e., σ′

e(φ) =

{
0 for φ < φc,

(σ0/φ
k
c )kφ

k−1 for φ > φc,

(6.7)

with parameters σ0 > 0 and k ≥ 1. Values of σ0, φc, and k for real materials are
given in [16, 105].

For our choice of V (φ) and under the mild assumption φmax > 1/n, we may
significantly sharpen the upper bound for the eigenvalues of JfM(Φ) compared with
the bound given by Theorem 3.4.

Lemma 6.1. For the hindered settling function (6.6) and Φ ∈ D0
1/n, i.e., φ <

1/n < φmax, the eigenvalues ν1(Φ) to νN (Φ) of JfM(Φ) satisfy (3.15) and

νN (Φ) ∈ (µ�̄sV (φ)(1− φ)(δN − δTΦ),−µ�̄sV (φ)(1− φ)δTΦ
)
.(6.8)

Proof. We set γ̃∞ := −V (φ)(1 − φ)δTΦ such that δ(γ̃∞) = 0. Using (3.11), we
get

P (γ̃∞) =

{
V (φ)(1− φ) +

N∑
m=1

φm
δm

[
−δmV (φ)(1− φ) +

(
V (φ)(1− φ)

)′
(1− φ)δm

]}

× (V (φ)(1− φ)
)N−1

δ1 · · · δN
=
{
V (φ)(1− φ)− φV (φ)(1− φ) +

(
V (φ)(1− φ)

)′
φ(1− φ)

}
× (V (φ)(1− φ)

)N−1
δ1 · · · δN

=
{
V (φ)(1− φ) +

(
V (φ)(1− φ)

)′
φ
}
(1− φ)N

(
V (φ)

)N−1
δ1 · · · δN .

For V (φ) = (1− φ)n−2, the expression in curled brackets is given by

(1− φ)n−1 − (n− 1)(1− φ)n−2φ = (1− φ)n−2
(
(1− φ)− (n− 1)φ

)
= (1− φ)n−2(1− nφ),

which is positive if and only if φ < 1/n. In this case we thus have P (γ̃∞) > 0.
Since γ̃∞ < γN , P (γN ) < 0, and we have now shown that P (γ̃∞) > 0, the smallest
eigenvalue λN of J satisfies γ̃∞ < λN < γN , which implies the statement of the
lemma.

Wherever φ < 1/n, Lemma 6.1 can be used to estimate the local speeds of prop-
agation (6.4) in the numerical method since, for our choice of V (φ), we then have
that ρ(Jf (Φ)) ≤ µ�̄s(1−φ)n−1 max{δTΦ, 1−δTΦ}. Similarly, the eigenvalue bounds
of Theorem 4.3 can be utilized to estimate the term max ρ(Jf ) required in the CFL
condition (6.3), which limits the step size ratio.
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Fig. 1. Simulations of the sedimentation-consolidation process of a tridisperse suspension (left)
and a monodisperse suspension (right) using the same model functions V (φ) and σe(φ): plots of the
(total) solids concentration φ.

6.4. Numerical results. The numerical scheme is now employed to simulate
settling processes of a tridisperse (N = 3) suspension forming compressible sediment.
We consider here a (hypothetical) mixture described by the model functions (6.6)
with φmax = 0.66 and n = 4.7 (see [94]) and (6.7) with σ0 = 180Pa, φc = 0.2, and
k = 6. The remaining parameters are µf = 10−3Pa·s (the dynamic viscosity of water),
d1 = 1.19× 10−5 m, �̄s = 1800 kg/m3, and g = 9.81m/s2.

6.4.1. Settling of a tridisperse suspension. We consider an initially homo-
geneous suspension with d2/d1 =

√
0.5 and d3/d1 = 0.5, such that δ = (1, 0.5, 0.25)T,

and Φ0 = (0.04, 0.04, 0.04)T in a vessel of height L = 1m. For the simulation, we
chose J = 1000 and λ = 0.0008 h/m. The left diagram of Figure 1 shows the total
volumetric solids concentration φ = φ1 + φ2 + φ3 as a function of z and t, while
Figure 2 displays the corresponding concentrations of the individual species.

To make the numerical results comparable to those obtained from the two existing
models for monodisperse flocculated suspensions and for polydisperse suspensions of
rigid spheres, we show in the right diagram of Figure 1 a simulation of the settling
of a monodisperse suspension with φ0 = 0.12, and in Figure 3 the simulation of a
tridisperse suspension of rigid particles (forming a sediment without compressibility
effects) having the same parameters as the previously discussed case but with σ0 = 0.
The simulation shown in Figure 3 was made with λ = 0.35 h/m and J = 8000. Note
that the visual grid used in all diagrams is much coarser than the computational grid.

6.4.2. Effect of a third particle species on the settling of a bidisperse
suspension. To study the effect of the size of a third species on the separation of two
other species, we first consider a bidisperse suspension having the parameters given
above and δT = (1.0, 0.5). The initial concentration is Φ0 = (0.06, 0.06)T. Other
parameters for this simulation (and that of Figure 5) are λ = 0.0008 s/m, J = 600,
and L = 1m. Figure 4 shows a simulation of the settling of this suspension.

Next, we add a third species to this bidisperse mixture. The corresponding nu-
merical results are shown in Figure 5. The left and right columns correspond to the
size parameters δ3 = 0.25 and δ3 = 0.1, respectively. The initial concentrations of the
tridisperse mixture are Φ0 = (0.06, 0.06, 0.015)T.

6.5. Discussion of the numerical results. In the left plot of Figure 1, three
distinct zones are formed by the downwards-propagating concentration discontinuities,
and, as expected, the concentration φ in the sediment bed increases more slowly than
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Fig. 2. Simulation of the sedimentation-consolidation process of a tridisperse suspension: plots
of the concentrations φ1 of the largest (top left), φ2 of the second-largest (top right and bottom left;
two different views), and φ3 of the smallest species (bottom right).
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Fig. 3. Simulation of the sedimentation of a tridisperse suspension of rigid particles (without
compression, σe ≡ 0): plots of the cumulative concentration φ (top left) and the concentrations
φ1, φ2, and φ3 of the largest (top right), the second-largest (bottom left), and smallest species
(bottom right).
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Fig. 4. Simulation of the settling of an initially homogenous bidisperse suspension: iso-line
of the concentrations φ1 of the larger (left) and φ2 of the smaller (right) species, corresponding to
φ1,2 = 0, 0.01, 0.02, 0.03, . . . .

in the monodisperse case. Comparing φ in the two tridisperse cases, we see that the
zones formed in the first stages of sedimentation are still visible in the upper left plot
of Figure 3, but have been entirely smoothed out in the left plot of Figure 1.

The two bottom plots of Figure 3 show the expected layering caused by differential
sedimentation and the consequent enhancement of φ2 and φ3 above the lowest zone.
Additional numerical examples illustrating the conventional model of sedimentation
of suspensions of rigid spheres (when σe = 0) are given in [14, 19] (see also [48]).
Figure 2 shows that the additional terms in the equation for suspensions forming
compressible sediments result in the upward diffusion of the largest spheres and the
downward diffusion of the smallest. Though these terms were expected to smooth the
sharp boundaries found in suspensions of incompressible particles, the extent of the
migration was unexpected.

The simulations described in (6.4.2) elucidate this phenomenon. We first simu-
lated the sedimentation of an initially homogeneous bidisperse suspension and plotted
the isolines of concentration. Figure 4 shows that these isolines ultimately have the
same value for both species. This is a consequence of the assumption that (φi/φ)σe(φ)
is the part of σe that acts on species i. For particles of equal density, and if we assume
V (φ) > 0, then the one-dimensional equilibrium form of (2.20) is

�̄s(1− φ) +
σe(φ)

gφi

d

dz

(φi
φ

)
+

1− φ

gφ

dσe(φ)

dz
= 0, i = 1, . . . , N,(6.9)

which can be rearranged to

d

dz
ln

(
φi
φ

)
= −1− φ

σe(φ)

(
�̄sgφ+

dσe(φ)

dz

)
, i = 1, . . . , N.(6.10)

From (3.53) of [27] with u = 0, or by setting φi = φ in (6.9), we see that the expression
in large parentheses is zero. Thus, φi/φ is constant and we have

lim
t→∞

φi(z, t)

φ(z, t)
=

φ0
i

φ0
1 + · · ·+ φ0

N

, i = 1, . . . , N.(6.11)

The same phenomenon is also clear in Figure 5. Here the isolines of species 1 and 2
have the same ultimate values, while those of species 3 are proportional to its initial
concentration.
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Fig. 5. Simulations of the settling of tridisperse suspensions with different sizes of species 3
(d3 = 0.5d1 in the left and d3 = 0.0.316d1 in the right column): iso-lines of the concen-
trations φ1 of the larger (top) and φ2 of the medium-sized (middle) species, corresponding to
φ1,2 = 0, 0.01, 0.02, 0.03, . . . , and φ3 of the smallest species (bottom) for φ3 = 0, 0.001, 0.002, . . . .

The complicated structures of the isolines at lower values of t arise from the reso-
lution of the disparity between the segregation that occurs early in the sedimentation
process and the ultimate uniformity with respect to species. The details of the pro-
cess depend sensitively on the values of the terms in ai. However, certain features are
common.

We first consider a bidisperse suspension. When φ < φc, the largest species
settles most quickly and predominates in the lower region. In the consolidation phase
(φ > φc), the increase in φ tends to increase the concentration of both species in
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the lower region. Figure 4 shows that species 1 reaches a concentration of 0.18 at
the bottom while species 2 is still settling into the top (monodisperse) layer of the
solids in compression. However, the larger particles diffuse into this layer, and the
smaller particles diffuse out of it. This diffusion continues until the equilibrium state
is reached.

In the tridisperse case shown in Figure 5, species 1 diffuses upward while species 2
diffuses both upward into the initially monodisperse upper layer of small particles and
downward into the lower layer where large particles initially predominate. Species 3
diffuses downward from the top layer. In addition to reducing the final concentra-
tions of the two larger species, the introduction of the smallest particles delays the
evolution to the equilibrium state by introducing a segregated layer at the top of the
suspension. In the example on the left, species 3 settles fairly quickly, and the change
from segregated to uniform state occurs much earlier than in the example on the right,
where species 3 settles very slowly. Further discussion of the phenomenon of sediment
diffusivity seen in our simulations is provided in section 7.5.

7. Discussion.

7.1. Type analysis in several space dimensions. The type analysis con-
firms that the model is well-posed in that the one-dimensional system (1.2) is not
of “general” type but has desirable algebraic properties. The analysis in sections 3
and 4 has been limited to one space dimension for notational convenience and since
only in that case does the system (2.29), supplemented by the initial and bound-
ary conditions (2.30) and (2.31), completely describe the sedimentation-consolidation
process. In D > 1 space dimensions, not only system (2.23) for the concentrations
of the solids species but also (2.24) and (2.25) for the motion of the mixture have
to be solved. These equations are strongly coupled and probably will have to be
solved alternately. Although, for D > 1, (2.23) no longer completely describes the
sedimentation-consolidation process, this multidimensional system still is strongly de-
generate parabolic-hyperbolic. To see this, consider first the case φ ≤ φc, for which the
right-hand side of (2.23) vanishes. On the other hand, we recall that a D-dimensional
N ×N system of conservation laws

∂u

∂t
+
∂ϕ1(u)

∂x1
+ · · ·+ ∂ϕD(u)

∂xD
= 0,

with u ∈ D ⊂ R
N and flux vectors ϕ1, . . . ,ϕD : D → R

N , is called hyperbolic if any
linear combination J (β,u) := β1Jϕ1

(u)+· · ·+βDJϕD
(u) of the Jacobians of the flux

vectors is diagonalizable with real eigenvalues. The nonlinear fluxes fM
1 (Φ), . . . , fM

N (Φ)
in (2.23) are effective in the vertical direction of the z coordinate only. Considering
D = 3 (the case D = 2 is analogous) and q = (qx, qy, qz)

T, we obtain from (2.23)
ϕ1(Φ) = qxΦ, ϕ2(Φ) = qyΦ, and ϕ3(Φ) = qzΦ + fM(Φ). Thus, the relevant linear
combinations are J (β; Φ) := (β1qx+β2qy+β3qz)I+β3JfM(Φ), where JfM(Φ) is the
Jacobian considered in section 3. Since JfM(Φ) has N pairwise-distinct eigenvalues
and is thus diagonalizable, J (β; Φ) is also diagonalizable with real eigenvalues, and
(2.23) is therefore hyperbolic for φ ≤ φc. Of course, this statement is true under the
same conditions as in the one-dimensional case, that is, for equal-density spheres and
vectors Φ ∈ D0

φmax
.

Next, we show that the system (2.23) is parabolic for φ > φc. More precisely, we
show that it satisfies the classical definition of parabolicity in the sense of Petrovsky
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[42, 49, 66, 104]. We do not state this condition in its most general form but limit
the discussion to equations of the form

∂ui
∂t

+ Fi(x, t,u,∇u) =

D∑
m,n=1

N∑
j=1

Amnij (x, t,u)
∂2uj

∂xm∂xn
, i = 1, . . . , N.(7.1)

Consider the matrix A(x, t,u)mn := (Amnij )1≤i,j≤N . Then (7.1) is called parabolic in
the sense of Petrovsky (or simply parabolic) at a point (x, t,u) ∈ QT × D ⊂ R

D ×
R

+ × R
N if, for all vectors ξ = (ξ1, . . . , ξD)

T with |ξ| = 1, the roots λ = λ(x, t,u, ξ)
of det(A(x, t,u, ξ)− λI) = 0, where

A(x, t,u, ξ) :=

D∑
m,n=1

−Amn(x, t,u)ξnξm,

satisfy Re (λ(x, t,u, ξ)) < −δ(x, t,u) for a constant δ > 0. We now consider the
right-hand part of (2.25). From (4.1) and (4.2) we get ai(Φ,∇Φ) = ηi1(Φ)∇φ1+ · · ·+
ηiN (Φ)∇φN and therefore

∇ · ai(Φ,∇Φ) =

D∑
m=1

N∑
j=1

∂

∂xm

(
ηij(Φ)

∂φj
∂xm

)

=
D∑
m=1

N∑
j=1

ηij(Φ)
∂2φj
∂x2

m

+

D∑
m=1

N∑
j=1

∂ηij(Φ)

∂φj

(
∂φj
∂xm

)2

.

Defining

Fi(x, t,Φ,∇Φ) := ∇ · (φiq+ fM
i (Φ)

)− D∑
m=1

N∑
j=1

∂ηij(Φ)

∂φj

(
∂ φj
∂xm

)2

, i = 1, . . . , N,

we can rewrite (2.23) in the form (7.1). We then obtain Amn(x, t,Φ) = A(Φ) for
all 1 ≤ m,n ≤ D if m = n, and Amn(x, t,Φ) = 0 otherwise, where A(Φ) was
introduced in section 4. This implies A(x, t,Φ, ξ) = −A(Φ) for all ξ ∈ R

D with
|ξ| = 1. From Theorem 4.3 we see that A(x, t,Φ, ξ) has N distinct real eigenvalues
−Λ1, . . . ,−ΛN for Φ ∈ D0

φmax
\Dφc

. This implies that the parabolicity condition
Re (λ(Φ, ξ)) < −δ(Φ) holds with δ(Φ) = W (φ)δN min{σe(φ), φ(1 − φ)2σ′

e(φ)}. Thus,
system (2.23) is parabolic on D0

φmax
\Dφc , and we conclude that the hyperbolicity

and parabolicity properties obtained in sections 3 and 4 remain valid in an arbitrary
number of space dimensions.

7.2. Extension to particles with different densities. The model equations
established in section 2 admit that the solids species differ in both size and density.
The analysis of section 3 is valid for the case of equal-density particles only, while the
matrix A(Φ) is independent of the particle densities. In [22] it was demonstrated that
different densities lead to hyperbolic-elliptic or (for N ≥ 3) nonhyperbolic systems.
Thus, it is tempting to conclude that the model framework of section 2 leads to systems
having even more interesting properties (like a second-order parabolic system for
N = 2 degenerating into a first-order hyperbolic-elliptic one). However, since particles
of different densities consist of different materials, the assumption σe(Φ) = σe(φ),
stating that the effective stress depends only on the sediment porosity 1− φ, is very
unlikely to remain valid.
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7.3. Physical explanation of Lemma 6.1. Recall that fM
i (Φ) = φivi, where

vi is the phase velocity of species i, that is, the settling velocity of a particle of
species i. In view of (3.1), Theorem 3.4 states that the eigenvalues ν1 to νN−1 of
JfM(Φ) satisfy vi ≤ νi ≤ vi+1; i.e., the propagation of the characteristic information
associated with the eigenvalue νi is bounded by the physical velocities of particles of
species i and i+1 for i = 1, . . . , N−1. The upper bound on νN given by the parameter
γ∞ of Theorem 3.4, which is valid for any admissible hindered settling function V (φ),
has no obvious physical interpretation, but Theorem 3.4 already provides further
support for the MLB model wherever σe = 0 since all waves should travel at bounded
finite speeds and, for a given particle size distribution, γ∞ is uniformly bounded with
respect to Φ. However, the upper bound of νN in (6.8) also has a physical meaning.
From (3.1), the total solids flux is

fM(Φ) := φ1v1 + · · ·+ φNvN = fM
1 (Φ) + · · ·+ fM

N (Φ) = µV (φ)(1− φ)2�̄sδ
TΦ.

(7.2)

On the other hand, we recall from the definition of q that

vf =
1

1− φ

(
q − (φ1v1 + · · ·+ φNvN )

)
=
q − fM(Φ)

1− φ
,

where vf is the fluid phase velocity. Since we consider q = 0, we obtain −µ�̄sV (φ)(1−
φ)δTΦ = vf . Thus Lemma 6.1 states that, for relatively dilute suspensions (when
φ < 1/n), all eigenvalues (and therefore wave velocities) are bounded by the local
velocities of the solid and fluid “particles.” In the examples in section 6, we chose
1/n = 0.2128 > φc = 0.2, such that the model equations are either hyperbolic with
the sharp estimates of Lemma 6.1 holding or parabolic.

7.4. Hydrodynamic diffusion. The MLB model (like all other equations for
polydisperse suspensions) assumes that vi(Φ) is the velocity of every particle of the
ith species at that concentration. Of course, it has long been recognized that identical
spheres at the same concentration can have very different velocities. See [111] and
[114] for references to early work on this topic. More recently, Segrè, Herbolzheimer,
and Chaikin [95] and Guazzelli and colleagues [78, 79, 83] used advanced technology
to follow the paths of individual spheres and thereby determine their velocities.

There are essentially three methods of introducing this variability into a model.
Historically, the first was the three-parameter Markov model [107, 112], which used
the variance and autocorrelation of velocity as additional parameters. A decade later,
a model was developed [55] (see also [37]) that combined the variance and autocorre-
lation in a coefficient of self-induced hydrodynamic diffusion. Thus, the two models
are related, but not identical [106]. In both, the parameters must be determined
experimentally or computationally. Velocity fluctuations appear to depend on wall
effects [111, 114] and density stratification [75, 111] as well as on both the distant
[110, 111] and local values of Φ. Theoretical [111], computational [65], and some
experimental studies [111] indicate that the variance increases with the size of the
container, while other experimental studies [78] show no increase. Recent work by
Segrè, Herbolzheimer, and Chaikin [95] and Mucha et al. [75] has gone some way
towards resolving this contradiction.

The variability of the velocities of the smaller spheres is considerably increased
by the presence of larger or denser spheres [56, 83]. Since the hydrodynamic diffusion
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coefficient varies with Φ and ∇Φ, the diffusion model becomes very complicated [109]
for polydisperse suspensions. The Markov model is more tractable [109], but both
models require data that are currently lacking. The final method of introducing
variability is to use one of several numerical techniques [19, 56, 65]; these solve a
specific case and demand considerable computational effort.

Fortunately, the overall behavior of suspensions is usually determined primarily
by the mean velocity [84, 113] and does not require the determination of the tra-
jectories of individual spheres [107]. Simulations show that the principal effect of
hydrodynamic diffusion is a blurring of the interfaces [19, 108]. In many cases, how-
ever, these remain fairly sharp. Experimentally, interfaces are readily detected and,
owing to self-sharpening [37, 69], closely approximate discontinuities. Thus, the omis-
sion of hydrodynamic diffusion terms at this stage is justified by practical limitations,
theoretical considerations, computational comparisons, and experimental results.

7.5. Sediment diffusivity. In the examples discussed in section 6.5, φ increases
fairly quickly during the consolidation phase, and hence the diffusion of species is
highlighted. We recall that the material parameters chosen for the simulations do
not correspond to a real suspension; rather, the parameters of the function σe(φ)
have been chosen such that the numerical simulation produces some clearly visible,
distinct effects within a relatively thick sediment layer. The latter point requires that
the suspension be highly compressible and therefore that σ0 and k be relatively large.
Thus, strength and rapidity of the diffusion processes are to some extent a consequence
of our deliberate choice of parameters, and these effects may be less pronounced for
real materials. In fact, it is not clear whether the predicted behavior actually occurs
in real suspensions. The assumption that (φi/φ)σe(φ) is that part of σe that acts on
species i appears to be the obvious choice. Also, (1.2) describes nonlinear diffusion
with drift, so it is not surprising that species diffuse to regions of lower concentration.

We mention that nonlinear diffusion in polydisperse suspensions has been consid-
ered by Esipov [43] and is postulated as part of a general “competition” mechanism
for multispecies granular mixtures by Braun [13]. However, the terms considered in
[43] account for hydrodynamic diffusion, and the consequences of the nonlinearity do
not appear, since (apparently, for simplicity) these diffusivities are replaced by con-
stants, and cross-diffusivities (e.g., the dependence of the flux of particle species 1
on the flux of species 2) are ignored, while in [13] the nonlinearity is retained, but
cross-diffusivities are equally neglected, and no physical interpretation of the origin
of nonlinear diffusion is given. In our case, it is difficult to imagine a physical process
that leads to the predicted results discussed in section 6.5. In compression, the par-
ticles touch each other and support those above. This would appear to make relative
movement difficult.

One way out of this dilemma is restricting the movement of particles at very high
concentrations. In fact, it has long been held that, at very high concentrations, the
particles are locked in place and all species move at the same velocity. This should
certainly be true in compressible suspensions. The problem may be not that the dif-
fusion coefficient is much too high in general (which could be fixed, for example, by
an appropriate choice of the model functions V (φ) and σe(φ)), but that differential
diffusion, driven by the gradient ∇(φi/φ) in (2.20), becomes dominant when sedimen-
tation is very slow. This is quite unphysical. The first part of the simulations appears
reasonable. It is the differential movement at the end that is not.

One way to amend this would be to adopt an idea of Shih, Gidaspow, and Wasan
[98], who utilize an expression for the portion of the effective solid stress gradient



74 S. BERRES, R. BÜRGER, K. H. KARLSEN, AND E. M. TORY

for each species [98, eq. (10)] that is equivalent to leaving out the term involving
∇(φi/φ) in our approach. Unfortunately, the presentation of their numerical solution
of a bidisperse system with �̄1 = �̄2 and δ2 = 0.1766 is limited to just one profile
[98, Figs. 4–6] taken at a time at which the uppermost particles of neither species
have reached the sediment layer, a situation that roughly corresponds to t = 1.5 h in
our Figure 4. However, their solution is similar to ours at that stage, since Figure 4
of [98] shows a concentrated sediment formed by the larger particles with a small
portion (actually, only slightly different from the initial concentration) of the smaller.
It should be pointed out, of course, that no steady-state prediction of the relative
volume fractions φi/φ such as (6.10), (6.11) exists when there are no terms involving
that same quantity.

Another way to solve our dilemma, which would go even a step further, would
be to change to a common rate of sedimentation at some concentration φ∗ with
φc < φ∗ < φmax. For values of φ with φ∗ < φ < φmax, we could eliminate the
term in φi/φ in (2.20) and treat the suspension as if all particles were the same size,
probably using the average value of δi. The best guess for φ∗ could be found from
the simulations by noting the concentrations at which the differential sedimentation
dominates. (A possibly more realistic alternative would be to introduce a collective
movement gradually, but this would be much more complicated.) Though this solution
may seem arbitrary, it does have empirical support. For compressible suspensions,
differential sedimentation occurs at medium concentrations. When the concentration
is sufficiently high, even dense particles settle at the same speed as the particles of
lower density. Thus, the final sediment shows no evidence of segregation; see Been
and Sills [5]. When all flocs have the same density, there is a concentration at which
initial floc size is unimportant. Essentially, we have a connected structure that is
being compressed.

Some more treatments that less closely refer to a particular mathematical model
support the similar idea of “en masse” sedimentation of multispecies suspensions at
high concentrations [5, 29, 121]. Zeng and Lowe [121] consider rigid-sphere suspen-
sions (not forming compressible sediments) but postulate the existence of a “critical
concentration,” in the sense of the quantity φ∗ (not φc) introduced above, at which
change in sedimentation behavior from differential settling (size fractionation) to “en-
masse settling of the entire suspension” occurs [121], and they indicate that values
of φ∗ ranging from 0.3 to 0.55 are suitable, depending on the material. Related ex-
perimental findings were reported much earlier by Shannon and coworkers [96, 97],
who observed that for equal-density spheres (normally distributed in diameters plus
a tail of fines), the rise of the packed bed showed that the solids flux remained con-
stant throughout (in contrast to sedimentation of dilute suspensions, in which the flux
decreases after the larger particles have settled out).

The previous discussion shows that there is no obvious unique way to reduce
the sediment diffusivity seen in our numerical examples. Published experimental
information to which the numerical predictions could be compared is scarce (see the
references cited in this section and [9, 116]), and a definite solution of the problems
discussed here cannot be suggested. Basically, there seem to exist three alternatives.

Our approach is based on a rigorous derivation and establishes a polydisperse sed-
imentation model that is “well-posed” in the sense that strict parabolicity is about
the best property we can expect system (1.2) to have whenever the right-hand part
is different from zero (i.e., for φc < φ < φmax). This property, combined with the
hyperbolicity of the first-order system, makes the model amenable to numerical so-
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lution and is conserved when we vary the model functions V (φ) and σe(φ) to reduce
sediment diffusivity. In the monodisperse case, it turned out that using the expres-
sion V (φ) = (1− φ)n−2 for all ranges of concentration values (as, for simplicity, done
here) leads to an overestimation of particle diffusivity in the sediment, and better
agreement was obtained by using piecewise definition of V (φ) or of the resulting flux
density function fM(φ); see [15, 16]. The emphasis here is on a gradual variation of
the parameters, which leaves the nature of the model unaltered.

The next step of modification would be “switching off” the term∇(φi/φ) in (2.20)
on the interval [φ∗, φmax], where we admit the limiting case φ∗ = φc. The mathemat-
ical consequences of such a reduction can be derived easily, since in the derivation of
section 4, σe(φ) and its derivative σ′

e(φ) are formally treated as independent functions.
Thus for the parabolicity analysis, deleting ∇(φi/φ) in (2.20) corresponds to sending
σe to zero and leaving the occurrences of σ′

e(φ) unchanged. From (4.1) we see that
then A(Φ) is a rank-one matrix having N − 1 eigenvalues that vanish. The system is
then no longer strictly parabolic for φ ∈ [φ∗, φmax]. This case is explicitly excluded
in the analysis of certain schemes [68] but is admitted in others [60] and still has the
advantage that explicit tracking of the sediment-suspension interface is unnecessary.

The most radical modification would be to change to an “en masse” sedimentation
model for φ ∈ [φ∗, φmax]. In particular, this would imply that φ = φ∗ denotes an
interface across which we change from the system of N convection-diffusion equations
(1.2) to one scalar equation, i.e., between two different models. This idea is viable
when we a priori do not wish to differentiate between size classes in the sediment.
In fact, this is the main idea of the model advanced by Stamatakis and Tien [102].
There is an advantage in computation time when there is a region in which a scalar
equation instead of an N × N system has to be solved, but formulating transition
conditions across the model change interface and tracking it during computation may
become complicated.

7.6. Applications. Been and Sills [5] measured local changes in particle size dis-
tribution due to the relative movement of particles of different sizes under the influence
of effective solid stress and at different initial concentrations. Their experiments were
performed with estuarine mud, a natural mixture composed of many different materi-
als for which the constitutive model equations are difficult to determine. More precise
knowledge of these functions can be expected in chemical engineering applications,
where the settling solids are usually formed by a product having more homogeneous
material properties. The model outlined herein should thus be useful for simulations
in any of the industrial applications cited in section 1. In particular, the model can
also be applied to centrifugal configurations and pressure filtration (see [15, 21] for
the monodisperse cases) and thereby be employed to simulate the manufacturing and
final composition of ceramic materials with functionally graded material properties
(see [9, 10, 11]). Comparing our Figures 2 and 3 illustrates that the effective stress is
a decisive factor when the variation of sediment composition should be continuous.

Acknowledgments. We thank the referees for valuable comments and sugges-
tions.
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Abstract. The divergence criterion has been shown to be helpful in distinguishing between sub-
and supercritical Hopf bifurcations, but its applicability is limited to systems whose divergence is
sign definite. A step-by-step computational procedure which allows one to extend the applicability
of the divergence criterion is derived by altering the system to an equivalent one with sign definite
divergence. The procedure is based on multiplying the original vector field by a positive quadratic
function in a neighborhood of the bifurcating rest point. This procedure is then applied to several ex-
amples of planar systems that exhibit the Hopf bifurcation. Specifically, it is demonstrated that only
supercritical bifurcations occur in a system modeling specific immune responses with handling time.
It is also shown that the FitzHugh–Nagumo equations and the chemostat equations with substrate
inhibition and linear yield coefficient may exhibit both sub- and supercritical Hopf bifurcations. In
both cases, simple analytic criteria for determining the criticality of the bifurcation are presented.
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1. Introduction. The bifurcation of a rest point for a system of ordinary differ-
ential equations to a periodic solution has been an intriguing area of research for the
past half-century. The early work of Hopf [10] is usually referenced as the beginning
point of research in this area, and this type of bifurcation bears his name.1 The the-
ory has been developed very extensively since. Several textbooks cover the subject,
including those of Marsden and McCracken [14], Hassard, Kazarinoff, and Wan [8],
Chow and Hale [4], and Kuznetsov [13]. The general subject of bifurcations has been
developed to a sophisticated level, and it is now a proper part of nonlinear functional
analysis.

Bifurcations are important in physical and biological systems because they repre-
sent the points at which the dynamics of the system undergoes a qualitative change.
In terms of the parameters of the model system, the bifurcation points can frequently
be expressed as thresholds. In many instances, experiments can be designed to detect
such thresholds to test a particular model and/or theory. We refer the reader to [11]
for an expository article on bifurcations in mathematical biology.

Many population models are described by planar dynamical systems, and simply
detecting the existence of a Hopf bifurcation is not difficult. However, determining
the direction of bifurcation, whether the bifurcation is subcritical or supercritical
(i.e., determining the criticality of the bifurcation), is a more delicate problem, as
the calculations in the above cited textbooks show. The subcritical bifurcations are
especially important in biological systems because they show the existence of (often
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unexpected) periodic solutions and multiple periodic solutions in dissipative systems
[19, 9, 16].

In previous work [16], a planar bifurcation theorem which determined the criti-
cality of bifurcation was established using the divergence criterion. In particular, it
was shown that a subcritical Hopf bifurcation produces at least two limit cycles in a
planar, dissipative system. The applicability of the theorem was restricted to systems
whose divergence was of one sign (except for a set of measure zero) in a neighborhood
of the bifurcation point. In this work, we develop a general approach for determining
the criticality of Hopf bifurcations in planar dynamical systems. We show that, for
a generic system, one can multiply the vector field by a positive quadratic function
and obtain a system whose divergence is sign definite near the bifurcating rest point.
Since the resulting system has the same set of trajectories as the original system, the
divergence criterion will determine the criticality of the bifurcation. This approach
makes Theorem 2.1 in [16] applicable to a wide class of problems.

The divergence criterion is a generalization of the Dulac criterion. This criterion
was used by Hofbauer and So [9] to determine the criticality of the Hopf bifurcation for
a class of predator-prey equations, and was later generalized by Pilyugin and Waltman
[16]. See also [17] for an earlier planar bifurcation theorem in this direction, and see
Wolkowicz [19] and Zhu, Campbell, and Wolkowicz [20] for bifurcation analysis of
predator-prey systems using the Lyapunov coefficient method. The change in the
vector field simplifies the calculations and often renders them amenable to direct
computation or to symbolic algebraic processors such as Mathematica [18] or Maple
[7]. Sometimes, the simplification can be truly significant. In [16], the use of the
divergence criterion resulted in the correction of mistakes found in a series of papers
[1, 5, 6] that used the Lyapunov coefficient criterion.

This paper is organized as follows. We describe the construction of the quadratic
function in section 2 and formulate the criterion for determining the criticality of
the Hopf bifurcation. In section 3, we illustrate the procedure using two important
biological problems. In section 4, we introduce a nonlinear rescaling of the vector field,
which further simplifies the divergence criterion for a specific set of planar systems
including the chemostat (also known as a bio-reactor or a CSTR), and study the
Hopf bifurcation in the chemostat with variable yield and substrate inhibition. We
conclude with a discussion section.

2. Divergence criterion for generic systems. Consider a planar dynamical
system

x′ = f(x, y), y′ = g(x, y),(1)

where f and g are sufficiently smooth, and assume that (0, 0) is a center, that is,
f0 = g0 = 0, f0

x + g0y = 0, and f0
xg

0
y − f0

y g
0
x > 0, where we adopt the notation F 0 =

F (0, 0). Necessarily, f0
y g

0
x < 0. We remark that all of the subsequent calculations and

conclusions will remain valid if (0, 0) is replaced by (x0, y0) and all derivatives are
computed at (x0, y0).

The divergence criterion states that if the divergence of the vector field of (1) is
negative (positive) almost everywhere in some neighborhood of (0, 0), then (0, 0) is a
stable (unstable) spiral point. In our earlier work [16], we showed that the Hopf bifur-
cation is supercritical (subcritical) if the bifurcating rest point is a stable (unstable)
spiral point. Therefore, we demonstrated that the criticality of the bifurcation can
be determined from the stability of the bifurcating rest point. In this paper, we use
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the divergence criterion to distinguish between stable and unstable spiral points or,
equivalently, between super- and subcritical Hopf bifurcations.

The divergence criterion may not apply directly to the original system (1), because
the divergence of its vector field may not be sign definite near the origin. In this
section, we show that for a generic vector field (1), one can choose a quadratic function
a(x, y) so that a(0, 0) = 1 and the divergence of (af, ag) given by

φ(x, y) = (af)x + (ag)y = a(fx + gy) + axf + ayg(2)

is sign definite in some neighborhood of (0, 0). Since a(x, y) is necessarily positive in
some neighborhood of (0, 0), the trajectories of (1) coincide with the trajectories of

x′ = a(x, y)f(x, y), y′ = a(x, y)g(x, y)(3)

near (0, 0). Consequently, systems (1) and (3) have the same orbital structure in a
neighborhood of (0, 0).

We begin by formally expanding φ, using the Taylor polynomial of second order

φ = φ0 + φ0
xx+ φ0

yy +
1

2

(
φ0
xxx

2 + 2φ0
xyxy + φ0

yyy
2
)

+H.O.T.,(4)

where H.O.T. denotes higher order terms. Evaluating (2) at (0, 0), we find that
φ0 = 0. Differentiating (2) yields

φx = a(fxx + gyx) + ax(fx + gy) + axxf + axfx + ayxg + aygx,(5)

φy = a(fxy + gyy) + ay(fx + gy) + axyf + axfy + ayyg + aygy.(6)

Setting a(0, 0) = 1, it follows that

φ0
x = (f0

xx + g0yx) + a0xf
0
x + a0yg

0
x, φ0

y = (f0
xy + g0yy) + a0xf

0
y + a0yg

0
y.(7)

Since f0
xg

0
y − f0

y g
0
x > 0, equations (7) uniquely define a0x and a0y. Our primary interest

is, of course, to eliminate the first order terms in (4). Thus we set φ0
x = φ0

y = 0 in (7)
and solve for a0x and a0y to obtain

a0x =
(f0
xx + g0yx)g0y − (f0

xy + g0yy)g0x
f0
y g

0
x − f0

xg
0
y

,(8)

a0y =
−(f0

xx + g0yx)f0
y + (f0

xy + g0yy)f0
x

f0
y g

0
x − f0

xg
0
y

.(9)

Subsequent differentiation of (5) and (6) yields

φxx = ax(fxx + gyx) + a(fxxx + gyxx) + axx(2fx + gy) + ax(2fxx + gyx)

+ ayxgx + aygxx + axxxf + axxfx + ayxxg + ayxgx,

φxy = ay(fxx + gyx) + a(fxxy + gyxy) + axy(2fx + gy) + ax(2fxy + gyy)

+ ayygx + aygxy + axxyf + axxfy + ayxyg + ayxgy,

φyy = ay(fxy + gyy) + a(fxyy + gyyy) + ayy(fx + 2gy) + ay(fxy + 2gyy)

+ axyfy + axfyy + axyyf + axyfy + ayyyg + ayygy.
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Assuming that the functions f and g are sufficiently smooth, the mixed derivatives are
independent of the order of differentiation. Therefore, evaluating the above expression
at the center (0, 0) yields

φ0
xx = Qxx + 2f0

xa
0
xx + 2g0xa

0
xy,(10)

φ0
xy = Qxy + f0

ya
0
xx + g0xa

0
yy,(11)

φ0
yy = Qyy + 2f0

ya
0
xy + 2g0ya

0
yy,(12)

where

Qxx = (f0
xxx + g0yxx) + a0x(3f0

xx + 2g0xy) + a0yg
0
xx,

Qxy = (f0
xxy + g0yxy) + a0x(2f0

xy + g0yy) + a0y(f0
xx + 2g0xy),

Qyy = (f0
xyy + g0yyy) + a0xf

0
yy + a0y(2f0

xy + 3g0yy).

Thus far, the linear terms in (4) have been eliminated by choosing appropriate values
for a0x and a0y. In what follows, we seek to choose the values a0xx, a0xy, and a0yy so as
to make the second order terms in (4) sign definite. The second order terms in (4)
are sign definite whenever the discriminant

D = φ0
xxφ

0
yy − (φ0

xy)2

is positive. We set

a0xx = −1

2

Qxy

f0
y

, a0yy = −1

2

Qxy

g0x
,(13)

because such a choice yields φ0
xy = 0. The discriminant then can be written as

D =

(
Qxx − Q

xyf0
x

f0
y

+ 2g0xa
0
xy

)(
Qyy − Q

xyg0y
g0x

+ 2f0
ya

0
xy

)
= (β1 + α1z)(β2 + α2z),

(14)

where z = a0xy, β1 = Qxx − (Qxyf0
x/f

0
y ), β2 = Qyy − (Qxyg0y/g

0
x), α1 = 2g0x, and

α2 = 2f0
y . Since the product α1α2 = 4g0xf

0
y < 0, the discriminant D is positive for

any z located strictly between the roots z1 = −β1/α1 and z2 = −β2/α2. For generic
functions f and g, z1 �= z2. Thus we choose

z∗ = −1

2

(
β1

α1
+
β2

α2

)
= −1

2

Qxxf0
y +Qyyg0x
2g0xf

0
y

(15)

and set a0xy = z∗.
At this point, we have determined all coefficients of the quadratic function

a(x, y) = 1 + a0xx+ a0yy +
1

2
(a0xxx

2 + 2a0xyxy + a0yyy
2).(16)
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Finally, we transform the original vector field (f, g) into a vector field (af, ag) with
sign definite divergence φ near the origin. The divergence φ is positive (negative) if
φ0
xx is positive (negative). Substituting (13) and (15) into (10), we find that

φ0
xx =

1

2

(
Qxx −Qyy g

0
x

f0
y

)
−Qxy f

0
x

f0
y

.(17)

For a given planar system that undergoes a Hopf bifurcation, we evaluate appro-
priate partial derivatives of its vector field at the bifurcation point and compute the
quantity (17). The Hopf bifurcation is supercritical (subcritical) if (17) is negative
(positive).

Unfortunately, for a generic system, expression (17) may become too complicated
for symbolic applications. In this case, our method will have no advantage over the
standard normal form computation. However, our approach can, sometimes, have
a clear advantage over the standard method. To illustrate this, we treat several
examples in subsequent sections. Expression (17) will be greatly simplified if the
divergence of the vector field essentially involves only one of the state space variables
x or y. It is therefore helpful to introduce a preliminary change of variables to achieve
this, whenever possible. A specific change of variables that applies to chemostats is
discussed in section 4.

3. Applications. In this section, we apply the change of vector fields to two
examples in biological literature and determine the criticality of bifurcation. Before
beginning, we note two changes from the usual presentation of bifurcation results.

• It is possible, and the theory is usually presented this way, to change variables
so that the bifurcating rest point is always at the origin. Such a change, how-
ever, complicates the calculations for a specific problem, and we do not make
it. The reader should be cautioned that, as parameters vary, the coordinates
of the rest point vary.

• The traditional approach is to fix all of the parameters except one (usually
designated as the bifurcation parameter) and let that parameter determine
the bifurcation. We choose instead to present a bifurcation locus, which is
defined as a hypersurface in the parameter space on which the bifurcation
occurs. We have two reasons for doing this. First of all, biological problems
frequently have many parameters, and it would be artificial to select a single
one unless there is a specific experiment which can vary it. Secondly, our
technique for determining the criticality of bifurcation depends only on the
stability of the rest point at the critical parameter value(s). This implies that
any parametric path crossing the bifurcation locus will produce a bifurcation
whose criticality is determined exclusively by its crossing point on the bifur-
cation locus. In particular, any two parametric paths crossing the bifurcation
locus via the same point will produce Hopf bifurcations of the same critical-
ity. Of course, one has to ascertain that a bifurcation does indeed occur, that
is, that the rest point does change its stability along the parametric path.
On the other hand, our result does not require that the parametric path be
strictly transverse to the bifurcation locus or, equivalently, that the pair of
complex eigenvalues cross the imaginary axis with nonzero velocity. For more
details, we refer the reader to the proof of the original Theorem 2.1 in [16].

For any crossing point on the bifurcation locus, the linearization of a planar
system has purely imaginary eigenvalues. Such a rest point for the nonlinear system
can be a stable or an unstable spiral, or a center, the choice being determined by the
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nonlinear terms. Our quadratic factor determines whether the rest point is a stable
spiral or an unstable spiral, depending on the sign of the (sign specific) divergence.
It is also possible that the quadratic terms in (4) vanish, in which case our technique
does not apply. If this is the case, then the rest point could still be a center or a
spiral determined by nonlinear terms of higher order (and hence such a case would be
nongeneric).

In the next two subsections, we study the criticality of Hopf bifurcations in two
biological problems, where we can add to results already in the literature. These
examples also illustrate the ease with which the technique can be applied to biological
problems.

3.1. Specific immune responses with handling time. In this section, we
apply the general divergence criterion to the model of specific immunity studied by
Pilyugin and Antia in [15]. The authors reported the existence of Hopf bifurcation in
the system

x′ = rx− hx

k + x
y,(18)

y′ = a+

(
ρx

k + x
− d
)
y,(19)

where r, h, k, a, ρ, d are positive parameters. Here x and y are dimensionless
variables that represent the abundance of parasite (i.e., the number of infected cells)
and the magnitude of the specific (cytotoxic) immune response, respectively. In this
model, both the proliferation rate of immune cells ρx

k+x and the killing rate of infected

cells hx
k+x saturate as the number of infected cells x becomes large. The quantities r, a,

and d represent the (per capita) rate of parasite replication, the input of immune cells
from an external source, and the (per capita) death rate of immune cells, respectively.
We restrict the bifurcation analysis to the biologically relevant case x, y > 0.

To simplify computations, we multiply the vector field of (18)–(19) by a positive
function k + x and consider the new system of the form

x′ = rx(k + x) − hxy = f(x, y), x(0) > 0,(20)

y′ = a(k + x) + (ρx− d(k + x))y = g(x, y), y(0) > 0.(21)

Since k + x > 0, the phase portraits of (18)–(19) and (20)–(21) are identical.
The bifurcating rest point of (20)–(21) has coordinates

x0 =
rdk − ah
r(ρ− d) > 0, y0 =

krρ− ah
h(ρ− d) > 0.(22)

We compute the partial derivatives of f and g to find

fx = rk + 2rx− hy, fy = −hx, fxx = 2r, fxy = −h, fyy = 0,

gx = a+ (ρ− d)y, gy = (ρ− d)x− dk, gxy = ρ− d, gxx = gyy = 0.

Consequently,

f0
x = rx0, f0

y = −hx0, f0
xx = 2r, f0

xy = −h, f0
yy = 0,

g0x =
krρ

h
, g0y = −ah

r
, g0xy = ρ− d, g0xx = g0yy = 0.
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The bifurcating rest point must necessarily satisfy 0 = f0
x + g0y = rx0 − ah

r , and thus

x0 =
ah

r2
.

Equating this value with that of (22), we find that the bifurcation locus is a subset of
the hypersurface

d(r2k + ah) = ah(ρ+ r).(23)

The determinant of the variational matrix is given by

det(J) = −rx0 ah

r
+ hx0 krρ

h
= x0(krρ− ah).

A necessary condition for the Hopf bifurcation is that det(J) > 0. Since x0 > 0, it
follows that krρ − ah > 0, and inequalities (22) further imply that ρ − d > 0 and
rdk − ah > 0. Since ρ − d > 0 and rdk − ah > 0 together imply krρ − ah > 0, the
bifurcation locus can be described as the subset of (23) restricted by two inequalities

rdk − ah > 0, ρ− d > 0.(24)

Using (8)–(9), we compute

a0x =
krρ− ah

r (2r + (ρ− d))
ah
r2 (ah− krρ) , a0y =

(r + (ρ− d))h
ah− krρ .(25)

The quantities Q∗∗ are

Qxx = a0x(6r + 2(ρ− d)), Qxy = −2ha0x + a0y(2r + 2(ρ− d)), Qyy = −2ha0y.

Therefore,

φ0
xx = a0x(r + (ρ− d)) + a0y

(
h+

2r

h
(r + (ρ− d))

)
,

which can be simplified to

φ0
xx = − (r + (ρ− d))2

k(r + ρ)
.(26)

Clearly, φ0
xx < 0. Since the divergence of the rescaled vector field is negative definite

at any point on the bifurcation locus, the bifurcation is always supercritical.

3.2. Diffusionless FitzHugh–Nagumo equations. Several numerical exam-
ples of supercritical and subcritical Hopf bifurcations were presented by Kostova,
Ravindran, and Schonbek [12] in the context of the classical FitzHugh–Nagumo equa-
tions. They derived a complicated expression to determine the criticality of the Hopf
bifurcation using the normal form calculation. In this section, we use the divergence
criterion to derive a simple analytic criterion to determine the criticality of the Hopf
bifurcation.

The FitzHugh–Nagumo equations for a single neuron are

x′ =F (x) − y + I = f(x, y),(27)

y′ = x− wy = g(x, y),(28)
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where F (x) = εx(1 − x)(x− λ) and ε > 0, 0 < λ < 1, w > 0, and I are parameters.
The variable x represents the membrane potential, y is the recovery variable that
represents a negative feedback, and I is the membrane current.

Computing the partial derivatives of f and g, we find that

fx = F ′(x), fy = −1, fxx = F ′′(x), fxy = fyy = 0,

gx = 1, gy = −w, gxy = gxx = gyy = 0.

Consequently, at any rest point (x0, y0), we have

f0
x = F ′(x0), f0

y = −1, f0
xx = F ′′(x0), f0

xy = f0
yy = 0,

g0x = 1, g0y = −w, g0xy = g0xx = g0yy = 0.

The bifurcation locus consists of rest points (x0, y0) such that f0
x + g0y = 0 and

f0
xg

0
y−f0

y g
0
x > 0. The former condition implies that F ′(x0) = w. The latter condition

then implies that 1 − w2 > 0. Hence the bifurcation locus is the set of rest points
(x0, y0) such that

f0 = g0 = 0, F ′(x0) = w, w2 < 1.(29)

Since F ′(x) = ε(−3x2 + 2(1 + λ)x− λ), the second condition in (29) implies that x0

must satisfy the quadratic equation

3(x0)2 − 2(1 + λ)x0 + λ+
w

ε
= 0

or, equivalently,

x0
1,2 =

(1 + λ) ±√(1 + λ)2 − 3(λ+ w
ε )

3
.(30)

Using (8)–(9), we compute

a0x =
wF ′′(x0)

1 − w2
, a0y = −F

′′(x0)

1 − w2
.(31)

The quantities Q∗∗ are

Qxx = F ′′′(x0) +
3w(F ′′(x0))2

1 − w2
= −6ε+

3w(F ′′(x0))2

1 − w2
,

Qxy = − (F ′′(x0))2

1 − w2
, Qyy = 0.

Therefore,

φ0
xx =

1

2

(
−6ε+

3w(F ′′(x0))2

1 − w2

)
+

(F ′′(x0))2

1 − w2

F ′(x0)

−1
,

which can be further simplified to

φ0
xx =

1

2

(
−6ε+

w(F ′′(x0))2

1 − w2

)
.(32)
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Substituting F ′′(x0) = 2ε(1 + λ− 3x0) into (32), we rewrite the quantity φ0
xx as

φ0
xx = ε

(
−3 +

2εw(1 + λ− 3x0)2

1 − w2

)
.(33)

Using (30), we can rewrite the quantity (1 + λ− 3x0)2 as

(1 + λ− 3x0)2 = (1 + λ)2 − 3
(
λ+

w

ε

)
.

Substituting this expression into (33), we finally obtain

φ0
xx =

ε

1 − w2

(
2εw(1 − λ+ λ2) − 3(1 + w2)

)
.(34)

The multiplier ε
1−w2 is positive due to (29). Consequently, φ0

xx has the same sign as

the quantity 2εw(1 − λ + λ2) − 3(1 + w2). The Hopf bifurcation in the FitzHugh–
Nagumo equations is subcritical if φ0

xx > 0, that is, if it occurs on the part of the
bifurcation locus where

ε >
3(1 + w2)

2w(1 − λ+ λ2)
,

and supercritical if it occurs on the part of the bifurcation locus where the reversed
strict inequality holds.

In [12], two numerical examples were presented: a Figure 2 with ε = 14.0, w =
0.38, λ = 0.1 and a Figure 3 with ε = 14.0, w = 0.06, λ = 0.5. In the former case,

ε = 14.0 >
3(1 + 0.382)

2 · 0.38(1 − 0.1 + 0.12)
= 4.964,

and the bifurcation is subcritical. In the latter case,

ε = 14.0 <
3(1 + 0.062)

2 · 0.06(1 − 0.5 + 0.52)
= 33.453,

and the bifurcation(s) are supercritical.

4. Rescaling for chemostat equations. The method presented in this section
for rescaling the vector field is a generalization of the technique used by Hofbauer and
So [9]. Specifically, we consider the system

x′ = f(x) − q1(y)g(x), y′ = q2(y)h(x),(35)

where f, g, h, qi are sufficiently smooth and such that positive solutions of (35) remain
positive. Also, suppose that g(x) > 0 and q2(y) > 0 for x, y > 0. We multiply the
vector field (35) by a positive function Q(y)/g(x) to obtain a new system

x′ = Q(y)f(x)/g(x) − q1(y)Q(y) = Q(y)G(x) − q1(y)Q(y),(36)

y′ = Q(y)q2(y)h(x)/g(x) = Q(y)q2(y)H(x),(37)

where (Qq2)′ = βQ and β is a real number to be determined later. The explicit
expression for Q(y) is

Q(y) =
exp
(
β
∫

dy
q2(y)

)
q2(y)

> 0.
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Any positive rest point (x0, y0) of (36)–(37) must satisfy H(x0) = 0. The divergence
of the new vector field (36)–(37) is given by

D(x, y) = Q(y)G′(x) + (Q(y)q2(y))′H(x) = Q(y)
(
G′(x) + βH(x)

)
.(38)

Now suppose that (x0, y0) is the bifurcating rest point, that is, that D(x0, y0) = 0.
Since Q(y0) > 0 and H(x0) = 0, we necessarily have that

G′(x0) + βH(x0) = G′(x0) = 0.

We choose β = −G′′(x0)/H ′(x0), so that in a small neighborhood of (x0, y0),

G′(x) + βH(x) =
δ

2
(x− x0)2 +H.O.T.,

where

δ = G′′′(x0) − G
′′(x0)

H ′(x0)
H ′′(x0) = H ′(x0)

(
G′′

H ′

)′
(x0).(39)

Since Q(y) > 0, the sign of D(x, y) near (x0, y0) is the same as the sign of δ. Con-
sequently, the application of the divergence criterion to systems of type (35) can be
greatly simplified. For example, the predator-prey models analyzed in [2, 9, 19, 20]
fall into this category. The criteria for the criticality of Hopf bifurcations obtained in
these works can be directly compared to the expression (39). Various models of the
chemostat are also of type (35). In the following subsection, we illustrate this sim-
plified approach by treating a special case of the chemostat with substrate inhibition
and a linear yield coefficient.

4.1. Chemostats with substrate inhibition and linear yields. In this sec-
tion, we study the Hopf bifurcation in the model of a chemostat with linear yield
coefficient which also features substrate inhibition of growth at higher substrate lev-
els. For a general study of the chemostat with inhibition, constant yield, and several
competitors, see Butler and Wolkowicz [3]. The original model presented in Agrawal
et al. [1], takes the following form:

x′ =1 − x− y µ(x)

1 + cx
,(40)

y′ = y(µ(x) − 1),(41)

where x and y denote the dimensionless substrate and biomass concentrations, and
µ(x) = mx exp(−x/K) is the microbial growth rate. The function 1 + cx represents
the yield coefficient,2 which is assumed to increase linearly with substrate concentra-
tion; thus c > 0.

Equations (40)–(41) are of the form (35) with

f(x) = 1 − x, g(x) =
mx exp(−x/K)

1 + cx
,

h(x) = mx exp(−x/K) − 1, q1(y) = q2(y) = y.

2The yield coefficient is defined as the ratio of the amount of substrate consumed to the amount
of biomass produced at a steady state. There is strong biological evidence that the yield may increase
with substrate concentration. For details, see [16] and the references therein.
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Equations (40)–(41) admit up to two positive rest points. The x-coordinate of a
positive rest point must satisfy µ(x) = 1 with 0 < x < 1. The function µ(x) has a
maximum at x = K, and its maximal value is given by µmax = mKe−1. Consequently,
if mK > e, then there exist two positive solutions of µ(x) = 1, x0

1 < K < x0
2. It is

easy to verify that the rest point with x = x0
2 (if it is feasible, that is, if x0

2 < 1) is
always a saddle. Consequently, the Hopf bifurcation can occur only at the rest point
(x0

1, y
0
1) with 0 < x0

1 < min(1,K) and y01 = (1 − x0
1)(1 + cx0

1). The bifurcation occurs
when the trace of the variational matrix of (40)–(41) at (x0

1, y
0
1) equals zero:

−1 − y01
d

dx

( µ(x)

1 + cx

)
(x0

1) = 0.

Consequently, on the bifurcation locus, the value of c is given by

c =
K − x0

1 + (x0
1)2

(x0
1)2(1 −K − x0

1)
.(42)

The bifurcation occurs in the feasible region if the value of c given by (42) is positive,
that is, if x0

1 < 1 −K and 0 < K < 1.
To determine the criticality of the Hopf bifurcation, we computed the functions

G(x) and H(x) as defined in (36)–(37) and found that

G(x) =
(1 − x)(1 + cx) exp(x/K)

mx
,(43)

H(x) =
(1 + cx)(mx− exp(x/K))

mx
.(44)

Then we created a Mathematica [18] notebook to compute the quantity δ defined in
(39), and found that

δ(x(m,K),K) =
P0(x) +KP1(x) +K2P2(x) +K3P3(x) +K4P4(x)

K2(K − x)(1 − x)(1 −K − x)x3
,(45)

where P0(x) = 3(1 − x)3x3, P1(x) = 2x2(1 − x)2(x − 6), P2(x) = 2x(x − 1)(x2 +
x − 8), P3(x) = 2(5x2 − 4x − 3), P4(x) = 2(3 − x), and x0

1 = x(m,K). The Hopf
bifurcation in (40)–(41) is subcritical if δ > 0 and supercritical if δ < 0.

The existence of both sub- and supercritical Hopf bifurcations in (40)–(41) is
illustrated in Figure 1. For (K,m) ∈ A, no rest point with 0 < x < 1 exists. The curve
between A and B is given by m = e/K. Region B (δ > 0) corresponds to subcritical
bifurcations. The curve between B and C is the implicit plot of δ(x(m,K),K) = 0.
Region C (δ < 0) corresponds to supercritical bifurcations. The curve between C and
D is the implicit plot of x(m,K) = 1 − K. For (K,m) ∈ D, no bifurcations with
c > 0 occur. The region B terminates at K = 0.413, and the region C terminates at
K = 0.5.

5. Discussion. We have developed a unifying approach for studying the Hopf
bifurcation for generic planar systems, which stems from the divergence criterion.
Specifically, we presented a step-by-step computational procedure which can be used
to distinguish between sub- and supercritical bifurcations. This procedure can be
easily programmed in any standard computer algebra system such as Maple [7] or
Mathematica [18] so that all of the necessary computations can be automated. This
work may serve as a good example of the analytic approach that involves computerized
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Fig. 1. Existence and criticality of Hopf bifurcations in the (K,m) plane.

symbolic calculations. The technique is generic in the sense that it can be applied to
a generic planar vector field.

We applied our procedure to several important biological systems and obtained
new results on the criticality of Hopf bifurcation. Interestingly, we found that in
several instances—for example, with diffusionless FitzHugh–Nagumo equations—we
were able to perform all calculations by hand in a reasonable amount of time, which
illustrated that our method may have an advantage over the calculation of the third
Lyapunov coefficient and/or normal form calculation for the Hopf bifurcation. In
particular, our method does not require such computational steps as

• changing coordinates to place the bifurcating rest point at the origin,
• finding eigenvalues and eigenvectors of the variational matrix,
• transforming the linear part of the vector field to the canonical form.

In certain examples, our method produces analytic expressions that are easier to
simplify.

We have also presented a specific change of variables that works well with a
whole class of planar systems including the equations of the chemostat. Performing
this change of variables essentially eliminates one of the phase variables from the
expression for divergence and thus greatly simplifies the analysis of Hopf bifurcation.
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Abstract. We develop a general solution technique for a dynamically accelerating crack in
a linear viscoelastic material, based on a transform method developed by Slepyan (see [Models and
Phenomena in Fracture Mechanics, Springer-Verlag, New York, 2002]) for solution of dynamic elastic
fracture problems. We review the elastic fracture solution method and then treat the viscoelastic
mode III fracture problem for crack tip speeds less than the short-time shear wave speed. The
analysis includes an exact, closed-form expression for the stress intensity factor for an arbitrary time
dependent crack face traction. As examples, we apply this solution method to the Achenbach–Chao
and standard linear solid viscoelastic models.

Key words. dynamic fracture, viscoelastic material
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1. Introduction. While dynamic elastic fracture is a well-studied and fairly
mature subject (see [4], for example), the literature devoted to dynamic fracture in
viscoelastic material is limited. The first exact, closed-form solution for a dynamically
accelerating crack in a viscoelastic material was derived by Bourne and Walton [2],
who assumed a semi-infinite, antiplane shear crack in an Achenbach–Chao linear
viscoelastic solid in the limiting case of a vanishing equilibrium shear modulus. (Also
see [13] for an exposition of this viscoelastic solution, and [14] for the inclusion of a
Dugdale zone.) With the exception of an approximate analysis by Goleniewski [5],
the authors know of no other solutions to date for dynamically accelerating cracks in
viscoelastic material.

The first major contributions to the solution of dynamically accelerating cracks in
an elastic material were due to Kostrov [6], whose work motivated others in the field
such as Eshelby [3]. However, the approach taken by this paper most closely follows
the techniques for an elastic material developed by Slepyan [11], which are related to
but distinct from the methods developed by Kostrov or Eshelby. We also make use
of the ideas developed by Bourne and Walton [2] for a crack in a linear viscoelastic
material in the special case of a vanishing equilibrium shear modulus. Our goal is
to generalize Bourne and Walton’s exact, closed-form solution for this special case to
the general case of a linear viscoelastic material. In addition, we derive an explicit
expression for the mode III stress intensity factor for a dynamically accelerating crack
in a general linear viscoelastic material. One could also use the equations derived
in this paper to numerically compute the displacement and stress along the entire
boundary (the crack line), facilitating the inclusion of a cohesive zone.

In the following section, we briefly outline the solution method for an accelerating
semi-infinite crack in an elastic material for comparison to that for the viscoelastic
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problem, to highlight both what is analogous and what is very different. We then
extend this solution method to the general case of a dynamically accelerating semi-
infinite crack in a linear viscoelastic material in sections 3 and 4. In sections 5 and
6 we apply the solution method to the Achenbach–Chao and standard linear solid
viscoelastic models and then make some concluding remarks in section 7.

2. Review of the dynamic elastic problem. The following integral transform
method for a dynamically accelerating semi-infinite crack in an elastic material was
first developed by Slepyan (see [11]) for all fracture modes. (In fact, in both [11] and
[9], a more general problem is considered, where the displacement in front of the crack
need not vanish.) It is closely related to the method developed in [15] by Walton and
Herrmann, and we extended the method to the cases of finite length and multiple
cracks in an elastic material in [8] and [7]. We will review the method as applied to a
semi-infinite mode III crack in an elastic material for comparison with the viscoelastic
equations that we will derive in sections 3 and 4.

Consider a dynamically accelerating, semi-infinite, antiplane shear crack for a gen-
eral infinite homogeneous and isotropic linearly elastic body. The governing equations
for this elastic fracture problem are

ρü(t) = µ�u and σ(x, y, t) = µ
∂

∂y
u(x, y, t),(2.1)

where µ is the elastic shear modulus, u(x, y, t) is the out-of-plane displacement u3(x, y, t),
and σ(x, y, t) is the shear stress σ23(x, y, t). Let a(t) be the crack tip position at time
t, as in Figure 2.1. The initial and boundary conditions for this problem are

u(x, y, 0) = 0 = u̇(x, y, 0),(2.2)

u(x, 0, t) = 0 for x > a(t),(2.3)

σ(x, 0, t) = Λ(x, t) for x < a(t),(2.4)

u(x, y, t)→ 0 as |y| → ∞,(2.5)

where a(t) is the position of the crack tip as it propagates to the right and Λ(x, t) is
assumed to be a known loading of the crack face. Furthermore we assume that the
crack speed remains subsonic, 0 ≤ ȧ(t) < c, where c =

√
µ/ρ is the shear wave speed.

The key to the solution method is the observation that, after applying Laplace
and Fourier transforms and taking the limit as y → 0+, the governing equations

y

a(t)

a(t)
.

x

Fig. 2.1. A semi-infinite dynamically accelerating crack. We consider the antiplane shear case,
and thus the crack face displacement is actually perpendicular to the page.
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reduce to a simple transfer map (see [13] for the details of this derivation for both the
elastic and viscoelastic cases):

ˆ̄σ(p, s) = ˆ̄T (p, s)ˆ̄u(p, s),(2.6)

where the transfer function is

ˆ̄T (p, s) = −µ
√

p2 + s2/c2s.(2.7)

We use Fourier and Laplace transforms defined as follows:

f̂(p) =

∫ ∞

−∞
eipxf(x)dx,(2.8)

ḡ(s) =

∫ ∞

0

e−stg(t)dt.(2.9)

Decompose the transfer function T (x, t) as ˆ̄T (p, s) = ˆ̄T+(p, s)
ˆ̄T−(p, s) in such

a manner that the functions T±(x, t) and S±(x, t), where ˆ̄S± = 1/ ˆ̄T±, satisfy the
following conditions:

T+(x, t) = S+(x, t) = 0 for x < ct,(2.10)

T−(x, t) = S−(x, t) = 0 for x > −ct.(2.11)

We also decompose the stress and displacement into parts with support either in front
of the crack tip or on the crack face:

σ+(x, t) =

{
σ(x, t) if x > a(t),

0 otherwise,
(2.12)

σ−(x, t) =

{
σ(x, t) if x < a(t),

0 otherwise,
(2.13)

and similarly for the displacement u(x, t). Expand (2.6) using these decompositions,

and multiply by ˆ̄S+:

ˆ̄S+ ˆ̄σ+ +
ˆ̄S+ ˆ̄σ− = ˆ̄T− ˆ̄u+ +

ˆ̄T− ˆ̄u−.(2.14)

Assuming the properties (2.10) and (2.11), the convolution T− ∗ ∗u− vanishes for
x > a(t):

T− ∗ ∗u−(x, t)(2.15)

=

∫ ∞

−∞
dr

∫ t

0

T−(r, τ)u−(x− r, t− τ)dτ(2.16)

=

∫ t

0

dτ

∫ x−a(t−τ)

−cτ
T−(r, τ)u−(x− r, t− τ)dr.(2.17)
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For x > a(t), the two functions in this double integral have no region of support in
common, so that the integral vanishes. Similarly, the convolution S+ ∗ ∗σ+ vanishes
for x < a(t). Apply Fourier and Laplace transformations again to the relations

T− ∗ ∗u−(x, t) = H(a(t)− x)(S + ∗ ∗ σ− − T− ∗ ∗u+),(2.18)

S+ ∗ ∗σ+(x, t) = −H(x− a(t))(S + ∗ ∗ σ− − T− ∗ ∗u+),(2.19)

multiply by ˆ̄S− and ˆ̄T+, respectively, and invert the transformations to obtain

u− = S− ∗ ∗[H(a(t)− x)(S+ ∗ ∗σ− − T− ∗ ∗u+)],(2.20)

σ+ = −T+ ∗ ∗[H(x− a(t))(S+ ∗ ∗σ− − T− ∗ ∗u+)].(2.21)

Note that these relations give the unknown quantities in terms of the known quantities
(from the boundary conditions) for a semi-infinite crack. These formulas first appeared
in [10] (and hold for all three fracture modes).

Let’s look more closely at these maps for an antiplane shear crack in elastic
material. For this case we decompose the transfer map into two square root functions
in the complex plane:

ˆ̄T+(p, s) =
√

−ip+ s/c,(2.22)

ˆ̄T−(p, s) = −µ
√

ip+ s/c,(2.23)

where the branch cuts for the square roots are taken along the negative imaginary
axis for (2.22) and along the positive imaginary axis for (2.23). The functions S± are
straightforward to find and have the desired support properties:

S+(x, t) = δ
(
t− x

c

) H(x)√
πx

,(2.24)

S−(x, t) = −µδ
(
t+

x

c

) H(−x)√−πx
,(2.25)

where δ(τ) denotes the Dirac delta function and H(x) denotes the Heaviside function.
Also note that

F−1 ◦ L−1
[(

−ip+
s

c

)
ˆ̄u(p, s)

]
(x, t) =

1

c

∂u

∂t
+

∂u

∂x
,(2.26)

F−1 ◦ L−1
[(

ip+
s

c

)
ˆ̄u(p, s)

]
(x, t) =

1

c

∂u

∂t
− ∂u

∂x
.(2.27)

Substituting these functions and the boundary conditions into the relations (2.20)
and (2.21) leads to expressions for the crack face displacement and stress in front of
the crack that depend only on the crack face load Λ(x, t) and the crack tip path a(t):

u−(η, ξ) = − 1

2π

∫ ξ

max{−η,b0◦b−1
1 (η)}

dq√
ξ − q

∫ η

max{−q,0}
Λ(r, q)

dr√
η − r

,(2.28)

σ+(η, ξ) =
1

π

∂

∂η

∫ b1◦b−1
0 (ξ)

−ξ

dr√
η − r

∫ r

−ξ
Λ(s, ξ)

ds√
r − s

.(2.29)

Here we have used characteristic coordinates η = t+ x/c and ξ = t− x/c in place of
the original (x, t) coordinates, and retarded and advanced time scales b0(t) and b1(t),
respectively, defined via

b0(t) = t− a(t)/c, b1(t) = t+ a(t)/c.(2.30)
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(Since we impose subsonic crack propagation, 0 ≤ ȧ(t) < c, the functions b0(t) and
b1(t) will be strictly increasing and hence invertible.) Taking the limit x → a(t)+

of (2.29) after reversing the order of integration and then performing a change of
variables leads to the usual mode III stress intensity factor:

KIII(t) = − 1
π

√
c− ȧ(t)

∫ t

0

Λ(c(r − b0(t)), r)
dr√
t− r

.(2.31)

See [15], [13], [8], and [7] for more details on this solution method for antiplane shear
cracks in elastic material.

3. General framework for viscoelastic case. We will consider a dynamically
accelerating, semi-infinite, antiplane shear crack for a general infinite homogeneous
and isotropic linearly viscoelastic body. The governing equations for this viscoelastic
fracture problem are

ρü(x, y, t) = µ ∗ �u and σ(x, y, t) =
∂

∂y
(µ ∗ du),(3.1)

where µ(t) is the shear relaxation function, u(x, y, t) is the out-of-plane displacement
u3, σ(x, y, t) is the shear stress σ23, and the convolutions are with respect to t. Let
a(t) be the crack tip position at time t, as in Figure 2.1. The initial and boundary
conditions for this problem are

u(x, y, 0) = 0 = u̇(x, y, 0),(3.2)

u(x, 0, t) = 0 for x > a(t),(3.3)

σ(x, 0, t) = Λ(x, t) for x < a(t),(3.4)

u(x, y, t)→ 0 as |y| → ∞.(3.5)

See [13] for the details of the derivation of the transfer map corresponding to this
problem.

Finding a solution method for a crack in a viscoelastic material is, of course,
complicated by the dependence on time histories of the displacement and stress. The
decomposition of the transfer function must be carefully chosen to result in useful
support properties. In general, we will assume that the transfer function has form

ˆ̄T (p, s) = −
√

p2 + s2/c̃(s)2(3.6)

for the transfer map

ˆ̄σ(p, s) = ˆ̄T (p, s) ˆ̄D(p, s),(3.7)

where

ˆ̄D(p, s) = µ̃(s)ˆ̄u(p, s),(3.8)

and µ̃(s) = µ0 +
∫∞
0

e−tsµ̇(t)dt is the s-multiplied Laplace transform of the shear

relaxation function. A natural choice for a decomposition ˆ̄T (p, s) = ˆ̄T+(p, s)
ˆ̄T−(p, s)

(with ˆ̄S± = 1/ ˆ̄T± as before) is

ˆ̄T+(p, s) =
√

−ip+ s/c̃(s),(3.9)

ˆ̄T−(p, s) = −
√

ip+ s/c̃(s),(3.10)
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with the branch cut for the square roots taken along the negative real axis. The com-
plication in finding the inverse Laplace transform lies in the nonconstant transverse
wave speed function c̃(s) =

√
µ̃(s)/ρ.

The key to analyzing the transfer function is to examine the inverse Laplace
transform of exp[−|x|s/c̃(s)], a crucial component of the Dirichlet-to-Neumann map.
Observe that since

ˆ̄S±(p, s) =
±1√∓ip+ s/c̃(s)

,(3.11)

the functions S±(x, t) will be found via

S+(x, t) =
1

2π

∫ ∞

−∞
e−ipxdp

1

2πi

∫
Γ

est
ds√−ip+ s/c̃(s)

(3.12)

=
1

2πi

∫
Γ

es(t−x/c̃(s))ds
1

2π

∫ ∞+is/c̃(s)

−∞+is/c̃(s)

e−ipx
dp√−ip

(3.13)

=
H(x)√

πx
L−1

[
e−xs/c̃(s)

]
,(3.14)

with S−(x, t) = −S+(−x, t). By definition of the inverse Laplace transform, the
contour Γ is a vertical line placed to the right of any singularities. Hence this decom-
position will place any poles and branch cuts in the left half of the complex plane
(relative to Γ), and the inverse transform will have support t− |x|/c > 0.

Define c̆(s) via c̃(s) = cc̆(s), where c =
√

µ0/ρ is the glassy (short-time) shear

wave speed and c∞ =
√

µ∞/ρ is the equilibrium (long-time) shear wave speed. The
properties of c̆(s) are assumed to be as follows:

1. c̆(s)→ 1 as s → ∞.
2. c̆(s)→ δ as s → 0, where δ = c∞/c ≤ 1.
3. 1/c̆(s) = 1 + γ(s), with sγ(s) = O(1) as |s| → ∞.

(For example, the Achenbach–Chao and standard linear solid models both satisfy
these conditions.) These conditions should ensure that the inverse Laplace transform
in (3.14) is well defined. To see this, decompose the exponential function into two
pieces:

e−
|x|s
c̃(s) = e−

|x|γ̃
c e−

|x|s
c + e−

|x|γ̃
c e−

|x|s
c

(
e−

|x|
c (sγ(s)−γ̃) − 1),(3.15)

where γ̃ = lim|s|→∞ sγ(s). In terms of the shear relaxation function µ(t) = µ0m(t/τ),
where m(t) is nondimensional, we have γ̃ = |m′(0)|/2, which equals (1− δ)/τ for the
Achenbach–Chao model and (1− δ2)/2τ for standard linear solid model.

The first term on the right-hand side of (3.15) will be similar to the elastic case,
while the second term will lead to a dependence on the time history.

L−1
[
e−

|x|γ̃
c e−

|x|s
c

]
= e−

|x|γ̃
c δ(t− |x|/c),(3.16)

while the function F (x, t) is defined via

L−1
[
e−

|x|s
c

(
e−

|x|
c (sγ(s)−γ̃) − 1)] (t) = L−1

[
e−

|x|
c (sγ(s)−γ̃) − 1](t− |x|

c

)
(3.17)

= H

(
t− |x|

c

)
F

(
|x|, t− |x|

c

)
.(3.18)
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Under the given assumptions, the transfer functions for the viscoelastic case will
take the form

S+(x, t) =
H(x)√

πx
e−

xγ̃
c

(
δ
(
t− x

c

)
+H

(
t− x

c

)
F
(
x, t− x

c

))
,(3.19)

S−(x, t) = −H(−x)√−πx
e

xγ̃
c

(
δ
(
t+

x

c

)
+H

(
t+

x

c

)
F
(
−x, t+

x

c

))
.(3.20)

Compare these to the functions S± given in (2.24) and (2.25) found for the elastic
case. These transfer functions result (when convolved) in operators that are the sum
of an elastic-like operator plus one involving the time history. With this in mind,
define the elastic-like part as

SE± = ±H(±x)√±πx
e∓

xγ̃
c δ(t∓ x/c)(3.21)

(noting that this elastic-like part involves only instantaneous moduli), while the com-
ponent involving the time history is

SH± = ±H(±x)√±πx
e∓

xγ̃
c H

(
t∓ x

c

)
F
(
±x, t∓ x

c

)
.(3.22)

Since

e−
|x|
c (sγ(s)−γ̃) − 1 =

∞∑
n=1

(−|x|)n(sγ(s)− γ̃)n

cnn!
,(3.23)

we have that F (|x|, t− |x|/c) = O(|x|) as |x| → 0. Convolutions with these functions
have the following form in characteristic coordinates η = t+ x/c and ξ = t− x/c:

SE+ ∗ ∗f =
√

c

2π

∫ η

−ξ
e−

γ̃
2 (η−r)f̃(r, ξ)

dr√
η − r

,(3.24)

SH+ ∗ ∗f =
√

c

2π

∫ ξ

ξ−η
2

dq

∫ η

ξ−2q

F
( c
2
(η − r), ξ − q

)
f̃(r − ξ + q, q)

e−
γ̃
2 (η−r)dr√
η − r

.

(3.25)

Convolutions with S− are similar but with roles of η and ξ exchanged and with a
minus sign in front.

To find T±(x, t), rewrite the square roots as

ˆ̄T±(x, t) = ± ∓ip+ s/c̃(s)√∓ip+ s/c̃(s)
(3.26)

and observe that

∓ip+
s

c̃(s)
= ∓ip+

s

c
+

γ̃

c
+

sγ(s)− γ̃

c
,(3.27)

whose inverse transform is the sum of derivatives, an identity operator, and a smooth-
ing operator, as compared to the elastic case, which involves only derivatives (2.26)
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and (2.27). The expression for these functions can be simplified into the sum of an
elastic-like part TE± and a time history part TH±:

TE+ ∗ ∗f =
√
2

cπ
e−

γ̃
2 η

∂

∂η

∫ η

−ξ
e

γ̃
2 rf̃(r, ξ)

dr√
η − r

,(3.28)

TH+ ∗ ∗f = −1
c

√
2

cπ

∫ ξ

ξ−η
2

dq

∫ η

ξ−2q

F
( c
2
(η − r), ξ − q

)
f̃(r − ξ + q, q)

e−
γ̃
2 (η−r)dr

(η − r)3/2
.

(3.29)

Observe that TE+ and SE+ are inverse Abel operators.
Convolution with T− leads to similar expressions, with the roles of η and ξ reversed

and a change of sign.

4. Construction of the maps for the viscoelastic case. Due to the depen-
dence on time history, the supports of S± will be 0 ≤ x ≤ ct and −ct ≤ x ≤ 0, as
seen in the previous section, so that conditions (2.10) and (2.11) from the elastic case
are not satisfied. This fact leads us to decompose the displacement u(x, t) into three
parts, with supports separated in the xt-plane by the crack tip path x = a(t) and the
line x = a0:

u+(x, t) =

{
u(x, t) if x > a(t),

0 otherwise,
(4.1)

uc(x, t) =

{
u(x, t) if a0 < x < a(t),

0 otherwise,
(4.2)

u−(x, t) =

{
u(x, t) if x < a0,

0 otherwise.
(4.3)

The corresponding functions Dc(x, t) and D−(x, t) as defined by (3.8) will have the
same supports as uc(x, t) and u−(x, t), respectively, and D+(x, t) will be identically
zero since we assume that u+(x, t) ≡ 0. The stress σ(x, t) will be split as in (2.12) and
(2.13), with σ+(x, t) having support in the region x > a(t), and σ−(x, t) = Λ(x, t),
the known crack face loading, for x < a(t). See Figure 4.1.

Expand (3.7) using these decompositions and multiply by ˆ̄S+:

ˆ̄S+ ˆ̄σ+ +
ˆ̄S+ ˆ̄σ− = ˆ̄T− ˆ̄Dc +

ˆ̄T− ˆ̄D−.(4.4)

The convolution S+ ∗ ∗σ+ has support x > a0, while the convolution S+ ∗ ∗σ− has
support x < a0 + ct. The convolution T− ∗ ∗Dc has support a0 − ct < x < a(t), while
the convolution T− ∗ ∗D− has support x < a0.

Apply Fourier and Laplace transformations again to the following three equations,
where Heaviside functions have been included to indicate intervals of support:

S+ ∗ ∗σ+(x, t) = H(x− a0)(−S+ ∗ ∗σ− + T− ∗ ∗Dc),(4.5)

T− ∗ ∗Dc(x, t) = H(a(t)− x)(S+ ∗ ∗σ+ + S+ ∗ ∗σ− − T− ∗ ∗D−),(4.6)

T− ∗ ∗D−(x, t) = H(a0 − x)(S+ ∗ ∗σ− − T− ∗ ∗Dc).(4.7)
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σ
+
 = ?

u
+
 ≡ 0

(a(t),t)

σ
−
 = Λ

u
−
 = ?

u
c
 = ?

x

t

Fig. 4.1. Division of the upper half of the xt-plane into three regions, separated by the crack tip
path x = a(t) and the line x = a0 (the t-axis), for a semi-infinite, dynamically accelerating crack.

Multiply the transform of (4.5) by ˆ̄T+, and the transforms of (4.6) and (4.7) by
ˆ̄S−,

then invert the transformations to obtain

(4.8) σ+(x, t) = T+ ∗ ∗
[
H(x− a0)

[
H(a(t)− x)(T− ∗ ∗Dc)

−H(a0 + ct− x)(S+ ∗ ∗Λ)]],

(4.9) Dc(x, t) = S− ∗ ∗
[
H(a(t)− x)H(x− a0 + ct)

[
H(x− a0)(S+ ∗ ∗σ+)

+H(a0 + ct− x)(S+ ∗ ∗Λ)−H(a0 − x)(T− ∗ ∗D−)
]]

,

(4.10) D−(x, t) = S− ∗ ∗
[
H(a0 − x)

[
H(a0 + ct− x)(S+ ∗ ∗Λ)

−H(a(t)− x)H(x− a0 + ct)(T− ∗ ∗Dc)
]]

.

Unfortunately, Dc is unknown and cannot directly be solved using the above maps.
However, if we can derive a formula for Dc that involves only the known loading
Λ(x, t), then we can use these maps to find the remaining crack face displacement D−
and the stress σ+ in front of the crack tip.

The function σ+(x, t) vanishes for x < a(t), so the right-hand side of (4.8) equals
zero if x < a(t). Define a new (completely known) function t0(x, t) with support
a0 < x < a(t) as follows (analogous to what is done in [2]),

t0(x, t) = H(a(t)− x)H(x− a0)
[
T+ ∗ ∗[H(x− a0)(S+ ∗ ∗Λ)]] ,(4.11)

and then use (4.8) to form a new equation:

H(a(t)− x)
[
T+ ∗ ∗[H(x− a0)H(a(t)− x)(T− ∗ ∗Dc)

]]
= t0(x, t).(4.12)
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We could solve this new differo-integral equation for Dc using numerical methods,
leading to a complete numerical solution for all boundary data by combining with
(4.8) and (4.10). We will instead calculate asymptotic behavior near the crack tip;
in particular, we wish to determine the stress intensity factor (SIF) K(t), defined via
K(t) = limx→a(t)+ [

√
x− a(t)σ+(x, t)].

We will consider two cases: a stationary crack a(t) ≡ a0 and a moving crack
a(t) > a0. Start by assuming that the crack tip has not yet begun to move: a(t) = a0.
Since Dc has no support in this case, (4.8) reduces to (the dots refer to bounded terms
not contributing to the SIF)

σ+(x, t) = −T+ ∗ ∗[H(x− a0)H(a0 + ct− x)(S+ ∗ ∗Λ)](4.13)

= −
(

∂

∂η
+

γ̃

c

)
[SE+ ∗ ∗[H(x− a0)H(a0 + ct− x)(S+ ∗ ∗Λ)]] + · · · .(4.14)

Multiplying by
√
x− a0 and taking the limit as x → a+

0 yields the SIF corresponding
to a stationary crack tip a(t) ≡ a0:

(4.15) Kstationary(t) = −
√
c

π

∫ t

0

Λ
(
c
(
r − t+

a0

c

)
, r
) e−γ̃(t−r)dr√

t− r

−
√
c

π

∫ t

0

du

∫ u

0

Λ
(
c
(
r − u+

a0

c

)
, r
)
F (c(u− r), t− u)

e−γ̃(u−r)dr√
u− r

.

Now consider the case where the crack has progressed beyond its initial position:
a(t) > a0. The term directly involving Λ(x, t) in (4.8) will have the form of a bounded
integral divided by

√
x− a0, so that this term has no contribution to the SIF if

a(t) > a0. We need consider only the term involving Dc(x, t) in (4.8) to derive the
SIF for this case. Therefore, in order to determine the SIF for a moving crack tip, we
will first derive an expression for the SIF in terms of the displacement Dc(x, t).

Using (4.8) and observing that for a moving crack tip there is no singularity in
the term involving Λ(x, t) or the term involving TH+, we obtain

K(t) = lim
x→a(t)+

[
σ+(x, t)

√
x− a(t)

]
(4.16)

= lim
x→a(t)+

√
x− a(t)

[
T+ ∗ ∗[H(x− a0)H(a(t)− x)(T− ∗ ∗Dc)]

]
(4.17)

=

√
c− ȧ(t)

cπ
lim

x→a(t)+
e−

γ̃
2 η
√

η − b1 ◦ b−1
0 (ξ)(4.18)

· ∂

∂η

∫ b1◦b−1
0 (ξ)

ξ+
2a0
2

e
γ̃
2 r(T− ∗ ∗Dc)̃(r, ξ)

dr√
η − r

= −
√

c− ȧ(t)

cπ
lim

x→a(t)−
(T− ∗ ∗Dc)(x, t).(4.19)

In the above limit we have used the fact that

lim
x→a(t)+

x− a(t)

η − b1 ◦ b−1
0 (ξ)

=
1

2
(c− ȧ(t)).(4.20)

Next we will make use of the supports of the various convolutions and (4.5)–(4.6)
to construct an expression for T− ∗ ∗Dc. Using (4.6) and the facts that T− ∗ ∗D−
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vanishes for x > a0 and SE+ ∗ ∗σ+ vanishes for x < a(t), we have that

lim
x→a(t)−

(T− ∗ ∗Dc)(x, t) = lim
x→a(t)−

(S+ ∗ ∗σ+ + S+ ∗ ∗Λ)(x, t)(4.21)

= lim
x→a(t)−

(SH+ ∗ ∗σ+ + S+ ∗ ∗Λ)(x, t)(4.22)

= (SH+ ∗ ∗σ+)(a(t), t) + (S+ ∗ ∗Λ)(a(t), t),(4.23)

where

(4.24) (S+ ∗ ∗Λ)(a(t), t) =
√

c

π

∫ t

0

e−γ̃(t−r)Λ(c(r − b0(t)), r)
dr√
t− r

+

√
c

π

∫ t

0

dr

∫ b0(t)

b0(r)

Λ(c(r − q), r)F (c(q − r) + a(t), b0(t)− q)
e−γ̃(q−r+a(t)/c)dq√

q − r + a(t)/c
.

Now apply (4.8) to derive a new expression for SH+∗∗σ+ on the region a0 < x < a(t):

(4.25) SH+ ∗ ∗σ+ = SH+ ∗ ∗T+ ∗ ∗[H(x− a0)H(a(t)− x)(T− ∗ ∗Dc)

−H(x− a0)H(a0 + ct− x)(S+ ∗ ∗Λ)],
and then apply (4.6) as well as the fact that the support of T− ∗ ∗D− is x < a0:

(4.26) SH+ ∗ ∗σ+ = SH+ ∗ ∗T+ ∗ ∗[H(x− a0)H(a(t)− x)(S+ ∗ ∗σ+ + S+ ∗ ∗Λ)
−H(x− a0)H(a0 + ct− x)(S+ ∗ ∗Λ)].

After simplifying, we now have an operator equation for SH+ ∗∗σ+ for a0 < x < a(t):

(4.27) SH+ ∗ ∗σ+ = SH+ ∗ ∗T+ ∗ ∗[H(x− a0)H(a(t)− x)(SH+ ∗ ∗σ+)

−H(x− a(t))H(a0 + ct− x)(S+ ∗ ∗Λ)].
To simplify calculations, the operator in (4.27) can be reduced to a much simpler

form, using the facts that S+ and T+ are inverse operators when convolved, as are
SE+ and TE+:

SH+ ∗ ∗T+ ∗ ∗f = f − SE+ ∗ ∗T+ ∗ ∗f(4.28)

= f − (SE+ ∗ ∗TE+ ∗ ∗f + SE+ ∗ ∗TH+ ∗ ∗f)(4.29)

= −SE+ ∗ ∗TH+ ∗ ∗f.(4.30)

Observe that this new expression involves no derivatives and fewer integrations than
the original form.

Putting together (4.19), (4.23), (4.27), and (4.30), we can derive a closed-form
expression for the SIF for a moving crack tip that involves only the known crack face
loading Λ(x, t):

(4.31) K(t) = −
√

c− ȧ(t)

cπ
G(a(t)+, t)

−
√

c− ȧ(t)

cπ

∞∑
n=0

[
SE+ ∗ ∗TH+ ∗ ∗[H(x− a0)H(a(t)− x)(−SE+ ∗ ∗TH+ ∗ ∗)]nG](a(t), t),
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where we have defined G(x, t) to be

G(x, t) = H(x− a(t))H(a0 + ct− x)(S+ ∗ ∗Λ)(x, t).(4.32)

From (4.30), we observe that the operator in (4.27) is second kind Volterra, which
implies that the Neumann expansion in (4.31) will converge. Alternatively, we could
solve the second kind Volterra integral equation

J(x, t) + (SE+ ∗ ∗TH+ ∗ ∗J)(x, t) = (SE+ ∗ ∗TH+ ∗ ∗G)(x, t)(4.33)

for the function J(x, t) = H(x−a0)H(a(t)−x)(SH+ ∗∗σ+) and then use the following
expression for the SIF:

K(t) = −
√

c− ȧ(t)

cπ
G(a(t)+, t)−

√
c− ȧ(t)

cπ
J(a(t)−, t).(4.34)

Also note that the expression in (4.31) agrees with (4.15) in the case that ȧ(t) = 0
and hence is the general expression for the viscoelastic SIF; compare to the elastic
SIF given by (2.31).

In the next two sections we will apply this solution method to two common models
of linear viscoelasticity and, in particular, state the time history function for each.
Numerical simulations and comparison to the steady-state solution will be done in a
forthcoming paper.

5. The Achenbach–Chao model. The Achenbach–Chao viscoelastic model
(introduced by Achenbach and Chao [1] as an approximation to the standard linear
solid) is particularly convenient to work with, as it avoids the need to integrate around
branch cuts when finding S±(x, t) (as must be done for the standard linear solid, for
example). The s-multiplied Laplace transforms of the relaxation function µ(t) and
wave speed c(t) for an Achenbach–Chao viscoelastic material are defined to be

µ̃(s) = µ0

[
δ + τs

1 + τs

]2
,(5.1)

c̃(s) = c
δ + τs

1 + τs
.(5.2)

The modified displacement function D(x, t) has the following form for the Achenbach–
Chao model:

D(x, t) = µ0u(x, t) + µ0

∫ t

0

u(x, t− u)

[
δ2 + (1− δ2)

(
1− 1− δ

1 + δ

u

τ

)
e−u/τ

]
du.

(5.3)

The time history function for the Achenbach–Chao model is

F (x, ξ) = e−δξ/τ
∞∑
k=0

ξk
(
(1− δ)δx/(cτ2)

)k+1

k!(k + 1)!
(5.4)

= e−δξ/τ
√

δ(1− δ)x/c

ξτ2
I1

(
2

√
δ(1− δ)

τ2

x

c
ξ

)
.(5.5)

Here I1(z) is the modified Bessel function of the first kind. (Note that limt→|x|/c F (|x|, t−
|x|/c) = δ(1− δ)|x|/cτ2, and thus F (|x|, t− |x|/c)/√|x| is not singular.)

The SIF for the Achenbach–Chao model reduces in the case δ = 1 to the elastic
SIF given in (2.31), and in the case δ = 0 to the expression found in [2] for the SIF
of the Achenbach–Chao approximation to a Maxwell fluid.
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Fig. 6.1. Comparison of time history functions F (x, ξ) for the Achenbach–Chao (AC) and
standard linear solid (SLS) models, for parameter values δ = 0.5 and τ = 1.

6. Standard linear solid. As another example, we consider the standard lin-
ear solid viscoelastic model. The s-multiplied Laplace transforms of the relaxation
function µ(t) and wave speed c(t) are defined to be

µ̃(s) = µ0

[
δ2 + s

1 + s

]
,(6.1)

c̃(s) = c

√
δ2 + s

1 + s
.(6.2)

The time history function for the standard linear solid model is

F (x, ξ) =
1

π
e

1−δ2

2
|x|
c

∫ 1

δ2
e−sξe−

s|x|
c sin

( |x|
c

s

√
1− s

s− δ2

)
ds.(6.3)

The time history functions for the two models are compared in Figure 6.1.

7. Concluding remarks. The key to this solution method is the observation
that, after applying Laplace and Fourier transforms and taking the limit as y → 0+,
the governing equations to the dynamic fracture problem reduce to a simple transfer
map. In this paper we have focused on the mode III (antiplane shear) case, but the
transfer maps corresponding to the mode I and II elastic and viscoelastic fracture
problems share the same structure:

ˆ̄σ(p, s) = ˆ̄T (p, s)ˆ̄u(p, s),(7.1)

where σ(x, t) is the appropriate component of the stress tensor and u(x, t) is the
appropriate displacement along the boundary y = 0+. The elastic mode III transfer
function T (p, s) is quite simple,

ˆ̄T III(p, s) = −µ
√

p2 + s2/c2s,(7.2)
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while that for the elastic mode I case is more complicated, requiring a more compli-
cated decomposition:

ˆ̄T I(p, s) =
µ2R(p, s)

ρs2
√

p2 + s2/c2L
,(7.3)

where R(p, s) is the Rayleigh wave function. (The mode II transfer function is similar.)
See [9] for the details of the mode I elastic case of subsonic fracture. For faster fracture
speeds, this method could still be carried out by choosing appropriate decompositions
as described in [12], although the problem of how to jump across speed barriers
remains unaddressed.

The difficulty in applying this method to a crack in a viscoelastic material is due
to the dependence on the time history. Based on the analysis of section 3, for any
fracture mode the viscoelastic transfer function should lead to expressions for the
stress and displacement that involve an elastic-like part TE plus a time history part
TH , which greatly increases the computational difficulty in obtaining, for example,
the crack face displacement, as compared to in the elastic case. In principle, however,
one can carry out an analysis similar to the one given in this paper for an opening
mode crack in a linear viscoelastic material, though the details will be considerably
more complicated.

REFERENCES

[1] J. Achenbach and C. Chao, A three-parameter viscoelastic model particularly suited for dy-
namic problems, J. Mech. Phys. Solids, 10 (1962), pp. 245–252.

[2] J. P. Bourne and J. R. Walton, On a dynamically accelerating crack in an Achenbach-Chao
viscoelastic solid, Internat. J. Engrg. Sci., 31 (1993), pp. 569–581.

[3] J. Eshelby, The elastic field of a crack extending non-uniformly under general anti-plane
loading, J. Mech. Phys. Solids, 17 (1969), pp. 177–199.

[4] L. Freund, Dynamic Fracture Mechanics, Cambridge University Press, Cambridge, UK, 1990.
[5] G. Goleniewski, Equations of Motion for Viscoelastic Moving Crack Problems, Ph.D. disser-

tation, University of Bath, Bath, UK, 1988.
[6] B. Kostrov, Unsteady propagation of longitudinal shear cracks, Appl. Math. Mech. (Prikl.

Mat. Mekh.), 30 (1966), pp. 1041–1049.
[7] T. Leise and J. Walton, A general method for solving dynamically accelerating multiple co-

linear cracks, Int. J. Fracture, 111 (2001), pp. 1–16.
[8] T. L. Leise and J. R. Walton, Dynamically accelerating cracks. II. A finite length mode III

crack in elastic material, Quart. Appl. Math., 59 (2001), pp. 601–614.
[9] V. Saraikin and L. Slepyan, Plane problem of the dynamics of a crack in an elastic solid,

Mechanics of Solids, 14 (1979), pp. 46–62.
[10] L. Slepyan, Approximate model of crack dynamics, in Dynamics of Continuous Media, Is-

sue XIX–XX, Institute of Hydrodynamics of the Academy of Science, Novosibirsk, 1974,
pp. 101–109.

[11] L. I. Slepyan, Models and Phenomena in Fracture Mechanics, Springer-Verlag, New York,
2002.

[12] L. I. Slepyan and A. L. Fishkov, On the problem of crack spreading with intersonic velocity,
Dokl. Akad. Nauk SSSR, 261 (1981), pp. 1316–1319.

[13] J. Walton, Dynamic viscoelastic fracture, in Crack and Contact Problems for Viscoelastic
Bodies, G. Graham and J. Walton, eds., CISM Courses and Lectures 356, Springer-Verlag,
New York, 1995, pp. 259–311.

[14] J. Walton, On a dynamically accelerating Dugdale-zone in elastic and viscoelastic material,
J. Mech. Phys. Solids, 44 (1996), pp. 1353–1370.

[15] J. R. Walton and J. M. Herrmann, A new method for solving dynamically accelerating crack
problems. I. The case of a semi-infinite mode III crack in elastic material revisited, Quart.
Appl. Math., 50 (1992), pp. 373–387.



FAST OPTIMAL DESIGN OF SEMICONDUCTOR DEVICES∗

MARTIN BURGER† AND RENÉ PINNAU‡
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Abstract. This paper presents a new approach to the design of semiconductor devices, which
leads to fast optimization methods whose numerical effort is of the same order as a single forward
simulation of the underlying model, the stationary drift-diffusion system. The design goal we inves-
tigate is to increase the outflow current on a contact for fixed applied voltage; the natural design
variable is the doping profile.

By reinterpreting the doping profile as a state variable and the electrostatic potential as the new
design variable, we obtain a simpler optimization problem, whose Karush–Kuhn–Tucker conditions
partially decouple. This property allows us to construct efficient iterative optimization algorithms,
which avoid solving the fully coupled drift-diffusion system, and need only solves of the continuity
equations and their adjoints. The efficiency and success of the new approach is demonstrated in
several numerical examples.
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1. Introduction. Optimal design and characterization of semiconductor devices
is a field of growing interest in recent years, in engineering (cf., e.g., [5, 6, 13, 14, 18,
21, 22, 23]) as well as in the applied mathematics community (cf., e.g., [2, 3, 7, 8, 9,
10, 11]). A major objective in the optimal design of devices is to improve the current
flow over some contact by modifying the device doping profile, which enters as a
source term in the mathematical model used for semiconductor devices, the so-called
drift-diffusion system.

The stationary drift-diffusion system in physical variables (cf. [15, 24]) consists of
nonlinear elliptic equations for the electrostatic potential V , the electron density n,
and the hole density p, in a bounded domain Ω ⊂ R

N , N ≤ 3:

div(εs∇V ) = q(n− p− C) in Ω,

div(Dn∇n− µnn∇V ) = 0 in Ω,

div(Dp∇p+ µpp∇V ) = 0 in Ω,

where εs denotes the semiconductor permittivity, q the elementary charge, µn and µp
are the electron and hole mobilities, and Dn and Dp are the electron and hole diffusion
coefficients, respectively. This system is supplemented by homogeneous Neumann
boundary conditions on a part ∂ΩN of the boundary, modelling the insulating parts
of the boundary, and Dirichlet conditions on the remaining part, which models the
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Ohmic contacts of the device:

V (x) = VD(x) = U(x) + Vbi(x) = U(x) + UT ln

(
nD(x)

ni

)
on ∂ΩD,

n(x) = nD(x) =
1

2

(
C(x) +

√
C(x)2 + 4n2

i

)
on ∂ΩD,

p(x) = pD(x) =
1

2

(
−C(x) +

√
C(x)2 + 4n2

i

)
on ∂ΩD.

Here ni is the intrinsic density, UT the thermal voltage, and U the applied biasing
voltage.

Under usual conditions, the mobilities and diffusion coefficients are related by
Einstein’s relation, i.e., Dn/p = µn/pUT , which enables the transformation into the
so-called Slotboom variables [19] defined by

n = nie
V/UT u, p = nie

V/UT v.(1.1)

The assumption that εs and q are constant allows for the choice of an appropriate
scaling, yielding the system

λ2∆V = (eV u− e−V v)− C in Ω,(1.2)

div
(
µne

V∇u) = 0 in Ω,(1.3)

div
(
µpe

−V∇v) = 0 in Ω,(1.4)

where λ2 = (εs UT )/(q Cmax L
2) is the scaled Debye length of the device (for details,

see, e.g., [16]). The Dirichlet boundary conditions can be written as

V = VD = U + Vbi on ∂ΩD,(1.5)

u = uD on ∂ΩD,(1.6)

v = vD on ∂ΩD,(1.7)

where uD and vD are the transformations of nD and vD under (1.1). On the remaining
part ∂ΩN = ∂Ω \ ∂ΩD, the homogeneous Neumann conditions can be formulated on
Jn and Jp, where Jn and Jp are the electron and hole current densities, which are
related to the Slotboom variables by

Jn = µne
v∇u, Jp = −µpe−V∇v.(1.8)

Hence, we have

∂V

∂ν
= 0 on ∂ΩN ,(1.9)

∂u

∂ν
= 0 on ∂ΩN ,(1.10)

∂v

∂ν
= 0 on ∂ΩN .(1.11)

Throughout the whole paper, we shall assume that all Dirichlet boundary values VD,
uD, and vD are bounded in H

1
2 (Ω)∩L∞(Ω), which is the basis for an existence proof

of the drift-diffusion system in (H1(Ω) ∩ L∞(Ω))3 (see [16]).
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The objective of the optimization, the current flow over a contact Γ, is given by

I =

∫
Γ

J · ν =

∫
Γ

(Jn + Jp) · dν.(1.12)

An optimal control approach to the optimization of a functional related to the
current density J or the current flow I was investigated in [10, 11], where the drift-
diffusion system (1.2)–(1.11) was interpreted as an equation constraint determining
the state (V, u, v). Consequently, a penalty term related to the control variable C was
added to the objective in order to stabilize the system. To the penalizing problem, an
iterative algorithm was applied, which as usual needed solutions of the drift-diffusion
system and some adjoint system in each iteration. In this paper we investigate a
completely different approach; namely, we reinterpret the potential V as the design
variable, and the doping profile C as a state variable. For a given V satisfying appro-
priate boundary conditions, it is easy to show that the drift-diffusion system has a
unique solution (u, v, C) and, moreover, that the partial differential equations (1.2)–
(1.4) have a simple triangular structure in the new state variables. Corresponding to
our interpretation of state and design variables we add to the objective functional a
penalty term corresponding to V in order to stabilize the problem. As we shall see be-
low, this yields a reasonably simple optimality system, from which a fast optimization
algorithm can be constructed.

For the sake of simplicity and shortness of presentation, we assume that µn =
µp = 1, but analogous reasoning is possible for general mobilities, even for energy
dependent ones. Moreover, we ignore recombination-generation terms [19], noting
that they could be incorporated into our analysis with only few modifications.

The paper is organized as follows: in section 2 we review the current state of
semiconductor design and introduce our new optimization approach. Some basic
analysis of the optimization problem under investigation (such as the existence of
solutions and first-order optimality) is provided in section 3. Section 4 is devoted
to the iterative solution of the optimal design problem, and in particular an efficient
method based on a lower diagonal approximation of the Karush–Kuhn–Tucker system
is introduced. Numerical results for some diodes and a metal-semiconductor field effect
transistor (MESFET) are presented in section 5, and finally we give some conclusions
in section 6.

2. Optimal design of semiconductor devices. In the following we discuss
some basic problems in optimal semiconductor design and present a new approach for
optimization problems at a single applied voltage.

Although the optimal design of semiconductor devices is of major importance in
practical applications, the first systematic approaches to such optimization problems
have been carried out only in the last few years (cf. [10, 11, 18, 21, 22, 23]). One of
the main reasons for this late development is the computational difficulties and the
complexity of such optimization problems. Even the numerical solution of the drift-
diffusion system itself is not a simple task, and an optimization based on the drift-
diffusion model therefore becomes quite involved. In the first optimization approaches
to this problem, gradient-type methods were used, with gradient evaluations either
by finite differencing (cf. [18, 21, 22, 23]) or by an adjoint method (cf. [10, 11]). Both
approaches resulted in a very high numerical effort due to a large number of iterations
needed. E.g., by finite differencing, around 4000 direct solutions of the drift-diffusion
system were needed for the optimization of a metal-oxide-semiconductor field effect
transistor (MOSFET), at a rather coarse discretization of the doping profile with 62
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design parameters (cf. [18]). The adjoint approach, used in [11] for the minimization
of a functional of the form

Qβ(C) := Q(n(C), p(C), V (C)) +
β

2
‖C − C∗‖2 → min

C
,(2.1)

reduces the number of nonlinear solves, and adds few solves of an adjoint linear system.
This reduces the numerical effort, but causes the need for an accurate discretization
and numerical solution of the adjoint system, which is not well investigated so far.

We use a different approach, based on exchanging the interpretations of control
and state between C and V . We interpret the potential V as the design variable
and interpret the Poisson equation (1.2) as a state equation for the doping profile C.
Consequently, we introduce a penalty dependent on V − V ∗ rather than on C − C∗.
As the initial guess V ∗ we use the one obtained from the solution of the drift-diffusion
system with doping profile C∗. Since the Laplacian of V − V ∗ is needed for the
evaluation of C − C∗, it seems natural to use a penalty term dependent on

W := ∆(V − V ∗),(2.2)

i.e., we minimize the functional

Qε(u, u, V,W ) := Q(u, v, V ) +
ε

2

∫
Ω

|W (x)|2 dx,(2.3)

subject to (2.2) and the drift-diffusion system. In order to ensure that C does not
change its boundary values, W must satisfy homogeneous boundary conditions on
∂ΩD; on the remaining boundary we may use any homogeneous boundary condition.
For simplicity we will carry out our analysis for

W = 0 on ∂Ω.(2.4)

In a numerical test (cf. section 5.3) we will use the boundary condition W = 0 on
∂ΩD, and

∂W
∂ν = 0 on ∂ΩN , which permits a similar analysis.

Of particular importance are functionals Q, which depend only on the values of
the outflow current density on some contact Γ, i.e.,

Q(u, v, V ) = R(J · ν|Γ) = R

((
eV
∂u

∂ν
− e−V

∂u

∂ν

) ∣∣∣∣
Γ

)
.(2.5)

In [11], the functional under investigation was

R(J · ν|Γ) = 1

2
‖(J − J∗) · ν‖2

H− 1
2 (Γ)

,(2.6)

corresponding to the objective of finding an outflow current density J · ν close to a
desired density J∗ · ν. Since in most practical applications, one is rather interested in
the total current flow on a contact, we rather consider the functional

R(J. · ν|Γ) = 1

2

∣∣∣∣
∫

Γ

J · dν − I∗
∣∣∣∣
2

(2.7)

(for some desired current flow I∗) as the motivation for the analysis in this paper, and
we also use it for our numerical tests. We note that for one-dimensional diodes, which
have been investigated in [11] and will be used for some of our numerical tests too,
the above two functionals are equivalent, since the geometry of a contact corresponds
to a boundary point of an interval.
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3. Analysis of the optimization problem. In the following we provide some
analysis of the optimization problem

Qε(u, v, V,W ) → min
(n,p,V,W )∈Dad

,(3.1)

with the admissible domain

Dad := {(u, v, V,W ) ∈ H1(Ω)2 × (H1(Ω) ∩ L∞(Ω))× L2(Ω)

satisfying (1.3)–(1.11), (2.2)}.
We shall investigate the existence of minima as well as a derivation of the Karush–
Kuhn–Tucker conditions, which allow us to deduce further regularity of minimizers.

3.1. Existence of a minimum. We start our analysis with a basic result on
the existence of minima, for which we need two fundamental properties, namely, the
weak lower semicontinuity of the objective functional and the weak closedness of the
admissible domain. The weak lower semicontinuity of Qε is obviously obtained in
H1(Ω)3 × L2(Ω); the weak closedness of Dad is obtained if ∆(V − V ∗) remains in
L2(Ω). This leads us to the following result.

Theorem 3.1 (existence). Let ε > 0. Then there exists a minimum

(u, v, V ,W ) ∈ H1(Ω)2 × (H1(Ω) ∩ L∞(Ω))× L2(Ω)(3.2)

of (3.1).
Proof. Suppose that (uk, vk, V k,W k)k∈N is a minimizing sequence; then we im-

mediately conclude that W k is bounded in L2(Ω), and thus, by standard elliptic
regularity, V k −V ∗ is uniformly bounded in H2(Ω) ↪→ C(Ω). Since the a priori guess
V ∗ is in L∞(Ω), we obtain uniform boundedness of V k in L∞(Ω). Standard energy
arguments for the elliptic equations (1.3) and (1.4) consequently yield the bounded-
ness of uk and vk in H1(Ω) ∩ L∞(Ω). Thus, we may extract a weakly converging
subsequence (uk� , vk� , Vk� ,Wk�)k�∈N ∈ H1(Ω)2 ×H1(Ω)×L2(Ω), which also preserves
the L∞ bound (and such that ∆(Vk� − V ∗) converges weakly in L2(Ω)). The weak
closedness of the admissible domain and the weak lower semicontinuity of the ob-
jective functional imply that the weak limit of this subsequence is a minimizer of
(3.1).

A direct consequence of the representation

C = C∗ − λ2W + n− n∗ − p+ p∗

is the existence of a doping profile C ∈ L2(Ω) such that (u, v, V ) is a solution of the
corresponding drift-diffusion system.

Corollary 3.2. Let ε > 0. Then there exists a minimum

(u, v, V ,W ) ∈ H1(Ω)2 × (H1(Ω) ∩ L∞(Ω))× L2(Ω)(3.3)

of (3.1) and a doping profile C ∈ L2(Ω) such that (u, v, V ) is a weak solution of the
drift-diffusion system (1.2)–(1.11) with C = C.

3.2. First-order optimality. In order to derive the first-order optimality con-
ditions, we define the Lagrangian given by

L(u, v, V,W ;µ1, µ2, µ3) = Qε(u, v, V,W ) +

∫
Ω

(
eV∇u · ∇µ1 − e−V∇v∇µ2

)
dx

+

∫
Ω

(∇(V − V ∗) · ∇µ3 +Wµ3) dx.(3.4)
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One observes that the only nonlinear terms in the equation constraints (1.3)–
(1.11), (2.2) are of the form eV∇u and e−V∇v, and these are continuously Fréchet-
differentiable in Dad since V ∈ H1(Ω) ∩ L∞(Ω) and (u, v) ∈ H1(Ω)2. Hence, with
little effort we obtain the following result.

Proposition 3.3. The Lagrangian L is continuously Fréchet-differentiable on
Dad ×H1(Ω)3.

Each solution of the optimization problem is a saddle point of the Lagrangian,
i.e., a solution of

inf
(u,v,V,W )

sup
(µ1,µ2,µ3)

L(u, v, V,W ;µ1, µ2, µ3).(3.5)

For such saddle points we can derive the Karush–Kuhn–Tucker conditions by comput-
ing the variations of the Lagrangian L with respect to all primal and dual variables,
which all must vanish. The variations with respect to the dual variables yield just the
equality constraints, while from the variation with respect to the primal variables we
deduce that

0 =
∂

∂u
Qε(u, v, V,W )û+

∫
Ω

(
eV∇û · ∇µ1

)
dx,(3.6)

0 =
∂

∂v
Qε(u, v, V,W )v̂ −

∫
Ω

(
eV∇v̂ · ∇µ2

)
dx,(3.7)

0 =
∂

∂V
Qε(u, v, V,W )V̂(3.8)

+

∫
Ω

(
V̂
(
eV∇u · ∇µ1 + e−V∇v∇µ2

)
+∇V̂ · ∇µ3

)
dx,

0 =

∫
Ω

Ŵ (εW − µ3)dx(3.9)

holds for all variations (û, v̂, V̂ , Ŵ ) ∈ H1(Ω)3 × L2(Ω).
One observes that the so-called adjoint equations (3.6)–(3.8) have a simple tri-

angular structure with respect to the Lagrangian variables. Thus, the problem of
proving existence and uniqueness of the Lagrangian variables (µ1, µ2, µ3) ∈ H1

0,D(Ω)
3

solving (3.6)–(3.8) for given primal variables (u, v, V ) simplifies to analyzing subse-
quently three different variational problems, which turn out to be coercive inH1

0,D(Ω),
with

H1
0,D(Ω) := {ϕ ∈ H1(Ω) | ϕ|∂ΩD

= 0}.
This yields another advantage of our approach with respect to the direct optimal
control approach, where analyzing the adjoint problem is a difficult task, which is
possible only close to thermal equilibrium (cf. [11]).

Theorem 3.4. Let (u, v, V,W ) ∈ Dad be given; then there exists a unique solution
(µ1, µ2, µ3) ∈ H1

0,D(Ω)
3 of the variational problem (3.6)–(3.8).

Proof. The variational problem (3.6) is of the form

A(µ3, û) = 〈F, û〉 ∀ û ∈ H1
0,D(Ω),

with a continuous linear functional F on H1
0,D(Ω) and a coercive, continuous bilinear

form

A(u, v) =

∫
Ω

eV∇u · ∇v dx on H1
0,D(Ω)

2.
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Thus, existence and uniqueness of µ1 follow from the Lax–Milgram theorem. Since we
can apply analogous reasoning to (3.7), we also obtain the existence and uniqueness
of µ2. Since µ1 and µ2 are determined by (3.6), (3.7), we may consider them as a
given right-hand side in (3.8). The latter is now a scalar problem for µ3, whose well-
posedness can again be shown by a straightforward application of the Lax–Milgram
theorem. Note that L2(Ω) ↪→ H−1(Ω).

Our subsequent analysis will be carried out for the important case of Q being the
outflow current functional (2.5). In this case, the derivative of the functional Q is
given by

Q′(u, v, V )(û, v̂, V̂ ) = R′(J · ν|Γ)
(
eV
∂û

∂ν
− e−V

∂v̂

∂ν
+

(
eV
∂u

∂ν
+ e−V

∂v

∂ν

)
V̂

)
,

(3.10)

and, noticing that V̂ ∈ H1
0,D(Ω), we observe that the last term on the right-hand side

vanishes. In the particular case of (2.7) the derivative simplifies to

Q′(u, v, V )(û, v̂, V̂ ) =

(∫
Γ

J · dν − I∗
)∫

Γ

(
eV
∂û

∂ν
− e−V

∂v̂

∂ν

)
ds.(3.11)

Due to the simple form of (3.9), it seems obvious that we need to eliminate the
Lagrangian variable µ3 = εW and rewrite (3.8) as

0 =

∫
Ω

(
V̂
(
eV∇u · ∇µ1 + e−V∇v∇µ2

)
+ ε∇V̂ · ∇W

)
dx.(3.12)

This suggests the interpretation of W as the design variable and (3.12) as the opti-
mality condition corresponding to the minimization of the functional Q, subject to
the equality constraints (1.3), (1.4) for the state variables (u, v, V ).

If we choose the Lagrangian variables µi, i = 1, 2, such that µi = 0 only on
∂ΩD \ Γ and µ1 = µ2 = η on Γ for some real constant η, then we can derive a simple
form of the optimality system. With this choice, the Lagrangian becomes

L(u, v, V,W ;µ1, µ2, µ3) = Qε(u, v, V,W ) +

∫
Ω

(
eV∇u · ∇µ1 − e−V∇v∇µ2

)
dx

+

∫
Ω

(∇(V − V ∗) · ∇µ3 +Wµ3) dx− η

∫
Γ

J · dν,(3.13)

and the optimality with respect to u yields(∫
Γ

J · dν − I∗ − η

)∫
Γ

(
eV
∂û

∂ν

)
ds+

∫
Ω

(
eV∇û · ∇µ1

)
dx = 0.(3.14)

With the choice η =
∫
Γ
J · dν − I∗, this reduces to the weak form corresponding to

the elliptic partial differential equation

div
(
eV∇µ1

)
= 0 in Ω,(3.15)

subject to the boundary conditions

µ1 −
∫

Γ

J · dν + I∗ = 0 on Γ,(3.16)

µ1 = 0 on ∂ΩD \ Γ,(3.17)

∂µ1

∂ν
= 0 on ∂ΩN .(3.18)
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Analogous reasoning yields the equation

div
(
e−V∇µ2

)
= 0 in Ω,(3.19)

subject to the same boundary conditions as for µ1, determining the Lagrangian vari-
able µ2. Finally, we determine the optimality condition with respect to W , which can
be rewritten as the equation

ε∆W = eV∇u · ∇µ1 + e−V∇v∇µ2 in Ω,(3.20)

subject to homogeneous Dirichlet conditions on ∂ΩD and homogeneous Neumann
conditions on ∂ΩN .

3.3. Regularity. In the following we use the Karush–Kuhn–Tucker system de-
rived above, which must be fulfilled by any solution of the optimal design problem, to
prove additional regularity of minimizers. First, since W satisfies the Poisson equa-
tion (3.20) with right-hand side in L1(Ω) and subject to the homogeneous boundary
conditions (2.4), we may conclude that W ∈W 1,ρ(Ω), ρ < N

N−1 (cf. [20]).
For the primal variables u and v, which satisfy the homogeneous elliptic equations

(1.3) and (1.4), respectively, we can apply a standard maximum principle as in [16],
which implies u ∈ L∞(Ω) and v ∈ L∞(Ω). Analogous reasoning can be applied to the
dual variables µ1 and µ2, which solve the same elliptic equations as u and v, and whose
Dirichlet boundary data are uniformly bounded too (since µi is piecewise constant on
∂ΩD). Hence, we may conclude that µi ∈ L∞(Ω), i = 1, 2. As a consequence of this
type of regularity, we obtain that

(3.21) ∇(C − C∗) = −λ2∇W + eV (u∇V +∇u) + e−V (v∇V −∇v)
− eV

∗
(u∗∇V ∗ +∇u∗)− e−V

∗
(v∗∇V ∗ −∇v∗)

is bounded in Lρ(Ω) (with ρ as above and ρ ≤ 2 for N = 1), since all the gradient
terms on the right-hand side are in Lρ(Ω) and the zero-order terms are in L∞(Ω).
Thus, we have deduced the following type of regularity for minimizers.

Theorem 3.5. Let (u, v, V ,W ) ∈ Dad be a minimizer of (3.1). Then,

u ∈ L∞(Ω), v ∈ L∞(Ω), W ∈ H1(Ω).(3.22)

The Lagrangian variables µi ∈ H1(Ω) associated with (1.3) and (1.4) satisfy

µ1 ∈ L∞(Ω), µ2 ∈ L∞(Ω).(3.23)

Moreover, if C∗ ∈ W 1,ρ(Ω), then the associated doping profile C (via (1.2)) satisfies
C ∈W 1,ρ(Ω) for ρ < N

N−1 (ρ ≤ 2 for N = 1).
We finally give an interpretation of the optimality system with respect to the local

regularity of the doping profile. If the initial doping profile C∗ has a discontinuity
(occurring typically at a pn (positive-negative) junction), then the corresponding
solution V ∗ is locally not C2 across the junction, but (via standard regularity) on
every open set not containing the junction. Since, for a solution of the optimality
system, V − V ∗ satisfies a Poisson equation with homogeneous boundary data and a
right-hand side W that we may expect to be smooth (W solves a Poisson equation
itself), the solution V −V ∗ should have higher regularity even across the discontinuity
of the doping profile. Hence, the only source of lower regularity is contained in V ∗,
and thus its location must be the same for V = (V − V ∗) + V ∗.
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4. A fast optimization method. In the following we discuss a simple optimiza-
tion method, which allows the design of semiconductor devices by solving decoupled
elliptic partial differential equations only. For simplicity we consider the case of (2.5),
(2.7) in the following, but an analogous approach is possible for different objective
functionals, too.

We start by discussing the Lagrange–Newton iteration for the primal variables
(uk, vk, V k,W k) and the dual variables (µk1 , µ

k
2) given by

∆V k = ∆V ∗ +W k,(4.1)

div (eV
k−1∇uk) = −div (eV

k−1

(V k − Vk−1)∇uk−1),(4.2)

div (e−V
k−1∇vk) = div (e−V

k−1

(V k − Vk−1)∇uk−1),(4.3)

div (eV
k−1∇µk1) = −div (eV

k−1

(V k − Vk−1)∇µk−1
1 ),(4.4)

div (e−V
k−1∇µk2) = div (e−V

k−1

(V k − Vk−1)∇µk−1
2 ),(4.5)

−εW k = −eV k−1 (
(V k∇uk−1 +∇uk) · ∇µk−1

1 +∇uk−1 · ∇µk1
)

+ e−V
k−1(

(−V k∇vk−1 +∇vk) · ∇µk−1
2 +∇vk−1 · ∇µk2

)
,(4.6)

subject to the boundary conditions (1.5)–(1.11). As for the solution of the drift-
diffusion system, the full Lagrange–Newton method yields a sequence of systems of
partial differential equations, which is in general convection-dominated due to the
strong influence of first-order terms. As for the drift-diffusion system, we may expect
the numerical solution of this system to be a difficult task, particularly for large
applied voltages. Moreover, the advantage of our optimization approach, namely, the
partial decoupling into scalar elliptic partial differential equations, is lost by using
this Newton-type approach.

Therefore it seems favorable to use a different iterative method for the solution
of the optimality system. Using a lower triangular approximation of the optimality
system, we first solve (2.2) with given W for the potential V , and subsequently the
continuity equations (1.3), (1.4) with given potential V for u and v. With given
potential and given u and v, we solve the adjoint equations (3.15), (3.19) to obtain
the Lagrangian variables µ1 and µ2. Finally, we can perform a gradient step with
respect to the design variable W using the optimality equation (3.20). Due to the
simple structure of this equation, it seems reasonable to discretize the Laplace term
in an implicit way and thus to solve

−ε∆W + τW = τW ∗ − eV∇u · ∇µ1 + e−V∇v∇µ2(4.7)

for an appropriately chosen damping parameter τ , where W ∗ is the old value of W .
Putting this all together, we can write this iteration as

∆V k = ∆V ∗ +W k−1,(4.8)

div (eV
k∇uk) = 0,(4.9)

div (e−V
k∇vk) = 0,(4.10)

div (eV
k∇µk1) = 0,(4.11)

div (e−V
k∇µk2) = 0,(4.12)

−εW k + τW k = τW k−1 − eV
k∇uk · ∇µk1 + e−V

k∇vk∇µk2 ,(4.13)

subject to the above boundary conditions. The only coupling in the boundary condi-
tions occurs in the condition µi =

∫
Γ
Jk · dν, but there also we can use the previously
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computed values for uk and vk to obtain Jk. The corresponding value of the doping
profile can be computed independently by

Ck − C∗ = −λ2W k + nk − n∗ − pk + p∗,(4.14)

where nk = eV
k

uk and pk = e−V
k

vk.

5. Numerical examples. In the following we report numerical results for three
different examples, two bipolar diodes and a unipolar MESFET device. For all the
numerical experiments we use the physical parameters for silicon as given in Table 5.1,
with a standard forward-bias scaling of the variables (cf. [16]). Moreover, we use the
mobilities µn = µp = µ0. The objective functional is given by (2.5), (2.7), with the
aim of increasing the current flow over a contact. This aim can in general be achieved
for ε sufficiently small, but for some cases only with a doping profile deviating far
from the original, so that one may rather use the result for a larger value of ε. All the
numerical examples have been implemented within the software system MATLAB.

Table 5.1
Physical parameters for silicon.

Parameter Physical meaning Numerical value

q elementary charge 1.6.10−19 As
ni intrinsic density 1010 cm−3

εS permittivity constant 10−12 As V−1s−1

µ0 low field mobility 1.5.103 cm2V−1s−1

UT thermal voltage at T = 300K 0.0259 V

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

0

1

2

3

4

5

6

7
Doping Profile

x

Optimized
Initial

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

−1

0

1

2

3

4

5

6

7
Doping Profile

x

Optimized
Initial

Fig. 5.1. Initial (dash-dotted) and optimized (solid) doping profile in the example of section 5.1,
for ε = 10−2 (left) and ε = 10−3 (right), with dimensionless units in the x- and y-axes according to
the forward-bias scaling.

5.1. A pn-diode. Our first example is a pn-diode, with the domain Ω scaled
to the unit interval (0, 1). The pn-diode is characterized by a doping profile that has
exactly one positive and one negative region; we choose one of the simplest possibilities
for the (scaled) initial doping profile, namely, a function jumping almost abruptly from
the value 1 to −1 at the junction. This initial profile is shown as the dash-dotted
function in Figure 5.1. The Debye length in this experiment is given by λ2 = 10−3,
and the value of the applied voltage is U = 10UT = 0.259. The optimization objective
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is to increase the current flow (i.e., the current flow density, which is constant in the
domain since Jx = 0) by 50%, and consequently we chose

I∗ = 1.5 ·
∫

Γ

J0 · dν,(5.1)

where Γ = {0} and J0 is the current flow density obtained with the initial doping.

For the numerical solution of the drift-diffusion system and the linear elliptic equa-
tions arising during the iterative solution of the optimization problem in this example
(as well as the following one) we use an exponentially fitted scheme of Scharfetter–
Gummel type (cf. [1, 4]); the fineness of the uniform spatial grid is given by h = 10−2.
For the discretization of all variables involved (C, V,W, n, p, µ1, µ2) we use piecewise
linear finite elements. The drift-diffusion system with given initial doping profile is
solved using Newton’s method and voltage continuation to obtain the initial value of
the potential (cf. [17]).

The numerical experiments were performed for several values of ε, with the result
that most changes appeared for ε between 10−3 and 10−2, and thus we plot the results
for these two values in Figure 5.1. (Note that for large values of ε the penalty does not
allow enough change to the initial configuration, while for small values the observation
tends to be almost zero in our case, so that further change in the solution is negligible.)
Figure 5.1 shows the optimized doping profiles (solid) in both cases compared to the
initial one (dash-dotted). The dashed line is the coordinate axis for x; its cut with
the doping profile marks the pn-junction. One observes that the optimized doping
profiles have similar shapes for both values of ε, but the magnitude of the doping in
the n-region grows with decreasing ε. In both cases the n-region grows at the expense
of the p-region; i.e., the pn-junction moves right, and the value of C is larger than the
initial one in the whole domain. Moreover, the doping profile remains steep around
the center point x = 0.5, which numerically confirms the result obtained from the
analysis of the optimality system.

An analogous effect happens with the potential V , which is the actual design
variable in our approach, and with the electron and hole densities, i.e., the shape
changes strongly compared to the initial one for ε = 10−2, and if we decrease the
value of ε, the resulting current flow can be forced to be closer to the desired flow
only by a change in magnitude. The resulting potentials for both values compared to
the initial ones are shown in Figure 5.2. The electron and hole densities are shown in
Figure 5.3 for the value of ε = 10−3.

Finally, we illustrate the behavior of the objective functional, observation, and
penalizing energy term in the left-hand plot of Figure 5.4, and the change in the
current-voltage characteristic in the right-hand plot (both for ε = 10−3). Not surpris-
ingly, the objective functional and observation are reduced in a few iterations, while
the energy initially increases since the doping is pulled away from the initial one. In
the later stage of the iteration, the observation part remains almost constant, and a
decrease in the objective functional is obtained only due to a (slow) decrease in the
energy. An inspection of the current-voltage plot shows that the optimized doping
profile also yields a characteristic whose absolute value increases exponentially for
positive applied voltages, but which lies above the initial one for all applied voltages.

5.2. An npn-diode. Our second numerical example is an npn-diode, with the
same parameter settings as in the example of section 5.1, and with the same choice of
objective. The initial doping profile is a piecewise constant function taking the values
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Fig. 5.2. Initial (dash-dotted) and optimized (solid) potential in the example of section 5.1, for
ε = 10−2 (left) and ε = 10−3 (right).
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Fig. 5.3. Initial (dash-dotted) and optimized (solid) electron (left) and hole density (right) in
the example of section 5.1, for ε = 10−3.

0 2 4 6 8 10 12
0

0.5

1

1.5

2

2.5

Iteration number

Objective, Observation, Energy

Objective functional
Observation
ε*Energy

−0.25 −0.2 −0.15 −0.1 −0.05 0 0.05 0.1 0.15 0.2 0.25
−80

−70

−60

−50

−40

−30

−20

−10

0

10

U [V]

CV−Characteristic

Optimized
Initial

Fig. 5.4. Evolution of the objective functional (solid), observation (dash-dotted), and energy
(dotted) in the example of section 5.1 (left), and the current-voltage characteristic for ε = 10−3

(right, scaled current plotted vs. U [V]).
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Fig. 5.5. Initial (dash-dotted) and optimized (solid) doping profile in the example of section 5.2,
for ε = 10−6 (left) and ε = 10−8 (right).
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Fig. 5.6. Evolution of the objective functional (solid), observation (dashed), and energy (dotted)
in the example of section 5.2, for ε = 10−6 (left) and ε = 10−8 (right).

one and − 1
2 ; it is shown as the dash-dotted function in Figure 5.5. The values of the

parameter ε that lead to useful results are now between 10−6 and 10−8, which is due
to the lower absolute values of the current obtained in this example. The objective
value obtained in the first case is around 0.4, while the objective is reduced almost
to zero for the the second. The evolution of the objective functional, the observation,
and the energy term is plotted in Figure 5.6, showing a similar behavior as in the
example of section 5.1. For ε = 10−8, the energy term is already negligible, and the
iteration is driven by the reduction of the observation error.

The optimized and initial values for the doping profile are plotted in Figure 5.5
and for the potential in Figure 5.7. In this case, the change in the potential is quite
small, and the doping profile is increased slightly both in the n- and p-regions. A more
significant change happens in the electron density, shown for the case of ε = 10−8 in
Figure 5.8. As one might expect, the electron density is changed mainly in the n-
regions, while the hole density is changed in the p-region.

Finally, we plot the negative CV-characteristics (i.e., the map U �→ J) of the
initial and optimized devices for both values of ε in Figure 5.9. The shape of these
current-voltage curves remains similar for all values of ε, but obviously changes in
magnitude as ε tends to zero.
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Fig. 5.7. Initial (dash-dotted) and optimized (solid) potential in the example of section 5.2, for
ε = 10−6 (left) and ε = 10−8 (right).
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Fig. 5.8. Initial (dash-dotted) and optimized (solid) electron density (left) and hole density
(right) in the example of section5.2, for ε = 10−8.
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Fig. 5.10. Device geometry in the example of section 5.3.
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Fig. 5.11. Initial value of the doping profile and the potential in the example of section 5.3.

5.3. A MESFET device. As our final example, we consider the optimal design
of a MESFET in two spatial dimensions. We use a device geometry and initial doping
profile as in an example considered in [12], with a length of 6µm and a width of
2µm. The geometry and the position of the contacts is shown in Figure 5.10. The
scaled initial doping profile (by the value Cs = 1014cm−3) is shown in Figure 5.11;
in order to improve the visibility, we plot the initial values and subsequently the
results with different scaling of the x- and the y-axes. A MESFET can be modeled
as a unipolar device, which is also reflected by the positivity of the doping profile
in the whole device region. Thus, we have p = v = 0 in Ω, and the equation for v
as well as the adjoint equation determining the Lagrangian variable µ2 ≡ 0 can be
eliminated, which reduces the computational effort. The boundary data are specified
by n = 0.5(C +

√
C2 + 4δ2), a temperature of T = 300◦ on each contact, and

• at the source, V = Vbi − 0.1[V ] = 0.1670[V ];
• at the drain, V = Vbi + 0.4[V ] = 0.6670[V ];
• at the gate, V = Vbi = 0.2385[V ].

Our objective is to increase the current flow over the drain by 50%, and consequently
we choose

I∗ = 1.5 ·
∫

Γ

J0 · dν,(5.2)

where Γ is the drain contact and J0 is the current flow density obtained with the
initial doping.

For the finite element discretization of the original problem we used an adaptive
solver (with a standard error estimate for the Poisson equation), with a resulting mesh



OPTIMAL DESIGN OF SEMICONDUCTOR DEVICES 123

−1.5 −1 −0.5 0 0.5 1 1.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

x

y

PDE Mesh

Fig. 5.12. Mesh used for the optimization in the example of section 5.3.
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Fig. 5.13. Evolution of the objective functional (solid), observation error (dashed), and energy
term (dash-dotted) in the example of section 5.3.

(shown in Figure 5.12) consisting of nt = 15434 triangular elements. This mesh is
used subsequently also for the optimization algorithm. The refinement was started
from a relatively fine mesh in the bulk. Probably one could use a coarser mesh for all
computations, but due to the efficiency of our optimization algorithm we are able to
solve the optimal design problem with reasonable effort even for this fine triangulation.
This strategy of using grid adaption only for the initial problem is motivated by the
above observation that steep junctions will remain at the same location during the
optimization process.

In this case, it turns out that a suitable choice of ε is 10−3, and here we show the
results for this value. Changes of ε lead to a behavior similar to that in the previous
examples. The resulting increase in the current flow over the drain is around 45%
for this parameter value. The evolution of the objective function, the observer error,
and the energy term are shown in Figure 5.13. The optimized doping profile and the
optimized potential are shown in Figure 5.14. A comparison with the initial value
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Fig. 5.14. Optimized doping profile and potential in the example of section 5.3, ε = 10−3.

shows that the doping profile is increased mainly close to the drain, while it is slightly
decreased close to the device corner opposite to the drain. The change in the potential
is less significant, due to the fact that the main shape of the potential is determined
by the rather high difference in the boundary values. Changes in the doping profile
(and in the electron density n = eV u) are mainly caused by the Laplacian of V − V ∗,
which is still of considerable magnitude.

An inspection of the evolution of the objective demonstrates again the efficiency
of our approach, since a minimum is obtained with only a few iterations. Since, in
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each iteration, we have to solve only four scalar elliptic partial differential equations,
the numerical effort per iteration is similar to two Gummel-type iteration steps for
the (unipolar) drift-diffusion system. Since in general the number of iterations in a
Gummel-type method for the drift-diffusion system is of similar size to the number
of iterations needed for the optimal design problem, the overall numerical effort for
optimization is around the effort for two forward solves of the nonlinear drift-diffusion
system, which is a surprising result.

6. Conclusions. We have presented a new, fast approach to the optimal design
of semiconductor devices, which can be applied if a performance optimization of the
device at a single fixed applied voltage is desired. The numerical experiments illustrate
reasonable convergence properties of the simple algorithm we have proposed to solve
the optimal design problem, and clearly demonstrate its efficiency. In particular, we
have obtained an optimization procedure with a numerical effort of similar magnitude
to one with few forward solves.

We finally would also like to mention the natural limitations or possible gen-
eralizations of the approach presented in this paper. These limitations arise if the
optimization goal involves current flows for several applied voltages and consequently
several different potentials, since we can interpret only one of the potentials as the
design variable in this case. This statement applies, in particular, in the context of
identifying unknown doping profiles, which is usually done by minimizing a least-
squares functional involving a large number of different voltages (cf. [2]). In many
typical optimal design situations, however, the aim is to control at most the currents
for two different voltages, namely, for an on-state voltage and an off-state voltage
(close to equilibrium). The usual aim in such a situation is to maximize the on-state
current flow on a contact by keeping the off-state current flow below some threshold
value (cf. [21, 23]). In optimal design problems of this type it seems natural to elim-
inate the Poisson equation for the on-state potential and keep that for the off-state
potential, since solutions of the drift-diffusion system close to equilibrium are rather
cheap. A numerical investigation of such optimal design situations shall be left to
future research.
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Vienna) for interesting discussions and, in particular, for stimulating this collabora-
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Abstract. We consider a loss model of an unbuffered resource having C channels, which are
shared by several different types of service connections. Connections of each type arrive in a Poisson
stream and request a number of channels, which depends on the type. An arriving connection is
blocked and lost if there are not enough free channels. Otherwise, the channels are held for the
duration of the connection, and the holding period is generally distributed. It is assumed that C
and the traffic intensities are proportionately large. The admission control problem is considered
for specified upper bounds on the blocking probabilities, and the boundary of the admissible set is
investigated asymptotically. The results are derived by investigating the local behavior with respect
to the tangent hyperplane at a point on the boundary of the admissible set. The lowest order results
that hold in the asymptotic limit C → ∞ are given first. Importantly, the boundary is linear for the
critically loaded and overloaded regimes and weakly convex for the underloaded regime. Next, refined
results that hold for C � 1 are given, which indicate that the boundary is nonconvex, although only
slightly so, for the overloaded and underloaded regimes. The critically loaded regime requires further
investigation, which is carried out in [J. A. Morrison, SIAM J. Appl. Math., 64 (2003), pp. 1–17].
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1. Introduction. We consider an unbuffered resource having C channels, which
are shared by J different types of connections. Connections of type j arrive in a Pois-
son stream with mean rate λj , and they require dj channels. An arriving connection
is blocked and lost if there are fewer than dj free channels. Otherwise, dj channels
are held for the duration of the connection, and the holding period is generally dis-
tributed with mean 1/µj and is independent of earlier arrival and holding times. The
traffic intensity of type j connections is ρj = λj/µj , and the product form and the
insensitivity property hold [4], [5], [7]; i.e., the joint stationary distribution of the
number of active connections of each type depends on the distributions only through
ρi, i = 1, . . . , J . The blocking probabilities Lj for type j connections satisfy Lj > 0
for ρj > 0 and, assuming that C ≥ maxi di, Lj → 0+ only if ρi → 0+, i = 1, . . . , J .
The admissible set in R

J contains all combinations of ρj , j = 1, . . . , J , such that the
blocking probability for each connection type satisfies specified bounds, i.e., Lj ≤ �j ,
j = 1, . . . , J , where �j is a prescribed function of C.

Characterization of the admissible set is extremely useful, not only for connection-
level admission control, which is the context in which this topic has typically been
considered in the past, but also for higher level objectives, such as network economics
and network design and operations. The asymptotic view of the admissible set is
particularly appropriate for the latter, where the fine details are not as important as
the qualitative properties of the shape of the set and tractability of the numerical
calculations for large systems.
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Special importance is attached to admissible regions with linear boundaries; the
solution space is determined by its vertices, which are relatively easy to compute.
Optimizations within such spaces are also much easier computationally. Network eco-
nomics applications are given in [6]. In one such example, the objective function is the
profit of a service provider giving several quality of service (QoS) levels at prices that
are the solution to the corresponding optimization problem. The admissible region of
solutions is defined by a collection of inequalities imposed by available capacity, one
for each QoS level. For further details see [6], and for other such applications see [2],
[8], [19] and references therein. See [1], [11] for applications to routing and control.
For recent work on loss models of optical networking see [17] and [18].

Convexity is also important, since the tangent hyperplane at points on the bound-
ary of the admissible set intersects the positive axes. Hence, if the boundary of the
admissible set is convex, then the region in the positive orthant bounded by the tan-
gent hyperplane at a point on the boundary is admissible and may be used in an
approximate optimization.

Mitra and Morrison [10] considered our model here (as well as the finite-sources
version), and they investigated the case when C and the traffic intensities ρj = αjC,
j = 1, . . . , J , are proportionately large, so that αj = O(1) is bounded away from
zero. They derived uniform asymptotic approximations to the blocking probabilities
Lj , j = 1, . . . , J , for type j connections. The results for Poisson arrivals are obtained
from the finite-sources version as a limiting case. They presented numerical results
for J = 2 and J = 3 types for the finite-sources model. These results constitute a
numerical procedure but do not provide a characterization of the admissible set, nor
do they resolve specific questions on the linearity and convexity of the boundary.

In this paper we investigate the boundary of the admissible set in the case of
Poisson arrivals. The admissible set A is given by

A = {α1, . . . , αJ |Lj(α1, . . . , αJ ;C) ≤ �j(C), j = 1, . . . , J}.(1.1)

The uniform asymptotic approximations to the blocking probabilities are special-
ized [10] to three regimes in which their behavior is markedly different, namely,
the overloaded, the critically loaded, and the underloaded regimes, corresponding
to
∑J
j=1 djαj > 1,

∑J
j=1 djαj − 1 = O(1/

√
C), and

∑J
j=1 djαj < 1, respectively.

The corresponding blocking probabilities Lj are O(1), O(1/
√
C), and exponentially

small in C, respectively. The shape of the admissible set is investigated separately
for each of the three regimes, and it is assumed that minj �j is O(1), O(1/

√
C), and

exponentially small in C, respectively.
The lowest order results are stated in section 2. In the asymptotic limit C → ∞,

with ρj = αjC, j = 1, . . . , J , the boundary of the admissible set lies in a hyperplane
if the resource is critically loaded, which is the regime of greatest interest, or if it is
overloaded. If the resource is underloaded, the boundary of the admissible set, in the
limit C → ∞, is convex, but not strictly so, except when J = 2.

The refined results, which pertain to C � 1, are stated in section 3. In general,
the boundary of the admissible set is not convex. If J = 2, then the boundary is
slightly convex if the resource is critically loaded, but slightly concave if the resource
is overloaded. For J = 2, the convexity is maintained for an underloaded resource.
Unfortunately, for J ≥ 3, the boundary of the admissible set is not convex, although
only slightly so, whether the resource is overloaded or underloaded. The case of
a critically loaded resource requires further investigation, which is to appear in a
forthcoming paper [12], and shows that the boundary of the admissible set is not
convex, although only very slightly so.
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The above results follow from consideration of the local behavior with respect to
the tangent hyperplane at a point on the boundary of the admissible set. For instance,
in the underloaded regime, the tangent hyperplane is given by ξJ = 0. Locally, for
J ≥ 3, the boundary has the asymptotic form

ξJ ∼ Aξ2
J−1 −

B

C
ξ2
J−2 ,(1.2)

where ξJ−1 and ξJ−2 are linear in αi, i = 1, . . . , J − 1, and A and B are O(1) and
positive. To this order, for J > 3, quadratic terms involving ξi, i = 1, . . . J − 3, are
absent. Since A and B are positive, the boundary is nonconvex, but only slightly so
because of the O(1/C) negative coefficient of ξ2

J−2. In the limit C → ∞ the boundary
is not strictly convex, because of the degeneracy in the quadratic form.

Although our results are negative, in that they show that the boundary of the
admissible set is not convex in general, it is important that the practitioner be aware
of this. Moreover, since the boundary is only slightly nonconvex, a slightly smaller
admissible region with a convex boundary may be used by the practitioner.

The lowest order analysis of the boundary of the admissible set for an underloaded
resource is given in section 4. Both the lowest order and refined approximations for an
overloaded resource are derived in section 5. A critically loaded resource is analyzed
in section 6, and a refined approximation to the boundary of the admissible set is
derived in section 7. A refined approximation for an underloaded resource is derived
in section 8, and a check on a negative coefficient, which gives rise to the nonconvexity
of the boundary of the admissible set, is carried out in section 9.

2. Lowest order results. Throughout the paper, we assume that

C � 1; ρj = αjC, j = 1, . . . , J,(2.1)

where C is an integer and αj > 0 is O(1) and bounded away from zero. We also assume
that dj , j = 1, . . . , J , are distinct positive integers, not large relative to C, and that
the greatest common divisor of d1, . . . , dJ is 1. The admissible set corresponds to

Lj (α1, . . . , αJ ; C) ≤ �j , j = 1, . . . , J,(2.2)

where the function Lj gives the blocking probability for type j connections. It is
shown, in all three regimes, that asymptotically

∂Lj
∂αk

> 0, j, k = 1, . . . , J,(2.3)

and the boundary of the admissible set is expressed in the form

αJ = αJ(α;C), α = (α1, . . . , αJ−1) .(2.4)

We first give the lowest order asymptotic results, which are obtained from the
finite-sources version [10] as a limiting case. We have the following proposition.

Proposition 2.1. (A) If �j, j = 1, . . . , J , is asymptotically bounded away from
zero, then on the boundary of the admissible set the resource is overloaded. Let

aj = (1− �j)
1/dj , j = 1, . . . , J,(2.5)

and, by choice of notation,

aJ = max
j

aj .(2.6)
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Then the boundary of the admissible set satisfies

J∑
j=1

dja
dj
J αj = 1 +O

(
1

C

)
,(2.7)

which in the asymptotic limit C → ∞ lies in a hyperplane.
(B) If

√
Cmin

j
�j = O(1)(2.8)

is bounded below by a positive constant, then on the boundary of the admissible set
the resource is critically loaded. The boundary satisfies

J∑
j=1

djαj = 1 +O
(
1/
√
C
)
,(2.9)

which in the asymptotic limit C → ∞ lies in a hyperplane. Note, by comparison with
(2.7), that for a common C � 1 the admissible set here is smaller and the order of
magnitude of the error is larger. An asymptotic approximation to the error term in
(2.9) is derived in section 6.

(C) If at least one �j is exponentially small, the resource is underloaded. Let

�j =
e−Cω√
2πC

βj , j = 1, . . . , J ; min
j

βj = 1, ω > 0.(2.10)

Note that some of the �j may not be exponentially small. Also, let τ > 1 be the unique
solution of

J∑
j=1

αj
(
djτ

dj log τ + 1− τdj
)
= ω.(2.11)

Then the boundary of the admissible set satisfies

J∑
j=1

djαjτ
dj = 1 +O

(
1

C

)
,(2.12)

which is nonlinear in view of (2.11).
We investigate further the nature of the boundary of the admissible set given by

(2.11) and (2.12). We have the following proposition.
Proposition 2.2. Suppose that (2.10) holds so that the resource is underloaded.

Let (α(0), α
(0)
J ), where, corresponding to (2.4), α

(0)
J = αJ(α

(0);C), be a point on the
boundary of the admissible set. Define

ai(τ) = dJτ
dJ
(
τdi − 1)− diτ

di
(
τdJ − 1) ,(2.13)

and let τ0 > 1 be the solution of (2.11) corresponding to αj = α
(0)
j , j = 1, . . . , J .

Also, let

ξJ =
(
τdJ0 − 1

)[
αJ − α

(0)
J −

J−1∑
i=1

∂αJ
∂αi

(
α(0)

)(
αi − α

(0)
i

)]
(2.14)
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and

ξJ−1 =

J−1∑
i=1

ai(τ0)
(
αi − α

(0)
i

)
.(2.15)

The tangent hyperplane to the boundary of the admissible set at α = α(0) is given by
ξJ = 0. From (2.11) and (2.12), it follows that

(
τdJ − 1) ∂αJ

∂αi
= − (τdi − 1)+O

(
1

C

)
, i = 1, . . . , J − 1,(2.16)

and hence, from (2.14), that

ξJ =

J∑
j=1

(
τ
dj
0 − 1

)(
αj − α

(0)
j

)
+O

(
1

C

)
.(2.17)

Let

v0 =

J∑
j=1

d2
jα

(0)
j τ

dj
0 .(2.18)

If αi − α
(0)
i = O(ε), 0 < ε  1, i = 1, . . . , J − 1, so that ξJ−1 = O(ε), then

ξJ = ξ2
J−1


 1

2v0

(
τdJ0 − 1

)2 +O(ε)


+O

(
ε2

C

)
.(2.19)

Hence in the asymptotic limit C → ∞, the boundary of the admissible set is convex,
but not strictly so, except when J = 2.

We remark that, in the limit C → ∞, from (2.11) and (2.12), τ ≡ τ0 corresponds
to the intersection of two hyperplanes of dimension J − 1, i.e., to a hyperplane of
dimension J − 2. In particular, if J = 3, τ ≡ τ0 corresponds to a straight line, and
the boundary of the admissible set is a ruled surface.

Proposition 2.2 is established in section 4. Results for the overloaded regime, the
subject of Proposition 2.1(A), are derived in section 5. The results for the critically
loaded regime in (B) are proven in section 6.

3. Refined results. We now consider refined approximations to the boundary of
the admissible set. Corresponding to Proposition 2.1(A), which is for the overloaded
regime, we have the following proposition.

Proposition 3.1. If �j, j = 1, . . . , J, is asymptotically bounded away from zero,
we consider the case when

C(aJ − ai)� 1, i = 1, . . . , J − 1,(3.1)

where aj is given by (2.5). With this assumption the boundary of the admissible set
is given by LJ = �J . Then, we have the following.
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(i) If J = 2, then 0 > dα2/dα1 = O(1) and 0 > d2α2/dα
2
1 = O(1/C), so that the

boundary of the admissible set is concave, although only slightly.
(ii) If J ≥ 3, the linear transformation of variables

ηJ = dJa
dJ
J

[
αJ − α

(0)
J −

J−1∑
i=1

∂αJ
∂αi

(
α(0)

)(
αi − α

(0)
i

)]
,(3.2)

ηJ−1 =

J−1∑
i=1

di(di − dJ)a
di
J

(
αi − α

(0)
i

)
,(3.3)

ηJ−2 =

J−1∑
i=1

di
(
d2
i − d2

J

)
adiJ

(
αi − α

(0)
i

)
,(3.4)

and

ηi = αi − α
(0)
i , i = 1, . . . , J − 3 (J ≥ 4),(3.5)

is nonsingular, and ηJ = 0 corresponds to the tangent hyperplane to the boundary of
the admissible set at α = α(0). From (2.7) and (3.2) we have

ηJ =

J∑
j=1

dja
dj
J

(
αj − α

(0)
j

)
+O

(
1

C

)
.(3.6)

If αi − α
(0)
i = O(ε), 0 < ε  1, i = 1, . . . , J − 1, then

ηJ =
1

2C


 J∑
j=1

α
(0)
j d2

ja
dj
J




2




J∑
j=1

α
(0)
j d3

ja
dj
J

J∑
j=1

α
(0)
j d2

ja
dj
J

η2
J−2 − ηJ−1ηJ−2


(3.7)

+ O

(
ε2

C2

)
+O

(
ε3

C

)
.

Hence, asymptotically, the boundary of the admissible set is nonconvex, although only
slightly so.

Next, corresponding to Proposition 2.1(B), we have the following proposition.
Proposition 3.2. If (2.8) holds, then we have the following:
(i) If J = 2, then 0 > dα2/dα1 = O(1) and 0 < d2α2/dα

2
1 = O(1/

√
C), so that

the boundary of the admissible set is convex, although only slightly so.
(ii) We consider the case when

dJ√
C �J

− di√
C �i

� 1√
C

, i = 1, . . . , J − 1.(3.8)
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If J ≥ 3, the linear transformation of variables

ζJ = dJ

[
αJ − α

(0)
J −

J−1∑
i=1

∂αJ
∂αi

(
α(0)

)(
αi − α

(0)
i

)]
,(3.9)

ζJ−1 =

J−1∑
i=1

di(di − dJ)
(
αi − α

(0)
i

)
,(3.10)

ζJ−2 =

J−1∑
i=1

di
(
d2
i − d2

J

) (
αi − α

(0)
i

)
,(3.11)

and

ζi = αi − α
(0)
i , i = 1, . . . , J − 3 (J ≥ 4),(3.12)

is nonsingular, and ζJ = 0 corresponds to the tangent hyperplane to the boundary of
the admissible set at α = α(0). From (2.9) and (3.9) we have

ζJ =

J∑
j=1

dj

(
αj − α

(0)
j

)
+O

(
1√
C

)
.(3.13)

Let

σ2
0 = 2

J∑
j=1

d2
jα

(0)
j , σ0 > 0.(3.14)

If αi − α
(0)
i = O(ε), 0 < ε  1, i = 1, . . . , J − 1, then

ζJ =
ζ2
J−1

2
√
C

[
P2(σ0) +O

(
1√
C

)
+O (ζJ−1)

]
(3.15)

+
ζJ−1ζJ−2

C
[R2(σ0) +O(ζJ−1)] +O

(
ε2

C
√
C

)
,

and P2(σ0) > 0.
If ζJ−1 = O(ε/

√
C), then the leading terms in (3.15) are all O(ε2/C

√
C), and

the term involving ζ2
J−2/C

√
C, in particular, is needed to ascertain whether or not

the boundary of the admissible set is convex. Hence, the next order term in the
asymptotic expansion in powers of 1/

√
C is required, and this is derived in [12].

Finally, corresponding to Proposition 2.1(C), we have the following proposition.
Proposition 3.3. If (2.10) holds, we let τ0 > 1 be the solution of (2.11) corre-

sponding to αj = α
(0)
j , j = 1, . . . , J , and define

B(τ) = min
j

[
βj(τ − 1)
(τdj − 1)

]
, τ > 1.(3.16)
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In general, B(τ) is only piecewise differentiable. We consider the case when B(τ) is
differentiable at τ = τ0. For J ≥ 3, with ai(τ) given by (2.13), the linear transforma-
tion of variables (2.14), (2.15),

ξJ−2 =

J−1∑
i=1

a′i(τ0)
(
αi − α

(0)
i

)
,(3.17)

where the prime denotes derivative, and

ξi = αi − α
(0)
i , i = 1, . . . , J − 3 (J ≥ 4),(3.18)

is nonsingular. If αi − α
(0)
i = O(ε), 0 < ε  1, i = 1, . . . , J − 1, then

ξJ = ξ2
J−1


 1

2v0

(
τdJ0 − 1

)2 +O(ε) +O

(
1

C

)(3.19)

− τ2
0 ξ

2
J−2

4Cv2
0

(
τdJ0 − 1

)2 +O
( ε

C
ξJ−1

)
+O

(
ε2

C2

)
.

Hence, asymptotically, the boundary of the admissible set is nonconvex, although only
slightly so.

4. Underloaded regime. We establish Proposition 2.2. We consider an under-
loaded resource, so that

J∑
j=1

djαj < 1.(4.1)

Let z∗ be the unique positive solution of

J∑
j=1

djαj(z
∗)dj = 1.(4.2)

Then, from (4.1), z∗ > 1. We define

f(z) =
J∑
j=1

αj(z
dj − 1)− log z(4.3)

and

v(z∗) =
J∑
j=1

αjd
2
j (z

∗)dj .(4.4)

Then (see [10]), the blocking probabilities satisfy

Lj =
eCf(z

∗)√
2πCv(z∗)

{
[(z∗)dj − 1]
(z∗ − 1) +O

(
1

C

)}
.(4.5)
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Since, from (4.2) and (4.3), f ′(z∗) = 0, it follows that

∂f(z∗)
∂αk

= (z∗)dk − 1 > 0,(4.6)

and (4.5) implies (2.3).
Let

ψ(z) =

J∑
j=1

αj
(
djz

dj log z + 1− zdj
)
.(4.7)

Then, from (4.2) and (4.3), ψ(z∗) = −f(z∗), and

ψ′(z) = log z
J∑
j=1

αjd
2
jz
dj−1 > 0, z > 1.(4.8)

From (2.2), (2.10), and (4.5), it follows that ψ(z∗) ≥ ω + O(1/C). Hence z∗ ≥
τ+O(1/C), where ψ(τ) = ω, so that (2.11) holds, and the boundary of the admissible
set satisfies (2.12). We consider αJ , and hence τ , as functions of α = (α1, . . . , αJ−1)
and C. From (2.11) and (2.12) we obtain

J∑
j=1

αj
(
1− τdj

)
+ log τ = ω +O

(
1

C

)
,(4.9)

and hence (2.16).
Now, from (2.12), for k = 1, . . . , J − 1,

dkτ
dk + dJτ

dJ
∂αJ
∂αk

+

J∑
j=1

αjd
2
jτ
dj−1 ∂τ

∂αk
= O

(
1

C

)
.(4.10)

We let

v =
J∑
j=1

αjd
2
jτ
dj .(4.11)

Then, from (2.13), (2.16), and (4.10), we have

∂τ

∂αk
=

τak(τ)

v(τdJ − 1) +O

(
1

C

)
, k = 1, . . . , J − 1.(4.12)

Also, from (2.13),

τ
d

dτ

[
(τdi − 1)
(τdJ − 1)

]
= − ai(τ)

(τdJ − 1)2 .(4.13)

Hence, from (2.16), (4.12), and (4.13), we obtain

∂2αJ
∂αi∂αk

=
ai(τ)ak(τ)

v(τdJ − 1)3 +O

(
1

C

)
, i, k = 1, . . . , J − 1.(4.14)
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From (2.13), we have

d

dt

[
ai(t)

tdJ+di

]
=

didJ
t

(
1

tdi
− 1

tdJ

)
,(4.15)

which is nonzero for t > 1 and i = 1, . . . , J − 1, since dj , j = 1, . . . , J , are distinct.
Hence ai(τ) �= 0, since τ > 1 and ai(1) = 0. With ξJ−1 defined by (2.15), it follows,
by induction, from (4.12) and (4.14), that, for n ≥ 2, the leading term in

J−1∑
i1=1

· · ·
J−1∑
in=1

∂nαJ
∂αi1 . . . ∂αin

(α
(0)
1 , . . . , α

(0)
J−1)

n∏
m=1

(
αim − α

(0)
im

)
(4.16)

contains the factor ξ2
J−1. If we use the Taylor series expansion

αJ = α
(0)
J +

J−1∑
i=1

∂αJ
∂αi

(
α(0)

)(
αi − α

(0)
i

)
(4.17)

+
1

2

J−1∑
i=1

J−1∑
k=1

∂2αJ
∂αi∂αk

(
α(0)

)(
αi − α

(0)
i

)(
αk − α

(0)
k

)
+ · · ·

and let αi − α
(0)
i = O(ε), 0 < ε  1, i = 1, . . . , J − 1, then, from (2.14), (2.18),

and (4.14), we obtain (2.19), where τ0 > 1 is the solution of (2.11) corresponding to

αj = α
(0)
j , j = 1, . . . , J . This establishes Proposition 2.2.

5. Overloaded regime. We now consider an overloaded resource, so that

J∑
j=1

djαj > 1.(5.1)

Then, from (4.2), 0 < z∗ < 1, and [10], the blocking probabilities satisfy

Lj = 1− (z∗)dj +O(1/C).(5.2)

However, from (4.2), ∂z∗/∂αk < 0, k = 1, . . . , J . It follows, from (5.2), that (2.3)
holds. Moreover, from (2.2), (2.5), and (2.6), the boundary of the admissible set
satisfies z∗ = aJ + O(1/C), and (4.2) implies (2.7). Consequently, ∂2αJ/∂αi∂αk =
O(1/C), and it is necessary to consider the first order correction term in (5.2).

In Appendix A we establish the following proposition.
Proposition 5.1. Let

t(z∗) =
J∑
j=1

αjd
2
j (dj − 3)(z∗)dj .(5.3)

Then, with v(z∗) given by (4.4),

Lj = 1− (z∗)dj + dj(z
∗)dj

2Cv(z∗)

[
dj − 5 + 2

(1− z∗)
− t(z∗)

v(z∗)

]
+O

(
1

C2

)
.(5.4)
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It follows from (2.2), (2.5), and (5.4) that

z∗ ≥ aj

{
1 +

1

2Cv(aj)

[
dj − 5 + 2

(1− aj)
− t(aj)

v(aj)

]
+O

(
1

C2

)}
,(5.5)

j = 1, . . . , J . Under the assumption (3.1), the maximum in (5.5) is obtained for
j = J and, from (4.2), the boundary of the admissible set satisfies

J∑
j=1

αjdja
dj
J

{
1 +

dj
2Cv(aJ)

[
dJ − 5 + 2

(1− aJ)
− t(aJ)

v(aJ)

]
+O

(
1

C2

)}
= 1.(5.6)

In view of (4.4), this may be written in the form

J∑
j=1

αjdja
dj
J +

1

2C

[
dJ − 5 + 2

(1− aJ)
− t(aJ)

v(aJ)

]
+O

(
1

C2

)
= 1.(5.7)

We consider αJ as a function of α = (α1, . . . , αJ−1) and C, as in (2.4). Then,
from (4.4), for i = 1, . . . , J − 1,

∂v(aJ)

∂αi
= d2

i a
di
J + d2

Ja
dJ
J

∂αJ
∂αi

,(5.8)

and, from (5.3),

∂t(aJ)

∂αi
= d2

i (di − 3)adiJ + d2
J(dJ − 3)adJJ

∂αJ
∂αi

.(5.9)

Hence, from (2.7),

∂v(aJ)

∂αi
= di(di − dJ)a

di
J +O

(
1

C

)
,(5.10)

and

∂t(aJ)

∂αi
= di(di − dJ)(di + dJ − 3)adiJ +O

(
1

C

)
.(5.11)

It follows from (5.7) that

dia
di
J + dJa

dJ
J

∂αJ
∂αi

(5.12)

=
di(di − dJ)

2Cv(aJ)
adiJ

[
(di + dJ − 3)− t(aJ)

v(aJ)

]
+O

(
1

C2

)
.

Finally, from (5.10)–(5.12), for i, k = 1, . . . , J − 1, we obtain

dJa
dJ
J

∂2αJ
∂αi∂αk

=
didk(di − dJ)(dk − dJ)

2C[v(aJ)]3
adi+dkJ(5.13)

· [2t(aJ) + (6− di − dk − 2dJ)v(aJ)] +O

(
1

C2

)
.
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If J = 2, then

t(a2) + (3− d1 − d2)v(a2) = −d1d2

(
α1d1a

d1
2 + α2d2a

d2
2

)
< 0,(5.14)

and Proposition 3.1(i) follows from (2.7) and (5.13). If J ≥ 3, we use the Taylor series
expansion (4.17). We note, from (4.4) and (5.3), that

t(aJ) + 3v(aJ) =

J∑
j=1

αjd
3
ja
dj
J .(5.15)

From (5.13), (5.15), and the transformation of variables (3.2)–(3.5), which is nonsin-
gular since d1, . . . , dJ are distinct, we obtain (3.7) and hence Proposition 3.1(ii).

6. Critically loaded regime. We now consider a critically loaded resource, so
that

J∑
j=1

djαj = 1− δ√
C

,(6.1)

where δ = O(1) may have either sign. Let

σ2 = 2

J∑
j=1

d2
jαj , σ > 0,(6.2)

and

β =
2e−(δ/σ)2

σ
√
π Erfc (−δ/σ)

,(6.3)

where the complementary error function is given by

Erfc (x) =
2√
π

∫ ∞

x

e−ξ
2

dξ.(6.4)

Then (see [3], [10], [16]), the blocking probabilities satisfy

Lj =
djβ√
C

[
1 +O

(
1√
C

)]
.(6.5)

It follows, from (6.1)–(6.5), that

∂Lj
∂αk

=
4djdke

−(δ/σ)2

σ2
√
π Erfc (−δ/σ)

[
δ

σ
+

e−(δ/σ)2

√
π Erfc (−δ/σ)

]
+O

(
1√
C

)
.(6.6)

The quantity in square brackets in (6.6) was shown [14] to be positive, and hence
(2.3) holds.

As in [10], we define

κ = max
j

dj√
C�j

,(6.7)
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which is O(1), in view of (2.8), and

φ(y) =

√
π

2
ey

2

Erfc (−y).(6.8)

Then the admissible set satisfies

σφ(δ/σ) ≥ κ+O(1/
√
C).(6.9)

However, from (6.4) and (6.8),

φ(y) = ey
2

∫ ∞

−y
e−ξ

2

dξ =

∫ ∞

0

e2yue−u
2

du.(6.10)

Hence φ′(y) > 0, −∞ < y < ∞, so that φ(y) has a unique inverse, and (6.9) may be
written, as in [10], in the form δ ≥ σφ−1(κ/σ) +O(1/

√
C). We define

χ(σ) = φ−1(κ/σ).(6.11)

Then, from (6.1), the boundary of the admissible set satisfies

J∑
j=1

djαj = 1− σ√
C

χ(σ) +O

(
1

C

)
.(6.12)

This establishes Proposition 2.1(B) and provides an asymptotic approximation to the
error term in (2.9).

We now consider αJ as a function of α = (α1, . . . , αJ−1) and C, as in (2.4). We
define

θ2 = 2

[
dJ +

J−1∑
i=1

di(di − dJ)αi

]
, θ > 0.(6.13)

Then, from (6.2) and (6.12), σ = θ +O(1/
√
C), and

dJαJ = 1−
J−1∑
i=1

diαi − θ√
C

χ(θ) +O

(
1

C

)
.(6.14)

It follows, from (6.13) and (6.14), that

θ
∂θ

∂αi
= di(di − dJ), i = 1, . . . , J − 1,(6.15)

and

∂αJ
∂αi

= − di
dJ

{
1 +

(di − dJ)√
C

[
χ′(θ) +

χ(θ)

θ

]}
+O

(
1

C

)
< 0,(6.16)

where the prime denotes derivative. Also, for i = 1, . . . , J − 1 and k = 1, . . . , J − 1,

dJ
∂2αJ

∂αi∂αk
= didk(di − dJ)(dk − dJ)

P2(θ)√
C
+O

(
1

C

)
,(6.17)
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where

P2(θ) =
1

θ3

[
χ(θ)− θχ′(θ)− θ2χ′′(θ)

]
.(6.18)

It is shown in Appendix B that P2(θ) > 0 for θ > 0. Hence, if J = 2, we obtain
Proposition 3.2(i).

From (6.15) and (6.17) it follows, by induction, that the higher order partial
derivatives have the form

dJ
∂nαJ

∂αi1 · · · ∂αin
=

1√
C

n∏
m=1

dim(dim − dJ)Pn(θ) +O

(
1

C

)
(6.19)

for n ≥ 2, where Pn+1(θ) = P ′
n(θ)/θ. If J ≥ 3, we use the Taylor series expansion

(4.17) and introduce the linear transformation of variables (3.9)–(3.12). The transfor-

mation is nonsingular, since d1, . . . , dJ are distinct. If αi − α
(0)
i = O(ε), 0 < ε  1,

i = 1, . . . , J − 1, then, from (6.19), we obtain

ζJ =
ζ2
J−1

2
√
C
[P2(θ0) +O(ζJ−1)] +O

(
ε2

C

)
,(6.20)

where θ0 = θ(α(0)), and we note that θ0 = σ0 + O(1/
√
C), where σ0 = σ(α(0)) is

given by (3.14). Hence, it is necessary to consider a refined asymptotic approximation
to ascertain the nature of the boundary of the admissible set when ζJ−1 is close to
zero.

7. Refined critically loaded approximation. Let

η =

J∑
j=1

d3
jαj .(7.1)

Then, a refined asymptotic approximation to the blocking probabilities in the critically
loaded regime is (see [14])

Lj =
djβ√
C

{
1 +

δ

σ2
√
C

[
2η

σ2

(
2δ2

3σ2
− 1

)
+ dj − 1

]
(7.2)

− β

2
√
C

[
1 +

2η

3σ2

(
1− 2δ2

σ2

)]
+O

(
1

C

)}
.

We consider the case when (3.8) holds, so that, from (6.7),

κ =
dJ√
C�J

,(7.3)

which is O(1). Then, asymptotically, the boundary of the admissible set satisfies

1 = κβ

{
1 +

δ

σ2
√
C

[
2η

σ2

(
2δ2

3σ2
− 1

)
+ dJ − 1

]
(7.4)

− β

2
√
C

[
1 +

2η

3σ2

(
1− 2δ2

σ2

)]
+O

(
1

C

)}
.
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Now, from (6.1), (6.2), (6.13), and (6.14),

σ = θ +O(1/
√
C)(7.5)

and

δ = θχ(θ) +O(1/
√
C).(7.6)

We define

ψ = d2
J +

J−1∑
i=1

di
(
d2
i − d2

J

)
αi.(7.7)

Then, from (6.1) and (7.1),

η = ψ +O(1/
√
C).(7.8)

From (6.3) and (6.8), we have

1

β
= σφ

(
δ

σ

)
.(7.9)

Hence, from (7.4)–(7.6), (7.8), and (7.9), it follows that β = 1/κ+O(1/
√
C), and

σφ

(
δ

σ

)
= κ

{
1 +

χ(θ)

θ
√
C

[
2ψ

θ2

{
2

3
[χ(θ)]2 − 1

}
+ dJ − 1

]
(7.10)

− 1

2κ
√
C

[
1 +

2ψ

3θ2

{
1− 2[χ(θ)]2}]+O

(
1

C

)}
.

From (6.2) and (6.14), it follows that

σ2 = θ2 − 2√
C

dJθχ(θ) +O

(
1

C

)
,(7.11)

so that

σ = θ − dJ√
C

χ(θ) +O

(
1

C

)
(7.12)

and

σχ(σ) = θχ(θ)− dJ√
C

χ(θ) [χ(θ) + θχ′(θ)] +O

(
1

C

)
.(7.13)

Hence, from (6.11) and (7.10), it is found that

δ = θχ(θ)− dJ√
C

χ(θ) [χ(θ) + θχ′(θ)](7.14)

+
χ′(θ)√

C

{
1

2κ

[
θ2 +

2

3
ψ
{
1− 2 [χ(θ)]2

}]

− θχ(θ)

[
2ψ

θ2

{
2

3
[χ(θ)]2 − 1

}
+ dJ − 1

]}
+O

(
1

C

)
.
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We define

F (θ) = θχ(θ)χ′(θ) +
θ2

2κ
χ′(θ)− dJχ(θ)[χ(θ) + 2θχ

′(θ)](7.15)

and

G(θ) = χ′(θ)
[
2χ(θ)

θ

{
1− 2

3
[χ(θ)]2

}
+
1

3κ
{1− 2[χ(θ)]2}

]
.(7.16)

Then, from (6.1) and (7.14)–(7.16), we obtain

dJαJ = 1−
J−1∑
i=1

diαi − θ√
C

χ(θ)− 1

C
[F (θ) + ψG(θ)] +O

(
1

C3/2

)
.(7.17)

However, from (7.7),

∂ψ

∂αi
= di

(
d2
i − d2

J

)
, i = 1, . . . , J − 1.(7.18)

Hence, from (6.15), (7.17), and (7.18),

∂αJ
∂αi

= − di
dJ

{
1 +

(di − dJ)√
C

[
χ′(θ) +

χ(θ)

θ

]

+
(di − dJ)

Cθ
[F ′(θ) + ψG′(θ)] +

(
d2
i − d2

J

) G(θ)

C

}
+O

(
1

C3/2

)
.(7.19)

We now define

Q2(θ) =
F ′(θ)
θ3

− F ′′(θ)
θ2

, R2(θ) = −G′(θ)
θ

.(7.20)

Then, with P2(θ) as in (6.18), for i = 1, . . . , J − 1 and k = 1, . . . , J − 1, we obtain

dJ
∂2αJ

∂αi∂αk
= didk(di − dJ)(dk − dJ)

{
P2(θ)√

C
+
1

C

[
Q2(θ) +

ψ

θ
R′

2(θ)

]}
(7.21)

+ didk[(di − dJ)(d
2
k − d2

J) + (dk − dJ)(d
2
i − d2

J)]
R2(θ)

C
+O

(
1

C3/2

)
.

From (6.15), (7.18), and (7.21) it follows, by induction, that the higher order partial
derivatives have the form

dJ
∂nαJ

∂αi1 · · · ∂αin
=

n∏
m=1

dim(dim − dJ)

{
Pn(θ)√

C
+
1

C

[
Qn(θ) +

ψ

θ
R′
n(θ)

]}
(7.22)

+

n∑
r=1

n∏
m=1
m�=r

dim(dim − dJ)dir (d
2
ir − d2

J)
Rn(θ)

C
+O

(
1

C3/2

)

for n ≥ 2, where
Pn+1(θ) = P ′

n(θ)/θ, Qn+1(θ) = Q′
n(θ)/θ, Rn+1(θ) = R′

n(θ)/θ.(7.23)
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Hence, from (3.10) and (3.11), for n ≥ 2,

dJ

J−1∑
i1=1

· · ·
J−1∑
in=1

∂nαJ
∂αi1 · · · ∂αin

(α(0))

n∏
m=1

(αim − α
(0)
im
)(7.24)

=

{
Pn(θ0)√

C
+
1

C

[
Qn(θ0) +

ψ0

θ0
R′
n(θ0)

]}
ζnJ−1

+
n

C
Rn(θ0)ζ

n−1
J−1ζJ−2 +O

(
1

C3/2

)
,

where θ0 = θ(α(0)) and ψ0 = ψ(α(0)).
For J ≥ 3, we use the Taylor series expansion (4.17) and introduce the linear

transformation of variables (3.9)–(3.12). If αi−α
(0)
i = O(ε), 0 < ε  1, i = 1, . . . , J−

1, then it follows from (7.24) that

ζJ =
ζ2
J−1

2
√
C

[
P2(θ0) +O

(
1√
C

)
+O(ζJ−1)

]
(7.25)

+
1

C
ζJ−1ζJ−2 [R2(θ0) +O(ζJ−1)] +O

(
ε2

C
√
C

)
.

Since θ0 = σ0 + O(1/
√
C), where σ0 = σ(α(0)) is given by (3.14), we obtain (3.15)

and hence Proposition 3.2(ii).

8. Refined underloaded approximation. We now return to an underloaded
resource. From (2.2), (2.10), and (4.5), since ψ(z∗) = −f(z∗), it follows that

ψ(z∗) ≥ ω − 1

C
log

{
βj(z

∗ − 1)
[(z∗)dj − 1]

}
− log v(z∗)

2C
+O

(
1

C2

)
,(8.1)

j = 1, . . . , J . Hence, z∗ ≥ τ + ρ/C +O(1/C2), where, as in [10],

ρψ′(τ) = − logB(τ)− 1

2
log v,(8.2)

where B(τ) and v are given by (3.16) and (4.11). However, from (4.8),

J∑
j=1

αjdj

[
τ +

ρ

C
+O

(
1

C2

)]dj
=

J∑
j=1

αjdjτ
dj +

ρψ′(τ)
C log τ

+O

(
1

C2

)
.(8.3)

Hence, the boundary of the admissible set satisfies

J∑
j=1

αjdjτ
dj − 1

C log τ

[
logB(τ) +

1

2
log v

]
+O

(
1

C2

)
= 1.(8.4)

From (2.11) and (8.4), we obtain

J∑
j=1

αj(1− τdj ) + log τ +
1

C

[
logB(τ) +

1

2
log v

]
+O

(
1

C2

)
= ω.(8.5)
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Hence, for i = 1, . . . , J − 1,

1− τdi + (1− τdJ )
∂αJ
∂αi

+
1

2Cv

∂v

∂αi
(8.6)

+
1

τ

∂τ

∂αi


1− J∑

j=1

αjdjτ
dj +

τB′(τ)
CB(τ)


 = O

(
1

C2

)
.

However, from (4.11),

∂v

∂αi
= d2

i τ
di + d2

Jτ
dJ

∂αJ
∂αi

+

J∑
j=1

αjd
3
jτ
dj−1 ∂τ

∂αi
.(8.7)

Also, from (2.13),

τa′i(τ) = d2
Jτ

dJ (τdi − 1)− d2
i τ
di(τdJ − 1).(8.8)

Hence, from (2.16) and (4.12),

∂v

∂αi
=

ai(τ)

v(τdJ − 1)
J∑
j=1

αjd
3
jτ
dj − τa′i(τ)

(τdJ − 1) +O

(
1

C

)
.(8.9)

We let

A =
1

v(τdJ − 1)2
{
[logB(τ) + 1

2 log v]

log τ
− τB′(τ)

B(τ)

}
(8.10)

and

D =
τ

2v(τdJ − 1)2 , E = − 1

2v2(τdJ − 1)2 .(8.11)

Then, from (4.12), (8.4), (8.6), and (8.9), we obtain

∂αJ
∂αi

= − (τ
di − 1)

(τdJ − 1)−
1

C




A+ E

J∑
j=1

αjd
3
jτ
dj


 ai(τ) +Da′i(τ)


+O

(
1

C2

)
(8.12)

for i = 1, . . . , J − 1. However, from (2.11),

diτ
di log τ + 1− τdi +

∂αJ
∂αi

(
dJτ

dJ log τ + 1− τdJ
)

(8.13)

+
J∑
j=1

αjd
2
jτ
dj−1 log τ

∂τ

∂αi
= 0, i = 1, . . . , J − 1.

It follows, from (2.13), (4.11), (8.12), and (8.13), that

v

τ

∂τ

∂αi
=

ai(τ)

(τdJ−1)
+

(
dJτ

dJ log τ + 1− τdJ
)

C log τ
(8.14)

·



A+ E

J∑
j=1

αjd
3
jτ
dj


 ai(τ) +Da′i(τ)


+O

(
1

C2

)

for i = 1, . . . , J − 1.
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From (2.16) and (4.12), we have

(τdJ − 1) ∂

∂αk


 J∑
j=1

αjd
3
jτ
dj


(8.15)

= d3
kτ
dk(τdJ − 1)− d3

Jτ
dJ (τdk − 1) + ak(τ)

v

J∑
j=1

αjd
4
jτ
dj +O

(
1

C

)
.

However, from (8.8), it follows that

τ [τa′k(τ)]
′ = d3

Jτ
dJ (τdk − 1)− d3

kτ
dk(τdJ − 1) + dkdJ(dJ − dk)τ

dJ+dk .(8.16)

Hence, from (2.13) and (8.8), we obtain

d3
Jτ

dJ (τdk − 1)− d3
kτ
dk(τdJ − 1)(8.17)

= τ2a′′k(τ) + τa′k(τ)−
dJτ

dJ

(τdJ − 1) [τa
′
k(τ)− dJak(τ)].

We define

H =
1

v(τdJ − 1)2
[

dJτ
dJ

(τdJ − 1) −
1

2
− log v

2 log τ
+

τB′(τ)
B(τ)

− logB(τ)

log τ
+

τ

v

∂v

∂τ

]
.(8.18)

Then, from (4.11), (8.10), and (8.11), it is found that

A+ E
J∑
j=1

αjd
3
jτ
dj +

∂D

∂τ
+

∂D

∂v

J∑
j=1

αjd
3
jτ
dj−1 = −H(8.19)

and

D(dJτ
dJ log τ + 1− τdJ )

τ(τdJ − 1) log τ(8.20)

+ v


∂A

∂v
+

∂E

∂v

J∑
j=1

αjd
3
jτ
dj + E

[
1− dJτ

dJ

(τdJ − 1)
]
 = H.

Finally, from (4.13), (8.9), (8.11), (8.12), (8.14), (8.15), (8.17), (8.19), and (8.20), for
i, k = 1, . . . , J − 1, we obtain

∂2αJ
∂αi∂αk

=

[
1

v(τdJ − 1)3 +O

(
1

C

)]
ai(τ)ak(τ)(8.21)

− τ2[a′′i (τ)ak(τ) + a′i(τ)a
′
k(τ) + ai(τ)a

′′
k(τ)]

2Cv2(τdJ − 1)3

+
τH

Cv(τdJ − 1) [a
′
i(τ)ak(τ) + ai(τ)a

′
k(τ)] +O

(
1

C2

)
.

We assume now that J ≥ 3. From (2.13) and (8.8), it is found that
τ [a′i(τ)ak(τ)− ai(τ)a

′
k(τ)] = τdJ+di+dk(τdJ − 1)mik(τ),(8.22)
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where

mik(t) = didk(di − dk)

(
1− 1

tdJ

)
+ dJdi(dJ − di)

(
1− 1

tdk

)
(8.23)

− dJdk(dJ − dk)

(
1− 1

tdi

)
.

Hence,

tdJ+1m′
ik(t) = dJdidknik(t),(8.24)

where

nik(t) = di − dk + (dJ − di)t
dJ−dk + (dk − dJ)t

dJ−di .(8.25)

Thus,

tn′
ik(t) = (dJ − di)(dJ − dk)t

dJ

(
1

tdk
− 1

tdi

)
.(8.26)

Since dj , j = 1, . . . , J , are distinct, it follows, for i �= k, i, k = 1, . . . , J − 1, and for
t > 1, that n′

ik(t) �= 0, which implies nik(t) �= 0, since nik(1) = 0, i.e., m
′
ik(t) �= 0,

which implies mik(t) �= 0, since mik(1) = 0.
In particular, since τ > 1, mJ−2,J−1(τ) �= 0. It follows from (8.22) that the linear

transformation of variables (2.14), (2.15), (3.17), and (3.18) is nonsingular. We recall
that, for n ≥ 2, the leading term in (4.16) contains the factor ξ2

J−1. Then, if we use the

Taylor series expansion (4.17), and let αi − α
(0)
i = O(ε), 0 < ε  1, i = 1, . . . , J − 1,

we obtain (3.19) from (8.21), where v0 is given by (2.18) and τ0 > 1 is the solution of

(2.11) corresponding to αj = α
(0)
j , j = 1, . . . , J . This establishes Proposition 3.3.

9. Check on negative coefficient. As a check on the negative coefficient in
(3.19), which pertains to J ≥ 3, we now consider points on the boundary of the
admissible set corresponding to τ(α) ≡ τ(α(0)) = τ0, where α is given by (2.4). From
(2.11) and (2.12), in the limit C → ∞, this corresponds to the intersection of two
hyperplanes of dimension J − 1, i.e., to a hyperplane of dimension J − 2, and hence
ξJ = 0. For C � 1, from (2.11)–(2.13), with τ = τ0, if we eliminate αJ to lowest
order, we obtain

J−1∑
i=1

ai(τ0)αi = dJτ
dJ
0 log τ0 + 1− τdJ0 − ωdJτ

dJ
0 +O

(
1

C

)
.(9.1)

Also, from (8.8), we have

(
τdJ0 − 1

) J∑
j=1

d2
jτ
dj
0 αj + τ0

J−1∑
i=1

a′i(τ0)αi = d2
Jτ

dJ
0

J∑
j=1

(τ
dj
0 − 1)αj .(9.2)

We now let αi − α
(0)
i = O(ε), 0 < ε  1, i = 1, . . . , J − 1. Then, from (2.4),

αJ − α
(0)
J = O(ε). Hence, from (8.5), with τ = τ0,

J∑
j=1

(τ
dj
0 − 1)(αj − α

(0)
j ) =

1

2C
log

(
v

v0

)
+O

( ε

C2

)
,(9.3)



MULTISERVICE SHARED RESOURCE 147

where, from (4.11),

v =

J∑
j=1

d2
jτ
dj
0 αj(9.4)

and v0 is given by (2.18). It follows, from (3.17) and (9.2)–(9.4), that

v − v0 = − τ0ξJ−2

(τdJ0 − 1) +O
( ε

C

)
.(9.5)

From (2.14), (2.15), (3.17), (8.12), and (9.3), we obtain

ξJ =
1

2C
log

(
v

v0

)
(9.6)

+
(τdJ0 − 1)

C




A0 + E0

J∑
j=1

d3
jτ
dj
0 α

(0)
j


 ξJ−1 +D0ξJ−2


+O

( ε

C2

)
.

However, from (9.5),

log

(
v

v0

)
= − τ0ξJ−2

v0(τ
dJ
0 − 1) −

τ2
0 ξ

2
J−2

2v2
0(τ

dJ
0 − 1)2 +O

( ε

C

)
.(9.7)

Also, from (2.15) and (9.1), ξJ−1 = O(ε/C). Hence, from (8.11), (9.6), and (9.7),

ξJ = − τ2
0 ξ

2
J−2

4Cv2
0(τ

dJ
0 − 1)2 +O

(
ε2

C2

)
,(9.8)

since, from (2.14) and (4.17), the error term contains the factor ε2. This establishes
the correctness of the negative coefficient in (3.19).

Appendix A. It was shown [15] that the blocking probabilities are given by

Lj = 1− G(C − dj)

G(C)
,(A.1)

where, for integer values of n,

G(C − n) =
1

2πi

∫
|z|<1

kn(z)e
Cf(z)dz,(A.2)

with f(z) as in (4.3),

kn(z) =
zn−1

(1− z)
,(A.3)

and the integral is taken in a counterclockwise direction around a circle of radius less
than 1. Moreover, asymptotically, since 0 < z∗ < 1 in the case under consideration,

G(C − n) =
eCf(z

∗)

2
√
πC

(A.4)

·
{
β1kn(z

∗) +
1

2C

[
3β3kn(z

∗) + 3β1β2k
′
n(z

∗)− 1

2
β3

1k
′′
n(z

∗)
]
+O

(
1

C2

)}
,
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where

β1

z∗
=

√
2√

v(z∗)
,

β2

z∗
=

t(z∗)
3[v(z∗)]2

,(A.5)

and z∗, v(z∗), and t(z∗) are given by (4.2), (4.4), and (5.3).
The definition of β3 is not needed here since, from (A.3) and (A.4),

G(C − n)

G(C)
= (z∗)n

{
1 +

1

2C

(
3β2

[
k′
n(z

∗)
kn(z∗)

− k′
0(z

∗)
k0(z∗)

]
(A.6)

−1
2
β2

1

[
k′′
n(z

∗)
kn(z∗)

− k′′
0 (z

∗)
k0(z∗)

])
+O

(
1

C2

)}
.

However, from (A.3),

log kn(z) = (n− 1) log z − log(1− z),(A.7)

and it follows that

k′
n(z)

kn(z)
=

1

(1− z)
+
(n− 1)

z
,(A.8)

k′′
n(z)

kn(z)
=

2

(1− z)2
+
2(n− 1)
z(1− z)

+
(n− 1)(n− 2)

z2
.

Hence,

k′
n(z)

kn(z)
− k′

0(z)

k0(z)
=

n

z
,

k′′
n(z)

kn(z)
− k′′

0 (z)

k0(z)
=

2n

z(1− z)
+

n(n− 3)
z2

.(A.9)

Then, from (A.5) and (A.6), we obtain

G(C − n)

G(C)
= (z∗)n

{
1− n

2Cv(z∗)

[
n− 5 + 2

(1− z∗)
− t(z∗)

v(z∗)

]
+O

(
1

C2

)}
.(A.10)

The expression for Lj in (5.4) follows from (A.1).

Appendix B. We show here that P2(θ) > 0 for θ > 0, where P2(θ) is given by
(6.18). From (6.11), we have

θφ[χ(θ)] = κ,(B.1)

where φ(y) is given by (6.10). We recall that φ′(y) > 0 for −∞ < y < ∞, so that φ(y)
has a unique inverse. Since φ(−∞) = 0 and φ(∞) =∞, it follows that −∞ < χ < ∞
for θ > 0. From (B.1), we obtain

θχ′(θ) = − φ(χ)

φ′(χ)
, θχ′(θ) + θ2χ′′(θ) =

φ(χ)

φ′(χ)

{
1− φ(χ)φ′′(χ)

[φ′(χ)]2

}
.(B.2)

Hence,

χ(θ)− θχ′(θ)− θ2χ′′(θ) =
K(χ)

[φ′(χ)]3
,(B.3)
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where

K(χ) = χ[φ′(χ)]3 − φ(χ)[φ′(χ)]2 + [φ(χ)]2φ′′(χ).(B.4)

From (6.18), since φ′(χ) > 0, it suffices to show that K(χ) > 0 for −∞ < χ < ∞.
Now,

K ′(χ) = 3χ[φ′(χ)]2φ′′(χ) + [φ(χ)]2φ′′′(χ).(B.5)

However, from (6.10),

φ′(χ) = 2
∫ ∞

0

ue2χue−u
2

du > 0,(B.6)

φ′′(χ) = 4
∫ ∞

0

u2e2χue−u
2

du > 0,(B.7)

and

φ′′′(χ) = 8
∫ ∞

0

u3e2χue−u
2

du > 0.(B.8)

Hence, K ′(χ) > 0 for 0 ≤ χ < ∞. However (see [9]), from (6.10), φ(0) =
√
π/2,

φ′(0) = 1, and φ′′(0) =
√
π, so thatK(0) > 0. It follows thatK(χ) > 0 for 0 ≤ χ < ∞.

We now consider −∞ < χ < 0. If we integrate by parts in (B.6), we obtain

φ′(χ) = 1 + 2χφ(χ).(B.9)

Hence,

φ′′(χ) = 2[φ(χ) + χφ′(χ)] = 2[χ+ (2χ2 + 1)φ(χ)].(B.10)

However, from (6.10),

φ(χ) = eχ
2

I(χ), I(χ) =

∫ ∞

−χ
e−ξ

2

dξ.(B.11)

It follows, from (B.4) and (B.9)–(B.11), that

H(χ) �− e−3χ2

K(χ)(B.12)

= (8χ4 + 2)I3 + (12χ3 − 2χ)e−χ2

I2 + (6χ2 − 1)e−2χ2

I + χe−3χ2

.

Since I ′(χ) = exp(−χ2), we obtain

H ′(χ) = −4χ3I M(χ),(B.13)

where

M(χ) = −8I2 −
(
10

χ
+
1

χ3

)
e−χ

2

I − 3

χ2
e−2χ2

.(B.14)

Next, we find that

M ′(χ) =
(
4 +

12

χ2
+
3

χ4

)
e−χ

2

N(χ),(B.15)
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where

N(χ) = I +
(5χ+ 2χ3)

(3 + 12χ2 + 4χ4)
e−χ

2

.(B.16)

Hence,

eχ
2

N ′(χ) = 1 +
(5− 4χ2 − 4χ4)

(3 + 12χ2 + 4χ4)
− 8χ2(3 + 2χ2)(5 + 2χ2)

(3 + 12χ2 + 4χ4)2
.(B.17)

After some algebraic simplification, we obtain

N ′(χ) =
24e−χ

2

(3 + 12χ2 + 4χ4)2
> 0.(B.18)

Now, from (B.11), I(−∞) = 0 and hence, from (B.16), N(−∞) = 0. It follows,
from (B.18), that N(χ) > 0 for χ > −∞. Hence, from (B.15), M ′(χ) > 0 for
−∞ < χ < 0. Since M(−∞) = 0, from (B.14), it follows that M(χ) > 0 for
−∞ < χ < 0, and hence, from (B.13), that H ′(χ) > 0 for −∞ < χ < 0. However,
from (B.11), I(χ) is exponentially small for −χ � 1. It follows, from (B.12), that
H(χ) > 0, and hence K(χ) > 0 for −∞ < χ < 0. This completes the proof.
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Abstract. A model for the process of quasi-static evolution of an elastic membrane in adhesive
contact with a rigid obstacle is developed, analyzed, and numerically simulated. The model consists of
an elliptic variational inequality for the membrane displacements and a nonlinear ordinary differential
equation for the evolution of the adhesion field. By using regularity results from the theory of elliptic
variational inequalities and a fixed point argument, the system is shown to have a unique weak
solution. A fully discrete algorithm is described and shown to converge, and its error estimates are
derived. In this process we make critical use of the regularity properties of the solution. Finally, the
results of numerical simulations, based on the fully discrete algorithm, are presented.

Key words. contact, obstacle, membrane, free boundary, adhesion, existence and uniqueness,
subdifferential, elliptic variational inequality, error estimates, numerical solutions
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1. Introduction. This work deals with a new version of the classical contact
problem between a stretched membrane and a rigid obstacle which lies beneath it.
The novelty consists of allowing for adhesion between the membrane and the obstacle.
Indeed, we assume that the obstacle, or a part of it, is covered with an adhesive
which binds the membrane. As a result of the forces acting in the system, its state
evolves in time; in particular, the bonds may break and consequently the bonding may
deteriorate. The adhesion process is modeled by the introduction of the bonding field
which measures the fractional density of the active bonds. Assuming a quasi-static
process, the model consists of an elliptic variational inequality for the displacements
coupled with a nonlinear ordinary differential equation for the bonding field. The
problem is a free boundary problem, since the contact zone is unknown, and its
determination is a part of the solution.

Adhesion processes are of considerable interest in industry because nonmetallic
parts and components cannot be joined by welding and an adhesive needs to be
utilized. The modeling and simulation of an adhesive contact problem applied to
laminate materials, as well as further examples of industrial applications, can be
found in [18].

Existence, uniqueness, and other results related to the classical contact problem
for the membrane can be found in [6, 16, 19, 21] and references therein. Models for
adhesive contact problems are very recent and can be found in [8, 5, 7, 9, 10, 12,
13, 15, 17, 18, 20] and references therein. The existence of a weak solution for the
problem of dynamic contact of a membrane has been established in [1].

Following this introduction the rest of the paper is organized as follows. The
model is described in section 2 and involves, in addition to the displacement field, the
bonding field β, which measures the fractional density of the adhesive. In section 3 the
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Fig. 1. The membrane above the obstacle.

model is set as an elliptic variational inequality for the displacements coupled with an
ordinary differential equation for the bonding field β. Using regularity results from
the theory of elliptic variational inequalities and a fixed point argument, we prove
the existence of a unique weak solution for the problem in section 4. A fully discrete
scheme for numerical simulations of the problem is developed in section 5, where it is
shown to converge. This work uses the regularity properties of the solution. Also, an
error estimate on the approximate numerical solutions is obtained. Then, in section
6, we present numerical simulations obtained by using a computer code based on the
fully explicit scheme. We conclude the paper in section 7.

2. The model. We construct a model for the quasi-static process of adhesive
contact between a membrane and a rigid obstacle which lies below it. The membrane
is attached to a rigid rim, its displacements are restricted to lying on or above the
rigid obstacle, and the membrane is in adhesive contact with the obstacle.

Let Ω denote the projection of the membrane on the xy plane, let Γ = ∂Ω be
its boundary, let z = φ(x, y) represent the location of the rigid obstacle, and let
ΩT = Ω× (0, T ). We assume that the membrane is being acted upon by an external
vertical force f and that contact between the membrane and the obstacle involves
adhesion. The setting is depicted in Figure 1.

We let u = u(x, y, t) represent the vertical displacement of the membrane at
location (x, y) and time t and take the upward direction as positive. We denote
by ξ(x, y, t) the reaction force of the obstacle, which is also positive when directed
upward, and let η(x, y, t) represent the tensile adhesive force, which will be described
shortly.

The process is assumed to be quasi-static, so we neglect the inertial term in the
equation of motion. Thus, the evolution of the state of the membrane is governed by

−α∆u = f + ξ + η in ΩT .(2.1)

Here α = T̂ /ρ, where T̂ is the tension in the membrane and ρ is its surface density,
both assumed to be positive constants.

Since the membrane is restricted to always lie above the obstacle φ, we have

u ≥ φ in ΩT .(2.2)
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When contact between the membrane and the obstacle takes place, the obstacle’s
reaction force ξ is directed upward and exactly cancels the applied force, and so

u = φ implies ξ ≥ 0 in ΩT .(2.3)

When there is no contact the reaction force vanishes; thus u > φ implies ξ = 0.
We may combine these three statements into the following linear complementarity
condition:

φ ≤ u, 0 ≤ ξ, ξ(u− φ) = 0.(2.4)

The last condition prevents both inequalities from being strict at the same time, since
when contact takes place φ = u and in the absence of contact ξ = 0.

We now describe the adhesion process, which in this work is assumed to be ir-
reversible, i.e., once a bond is severed there is no rebonding (see [9, 10, 18]). Mod-
els which allow for rebonding can be found in the recent articles [5, 4, 7, 15]. Let
β = β(x, y, t) denote the bonding field, which measures the fractional density of active
bonds between the membrane and the obstacle. When β = 1 the bonding is complete
at a point; when β = 0 there is no bonding, since all the bonds have been broken.
Partial bonding at a point occurs when 0 < β < 1. Thus, the bonding field has to
satisfy

0 ≤ β ≤ 1 in ΩT .(2.5)

We assume that the adhesive is spread over the whole of the obstacle. The modifica-
tions needed when the adhesive is spread only on a part of the obstacle are straight-
forward, and we comment on them at the end of section 4.

The adhesive restoring force η = η(x, y, t) is directed downward, as it acts to
prevent the separation of the membrane from the obstacle. It is assumed to be jointly
proportional to the distance from the obstacle and to β2 (cf. [4]); thus,

η = −κ(u− φ)β2 in ΩT ,(2.6)

where κ > 0 is the bonding coefficient or interface stiffness and κβ2 is the system’s
“spring constant.” We note that (2.2) implies that η ≤ 0 and that when the membrane
is in contact with the obstacle there is no adhesive restoring force, i.e., η = 0.

Following [5, 9, 10], we assume that the process is irreversible and the evolution
of the adhesion field is given by

β′ = −γκ(u− φ)2β in ΩT .(2.7)

Here 1/γ > 0 is the adhesion rate constant, and here and below we use a prime to
denote a partial time derivative. To accompany this equation we must prescribe an
initial condition β(x, y, 0) = β0(x, y), where β0 is a given adhesive intensity distribu-
tion. We note that both −η and κ(u − φ)2β are related to partial derivatives of the
free energy; see, e.g., [9, 10]. Indeed, if the surface free energy Ψ(u, β) is defined as

Ψ(u, β) = w(1− β) + 1

2
κβ2(u− φ)2

[10, p. 154], where w is the Dupré adhesion energy, then (2.6) is obtained as −η =
∂Ψ/∂u, where the minus sign reflects the downward direction of the adhesive force.
Equation (2.7) follows from −(1/γ)β′ = ∂Ψ/∂β, where we omit the constant w for
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the sake of simplicity. We turn next to describing the obstacle reaction force ξ. To
that end we introduce the indicator function of the interval (−∞, 0],

χ(−∞,0](r) =

{
0, r ≤ 0,

∞, r > 0,

and its subdifferential,

∂χ(−∞,0](r) =



0, r < 0,

[0,∞), r = 0,

∅, r > 0.

(2.8)

Using (2.8), we may rewrite the impenetrability condition (2.3) in the form

ξ ∈ ∂χ(−∞,0](φ− u).
Then, using (2.6), equation (2.1) can be written as

−α∆u− f + κ(u− φ)β2 ∈ ∂χ(−∞,0](φ− u).(2.9)

To complete the model we specify the displacements u = g on the boundary Γ for
0 ≤ t ≤ T .

Collecting the equations and conditions above, we can give the following formula-
tion of the problem of quasi-static adhesive contact between a membrane and a rigid
obstacle.

Problem P . Find a pair of functions {u, β} such that

−α∆u− f + κ(u− φ)β2 ∈ ∂χ(−∞,0](φ− u) in ΩT ,(2.10)

u ≥ φ in ΩT ,(2.11)

u = g on Γ× (0, T ),(2.12)

β′ = −γκ(u− φ)2β in ΩT ,(2.13)

β(0) = β0 in Ω.(2.14)

The classical obstacle problem for the membrane is obtained when β ≡ 0. Clearly,
taking adhesion into account adds an interesting new twist to the problem.

We remark that it is possible to relate the two conditions (2.5) and (2.7) on β to
the single inclusion

1

γ
β′ + κ(u− φ)2β + ∂χ(−∞,0](β

′) + ∂χ[0,1](β) � 0.

Here the first subdifferential ∂χ(−∞,0] enforces the condition β
′ ≤ 0, and the second

∂χ[0,1] enforces 0 ≤ β ≤ 1. However, the way the problem is set, β′ ≤ 0 follows anyway,
and we do not need to enforce 0 ≤ β ≤ 1 separately for the following reasons. When
the initial condition for the bonding field satisfies β0 ≤ 1, then it follows from (2.7)
that β′ ≤ 0 and so β ≤ 1 in ΩT . If β = 0 at a point, then (2.7) implies β′ = 0 there
and thus β = 0 for all subsequent times. Consequently, if we begin with 0 ≤ β0 ≤ 1,
then we have 0 ≤ β ≤ 1 at all subsequent times. The fact that the adhesion process is
irreversible is reflected in (2.7) and thus is responsible for obtaining 0 ≤ β ≤ 1 in ΩT .
If we allow for the possibility of rebonding, then we no longer have this implication,
and the condition 0 ≤ β ≤ 1 has to be enforced separately, as has been done in [1].
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The problem, as has been mentioned above, is a free boundary problem. Indeed,
if

Λ(t) = {(x, y) ∈ Ω : u(x, y, t) = φ(x, y)}
is the contact set, then its boundary Γ∗ = Γ∗(t) = ∂Λ(t) is the free boundary which
separates the contact set from the set where the membrane is above the obstacle.
The evolution of this free boundary is an aspect of the problem that is of independent
interest and will be addressed in the future.

The steady states of the problem can be obtained by assuming that the forces
and the dependent variables are time independent. Let f = f(x, y), u = u(x, y), and
β = β(x, y) be the steady forces, displacements, and bonding field, respectively. It
follows from (2.13) that either u = φ or β = 0. We conclude that {u, β} satisfies the
problem

−α∆u− f ∈ ∂χ(−∞,0](φ− u) in Ω,

u ≥ φ in Ω,

u = g on Γ.

This is the classical contact problem for the membrane and it has a unique weak
solution u; see, e.g., [16, 19]. On the other hand, if Λ = {u = φ} is the contact set,
then β = 0 outside of Λ, and on Λ we have β = β∗, where β∗ is an arbitrary function
in L∞(Λ) such that 0 ≤ β∗ ≤ 1.

It may be of interest to identify those steady state functions β which are limits,
as t→ ∞, of solutions of the evolution problem (2.10)–(2.14). This topic is currently
open.

Finally, for technical reasons, it is convenient to formulate the problem so that
the boundary condition on Γ is homogeneous. For this purpose we assume that g(t)
is the restriction to Γ of some function in H2(Ω), which we also denote by g(t). Let
w = u − g, and denote f̃ = f +∆g. Then the above problem may be formulated as
follows.

Problem P . Find a pair of functions {w, β} such that

−α∆w − f̃ + κ(w + g − φ)β2 ∈ ∂χ(−∞,0](φ− g − w) in ΩT ,(2.15)

w ≥ φ− g in ΩT ,(2.16)

w = 0 on Γ× (0, T ),(2.17)

β′ = −γκ(w + g − φ)2β in ΩT ,(2.18)

β(0) = β0 in Ω.(2.19)

In the next section we derive a variational or weak formulation of this problem.

3. Variational formulation. We proceed to obtain a variational formulation
of the conditions (2.15)–(2.17). Let

V = {v ∈ H1(Ω) : v = 0 on Γ},
and let the set of admissible functions be given by

K = {v ∈ V : v ≥ φ− g(t) in Ω}.
We assume that φ ≤ g(t) on Ω, so that 0 ∈ K = ∅. We note that K is a closed convex
subset of V .
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Next, let t ∈ [0, T ] be fixed, and for the sake of simplicity we write w(t) instead
of w(x, y, t). We multiply both sides of (2.15) by (v − w(t)), where v ∈ K is a test
function, and integrate over Ω. Using the divergence theorem and the boundary
condition (2.17), we have that the left-hand side can be written as

α

∫
Ω

∇w(t) · ∇(v − w(t)) dx+ κ
∫

Ω

(w(t) + g(t)− φ)β2(t)(v − w(t)) dx

−
∫

Ω

f̃(v − w(t)) dx,

where f̃ = f +∆g. Note that the boundary term vanishes since v = w = 0 on Γ. For
the right-hand side we have, for any ξ(t) ∈ ∂χ(−∞,0](φ− g(t)− w), that∫

Ω

ξ(t)(v − w(t)) dx =
∫

Ω

ξ(t)(v + g(t)− φ) dx+
∫

Ω

ξ(t)(φ− g(t)− w(t)) dx.

The second integral on the right-hand side vanishes by (2.4). In the first integral on
the right-hand side we have that 0 ≤ ξ and, since v ∈ K, 0 ≤ v + g(t) − φ; thus the
first integral is nonnegative. We conclude that

α

∫
Ω

∇w(t) · ∇(v − w(t)) dx + κ

∫
Ω

(w(t) + g(t)− φ)β2(t)(v − w(t)) dx

≥
∫

Ω

f̃(v − w(t)) dx.

This is a variational inequality for w = w(t) for each 0 ≤ t ≤ T .
Finally, we collect all the conditions and obtain the following variational formu-

lation of problem (2.15)–(2.19).
Problem PV . Find a pair of functions {w, β} such that

w ∈ L2(0, T ;V ), w(t) ∈ K a.e. in (0, T ), β ∈W 1,∞(0, T ;L∞(Ω)),(3.1)

and, for a.e. t ∈ (0, T ) and each v ∈ K,

α

∫
Ω

∇w(t) · ∇(v − w(t)) dx + κ

∫
Ω

(w(t) + g − φ)β2(t)(v − w(t)) dx

≥
∫

Ω

f̃(v − w(t)) dx(3.2)

and

β′(t) = −γκ(w(t) + g − φ)2β(t) a.e. in ΩT ,(3.3)

β(0) = β0 a.e. in Ω, t = 0.(3.4)

We reformulate (3.2) in operator form by first defining, for each β ∈ L∞(Ω), the
bilinear form a : V × V → R given by

a(β; v, w) =

∫
Ω

(α∇v · ∇w + κβ2vw) dx, v, w ∈ V,

and the force function Fβ ∈ V ′ given by

(Fβ , v) =

∫
Ω

(κ(φ− g)β2 + f̃)v dx.
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Then, Problem PV can be written as follows: For almost every t ∈ [0, T ], find w(t) ∈ K
such that

a(β(t);w(t), v − w(t)) ≥ (Fβ(t), v − w(t))(3.5)

for all v ∈ K, together with (3.3) and initial conditions (3.4).
We use this formulation in the next section and in the numerical discretization of

the problem.

4. Existence and uniqueness. In this section we establish the solvability of
the variational problem (3.1)–(3.4). We assume that the domain Ω is of type C1,1

[19, 21] so as to be able to obtain increased regularity of the solution. We make the
following specific assumptions on the problem data:

g ∈W 1,∞(0, T ;H2(Ω)),(4.1)

f ∈W 1,∞(0, T ;L2(Ω)),(4.2)

γ = const > 0,(4.3)

φ ∈ H2(Ω), φ ≤ g on Ω,(4.4)

κ = const > 0,(4.5)

β0 ∈ L∞(Ω), 0 ≤ β0 ≤ 1 a.e. on Ω.(4.6)

We remark that it is possible to obtain solutions under weaker regularity conditions
than those listed above; however, such solutions need not possess the regularity needed
for the convergence analysis of section 5. Also, for the sake of simplicity we have chosen
γ and κ to be positive constants, but our results hold more generally for the case when
γ ∈ L∞(Ω), γ > 0 a.e. on Ω, κ ∈ L∞(Ω), and κ ≥ 0 a.e. on Ω. We note that (4.4)
implies that 0 ∈ K.

We have the following existence and uniqueness result.
Theorem 4.1. Under the assumptions (4.1)–(4.6), there exists a unique weak

solution {w, β} of (3.1)–(3.4) such that
w ∈W 1,∞(0, T ;V ) ∩ L∞(0, T ;H2(Ω)), β ∈W 1,∞(0, T ;L∞(Ω)).(4.7)

We note that the free energies associated with adhesion contact problems are
nonconvex and consequently the usual convexity arguments that lead to uniqueness
of the solution cannot be applied here. The uniqueness here follows from the fixed
point argument used in the proof of the theorem.

The proof of the theorem uses a fixed point argument and is divided into several
parts. Throughout this section, C will represent a positive generic constant which is
independent of t and β but whose value may change from line to line.

We start by defining a convenient inner product on the space V . To this end we
observe that there exists a C > 0 such that

C|v|H1(Ω) ≤ |∇v|H ∀v ∈ V.(4.8)

We consider now the inner product on V given by

(u, v)V = (∇u,∇v)H(4.9)

and let | · |V be the associated norm. Here and throughout the rest of the paper
H = L2(Ω). By using (4.8) we find that | · |H1(Ω) and | · |V are equivalent norms on
V and, therefore, (V, (·, ·)V ) is a real Hilbert space.
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We now establish an existence result for fixed β.
Lemma 4.2. Let (4.1)–(4.5) hold. Given any β ∈ C (0, T ;H) with β(x, t) ∈ [0, 1],

a.e. x ∈ Ω, for all t ∈ [0, T ], there exists a unique w = wβ ∈ C (0, T ;V ) which satisfies
w(t) ∈ K and which solves (3.5) for all t ∈ [0, T ]. Moreover,

|w (t) |H2(Ω) ≤ C,(4.10)

where C is independent of β and t. If, additionally, we have β ∈W 1,∞(0, T ;L∞(Ω)),
then w ∈W 1,∞(0, T ;V ).

Proof. Using (4.5) and (4.9), we find that the bilinear symmetric form a satisfies

|a(u, v)| ≤ C|u|V |v|V ∀u, v ∈ V,(4.11)

a(v, v) ≥ C|v|2V ∀v ∈ V,(4.12)

and hence a is a continuous and coercive form on V .
Since K is a nonempty closed convex set of V , it follows from the projection

theorem (see, e.g., [16, 19, 21]) that, for each t ∈ [0, T ], there exists a unique element
w(t) ∈ K which solves (3.5). Choosing v = 0 in (3.5) and using (4.12), we obtain that
|w (t) |V ≤ C. Now let Aβ : V → V ′ be defined by (Aβ(w), v) = a(β; v, w). Since the
hypotheses on the data imply that Fβ ∈W 1,∞(0, T ;H), we have by Proposition 5.2.2
of [19] that

|Aβ(w(t))|H ≤ C(|Fβ(t)|H + |Aβ(φ)|H) ≤ C.(4.13)

Consequently, standard regularity results [19, 21] in the linear elliptic theory give that
w(t) ∈ H2(Ω). More specifically, by Theorem 2.24 of [21] and (4.13) we have that

|w(t)|H2(Ω) ≤ C(|Aβ(w(t))|H + |w(t)|V ) ≤ C,(4.14)

which gives (4.10). We next show that the function t → w(t) is continuous. To that
end let t1, t2 ∈ [0, T ] and, for the sake of simplicity, we let w(ti) = wi, β(ti) = βi,
Fβi(ti) = Fi and let ai denote the bilinear form a(βi; ·, ·). Using (3.5) twice and
algebraic manipulations, we obtain

a1(w1 − w2, w1 − w2) + κ((β
2
1 − β2

2)w2, w1 − w2)H ≤ (F1 − F2, w1 − w2)H .(4.15)

Now, from (4.10), (4.12), (4.15), and Cauchy’s inequality with ε, we find

|w1 − w2|2V ≤ C(|F1 − F2|2H + |β1 − β2|2H).(4.16)

Since β ∈ C(0, T ;H), we obtain from (4.1), (4.2), (4.4), and (4.16) that w ∈ C(0, T ;V ),
which concludes the proof of the main statement of the lemma. To obtain the addi-
tional regularity result, we introduce, for any nonzero real number h, the difference
quotient in t,

δhw(t) = (w(t+ h)− w(t))/h,(4.17)

and then note that (4.16) implies that, for all t satisfying |h| ≤ t ≤ T − |h|,
|δhw(t)|2V ≤ C(|δhFβ(t)|2H + |δhβ(t)|2H).(4.18)

Since β′ ∈ L∞(0, T ;H) and F ′
β ∈ L∞(0, T ;H), this implies that w′ ∈ L∞(0, T ;V ),

which completes the proof of the lemma.
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Let wβ denote the solution in Lemma 4.2 corresponding to β, and consider the
initial-value problem

θ′ + γκ(wβ + g − φ)2θ = 0 in ΩT ,(4.19)

θ(0) = β0 a.e. on Ω.(4.20)

Under the assumptions on the data given in (4.1)–(4.6), there exists a unique function
θ = θ(β) ∈ W 1,∞(0, T ;L∞(Ω)) which solves (4.19)–(4.20). Let Z denote the closed
convex subset of C (0, T ;H) which is defined by

Z = { β ∈ C (0, T ;H) : β(x, t) ∈ [0, 1], a.e. x ∈ Ω, for all t ∈ [0, T ] } .(4.21)

We have the following containment result.
Lemma 4.3. If β ∈ Z, then θ (β) ∈ Z.
Proof. The result follows from (4.19) and the assumption that β0 (x) ∈ [0, 1] for

almost every x ∈ Ω. Indeed, (4.19) implies that for almost every x ∈ Ω, the function
t �−→ θ (β) (x, t) is decreasing and hence θ(β)(x, t) ≤ 1 a.e. on ΩT . Moreover, θ′(x, t)
vanishes when θ (β) (x, t) = 0, implying that θ(β)(x, t) = 0 a.e. on ΩT . This completes
the proof of the lemma.

To complete the proof of Theorem 4.1, we need only show that the map β → θn(β)
is a contraction on Z for some n. To that end, suppose that βi, i = 1, 2, are two
functions in Z and let t ∈ [0, T ]. We need to compare the functions w1 = wβ1

and
w2 = wβ2

.
Since β1, β2 ∈ Z, we find, by using arguments similar to those used in the proof

of (4.16), that

|w1(t)− w2(t)|V ≤ C|β1(t)− β2(t)|H .
This implies, by the continuity of the embedding of V into H, that

|w1(t)− w2(t)|H ≤ C|β1(t)− β2(t)|H .(4.22)

Now (4.19), (4.20), (4.10), and the continuity of the embedding of V into H yield

|θ(β1)(t)−θ(β2)(t)|H
≤
∫ t

0

|γκ(w1 + g − φ)2(s)θ(β1)(s)− γκ(w2 + g − φ)2(s)θ(β2)(s)|Hds

≤ C

∫ t

0

|w1(s)− w2(s)|Hds+ C
∫ t

0

|θ(β1)(s)− θ(β2)(s)|Hds.

Using a Gronwall-type inequality, we obtain

|θ (β1) (t)− θ (β2) (t)|H ≤ C

∫ t

0

|w1(s)− w2(s)|Hds.(4.23)

Thus, (4.22) and (4.23) yield

|θ (β1) (t)− θ (β2) (t)|H ≤ C

∫ t

0

|β1 (s)− β2 (s)|H ds.(4.24)

Iterating this inequality n times, we deduce

|θn(β1)− θn(β2)|C(0,T ;H) ≤
CnTn

n!
|β1 − β2|C(0,T ;H) .
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Therefore, θn is a contraction mapping on Z for any n sufficiently large, and hence θ
has a unique fixed point in Z which is the unique solution of Theorem 4.1.

Remark. In the problem above, the adhesive is assumed to cover the whole of
the obstacle so that the adhesion field β is defined over all of Ω. If the adhesive
does not cover the entire obstacle, but only the portion corresponding to a subset
Ω∗ ⊂⊂ Ω, then we need to introduce the following minor modifications. Equations
(2.13) and (2.14) hold in Ω∗

T . On the left-hand side of (2.10) we have to replace the

term κ(u−φ)β2 with κ(u−φ)β̃2, where β̃2 is equal to β2 on Ω∗
T and is zero otherwise.

In the variational formulation (3.2) the second integral on the left-hand side is over
Ω∗ instead of Ω, and (3.3) and (3.4) hold in Ω∗. If Ω∗ is of class C1,1, all the results
above hold true for this problem too.

5. Numerical approximations. In this section we consider a fully discrete
approximation of Problem PV . For the sake of simplicity we assume that g = 0 and
thus f̃ = f and φ ≤ 0; otherwise, we need to use f̃ and shift the dependent variable
to w = u−g, as above. We assume that the membrane Ω ⊂ R

2 is a polygonal domain
and we define a regular triangulation {T h}h>0 composed of triangles on it, where h
is the maximal diameter of these triangles. We define the element spaces

V h = {vh ∈ C(Ω̄); vh|τ ∈ P1(τ), τ ∈ T h, vh = 0 on Γ},
Bh = {γh ∈ L∞(Ω) ; γh|τ ∈ P0(τ), τ ∈ T h},

where P1(τ) denotes the polynomial space in two variables of degree at most one.
We will use V h ⊂ V and Bh ⊂ L∞(Ω) to approximate the spaces V and L∞(Ω),
respectively.

Next, we define the piecewise averaging operator Ph : L1(Ω) → Bh (see [13]) by

Phu|τ =
1

meas(τ)

∫
τ

udx, τ ∈ T h, u ∈ L1(Ω).

We next select an approximation Uh ⊂ V h of the convex set U of admissible dis-
placements, as follows. We denote by φh the Lagrange interpolation function of the
obstacle shape function φ, and we assume that φh ≥ φ in Ω. Therefore, one choice of
Uh is

Uh = {vh ∈ V h; vh ≥ φh in Ω},

and, thus, the following conformity condition holds true:

Uh ⊂ U.(5.1)

We suppose below that (5.1) is satisfied. Finally, to simplify the manipulations and
some of the expressions, but without loss of generality, we assume that φ = 0.

To simplify the presentation we redefine the form a as

a(v, w) = α

∫
Ω

∇v · ∇w dx

and the functional j as

j(β; v, w) =

∫
Ω

κβ2vw dx.
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To discretize the time derivatives, we consider a nonuniform partition of the time
interval [0, T ], denoted by 0 = t0 < t1 < · · · < tN = T . We define kn = tn − tn−1,
n = 1, . . . , N , and let k = maxn kn be the largest time step. For a continuous function
w(t) we let w(tn) = wn and define ρ = κγ.

A fully discrete approximation of Problem PV is the following.
Problem PV hk. Find the discrete displacement field uhk = {uhkn }Nn=0 ⊂ Uh and

the discrete adhesion field βhk = {βhkn }Nn=0 ⊂ Bh such that

βhk0 = βh0 ,(5.2)

a(uhkn , v
h − uhkn ) + j(βhkn ;uhkn , v

h − uhkn ) ≥ (fn, v
h − uhkn )H , n = 0, 1, . . . , N,(5.3)

βhkn = βhkn−1 − ρknPh[(uhkn−1)
2](βhkn−1)+ in Ω, n = 1, . . . , N,(5.4)

where βh0 is an approximation of the initial condition β0.
Here we have used (βhkn−1)+ = max{0, βhkn−1}, which is the positive part of βhkn−1,

to ensure that numerically 0 ≤ βhkn−1. The inequality βhkn−1 ≤ 1 is guaranteed since
β0 ≤ 1, and the second term on the right-hand side is nonpositive.

By using classical results on variational inequalities (see, e. g., [11]), we find that
Problem PV hk has a unique solution (uhk, βhk) ⊂ Uh ×Bh.

In what follows we denote by c a generic constant that may vary from line to line
but in any case depends only on the data and is independent of h or k. Our aim now
is to obtain an error estimate for the differences un − uhkn and βn − βhkn . To that end
we integrate (3.3) between 0 and tn and obtain

βn = β0 − ρ
∫ tn

0

(u(s))2β(s)+ds,(5.5)

and we rewrite (5.4) in the form

βhkn = βh0 − ρ
n∑
j=1

kjP
h[(uhkj−1)

2](βhkj−1)+.(5.6)

Subtracting (5.6) from (5.5) and performing some algebraic manipulations, we get

|βn − βhkn |H ≤ |β0 − βh0 |H + c


In + n∑

j=1

kj |(I − Ph)[(uj−1)
2]|H

+

n∑
j=1

kj |(uj−1)
2(βj−1)+ − (uhkj−1)

2(βhkj−1)+|H

 ,

(5.7)

where

In =

∣∣∣∣∣∣−ρ
∫ tn

0

(u(s))2β+(s)ds+ ρ

n∑
j=1

kj(uj−1)
2(βj)+

∣∣∣∣∣∣
H

is the integration error. Now, since 0 ≤ β ≤ 1 we obtain

|(uj−1)
2(βj−1)+ − (uj−1)

2(βhkj−1)+|H
≤ c(|(uj−1)

2 − (uhkj−1)
2|H + |βj−1 − βhkj−1|H)

≤ c(|uj−1 − uhkj−1|V + |βj−1 − βhkj−1|H),
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and so we obtain

|βn − βhkn |H ≤ |β0 − βh0 |H + c


In + n∑

j=1

|(I − Ph)[(uhkj−1)
2]|H +

n∑
j=1

kjej−1


 ,

where en = |un − uhkn |V + |βn − βhkn |H . Next, we put v = vh at time t = tn in (3.2)
and subtract (5.3) to obtain

a(un − uhkn , un − uhkn ) + j(βn;un, un − uhkn )− j(βhkn ;uhkn , un − uhkn )

≤ a(un, un − vh) + a(un − uhkn , un − vh) + j(βn;un, un − vh)
− j(βhkn ;uhkn , un − vh) + (fn, un − vh)H ∀vh ∈ V.

Since

j(βn;un, un − uhkn )− j(βhkn ;uhkn , un − uhkn )

= j(βn;un, un − uhkn )− j(βhkn ;un, un − uhkn ) + j(βhkn ;un − uhkn , un − uhkn ),

after some calculations we obtain

|un − uhkn |2V ≤ c
(|un − vh|V + |un − uhkn |V |un − vh|V + |βn − βhkn |H |un − uhkn |V

)
.

Using the Cauchy inequality ab ≤ εa2 + (1/4ε)b2 for a, b, ε ∈ R, ε > 0, we find that

|un − uhkn |V ≤ c
(
|un − vh|1/2V + |un − vh|V + |βn − βhkn |H

)
.(5.8)

Taking into account (5.7) and (5.8), we obtain the error estimate

|un − uhkn |V + |βn − βhkn |H ≤ c


|un − vh|1/2V + |un − vh|V

+ In +

n∑
j=1

kj |(I − Ph)[(uj−1)
2]|H +

n∑
j=1

kjej−1


 .

(5.9)

Proceeding as in [14], we obtain

In ≤ ck
(|u′|L∞(0,T ;H) + |β′|L∞(0,T ;H)

)
.(5.10)

Applying a discrete version of the Gronwall inequality, we derive from (5.9) and (5.10)
the following result.

Theorem 5.1. Let the assumptions of Theorem 4.1 hold. Then we have the error
estimate

max
1≤n≤N

{|un − uhkn |V + |βn − βhkn |H} ≤ c


 inf
vh∈Uh

[|un − vh|1/2V + |un − vh|V ]

+ k
(|u′|L∞(0,T ;H) + |β′|L∞(0,T ;H)

)
+

n∑
j=1

kj |(I − Ph)[(uj−1)
2]|H


 .

(5.11)
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Estimate (5.11) is a basis for the convergence order analysis. Indeed, we have the
following result.

Corollary 5.2. Let the assumptions of Theorem 4.1 hold. If we assume, in
addition, that the initial condition βh0 is chosen so that |β0 − βh0 |H ≤ ch and that the
operator Ph satisfies

|(I − Ph)v|H ≤ ch for v ∈ H2(Ω),

then

(5.12)

max
1≤n≤N

{|un − uhkn |V + |βn − βhkn |H} ≤ c
(
h1/2|u|L∞(0,T ;H2(Ω))

+ k(|u′|L∞(0,T ;H) + |β′|L∞(0,T ;H))
)
.

We remark that it is likely that the error estimate (5.12) holds for solutions of
weaker regularity. However, in the present setting we have, as a consequence of (2.1)
and the regularity of our solutions, that the reaction force satisfies

ξ ∈ L∞(0, T ;H).(5.13)

Consequently, it follows that

|a(un, vh − un) + j(βn; , un, vh − un)− (fn, v
h − un)H | ≤ |ξ|L∞(0,T ;H)|un − vh|H .

Thus we obtain the following improved error estimate.
Theorem 5.3. Let the hypotheses of Corollary 5.2 hold. Then

(5.14)

max
1≤n≤N

{|un − uhkn |V + |βn − βhkn |H} ≤ c
(
h(|ξ|L∞(0,T ;H) + |u|L∞(0,T ;H2(Ω)))

+ k(|u′|L∞(0,T ;H) + |β′|L∞(0,T ;H))
)
.

6. Numerical simulations. In order to verify the performance of the numerical
algorithm described in the previous section and to gain insight into the behavior of
the solutions, we performed several numerical experiments. In this section, we present
three of the results obtained in these numerical simulations. Our main purpose is to
show that the algorithm performed well. But also there is some interest in the results,
which depict the evolution of the bonding field.

6.1. The numerical scheme. In the numerical simulations presented below,
we use the fully discretized scheme PV hk analyzed in the previous section. In all
cases, we assume that V h is composed of continuous and piecewise affine functions
and Bh consists of piecewise constant functions. Therefore, Problem PV hk is solved
as follows.

Given βhk0 ∈ Bh, find uhk0 satisfying

a(uhk0 , v
h − uhk0 ) + j(βhk0 ;uhk0 , v

h − uhk0 ) ≥ (f0, v
h − uhk0 )H ∀vh ∈ Uh.(6.1)

Then, for n = 1, . . . , N , find (βhkn , u
hk
n ) satisfying

βhkn = βhkn−1 − ρknPh[(uhkn−1)
2](βhkn−1)+ in Ω,(6.2)

a(uhkn , v
h − uhkn ) + j(βhkn ;uhkn , v

h − uhkn ) ≥ (fn, v
h − uhkn )H ∀vh ∈ Uh.(6.3)
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Fig. 2. Test Problem 1. The displacement and adhesion fields at final time.

The variational inequalities (6.1) and (6.3) have been solved by using a penalty-
duality algorithm (see, e.g., [2, 3]). The numerical method was implemented on a
IBM RISC6000 computer, and a typical run took about 15 seconds of CPU time.

6.2. Numerical solutions. We present now three test problems for the algo-
rithm. In all examples, we choose Ω = (0, 1) × (0, 1) as the membrane domain and
we assume that the displacement field vanishes on Γ = ∂Ω. Moreover, in the first
two we assume that the obstacle shape function φ = 0, while in the third example it
is piecewise linear. We study the evolution of the displacement and adhesion fields
during the time period of one second (i.e., T = 1 sec).

In the first example, we used the following data:

κ = 1N/m3, γ = 1m/N sec, α = 1N/m,
f(x, y, t) = 100N/m2, φ = 0m,
β0 = 1 in Ω.

In Figure 2 we plot the displacement and the adhesion fields at the final time.
The discretization parameter k = 0.01 was used.
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Fig. 3. Test Problem 2. The displacement and adhesion fields at final time.

In the second example, we used the following numerical data:

κ = 104N/m3, γ = 10−2m/N sec, α = 1N/m,
f(x, y, t) = 100N/m2, φ = 0m,

β0(x, y, ) =

{
1 if 0.3 ≤ x ≤ 0.6, 0.3 ≤ y ≤ 0.6,
0 elsewhere.

We note that initially there is glue only on a part of the obstacle, and since the process
is irreversible, the rest of the obstacle remains clear of glue.

Figure 3 depicts the displacement and adhesion fields at the final time for the
value k = 0.001.

Finally, in the third example we used a nonflat obstacle of the form

φ = φ(x, y) =



4x− 2 if 0 ≤ x ≤ 0.25,

−1 if 0.25 ≤ x ≤ 0.75,

4x− 4 if 0.75 ≤ x ≤ 1.
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Fig. 4. Test Problem 3. The displacement and adhesion fields for f = 10.

We used the same values of the constants as in the two examples above, but with four
different forces f = 1, 10, 50, 100 and initial adhesive

β0(x, y) =

{
1 if 0.25 ≤ x ≤ 0.75,
0 elsewhere.

In Figure 4 we show the displacement and adhesion fields at t = 1 for f = 10.
In Figure 5 we show the displacement and adhesion fields at final time for the

four different forces.
The algorithm was found to behave well, and the results are close to what one

would expect. These simulations depict the behavior of the solutions. The settings
and the conditions were chosen so that the evolution of the bonding field would be
clear, and since the model is irreversible, the debonding is monotone.

The algorithm and the code could and will be used for thorough investigations,
in conjunction with experimental results in real adhesion problems, for the purpose
of parameter identification and model validation. In this way, they can be used to
predict the behavior of real systems.

7. Conclusion. A model for the adhesive contact between a membrane and a
rigid obstacle has been derived, its variational form obtained, and the existence of the
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Fig. 5. Test Problem 3. The displacement and adhesion fields for four forces.

unique weak solution established. The model is in the form of an elliptic variational
inequality for the membrane displacements coupled with an ordinary differential equa-
tion for the bonding field. The problem is a new and interesting version of the classical
contact problem for the membrane and is a free boundary problem as well.

The existence and uniqueness of the weak solution have been proven by using
regularity results in the theory of elliptic variational inequalities and a fixed point
argument. A fully discrete algorithm for the problem has been derived and its con-
vergence established. Error estimates were obtained together with the convergence
order. The algorithm has been implemented and numerical simulations presented.

An open problem warranting further investigation is the evolution of the free
boundary. It would be of interest to estimate and simulate the evolution of the
contact set and the free boundary Γ∗. Another open question of interest deals with
the asymptotic behavior of the solutions. In particular, it would be interesting to
characterize the subset of functions in L∞(Ω) that are limits, as t → ∞, of bonding
fields β that are solutions to membrane problems.

Finally, the validation of the model by comparison to experimental results, includ-
ing the recovery of parameters from experimental observations, are obvious applied
next steps.
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1. Introduction. The concept of two-scale convergence is a well-established tool
in the theory of homogenization of elliptic equations with rapidly oscillating coeffi-
cients; see, e.g., [2, 3, 7, 10, 12, 14, 17, 19, 21, 26, 27, 28]. The results apply to several
types of partial differential equations that are used in the engineering sciences, such as
heat conduction, elastic deformation, porous media, and acoustics. The situation is,
however, different with the Maxwell equations, and the few results that exist adopt
boundary conditions that are of less importance in applications. Specifically, the
boundary conditions employed in the literature (see, e.g., [4, 6, 15, 18, 20, 26, 27, 28])
are those of perfectly conducting walls. This situation applies to the case of a res-
onator filled with a heterogeneous material, but for other situations these boundary
conditions are less applicable. Moreover, there is a need for a better understanding
of how a microscopic structure alters the macroscopic electric and magnetic behavior
of the material if the sources of the electromagnetic fields are located outside the
heterogeneous material. In fact, most applications in the engineering sciences use
external excitations, and to find the homogenized parameters of a heterogeneous ma-
terial, other boundary conditions, such as the penetrable boundary conditions, must
be used.

The engineering literature is dominated by the simple mixture formulae, which
are derived using physical arguments. For an excellent overview and history of the
mixture formulae, see [22].
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The object of this paper is to analyze thoroughly the homogenization of the
Maxwell equations for a bounded object with penetrable boundary conditions. This
homogenization problem seems not to have been published before in the literature.
Moreover, the boundary condition implies that the excitation must be due to external
sources. This situation is very important in many engineering applications, such as
antenna applications. The two-scale convergence of the Maxwell equations depends
on an a priori estimate of the fields. The external sources alter the traditional way
of homogenization with two-scale convergence. In fact, in addition to the interior
homogenization problem, there is an exterior scattering problem that couples via the
boundary conditions to the interior problem. We solve this problem by introducing the
Calderón operators, which map the tangential electric field to the tangential magnetic
field on the bounding surface. In order to apply the boundary conditions and the
Calderón operators, a new a priori estimate has been derived. The paper also includes
new results on the correctors.

The paper is organized in the following way. Section 2 contains the prerequisites
of the paper. The existence of solutions is proved in section 3, and the homogenization
of the Maxwell equations is derived in section 4. We illustrate the exterior Calderón
operator with two examples in section 5. The paper is concluded with a series of
appendices that contain definitions of function spaces (Appendix A), and some im-
portant theorems (Appendix B). In Appendix C, the vector spherical waves used in
section 5 are defined.

2. Formulation of the problem.

2.1. Domain and incident fields. Assume Ω is a bounded, open, simply con-
nected set in R

3 with C1,1 boundary, ∂Ω. The outward-pointing unit normal is ν̂.
The exterior of the volume Ω is denoted Ωe = R

3\Ω, which is assumed vacuous. See
Figure 2.1 for a typical geometry.

The incident fields, Ei and Hi, are assumed to have their sources outside Ω in a
bounded region Ωi, i.e., Ω ∩ Ωi = ∅. It is assumed to be a fixed field throughout this
paper. Outside this region the fields satisfy the time-harmonic Maxwell equations in
vacuum time convention e−iωt, i.e., they satisfy1

{
∇×Ei(x) = ik0Hi(x),

∇×Hi(x) = −ik0Ei(x),
x ∈ R

3.

The wave number in a vacuum is k0 = ω/c0, where ω is the angular frequency of the
fields, and c0 is the speed of light in a vacuum. The incident fields Ei and Hi are
assumed to have traces on ∂Ω belonging to H− 1

2 (div, ∂Ω), i.e., (ν̂ ×Ei, ν̂ ×Hi) ∈
H− 1

2 (div, ∂Ω)×H− 1
2 (div, ∂Ω); see Appendix A for definitions of the function spaces.

Otherwise, the incident fields are arbitrary.

2.2. Interior problem. In Ω we assume there is a material modeled by the
permittivity dyadic ε(x) and the permeability dyadic µ(x). The permittivity dyadic

1We use scaled electric and magnetic fields in this paper; i.e., the SI-unit fields ESI and HSI are
related to the fields E and H used in this paper by

ESI(x) =
E(x)√
ε0

, HSI(x) =
H(x)√
µ0

,

where the permittivity and permeability of vacuum are denoted ε0 and µ0, respectively.
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Fig. 2.1. Typical geometry of the scattering problem in this paper.

is assumed to satisfy

−ik0ξ ·
(
ε(x)− ε(x)†) · ξ∗ ≥ C1|ξ|2 for all ξ ∈ C

3 and a.e. x ∈ Ω(2.1)

and

|ε(x) · ξ| ≤ C2|ξ| for all ξ ∈ C
3 and a.e. x ∈ Ω,(2.2)

where † denotes the Hermitian of the dyadic ε and Ci > 0, i = 1, 2. The condition
in (2.1) corresponds physically to a passive material, i.e., a material that show dis-
sipation. The entries of ε(x) are assumed to belong to L∞(Ω), which implies (2.2).
Similar assumptions hold for the permeability µ. We note that it follows that ε and
µ are invertible and that the inverses have the same kind of properties [9, p. 22].

In Ω the electric field E and the magnetic field H satisfy the Maxwell equations{
∇×E(x) = ik0µ(x) ·H(x),

∇×H(x) = −ik0ε(x) ·E(x),
x ∈ Ω.(2.3)

We are looking for solutions E and H of these equations in the space H(rot,Ω). A
weak formulation of the solution to this problem is found in section 3.2.1.

2.3. Exterior problem. The presence of the material in the domain Ω distorts
the incident fields Ei and Hi. This distortion is denoted by the scattered fields, Es

and Hs. They belong to Hloc(rot,Ωe) and satisfy{
∇×Es(x) = ik0Hs(x),

∇×Hs(x) = −ik0Es(x),
x ∈ Ωe.(2.4)

Moreover, the scattered fields satisfy the Silver–Müller radiation condition at infinity,
i.e., one of the following conditions (see [11]):{

x̂×Es(x)−Hs(x) = o(1/x),

x̂×Hs(x) +Es(x) = o(1/x)
as x→ ∞(2.5)

uniformly in all directions x̂.
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In Ωe the sum of the incident and the scattered fields is defined as the total field,
i.e., {

Et(x) = Ei(x) +Es(x),

Ht(x) =Hi(x) +Hs(x),
x ∈ Ωe.

The boundary conditions on ∂Ω are{
ν̂ × Ei|∂Ω + ν̂ × Es|∂Ω = ν̂ × E|∂Ω ,

ν̂ × Hi|∂Ω + ν̂ × Hs|∂Ω = ν̂ × H|∂Ω ,
(2.6)

where the traces of the fields are taken from the outside (inside) in the left-hand

(right-hand) side of the equations and belong to H− 1
2 (div, ∂Ω).

2.4. Calderón operators. The Calderón operator Ce utilizes the solution of a
specific exterior problem. In fact, the following exterior problem, based upon (2.4)

and (2.5) and given m ∈ H− 1
2 (div, ∂Ω), is fundamental:



(1) (Es,Hs) ∈ Hloc(rot,Ωe)×Hloc(rot,Ωe),

(2)

{
∇×Es(x) = ik0Hs(x),

∇×Hs(x) = −ik0Es(x),
x ∈ Ωe,

(3)




x̂×Es(x)−Hs(x) = o(1/x)

or

x̂×Hs(x) +Es(x) = o(1/x)

as x→ ∞,

(4) ν̂ × Es|∂Ω =m ∈ H− 1
2 (div, ∂Ω).

(Problem (R))(2.7)

This problem has a unique solution [4, 9]; see also section 3.1.
We have the following results proved in [9, p. 35].
Theorem 2.1. With the boundary ∂Ω of regularity C1,1, the mapping

γτ : u→ ν̂ × u|∂Ω

is a continuous mapping from Hloc(rot,Ωe) onto H− 1
2 (div, ∂Ω).

The trace theorem is a local property of the field at the boundary, and the theorem
shows that the field loses regularity on the boundary. We note that a similar result
holds when the trace is taken from the inside of the boundary; see section 3.2.

The linear mapping of the electric field to the corresponding magnetic field on
the boundary for a solution of the exterior problem is called the exterior Calderón
operator. The following makes this definition precise.

Definition 2.2. The exterior Calderón operator Ce is defined as

Ce :m→ ν̂ × Hs|∂Ω , H− 1
2 (div, ∂Ω) → H− 1

2 (div, ∂Ω),

where m = ν̂ × Es|∂Ω and the fields Es and Hs satisfy Problem (R) in (2.7).
Notice that the exterior Calderón operator Ce is uniquely defined for all m ∈

H− 1
2 (div, ∂Ω), since Problem (R) has a unique solution. Two explicit examples of the

exterior Calderón operator are given in section 5.
Theorem 2.3. The exterior Calderón operator defined in Definition 2.2 has the

following properties:
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1. The exterior Calderón operator satisfies the positivity condition

�
∫∫

∂Ω

Ce(m) · (ν̂ ×m∗) dS ≥ 0 for allm ∈ H− 1
2 (div, ∂Ω).(2.8)

2. The exterior Calderón operator satisfies

(Ce)
2
= −I on H− 1

2 (div, ∂Ω),

which implies that Ce is bounded on H− 1
2 (div, ∂Ω).

3. The exterior Calderón operator is independent of the material properties in-
side Ω.

Here dS denotes the surface measure of ∂Ω.
Proof of Theorem 2.3. Property 1 is a simple consequence of the radiation condi-

tion and proved in, e.g., [9]. Specifically, the radiation conditions, (2.5), imply

�
∫∫

∂Ω

ν̂ · (Es ×H∗
s) dS = �

∫∫
|x|=R

x̂ · (Es ×H∗
s) dS =

∫∫
|x|=R

|Es|2 dS + o(1)

as R→ ∞, which implies (2.8), since ν̂ · (E∗
s ×Hs) = −Ce(ν̂ ×Es) ·E∗

s.
Moreover, to prove property 2 we utilize the symmetry {Es,Hs} → {Hs,−Es}

in (2.4) and the uniqueness of the exterior problem.
Property 3 is a consequence of the uniqueness of the exterior problem.
An immediate consequence of the positivity property of Ce is that

−�
∫∫

∂Ω

Ce(ν̂ ×Es) ·E∗
s dS ≥ 0 for all ν̂ ×Es ∈ H− 1

2 (div, ∂Ω).(2.9)

3. Existence of solutions. The existence of exterior and interior solutions is
addressed in this section.

3.1. Exterior problem. The system (2.4) with the radiation condition (2.5)
supplied with the boundary condition

ν̂ × Es|∂Ω =m ∈ H− 1
2 (div, ∂Ω),

i.e., Problem (R) in (2.7), has a unique solution in (Es,Hs) ∈ Hloc(rot,Ωe)×Hloc(rot,

Ωe) for any m ∈ H− 1
2 (div, ∂Ω) [9, p. 107].

3.2. Interior problem. We have the interior trace result, similar to Theo-
rem 2.1.

Theorem 3.1. With the boundary ∂Ω of regularity C1,1, the mapping

γτ : u→ ν̂ × u|∂Ω

is a continuous mapping from H(rot,Ω) onto H− 1
2 (div, ∂Ω).

3.2.1. Sesquilinear form and weak solutions. Using Theorem 3.1, we can
now define the sesquilinear form (see [9])

a(u,v) =−
∫∫∫

Ω

{
1

ik0
(∇× v∗) · µ−1 · (∇× u) + ik0v∗ · ε · u

}
dv

−
∫∫

∂Ω

Ce(ν̂ × u) · v∗ dS

for u and v in H(rot,Ω). We denote the volume measure in R
3 by dv in this paper.
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A weak formulation of the original problem is then to findE ∈ H(rot,Ω) such that

a(E,v) =

∫∫
∂Ω

(ν̂ ×Hi − Ce(ν̂ ×Ei)) · v∗ dS for all v ∈ H(rot,Ω).(3.1)

This solution satisfies the boundary conditions, (2.6), and couples to the exterior
solution in (2.4)–(2.5). The corresponding magnetic field H is then constructed as2{

H(x) = − i
k0
µ−1(x) · (∇×E(x)),

∇×H(x) = −ik0ε(x) ·E(x),
x ∈ Ω.

To see this, let E be a sufficiently regular solution to the Maxwell equations, (2.3).
Then (3.1) is equivalent to the Maxwell equations with a coupling to an exterior
solution since

a(E,v) = −
∫∫∫

Ω

{(∇× v∗) ·H − v∗ · (∇×H)} dv −
∫∫

∂Ω

Ce(ν̂ ×E) · v∗ dS

=

∫∫
∂Ω

{(ν̂ ×H) · v∗ − Ce(ν̂ ×E) · v∗} dS,

which is identical to (3.1) by the use of the boundary conditions on ∂Ω and by the
definition ∫∫

∂Ω

Ce(ν̂ ×Es) · v∗ dS =

∫∫
∂Ω

(ν̂ ×Hs) · v∗ dS.

Moreover, the sesquilinear form a is coercive, i.e.,

�a(u,u) =−
∫∫∫

Ω

1

ik0
(∇× u∗) ·

(
µ−1 − µ−1†

)
· (∇× u) dv

−
∫∫∫

Ω

ik0u
∗ · (ε− ε†) · u dv(3.2)

−�
∫∫

∂Ω

Ce(ν̂ × u) · u∗ dS ≥ C‖u‖2
H(rot,Ω),

since from (2.1) we get3


−ik0ξ ·
(
ε(x)− ε(x)†) · ξ∗ ≥ C1|ξ|2,

i
k0
ξ ·
(
µ−1(x)− µ−1†(x)

)
· ξ∗ ≥ C2|ξ|2

for all ξ ∈ C
3 and a.e. x ∈ Ω,

and we have also used (2.9).

2This construction is consistent since −ik0ε(x) · E(x) is the weak curl of H(x) = − i
k0
µ−1(x) ·

(∇× E(x)). In fact, we have

(H,∇× φ) + ik0 (ε · E,φ) = 0 for all φ ∈ D(Ω;C3)

since a(E,φ) = 0 for all φ ∈ D(Ω;C3).
3With (2.1) we get

i

k0

(
µt · ζ) · (µ−1 − µ−1†

)
· (µt · ζ)∗ =

i

k0
ζ ·
(
µ† − µ

)
· ζ∗ ≥ C2

k20
|ζ|2.

Applying this result with ζ = µt
−1 · ξ, we get

i

k0
ξ ·
(
µ−1 − µ−1†

)
· ξ∗ ≥ C2

k20
|µt−1 · ξ|2 ≥ C|ξ|2

since µ is invertible.
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3.2.2. Existence of a unique solution. Equation (3.1) has a unique solution
in H(rot,Ω) due to the Lax–Milgram theorem (see Theorem A.1), since the sesquilin-
ear form a(u,v) is continuous, bounded, and coercive, and the right-hand side of (3.1)
is continuous on H(rot,Ω). In fact,∣∣∣∣

∫∫
∂Ω

(ν̂ ×Hi − Ce(ν̂ ×Ei)) · v∗ dS
∣∣∣∣

≤
(
‖ν̂ ×Hi‖

H− 1
2 (div,∂Ω)

+ ‖Ce(ν̂ ×Ei)‖
H− 1

2 (div,∂Ω)

)
‖v‖

H− 1
2 (rot,∂Ω)

≤ C ′
(
‖ν̂ ×Hi‖

H− 1
2 (div,∂Ω)

+ ‖(ν̂ ×Ei)‖
H− 1

2 (div,∂Ω)

)
‖v‖H(rot,Ω)

by Minkowski’s inequality, duality [9, p. 38], and the continuous dependence of the
trace norm on the norm of the corresponding function space.

4. Homogenization. So far we have considered a general heterogeneous scat-
tering problem with a unique solution inH(rot,Ω) for a given incident electromagnetic
field. But if the heterogeneous material in Ω has a typical spatial scale which is much
smaller than the size of the domain, then one runs into severe numerical problems if
one tries to apply some standard numerical code, e.g., a finite element method (FEM).
The principal obstacle is that the fine scale requires a very fine numerical mesh which
generates a far too large linear system of equations for any computer to solve. How-
ever, if the wavelength of the incident field is much larger than the fine scale, then
the field cannot resolve the fine scale and the solution of the Maxwell equations can
be approximated by the solution of a scattering problem with constant coefficients;
i.e., the heterogeneous material in Ω has been replaced by a homogeneous material
with the same effective material properties. The procedure for finding these effective
properties of the heterogeneous material is called homogenization.

4.1. Heterogeneous problem. Let us begin with the definition of a Y -cell
which is the open unit cube in R

3, i.e., Y = ]0, 1[
3
. Further, from now on we assume

that ε and µ are Y -periodic, which is defined as ε(x+ êk) = ε(x) for every k = 1, 2, 3,
where êk, k = 1, 2, 3, is the canonical basis in R

3.
In the following, we assume that the material in the domain Ω is periodic with

period ε in the three Cartesian coordinate directions, i.e., it is the union of a collection
of disjoint, open identical cubes4 with side length ε (Y ε-cells); see Figure 4.1. It is
easily verified that the scaled permeability and permittivity, ε(x/ε) and µ(x/ε), are
periodic with period ε.

In Ω the fields satisfy the source-free Maxwell equations5


∇×Eε(x) = ik0B
ε(x),

∇×Hε(x) = −ik0Dε(x),

∇ ·Bε(x) = 0,

∇ ·Dε(x) = 0,

x ∈ Ω,

4More generally, Y = (0, a1)× (0, a2)× (0, a3), where ai > 0, i = 1, 2, 3, and ε(x + akêk) = ε(x)
for every x ∈ R

3 and for every k = 1, 2, 3. A similar result holds for the permeability µ.
5The electric and magnetic fields are scaled as above (see footnote 1), and the SI-unit flux

densities DSI and BSI are related to the fields D and B used in this paper by

DSI(x) =
√
ε0D(x), BSI(x) =

√
µ0B(x).
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Ω

ε

Y ε-cell

Fig. 4.1. Typical periodic geometry of the material parameters.

almost everywhere, with boundary conditions given by (2.6). By using the constitutive
relations for the periodic material,{

Dε(x) = ε(x/ε) ·Eε(x),

Bε(x) = µ(x/ε) ·Hε(x),
x ∈ Ω,

we eliminate Dε, Bε and obtain


∇×Eε(x) = ik0µ(x/ε) ·Hε(x),

∇×Hε(x) = −ik0ε(x/ε) ·Eε(x),

∇ · {ε(x/ε) ·Eε(x)} = 0,

∇ · {µ(x/ε) ·Hε(x)} = 0,

x ∈ Ω,(4.1)

where the solution (Eε,Hε) is in H(rot,Ω) × H(rot,Ω) and belongs to a family of
solutions, one for each ε. In the homogenization procedure we identify the limit of the
fields Eε,Hε when ε→ 0. This limit satisfies the homogenized system with constant
coefficients, which is a model of a homogeneous material.

4.1.1. A priori estimate. We note that the heterogeneous system in (4.1) is of
the same form as (2.3) and that the constitutive relations satisfy the same assumptions
as in section 2.2. A weak formulation of the two first equations in (4.1) supplied with
boundary conditions (2.6) reads

aε(Eε,v) =

∫∫
∂Ω

(ν̂ ×Hi − Ce(ν̂ ×Ei)) · v∗ dS for all v ∈ H(rot,Ω),(4.2)

where

aε(u,v) = −
∫∫∫

Ω

{
1

ik0
(∇× v∗) · µ−1(x/ε) · (∇× u)

+ ik0v
∗ · ε(x/ε) ·u

}
dv −

∫∫
∂Ω

Ce(ν̂ × u) · v∗ dS.(4.3)

We have the following a priori estimate.
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Theorem 4.1. Let Eε,Hε be a solution of (4.2); then

‖Eε‖H(rot,Ω) + ‖Hε‖H(rot,Ω) ≤ C,
where the constant C depends only on the domain Ω, the material parameters in Ω,
and the strength of the incident field.

Proof of Theorem 4.1. The sesquilinear form aε(u,v) is coercive (cf. (3.2)), and
the weak formulation (4.2) gives

C‖Eε‖2
H(rot,Ω) ≤ �aε(Eε,Eε) ≤ |aε(Eε,Eε)|

=

∣∣∣∣
∫∫

∂Ω

(ν̂ ×Hi − Ce(ν̂ ×Ei)) · (Eε)∗ dS
∣∣∣∣

≤
(
‖ν̂ ×Hi‖

H− 1
2 (div,∂Ω)

+‖Ce(ν̂ ×Ei)‖
H− 1

2 (div,∂Ω)

)
‖Eε‖

H− 1
2 (rot,∂Ω)

≤ C ′
(
‖ν̂ ×Hi‖

H− 1
2 (div,∂Ω)

+ ‖(ν̂ ×Ei)‖
H− 1

2 (div,∂Ω)

)
‖Eε‖H(rot,Ω)

by Minkowski’s inequality, duality [9, p. 38], and the continuous dependence of the
trace norm on the norm of the corresponding function space. It follows now that

‖Eε‖H(rot,Ω) ≤ C ′
(
‖ν̂ ×Hi‖

H− 1
2 (div,∂Ω)

+ ‖(ν̂ ×Ei)‖
H− 1

2 (div,∂Ω)

)
≤ C

by the assumption of the incident field. The bound of Eε can now be used in (4.1)
to get the estimate of Hε.

4.2. Homogenized problem.
Theorem 4.2. The sequence of solutions (Eε,Hε) of (4.1) converges weakly in

H(rot,Ω) ×H(rot,Ω) to (E,H) ∈ H(rot,Ω) ×H(rot,Ω), the unique solution of the
homogenized Maxwell equations


∇×E(x) = ik0µ

h ·H(x),

∇×H(x) = −ik0εh ·E(x),

∇ ·B(x) = 0,

∇ ·D(x) = 0,

(4.4)

which is coupled to the exterior problem (2.4)–(2.5) via the boundary conditions (2.6).
The homogenized permeability and permittivity εh and µh are defined by


εh =

∫∫∫
Y

ε(y) · (I3 −∇yχe(y)) dvy,

µh =

∫∫∫
Y

µ(y) · (I3 −∇yχh(y)) dvy,

χe(y) =

3∑
i=1

χie(y)êi, χh(y) =

3∑
i=1

χih(y)êi,(4.5)

where χie(y) and χih(y), i = 1, 2, 3, in H1
#(Y )/C solve the local elliptic problems



∫∫∫
Y

∇yw(y) · ε(y) ·
(
êi −∇yχ

i
e(y)

)
dvy = 0,∫∫∫

Y

∇yw(y) · µ(y) ·
(
êi −∇yχ

i
h(y)

)
dvy = 0

(4.6)

for all w ∈ H1
#(Y ).
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We note that the weak convergence is sharp in the sense that it never converges
strongly in H(rot,Ω) except in the electrostatic case (see the note after Theorem B.3).
However, we can get strong convergence by the use of corrector functions; see sec-
tion 4.2.2. These functions contain the fine-scale information in the problem and yield
strong convergence when scaled and added to the homogenized solution.

Proof of Theorem 4.2. We use the concept of two-scale convergence; see Ap-
pendix B. Due to the a priori estimates there exists a subsequence which converges
in the two-scale sense. We will keep the index ε for this subsequence. In the end we
conclude that the whole original sequence converges due to the fact that the homog-
enized system has a unique solution. Let φ(x) = εw(x/ε)v(x), where w ∈ H1

#(Y )

and v ∈ C∞
0 (Ω;C3). Then φ ∈ H(rot,Ω) and is an admissible test function. We get

in (4.1) 


∫∫∫
Ω

Eε(x) · {εw(x/ε)∇x × v(x) +∇yw(x/ε)× v(x)} dv

− ik0
∫∫∫

Ω

εw(x/ε)v(x) · {µ(x/ε) ·Hε(x)} dv = 0,∫∫∫
Ω

Hε(x) · {εw(x/ε)∇x × v(x) +∇yw(x/ε)× v(x)} dv

+ ik0

∫∫∫
Ω

εw(x/ε)v(x) · {ε(x/ε) ·Eε(x)} dv = 0.

In the limit ε↘ 0 we get


∫∫∫
Ω

Eε(x) · (∇yw(x/ε)× v(x)) dv → 0,∫∫∫
Ω

Hε(x) · (∇yw(x/ε)× v(x)) dv → 0,

since Eε and Hε are uniformly bounded in ε in the L2(Ω;C3)-norm. By the use of
Theorem B.6, we get



∫∫∫
Ω

∫∫∫
Y

E0(x,y) · (∇yw(y)× v(x)) dvy dvx = 0,∫∫∫
Ω

∫∫∫
Y

H0(x,y) · (∇yw(y)× v(x)) dvy dvx = 0,

which implies after cyclic permutation that


∫∫∫
Y

E0(x,y)×∇yw(y) dvy = 0,∫∫∫
Y

H0(x,y)×∇yw(y) dvy = 0,

x ∈ Ω a.e.

for all w ∈ H1
#(Y ). The functions E0(x,y) and H0(x,y) both belong to the

space L2(Ω;L2
#(Y ;C3)). From Lemma B.5 we conclude that the fields E0(x,y) and

H0(x,y) can be decomposed as{
E0(x,y) = E(x) +∇yΦ1(x,y),

H0(x,y) =H(x) +∇yΨ1(x,y),

where

E(x) = 〈E0(x,y)〉 =
∫∫∫

Y

E0(x,y) dvy
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and similarly for the field H0(x,y). In summary,{
Eε(x)

2-s
⇀ E(x) +∇yΦ1(x,y),

Hε(x)
2-s
⇀H(x) +∇yΨ1(x,y).

Multiplication of (4.1) by the admissible test functions φ ∈ C∞
0 (Ω;C3) gives



∫∫∫
Ω

∇x ×Eε(x) · φ(x) dv − ik0
∫∫∫

Ω

φ(x) · {µ(x/ε) ·Hε(x)} dv = 0,∫∫∫
Ω

∇x ×Hε(x) · φ(x) dv + ik0
∫∫∫

Ω

φ(x) · {ε(x/ε) ·Eε(x)} dv = 0.

In the limit ε↘ 0 we get




∫∫∫
Ω

∇x ×E(x) · φ(x) dvx
− ik0

∫∫∫
Ω

∫∫∫
Y

φ(x) · µ(y) · (H(x) +∇yΨ1(x,y)) dvy dvx = 0,∫∫∫
Ω

∇x ×H(x) · φ(x) dvx
+ ik0

∫∫∫
Ω

∫∫∫
Y

φ(x) · ε(y) · (E(x) +∇yΦ1(x,y)) dvy dvx = 0.

(4.7)

Here we have used Theorem B.8, which states that

∇×Eε 2-s
⇀ ∇x ×E0(x,y) +∇y ×E1(x,y),

which gives the weak limit ∇x ×E(x) since the admissible test function φ does not
depend on y.

The divergence equations are multiplied by v(x) = εψ(x)φ(x/ε), where ψ ∈
C∞

0 (Ω), φ ∈ H1
#(Y ). We note that wε(y) = êi · ε(y) · êj ∈ L∞

# (Y ) and wµ(y) =

êi · µ(y) · êj ∈ L∞
# (Y ), which implies that wε(y)∇yφ and wµ(y)∇yφ ∈ L2

#(Y ;C3).
Theorem B.3 and an integration by parts give

lim
ε↘0

∫∫∫
Ω

∇ · {ε(x/ε) ·Eε(x)} εψ(x)φ(x/ε) dvx

= − lim
ε↘0

∫∫∫
Ω

{ε∇ψ(x)φ(x/ε) + ψ(x)∇yφ(x/ε)} · {ε(x/ε) ·Eε(x)} dvx

= −
∫∫∫

Ω

∫∫∫
Y

ψ(x)∇yφ(y) · ε(y) · {E(x) +∇yΦ1(x,y)} dvy dvx = 0

for all φ ∈ H1
#(Y ) and all ψ ∈ H1

0 (Ω). Using similar arguments for the magnetic field,
we get the local equations



∫∫∫
Y

∇yφ(y) · ε(y) · {E(x) +∇yΦ1(x,y)} dvy = 0,∫∫∫
Y

∇yφ(y) · µ(y) · {H(x) +∇yΨ1(x,y)} dvy = 0,

x ∈ Ω a.e.(4.8)

Define the vector fields

χe(y) =

3∑
i=1

χie(y)êi, χh(y) =

3∑
i=1

χih(y)êi.
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The variables can be separated by using the ansatz{
∇yΦ1(x,y) = −∇yχe(y) ·E(x),

∇yΨ1(x,y) = −∇yχh(y) ·H(x)

inserted into (4.8), which gives{
〈∇yφ(y) · (ε(y)− ε(y) · ∇yχe(y))〉 ·E(x) = 0,

〈∇yφ(y) · (µ(y)− µ(y) · ∇yχh(y))〉 ·H(x) = 0

for all φ ∈ H1
#(Y ), i.e.,

{
∇y · (ε(y)− ε(y) · ∇yχe(y)) = 0,

∇y · (µ(y)− µ(y) · ∇yχh(y)) = 0

a.e. in Ω × Y . Inserting the solutions of the local equations into (4.7) yields the
macroscopic homogenized equations


∫∫∫
Ω

∇x ×E(x) · φ(x) dvx
− ik0

∫∫∫
Ω

∫∫∫
Y

φ(x) · (µ(y)− µ(y) · ∇yχh(y)) dvy ·H(x) dvx = 0,∫∫∫
Ω

∇x ×H(x) · φ(x) dvx
+ ik0

∫∫∫
Ω

∫∫∫
Y

φ(x) · (ε(y)− ε(y) · ∇yχe(y)) dvy ·E(x) dvx = 0

and {
∇ ·B(x) = 0,

∇ ·D(x) = 0,

which defines the homogenized permeability and permittivity as


εh =

∫∫∫
Y

ε(y) · (I3 −∇yχe(y)) dvy,

µh =

∫∫∫
Y

µ(y) · (I3 −∇yχh(y)) dvy,

i.e., B = µh ·H andD = εh ·E. The existence of a unique solution of the homogenized
system follows from the properties of the homogenized permeability and permittivity,
µh and εh, respectively (see section 4.2.1), which satisfies the same assumptions as
the material properties for the heterogeneous system.

4.2.1. The properties of the homogenized parameters. An immediate con-
sequence of Theorem 4.2 is that the homogenized parameters are independent of the
properties of the domain Ω and of the properties of the incident field. Moreover, the
homogenized material properties satisfy the same assumptions as the heterogeneous
parameters do, i.e., they are coercive and bounded. Coercivity and boundedness fol-
low from the fact that the homogenized parameters are bounded from below and above
by the harmonic and arithmetic averages of the heterogeneous parameters; hence the
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homogenized parameters are bounded from below and above (e.g., see [5] or [24]). If
the heterogeneous material parameters are symmetric (reciprocal material), then the
homogenized parameters are also symmetric as proved below.

Proposition 4.3. The homogenized permeability and permittivity are symmetric,
provided the heterogeneous parameters are symmetric.

Proof of Proposition 4.3. We restrict ourselves to the electric parameters since the
arguments for the permeability are the same. By assumption the material parameters
are symmetrical, i.e., ε(y) = εt(y) and µ(y) = µt(y).

We define the average over the Y -cell by

〈f〉 =
∫∫∫

Y

f(y) dvy.

The local problem, (4.6), can be written as (i = 1, 2, 3)

〈∇yw(y) · ε(y) · êi〉 =
〈∇yw(y) · ε(y) · ∇yχ

i
e(y)

〉
for all w ∈ H1

#(Y ). We rewrite these equations in one set of equations (see (4.5))

〈∇yw(y) · ε(y)〉 = 〈∇yw(y) · ε(y) · ∇yχe(y)〉
for all w ∈ H1

#(Y ). Due to the symmetry in ε we get

〈ε(y) · ∇yχ(y)〉 =
〈
(∇yχe(y))

t · ε(y) · ∇yχe(y)
〉

if we choose w = χie.
The homogenized parameters in (4.4) are

εh = 〈ε(y)〉 − 〈ε(y) · ∇yχe(y)〉
= 〈ε(y)〉 −

〈
(∇yχe(y))

t · ε(y) · ∇yχe(y)
〉
,

which proves that εh is symmetric.

4.2.2. Correctors. This section is concluded by the proof of a new result on
correctors.

We begin with the two-scale limit of the heterogeneous system (4.1), which is
given by 



∫∫∫
Ω

∫∫∫
Y

(∇x ×E0(x,y) +∇y ×E1(x,y)) · φ(x,y) dvydvx

= ik0

∫∫∫
Ω

∫∫∫
Y

φ(x,y) · µ(y) ·H0(x,y) dvydvx,∫∫∫
Ω

∫∫∫
Y

(∇x ×H0(x,y) +∇y ×H1(x,y)) · φ(x,y) dvydvx

= −ik0
∫∫∫

Ω

∫∫∫
Y

φ(x,y) · ε(y) ·E0(x,y) dvydvx

(4.9)

for all φ ∈ D(Ω;C∞
# (Y ;C3)). These equations follow from the fact that (see Ap-

pendix B)

Eε(x)
2-s
⇀ E0(x,y)
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and

∇×Eε(x)
2-s
⇀ ∇x ×E0(x,y) +∇y ×E1(x,y),

where 


E0 ∈ L2(Ω;L2
#(Y ;C3)),

∇x ×E0 ∈ L2(Ω;L2
#(Y ;C3)),

E1 ∈ L2(Ω;H#(rot, Y )/C).

The system (4.9) contains macroscopic and microscopic information which gives the
homogenized system when averaged over the local scale. The local equations and the
two-scale limit system (4.9) provide us with the following correctors in the case when
the solution of the homogenized system is smooth enough.

Theorem 4.4. Let Eε,Hε be the solution of (4.1), let E,H be the solution
of the homogenized Maxwell equations (4.4), and let E1,H1 solve the two-scale limit
system (4.9). If E0, H0, E1, H1, ∇x×E0, ∇x×H0, ∇x×E1, ∇x×H1, ∇y ×E1,
and ∇y ×H1 are admissible test functions, then{

limε→0 ‖Eε(x)−E0(x,x/ε)− εE1(x,x/ε)‖H(rot,Ω) = 0,

limε→0 ‖Hε(x)−H0(x,x/ε)− εH1(x,x/ε)‖H(rot,Ω) = 0,

where {
E0(x,y) = E(x)−∇yχe(y) ·E(x),

H0(x,y) =H(x)−∇yχh(y) ·H(x),

χe(y) =

3∑
i=1

χie(y)êi, χh(y) =

3∑
i=1

χih(y)êi,

and where χie(y) and χih(y), i = 1, 2, 3, in H1
#(Y ) solve the local problems (4.6).

Proof. The assumptions imply that (see Theorem B.8){
Eε 2-s
⇀ E0(x,y),

∇×Eε 2-s
⇀ ∇x ×E0(x,y) +∇y ×E1(x,y)

and ∇y ×E0(x,y) = 0.
The proof is carried out using the sesquilinear form

Qε(u,v) = −
∫∫∫

Ω

{
1

ik0
(∇× v∗) · µ−1(x/ε) · (∇× u) + ik0v∗ · ε(x/ε) · u

}
dv,

which is identical to (4.3) but without the surface integral term.
The coercivity assumption, (2.1), implies

C‖u(x)‖2
H(rot,Ω) ≤ �Qε(u,u).

We get

C‖Eε(x)−E0(x,x/ε)− εE1(x,x/ε)‖2
H(rot,Ω) ≤ Iε1 + Iε2 ,
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where {
Iε1 = �Qε (Eε(x),Aε(x)) ,

Iε2 = −�Qε (E0(x,x/ε) + εE1(x,x/ε),Aε(x)) ,

where, for short, we denote Aε(x) = E
ε(x)−E0(x,x/ε)− εE1(x,x/ε). Due to the

assumptions of the fields in Aε(x), we have{
Aε

2-s
⇀ 0,

∇×Aε
2-s
⇀ 0,

since {
Eε 2-s
⇀ E0(x,y),

∇×Eε 2-s
⇀ ∇x ×E0(x,y) +∇y ×E1(x,y)

and ∇y ×E0(x,y) = 0.
We start by analyzing the first integral Iε1 . Since Eε satisfies the Maxwell equa-

tions, (4.1), we get

Iε1 = �
∫∫∫

Ω

(∇×Hε(x)) ·Aε(x)
∗ dv −�

∫∫∫
Ω

Hε(x) · (∇×Aε(x))
∗
dv.

We now use ∇ · (∇×Hε) = 0 and ∇ · (∇×Aε) = 0 and, moreover, the fact that
∇×Hε ∈ L2(Ω;C3) and ∇×Aε ∈ L2(Ω;C3). The div-curl lemma (see [24, 25]) can
be used and the limit is zero, since

Aε(x)⇀ 0 and ∇×Aε(x)⇀ 0

weakly in L2(Ω;C3).
The second integral is now analyzed:

Iε2 = −�
∫∫∫

Ω

{
1

ik0
(∇×Aε(x))

∗ · µ−1(x/ε)

· (∇x ×E0(x,x/ε) + ε∇x ×E1(x,x/ε) +∇y ×E1(x,x/ε))

+ ik0Aε(x)
∗ · ε(x/ε) · (E0(x,x/ε) + εE1(x,x/ε))

}
dvx.

We pass to the limit, ε ↘ 0, and use that µ−1(x/ε) · (∇x × E0(x,x/ε) + ε∇x ×
E1(x,x/ε)+∇y×E1(x,x/ε)) and ε(x/ε) ·(E0(x,x/ε)+εE1(x,x/ε)) are admissible
test functions and obtain

lim
ε↘0

Iε2 = 0;

the theorem is proved.
Remark 4.1. It is still an open question how irregular a function can be and still be

an admissible test function. However, if the homogenized solution E ∈ C(Ω;C3), then
E0 ∈ L2

#(Y ;C(Ω;C3)) is admissible (see Appendix B). Further, ifE ∈ C(Ω;C3), then

H ∈ C(Ω;C3) by symmetry, and via (4.9) we find that ∇x ×E0+∇y ×E1 is smooth
in x, and for sufficient smoothness ∇x×E1 is also an admissible test function. To the
knowledge of the authors there exist no results about regularity of the solutions of the
Maxwell equations in the anisotropic, constant coefficient case. However, we believe
that for sufficient regular boundary and incident fields, the solutions are admissible
test functions.
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5. Examples. In this section, we give two explicit examples of the exterior
Calderón operator.

5.1. Plane boundary. The general representation of the solution to Problem
(R) in (2.7) in a region x3 > c (plane interface Ω, x3 = c) is found by a Fourier
transform in the lateral coordinates x1 and x2.

The Fourier transform E(ξ, x3) of the electric field E(x), x = ê1x1+ ê2x2+ ê3x3,
with respect to the lateral position vector ρ = ê1x1 + ê2x2 is defined by

E(ξ, x3) =

∫∫
R2

E(x)e−iξ·ρ dρ,

where the Fourier variable ξ is

ξ = ê1ξ1 + ê2ξ2

and dρ = dx1 dx2. The modulus of this vector is denoted ξ, i.e.,

ξ =
√
ξ21 + ξ22 .

By the Fourier inversion formula,

E(x) =
1

4π2

∫∫
R2

E(ξ, x3)e
iξ·ρ dξ,

where dξ = dξ1 dξ2. Specifically, the tangential electric field on the surface ∂Ω is

− ê3 × (ê3 ×E(x))|∂Ω =
1

4π2

∫∫
R2

A(ξ)eiξ·ρ dξ,

where A(ξ) is the Fourier transform of the trace of the tangential electric field.
The general form of the solution to Problem (R) in (2.7) in a region x3 > c is (see

[16])


E(x) = 1
4π2

∫∫
R2

(
I2 − ξ

ξ3
ê3ê‖

)
·A(ξ)eiξ·ρ+iξ3(x3−c) dξ,

H(x) = 1
4π2

∫∫
R2

(
ξ

k0
+
ξ3
k0
ê3

)
×
(
I2 − ξ

ξ3
ê3ê‖

)
·A(ξ)eiξ·ρ+iξ3(x3−c) dξ,

where I2 is the identity dyadic in R
2, and a pertinent orthogonal basis in R

2 is
{ê‖, ê⊥}, defined by

ê‖ = ξ/ξ, ê⊥ = ê3 × ê‖
and where

ξ3 =
(
k2
0 − ξ2)1/2 =

{√
k2
0 − ξ2 for ξ < k0,

i
√
ξ2 − k2

0 for ξ > k0

and the standard convention of the square root of a nonnegative argument is intended.
The representation of the fields can be simplified using dyadic calculus:


E(x) =

1

4π2

∫∫
R2

(
I2 − ξ

ξ3
ê3ê‖

)
·A(ξ)eiξ·ρ+iξ3(x3−c) dξ,

H(x) =
1

4π2

∫∫
R2

(
ξ

k0
ê3ê⊥ +

k0
ξ3
ê⊥ê‖ − ξ3

k0
ê‖ê⊥

)
·A(ξ)eiξ·ρ+iξ3(x3−c) dξ.
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From these relations the exterior Calderón operator is the transformation from

ê3 ×E(x)|∂Ω =
1

4π2

∫∫
R2

ê3 ×A(ξ)eiξ·ρ dξ

to

ê3 ×H(x)|∂Ω = − 1

4π2

∫∫
R2

(
k0
ξ3
ê‖ê‖ − ξ3

k0
ê⊥ê⊥

)
·A(ξ)eiξ·ρ dξ,

where the vector field A(ξ) is determined from ê3 ×E(x)|∂Ω by

A(ξ) = −
∫∫

R2

ê3 × (ê3 ×E(x))|∂Ω e
−iξ·ρ dρ.

We note that in this example the domain and the boundary are unbounded, which
yields other function spaces for the traces. We refer to [9] for the details.

5.2. Spherical boundary. For a spherical boundary, x = a, the exterior Calderón
operator can be represented in a series of vector spherical waves; see Appendix C.

The general form of the solution to Problem (R) in (2.7) in a region x > a is (see
(C.2) and (C.3)) 


E(x) =

∑
τn

aτnuτn(k0x),

H(x) = −i
∑
τn

aτnuτ̄n(k0x),

where the index τ̄ is the dual index of τ , defined by 1̄ = 2 and 2̄ = 1.
The traces of the electric and the magnetic fields are (κ = k0a)


x̂×E(x)|∂Ω =
∑
n

(
a1nh

(1)
l (κ)A2n(x̂)− a2n (κh

(1)
l (κ))′

κ
A1n(x̂)

)
,

x̂×H(x)|∂Ω = −i
∑
n

(
a2nh

(1)
l (κ)A2n(x̂)− a1n (κh

(1)
l (κ))′

κ
A1n(x̂)

)
.

For a given tangential field x̂×E(x)|∂Ω, the expansion coefficients aτn are found by
the orthogonality relation (see (C.1))


a1n =

1

h
(1)
l (κ)

∫∫
γ

A2n(x̂) · ( x̂×E(x)|∂Ω) ,

a2n = − κ

(κh
(1)
l (κ))′

∫∫
γ

A1n(x̂) · ( x̂×E(x)|∂Ω) .

The exterior Calderón mapping is the mapping from x̂×E(x)|∂Ω (which deter-
mines the expansion coefficients aτn uniquely) to x̂×H(x)|∂Ω.

6. Conclusions. This paper analyzes the homogenization of the Maxwell equa-
tions for a material with periodic microscale. The material can be anisotropic and
satisfies a coercivity condition (passive material), and the sources of the excitation
are located in the region outside the heterogeneous material in Ω. We utilize the con-
cept of two-scale convergence. A new a priori estimate is established, and a proof of
strong convergence of the corrector fields is presented. The homogenized parameters
are shown to be independent of the properties of the domain Ω and of the properties
of the incident field.
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Appendix A. Function spaces. In this appendix, we list the various function
spaces used in this paper. Let Ω be a bounded, open, simply connected set in R

3 with
Lipschitz boundary ∂Ω. A Y -periodic function, f , is defined as f(x+ êk) = f(x) for
every k = 1, 2, 3, where êk, k = 1, 2, 3, is the canonical basis in R

3.
The space C(Ω) is the space of continuous functions in Ω. We also use C0(Ω),

which consists of all uniformly continuous functions which are zero at the boundary.
The space C∞(Ω) is the space of infinitely continuously differentiable functions in Ω,
and C∞

0 (Ω) are the functions in this space with compact support in Ω, which we also
denote D(Ω). Moreover,

C∞
# (Y ) =

{
φ ∈ C∞(R3), φ Y -periodic

}
.

Several function spaces with square integrable functions are used in this paper.
The basic space is

L2(Ω)
def
=

{
u(x) : u Lebesgue integrable,

∫∫∫
Ω

|u(x)|2 dvx <∞
}

with norm

‖u‖L2(Ω) =

{∫∫∫
Ω

|u(x)|2 dvx
}1/2

.

Similarly for vector-valued spaces we have the norm

‖u‖L2(Ω;C3) =

{∫∫∫
Ω

|u(x)|2 dvx
}1/2

.

We also define two function spaces of periodic functions:

L2
#(Y )

def
=
{
the completion of C∞

# (Y ) in the L2(Y )-norm
}

and

L∞
# (Y )

def
=
{
φ ∈ L∞(R3), φ Y -periodic

}
,

{
H(div,Ω)

def
=
{
u ∈ L2(Ω;C3) : ∇ · u ∈ L2(Ω)

}
,

H(rot,Ω)
def
=
{
u ∈ L2(Ω;C3) : ∇× u ∈ L2(Ω;C3)

}
,

which are Hilbert spaces with norms


‖u‖H(div,Ω) =
(
‖u‖2

L2(Ω;C3) + ‖∇ · u‖2
L2(Ω)

)1/2

,

‖u‖H(rot,Ω) =
(
‖u‖2

L2(Ω;C3) + ‖∇ × u‖2
L2(Ω;C3)

)1/2

.

The curl and the divergence are defined in the weak sense as{
(∇× u,φ) = (u,∇× φ) for all φ ∈ D(Ω;C3),

(∇ · u, φ) = −(u,∇φ) for all φ ∈ D(Ω).
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In the exterior region, we define spaces of locally integrable functions as{
Hloc(div,Ωe)

def
=
{
u ∈ D′(Ωe;C3) : ξu ∈ H(div,Ωe) for all ξ ∈ D(R3)

}
,

Hloc(rot,Ωe)
def
=
{
u ∈ D′(Ωe;C3) : ξ∇× u ∈ H(rot,Ωe) for all ξ ∈ D(R3)

}
,

where Ωe = R
3 \ Ω and D′(Ωe) is the space of distributions. The appropriate trace

spaces used in this paper are H− 1
2 (div, ∂Ω) and H− 1

2 (rot, ∂Ω) defined by


H− 1
2 (div, ∂Ω)

def
=
{
u ∈ H− 1

2 (∂Ω;C3), ν̂ · u = 0, div∂Ωu ∈ H− 1
2 (∂Ω)

}
,

H− 1
2 (rot, ∂Ω)

def
=
{
u ∈ H− 1

2 (∂Ω;C3), ν̂ · u = 0, rot∂Ωu ∈ H− 1
2 (∂Ω)

}
,

where the surface divergence, div∂Ω, and the surface rotation, rot∂Ω, are defined by
duality and restriction,{

(div∂Ωu, φ) = −(u, grad∂Ωφ) for all φ ∈ D(∂Ω),

rot∂Ωu = ν̂ · (∇× u)|∂Ω,

and the surface gradient, grad∂Ω, is defined by the orthogonal projection of ∇ on the
surface ∂Ω.

We also define the function spaces{
H#(div, Y )

def
= {u ∈ H(div, Y ),u Y -periodic} ,

H#(rot, Y )
def
= {u ∈ H(rot, Y ),u Y -periodic}

and 


H1
#(Y )

def
=
{
the completion of C∞

# (Y ) in the H1(Y )-norm
}
,

H1
#(Y )/C

def
=
{
φ ∈ H1

#(Y ), equivalent up to a complex constant
}
.

If γ denotes the unit sphere in R
3, the following norms are used in the paper:


‖u‖γ =

{∫∫
γ

|u(x̂)|2 dγ
}1/2

,

‖u‖∞ = sup|x̂|=1 |u(x̂)| ,

and dγ denotes the surface measure on the unit sphere in R
3.

We conclude this appendix by stating the Lax–Milgram theorem [13].
Theorem A.1 (Lax–Milgram). Assume that H is a Hilbert space with norm ‖·‖.

Moreover, assume that

B : H ×H → C

is a sesquilinear functional on H, for which there exists constants a, b > 0 such that

|B[u, v]| ≤ a‖u‖‖v‖ for all u, v ∈ H
and

b‖u‖2 ≤ |B[u, u]| for all u ∈ H.
Finally, let f : H → C be a bounded linear functional on H.
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Then there exists a unique u ∈ H such that

B[u, v] = f(v) for all v ∈ H.

Appendix B. Two-scale convergence.
Definition B.1. A sequence {uε} in L2(Ω;C3) two-scale converges to u0 ∈

L2(Ω× Y ;C3) if

lim
ε↘0

∫∫∫
Ω

uε(x) · φ(x,x/ε) dvx =

∫∫∫
Ω

∫∫∫
Y

u0(x,y) · φ(x,y) dvy dvx

for every φ ∈ D(Ω;C∞
# (Y ;C3)). We denote this by uε

2-s
⇀ u0.

The class of test functions can be enlarged to all admissible test functions defined
below [2].

Definition B.2. We say that φ ∈ L2(Ω;L2
#(Y ;C3)) is an admissible test func-

tion if φ(x,x/ε) is measurable and

lim
ε↘0

‖φ(x,x/ε)‖L2(Ω;C3) = ‖φ(x,y)‖L2(Ω×Y ;C3).

Remark B.1. Some examples of admissible test functions are L2(Ω;C#(Y ;C3))
and for Ω bounded L2

#(Y ;C(Ω;C3)).
We cite two important theorems by Nguetseng [19].
Theorem B.3 (Nguetseng [19]). Let uε ∈ L2(Ω). Suppose that there exists a

constant C > 0 such that

‖uε‖L2(Ω) ≤ C for all ε.

Then a subsequence (still denoted by ε) can be extracted from ε such that, letting ε↘ 0,∫∫∫
Ω

uε(x)Ψ(x,x/ε) dvx →
∫∫∫

Ω

∫∫∫
Y

u0(x,y)Ψ(x,y) dvy dvx

for all Ψ ∈ C0(Ω;C#(Y )), where u0 ∈ L2(Ω;L2
#(Y )). Moreover,

∫∫∫
Ω

uε(x)v(x)w(x/ε) dvx →
∫∫∫

Ω

∫∫∫
Y

u0(x,y)v(x)w(y) dvy dvx

for all v ∈ C0(Ω) and all w ∈ L2
#(Y ).

We note that if uε is a sequence in L2(Ω), which two-scale converges to the limit
u0 ∈ L2(Ω×Y ), then uε also converges to u(x) =

∫∫∫
Y
u0(x,y) dvy in L2(Ω) weakly

[2]. Moreover, if uε converges strongly to u(x) in L2(Ω), then uε two-scale converges
to the same limit u(x). The second theorem is the following.

Theorem B.4 (Nguetseng). Let uε ∈ H1(Ω). Suppose that there exists a con-
stant C > 0 such that

‖uε‖H1(Ω) ≤ C for all ε.

Then a subsequence (still denoted by ε) can be extracted from ε such that, letting ε↘ 0,

uε → u in H1(Ω)-weak
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and ∫∫∫
Ω

∂uε(x)

∂xj
v(x)w(x/ε) dvx

→
∫∫∫

Ω

∫∫∫
Y

{
∂u(x)

∂xj
+
∂u1(x,y)

∂yj

}
v(x)w(y) dvy dvx,

j = 1, 2, 3, for all v ∈ C0(Ω) and all w ∈ L2
#(Y ), where u1 ∈ L2(Ω;H1

#(Y )/C).
In addition to these two theorems, we observe that, taking w = 1, we get from

Theorem B.3 ∫∫∫
Ω

uε(x)v(x) dvx →
∫∫∫

Ω

u(x)v(x) dvx

for all v ∈ C0(Ω), where

u(x) =

∫∫∫
Y

u0(x,y) dvy

is the usual weak L2(Ω)-limit of uε(x). It follows that u0 is uniquely expressed in the
form

u0(x,y) = u(x) + ũ0(x,y),

where ∫∫∫
Y

ũ0(x,y) dvy = 0.

Lemma B.5. Let f ∈ H1
#(Y ;C3) and assume that ∇y × f(y) = 0. Moreover,

assume that 〈f〉 = 0. Then there exists a unique function q ∈ H1
#(Y )/C such that

f(y) = ∇yq(y).

Proof of Lemma B.5. The periodicity of the function f ∈ H1
#(Y ;C3) implies that

f has a Fourier expansion

f(y) =
∑
n

fne
ikn·y,

where the vector kn is defined as

kn = 2πn1ê1 + 2πn2ê2 + 2πn3ê3

and where n1, n2, n3 are integers and n = (n1, n2, n3). The sequence fn belongs

to
(
021
)3
. The assumption that 〈f〉 = 0 implies that f (0,0,0) = 0. Moreover, the

coefficients fn satisfy

kn × fn = 0 for all n.

Therefore fn has the form

fn = k̂n

(
k̂n · fn

)
.
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Define qn as {
qn = −i(k̂n · fn)/kn for n �= (0, 0, 0),

q(0,0,0) arbitrary,

where kn = |kn|. The coefficients qn ∈ (021)3,
fn = iknqn for all n,

and

f(y) =
∑
n

iknqne
ikn·y = ∇yq(y),

where

q(y) =
∑
n

qne
ikn·y ∈ H1

#(Y )/C,

since q(0,0,0) is arbitrary and the lemma is proved.
The obvious vector analogous theorems follow.
Theorem B.6. Let uε ∈ L2(Ω;C3). Suppose that there exists a constant C > 0

such that

‖uε‖L2(Ω;C3) ≤ C for all ε.

Then a subsequence (still denoted by ε) can be extracted from ε such that, letting ε↘ 0,∫∫∫
Ω

uε(x) ·Ψ(x,x/ε) dvx →
∫∫∫

Ω

∫∫∫
Y

u0(x,y) ·Ψ(x,y) dvy dvx

for all Ψ ∈ C0(Ω;C#(Y ;C3)), where u0 ∈ L2(Ω;L2
#(Y ;C3)). Moreover,∫∫∫

Ω

uε(x) · v(x)w(x/ε) dvx →
∫∫∫

Ω

∫∫∫
Y

u0(x,y) · v(x)w(y) dvy dvx

for all v ∈ C0(Ω;C
3) and all w ∈ L2

#(Y ).
The field u0 is uniquely expressed in the form

u0(x,y) = u(x) + ũ0(x,y),

where ∫∫∫
Y

ũ0(x,y) dvy = 0.

We have the following results proved in [23].
Theorem B.7. Let uε ∈ H(div,Ω). Suppose that there exists a constant C > 0

such that

‖uε‖H(div,Ω) ≤ C for all ε.

Then a subsequence (still denoted by ε) can be extracted from ε such that, letting ε↘ 0,

uε → u in L2(Ω;C3)-weak
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and ∫∫∫
Ω

∇x · uε(x)v(x)w(x/ε) dvx

→
∫∫∫

Ω

∫∫∫
Y

{∇x · u(x) +∇y · u1(x,y)} v(x)w(y) dvy dvx

for all v ∈ C0(Ω) and all w ∈ L2
#(Y ), where u(x) =

∫∫∫
Y
u0(x,y) dvy, u0 is the

two-scale limit of uε, and u1 ∈ L2(Ω;H#(div, Y )).
Theorem B.8. Let uε ∈ H(rot,Ω). Suppose that there exists a constant C > 0

such that

‖uε‖H(rot,Ω) ≤ C for all ε.

Then a subsequence (still denoted by ε) can be extracted from ε such that, letting ε↘ 0,

uε → u0 in L2(Ω;C3)-weak

and ∫∫∫
Ω

∇× uε(x) · v(x)w(x/ε) dvx

→
∫∫∫

Ω

∫∫∫
Y

{∇x × u0(x,y) +∇y × u1(x,y)} · v(x)w(y) dvy dvx

for all v ∈ C0(Ω) and all w ∈ L2
#(Y ;C3), where u1 ∈ L2(Ω;H#(rot, Y )).

Proof of Theorem B.8. From Theorem B.6 we get∫∫∫
Ω

uε(x) ·Ψ(x,x/ε) dvx →
∫∫∫

Ω

∫∫∫
Y

u0(x,y) ·Ψ(x,y) dvy dvx

and ∫∫∫
Ω

∇× uε(x) ·Ψ(x,x/ε) dvx →
∫∫∫

Ω

∫∫∫
Y

χ0(x,y) ·Ψ(x,y) dvy dvx

for all Ψ ∈ C0(Ω;C#(Y ;C3)), where u0,χ0 ∈ L2(Ω;L2
#(Y ;C3)). Choose test func-

tions Ψ ∈ C0(Ω;C#(Y ;C3)) such that ∇y ×Ψ = 0. We get by integration by parts∫∫∫
Ω

∇× uε(x) ·Ψ(x,x/ε) dvx =

∫∫∫
Ω

uε(x) · ∇ ×Ψ(x,x/ε) dvx

=

∫∫∫
Ω

uε(x) · ∇x ×Ψ(x,x/ε) dvx

→
∫∫∫

Ω

∫∫∫
Y

u0(x,y) · ∇x ×Ψ(x,y) dvy dvx

=

∫∫∫
Ω

∫∫∫
Y

∇x × u0(x,y) ·Ψ(x,y) dvy dvx.

This means that∫∫∫
Ω

∫∫∫
Y

(χ0(x,y)−∇x × u0(x,y)) ·Ψ(x,y) dvy dvx = 0
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for all Ψ ∈ C0(Ω;C#(Y ;C3)) such that ∇y × Ψ = 0. By the decomposition of
L2(Ω;C3) (e.g., see [9]) there exists a function u1 ∈ L2(Ω;H#(rot, Y )) such that

∇y × u1 = χ0(x,y)−∇x × u0(x,y).

Theorem B.9 (see Wellander [26] or [27]). Let uε ∈ H(rot,Ω). Suppose that
there exists a constant C > 0 such that

‖uε‖H(rot,Ω) ≤ C for all ε.

Then a subsequence (still denoted by ε) can be extracted from ε such that, letting ε↘ 0,

uε
2-s
⇀ u(x) +∇yφ(x,y),

where φ ∈ L2(Ω;H1
#(Y )) is a scalar-valued function satisfying∫∫∫

Y

∇yφ(x,y) dvy = 0.

Moreover,

∇× uε ⇀ ∇× u(x) in L2(Ω;C3).

Theorem B.10 (see Wellander [26] or [27]). Let uε ∈ H(div,Ω). Suppose that
there exists a constant C > 0 such that

‖uε‖H(div,Ω) ≤ C for all ε.

Then a subsequence (still denoted by ε) can be extracted from ε such that, letting ε↘ 0,

uε
2-s
⇀ u0(x,y)

and

ε∇ · uε 2-s
⇀ ∇y · u0(x,y).

Proof of Theorem B.10. From Theorem B.6 we get∫∫∫
Ω

uε(x) ·Ψ(x,x/ε) dvx →
∫∫∫

Ω

∫∫∫
Y

u0(x,y) ·Ψ(x,y) dvy dvx

and ∫∫∫
Ω

∇ · uε(x)Ψ(x,x/ε) dvx →
∫∫∫

Ω

∫∫∫
Y

χ0(x,y)Ψ(x,y) dvy dvx

for all Ψ ∈ C0(Ω;C#(Y ;C3)) and Ψ ∈ C0(Ω;C#(Y )), where u0 ∈ L2(Ω;L2
#(Y ;C3))

and χ0 ∈ L2(Ω;L2
#(Y )).

We get by integration by parts∫∫∫
Ω

ε∇ · uε(x)Ψ(x,x/ε) dvx = −
∫∫∫

Ω

εuε(x) · ∇Ψ(x,x/ε) dvx

= −
∫∫∫

Ω

εuε(x) · ∇xΨ(x,x/ε) dvx −
∫∫∫

Ω

uε(x) · ∇yΨ(x,x/ε) dvx

→ −
∫∫∫

Ω

∫∫∫
Y

u0(x,y) · ∇yΨ(x,y) dvy dvx

=

∫∫∫
Ω

∫∫∫
Y

∇y · u0(x,y)Ψ(x,y) dvy dvx.
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Appendix C. Vector spherical harmonics. The vector spherical harmonics
are defined as (see [8])


A1n(x̂) =

1√
l(l+1)

∇× (xYn(x̂)) =
1√
l(l+1)

∇Yn(x̂)× x,
A2n(x̂) =

1√
l(l+1)

x∇Yn(x̂),
A3n(x̂) = x̂Yn(x̂),

where the spherical harmonics are denoted Yn(x̂). The index n is a multi-index for
the integer indices l = 0, 1, 2, 3, . . . , m = 0, 1, . . . , l, and σ = e,o (even and odd in
the azimuthal angle). From these definitions we see that the first two vector spherical
harmonics, A1n(x̂) and A2n(x̂), are tangential to the unit sphere γ in R

3 and they
are related by {

x̂×A1n(x̂) = A2n(x̂),

x̂×A2n(x̂) = −A1n(x̂).

The vector spherical harmonics form an orthonormal set over the unit sphere γ
in R

3, i.e., ∫∫
γ

Aτn(x̂) ·Aτ ′n′(x̂) dγ = δnn′δττ ′ .(C.1)

The radiating solutions to the Maxwell equations in a vacuum are defined as{
u1n(k0x) = h

(1)
l (k0x)A1n(x̂),

u2n(k0x) =
1
k0
∇×

(
h

(1)
l (k0x)A1n(x̂)

)
,

where h
(1)
l (k0x) is the spherical Hankel function of the first kind [1]. These vector

waves satisfy

∇× (∇× uτn(k0x))− k2
0uτn(k0x) = 0, τ = 1, 2,(C.2)

and they also satisfy the radiation condition in (2.5). Another representation of the
definition of the vector waves is{

u1n(k0x) = h
(1)
l (k0x)A1n(x̂),

u2n(k0x) =
(k0xh

(1)
l (k0x))

′

k0x
A2n(x̂) +

√
l(l + 1)

h
(1)
l (k0x)
k0x

A3n(x̂),

where ′ denotes differentiation with respect to the argument of the spherical Hankel
function. A simple consequence of these definitions is{

u1n(k0x) =
1
k0
∇× u2n(k0x),

u2n(k0x) =
1
k0
∇× u1n(k0x).

(C.3)
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Abstract. We present a homogenization technique for rarefied gas flow over a microstructured
surface consisting of patterns of periodic features. The length scale of the model domain is comparable
to the mean free path of the molecules, while the scale of the surface patterns is much smaller. The
flow is modeled by a system of linear Boltzmann equations with a diffusive boundary condition
at the patterned surface. The resulting homogenized boundary condition holds at a virtual flat
surface and incorporates the microscopic geometry information about the surface structure on the
macroscopic level. Numerical results validate the approach. The setup models low pressure chemical
vapor deposition processes in the manufacturing of integrated circuits.

Key words. Boltzmann equation, rarefied gas dynamics, boundary homogenization, microstruc-
tured surface, chemical vapor deposition
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1. Introduction. Low pressure chemical vapor deposition is used in the manu-
facturing of integrated circuits to deposit a thin layer of material onto the surface of
a silicon wafer. The deposition surface necessarily involves a microstructure given by
the electrical components of the future microchip. Classical models for this process
include reactor scale models [17] with a typical length scale of over 10 cm, which
model the gas flow throughout the chemical reactor, and feature scale models [3] with
a typical length scale of under 1 µm, which focus on the evolution of the film profile
inside an individual feature.

In more detail, the process works as follows. Molecules of the species to be
deposited are carried inside the chemical reactor by an inert carrier gas to a mi-
crostructured surface, where they are partially absorbed and partially reflected at a
certain rate. The length scale of the surface structure is several orders of magnitude
smaller than that of the reactor and therefore cannot be reasonably resolved on the
reactor scale. On the other hand, this structure will influence the gas flow through
the boundary conditions; i.e., adsorption on the microstructured surface will result
in a different behavior of the gas flow than adsorption on a flat surface, even on the
macroscopic reactor scale. We therefore have to solve a homogenization problem at
the boundary by deriving a boundary condition for the flow problem which incor-
porates the microscopic geometric information about the surface structure into the
macroscopic flow picture.
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Based on analytic work in [2, 5, 6, 8, 11], the authors and coworkers have pre-
viously introduced [7, 12] a mesoscopic scale model on a length scale intermediate
to those of the classical reactor scale and feature scale models, which was designed
to provide information on the effects of feature clustering on a length scale of about
1.0 cm at comparably high pressures of at least 1 torr (where 760 torr = 1 atm). In
that regime, the mean free path of the gas molecules was well inside the domain size,
and the gas flow could be modeled as diffusion-dominated [8, 9, 11, 12, 18]. While
[8, 11] derive the homogenized model formally for the concrete problem of interest,
[2, 5, 6] handle the analysis rigorously for a more general class of models.

However, as individual feature sizes decrease below 1 µm, the length scale of in-
terest for clustering effects also decreases. Therefore, this work considers a mesoscopic
scale model with a domain with typical length scale on the order of 0.01 cm. Using
this together with typical values for the total pressure of 1 torr or less, the mean free
path of the gas molecules is of length comparable to the typical length scale. The
Knudsen number Kn, which is defined as the ratio of the mean free path and the
typical length scale, is on the order of unity, and the process lies in the transition
regime for gaseous flow modeling [15].

The proper mathematical model for a gas flow in the transition regime is given by
the Boltzmann equation of gas dynamics for the (scaled) probability density f(x, v, t)
that there is a molecule in the region [x1, x1 + dx1] × [x2, x2 + dx2] × [x3, x3 + dx3]
with velocity in [v1, v1 + dv1] × [v2, v2 + dv2] × [v3, v3 + dv3] during time [t, t+ dt],

∂f

∂t
+ v · ∇f = Q(f, f),(1.1)

with the collision operator

Q(f, f)(x, v, t) =

∫ ∫ ∫ [
f(x, v′, t)f(x, v′∗, t) − f(x, v, t)f(x, v∗, t)

]
B(ϑ, |V |) dϑ dε dv∗,

(1.2)

where v′ = v−n(n · V ) and v′∗ = v∗ +n(n · V ) denote the precollision velocities, with
V = v − v∗ and n = (sinϑ cos ε, sinϑ sin ε, cosϑ)T (see [4, 15]).

A complete model for chemical vapor deposition will consist of one Boltzmann
equation for each gaseous species fi(x, v, t), i = 0, 1, . . . , ns, to form the system

∂fi
∂t

+ v · ∇xfi =

ns∑
j=0

Qij(fi, fj), i = 0, 1, . . . , ns,(1.3)

where the collision operators Qij(fi, fj) model the collisions between molecules of
species i and species j for 0 ≤ i, j ≤ ns. This model includes the inert background
gas f0(x, v, t) of the manufacturing process, which is a rarefied gas itself but still much
denser than the reacting species. Under these assumptions, the collisions of a reacting
species with the background gas will be much more frequent than collisions among
the reacting species, and it is legitimate to neglect all collisions except the ones with
the background species j = 0 on the right-hand side of (1.3); this also decouples the
equation for the background species f0 from the other equations, which can hence be
solved for independently from the other solutions fi, i = 1, . . . , ns.

In the classical derivation [4, Chapter IV], it is additionally assumed that the
background gas is in equilibrium and spatially homogeneously distributed. Then its
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distribution function f0(x, v, t) is given by a Maxwellian distribution of the form

f0(x, v, t) = M(v) :=
1

(2π)d/2
exp

(
−|v|2

2

)
,(1.4)

where d ∈ {1, 2, 3} denotes the dimension of the velocity space under consideration.
Then, the time-evolution of the probability distribution of a typical reacting species
is given by the system of linear Boltzmann equations

∂fi
∂t

+ v · ∇fi = Qi(fi), i = 1, . . . , ns,(1.5)

with the linear collision operators

Qi(fi)(x, v, t) =

∫
Si(v, v

′)
[
fi(x, v

′, t)
M(v′)

− fi(x, v, t)

M(v)

]
dv′;(1.6)

see [4, Chapter IV] for a detailed derivation. Here, Si(v, v
′) = Si(v

′, v) denotes the
scattering cross section, which describes the probability that a molecule with velocity
v′ before a collision scatters to a velocity v after the collision. A generalization to spa-
tially varying background gases is possible. We will assume that the reacting species
are introduced into the reactor chamber starting at the beginning of the processing
step, i.e., that fi = 0, i = 1, . . . , ns, at t = 0.

For the analysis, we therefore consider the representative equation for f(x, y, v, t):

∂f

∂t
+ v1

∂f

∂x1
+ v2

∂f

∂x2
+ v3

∂f

∂y
= Q(f).(1.7)

Here, x ≡ (x1, x2)T counts across the reacting surface, and y ≡ x3 points into the
gaseous domain perpendicular to the surface. That is, molecules with velocities v =
(v1, v2, v3)T travel towards the mean wafer surface when v3 < 0. More precisely, the
microstructured surface Γε is for this paper assumed to be given by a function

y = h̃(x) = ε h(x, xε ),(1.8)

with the small parameter 0 < ε � 1. This parameter represents the ratio of the
typical feature mouth (or, more precisely, the so-called pitch, i.e., the distance from
the center of one feature to the next one), e.g., 1 µm, to the typical length scale of
the mesoscopic scale model, e.g., 100 µm.

In this dimensionless form, h(x, ξ) is periodic in ξ ≡ (ξ1, ξ2)T with period 1 in
each component; that is,

h(x, ξ) = h(x, ξ + e1) = h(x, ξ + e2) for all (x, ξ),(1.9)

where e1 = (1, 0)T and e2 = (0, 1)T denote the unit vectors in two dimensions.
Physically, this reflects the fact that the microscopic features on a computer chip are
not random but arranged in clusters of hundreds or thousands of (by design) identical
features, periodic with the feature pitch as period. However, this periodic structure
will be different in different regions of the chip, and therefore we allow the function
h to depend on the slow spatial variable x as well. Realistic values for ε include the
range from 10−4 to 10−3.

The model is complemented by a boundary condition on the reacting surface for
all molecules that flow into the gaseous domain, i.e., that satisfy n · v ≤ 0, where n =
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n(x, y) denotes the unit outward normal vector at position (x, y)T ∈ Γε. Specifically,
we assume that the reinsertion occurs with Maxwellian distributed velocities and set

f(x, y, v, t) = M(v)

∫
n·w>0

a(x, xε , w) f(x, y, w, t) dw for n · v ≤ 0 and (x, y)T ∈ Γε,

(1.10)

where a(x, xε , w) ≥ 0 denotes a given function, and n is the unit outward normal
vector on the surface Γε. This boundary condition reflects a pseudo–steady-state
assumption, that is, the deposition of molecules on the surface progresses several
orders of magnitude more slowly than the flow of the rarefied gas; therefore neither
the functions a(x, xε , w) nor the geometry of the surface y = h̃(x) depends on the time
t of the gas flow under consideration. However, they are certainly allowed to depend
on x; that is, different regions of the surface can see different deposition conditions;
this is important in actual applications.

The model in its present form with a microstructured surface is not numerically
tractable because of the high cost of resolving the domain close to the rough surface
Γε. The goal of this work is to obtain a model with a reduced boundary condition
on a flat surface Γ0 given by y = 0 that gives equivalent results for f(x, y, v, t) in the
bulk of the gaseous domain away from the surface in an asymptotic sense using the
expansion parameter ε.

To this end, we make the ansatz

f(x, y, v, t) = f̃(x, y, v, t) + f̂(xε ,
y
ε ,

t
ε , x, v, t) + o(1),(1.11)

where f̃ denotes the bulk variable, for which we wish to derive a numerically tractable
model, and f̂ is the small-scale correction, which is assumed to be periodic in ξ = x

ε in
the same way as the surface function h(x, ξ). There is only one scale for the velocity v
of the molecules; hence there have to be pairs of corresponding length and time scales
on both the long (x and t) and the short scales (ξ = x

ε and τ = t
ε ). Note that we

have assumed the Knudsen number to be of order O(1) in the bulk of the mesoscopic
scale model, whose solution is f(x, y, v, t). This means that on the O(ε) spatial scale,
the feature scale, collisions will be negligible, and we obtain free transport inside the
features of the surface. Therefore, due to the hyperbolic nature of the Boltzmann
equation, we can assume only that f̂ decays weakly with ε at any fixed distance from
the surface; that is, we assume that small-scale fluctuations in the inner solution f̂
average out to zero at any fixed finite distance above the surface as ε → 0. That is,
we require that

lim
ε→0

∫ ∫
f̂(xε ,

y
ε ,

t
ε , x, v, t)ψ(x, t) dx dt = 0(1.12)

for all test functions ψ(x, t).
Based on these assumptions, we will derive the appropriate reduced boundary

condition for the bulk term f̃(x, y, v, t) on the flat surface y = 0

f̃(x, y, v, t) = M(v)

∫
ã(x, v, w) f̃(x, y, w, t) dw for v3 > 0 and y = 0,(1.13)

where the integral kernel ã(x, v, w) incorporates the information about the microscopic
surface geometry into the flow equations. This problem is tractable numerically, since
it is posed on a domain with a flat reacting surface, and the values of ã(x, v, w) can be
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precomputed for all times, since ã does not depend on the macroscopic time t. This
effective boundary condition still reflects the assumption of a pseudo–steady state in
the original model, because ã does not depend on the time t that is the relevant time
scale for the gas flow on the mesoscopic scale.

We remark that in the previous work [2, 5, 6, 8, 11], where the flow was assumed
to be Maxwellian inside the features as well, the only information needed about the
surface geometry was the ratio of surface areas between the microstructured surface
and the flat surface. This ratio is now replaced by the integral kernel ã, which contains
much more information about the actual shape of the surface and is necessary for the
non-Maxwellian picture. This approach has to be viewed as an alternative to the
work presented in [1], which deals with specular reflections on a random surface, as
opposed to random reflections on a deterministic surface. The result is, however, quite
different for the obvious reason that we allow for absorption into the surface; i.e., in
our resulting homogenized problem the total mass inside the gas phase domain will
not be conserved.

Section 2 details the analytical derivation of the reduced boundary condition,
where we will restrict ourselves to the two-dimensional case for notational simplicity.
The generalization to three dimensions is straightforward. Section 3 provides a nu-
merical demonstration of the result for a setup that closely resembles the structure of
the application problem under consideration by using a periodic boundary geometry.

2. Analysis. This section considers the two-dimensional linear Boltzmann equa-
tion

∂f

∂t
+ v1

∂f

∂x
+ v2

∂f

∂y
= Q(f)(2.1)

with boundary condition (1.10) at the reacting wafer surface. Note that we have
changed the notation slightly in going to a two-dimensional problem: The gas phase
domain is now given by y > εh(x, xε ), and molecules travel towards the surface for
velocities v = (v1, v2)T with v2 < 0. We introduce the surface density ρ as

ρ(xε ,
t
ε , x, t) =

∫
n·w≥0

a(x, xε , w)
(
f̃(x, 0, w, t) + f̂(xε , h(x, xε ), tε , x, w, t)

)
dw + o(1)

(2.2)

for the integral on the right-hand side of (1.10). Using the ansatz f = f̃ + f̂ + o(1),
the boundary condition (1.10) then reads

f̃(x, 0, v, t) + f̂(ξ, h(x, ξ), τ, x, v, t) = M(v) ρ(ξ, τ, x, t) + o(1) for σ ≤ 0,(2.3)

using also the shorthand notation σ(x, ξ, v) = n ·v = v1∂ξh(x, ξ)−v2 +O(ε). Here we

have already replaced the argument y = ε h(x, ξ) by 0 in the evaluation of f̃ at the
boundary. The homogenized boundary condition (1.13) on the limiting flat surface
y = 0 will be as derived follows.

Tracing back the characteristics, we will first solve the boundary layer problem
for the inner solution f̂ in terms of boundary data consisting of the outer solution f̃
and the boundary density ρ defined in (2.2). This result is given in Theorem 2.2 in
subsection 2.1. The surface density ρ involves both the inner and the outer solutions
and forms the connection between them. Its behavior in the limit of the fast time
variables τ → ∞ is analyzed in Theorem 2.4.
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In subsection 2.2, using the weak decay condition (1.12), we derive the homoge-
nized boundary condition for f̃ on the flat surface y = 0 in terms of the surface density
ρ and finally in terms of ã as in (1.13). This quantity will contain only information
about the microscopic and quasi-periodic geometry of the surface and can be solved
beforehand for a given surface structure.

2.1. Solution to the inner equation. The asymptotic ansatz applied to (2.1)

leads to the inner problem for the layer correction term f̂(ξ, η, τ, x, v, t) as a function
of the layer variables ξ, η, τ :

∂f̂

∂τ
+ v1

∂f̂

∂ξ
+ v2

∂f̂

∂η
= 0(2.4)

for any fixed x, v, t. Using the method of characteristics with ξ′ = v1 and η′ = v2
yields

f̂(ξ, η, τ, x, v, t) = f̂(ξ − sv1, η − sv2, τ − s, x, v, t)

for all parameters s sufficiently small. We can then follow the characteristics back to
the boundary or back to the initial condition f̂ = 0 at τ = 0 to obtain

f̂(ξ, η, τ, x, v, t)

= f̂(ξ − v1s, η − v2s, τ − s, x, v, t)

=

{
f̂(ξ − v1φ0, η − v2φ0, τ − φ0, x, v, t) if φ0 < τ,
0 if φ0 ≥ τ

= H(τ − φ0) f̂(ξ − v1φ0, η − v2φ0, τ − φ0, x, v, t),

(2.5)

with

φ0(ξ, η, x, v) =

{
min {s > 0 : η − v2s = h(x, ξ − v1s)} ,
∞ if η − v2s �= h(x, ξ − v1s) for all s > 0,

(2.6)

and using the Heaviside function

H(z) =

{
0 for z < 0,
1 for z ≥ 0.

The function φ0 denotes the intersection time, i.e., the time it takes for a molecule
emitted from the surface with velocity v to reach the point (ξ, η). The boundary
condition for the inner equation then reads

f̂(ξ, h(x, ξ), τ, x, v, t) = M(v) ρ(ξ, τ, x, t) − f̃(x, 0, v, t) for σ(x, ξ, v) ≤ 0.(2.7)

In order to apply the boundary condition to the solution in (2.5), we need to guarantee
that σ(x, ξ − v1φ0, v) ≤ 0 in the case when the characteristic traces back to the
boundary, i.e., φ0 is finite.

Lemma 2.1. If φ0(ξ, η, x, v) is finite and either (i) η = h(x, ξ) and σ(x, ξ, v) > 0
or (ii) η > h(x, ξ), then it holds that σ(x, ξ − v1φ0, v) ≤ 0.

Proof. Define

g(s) = η − sv2 − h(x, ξ − sv1).
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By definition of φ0, the first positive root of g(s) is given by s = φ0. Then

g′(s) = −v2 + v1∂ξh(x, ξ − sv1) = σ(x, ξ − sv1, v),
and we have to show that g′(φ0) = σ(x, ξ − v1φ0, v) ≤ 0.

Case (i). If η = h(x, ξ) and σ(x, ξ, v) > 0, then

g(0) = 0, g′(0) > 0 ⇒ g(s) > 0 for 0 < s < φ0(ξ, η, x, v) ⇒ g′(φ0) ≤ 0.

Case (ii). If η > h(x, ξ), then

g(0) > 0 ⇒ g(s) > 0 for s < φ0(ξ, η, x, v), g(φ0) = 0 ⇒ g′(φ0) ≤ 0.

Theorem 2.2. The solution f̂(ξ, η, τ, x, v, t) to the inner problem (2.4) with

boundary condition (2.7) and initial condition f̂ = 0 at τ = 0 is given by

f̂(ξ, η, τ, x, v, t) =



M(v)ρ(ξ, τ, x, t) − f̃(x, y = 0, v, t)

if η = h(x, ξ) and σ(x, ξ, v) ≤ 0,

H(τ − φ0)(M(v)ρ(ξ − v1φ0, τ − φ0, x, t) − f̃(x, y = 0, v, t))
if (i) η = h(x, ξ) and σ(x, ξ, v) > 0 or (ii) η > h(x, ξ),

with the intersection time φ0 given by (2.6).
Proof. Define the characteristics

g(s, ξ, η, τ, x, v, t) := f̂(ξ − sv1, η − sv2, τ − s, x, v, t);
then dg/ds = 0. Follow the characteristics in four possible cases, as follows.

Case 1. If η > h(x, ξ) and the line (ξ − sv1, η − sv2, τ − s) intersects τ = 0 first
(τ < φ0(ξ, η, x, v)), then

f̂(ξ, η, τ, x, v, t) = f̂(ξ − τv1, η − τv2, τ = 0, x, v, t) = 0.

Case 2. If η > h(x, ξ) and the line (ξ − sv1, η − sv2, τ − s) intersects η = h(x, ξ)
first (τ > φ0(ξ, η, x, v)), then

f̂(ξ, η, τ, x, v, t) = f̂(ξ − v1φ0, η − v2φ0, τ − φ0, x, v, t), φ0 = φ0(ξ, η, x, v).

Then η − v2φ0(ξ, η, x, v) = h(x, ξ − v1φ0(ξ, η, x, v)), and hence

f̂(ξ, η, τ, x, v, t) = M(v)ρ(ξ − v1φ0, τ − φ0, x, t) − f̃(x, 0, v, t),

because σ(x, ξ − φ0v1, v) ≤ 0 by Lemma 2.1.
Case 3. If η = h(x, ξ) and σ(x, ξ, v) ≤ 0 (boundary condition), then

f̂(ξ, h(x, ξ), τ, x, v, t) = M(v)ρ(ξ, τ, x, t) − f̃(x, 0, v, t).

Case 4. If η = h(x, ξ) and σ(x, ξ, v) > 0, then follow the ray (ξ−sv1, η−sv2, τ−s)
back until either τ − s = 0 or η − sv2 = h(x, ξ − sv1). We distinguish the following
two subcases.

(a) If η = h(x, ξ) and σ(x, ξ, v) > 0 and τ < φ0(ξ, η, x, v) (that is, τ = 0 is
intersected first), then

f̂(ξ, η, τ, x, v, t) = f̂(ξ − τv1, h− τv2, τ = 0, x, v, t) = 0.
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(b) If η = h(x, ξ) and σ(x, ξ, v) > 0 and τ > φ0(ξ, η, x, v) (that is, η = h(x, ξ) is
intersected first), then

f̂(ξ, η, τ, x, v, t) = f̂(ξ − v1φ0, h− v2φ0, τ − φ0, x, v, t),
φ0 = φ0(ξ, h(x, ξ), x, v),

and

f̂(ξ, η, τ, x, v, t) = M(v)ρ(ξ − v1φ0, τ − φ0, x, t) − f̃(x, 0, v, t),

because σ(x, ξ − φ0v1, v) ≤ 0 by Lemma 2.1.
We now turn to the evolution of the surface density ρ defined in (2.2). On the

one hand, according to (2.2), ρ is defined in terms of f̃ and f̂ evaluated at the surface

y = ε h(x, xε ). On the other hand, according to Theorem 2.2, the inner solution f̂

at the surface is given in terms of ρ and f̃ . Combining these two formulas, we are
able to write an evolution equation for ρ in terms of the outer solution f̃ alone. In
other words, we are able to write ρ = F [f̃ ] with some integral operator to be defined.
Moreover, for the computation of the reduced boundary condition (1.13), we will
need to make a statement about the behavior of ρ(ξ, τ, x, t) for the fast time variable
τ → ∞. To this end, it is convenient to make the following definitions. First we
introduce for convenience a new symbol for the function φ0 in Theorem 2.2 evaluated
at the boundary by defining φ1(ξ, x, v) := φ0(ξ, h(x, ξ), x, v), that is,

φ1(ξ, x, v) =

{
min {s > 0 : h(x, ξ) − v2s = h(x, ξ − v1s)} ,
∞ if h(x, ξ) − v2s �= h(x, ξ − v1s) for all s > 0.

(2.8)

The function φ1 denotes the time taken by molecules emitted from the boundary to
reach another point at the boundary, and is formally set to ∞ if they never do. Fur-
thermore, we define the indicator function on the set of all ξ, x, v for which, formally,
φ1 is infinite:

χ(ξ, x, v) =

{
0 if φ1(ξ, x, v) <∞,
1 if φ1(ξ, x, v) = ∞.(2.9)

To analyze the limiting behavior of the surface density ρ as τ → ∞ we will need that
the corresponding limiting problem actually has a solution. This is the statement of
the following lemma.

Lemma 2.3. The integral equation

Z(ξ, x) = g(ξ, x)

+

∫
H(σ(x, ξ, w))a(x, ξ, w) (1 − χ(ξ, x, w))M(w)Z(ξ − w1φ1(ξ, x, w), x) dw

has a solution Z(ξ, x) for any function g(ξ, x), provided that∫
H(σ(x, ξ, w))a(x, ξ, w) (1 − χ(ξ, x, w))M(w) dw ≤ C(2.10)

for some constant 0 ≤ C < 1.
Proof. Introduce the notation

A(x, ξ, w) := H(σ(x, ξ, w))a(x, ξ, w) (1 − χ(ξ, x, w))M(w),
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which satisfies A(x, ξ) ≥ 0 since a(x, ξ, w) and all other terms are nonnegative. Then
we consider the integral equation

Z(ξ, x) =

∫
A(x, ξ, w)Z(ξ − w1φ1(ξ, x, w), x) dw + g(ξ, x).

To compute the solution iteratively, introduce the fixed-point iteration for {Zn(ξ, x)}
by

Zn+1(ξ, x) =

∫
A(x, ξ, w)Zn(ξ − w1φ1(ξ, x, w), x) dw + g(ξ, x) for n = 0, 1, 2, . . . ,

with initial iterate Z0(ξ, x) = 0. Hence, the difference between successive iterates
satisfies

(Zn+1 − Zn) (ξ, x) =

∫
A(x, ξ, w) (Zn − Zn−1) (ξ − w1φ1(ξ, x, w), x) dw,

and we can bound it as

‖Zn+1 − Zn‖∞ ≤
∫
A(x, ξ, w) dw ‖Zn − Zn−1‖∞ .

The convergence of this sequence is guaranteed if condition (2.10) is satisfied.
Remark 2.1. Condition (2.10) constitutes a restriction on the function a(x, ξ, w)

in the boundary condition chosen in the application. It will be verified in section 3
for our choice of a(x, ξ, w).

Theorem 2.4. If a(x, ξ, w) satisfies (2.10), then the boundary density ρ is of the
form

ρ(ξ, τ, x, t) = F∞[f̃ ](ξ, x, t) + ρ1(ξ, τ, x, t),

where F∞[f̃ ] = ρ∞ is given implicitly by the integral equation

ρ∞(ξ, x, t) =

∫
H(σ(x, ξ, w))a(x, ξ, w)χ(ξ, x, w) f̃(x, 0, w, t) dw

+

∫
H(σ(x, ξ, w))a(x, ξ, w)(1 − χ(ξ, x, w))M(w) ρ∞(ξ − w1φ1, x, t) dw,

(2.11)

and the remainder term ρ1 satisfies
∫∞
0
ρ1(ξ, τ, x, t) dτ <∞.

Proof. Inserting the expression for f̂(ξ, h(x, ξ), τ, x, v, t) for σ(x, ξ, v) > 0 from
Theorem 2.2 into the definition (2.2) for ρ gives

ρ(ξ, τ, x, t) =

∫
H(σ(x, ξ, w))a(x, ξ, w) [1 −H(τ − φ1(ξ, x, w))] f̃(x, 0, w, t) dw

+

∫
H(σ(x, ξ, w))a(x, ξ, w)H(τ − φ1(ξ, x, w))M(w) ρ(ξ − w1φ1, τ − φ1, x, t) dw.

(2.12)

We are interested in the limiting behavior for τ → ∞. To this end, we have to
distinguish the cases when φ1 < ∞ holds, which means that the Heaviside function
in (2.12) will become equal to unity for τ sufficiently large, and the case φ1 = ∞ for
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which the Heaviside function will always be zero. Therefore we write

ρ(ξ, τ, x, t)

=

∫
H(σ(x, ξ, w))a(x, ξ, w) [1 − (1 − χ(ξ, x, w))H(τ − φ1(ξ, x, w))] f̃(x, 0, w, t) dw

+

∫
H(σ(x, ξ, w))a(x, ξ, w)(1 − χ(ξ, x, w))H(τ − φ1(ξ, x, w))M(w)

× ρ(ξ − w1φ1, τ − φ1, x, t) dw,

(2.13)

with χ defined as in (2.9). Letting, formally, τ tend to infinity gives ρ = ρ∞ +ρ1 with
(2.11) for ρ∞(ξ, x, t). The solution ρ∞ exists due to Lemma 2.3. This is, of course,
only a formal definition for ρ∞; the key is to estimate the remainder term ρ1. The
remainder term ρ1 satisfies the integral equation

ρ1(ξ, τ, x, t)

=

∫
H(σ(x, ξ, w))a(x, ξ, w)(1 − χ(ξ, x, w))H(τ − φ1(ξ, x, w))M(w)

× ρ1(ξ − w1φ1, τ − φ1, x, t) dw

+

∫
H(σ(x, ξ, w))a(x, ξ, w)(1 − χ(ξ, x, w))(1 −H(τ − φ1(ξ, x, w)))

× (f̃(x, 0, w, t) −M(w)ρ∞(ξ − w1φ1, x, t)) dw.

(2.14)

Let L[ρ1](ξ, s, x, t) :=
∫∞
0
ρ1(ξ, τ, x, t) e−sτ dτ , with 0 ≤ s < ∞, denote the Laplace

transform of ρ1. The transform of (2.14) is then given by

L[ρ1](ξ, s, x, t)

=

∫
H(σ(x, ξ, w))a(x, ξ, w)(1 − χ(ξ, x, w))M(w)e−sφ1(x, ξ, w)

× L[ρ1](ξ − w1φ1, s, x, t) dw

+

∫
H(σ(x, ξ, w))a(x, ξ, w)(1 − χ(ξ, x, w))

1

s

[
1 − e−sφ1(x, ξ, w)

]
× (f̃(x, 0, w, t) −M(w)ρ∞(ξ − w1φ1, x, t)) dw.

The variable s appears as a parameter only in the integral equation, so in order to
find L[ρ1](ξ, 0, x, t), we can solve directly

L[ρ1](ξ, 0, x, t)

=

∫
H(σ(x, ξ, w))a(x, ξ, w)(1 − χ(ξ, x, w))M(w)L[ρ1](ξ − w1φ1, 0, x, t) dw

+

∫
H(σ(x, ξ, w))a(x, ξ, w)(1 − χ(ξ, x, w))

1

φ1

× (f̃(x, 0, w, t) −M(w)ρ∞(ξ − w1φ1, x, t)) dw.

(2.15)

By Lemma 2.3, the solution L[ρ1](ξ, 0, x, t) exists, and we therefore have∫ ∞

0

ρ1(ξ, τ, x, t) dτ = L[ρ1](ξ, 0, x, t) <∞

by definition of the transform.
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Remark 2.2. Theorem 2.4 establishes the limiting behavior of ρ for τ → ∞ in a
weak sense, namely, that ρ1(ξ, tε , x, t) will go to zero when integrated with respect to
t against a test function. This is precisely the property that will be needed for the
derivation of the boundary condition.

2.2. Boundary condition for the outer solution. This subsection will use
the weak convergence property for the inner solution to derive the boundary condition
for the outer solution. Because the layer equation (2.4) does not have any damping, f̂
will give a contribution throughout the half-space y > 0. However, this contribution
will result in high frequency oscillations only for y > 0. Therefore, we formulate the
Boltzmann equation in the weak sense and require that f̂ tend to zero weakly for
fixed y > 0 and ε→ 0. Thus, we require in a weak sense for y, v fixed that

lim
ε→0

∫ ∞

0

∫ +∞

−∞
f̂
(
x
ε ,

y
ε ,

t
ε , x, v, t

)
ψ(x, t) dx dt = 0(2.16)

for all test functions ψ(x, t).
Theorem 2.5. The integral in (2.16) goes to zero for ε→ 0 and all fixed y > 0,

v if and only if

f̃(x, 0, v, t) = M(v)

∫ 1

0

F∞[f̃ ](ξ − v1φ3, x, t) dξ for all v2 > 0

holds with

φ3(ξ, x, v) = min {s ∈ R : −v2s = h(x, ξ − v1s)}

and the operator F∞[f̃ ] defined as in Theorem 2.4.

Proof. Let Iε :=
∫∫
f̂(xε ,

y
ε ,

t
ε , x, v, t)ψ(x, t) dx dt denote the integral in (2.16).

We need to estimate Iε for velocities v with v2 > κ(ε), where κ is some function with
κ(ε) > 0 and κ(ε) → 0 as well as ε/κ(ε) → 0 as ε→ 0. Since we are interested in the
bulk solution f̃(x, y, v, t), we need to consider only η = y

ε > h(x, xε ).
We have from Theorem 2.2 for y

ε > h(x, xε ) and v2 > κ(ε) > 0

f̂(xε ,
y
ε ,

t
ε , x, v, t) = H( tε − φ0)

(
M(v)ρ(xε − v1φ0,

t
ε − φ0, x, t) − f̃(x, 0, v, t)

)
,

with φ0(xε ,
y
ε , x, v) = min

{
s > 0 : y

ε − v2s = h(x, xε − v1s)
}

, where this simplified
(compared to (2.6)) definition for φ0 is possible because the existence of the mini-
mum is guaranteed for v2 > κ(ε) > 0. To transform

φ0(xε ,
y
ε , x, v) =

y

v2ε
+ φ2(xε − v1y

v2ε
, yε , x, v),

define

φ2(xε − v1y
v2ε
, yε , x, v) = min

{
s > − y

v2ε
: −v2s = h(x, xε − v1y

v2ε
− v1s)

}
.(2.17)

This gives

f̂(xε ,
y
ε ,

t
ε , x, v, t)

= H( tε − y
v2ε

− φ2)
(
M(v)ρ(xε − v1y

v2ε
− v1φ2,

t
ε − y

v2ε
− φ2, x, t) − f̃(x, 0, v, t)

)
,
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with φ2 ≡ φ2(xε − v1y
v2ε
, yε , x, v) for v2 > κ(ε).

We introduce the transformation

x = xjξ :=
v1
v2
y + εj + εξ, j ∈ Z, ξ ∈ [0, 1],

to rewrite Iε into

Iε = ε

+∞∑
j=−∞

∫ ∞

0

∫ 1

0

H( tε − y
v2ε

− φ2)
(
M(v)ρ(j + ξ − v1φ2,

t
ε − y

v2ε
− φ2, xjξ, t)

− f̃(xjξ, 0, v, t)
)
ψ(xjξ, t) dξ dt,

with φ2 ≡ φ2(j + ξ, yε , xjξ, v) = min{s > − y
v2ε

: −v2s = h(xjξ, j + ξ − v1s)}. Be-
cause h(x, ξ) and hence also ρ and φ2 are 1-periodic in ξ, we can drop the j from
their first arguments. Since ρ, f̃ , and ψ vary only slowly in x and since ξ varies only
in [0, 1], we make an O(ε) perturbation by replacing xjξ by xj := v1

v2
y + εj. Together

this gives

Iε = ε

+∞∑
j=−∞

∫ ∞

0

∫ 1

0

H( tε − y
v2ε

− φ2)
(
M(v)ρ(ξ − v1φ2,

t
ε − y

v2ε
− φ2, xj , t)

− f̃(xj , 0, v, t)
)
ψ(xj , t) dξ dt+ O(ε),

with φ2 ≡ φ2(ξ, yε , xj , v) = min{s > − y
v2ε

: −v2s = h(xj , ξ − v1s)}. The sum over
the j forms a Riemann sum for an integral with approximation error O(ε). Thus, we
obtain

Iε =

∫ ∞

0

∫ +∞

−∞

∫ 1

0

H( tε − y
v2ε

− φ2)
(
M(v)ρ(ξ − v1φ2,

t
ε − y

v2ε
− φ2, z, t)

− f̃(z, 0, v, t)
)
ψ(z, t) dξ dz dt+ O(ε),

(2.18)

with φ2 ≡ φ2(ξ, yε , z, v) = min{s > − y
v2ε

: −v2s = h(z, ξ − v1s)}.

Now we replace ρ = ρ∞ + ρ1 with F∞[f̃ ] = ρ∞, as defined in Theorem 2.4. For
the remainder term involving ρ1 this gives

Eε :=

∫ ∞

0

∫ +∞

−∞

∫ 1

0

H( tε − y
v2ε

− φ2)M(v)ρ1(ξ − v1φ2,
t
ε − y

v2ε
− φ2, z, t)

× ψ(z, t) dξ dz dt.

We transform again to a fast variable τ := t
ε − y

v2ε
− φ2 and obtain

Eε = εM(v)

∫ ∞

0

∫ +∞

−∞

∫ 1

0

ρ1(ξ − v1φ2, τ, z,
y
v2

+ ετ + εφ2)

× ψ(z, yv2 + ετ + εφ2) dξ dz dτ.

Since the test function ψ is smooth and has compact support, and since Theorem 2.4
guarantees that

∫∞
0
ρ1(ξ − v1φ2, τ, z, t) dτ is bounded, the integrals in Eε remain

bounded, and Eε → 0, as ε→ 0.
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In the remaining parts of (2.18), we use the fact that the Heaviside function
is scaling-invariant to get H( tε − y

v2ε
− φ2) = H(t− y

v2
− εφ2). From the definition

(2.17) of φ2 it follows that, for v2 > κ(ε) > 0, |φ2| ≤ max{h}/κ(ε) holds. Therefore,
the dependence of the Heaviside function on εφ2 is negligible, and it can be taken out
of the ξ-integral, introducing only another O( εκ ) error. Also, the integrand involving

f̃ does not depend on the fast variable ξ any more, and so the integration over the
interval [0, 1] yields just unity. This gives after ε→ 0

0 =

∫ ∞

0

∫ +∞

−∞
H(t− y

v2
)

(
M(v)

∫ 1

0

ρ∞(ξ − v1φ2, z, t) dξ − f̃(z, 0, v, t)

)
ψ(z, t) dz dt

(2.19)

for any fixed v2 > 0. Taking the limit ε→ 0 in φ2 ≡ φ2(ξ, yε , z, v) = min{s > − y
v2ε

:
−v2s = h(z, ξ − v1s)} results in the minimum being taken over the entire real line,
since y > 0 and v2 > 0. It also makes φ2 independent of ε and y, and we introduce
the notation

φ3 ≡ φ3(ξ, z, v) = min{s ∈ R : −v2s = h(z, ξ − v1s)}.

Therefore, (2.19) is satisfied in a weak sense if and only if

f̃(z, 0, v, t) = M(v)

∫ 1

0

ρ∞(ξ − v1φ3, z, t) dξ

holds for all z, v, t with v2 > 0.
Remark 2.3. For any fixed velocity v with v2 > 0, the function φ3 is guaranteed

to exist with −max{h(x, ξ)}/v2 ≤ φ3(ξ, x, v) ≤ −min{h(x, ξ)}/v2, since the surface
function h(x, ξ) is smooth.

Theorem 2.5 essentially yields the reduced boundary condition. In practice, one
will not solve the integral equation (2.11) to compute F∞[f̃ ] at every time step. It is
preferable to write the term F∞[f̃ ] as an integral operator with a time independent
integral kernel. A direct calculation leads from (2.11) to

F∞[f̃ ](ξ, x, t) =

∫
K∞(ξ, x, v) f̃(x, 0, v, t) dv,

where the integral kernel K∞ satisfies

K∞(ξ, x, v) = H(σ(x, ξ, v))a(x, ξ, v)χ(ξ, x, v)

+

∫
H(σ(x, ξ, w))a(x, ξ, w) (1 − χ(ξ, x, w))M(w)K∞(ξ − w1φ1(ξ, x, w), x, v) dw,

(2.20)

and K∞(ξ, x, v) again exists because of Lemma 2.3. Note that K∞ will be non-
negative, provided that a(x, ξ, w) is not too large.

In summary, we have obtained the following numerical problem for the bulk so-
lution f̃(x, y, v, t):

∂f̃

∂t
+ v1

∂f̃

∂x
+ v2

∂f̃

∂y
= Q(f̃),(2.21)
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with boundary condition for inflowing molecules on the flat surface y = 0

f̃(x, 0, v, t) = M(v)

∫
ã(x, v, w)f̃(x, 0, w, t)dw for v2 > 0,(2.22)

with

ã(x, v, w) :=

∫ 1

0

K∞(ξ − v1φ3(ξ, x, v), x, w) dξ(2.23)

and

φ3(ξ, x, v) = min {s ∈ R : −v2s = h(x, ξ − v1s)}.(2.24)

This problem is tractable numerically, since it is posed on a domain with a flat reacting
surface; the effect of the microscopic surface has been integrated into the boundary
condition. The numerical approach in practice will be as follows.

Step 1. Given a surface function h(x, ξ), compute the intersection times φ1 in
(2.8) and φ3 in (2.24).

Step 2. Solve the integral equation (2.20) for K∞.
Step 3. Compute the boundary kernel ã(x, v, w) in (2.23).
The function ã(x, v, w) provides the information about the microscopic surface

geometry on the macroscopic level. These steps have to be performed only once for
a given surface function h(x, ξ). Following these preprocessing steps, the Boltzmann
equation (2.21) with the homogenized boundary condition (2.22) is solved for the bulk
solution f̃(x, y, v, t).

3. Numerical validation. As a validation problem, we consider the linear
Boltzmann equation for a single species

∂f

∂t
+ v1

∂f

∂x
+ v2

∂f

∂y
= Q(f).(3.1)

We use a relaxation time approximation S(v, v′) = (1/τ)M(v)M(v′) in the linear
collision operator (1.6) to obtain the simple form

Q(f)(x, y, v, t) = −1

τ
[f(x, y, v, t) −N(x, y, t)M(v)]

with the constant relaxation time τ > 0. Here and in the following, N denotes
the number density given by N(x, y, t) =

∫
f(x, y, v, t) dv. The numerical domain is

chosen as

Ωε = {(x, y) ∈ R
2 : h̃(x) < y < 1, 0 < x < 1},(3.2)

with a microstructured surface Γε at the bottom given by

y = h̃(x) =
ε

8

(
1 + cos

(
2π
x

ε

))
with homogenization parameter 0 < ε� 1. This model is designed to closely resem-
ble the salient features of the application problem that motivated the model and to
support the above analysis; this motivates also the choice of the simple form of the
collision operator. Other types of boundary models, e.g., using random reflections [1],
could be used but would not be appropriate examples for our application.
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The following model is chosen as the boundary condition describing the reactions
of the gaseous species at the wafer surface that result in the deposition of the solid
film. If 0 ≤ R ≤ 1 denotes the sticking factor (the probability that a molecule sticks
to the surface), then the inflow into the gaseous domain is equal to (1−R) times the
outflow from the gaseous domain, namely (see [4]),∫

n·v<0

|n · v| f(x, y, v, t) dv = (1 −R)

∫
n·v>0

|n · v| f(x, y, v, t) dv,(3.3)

where n = n(x, y) denotes the unit outward normal vector at position (x, y) ∈ Γε. To
obtain the boundary condition in the form (1.10), assume reinjection with random
velocities, that is, f(x, y, v, t) = b(x, t)M(v) for n · v < 0; then

f(x, y, v, t) = M(v)

∫
n·w>0

a
(
x,
x

ε
, w
)
f(x,w, t) dw,

with

a
(
x,
x

ε
, w
)

=
1 −R
c

|n · w| , c =

∫
n·v<0

|n · v|M(v) dv.

The problem is completed by choosing Maxwellian inflow at the top and periodic
boundary conditions at both sides. This chosen setup of the problem is representative
of the application under consideration. We choose τ = 1 and R = 0.5 as values.

To check condition (2.10) for this choice of a(x, xε , w), we compute

I(x, xε ) :=

∫
H(σ(x, xε , w))a(x, xε , w)

(
1 − χ(xε , x, w)

)
M(w) dw

= (1 −R)

∫
n·w>0

|n · w| (1 − χ(xε , x, w)
)
M(w) dw∫

n·v<0
|n · v|M(v) dv

.

Since 0 ≤ χ ≤ 1, the fraction is always bounded by 1, which is seen by using the
transformation w = −v in the denominator and using the symmetry of the Maxwellian
in (1.4). In the case that 0 < R ≤ 1, we have 1−R < 1 and I < 1. In the limiting case
R = 0, we can still conclude that I < 1, because χ does not vanish almost everywhere
in reasonable situations in the application, and hence the fraction will be less than 1
except in pathological cases.

The problem was solved numerically by choosing an expansion in velocity space
of the form following [14, 16, 19, 20, 21, 22] and the references therein,

f(x, y, v, t) =
K∑
k=1

fk(x, y, t)ϕk(v),

where the {ϕk(v), k = 1, . . . ,K} form an orthogonal set of basis functions with respect
to the inner product

〈ϕk, ϕ�〉 =

∫
ϕk(v)ϕ�(v)ω(v) dv = δk�,

with weight function ω(v) = 1/M(v). The basis functions are chosen as Maxwellians
multiplied by (properly transformed) Hermite polynomials. To arrive at a Gaussian
quadrature for the integrals, the discretization points in velocity space are roots of
appropriate Hermite polynomials.
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A Galerkin discretization by inserting the expansion for f and forming inner
products with all basis functions then leads to the system of hyperbolic equations for
the expansion coefficients F = (fk)

∂F

∂t
+A(1) ∂F

∂x
+A(2) ∂F

∂y
= CF,

with the K ×K matrices A(1), A(2), and C with components

A
(1)
k,� = 〈v1ϕ�, ϕk〉 , A

(2)
k,� = 〈v2ϕ�, ϕk〉 , Ck,� = 〈Q(ϕ�), ϕk〉 .

We actually use an equivalent collocation basis for the Hermite polynomials, which
results in the matrices A(1) and A(2) being diagonal; see [10, 13, 23] for more details.
This system is solved by a finite-difference method using first-order upwinding and
explicit time-stepping. The solution on the homogenized domain

Ω0 = (0, 1) × (0, 1)(3.4)

is straightforward (that was the point of the homogenization). The comparison solu-
tion on the microstructured domain Ωε is obtained by transforming the domain to the
unit square. The transformation is designed such that it is an identity in the upper
half of the domain, i.e., for y ≥ 0.5; this is done in order to facilitate the comparison of
both numerical solutions there without incurring additional interpolation error from
a mesh transformation.

We discretize the velocity space by six basis functions in both x- and y-directions,
resulting in a hyperbolic system of 36 equations. The maximum velocity is bounded
by 4 in each direction. Using ∆x = 1/128 and ∆y = 1/64, the CFL condition requires
a time step of ∆t = 1/1024, accounting for an additional factor of about 4 from the
transformation of the domain. Solutions are computed until the final time tfin = 2.
We compute solutions f(x, y, v, t) with number densities denoted by N(x, y, t) on
domains Ωε in (3.2), ε = 1/4, 1/8, 1/16, and 1/32. The solution to the homogenized
problem is computed on Ω0 in (3.4) and denoted by f̃(x, y, v, t), with number density
Ñ(x, y, t). Smaller values do not yield reliable solutions for the grid spacing used in
the x-direction.

Figures 3.1, 3.2, 3.3, and 3.4 show comparisons of the number density Ñ(x, y, t)
at T = tfin = 2 on the homogenized domain to the number density N(x, y, t) on the
microstructured domain with the indicated values of ε. The plots show the physical
behavior of the flow: The reacting chemical is supplied at the top of the domain at y =
1, then moves towards the wafer surface at y = h̃(x), where it gets partially consumed
in the surface reaction. Notice that the oscillations of the solution are limited to a
boundary layer close to the microstructured surface; this effect is attributable to the
smoothing property of the collision operator; that is, the solution is smoother than
could be theoretically expected.

Table 3.1 shows the errors between the densities Ñ(x, y, t) and N(x, y, t) of the
homogenized and the original problems for various values of ε. They are compared
only across the upper half of the domain, i.e., for y ≥ 0.5, by choosing the subdomain
Ω̃ = (0, 1) × (0.5, 1) in the norms

‖N‖
L1(Ω̃)

:=

∫ ∫
Ω̃

|N(x, y, t)| dx dy

and

‖N‖
L∞(Ω̃)

:= max
(x,y)∈Ω̃

|N(x, y, t)|
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Fig. 3.1. Comparison of the number densities on the homogenized and the microstructured
domains with ε = 1/4.
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Fig. 3.2. Comparison of the number densities on the homogenized and the microstructured
domains with ε = 1/8.

for a fixed time t. The table shows results at the final time T = tfin = 2. Notice the
decrease of all absolute as well as relative errors with ε.

Tables 3.2 and 3.3 study the underlying error in the density function f itself. More
precisely, if f̃(x, y, v, t) denotes the homogenized solution and f(x, y, v, t) the solution
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Fig. 3.3. Comparison of the number densities on the homogenized and the microstructured
domains with ε = 1/16.
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Fig. 3.4. Comparison of the number densities on the homogenized and the microstructured
domains with ε = 1/32.

on the microstructured domain, then Table 3.2 lists the quantity I(f̃−f)(y, v, T ) with

I(f)(y, v, T ) :=

∫ T

0

∫ 1

0

f(x, y, v, t) dx dt

with T = tfin = 2 at y = 0.875 (close to the top of the domain) at various points
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Table 3.1
Errors in density Ñ measured in various norms ‖Ñ −N‖

L1(Ω̃)
, ‖Ñ −N‖

L1(Ω̃)
/‖N‖

L1(Ω̃)
,

‖Ñ −N‖
L∞(Ω̃)

, and ‖Ñ −N‖
L∞(Ω̃)

/‖N‖
L∞(Ω̃)

on subdomain Ω̃ = (0, 1)× (0.5, 1) at T = tfin = 2.

‖Ñ −N‖
L1 ‖Ñ −N‖

L1 /‖N‖
L1 ‖Ñ −N‖

L∞ ‖Ñ −N‖
L∞ /‖N‖

L∞
ε = 1/4 0.0023932 0.0076664 0.0070134 0.0101409
ε = 1/8 0.0013703 0.0044039 0.0031563 0.0045777
ε = 1/16 0.0008171 0.0026308 0.0017929 0.0026041
ε = 1/32 0.0005755 0.0018544 0.0012608 0.0018324

Table 3.2
Quantity I(f̃ − f)(y, v, T ) with T = tfin = 2 at y = 0.875 and velocity with v1 = −0.6167 and

v2 as listed.

v2 −3.3243 −1.8892 −0.6167 0.6167 1.8892 3.3243
ε = 1/4 6.8068e-08 4.7740e-06 5.6442e-05 7.2642e-04 3.8061e-04 1.1459e-05
ε = 1/8 3.7021e-08 2.5996e-06 3.0958e-05 3.7582e-04 2.1973e-04 6.4414e-06
ε = 1/16 2.3066e-08 1.6244e-06 1.9571e-05 2.2059e-04 1.4038e-04 3.6978e-06
ε = 1/32 1.8086e-08 1.2793e-06 1.5657e-05 1.5784e-04 1.1535e-04 2.7049e-06

Table 3.3
Quantity I(f̃ − f)(y, v, T )/I(f)(y, v, T ) with T = tfin = 2 at y = 0.875 and velocity with

v1 = −0.6167 and v2 as listed.

v2 −3.3243 −1.8892 −0.6167 0.6167 1.8892 3.3243
ε = 1/4 3.4103e-05 5.8409e-05 1.5900e-04 9.9293e-03 2.8628e-02 3.6588e-02
ε = 1/8 1.8549e-05 3.1806e-05 8.7218e-05 5.1617e-03 1.6729e-02 2.0902e-02
ε = 1/16 1.1557e-05 1.9875e-05 5.5139e-05 3.0362e-03 1.0753e-02 1.2107e-02
ε = 1/32 9.0618e-06 1.5652e-05 4.4112e-05 2.1743e-03 8.8528e-03 8.8848e-03

in velocity space given by v1 = −0.6167 and v2 as listed in the table. This quantity
mimics the behavior of

∫∫
f̂ ψ dx dt with ψ ≡ 1. Table 3.3 shows the corresponding

relative quantity I(f̃ − f)(y, v, T ) / I(f)(y, v, T ) at the same values of T , y, and v.
The convergence rate is not uniform for all velocities. For those components fk that
correspond to velocities pointing towards the wafer surface, i.e., with v2 < 0, the main
portion of the information travels from the given inflow condition, and convergence
is good. For the other components corresponding to information traveling back up
from the wafer surface, i.e., with v2 > 0, both absolute and relative errors deteriorate
somewhat.
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NONLINEAR STABILITY OF A LATITUDINAL RING OF
POINT-VORTICES ON A NONROTATING SPHERE∗
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Abstract. We study the nonlinear stability of relative equilibria of configurations of identical
point-vortices on the surface of a sphere. In particular, we study how the stability changes as a
function of the colatitude θ and of the number of vortices N . By using the integrals of motion, we
view the system in a suitable corotating frame where the polygonal vortex configuration is at rest.
Then after a sufficient criterion due to Dirichlet, the stability ranges are the θ-intervals for which
the Hessian of the Hamiltonian—evaluated at the equilibrium configuration—is positive or negative
definite. We find that the stability intervals coincide with those for linear stability determined by
Polvani and Dritschel [J. Fluid Mech., 255 (1993), pp. 35–64]. For N = 3 we recover the result
previously established by Pekarsky and Marsden [J. Math. Phys., 39 (1998), pp. 5894–5907].

Key words. stability, vortex dynamics, relative equilibria
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1. Introduction. In this article, by using a very clear and simple method, we
complete a stability analysis started by Thomson over a century ago [35, 36]. In 1883,
while studying and modeling the atomic structure, Thomson investigated the linear
stability of corotating point-vortices in the plane. In particular, his interest was in
configurations of identical vortices equally spaced along the circumference of a circle,
i.e., located at the vertices of a regular polygon. He proved that for six or fewer vor-
tices the polygonal configurations are stable, while for seven vortices—the Thomson
heptagon—he erroneously concluded that the configuration is slightly unstable [26].
It took more than a century to make some progress on this problem. In his Ph.D. the-
sis, Dritschel succeeded in solving the aspect of the heptagon mystery concerned with
its linear stability analysis, leaving open the nonlinear stability question: he proved
that the Thomson heptagon is neutrally stable and that for eight or more vortices the
corresponding polygonal configurations are linearly unstable [13]. In 1993, Polvani
and Dritschel generalized the techniques used in [13] to study the linear stability of a
“latitudinal” ring of point vortices (see Figure 1) on the sphere [31], a more relevant
problem from the atmospheric modeling point of view. They proved that polygonal
configurations are more unstable on the sphere than in the plane. In particular, they
showed that at the pole, for N < 7 the configuration is stable, for N = 7 it is neutrally
stable, and for N > 7 it is unstable. The ranges of linear stability in the colatitude
θ, as a function of N , are summarized in Table 1.
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Fig. 1. Latitudinal ring of point-vortices.

Table 1
Regular polygonal configurations of N vortices. Stability ranges as a function of the colatitude

θ and of the number of vortices N .

Number of vortices (N) Colatitude (θ)

3 0◦ ≤ θ ≤ 90◦

4 0◦ ≤ θ ≤ 55◦

5 0◦ ≤ θ ≤ 45◦

6 0◦ ≤ θ ≤ 27◦

7 θ = 0◦

In 1998, Kidambi and Newton fully studied the motion of three vortices on the
sphere and gave a geometrical interpretation of the conserved quantities [18]. By
means of the energy momentum method (the Marsden–Meyer–Weistein reduction),
Pekarsky and Marsden studied the nonlinear stability analysis for the integrable case
of polygonal configurations of three vortices of arbitrary vorticities (k1, k2, and k3) on
the sphere, leaving open the stability analysis for nonintegrable vortex systems (N >
3) [30]. More recently Cabral and Schmidt completed the linear and nonlinear stability
analysis at once for polygonal configurations in the plane [10], leaving untouched the
analogous analysis on the sphere. They proved that for seven or fewer vortices the
polygonal configurations are nonlinearly stable in the plane and, beyond that, they
studied the stability of polygonal configurations of identical vortices of strength k = 1
and with a central vortex of arbitrary strength K (see Figure 2). They determined
the range of stability as a function of K (see Table 2 and [10, Theorems 5.1 and 7.1])
to be {

(N2 − 8N + 8)/16 < K < (N − 1)2/4 when N is even,

(N2 − 8N + 7)/16 < K < (N − 1)2/4 when N is odd.
(1)

The stability of the heptagon, being still a special case, had to be studied by us-
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Fig. 2. Centered pentagonal configuration.

Table 2
Vortex configurations with N identical vortices at the vertices of a regular polygon plus a central

vortex of strength K. As a function of N , intervals of vortex strength K assure nonlinear stability
of the centered polygonal configurations.

Number of vortices (N) Stability range for K
(the strength of the central vortex)

3 −0.5 < K < 1.00

4 −0.5 < K < 2.25

5 −0.5 < K < 4.00

6 −0.25 < K < 6.25

7 0 = K < 9

ing normal form reduction and considering higher order terms in the Hamiltonian
(see [10]).

In 2001, by means of group theory techniques, Lim, Montaldi, and Roberts ex-
haustively classified the relative equilibria of a system of identical point-vortices on
a sphere [23]. In 2002, Laurent-Polz [21] studied the system formed by 2N point-
vortices with N vortices of strength +1 and N vortices of strength −1. He proved the
existence of some fixed and relative equilibria and studied their stability by means of
the energy momentum method, as in [30]. Soulière and Tokieda extended the study
of periodic vortex motion to various manifolds with symmetry [34], and Montaldi,
Soulière, and Tokieda fully determined fixed and relative equilibrium configurations
for vortices on the cylinder [25]. We would like to point out that many people are
working in this area, both for its mathematical beauty and open questions, and for
its great interest as a modeling problem for the vortex dynamics of the earth’s atmo-
sphere [26, 31, 11, 14]. We refer the reader to the nice book by Newton for a review
on N -vortex dynamics [27] and to the article by H. Aref et al. for a quite complete
and updated review on relative vortex configurations [3].

In this article we accomplish the stability analysis for integrable (N = 3) and
nonintegrable (3 < N ≤ 7) polygonal configurations of identical point-vortices on the
sphere. We introduce a much simpler method than in [10, 30, 21] that at one stroke
furnishes a complete linear and nonlinear analysis for the spherical case and that,
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moreover, can easily be generalized to an analogous stability analysis for polygonal
vortex configurations in other geometries [5, 8], including the planar case previously
studied by Cabral and Schmidt [10]. More specifically, by using a sufficient criterion
due to Dirichlet, we derive the stability ranges as θ-intervals for which the Hessian of
the Hamiltonian—evaluated at the equilibrium configuration—is positive or negative
definite. At this point we would like to remind the reader that, in general, linear and
nonlinear stability ranges may not coincide. As is well known, a system can be linearly
stable or unstable and nonlinearly stable or unstable; all four possibilities occur in
practice [24, 33, 9]. As a result of our analysis we find that the nonlinear stability
ranges (with the exception of the equator where other techniques need to be used to
infer stability) coincide with the ranges of linear stability previously determined by
Polvani and Dritschel (see Table 2).

Before ending this introduction we would like to make the following remarks:
(a) Relative equilibrium configurations are so called because the motion van-

ishes in an appropriate rotating frame. The study of such configurations
was termed “vortex statics” by Kelvin in 1910 [17], who, with Thomson [35,
pp. 94–108], found the relative equilibria of identical vortices. If all circula-
tions have the same sign, relative equilibria are the only stationary config-
urations possible. Palmore [29] investigated this case and found that many
relative equilibria must occur (for more details, see [28, 3]).

(b) When dealing with a system with integrable vortex dynamics (such as three-
vortex systems) we can simply make a canonical reduction to a system of one
degree of freedom. Therefore relative equilibrium configurations and their
stability can be simply inferred by determining the maxima and the minima
of the reduced vortex Hamiltonian. For a complete analysis, including the
general case of vortices with different vorticities, and for further details about
the global dynamics of integrable vortex systems, see Boatto and Laskar [6].

(c) By analogy with the planar case (see Figure 2 and Table 2), in a follow-up
article [5] we are generalizing this nonlinear stability analysis to the case of
latitudinal polygonal vortex configurations with vortices of strengths k1 and
k2 at the poles. From the atmospheric dynamics point of view, the central
vortex is a model for a polar vortex (southern or northern polar vortex),
and “latitudinal” chains of point-vortices are models for planetary waves.
Therefore this kind of analysis could help answer questions of the type: Does
the presence of a Polar vortex (in the southern or in the northern hemisphere)
favor the presence of waves (jets) at a given latitude? To show how the
presence of a central polar vortex of strength K dramatically changes the
stability ranges, at the end of section 3 we report the results of the stability
analysis for the case N = 3, for which we obtain fully analytical expressions.

The article is organized as follows. In section 2 we derive the equations of motion,
in particular the vortex Hamiltonian, and show the differences between the planar and
the spherical cases. In section 3 we summarize the main results and the main tools
for proving stability—the Dirichlet theorem on stability and a theorem on positive
(negative) quadratic forms (see Gel´fand [15, Theorem 1, p. 49]). In section 4 we
derive the stability ranges explicitly.

2. Equations of motion. The starting hypothesis for our derivation is that the
fluid can be modeled as a two-dimensional incompressible fluid with constant density,
i.e., a fluid whose velocity field verifies

∇ · u = 0,(2)
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with u = (ux, uy, uz) = (ẋ, ẏ, ż). In atmospheric dynamics, a fluid verifying (2) repre-
sents the simplest fluid model, called the barotropic model [11]. We are particularly
interested in characterizing the fluid dynamics for a given vorticity field, ω:

ω = ∇× u.(3)

Regarding this, we notice that in two dimensions our task is simplified since we can
recast the fluid equations into a Hamiltonian formalism. In fact, notice that on the
plane u = (ẋ, ẏ), and (2) is still verified if we represent the velocity components (see
[19]) as

ẋ =
∂Ψ

∂y
, ẏ = −∂Ψ

∂x
,(4)

i.e., by means of Ψ, called the stream function. Formally Ψ plays the role of a Hamil-
tonian for the pair of conjugate variables (x, y). By substituting (4) into (3), we
obtain

∆Ψ(r) = ω(r),(5)

i.e., a Poisson equation with ω as a source term. Then, once we specify the vorticity
field, by inverting (5) we obtain the stream function Ψ as

Ψ(r) =

∫∫
G(r, r′)ω(r)dA′,(6)

where G(r, r′) is the Green function. The Green function, both for the plane and for
the sphere, is (see [11, 19])

G(r, r′) = − 1

4π
log ‖ r− r′ ‖2 .

Then by (6), once we specify the vorticity field ω(r), we can compute Ψ, and by (4)
we know the velocity field everywhere.

2.1. Point-vortices on the plane. In our specific case we are interested in
the simplest of all vorticity fields: a system of point-vortices. A point-vortex can be
thought of as an entity in which the vorticity is concentrated into a point. Therefore
in the plane the vorticity for a system of N point-vortices is

ω(r) =
N∑
α=1

kαδ(r− rα),(7)

where kα, α = 1, . . . , N , is constant and corresponds to the vorticity of the αth vortex.
Therefore by applying the inversion formula (6), the stream function is

Ψ(r) = − 1

4π

N∑
α=1

kα log ‖ r− rα ‖2 .(8)

This equation describes, together with (4), the dynamics of a test particle at a point
(x, y) in the plane. Analogously, it can be shown that the dynamics of a system of
point-vortices in the plane is given by the equations

kα
dXα
dt

=
∂Hp
∂Yα

, kα
dYα
dt

= − ∂Hp
∂Xα

,(9)



NONLINEAR STABILITY OF VORTICES ON A SPHERE 221

where (qα, pα) = (Xα, kαYα), α = 1, . . . , N , is a pair of conjugate variables and Hp is
the generalization of the stream-function Ψ (8) for the vortex system,

Hp = − 1

4π

∑
α<β

kαkβ log ‖ rα − rβ ‖2 .(10)

Notice that in addition to the Hamiltonian Hp, a system of point-vortices in the plane
has the integrals of motion

L =

N∑
α=1

kα ‖ rα ‖2, Px =

N∑
α=1

kαXα, Py =

N∑
α=1

kαYα,

expressing, respectively, the conservation of angular momentum and linear momentum
in space. Furthermore, by introducing the Poisson bracket

[f, g] =

N∑
α=1

(
∂f

∂qα

∂g

∂pα
− ∂f

∂pα

∂g

∂qα

)
=

N∑
α=1

1

kα

(
∂f

∂Xα

∂g

∂Yα
− ∂f

∂Yα

∂g

∂Xα

)
,

we can show that we can construct three integrals in involution out of the four con-
served quantities Hp, L, Py, and Py. These are Hp, P

2
x + P 2

y , and L; in fact,

[Hp, P
2
x + P 2

y ] = 0, [Hp, L] = 0, [P 2
x + P 2

y , L] = 0.

It is then possible to reduce the system of equations from N to N − 2 degrees of
freedom. It follows that a system with N ≤ 3 is integrable, whereas the system of
equations of four vortices has been shown by Ziglin to be nonintegrable in the sense
that there are no other first integrals analytically dependent on the coordinates and
circulations, and functionally independent of L, Hv, Px, Py (see [16]). It has been
shown, however, that a system of four identical vortices (i.e., kα = k for α = 1, . . . , 4)
can undergo periodic or quasi-periodic motion for special initial conditions. More
specifically, the motion of a system of four identical vortices can be periodic, quasi-
periodic, or chaotic, depending on the symmetry of the initial configuration [2, 4, 7].

The simplest relative equilibrium is given by a system of two vortices with vorticity
of the same sign. For such a system the vortex motion is always periodic, and the
orbits are always circles. We do not have the option, as in the Kepler problem, where
the two masses can describe elliptical orbits. For further comments comparing vortex
dynamics with celestial mechanics, see [1, 27, 6].

2.2. Point-vortices on a sphere. When considering point-vortices on the sur-
face of the sphere, an additional constraint is given by the sphere topology. In fact, the
sphere being a compact manifold and, more specifically, a manifold with no bound-
aries, the Green theorem gives us a constraint on the distribution of vorticity,∫∫

S

ω(r′)dA′ =

∫∫
S

∇ · ∇Ψ(r′)dA′ = 0;

i.e., the vorticity distribution must have a zero average on the sphere [11]. To fulfill
this requirement, it is sufficient to include, in addition to the N point-vortices delta-
distributed, an evenly spread constant vorticity Γ, whose magnitude is equal to minus
the average of the point-vortices over the sphere, i.e.,

ω(r) =

N∑
α

kαδ(r− rα) + Γ,(11)



222 STEFANELLA BOATTO AND HILDEBERTO E. CABRAL

with Γ = −∑N
α=1 kα/4πR

2, R being the radius of the sphere, r and rα designating,
respectively, a generic point and the location of the αth vortex on the sphere. Then,
for this case, the vortex Hamiltonian is found to be

Hs =
1

4πR2

∑
α<β

kαkβ log ‖ rα − rβ ‖2,(12)

and the corresponding conjugate variables are pj = kj cos(θj) and qj = ϕj , j =
1, . . . , N , where ϕj and θj are the usual angles of spherical coordinates, respectively
the longitude and the colatitude, and kj is the vortex strength of the jth vortex. Then
the dynamics of N point-vortices on the surface of a sphere is given by the equations
(see [18, 31])

kj ṗj =
∂Hs
∂qj

, kj q̇j = −∂Hs
∂pj

.

As for the planar case [7], in addition to the Hamiltonian Hs, a system of point-
vortices on a sphere has the integrals of motion

L =

N∑
α=1

kα ‖ rα ‖2, Px =
1

R

N∑
α=1

kαxα, Py =
1

R

N∑
α=1

kαyα, Pz =
1

R

N∑
α=1

kαzα,

expressing, respectively, the conservation of angular momentum and linear momentum
in the space. Notice that, in the case of vortices on a sphere, the integral of motion L
simplifies to L = R2

∑N
α=1 kα and is therefore redundant. Furthermore, as in section

2.1, by introducing the Poisson bracket [f, g] =
∑N
α=1(

∂f
∂qα

∂g
∂pα

− ∂f
∂pα

∂g
∂qα

), it can easily
be shown that we can construct three integrals in involution out of the four conserved
quantities Hs, Px, Py, and Pz. These are Hs, P

2
x + P 2

y , and Pz; in fact,

[Hs, P
2
x + P 2

y ] = 0, [Hs, Pz] = 0, [P 2
x + P 2

y , Pz] = 0.

It is then possible to reduce the system of equations from N to N − 2 degrees of
freedom. It follows that a system with N ≤ 3 is integrable. Notice that while in the
planar case [7] we had the freedom of choosing a reference frame within which the
origin coincides with the center of vorticity, so that Px = Py = 0, in the spherical
case there is a privileged point in space, i.e., the center of the sphere. In this case,
the momentum vector M = (Px, Py, Pz) plays a special role in characterizing the
dynamics of the vortex system. We then use the freedom in the axis orientations
to select a reference system with the z-axis in the direction of M (see [18]). This
choice still gives Px = Py = 0, as for the planar case. In what follows there is no
loss of generality in considering a sphere of radius one (R = 1), and since we consider
the case of identical vortices—kα = k, α = 1, . . . , N—we choose k = 1. Then the
Hamiltonian becomes

Hs =
1

4π

∑
α<β

log ‖ rα − rβ ‖2 .(13)

We then use the rotational symmetry of the Hamiltonian (12) to view the vortex
dynamics in an appropriate corotating frame. In fact, by considering the canonical
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transformation 


φ1 = ϕ1 − ϕN J1 = p1
φ2 = ϕ2 − ϕN J2 = p2
...

...
φN−1 = ϕN−1 − ϕN JN−1 = pN−1

φN = ϕN JN =
∑N
k=1 pk,

(14)

we reduce the problem by one degree of freedom: φN is a cyclic coordinate, and JN
is the momentum vector M.

3. Main results. To determine the nonlinear stability regions for a system of
N identical point-vortices, we use a sufficient condition for stability which may be
traced back to Lagrange for potential systems and was later proved by Dirichlet [12]
for systems with integrals; this was subsequently generalized by Lyapunov in his direct
method (section 3.1). To apply the Dirichlet criterion we need to establish whether
the Hessian of the Hamiltonian is positive or negative definite. For this purpose we
use the Jacobi method described in section 3.2.

As result of our analysis, we find that the nonlinear stability ranges coincide—
apart from the equatorial plane—with the linear stability ranges previously found by
Polvani and Dritschel [31], as shown in Table 2. Detailed calculations are done in
section 4.

3.1. Nonlinear stability: The Dirichlet criterion. Let x∗ be an equilibrium
of an autonomous system of ordinary differential equations,

dx

dt
= f(x), x ∈ Ω ⊂ R

n,(15)

that is, f(x∗) = 0. Denote by φ(t, x) the solution of (15) such that φ(0, x) = x. For
r > 0, denote by Br(x) the open ball in R

n with center x and radius r.

Let us recall that a function Ψ is said to be positive definite (resp., negative
definite) at a point x∗ if f(x∗) = 0 and if there exists a neighborhood V of x∗ such
that f(x) > 0 (resp., f(x) < 0) for all x 	= x∗ in V.

Theorem 1 (Dirichlet; see [32]). If there exists a positive (or negative) definite
integral Ψ of the system (15) in a neighborhood of the equilibrium x∗, then x∗ is
stable.

For an autonomous Hamiltonian system, Theorem 1 translates into the following.
Let z∗ = 0 be an equilibrium of the system with an analytic Hamiltonian

H(z) = H2(z) +H3(z) + · · · ,

where Hk(z) is a homogeneous polynomial of degree k in z.

Since H is a first integral of the system, Dirichlet’s theorem implies that if, at
the equilibrium the quadratic form H2(z) is positive (or negative) definite, then the
equilibrium is stable.

3.2. A theorem on positive (negative) quadratic forms: The method of
Jacobi. To determine whether the Hessian of the Hamiltonian is positive or negative
definite, we make use of the Jacobi method illustrated in the following theorem (see
Gel´fand [15, Theorem 1, p. 49]).
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Theorem 2. Let A(x;x) be a quadratic form defined relative to some basis
f1, f2, . . . , fn by the equation

A(x;x) =

n∑
i,k=1

aikηiηk, aik = A(fi; fk),

where η1, . . . , ηn are coordinates of x in this basis. Further, let the determinants

∆1 = a11, ∆2 =

∣∣∣∣ a11 a12

a21 a22

∣∣∣∣ , . . . ,

∆n =

∣∣∣∣∣∣∣∣
a11 a12 . . . a1n

a11 a12 . . . a1n

. . . . . . . . . . . .
an1 an2 . . . ann

∣∣∣∣∣∣∣∣
all be different from zero. Then there exists a basis e1, e2, . . . , en relative to which
A(x;x) is expressed as a sum of squares,

A(x;x) =
∆o

∆1
ζ21 +

∆1

∆2
ζ22 + · · · + ∆n−1

∆n
ζ2n.

Here ∆0 = 1 and ζ1, ζ2, . . . , ζn are the coordinates of x in the basis e1, e2, . . . , en.

4. The Hessian of the Hamiltonian and its principal minors. In this
section we simply illustrate the calculations to determine, as a function of N , the
region for which the Hamiltonian is negative or positive definite when evaluated at
the equilibrium configuration. We remind the reader that, after having performed
the canonical transformation (14), we evaluate the principal minor determinants of
the Hessian matrix of the Hamiltonian at the relative equilibrium configurations. As
announced in section 2, the Hamiltonian is the reduced Hamiltonian for which the vor-
tex dynamics is viewed in the reference system rotating with the relative equilibrium
configuration (i.e., with a frequency ϕ̇N ).

In the reduced system the Hessian of the Hamiltonian takes the form

H(Hs) =




∂2Hs

∂φα∂φβ

∂2Hs

∂Jα∂φβ

∂2Hs

∂φα∂Jβ
∂2Hs

∂Jα∂Jβ



, α, β = 1, . . . , N − 1,

which, evaluated at the equilibrium configuration—Joα = zo = cos θo and φoα =
2π α/N for α = 1, . . . , N − 1—becomes

H(Hs)eq = b



S̃o − SoI 0

0 ∂2Hs

∂Jα∂Jβ



,(16)
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where b = 1/2π, I, and 0 are, respectively, the ((N − 1) × (N − 1)) identity and the
zero matrices,

So =

N−1∑
α=1

1

1 − cos(φoα)
=

1

6
(N2 − 1), with φoα =

2π

N
α,

and S̃o is a symmetric matrix with zero-diagonal elements and with off-diagonal ele-
ments

(S̃o)αβ =
1

1 − cos(φoα − φoβ)
, with φoα =

2π

N
α, φoβ =

2π

N
β.

Then for the determinants of principal minors of (16) we obtain the following:
Case 1. N = 2:

∆1 = −1

2
, ∆2 = +

z2o
2r4o

.

Then clearly, ∆1 < 0, ∆2 > 0 for all zo 	= {0, 1}, i.e., for all colatitudes but the
equatorial one, and at the poles since zo = cos θ. By Theorem 2 (section 3),
we can conclude that the Hessian (16) is negative definite at all colatitudes θ,
with the exception of the values θ = 90◦ (i.e., at the equator) and θ = 0◦ (i.e.,
at the poles). Then by Theorem 1 we can infer that “colatitudinal” relative
equilibrium configurations of two vortices are always nonlinearly stable, with
the exception of the values θ = 90◦ and θ = 0◦.
Case 2. N = 3:

∆1 = −4

3
, ∆2 =

4

3
, ∆3 = −16z2o

r4o
, ∆4 =

16 z4o
r8o

.

Then, ∆1 < 0, ∆2 > 0, ∆3 < 0, and ∆4 > 0 for all zo 	= {0, 1}, i.e.,
for all colatitudes but the equatorial one and at the poles. Then by the
same argument as for Case 1 (N = 2), we conclude that “colatitudinal”
relative equilibrium configurations of three vortices are always nonlinearly
stable. The case θ = 90◦ needs further analysis; for more details, see Pekarsky
and Marsden [30].
Case 3. N = 4:

∆1 = −5, ∆2 =
21

4
, ∆3 = −9, ∆4 = 9

6z2o − 1

r4o
,

∆5 = −27
z2o(9z

2
o − 2)

r8o
, and ∆6 = 324

z4o(3z
2
o − 1)

r12o
.

Then by symmetry restricting the analysis to the domain 0◦ ≤ θ ≤ 90◦, we
find the following:

∆4 > 0 if 0◦ < θ ≤ arccos

(
1√
6

)
≈ 66◦,

∆5 < 0 if 0◦ < θ ≤ arccos

(√
2

3

)
≈ 62◦,

∆6 > 0 if 0◦ < θ ≤ arccos

(
1√
3

)
≈ 55◦.
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Then, by the same argument as for the case N = 2, we conclude that the
Hessian is negative definite if 0◦ < θ ≤ arccos(1/

√
3); i.e., nonlinear stability

holds in the region extending from the pole down to a latitude of about 35◦.
Case 4. N = 5:

∆1 = −4, ∆2 = 0.4(37 −
√

5) > 0, ∆3 = −1.92(25 −
√

5) < 0, ∆4 = 115.2,

∆5 = −46.08
20z2o − 5 −√

5

r4o
, ∆6 =

1

5

(20z2o − 5 +
√

5)(12z2o −
√

5 − 3)

r8o
,

∆7 = −32 ∆4
z2o
r12o

(2zo − 1)2, and ∆8 = ∆4 320
(2z2o − 1)2z4o

r16o
.

Then we find the following:

∆5 < 0 if 0◦ ≤ θ ≤ arccos

(√
25 + 5

√
5

10

)
≈ 53◦,

∆6 > 0 if 0◦ ≤ θ ≤ arccos



√

3 +
√

5

12


 ≈ 48◦,

∆7 < 0 if θ 	= arccos

(
1√
2

)
= 45◦,

∆8 > 0 if θ 	= arccos

(
1√
2

)
= 45◦,

and therefore the Hessian is negative definite if 0◦ < θ < 45◦; i.e., nonlinear
stability holds in the region extending from the pole down to a latitude of
45◦.
Case 5. N = 6:

∆1 = −35

6
, ∆2 =

1081

36
, ∆3 = −10361

72
, ∆4 =

5740

9
, ∆5 = −2400,

∆6 = −∆5

3

30z2o − 17

r4o
, ∆7 =

∆5

12

(10z2o − 3)(90z2o − 59)

r8o
,

∆8 = −∆5

6

(20z2o − 9)(150z4o − 125z2o + 12)

r12o
,

∆9 = 5 ∆5
z2o(5z

2
o − 3)(125z4o − 125z2o + 24)

r16o
,

∆10 = −150 ∆5
z4o(5z

2
o − 4)(5z2o − 3)2

r20o
.

Then,

∆6 > 0 if 0◦ ≤ θ ≤ arccos

(√
17

30

)
≈ 41◦,

∆7 < 0 if θ 	= arccos

(√
3

10

)
≈ 36◦,
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∆8 > 0 if θ 	= arccos

(√
9

20

)
≈ 48◦,

∆9 < 0 if 0 ≤ θ 	= arccos



√

1

2
+

√
145

50


 ≈ 30.6◦,

∆10 > 0 if θ 	= arccos

(√
4

5

)
≈ 27◦,

so that the Hessian is negative definite for 0◦ ≤ θ ≤ arccos(
√

4/5); i.e.,
nonlinear stability holds in the region from the pole down to a latitude of
approximately 63◦.

For the case N = 7 we obtain that for all z0 	= ±1 the principal minors have different
signs and are not alternating. As for the planar case [10, 5], we can therefore conclude
that the Hessian is not definite and further analysis is necessary.

It is shown in Boatto, Cabral, and Simó [5] that a polygonal ring of N identical
vortices is stable if

r2o <
7−N

4 for N odd,

r2o < −N2−8N+8
4(N−1) for N even,

where r2o = 1 − z2o . Therefore a polygonal configuration with N ≥ 7 is not stable on
a sphere.

Before ending this section we would like to make the following remarks:
(a) We remind the reader that for three vortices (Case 2, N = 3) the dynamics

is integrable (see section 2.2); therefore stability can be simply inferred by
reducing the Hamiltonian to that of a system of one degree of freedom,

H = B1 log

{
1

64
(3 −M2 + 2MJ1)

2(3 −M2 + 2MJ2)
2(3 +M2 − 2MJ2 − 2MJ1)

2

}
,

(17)
where J1 = z1, J2 = z2, and M = z1 + z2 + z3 is the momentum [6]. It
can immediately be shown that (J1, J2) = (M/3,M/3) is a critical point
of (17) and corresponds to a latitudinal equilateral triangle configuration.
Furthermore, the Hessian of (17) at the equilibrium (J1 = J2 = zo = M/3)
takes the form

H(H)

(
J1 =

M

3
, J2 =

M

3

)
= −B1

72M2

(M2 − 9)2

(
2 1

1 2

)
,

and therefore we can simply deduce that the equilateral triangle configuration
is stable everywhere on the sphere except at the poles (M = 3) and at the
equator (M = 0). Such an analysis can be easily generalized to the case of
nonidentical vortices; for details, see [6].

(b) The presence of a polar vortex greatly modifies the stability analysis of the
polygonal ring. We have already discussed in the introduction that for the
planar case Cabral and Schmidt [10] showed that a central vortex of vortex
strength K could stabilize a polygonal configuration of identical vortices, and
they provided analytical expressions for theK-intervals which assure stability



228 STEFANELLA BOATTO AND HILDEBERTO E. CABRAL

for a given N (see (1) and [5]). Similarly, for the spherical case—for a polar
vortex of vorticity K and a latitudinal polygonal ring of N identical point-
vortices—Boatto and Cabral have found explicit analytical expressions for
the θ- and K-intervals which assure stability (for details, see [5]). They have
found the following stability ranges for N = 3.
For z 	= 1

3 , let κ1(z) and κ2(z) be the minimum and the maximum of the two
functions

g2(z) = − 2z

1 + z
and g3(z) =

2z(3z2 − 4z − 3)

(1 + z)2(1 − 3z)
.

We notice that

κ1 = g3 and κ2 = g2 for − 1 < z ≤ 1

3
and 0 ≤ z < 1

3

and

κ1 = g2 and κ2 = g3 for − 1

3
≤ z ≤ 0 and

1

3
< z < 1.

Then, according to z (z = cos θ, θ being the colatitude), we have stability in
the following situations:

−1 < z < z′, κ1(z) < κ < 0 or κ > κ2(z) > 0,

z = z′, κ > κ2(z) > 0,

z′ < z < 0, 0 < κ < κ1(z) or κ > κ2(z) > 0,

0 ≤ z ≤ 1
3 , κ > 0,

1
3 < z < 1, 0 < κ < κ2(z),

where z′ = −
√

13−2
3 is the negative root of the equation 3z2 − 4z − 3 = 0.

5. Conclusions. Our nonlinear stability ranges coincide with those computed
by Polvani and Dritschel for linear stability [31].

There are many other interesting stability problems concerning relative equilibria,
and we refer the reader to the book by Newton [27] and the article by Aref et al. [3]
for a review. We would like to stress that our stability approach is rather simple: it
consists of viewing the dynamics in a good reference frame and using a Lyapunov-like
criterion (the Dirichlet criterion).

Furthermore, our study also has relevance for its modeling aspect. In 1998, a
subtropical hexagonal jet was observed in the southern hemisphere [22]. This structure
proved to be stable for quite a few days, and the question arises of understanding its
persistence. The simplest model of a hexagonal jet is a regular polygonal configuration
of point-vortices.

The addition of one or two polar vortices strongly modifies the stability ranges
(θ-intervals) for the latitudinal ring. More details will be given in a forthcoming
paper [5].

Acknowledgments. We express our thanks to A. Chenciner, N. Lebovitz, and
D. S. Schmidt for helpful discussions.
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[5] S. Boatto, H. E. Cabral, and C. Simó, Nonlinear stability of a latitudinal ring with vortices
at the poles on a non-rotating sphere, in preparation.

[6] S. Boatto and J. Laskar, Point-vortex cluster formation in the plane and on the sphere: An
energy bifurcation condition, Chaos, 13 (2003), pp. 824–835.

[7] S. Boatto and R. T. Pierrehumbert, Dynamics of a passive tracer in the velocity field of
four identical point vortices, J. Fluid Mech., 394 (1999), pp. 137–174.

[8] S. Boatto and T. Tokieda, Curvature Perturbations and Vortex Stability, in preparation.
[9] H. E. Cabral and K. R. Meyer, Stability of equilibria and fixed points of conservative systems,

Nonlinearity, 12 (1999), pp. 1351–1362.
[10] H. E. Cabral and D. S. Schmidt, Stability of relative equilibria in the problem of N + 1

vortices, SIAM J. Math. Anal., 31 (1999), pp. 231–250.
[11] M. T. DiBattista and L. M. Polvani, Barotropic vortex pairs on a rotating sphere, J. Fluid

Mech., 358 (1998), pp. 107–133.
[12] P. G. L. Dirichlet, Werke, Vol. 2, Georg Reiner, Berlin, 1897, pp. 5–8.
[13] D. G. Dritschel, The stability and energetics of co-rotating uniform vortices, J. Fluid Mech.,

157 (1985), pp. 95–134.
[14] D. G. Dritschel, Contour dynamics and contour surgery: Numerical algorithms for extended

high-resolution modeling of vortex dynamics in two-dimensional, inviscid, incompressible
flows, Computer Phys. Rep., 10 (1989), pp. 77–146.

[15] I. M. Gel´fand, Lectures on Linear Algebra, Tracts in Math. 9, Interscience, New York,
London, 1963.

[16] K. M. Kahnin, Quasi-periodic motion of vortex system, Phys. D, 4 (1982), pp. 261–269.
[17] Lord Kelvin,Mathematical and Physical Papers, Vol. 4, Nos. 10 and 12, Cambridge University

Press, Cambridge, UK, 1910.
[18] R. Kidambi and P. K. Newton, Motion of three point vortices on a sphere, Phys. D, 116

(1998), pp. 143–175.
[19] Y. Kimura and H. Okamoto, Vortex motion on a sphere, J. Phys. Soc. Japan, 56 (1987),

pp. 4203–4206.
[20] G. R. Kirchhoff, Vorlesungen über mathematische Physik. Mechanik, Teubner, Leipzig, 1876.
[21] F. Laurent-Polz, Point vorticies on the sphere: A case with opposite vorticites, Nonlinearity,

15 (2002), pp. 143–171.
[22] B. Legras, private communication, Laboratoire de Météorologie Dynamique, Ecole Normale
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GEOCHEMICAL PHASE DIAGRAMS AND GALE DIAGRAMS∗
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Abstract. The problem of predicting the possible topologies of a geochemical phase diagram,
based on the chemical formula of the phases involved, is shown to be intimately connected with and
aided by well-studied notions in discrete geometry: Gale diagrams, triangulations, secondary fans,
and oriented matroids.

Key words. Gale diagram, Gale transform, phase diagram, triangulation, secondary polytope,
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1. Introduction. A central problem in geochemistry has been to understand
how the equilibrium state of a chemical system varies with temperature and pressure,
and to predict the form of its temperature-pressure phase diagram (hereafter called
just the phase diagram). The purpose of this paper is to explain how some recently
developed tools from discrete geometry (the theory of oriented matroids, triangula-
tions, Gale diagrams, and secondary fans) can be used to elucidate this problem. Our
goal is to be comprehensible to both discrete geometers and workers in geochemistry.

Figure 1 illustrates the familiar phase diagram for a simple chemical system that
involves three phases (ice, water, steam) of the same chemical compound, H2O. The
topological structure of this diagram is fairly simple: there is a unique point, called a
triple point, where all three phases can be present in equilibrium. The triple point lies
at the junction of three curves. Along each of these curves, exactly two of the phases
are present in equilibrium (either ice + water, or ice + steam, or water + steam), and
these three curves separate two-dimensional regions where only one phase (pure ice,
pure water, or pure steam) can be present in equilibrium.

This example of a phase diagram is quite an elementary one, in that all the
phases have the same underlying chemistry, that of H2O. Geochemists are interested
in phase diagrams as the principal tool in reconstructing the temperature and pressure
conditions from rock formations once deep within the Earth but which now reside at its
surface. Thus it is important to have accurate phase diagrams involving much more
complex systems, in which the phases have different chemistry as well as different
states.

To be more precise, a phasemeans a physically homogeneous substance, having its
own chemical formula, although different phases within the system can have the same
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Fig. 1. The phase diagram for the simple chemical system with phases ice, water, and steam.

formula (as in the ice-water-steam example). At a particular temperature and pres-
sure, the equilibrium state consists of groups of one or more phases that are referred
to as phase assemblages. Within a closed system at fixed temperature and pressure,
only certain phase assemblages will be stable, namely, those having the lowest pos-
sible Gibbs free energy under the given conditions. Other assemblages with higher
energy than the minimum under those conditions are referred to as metastable—these
assemblages react spontaneously to produce a stable assemblage and a net decrease in
energy. For example, pure water placed in the stability field of ice will spontaneously
freeze because a lower Gibbs energy assemblage (ice) is available under those condi-
tions. When there are different chemical formulae present among the phases, more
exotic reactions than simple phase changes are possible. The regions of simultaneous
stability for various collections of phase assemblages and the chemical reactions that
relate them can be conveniently summarized in the phase diagram.

The locus of temperatures and pressures within which a particular phase assem-
blage is stable is called its stability field. The stability field is called invariant, uni-
variant, or divariant depending upon its dimension, that is, the number of degrees of
freedom one can vary while staying within that stability field. In the example above,
the triple point (ice-water-steam) is an invariant point, there are three univariant
curves (ice-water, ice-steam, water-steam), and three divariant stability fields (pure
ice, pure water, pure steam). The univariant fields correspond to simple chemical
reactions that transform one phase assemblage to another, and hence are sometimes
referred to as reaction lines. In producing these phase diagrams, a prediction of the
possible topologies (i.e., number of invariant points, number of univariant curves join-
ing them, etc.) is indispensable, as the thermodynamic data needed to resolve such
topological features can sometimes be difficult to obtain.

It turns out that much of the complexity of the phase diagram for a chemical
system is governed by two parameters:

• the number of phases, m, and
• the number of components, n (defined below).

We will see in section 3 that these two parameters correspond to the size of the
ground set and the rank of a related vector configuration (or affine point configura-
tion or oriented matroid) associated with the chemical system. It is well known, in
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both geochemistry and discrete geometry, that what matters most in predicting the
complexity of the phase diagram is not the sizes of n and m, but rather the sizes of
n and m− n (the rank and the corank).

The number of components n for a chemical system is defined as follows. Think of
the chemical formulae of the various phases of the system as vectors in a vector space
of all possible such formulae (the chemical composition space—see section 3), whose
coordinate axes correspond to the elements present on earth. Then the number n of
components of the chemical system is simply the dimension of the subspace spanned
by the chemical formulae of the phases present in the system.1 For example, the
system of ice, water, and steam from Figure 1 has m = 3 and n = 1, while the system
depicted in Figure 2 (in section 3) has m = 4 and n = 2.

Phase diagram topologies for chemical systems with m ≤ n + 2 are fairly well
understood, even as m grows large. For m ≤ n+1 they are essentially trivial, and for
m = n+ 2, they look roughly like Figure 1, having an invariant point surrounded by
several univariant reaction curves. The schematic picture of such an invariant point
surrounded by reaction curves is referred to as an invariant point map [17]. We will
explain in section 8 why invariant point maps look roughly like a two-dimensional
Gale diagram, in concordance with rules for the phase diagram’s construction first
delineated by Schreinemakers [25] nearly 100 years ago.

However, by m = n + 3 (a situation common for chemical systems applicable to
the earth) the topology of the phase diagram can become quite complex as m grows
large. For example, under certain genericity assumptions about the chemical formulae
of the phases, the diagram will contain exactly n+3 invariant points located at various
temperature and pressure coordinates. These invariant points are connected to one
another by various reaction lines to a form a network of points and lines referred to by
geochemists as a petrogenetic grid. For example, a typical grid for n = 4 and m = 7
will have seven invariant points connected by 21 different reaction lines.

The phase diagram topology of this (as well as higher order systems) has been
represented schematically by geochemists via a straight line net, made up of a set
of invariant point maps linked together by common reaction lines. In section 9 we
will explain how straight line nets for systems with m = n + 3 can be constructed
using three-dimensional Gale diagrams and secondary fans, and hence why their phase
diagrams strongly resemble the encoding of a three-dimensional Gale diagram as a
two-dimensional affine Gale diagram.

Within the geochemical literature, there are two general approaches to recon-
structing the topology of the phase diagram. The first approach was pioneered by
Schreinemakers [25], who reasoned about the relative Gibbs energies of phases to de-
duce invariant point maps for m = n+2. This method has been extended by various
authors (see [29], [31], [32]; [6]; [16], and references therein) to produce viable straight
line nets for systems with m = n+ 3. All feasible topologies are enumerated by this
method, and then empirical data is used to eliminate those diagrams which are phys-
ically impossible. This approach can be made much more efficient by the methods
described in this paper.

The alternative approach is to compute the variation in Gibbs energy directly for
every phase of interest. Modern thermodynamic databases (e.g., [13] and references
therein) now make these computations possible. The method fails in some cases be-

1It will be convenient in section 3 to choose a basis for this space, that is, a minimal set of
phases such that all the formulae of the phases can be expressed as linear combinations of these basic
components; hence the term number of components of the system.
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cause the data either lacks the accuracy to distinguish between topologically different
diagrams or is simply not available for some phases. The latter situation is becom-
ing more common as new phases are discovered by laboratory synthesis under high
pressure conditions. The quantities of these phases are so small that the necessary
thermodynamic data will not be available in the foreseeable future. Thus geochemists
must rely on the topological approach developed earlier.

We should point out that there have been a few authors [12], [27] who have given
a somewhat similar mathematical formulation of this problem, but without taking
advantage of the language, techniques, and highly developed theory provided by Gale
diagrams and oriented matroids. The applications derived in section 10 of this paper
are, as far as we know, new. Furthermore, the theory described in this paper is
the basis for JAVA applets written by the second author and available on the web
[18], which give practical tools for use in geochemistry for predicting phase diagram
topology.

2. A geochemistry-discrete geometry glossary. For the convenience of the
reader, and as a guide to what lies in store, we present a (very rough) glossary of
corresponding terms.

Geochemistry Discrete geometry

chemical formula for a phase vector in composition space
chemical system acyclic vector configuration V
chemography affine point configuration A
number of phases m number of vectors/points
number of components n rank of vector/point configuration
reactions among phases linear/affine dependences of V/A
minimal reactions circuits
stable assemblage of phases simplex in a triangulation of A
phase diagram affine plane slice of secondary fan
phase diagram when m = n+ 2 2-dimensional (2-D) Gale diagram A∗

reaction half-line for m = n+ 2 vector in 2-D Gale diagram A∗

phase diagram when m = n+ 3 2-D affine Gale diagram for A∗

invariant point when m = n+ 3 vector in 3-D Gale diagram A∗

closed net when m = n+ 3 spherical representation of A∗

Euler sphere for m = n+ 3 great circles normal to A∗

3. Chemical composition space. In this section, we introduce the chemical
composition space that allows one to associate to each chemical system a configuration
of vectors, an affine point configuration, and their oriented matroid. For terminology
on vector configurations, point configurations, and oriented matroids, we refer the
reader to two excellent references: the bible of the subject, [2] (in particular, its
section 1.2), and Ziegler’s book, [33, Lecture 6].

Definition 3.1. The formulae of chemical compounds may be represented in a
natural way by vectors in a chemical composition space whose axes are indexed by the
elements in the periodic table. For example, H2O has coordinates which are two units
on the hydrogen axis, one unit on the oxygen axis, and zero on all other axes. The
m phases of a chemical system in this way give rise to a collection V = {v1, . . . , vm}
of vectors spanning a subspace of some dimension n, which is called the number of
components of the system. By picking a basis for this subspace, we can identify it with
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Fig. 2. (a) Vector configuration V and (b) affine point configuration A for the chemical system
with phases corundum (C), diaspore (D), gibbsite (G), and water (W).

R
n and specify each vi by a column vector in R

n. This allows us to identify V with
an n×m matrix having full rank n, which we also call V by an abuse of notation.

Example 3.2. Consider a chemical system of relevance to geology having m = 4
phases, which we denote by descriptive initials rather than by v1, v2, v3, v4:

C = corundum Al2O3,
D = diaspore AlO(OH),
G = gibbsite Al(OH)3,
W = water H2O.

(1)

Since the compounds in this system involve only the elements Al, O, H, this system
can have n at most 3. However, one can check that these chemical formulae span a
space of dimension n = 2. Choosing C and W to be the standard basis vectors in this
space (that is, the components for this system), one can represent the configuration
V as the columns of the matrix

V =
[C D G W

1 1
2

1
2 0

0 1
2

3
2 1

]
,

(2)

and the associated vector configuration is depicted in Figure 2(a).
Notice that, by choosing a basis that identifies this n-dimensional subspace with

R
n, we are already abstracting away from the actual chemical formulae of the phases
and paying attention only to properties that are invariant under a simultaneous
change-of-basis acting on the vectors, that is, properties invariant under GLn(R).
One such set of properties is the oriented matroid associated to the vector configura-
tion V.

Definition 3.3. The oriented matroid M associated to V is a combinatorial
abstraction of the vectors V, which forgets their actual coordinates but retains data
specifying the signs involved in linear dependences among the vi. The way in which we
choose to record this data is to list the signed circuits of M coming from each minimal
(nontrivial) linear dependence

∑
i λivi = 0, that is, the signed set (X+, X−), where

X± := {i ∈ {1, . . . ,m} : sign(λi) = ±}.
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Here minimality for signed sets is interpreted with respect to the ordering of their
support sets:

(X+, X−) < (Y +, Y −) means X+ ∪X− ⊆ Y + ∪ Y −.

It is sometimes convenient to represent a signed set (X+, X−) instead by its sign
vector in {+, 0,−}m, which has ± in the coordinates indexed by X±, and 0 in all
other coordinates. For example, a minimal dependence of the form +5v1 − 3v2 +

7
8v4

among m = 4 phases would be recorded by the circuit whose signed set is ({1, 4}, {2})
or by its sign vector (+− 0+).

It is possible to write down a small set of circuit axioms satisfied by the set C of
signed circuits coming from any vector configuration, in such a way that collections
of signed sets satisfying these axioms (oriented matroids) mimic many features of sets
of vectors in a real vector space; see [2, p. 4]. Note that, since the negation of a
linear dependence gives another linear dependence, one of these circuit axioms for an
oriented matroid says that the set of sign vectors of circuits is closed under negation.

The linear dependences among the vi have an obvious chemical interpretation:
they are the coefficients in the mass-preserving chemical reactions possible among the
phases.

Example 3.4. Continuing the previous example, there are three minimal linear
dependences/reactions, giving rise to the following signed circuits (represented by two
opposite sign vectors below):

Minimal reaction/dependence Circuits as sign vectors
G � 1D + 1W 0 +−+, 0−+−
2D � 1C + 1W +− 0+, −+ 0−
3D � 1C + 1G +−+0, −+− 0

Note that another possible reaction among these phases is

1C + 2W � 1D + 1G,

which would give rise to dependences with sign vectors

+−−+, −++−,
but these are not signed circuits because their support sets are not minimal under
inclusion.

The fact that every chemical compound contains a nonnegative amount of each
element implies that the vector configuration V will be acyclic, that is, there will be
no signed circuits with X− = {∅}. Equivalently, there exists a linear functional �(x)
in (Rn)∗ such that �(vi) > 0 for all i. This allows one to replace each vi by a rescaled
vector ai satisfying �(ai) = 1, so that the ai lie in the affine hyperplane �(x) = 1
inside R

n, giving rise to an affine point configuration2 A in (n− 1)-dimensional affine
space R

n−1. In chemical terms, this replacement corresponds to simply changing
conventions for writing down basic quantities of each phase: instead of considering
one mole to be the basic unit of quantity for some phase, one can consider a half a
mole or some other fraction to be its basic unit of quantity.3

2In [17], this affine point configuration A is called the chemography of the system.
3We have already pointed out that two phases can have the same chemical formula, giving rise

to two copies of the same vector vi = vj in V; these give rise to what are called parallel elements of
the oriented matroid M. We should note, however, that parallel elements can also arise after doing
the rescaling from V to A if two phases have chemical formulae which differ by a scalar multiple,
e.g., if both oxygen O2 and ozone O3 were present as phases.
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The effect of this rescaling is to turn linear dependences
∑
i λivi = 0 of the original

vector configuration V into affine dependences of A, that is, relations∑i λ̄iai = 0 with∑
i λ̄i = 0. In terms of chemical reactions, this means that the reactions will not only

achieve mass-balance for each atom, but also “coefficient balance,” as in the following
example.

Example 3.5. Continuing the previous example, we can choose the linear function
�(x) = x1 + x2 in R

2 and rescale the coordinates of C,D,G,W so that they have
�(x) = 1, giving the new matrix

A =
[C D 1

2G W

1 1
2

1
4 0

0 1
2

3
4 1

]
.

(3)

The affine point configuration in R
1 represented by A is depicted in Figure 2(b).

The rescaling in this case required only replacing G by 1
2G, so that, for example,

the previous reaction/linear dependence

1G � 1D + 1W,

1Al(OH)3 � 1AlO(OH) + 1H2O,

which achieves mass-balance for each atom but not coefficient balance (1 �= 1 + 1),
now gives rise to the affine dependence

2 ·
(
1

2
G

)
� 1D + 1W,

achieving coefficient balance: 2 = 1 + 1.
Switching from the vector configuration V to the affine point configuration has

psychological advantages, in that it allows one to reduce the dimension by one for
visualization purposes, and it makes it easier to think about our next topic: triangu-
lations4 of A.

4. Triangulations and subdivisions. Our goal in this section is to explain a
phenomenon well known to geochemists: by performing reactions that minimize the
Gibbs free energy resulting in stable phase assemblages at a particular temperature
and pressure, nature (generically) “computes” a triangulation of the point set A.

Having fixed a temperature and pressure (T, P ), each of the phases a1, . . . , am of
the chemical system will have a certain Gibbs free energy gi(T, P ) per molar quantity
(or per whatever basic quantity is being used after rescaling vi to ai).

Definition 4.1. These values gi(T, P ) can be used as heights to “lift” the points
ai in R

n−1 to points

âi :=

[
ai

gi(T, P )

]
∈ R

n,

giving a new lifted configuration of points Â. In other words, we plot the points ai
together with their height along an extra Gibbs energy axis; see Figure 3 for two
examples having n = 2.

4We should point out that there is a well-defined notion of triangulations for general vector
configurations (even when they are not acyclically oriented), as well as for oriented matroids that do
not come from configurations of vectors. See [24] and the references contained therein.
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Fig. 3. The chemography A from Figure 2, “lifted” to Â by the Gibbs energy values at two
different values of temperature and pressure.

The convex hull, that is, the set of all convex combinations, of this set Â of lifted
points has the following physical interpretation. Suppose that we have an assemblage
consisting of xi units of the basic quantity of phase ai for each i = 1, . . . ,m, and
assume (without loss of generality) that

∑
i xi = 1. Then this assemblage will have

total Gibbs energy
∑
i xigi(T, P ), which is the same as the height on the Gibbs energy

axis of the point
∑
i xiâi, which is a weighted average of the lifted points Â and

therefore lies somewhere in their convex hull. If this point does not lie on the lower
convex hull of these lifted points, then this is not a stable assemblage of phases: there
exist some reaction(s) available which would alter the fractions of each phase ai in a
way that lowers the total Gibbs energy.

Example 4.2. We continue our previous example and assume that the Gibbs en-
ergies of the phases are as depicted in Figure 3(a). Consider the assemblage consisting
of 1

2 mole of C together with
1
2 mole of D. It lifts to the point

1
2 Ĉ +

1
2D̂ at the mid-

point of the line segment ĈD̂ in Figure 3(a), whose height 1
2gC(T0, P0)+

1
2gD(T0, P0)

represents the total Gibbs energy of this assemblage. It is not stable because one can
run the reaction

3D � 1C + 1G

in the forward direction to convert the 1
2 mole of D into 1

6 mole each of C and G.
This creates an assemblage with lower total Gibbs energy consisting of 2

3 mole of C
together with 1

6 mole of G (or, equivalently, 1
3 mole of

1
2G). The latter assemblage,

however, is stable, as it lifts to a point on the segment ĈĜ lying in the lower convex
hull of Â.

On the other hand, if the Gibbs energies of the phases look as they do in Fig-
ure 3(b), then the initial assemblage of 1

2 mole of C together with
1
2 mole of D would

be stable, and no reactions would occur.
Note that even after the temperature and pressure (T, P ) have been fixed, there

can be more than one possible stable assemblage, and which stable assemblages appear
depends upon the initial quantities of each phase present. In petrology, when one takes
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various samples from different locations inside a stratum of rock formed under the
same temperature and pressure conditions, one has a chance of sampling from all the
different stable assemblages.

From the previous discussion, we conclude that the sets of phases which can form
stable assemblages correspond to the sets of vertices that lie on a face of the lower
convex hull of Â. Note that projecting these faces of the lower hull in R

n down into
R
n−1 produces a set of convex polytopes that disjointly cover the convex hull of A,
forming what is usually called a polytopal subdivision of A. If the vector

g = (g1(T, P ), . . . , gm(T, P )) ∈ R
m

is sufficiently generic, then each of the faces of the lower convex hull will be an (n−1)-
dimensional simplex (that is, the convex hull of n affinely independent points), and
this polytopal subdivision is called a triangulation of A; see [10, Chapter 7] for formal
definitions.

Definition 4.3. Triangulations and polytopal subdivisions of A which are in-
duced in this fashion from a vector of heights g = (g1, . . . , gm) in R

m are called
coherent or regular, and we call ∆(g) the subdivision induced by g.

We summarize here some of the conclusions of the preceding discussion.

Proposition 4.4. For each fixed temperature and pressure (T, P ), the vector

g = g(T, P ) := (g1(T, P ), . . . , gm(T, P )) ∈ R
m

of Gibbs energies for the phases A = {a1, . . . , am} induces a coherent polytopal sub-
division ∆(g) of A. The polytopes participating in this subdivision have vertex sets
corresponding exactly to the stable assemblages of phases at that temperature and
pressure (T, P ).

It is perhaps surprising that in general not all triangulations of a point configura-
tion A need be coherent. In Figure 4 we show an affine configuration with six points
in R

2 with two incoherent triangulations. This example is well known in the dis-
crete geometry literature (see, e.g., [10, Chapter 7, Figure 27]), and is the “smallest”
example due to the following result.

Theorem 4.5 (see [15]). When either n ≤ 2 or m − n ≤ 2, every triangulation
of an affine point configuration of m points in R

n−1 is coherent.

Bearing in mind Proposition 4.4, in order to understand the topology of the phase
diagram for a chemical system, one needs to understand how the coherent subdivision
∆(g) of a point configuration A varies with the height vector g in R

m. This is our
next goal.

5. Secondary fans. The goal of this section is to introduce the secondary fan
F(A) and its close relative, the pointed secondary fan F ′(A), which govern how the
coherent subdivisions ∆(g) of A change as one varies the height vector g in R

m. Some
references for this material are [3, section 4] and [10, Chapter 7].

Having fixed a particular affine point configuration A of m points in R
n−1, one

can ask when two height vectors g and g′ in R
m give rise to the same subdivision ∆.

It should come as no surprise that the set of vectors g which give rise to a particular
subdivision ∆ forms a polyhedral cone C(A,∆) ⊂ R

m; that is, it is defined by a finite
set of linear inequalities (which depend on the coordinates of the points A and on
∆). As one varies the subdivision ∆, these cones C(A,∆) fit together to disjointly
cover R

m.
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Fig. 4. Incoherent triangulations of an affine point configuration A: the standard, smallest
example, along with its two incoherent triangulations.

Definition 5.1. In the terminology of discrete geometry, these cones form a
(complete) fan called the secondary fan F(A); see Figure 5(a) for the example of
ice-water-steam from the Introduction.5

We can now rephrase precisely what the phase diagram means in these terms.
Definition 5.2. Consider the (T, P )-plane in which the phase diagram is drawn

as a copy of R
2. Then the Gibbs energy functions gi(T, P ) for the m phases can be

viewed as specifying a Gibbs energy map

γ : R
2 → R

m,
(T, P ) �→ g(T, P ) = (g1(T, P ), . . . , gm(T, P )).

The image γ(R2) of this map will be some two-dimensional surface in R
m. The

decomposition of R
m into the cones of the secondary fan F(A) will restrict to a

decomposition of this surface γ(R2); see Figure 5(b) for the example of ice-water-
steam. This decomposition of the surface then pulls back to induce a decomposition
of the (T, P )-plane R

2 into regions, which are the regions of simultaneous stability for
various collections of phase assemblages (i.e., two pairs (T, P ), (T ′, P ′) lie in the same
region of the phase diagram if and only if their images under γ lie in the same cone of
F(A)). In other words, we have the following statement, illustrated in Figure 5(b).

5Although we are not aware of a geochemical interpretation, we should point out a beautiful
result of Gelfand, Kapranov, and Zelevinsky asserting that the secondary fan F(A) is actually the
normal fan of a convex polytope, which they called the secondary polytope Σ(A); see [10, Chapter 7].
One should also be aware of a slight difference in focus when referring to their results, which they
mainly prove for Σ(A), but which can then be translated into results about F(A).
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Fig. 5. For the chemical system of ice, water, and steam with n = 1 and m = 3, we have (a)
the secondary fan F(A), (b) the image surface γ(R2) decomposed by F(A), and the phase diagram
as the pull-back of this decomposition.

Proposition 5.3. The phase diagram for a chemical system having chemography
A is exactly the decomposition of the (T, P )-plane R

2, which is the pull-back under γ−1

of the decomposition of the image surface γ(R2) induced by the cones of the secondary
fan F(A).

Thus understanding possible phase diagram topologies amounts to understanding
the structure of the secondary fan F(A) and the Gibbs energy map γ well enough to
predict how the fan F(A) can decompose two-dimensional surfaces γ(R2) in R

m.
It turns out that there is a natural way to cut down the dimension of F(A) by

the number of components n, without losing any information. Recall that A also
denotes the n × m matrix whose columns are the n-vectors ai (with each of these
column vectors lying in the affine hyperplane �(x) = 1). It is not hard to see that two
height vectors g and g′, which differ by a vector lying in the row space Row(A) of
this matrix A, will induce the same coherent subdivision ∆: one can show that the
two configurations of lifted points they produce will differ by an affine transformation
of R

n, and consequently their convex hulls will differ only by a “tilt” that does not
affect the structure of their lower hulls. As a consequence, each of the cones C(A,∆)
in the secondary fan F(A) extends trivially in the n directions defined by Row(A); it
is a Cartesian product

C(A,∆) = C′(A,∆)× Row(A),
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where C′(A,∆) is a cone in an (m− n)-dimensional subspace of R
m complementary6

to Row(A). As ∆ varies over all coherent subdivisions, these cones C′(A,∆) disjointly
cover this complementary (m−n)-dimensional subspace, producing what is called the
pointed secondary fan F ′(A).

We next make explicit the simplifying assumption which is implicit in the geo-
chemical literature on this subject.

Assumption 5.4 (geochemical assumption). Over the ranges of temperature and
pressure (T, P ) ∈ R

2 relevant to most phase diagrams, the Gibbs energy map γ :
R

2 → R
m is sufficiently close to linear that the image surface γ(R2) behaves nearly

like a two-dimensional affine plane in R
m.

Furthermore, this two-dimensional affine plane is located generically with respect
to the cones of the secondary fan F(A) in the following sense: it has transverse
intersection with every cone C in the secondary fan (including the smallest face which
is the row space Row(A)). This means that the intersection is empty if the dimension
of the cone C is less than m−2, and otherwise when C has dimension m−2,m−1,m,
respectively, the intersection is either empty or it is of dimension 0, 1, 2, respectively.

With these assumptions, and in particular the transversality assumption, the
problem of enumerating the possible phase diagram topologies reduces to understand-
ing the ways in which the pointed secondary fan F ′(A) can decompose an affine two-
dimensional plane inside the (m − n)-dimensional space where it lives. It turns out
that Gale diagrams hold the key to this problem.

6. Gale diagrams and duality. In this section we introduce Gale diagrams of
a vector configuration or affine point configuration, and explain their relationship to
(pointed) secondary fans and oriented matroid duality.

Definition 6.1. Given the n × m matrix A of rank n whose columns give an
affine point configuration, choose a dual matrix A∗ to be any (m − n) × m matrix
whose row space Row(A∗) coincides with the nullspace (or kernel) Ker(A). By an
abuse of notation similar to that in Definition 3.1, the configuration of column vectors
{a∗1, . . . , a∗m} of this matrix will also be denoted A∗ and is called a Gale diagram or
Gale transform [9] for A. Similarly, we could have started with any n×m matrix V
of rank n corresponding to a vector configuration and defined a Gale diagram V∗ for
it in the same fashion.

Example 6.2. Recall our running example with

A =
[C D 1

2G W

1 1
2

1
4 0

0 1
2

3
4 1

]
.

(4)

An example of a valid Gale diagram for this is

A∗ =
[C∗ D∗ G∗ W ∗

1 −3 2 0
2 −4 0 2

]
,

(5)

pictured as a vector configuration in Figure 6.

6It would be more natural to think of the cones C′(A,∆) as living in the quotient space
R
m/Row(A), but we won’t quibble here.
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Fig. 6. (a) Gale diagram A∗, (b) secondary fan F(A), and (c) invariant point map, for the
chemical system corundum-diaspore-gibbsite-water.

Note the use of the term “a” Gale diagram, instead of “the” Gale diagram. This
is because the rows of A∗ are not uniquely defined: they can be altered by row
operations, that is, by the action of GLm−n(R) on the left. This means that the Gale
diagram vectors A∗ are also well defined only up to the same GLm−n(R)-action.7

However, the oriented matroidM∗ associated to the Gale vectors A∗ is uniquely
defined by the oriented matroid M associated to A: it is the dual oriented matroid

7Recall from section 3 that there was a similar ambiguity in the definition of the columns of A
or V, stemming from a choice of basis for the space that they span.



244 P. H. EDELMAN, S. W. PETERSON, V. REINER, AND J. H. STOUT

[2, section 3.4] of M. One manifestation of this duality is that the circuits C for
A (or M) correspond to sets in A∗ (or M∗) with their own interesting geometric
characterization. These sets in A∗ are called cocircuits.

Definition 6.3. Given a configuration of vectors V = {v1, . . . , vm} in R
n, its

covectors are all possible sign vectors in {+, 0,−}m that can be achieved by evaluating
some nonzero linear functional f ∈ (Rn)∗ on the vectors in V:

c = c(f) = (sign(f(v1)), . . . , sign(f(vm))).

A covector c for V which is maximal with respect to its set of zeroes is called a cocircuit
of V. Equivalently, a covector is a cocircuit if its corresponding signed subset has
minimal support or, equivalently, if the subset of V on which it is 0 contains at least
n− 1 linearly independent vectors. Denote by C∗ the set of cocircuits of V.

As with the circuits C, it is possible to write down a list of cocircuit axioms that
will be satisfied by the cocircuits C∗ coming from any vector configuration V, and in
this way to axiomatize the definition of an oriented matroidM in terms of cocircuits.
The observation from above that the circuits C of A,V,M are exactly the cocircuits
C∗ of A∗,V∗,M∗ means that these cocircuit axioms will look exactly like the circuit
axioms.

Example 6.4. In our previous example of A, the first circuit of A as listed in
Example 3.4 was (0 +−+), coming from the reaction 1G � 1D + 1W . In A∗ this is
a cocircuit representing the fact that the line spanned by C∗ has G∗ on one side and
D∗,W ∗ on the opposite side; i.e., there exists a linear functional f for which

f(C∗) = 0, f(D∗) > 0, f(W ∗) > 0, and f(G∗) < 0.

How does the Gale diagram A∗ relate to the pointed secondary fan F ′(A)? The
relationship comes from looking at the positive cones spanned by the vectors of A∗.

Definition 6.5. Given any set W = {w1, . . . , wk} of vectors in R
N , define the

positive cone spanned by W to be

pos(W ) :=

{
k∑
i=1

ciwi ∈ R
N : ci > 0 for all i

}
.

If the set of vectors W happen to be linearly independent, then pos(W ) is called a
(relatively open) simplicial cone.

Recall that the affine point configuration A corresponds to an acyclic vector con-
figuration. It is a consequence of oriented matroid duality [2, Proposition 4.8.9] that
A∗ will be totally cyclic; that is, the origin 0 lies in the cone pos(A∗). As a con-
sequence, the collection of positive cones spanned by subsets of A∗ will cover the
column space Col(A∗), and this covering is closely related to the pointed secondary
fan F ′(A), as shown in the following.

Theorem 6.6 (see [3, section 4]). The column space Col(A∗) has a natural
identification with the (m−n)-dimensional subspace complementary to Row(A) within
R
m covered by the pointed secondary fan F ′(A).

Furthermore, under this identification, the cones of F ′(A) are exactly the common
refinement of all the open simplicial cones pos(W ) spanned by linearly independent
subsets W of the Gale (column) vectors A∗.

One can be more precise about this relationship, as follows.
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Theorem 6.7 (see [3, Lemma 4.3]). Given a coherent triangulation ∆ of A, the
corresponding (m−n)-dimensional cone in the secondary fan F ′(A) is the intersection

⋂
σ∈∆

pos(A∗ − σ∗),

where σ runs through the vertex sets of the (n − 1)-dimensional simplices in the tri-
angulation ∆ and

σ∗ := {a∗i : ai ∈ σ}.

Example 6.8. Because the corundum-diaspore-gibbsite-water example of A has
m = 4 and n = 2, so that m = n + 2, the pointed secondary fan F ′(A) is two-
dimensional. Therefore its top-dimensional cones are simply the sectors between
cyclically adjacent Gale vectors in A∗. These cones are depicted in Figure 6(b). In
(c) of the same figure, these regions are labelled (as part of the geochemists’ invariant
point map; see section 8 below) by their corresponding coherent triangulations.

For example, the sector lying between the Gale vectors W ∗ and D∗ corresponds
to a triangulation ∆ having two segments {GW,CG}. This agrees with Theorem 6.7:
the complementary sets {C∗D∗, D∗W ∗} are exactly the ones whose positive cones
contain this sector. On the other hand, the sector between D∗, G∗ lies in the positive
cone of no other pairs of Gale vectors and hence corresponds to the triangulation
having only one segment, namely, the one with vertices A− {D,G} = {C,W}.

Sections 8 and 9 will closely explore the consequences of the geometry of the Gale
diagram for phase diagrams when m is at most n + 3. But first we must further
explore more general geometric questions.

7. Geometry of the phase diagram in general. In this section we will ex-
plain the relationship between Gibbs’ phase rule (e.g., [21]) and the secondary fan,
and how the phase rule predicts the dimension of various stability fields. We then
look closely at the meaning of two-, one-, and zero-dimensional regions in the phase
diagram, relating them to m-, (m − 1)-, and (m − 2)-dimensional cones in the sec-
ondary fan.

When one fixes particular molar fractions xi of each of the (rescaled) phases ai in
A initially contained in a particular sample, the discussion of section 5 shows how to
predict the stable assemblage of phases which will result after allowing the system to
find chemical equilibrium. The initial molar fractions give a point

∑
i xiai = 1 with∑

i xi = 1, which lies in the convex hull of A and lifts to a point
∑
i xiâi, which lies in

the convex hull of Â but may or may not lie in the lower convex hull. After performing
reactions which affect the fractions xi (but preserve the condition

∑
i xi = 1 due to

our rescaling) to reach chemical equilibrium, the lifted point
∑
i xiâi will eventually

lie in a unique face F̂ of the lower hull of Â. The lifted points Â′ ⊂ A which happen
to lie on this face F̂ lie above a subset A′ ⊂ A of the original phases; that is, A′ are
those phases which appear with nonzero fraction in this chemical equilibrium, and A′

labels a polytope F which is part of the corresponding coherent subdivision of A.
Gibbs’ phase rule relates three quantities relevant to this situation:

• the number of phases m′ = |A′|(≤ m = |A|) participating in this chemical
equilibrium,

• the number of components n′(≤ n) of the subsystemA′, that is, the dimension
of the subspace of chemical composition space spanned by A′, and
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• the number of degrees of freedom f in (T, P ), which one can vary while main-
taining these same phases in equilibrium, or in other words, the dimension of
the union of all regions in the phase diagram which have A′ labelling one of
the polytopes F in their corresponding subdivision of A.

Proposition 7.1 (Gibbs’ phase rule). With the above notation,

f = n′ + 2−m′.

In particular, one can have at most n′ + 2 phases that involve n′ components in
chemical equilibrium.

Note that, in the geochemical literature, the phase rule is often stated as

f ≤ n+ 2−m′,

which is consistent with the fact that n′ ≤ n.
Example 7.2. In Figure 1, the triple point has an assemblage of m′ = 3 phases in

equilibria (ice, water, steam), with n′ = 1 and f = 0, while the assemblage consisting
of pure ice has m′ = n′ = 1 and f = 2.

In Figure 6(c), the line segment DW corresponds to a stable assemblage {D,W}
in two different divariant regions and the curve that separates them (all in the upper
right), so f = 2, and it has m′ = n′ = 2. The assemblage {D,G,W} is stable only
along the univariant curve lying between the two aforementioned divariant regions,
so f = 1, and it has m′ = 3, n′ = 2. The quadruple point in the middle (f = 0) of the
diagram has all four phases in equilibrium; that is, m′(= m) = 4 and n′(= n) = 2.

We give here a proof of Gibbs’ phase rule in terms of the secondary fan F(A) in
R
m.

Proof. There is a cone C in the secondary fan consisting of those vectors g ∈ R
m

for which the lifted points Â have Â′ lying on a face F̂ of the lower hull: this cone is
the intersection of the vector space V on which the lifted points Â′ all lie on a single
n′-dimensional affine subspace, with the half-spaces given by various inequalities that
assert that all the other lifted points âi in A − A′ lift above this affine subspace.
The subspace V is defined by m′ − n′ linear conditions: after choosing the height
coordinates of g to lift n′ of the elements A′ which are affinely independent, the
remaining m′ − n′ coordinates must be lifted to heights which are linear functions of
those first n′ heights. Thus V has dimension m − (m′ − n′). The fact that lifting
all the points A−A′ to any sufficiently large heights will force F̂ to be in the lower
hull shows that the cone C obtained by intersecting V with the various half-space
inequalities will have the same dimension as V , namely, m− (m′ − n′).

By Proposition 5.3 and Assumption 5.4, the union of all regions in the phase
diagram which have A′ labelling one of the polytopes F in their corresponding subdi-
vision of A comes from the transverse intersection of an affine 2-plane with the cone C.
If m′ −n′ > 2, there would be no intersection, due to Assumption 5.4. If m′ −n′ ≤ 2,
then, since we assumed that these phases A′ could exist in stable equilibrium, there
would be a nonempty intersection. Depending upon whether m′−n′ = 0, 1, or 2, this
transverse intersection of C with an affine 2-plane would have dimension f = 2, 1, or
0, respectively; i.e., f = 2− (m′ − n′) = n′ + 2−m′.

Understanding the two-, one-, and zero-dimensional regions in the phase diagram
amounts to understanding the cones of dimensionsm,m−1, andm−2 in the secondary
fan F(A) or, equivalently, the cones of dimensions m − n,m − n − 1,m − n − 2 in
the pointed secondary fan F ′(A). The two-dimensional regions in the phase diagram
correspond to the top-dimensional cones in F(A) (or F ′(A)), which are labelled by
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      a vertex

Fig. 7. Three examples of pairs of bistellar operations for triangulations of affine point config-
urations A in R

2.

the coherent triangulations of A in the manner described in Theorem 6.7, and there
is little to add to that description. The more interesting cases are those of the one-
and zero-dimensional stability fields.

7.1. Bistellar operations and one-dimensional stability fields. The one-
dimensional curves separating the regions in the phase diagrams correspond to natural
transformations on triangulations of A called bistellar operations, which are closely
related to the circuits of A. We discuss these now somewhat informally; for a more
formal treatment, see [10, Chapter 7, section 2C].

Figure 7 illustrates three examples of a pair of triangulations of affine point config-
urations A in R

2 that are related by a bistellar operation. For each bistellar operation
between two triangulations, there is a distinguished subset C ⊂ A, which is the sup-
port set C = X+∪X− of some signed circuit (X+, X−) of A and such that the convex
hull of C is triangulated (differently!) in the two triangulations. In this case, we say
that the bistellar operation is supported on the circuit C. Note that in the first two
examples in Figure 7 this circuit C has a full two-dimensional convex hull, but as the
third example illustrates, C can have a convex hull of lower dimension.

Recall that a circuit C = X+ ∪X− of A corresponds to a cocircuit of A∗, that
is, there is an (m − n − 1)-dimensional hyperplane HC spanned by the Gale vectors
indexed by A − C, which separates the Gale vectors indexed by X+ from those
indexed by X−. When C is the circuit supporting a bistellar operation between two
triangulations, this reflects the following geometry of pointed secondary fans.

Proposition 7.3 (see [10, section 7.2.C]). Two triangulations ∆,∆′ differ by a
bistellar operation supported on a signed circuit C if and only if their corresponding
top-dimensional cones in F ′(A) are adjacent along a wall whose linear span is the
hyperplane HC .

This has an interpretation for the temperature-pressure phase diagram that is
well known to geochemists: the segments of curves separating regions in the phase
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diagram are always portions of a larger curve corresponding to some minimal reaction
possible among the phases in the chemical system. Two regions will be adjacent and
separated by such a curved segment if and only if their corresponding triangulations
differ by retriangulating the convex hull of the phases involved in that reaction.

It is also useful to think of a bistellar operation as represented by the coherent
polytopal subdivision that labels the wall between the two top-dimensional cones
guaranteed by the previous proposition. In the language of Gibbs’ phase rule, this
subdivision contains a special polytopal face F labelled by a subset A′ ⊂ A having
m′ = n′ + 1; namely, A′ is the support set of the circuit C. Note that if n′ = n,
then F is a full (n − 1)-dimensional polytope in the subdivision, and all the other
full-dimensional polytopes in the subdivision are (n− 1)-dimensional simplices.

A reasonable question at this point is, How well do the bistellar operations tie
together the set of all triangulations of A—is it possible to connect any two trian-
gulations of a point set A by a sequence of bistellar operations? The answer has
important consequences for calculating the set of triangulations of A: the algorithms
(e.g., [20]) that start with one triangulation and find the rest bistellarly connected to
it by performing all possible bistellar operations are much faster than algorithms that
find all triangulations by the currently available techniques [7], [20].

Unfortunately, the answer to the above question is in general no: Santos [22],
[23] has recently produced examples of triangulations of affine point configurations
that are connected to no other triangulations (!) by bistellar operations. Fortunately,
however, there are positive results relevant for the geochemical applications:

• all triangulations are connected by bistellar operations when n ≤ 3 (see [14]),
• the same holds when m− n ≤ 3 (see [1]), and
• the subset of coherent triangulations are always connected by bistellar oper-
ations (see [10]).

In particular, this last result allows one to rely on the very fast bistellar flip
algorithms of [20] (utilized in [18]) to find all of the coherent triangulations.

7.2. Invariant points and indifferent crossings. We conclude this section
with an informal discussion of zero-dimensional regions in the phase diagram. These
will correspond to cones of dimension m− 2 in F(A) or cones of dimension m−n− 2
in F ′(A). These correspond to coherent polytopal subdivisions of A of two possible
types, and therefore give rise to two distinct types of points in the phase diagram:
invariant points and indifferent crossings.

Definition 7.4. If a coherent polytopal subdivision of A corresponds to a cone
of dimension m − 2 in F(A), then one of the polytopes F ′ in the subdivision might
correspond to a stable assemblage A′ having m′ = n′+2 phases. When this occurs, the
same holds for every polytope in the subdivision which contains F ′ as a face. However,
the remaining polytopes which do not contain F ′ will all be simplices.

It is in this situation that geochemists reserve the term invariant point for the
corresponding zero-dimensional region in the phase diagram. In this situation it is
possible for all of the phases in A′ to coexist in chemical equilibrium, but one cannot
vary (T, P ) at all while maintaining this. For example, the central points in Figures 1
and 6(c) are invariant points, as are the points labelled [B], [C], [D], [G], [W ] within
the diagrammed regions of Figure 12 (below).

Geochemists usually label the invariant point by the phases B := A−A′ not in-
volved in the invariant equilibrium. It is also well known to geochemists that the local
structure of the phase diagram around an invariant point is similar to the correspond-
ing phase diagram withm′ = n′+2 for the chemical subsystemA′. This corresponds to
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Fig. 8. An m = n+3 system illustrating the distinction between invariant points and indifferent

crossings.

the known fact (see [4]) that the local structure of the pointed secondary fan F ′(A)
about the cone pos(B) and the structure of the fan F ′(A′) = F ′(A − B) coincide,
reflecting the fundamental duality between deletion and contraction in (oriented) ma-
troid theory: the dual point configuration (A−B)∗ to the deletion A−B is isomorphic
to the contraction A∗/B∗.

Definition 7.5. On the other hand, when a cone in F(A) has dimension m−2,
there can also be two polytopes F ′ and F ′′ in the corresponding polytopal subdivision,
neither contained as a face of the other, corresponding to stable assemblages A′ and
A′′ with m′ = n′ + 1,m′′ = n′′ + 1. The polytopes in the subdivision containing
neither of F ′ or F ′′ will all be simplices. For each of A′ or A′′ individually, the union
of regions in the phase diagram where they occur as a stable assemblage corresponds
to a cone of dimension m − 1 in F(A) and a curve in the phase diagram coming
from a minimal reaction possible in A. These two curves intersect at what is called
an indifferent crossing, where either A′ or A′′ might exist in equilibrium (as might
assemblages corresponding to other simplices in the subdivision), but the union A′∪A′′

cannot stably coexist: the faces F ′, F ′′ lift to two different faces in the lower hull of
Â, lying above disjoint possibilities for the molar fractions of the phases.

Example 7.6. To illustrate the distinction between the two kinds of cones of
dimension m−2 in F(A) that give rise to invariant points versus indifferent crossings,
we augment our previous chemical system of corundum, diaspore, gibbsite, and water
with a fifth phase: ice, abbreviated I, having chemical formula H2O, the same as
water. Rescaling this to a chemography as before gives a new chemography A with
n = 2 as before, but now withm = 5 = n+3, depicted in Figure 8(a). Figure 8(b) and
(c) depict lifted configurations Â that would correspond to cones of dimension (m−2)
in F(A), corresponding to an invariant point and indifferent crossing, respectively.

In (b), the interesting stable assemblage is A′ = {D,G,W, I}, havingm′ = 4, n′(=
n) = 2, so m′ = n′ + 2, and the corresponding lifted points Â′ lie on a single face F ′

in the lower hull of Â. If the phase diagram were to contain a point corresponding to
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this cone of F(A), it would be an invariant point, labelled [C] for the missing phase
corundum not present in A′.

In (c), there are at least two interesting stable assemblages: A′ = {W, I}, with
m′ = 2, n′ = 1, and A′′ = {C,D,G}, with m′′ = 3, n′ = 2, so that m′ = n′ + 1,m′′ =
n′′ +1, and their corresponding lifted points Â′, Â′′ span different faces F ′, F ′′ of the
lower hull of Â. If the phase diagram were to contain a point corresponding to this
cone of F(A), it would be an indifferent crossing, lying at the intersection of two
curves corresponding to the two circuits (reactions) involving the phases A′ and A′′.

8. The case m = n+2: Phase diagram = Gale diagram. After dispensing
quickly with the cases m = n and m = n+1, in this section we examine in detail the
structure of the Gale diagram A∗, the pointed secondary fan F ′(A), and the phase
diagram when m = n + 2. The conclusion is that they all look roughly the same in
this case.

When m = n, the m phases cannot perform any reactions that preserve mass-
balance, and so are mutually inert and nothing can happen.

When m = n + 1, not much interesting happens. There is exactly one reaction
possible, corresponding to the unique signed circuit C = (X+, X−) of A. The Gale
diagram A∗ is a set of vectors lying on the real line R

1 with their tails at the origin 0.
Those a∗i having i ∈ X+ will point in the positive direction, those with i ∈ X− will
point in the negative direction, and those i ∈ {1, . . . ,m} − (X+ ∪ X−) will be zero
vectors pointing nowhere. The secondary fan F ′(A) decomposes the R

1 into two cones:
the two rays emanating from the origin in the positive and negative directions. These
rays correspond to the two triangulations of A which differ by a bistellar operation
supported on C. At a particular temperature and pressure, the Gibbs energy of the
ensemble of products/reactants, whichever is lower, will force the reaction to run
in one direction or another, so that the stable assemblages will correspond to the
simplices of one or the other triangulation. In this case, the phase diagram consists
of two divariant regions separated by the univariant curve corresponding to the single
reaction.

Whenm = n+2, things start to become interesting. First, we can assume without
loss of generality that there are no indifferent phases,8 that is, every phase partici-
pates in some possible reaction or phase change. By excluding indifferent phases, we
know that the Gale diagram A∗ has m nonzero Gale vectors a∗1, . . . , a

∗
m, although it

is possible that some differ by positive scalar multiples and hence point in the same
direction.9 The pointed secondary fan F ′(A) will look very similar to the Gale dia-
gram, having at most m rays emanating from the origin, pointing in the directions of
the Gale vectors, and two-dimensional cones lying between cyclically adjacent Gale
vectors. According to Proposition 5.3, the phase diagram should look roughly like a
two-dimensional slice of this two-dimensional pointed secondary fan F ′(A), that is,
like F ′(A) itself. Hence the phase diagram will closely resemble the Gale diagram A∗.

Roughly speaking, geochemists have known some version of this, in the guise of a
method for constructing their invariant point maps as schematic representations of the
local picture around an invariant point, based on knowledge of the minimal reactions
possible among the phases. Their method uses Schreinemakers’ fundamental axiom

8An indifferent phase would give rise to an element ai of the oriented matroid for A, known as
an isthmus or coloop, and also to a zero Gale vector a∗i = 0.

9This will happen whenever there are affine hyperplanes in R
n−1 that contain all but two of the

points of A.
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[25], [30], which is a reformulation of the oriented matroid duality assertion that the
circuits of A coincide with the cocircuits of A∗. The axioms assert that

• each phase ai should label some univariant reaction half-line emanating from
the invariant point, corresponding to a minimal reaction among the remaining
phases other than ai, and

• the extension of this half-line to a line through the origin should separate the
other univariant reaction half-lines into those corresponding to the two sides
of the reaction in question.

In other words, each Gale vector a∗i lies on a line through the origin corresponding to
a cocircuit of A∗, which corresponds to a circuit of A.

Using this rule, one can sketch the invariant point map by proceeding through the
list of minimal reactions among the phases and using the axiom to place the half-lines
around each other in cyclic order. There is an initial choice of orientation one must
make for the diagram using the first reaction (should the reactant/products/missing-
phase-half-line go in clockwise or counterclockwise order around the invariant point?),
but after that the picture is determined. To decide which orientation is consistent
with the actual geochemical phase diagram (i.e., to determine the actual placement of
the image surface γ(R2) within the secondary fan F(A)), some thermodynamic data
is required.

Example 8.1. Figure 6(c) shows the invariant point map constructed for the
corundum-diaspore-gibbsite-water example. Note that we have used the geochemical
conventions of labelling the univariant reaction half-lines emanating from the invariant
point by the phase(s) missing from the reaction, putting the product/reactants on
either side of the line, and indicating with dashes the metastable extensions of these
half-lines.

9. The case m = n + 3: Phase diagram = affine Gale diagram. We
next examine in detail the structure of the Gale diagram A∗, the pointed secondary
fan F ′(A), and the phase diagram when m = n + 3. The conclusion is that two
methods used by geochemists to reduce an essentially three-dimensional picture to two
dimensions have parallel constructions in discrete geometry, and the phase diagram
bears a close resemblance to a two-dimensional affine Gale diagram.

When m = n + 3, we can again assume without loss of generality that there
are no indifferent phases, and hence no zero Gale vectors a∗i . However, we make
no other genericity assumptions for the moment. The Gale diagram A∗ is a vector
configuration in R

3. As before, some Gale vectors may differ by a positive scalar
multiple and hence give rise to the same ray in the secondary fan F ′(A), so we know
there will be at mostm such rays. Note that, unlike the casem = n+2, here the cones
of the pointed secondary fan F ′(A) can be more exotic in shape: they are intersections
of the three-dimensional simplicial cones spanned by linearly independent subsets of
A∗, and hence can have arbitrary polygonal cross sections.

The one-dimensional cones (rays) in F ′(A) will correspond to zero-dimensional
(point) regions in the phase diagram when they intersect the image surface γ(R2)
of the Gibbs energy map. As discussed in subsection 7.2, these points will either
be indifferent crossings or invariant points. Since the invariant points correspond to
chemical subsystems A′ ⊂ A which have m′ = n′ + 2 if we have n′ = n (as happens
generically), then |A′| = |A| − 1; that is, there is exactly one phase ai missing from
A′, and the corresponding ray in F ′(A) is spanned by the Gale vector a∗i . This is
the reason that invariant points in phase diagrams with m = n + 3 are generically
labelled by the single phase missing from the invariant equilibrium at that point. As
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Fig. 9. A typical reaction loop defined by two Gale vectors a∗
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also discussed in subsection 7.2, the local structure about the invariant point will look
like the invariant point map for the m′ = n′ + 2 subsystem A′.

Vector configurations in R
3 (like A∗) can be difficult to visualize. We discuss

two methods that have been commonly used to cut down the dimension by one (and
produce a picture closer in spirit to the phase diagram): the spherical representation
and affine Gale diagrams.

9.1. The spherical representation: Closed nets. Intersecting the pointed
secondary fan F ′(A) in R

3 with a unit sphere centered about the origin gives a useful
spherical representation, similar to what has been called a closed net in [29]. In the
conventions for the closed net, one includes not only the point of intersection with the
sphere pi := a∗i /|a∗i | for each ray spanned by a Gale vector a∗i (represented by a black
dot labelled by the corresponding phase ai), but also its negation −pi (represented by
a white dot labelled similarly).10 Furthermore, the arc representing the intersection
curve on the sphere of a two-dimensional cone in F ′(A) is augmented to be part of
a great circle called a reaction loop, corresponding to the unique minimal reaction
(circuit of A, cocircuit of A∗) to which it is associated. Typically such a reaction will
involve all but two phases ai, aj (although this will not always be the case when A
is not generic and therefore has some circuits of smaller support). As one traverses
such a typical reaction loop, one passes through four arcs, as depicted in Figure 9.

The point of the closed net representation is that a hemispherical or planar projec-
tion of it from some angle should give a schematic picture of the actual phase diagram.
Which projection occurs in nature will depend upon the location and orientation of
the image surface γ(R2) of the Gibbs energy map from section 5 inside the secondary
fan F(A). Under our Assumption 5.4, one of each pair {pi,−pi} will appear in the
projection, and there are four possibilities for the portion of a typical reaction loop
that will appear in the projection, depicted in Figure 10.

Example 9.1. We add a fifth phase (different from the ice added in Example 7.6)
to our original example of corundum, diaspore, gibbsite, and water: the mineral
boehmite (B), which is a polymorph of diaspore, that is, has the same chemical formula
AlO(OH) but a different crystal structure. Thus B,D become parallel elements in
the oriented matroidM for this new point configuration A, having m = 5 and n = 2,
so that m = n+ 3.

10This supplementation of the Gale diagram A∗ by adding in negations of all its vectors is remi-
niscent of the Lawrence construction [2, section 9.3] in oriented matroid theory.
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Fig. 10. The four possible projections of a reaction loop onto an affine 2-plane.

[G] [C] [W]

[B]

[D]

Fig. 11. Two opposing hemispheric views of the closed net for the system with phases corundum,
boehmite, diaspore, gibbsite, and water.

We have

A =
[C D B 1

2G W

1 1
2

1
2

1
4 0

0 1
2

1
2

3
4 1

]
,

(6)

and a valid Gale transform is

A∗ =



C∗ D∗ B∗ G∗ W ∗

1 0 0 −4 3
0 1 0 −2 1
0 0 1 −2 1


 .(7)

Two opposite hemispheric views of the closed net for this example are depicted
in Figure 11. Note that the parallel elements B,D in A give rise to a circuit

C D B G W
0 + − 0 0

that corresponds to a cocircuit of A∗: the Gale vectors C∗, G∗,W ∗ are coplanar, and
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their corresponding points on the closed net lie on a great circle which separates D∗

from B∗.

9.2. Two-dimensional affine Gale diagrams. The affine Gale diagram is
simply an affine point configuration in R

2 used to encode the three-dimensional vector
configuration A∗; see [33, Definition 6.17], [2, section 9.1]. Arbitrarily choose a two-
dimensional affine plane Γ in R

3 to “slice” the Gale vectors: if this plane Γ is defined
by the equation f(x) = c for some generic linear functional f ∈ (R3)∗ and some
positive value c, then we replace each Gale vector a∗i by the unique point ca

∗
i /f(a

∗
i )

in its span that lies in this plane Γ. Color these rescaled Gale points in Γ black or
white, depending upon whether f(a∗i ) > 0 or f(a

∗
i ) < 0. Since A was an affine point

configuration and hence A∗ is a totally cyclic vector configuration, there will always
be both black and white points in the affine Gale diagram, regardless of how the
functional f is chosen.

We can further annotate the affine Gale diagram by drawing in line segments
that correspond to the intersections of two-dimensional cones from F ′(A) with the
plane Γ that happen to connect the black points in the diagram. Bearing in mind
Assumption 5.4, the choice of the functional f (equivalently, the choice of the plane
Γ) corresponds to the choice of the location of the image surface γ(R2) of the Gibbs
energy map. It follows from Proposition 5.3 that this “decorated affine Gale diagram”
is a schematic picture for one possible toplogy of the phase diagram. Such schematic
pictures, when annotated further with more arcs of reaction loops using conventions
similar to the closed nets discussed in subsection 9.1 above, have appeared in [17] and
are called potential solutions for the phase diagram topology.

When are two such affine Gale diagrams/potential solutions considered “equiva-
lent”? Fortunately, discrete geometers and geochemists agree on this answer: when
the assignment of either a black or a white dot to each phase is the same. Equivalently,
this means they have the same sign vector (sign(f(a∗1)), . . . , sign(f(a

∗
m))) ∈ {+,−}m

or, in oriented matroid terminology, that f achieves the same acyclic (re)orientation
(or tope) of the vector configuration A∗ (see [2, section 3.8]). This turns out to
have the following geometric reinterpretation: if we regard the functional f(x) =
f1x1+ f2x2+ f3x3 as its vector of coefficients (f1, f2, f3), then the acyclic orientation
achieved by f is determined by which side of each of the hyperplanes (a∗i )

⊥ normal
to the Gale vectors it lies on. Therefore intersecting this arrangement of hyperplanes
(a∗i )

⊥ with the unit sphere in R
3 gives an arrangement of great circles on the sphere

(called the Euler sphere in [16]), whose two-dimensional regions parametrize the dif-
ferent acyclic orientations/affine Gale diagrams/potential solutions.

The method developed in [16] of constructing potential solutions for systems with
m = n+3 systems involved looking at each phase, using the method of Schreinemakers
from section 8 to infer the local structure/invariant point map about the invariant
point at which that phase is missing from the assemblage, and then “fitting together”
these various invariant point maps to produce the straight line net.

Example 9.2. Figure 12 shows a view of the Euler sphere for the previous example
with m = n + 3, along with two of its regions labelled by their corresponding affine
Gale diagrams/potential solutions.

There is a good bit of theory to help one enumerate these acyclic reorientations
(see [2, Theorem 4.6.1] and subsection 10.2 below) or to produce a list of them all
algorithmically using a straightforward application of Farkas’ lemma [26, section 7.3].
In the Java applet CHEMOGALE [18], such an algorithm is part of the implementa-
tion. For systems input by the user withm = n+2 or n+3, the program computes A∗
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Fig. 12. The hemisphere of the Euler sphere lying in one side of (W ∗)⊥ for the m = n + 3
system with phases corundum, boehmite, diaspore, gibbsite, and water. Two regions are shown
labelled by the corresponding affine Gale diagrams/potential solutions to phase diagram topology.

and uses data generated by [20] to obtain F ′(A). When m = n+ 3, the intersection
of F ′(A) with the unit sphere is depicted, allowing the user to select two-dimensional
cones of F ′(A) and receive the corresponding triangulation. For m = n+ 3 systems,
the user may also view the Euler sphere and see the potential solution to the phase
diagram topology associated with each region. This work was fully described in [19,
Chapter 3].

10. Further implications/applications. We collect here a few further impli-
cations/applications of some of the theory developed.

10.1. Slopes around invariant points. Let p be an invariant point in the
phase diagram, and let {a1, . . . , ak} be the union of all sets of phases that can form
stable assemblages at p. There will be at most k univariant reaction curves emanating
from p corresponding to reactions that omit each of the phases ai, and each has a
limiting slope µi as it enters p. Doing the experiments to determine these slopes
accurately is expensive and time-consuming, so it is helpful to be able to determine
the slopes from as little data as possible.

Proposition 10.1. Knowing the formulae {a1, . . . , ak} of the phases and know-
ing three different limiting slopes µi1 , µi2 , µi3 determines all of the slopes µ1, . . . , µk.

Proof. As discussed in section 7.2, the local structure of the phase diagram
about p coincides with the phase diagram for only the subsystem of phases in A′ :=
{a1, . . . , ak}, and this must be a system with k = n+2 phases. Let its Gale transform
be A′∗ := {a∗1, . . . , a∗k}, so that, up to an invertible linear change-of-basis in R

2, these
give the slopes of the rays emanating from the origin in the pointed secondary fan
F ′(A′). By Assumption 5.4, the slopes {µ1, . . . , µk} are also related to the slopes of
these rays in the pointed secondary fan by an invertible linear change-of-basis (namely,
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the Jacobian matrix of the Gibbs energy map γ : R
2 → R

m evaluated at the point
p ∈ R

2, composed with the linear projection map from R
m → R

m−n that sends
the secondary fan to the pointed secondary fan). Hence the (known) slopes of the
Gale vectors in A′∗ are related to the limiting slopes about p by an invertible linear
change-of-basis. Therefore knowledge of three distinct slopes µi1 , µi2 , µi3 will deter-
mine any other slope µir , e.g., by invariance under invertible linear transformations
of the cross-ratio

(µi1 , µi2 | µi3 , µir ) :=
(µir − µi1)(µi3 − µi2)

(µir − µi2)(µi3 − µi1)
.

Example 10.2. In the example of corundum, diaspore, gibbsite, and water, which
had Gale diagram

A∗ =
[C∗ D∗ G∗ W ∗

1 −3 2 0
2 −4 0 2

]
,

(8)

we see that the slopes of C∗, D∗, G∗,W ∗ are 2, 4
3 , 0,∞, giving the cross-ratio

(µC∗ , µG∗ | µW∗ , µD∗) =
( 43 − 2)(∞− 0)
( 43 − 0)(∞− 2) = −1

2
.

Thus if we have already determined (say, from thermodynamic data) that the phase
diagram has limiting slopes µ[C], µ[G], µ[W ] for the three reaction curves labelled
[C], [G], [W ] entering the invariant point, then the limiting slope µ[D] of the fourth
reaction curve labelled [D] will satisfy

−1
2
= (µ[C], µ[G] | µ[W ], µ[D]) =

(µ[D] − µ[C])(µ[W ] − µ[G])

(µ[D] − µ[G])(µ[W ] − µ[C])
,

which can be solved for µ[D], giving the formula

µ[D] =
3µ[C]µ[G] − 2µ[C]µ[W ] − µ[G]µ[W ]

2µ[G] − 3µ[W ] + µ[C]
.

10.2. Counting potential solutions. As mentioned in section 9.2, there is
theory available for counting the acyclic orientations of a vector configuration (or
oriented matroid) such as the Gale diagram A∗. Here we elaborate on this and explain
how to easily count potential solutions to phase diagram topology when m = n+ 3.

As we saw in section 9.2, counting the potential solutions to phase diagram topol-
ogy amounts to counting the three-dimensional cones cut out by an arrangement of
planes through the origin in R

3, or the two-dimensional regions cut out by an arrange-
ment of great circles on a sphere, or the acyclic orientations of the oriented matroid
M∗ associated to the Gale diagram A∗. The problem of counting the n-dimensional
regions cut out by an arrangement of (n − 1)-dimensional hyperplanes through the
origin in R

n was treated first by Winder in 1966, and then later independently by
both Las Vergnas and Zaslavsky around 1975. The basic idea is that even though the
combinatorial structure of the regions cut out (e.g., how many faces of each dimension
they have) depends on the associated oriented matroid, the number of regions only
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depends on the coarser information recorded in the matroid. We review some of this
material here; see [2, section 4.6] for a fuller treatment.

For example, one way to record the matroid data associated to A∗ is to list all
of its (unsigned) circuits, which are the support sets of minimal linear dependences
(with no record of the signs of the coefficients in the dependence). A more useful
way to encode the data for counting the regions (but equivalent data to specifying
the circuits) is to write down the lattice of flats L(A∗), which is the partial ordering
by inclusion of all subspaces spanned by subsets of A∗. The bottom element of this
partially ordered set, called 0̂, corresponds to the zero subspace (spanned by the
empty set of Gale vectors).

TheMöbius function µ(x, y) is an integer associated to each pair of elements x ≤ y
which are related in the partial order L, defined recursively by these properties:

µ(x, x) = +1,

µ(x, y) = −
∑

x≤z<y
µ(x, z) if x < y.

One can use this to count regions via the following result.
Theorem 10.3 (see [2, Theorem 4.6.1]). The number of regions cut out by the

hyperplanes normal to a collection of vectors with lattice of flats L is∑
x∈L

|µ(0̂, x)|.

Since we wish to apply this to geochemical systems with m = n + 3, we detail
here explicitly (in more concrete terms) what happens in this case.

Proposition 10.4. Let A be a chemography with m = n + 3, so that its Gale
diagram A∗ is a configuration of vectors in R

3. Then the number of potential solutions
to phase diagram topology is

2

(
1 +

∑
P

(mP − 1)
)
,

where P runs through all two-dimensional planes spanned by pairs of the Gale vectors
A∗, and mP is the number of distinct lines spanned by Gale vectors lying in the
plane P (or, equivalently, the number of parallelism classes of Gale vectors within the
plane P ).

In particular, if A is in a general position (in the sense that every subset of n
elements in A is affinely independent or, equivalently, every minimal reaction among
the phases involves at least n+1 phases), the number of potential solutions is (cf. [17])

2

(
1 +

(
n

2

))
.

Proof. Since A∗ lives in R
3, there are four kinds of elements x in the lattice of

flats:
• x = 0̂, having µ(0̂, 0̂) = +1,
• x = �, a line spanned by a Gale vector a∗i , having µ(0̂, �) = −1,
• x = P , a two-dimensional plane spanned by Gale vectors, having

µ(0̂, P ) = −
(
µ(0̂, 0̂) +

∑
�⊂P

µ(0̂, �)

)
= mP − 1, and
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• x = R
3, having

µ(0̂,R3) = −
(
µ(0̂, 0̂) +

∑
�

µ(0̂, �) +
∑
P

µ(0̂, P )

)

= −1 + #{lines � spanned by Gale vectors}
+
∑
P

(mP − 1).

Adding the absolute values of all of these gives the result stated in the proposition.
In the generic case, since A has n points, there will be n distinct Gale vectors A∗,

no two of which span the same line �, and there will be
(
n
2

)
different planes P spanned

by them. (A is generic if and only if A∗ is generic by matroid duality.) Also, each
of these planes will contain exactly two lines �, so mP − 1 = 1. The second assertion
follows from plugging these values into the first equation.

Example 10.5. In Figure 12, the Euler sphere shown has 20 regions total (10
visible on the hemisphere shown and 10 more on the “underside”). One can compare
this with the formula predicted in Proposition 10.4, which can be evaluated with the
aid of the closed net picture of Gale vectors in Figure 11. This figure shows (the
intersection with the sphere of) eight planes P spanned by pairs of Gale vectors,
namely,

BC,BG,BW,DG,DC,DW,BD,BGW,

of which the first seven have mP = 2, and the last has mP = 3. Thus the proposition
would predict

2(1 + 7 · (2− 1) + 1 · (3− 1)) = 20

regions, as expected.
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Abstract. Vaccination of both newborns and susceptibles is included in a transmission model
for a disease that confers immunity. The interplay of the vaccination strategy together with the
vaccine efficacy and waning is studied. In particular, it is shown that a backward bifurcation leading
to bistability can occur. Under mild parameter constraints, compound matrices are used to show
that each orbit limits to an equilibrium. In the case of bistability, this global result requires a novel
approach since there is no compact absorbing set.
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dynamics
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1. Introduction. Vaccination is a commonly used method for controlling dis-
eases, e.g., pertussis, measles, or influenza. Mathematical models including vaccina-
tion aid in deciding on a vaccination strategy and in determining changes in qualitative
behavior that could result from such a control measure (see, e.g., [5, 6]). If the vac-
cine is not totally effective, then recent models show that a backward bifurcation is
possible for some parameter values [9, 10]. In such a case, the basic reproduction
number as modified by vaccination must be reduced below a certain threshold (that
is less than one) in order to ensure that the disease dies out. Backward bifurcation
has been observed in other disease transmission models, for example the HIV/AIDS
models discussed in [2, 8] and the bovine respiratory syncytial virus model in [4].

Our model is a generalization of that of [10], allowing individuals recovering from
the disease to go into a temporarily immune class rather than directly back into
the susceptible class. A recent model [9] allows for a recovered class and considers
vaccination for a disease that has acute and chronic infective stages as well as variable
infectivity.

In section 2, we develop our model with general parameters, and illustrate its
behavior in section 3 by using vaccination-related values appropriate for pertussis
[1, 5]. In particular, we focus on the vaccination parameters and how changes in these
may alter the qualitative behavior of the model by leading to subthreshold endemic
states via backward bifurcation. Some local stability results are proved.

Previous investigations of the stability of subthreshold endemic states associated
with backward bifurcations rely mainly on local results. We use compound matrices
and geometric ideas to develop global results under mild parameter restrictions. These
tools have been used for analyzing other models of disease transmission in which there
is a unique endemic equilibrium; see, e.g., [11, 14, 16, 18]. In section 4, we present
a brief summary of this geometric approach for studying the global dynamics of our
model, concentrating on the novel features. This method is then used in section 5 to
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prove global results for the model. (Some technical details are placed in Appendices
A and B.) Concluding remarks are given in section 6.

2. Formulation of an SIRS model with vaccination. Following [10], but
with newborn vaccination and a recovered class, the model has the flow diagram given
in Figure 2.1 with the following assumptions. Each of the N individuals can be in
one of four states: susceptible, infective, recovered, and vaccinated; the numbers in
these states are denoted by S, I, R, and V , respectively. Thus, N = S + I +R + V .
Birth occurs in the system with rate constant d > 0. Of these newborns, a fraction
α ∈ [0, 1] are vaccinated at birth. Death occurs with the same rate constant d as birth;
thus the total population N is constant. The transmission coefficient β is the number
of contacts made by one infective per unit time multiplied by the probability that a
contact with a susceptible leads to infection. The disease is transmitted horizontally,
with the transmission modeled using a standard incidence function; thus the rate at
which susceptibles become infective is βSI/N . For contacts between infectives and
vaccinated individuals this coefficient is multiplied by a factor σ ∈ [0, 1]. Thus 1− σ
is the vaccine efficacy. Susceptible individuals are vaccinated with rate constant φ,
and the vaccine protection wanes with rate constant θ > 0. Infective individuals
recover with rate constant γ > 0 and then have temporary immunity. They leave the
recovered state with rate constant ν. We assume αd + φ > 0 to ensure that there is
a nonzero flow of individuals into class V .

SI/N

α dN

(1−   )dN

σβ

S

dV

φ

VI/N

α

V

dS

ν

θ

R

R
γ I

dI

V

IS
β

dR

Fig. 2.1. The flow diagram of the SIRV model.

The model is formulated as the following system of ordinary differential equations:

dS

dt
= (1− α)dN − dS − β

SI

N
− φS + θV + νR,(2.1a)

dI

dt
= β

SI

N
+ σβ

V I

N
− (d+ γ)I,(2.1b)

dR

dt
= γI − (d+ ν)R,(2.1c)

dV

dt
= αdN + φS − (d+ θ)V − σβ

V I

N
,(2.1d)

with nonnegative initial conditions and N(0) > 0.
System (2.1) is well posed: solutions remain nonnegative for nonnegative initial

conditions. As the total population is constant, the system can be rewritten in terms
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of proportions as

dS

dt
= (1− α)d− dS − βSI − φS + θ(1− S − I −R) + νR,(2.2a)

dI

dt
= βSI + σβ(1− S − I −R)I − (d+ γ)I,(2.2b)

dR

dt
= γI − (d+ ν)R,(2.2c)

V = 1− (S + I +R),(2.2d)

where here S, I, R, V denote the proportions in the susceptible, infective, recovered,
and vaccinated states, respectively. Conclusions about system (2.1) can be easily
recovered from system (2.2), and we employ system (2.2) from now on. System
(2.2a)–(2.2c) can be written as dx/dt = f(x) with x = (S, I,R)T .

In the case σ = 1, the vaccine is totally useless, and (2.2) reduces to an SIRS model
without vaccination. The behavior is then determined by R0 = β/(d+γ). This is the
classical basic reproduction number in the SIRS model, namely, the average number
of new infections caused by one infective (in a completely susceptible population)
during the infective period. From now on we assume that σ < 1.

3. Equilibria and bifurcations. For system (2.2), there is always the disease-
free equilibrium (DFE)

X0 = (SDFE , 0, 0, VDFE) =

(
θ + d(1− α)

d+ θ + φ
, 0, 0,

φ+ dα

d+ θ + φ

)
.(3.1)

Now consider endemic equilibria with I = I∗ > 0. From (2.2b) at an endemic equi-
librium, β(S + σV ) = d+ γ. Since S + σV < 1, this can be true only for β > d+ γ;
hence, for R0 ≤ 1 there exists no endemic equilibrium. For R0 > 1, the existence of
endemic equilibria is determined by the presence in (0, 1] of positive real solutions of
the quadratic

P (I) = AI2 +BI + C = 0,

with

A = −σβ2 d+ ν + γ

d+ ν
,

B = σβ2 − β(d+ θ + σ(d+ γ + φ))− βγ

d+ ν
(d+ θ + σφ),

C = (d+ θ + σφ− dα(1− σ))β − (d+ γ)(d+ θ + φ).

Thus, depending on parameter values, the number of endemic equilibria is zero, one,
or two. For σ = 0 (the vaccine is totally effective), at most one endemic equilibrium
is possible. From now on we make the realistic assumption that the vaccine is not
totally effective, and thus 0 < σ < 1. From (2.2a)–(2.2d), it can be shown that if
I∗ is a positive solution of P (I) = 0, then S∗, R∗, and V ∗ are positive; thus the
equilibrium is biologically relevant. For a positive real solution I∗ to P (I) = 0, the
endemic equilibrium point (EEP) in system (2.2) is given by

(S∗, I∗, R∗, V ∗) =

(
(1− α)d+ (ν−θ)γI∗

d+ν + (1− I∗)θ
d+ βI∗ + φ+ θ

, I∗,
γI∗

d+ ν
, 1− S∗ − I∗ −R∗

)
.
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Fig. 3.1. (a) Plot of the quadratic P (I), with increasing values of σ (at left, from bottom to top,
σ = 0.04, 0.06, . . . , 0.16) in the forward bifurcation case, φ = 0.2. (b) As (a) but in the backward
bifurcation case, φ = 0.05. (c) Bifurcation in the (Rvac(σ), I∗)-plane, φ = 0.2. (d) Bifurcation in
the (Rvac(σ), I∗)-plane, φ = 0.05.

In Figure 3.1, P (I) is plotted versus I for increasing values of σ and φ = 0.2
or 0.05 (all other parameters being fixed at the values indicated in Table 3.1). The
values of γ, d and the vaccination parameters of Table 3.1 are appropriate for pertussis
[1, 5], whereas β and ν are estimated to illustrate our bifurcation results. Figure 3.1(a)
shows the situation that prevails when the bifurcation is a classical forward one. In
this case, an increase in σ through some critical value σc (which depends on the
other parameter values) leads through a transcritical bifurcation to a unique endemic
equilibrium. Figure 3.1(b) shows the occurrence of the backward bifurcation. In this
case, an increase of σ leads to the curve P (I) becoming tangent to the horizontal axis
defining a critical value σc at a saddle-node bifurcation. As σ becomes larger than σc,
two equilibria exist. We expect bistability with the DFE and the equilibrium with the
larger I value being stable. As σ increases further, the equilibrium with the smaller
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Table 3.1
Parameter values used in simulations.

Parameter Typical value or range Meaning
β 0.4 /day Transmission coefficient
γ 1/(21 days) Average infectious period 21 days
d 1/(75 years) Average lifespan 75 years
ν 1/(31 days) Average period of immunity 31 days
α 0.9 Proportion of vaccinated newborns
φ 0.05 to 0.2/day Vaccination rate constant
σ 0.04 to 0.2 Vaccine is between 80% and 96% effective
θ 1/(5 years) Average vaccine waning time 5 years

I value moves to the left. When this equilibrium leaves the positive orthant through
a transcritical bifurcation with the DFE, there is only one endemic equilibrium.

Since the concavity of the quadratic P (I) is fixed (as A < 0), observation of
Figure 3.1(b) gives necessary conditions for the existence of two equilibria: P ′(0) =
B > 0 and P (0) = C < 0. Together with the fact that the roots of P (I) are real, this
gives the bistability region B > 0, C < 0 and ∆ = B2 − 4AC > 0. Figure 3.2 shows
this region as a function of σ and φ, with all other parameters fixed as in Table 3.1.
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Fig. 3.2. Bifurcation diagram in the (σ, φ)-plane.

Using for example the method of [20], the basic reproduction number as modified
by vaccination is

Rvac =
β

d+ γ
(SDFE + σVDFE) ,

which from (3.1) gives

Rvac = R0
d+ θ + σφ− dα(1− σ)

d+ θ + φ
.(3.2)



GLOBAL RESULTS FOR AN EPIDEMIC MODEL 265

We writeRvac(σ) to indicate σ as the bifurcation parameter when all other parameters
are fixed. Note that R0(d(1 − α) + θ)/(d + θ + φ) < Rvac(σ) < R0 (equalities are
achieved at σ = 0 and σ = 1, respectively). The constant term C in the polynomial
P (I) can be written as (d+ γ)(d+ θ + φ)(Rvac − 1); thus P (0) has the same sign as
Rvac − 1. Define Rc = Rvac(σc). For a forward bifurcation, this gives Rc = 1; see
Figure 3.1(c). For a backward bifurcation, Rc < 1; see Figure 3.1(d). The existence
of endemic equilibria is summarized as follows.
Proposition 3.1. For model (2.2), if Rvac < Rc or Rvac = Rc = 1, there

is no endemic equilibrium; if Rc < Rvac < 1, then there are two distinct endemic
equilibria; if Rc = Rvac < 1, Rc < Rvac = 1, or Rvac > 1, there is a unique endemic
equilibrium.

When two endemic equilibria are present, letX∗ andX∗ be the endemic equilibria
with the larger and smaller value of I∗, respectively; when Rvac �= Rc and a unique
endemic equilibrium exists, it is denoted by X∗; when Rvac = Rc and a unique
endemic equilibrium exists, it is denoted by Xc. A global result (for R0 < 1) and
local stability of the equilibria are summarized in the following theorem, which justifies
the stability of equilibria as shown in Figures 3.1(c) and 3.1(d).
Theorem 3.2. If R0 < 1, then the DFE X0 is the only equilibrium for system

(2.2a)–(2.2c), and it is globally asymptotically stable; X0 is locally asymptotically sta-
ble for Rvac < 1 and unstable for Rvac > 1. When present, the endemic equilibrium
X∗ is unstable, and if θ ≤ ν, then X∗ is locally asymptotically stable.

Proof. As remarked earlier, for R0 ≤ 1 there exists no endemic equilibrium.
Further, if R0 < 1, then I can be used as a Lyapunov function to show that the DFE
is globally asymptotically stable.

From [20, Theorem 2], Rvac is a threshold value, with X0 being locally asymp-
totically stable if Rvac < 1 and unstable if Rvac > 1. Linearizing (2.2a)–(2.2c) about
an endemic equilibrium gives the Jacobian matrix

∂f

∂x
(S∗, I∗, R∗) =


 −d− βI∗ − φ− θ −βS∗ − θ ν − θ

(1− σ)βI∗ −σβI∗ −σβI∗
0 γ −(d+ ν)


 .

In the case in which two endemic equilibria exist, det
(
∂f
∂x (X∗)

)
> 0 and tr

(
∂f
∂x (X∗)

)
<

0. Thus ∂f
∂x (X∗) has a positive eigenvalue and two eigenvalues with negative real part,

making X∗ unstable hyperbolic.
Let λj , j = 1, 2, 3, be the eigenvalues of ∂f

∂x (X
∗) with �(λ1) ≤ �(λ2) ≤ �(λ3).

It can be shown that det
(
∂f
∂x (X

∗)
)
< 0 and so λ1λ2λ3 < 0. This means that either

�(λj) < 0 for j = 1, 2, 3 or �(λ1) < 0 ≤ �(λ2) ≤ �(λ3). Since tr
(
∂f
∂x (X

∗)
)
< 0, it

follows that λ1 +λ2 +λ3 < 0, which implies that �(λ1 +λ2) < 0 and �(λ1 +λ3) < 0.
Assume now that θ ≤ ν, and consider the second additive compound [12] of the

Jacobian matrix

∂f

∂x

[2]

(X∗) =




−
(
(1 + σ)βI∗

+ d+ φ+ θ

)
−σβI∗ θ − ν

γ −
(

βI∗ + 2d
+φ+ θ + ν

)
−βS∗ − θ

0 (1− σ)βI∗ −(σβI∗ + d+ ν
)



.

Using the signs of the matrix elements, it is easily shown that det
(
∂f
∂x

[2]
(X∗)

)
< 0.
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The eigenvalues of ∂f∂x
[2]
(X∗) are λi + λj , 1 ≤ i < j ≤ 3, and so

−1 = sgn

(
det

(
∂f

∂x

[2]

(X∗)

))

= sgn (�(λ1 + λ2) �(λ1 + λ3)�(λ2 + λ3))
= sgn (�(λ2 + λ3)) .

Thus, �(λj) < 0 for j = 1, 2, 3, and thereforeX∗ is locally asymptotically stable.
Remark 3.3. For all of the numerical simulations performed here, the parameters

satisfy θ ≤ ν; i.e., the average period of immunity is no longer than the average
vaccine waning time. If θ ≥ ν, then there is no endemic equilibrium for Rvac ≤ 1,
since each of the coefficients in P (I) is nonpositive; thus there can be no bistability.

More general techniques are needed to determine the global dynamics for the case
R0 > 1.

4. A geometric approach to global dynamics. In this section, a brief out-
line of a general mathematical framework for studying global dynamics is given. This
approach to global dynamics is developed in the papers of Smith [17] and Li and Mul-
downey [12, 13, 15]. While this method is usually applied to demonstrate the global
stability of a unique equilibrium [11, 14], here it is used to demonstrate bistability for
a system that exhibits a backward bifurcation. In [11, 14], compound matrix tech-
niques together with the existence of a compact absorbing set are used to prove global
asymptotic stability of the endemic equilibrium point. For cases in which our model
exhibits bistability, no such compact absorbing set exists; thus, a sequence of surfaces
that exists for time ε > 0 and minimizes the functional measuring surface area must
be considered.

Let B be the Euclidean ball in R
2, and let B̄ and ∂B be its closure and boundary,

respectively. Letting Lip(X → Y ) denote the set of Lipschitzian functions from X to
Y , a function ϕ ∈ Lip(B̄ → D) is a (simply connected rectifiable) surface in D. A
function ψ ∈ Lip(∂B → D) is a closed rectifiable curve in D and is called simple if it
is one-to-one. Let Σ(ψ,D) = {ϕ ∈ Lip(B̄ → D) : ϕ|∂B = ψ}. In [15], it is shown that
if ψ is contained in a simply connected open subset of D, then Σ(ψ,D) is nonempty.

Let ‖ · ‖ be a norm on R
(n
2 ). Consider a functional S on surfaces in D defined by

Sϕ =

∫
B̄

∥∥∥∥P ·
(
∂ϕ

∂u1
∧ ∂ϕ

∂u2

)∥∥∥∥ du,(4.1)

where u = (u1, u2), u �→ ϕ(u) is Lipschitzian on B̄, the wedge product ∂ϕ
∂u1

∧ ∂ϕ
∂u2

is a

vector in R
(n
2 ) (see [19]), and P is an (n2 ) × (n2 ) matrix such that ‖P−1‖ is bounded

on ϕ(B̄). The following result follows from the development in [12] and [15].
Proposition 4.1. Suppose that ψ is a simple closed rectifiable curve in R

n.
Then there exists δ > 0 such that

Sϕ ≥ δ

for all ϕ ∈ Σ(ψ,Rn).
Functionals of the form (4.1) give a measure of the surface area of the surface

ϕ. In this context, Proposition 4.1 can be interpreted as stating that, given a curve
ψ ⊂ R

n and a measure of surface area, all surfaces with boundary ψ have surface area
uniformly bounded away from zero.
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Let x �→ f(x) ∈ R
n be a C1 function for x in a set D ⊂ R

n. Consider the
differential equation

dx

dt
= f(x).(4.2)

(This is used in section 5 with x = (S, I,R)T for the system (2.2a)–(2.2c).) For any
surface ϕ, the new surface ϕt is defined by ϕt(u) = x(t, ϕ(u)). Note that when viewed
as a function of t, ϕt(u) gives the solution to (4.2) that passes through the point ϕ(u)
at t = 0.

It is shown in [15] that D+Sϕt, the right-hand derivative of Sϕt, is given by

D+Sϕt =
∫
B̄

lim
h→0+

1

h

[∥∥z + hQ
(
ϕt(u)

)
z
∥∥− ∥∥z∥∥] du,(4.3)

where the matrix Q = PfP
−1+P ∂f

∂x

[2]
P−1. Here Pf is the directional derivative of P

in the direction of the vector field f , ∂f
∂x

[2]
is the second additive compound [12] of

∂f
∂x , and z = P · ( ∂ϕ∂u1

∧ ∂ϕ
∂u2

) is a solution to the differential equation

dz

dt
= Q

(
ϕt(u)

)
z.(4.4)

Thus, (4.3) can be rewritten as

D+Sϕt =
∫
B̄

D+

∥∥z∥∥ du.
If there exists η > 0 such that D+‖z‖ ≤ −η‖z‖ for all z ∈ R

(n
2 ) and all x ∈ D, then

D+Sϕt ≤
∫
B̄
−η‖z‖ du = −ηSϕt, and so Sϕt ≤ Sϕ e−ηt as long as ϕt remains in D.

If ϕt ⊂ D for all t, then limt→∞ Sϕt = 0.
Suppose that ψ is the trace of a periodic solution of (4.2). Then ψ is invariant

under the flow described by (4.2). Let ϕ ∈ Σ(ψ,D). Then ϕt(∂B) = x(t, ϕ(∂B)) =
x(t, ψ(∂B)) = ψ(∂B). Thus, ϕt ∈ Σ(ψ,D) as long as ϕt ⊂ D. If D is positively
invariant, then ϕt ∈ Σ(ψ,D) for all t ≥ 0, and therefore, by Proposition 4.1, Sϕt ≥ δ
for all t ≥ 0. Thus, by the remarks of the previous paragraph, the condition that
D+‖z‖ ≤ −η‖z‖ for all z and x precludes the existence of periodic solutions to (4.2).

In the absence of a compact absorbing set, a surface may not remain in D
for all time. Thus, we consider a sequence of surfaces {ϕk} in Σ(ψ,D) such that
limk→∞ Sϕk = δ, where δ = inf{Sϕ : ϕ ∈ Σ(ψ,D)} and for which there exists ε > 0
such that ϕkt (B̄) ⊂ D for t ∈ [0, ε] and k = 1, 2, . . . . If D+‖z‖ ≤ −η‖z‖ for all z ∈ R

(n
2 )

and all x ∈ D, then Sϕkε ≤ Sϕke−ηε, and therefore there exists l such that Sϕlε < δ.
This implies that the boundary of ϕlε is not ψ, and therefore ψ is not invariant under
(4.2). Thus, if for every simple closed curve ψ in D there is a sequence of surfaces
{ϕk} in Σ(ψ,D) that all remain in D for some time ε > 0, and there is a surface
functional S of the form given in (4.1), then the condition D+‖z‖ ≤ −η‖z‖ precludes
the existence of invariant closed curves, including periodic orbits, homoclinic orbits,
and heteroclinic cycles.

The above conditions are robust under local C1 perturbations to the original
differential equation (4.2). Thus, if (4.2) satisfies the above hypotheses, then so do
all systems that are sufficiently C1-close to (4.2). Therefore, Pugh’s closing lemma
[7] leads to the following result in the spirit of Criterion 3.1 in [15], giving conditions
that preclude the existence of nonconstant nonwandering points.
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Theorem 4.2. Suppose there exists a norm ‖ · ‖ on R
(n
2 ) and η > 0 such that

D+‖z‖ ≤ −η‖z‖ for all z ∈ R
(n
2 ) satisfying (4.4) and all x ∈ D for D simply connected.

Further, suppose that for any simple closed curve ψ in D there exists a sequence of
surfaces {ϕk} that minimizes S relative to Σ(ψ,D) and there exists ε > 0 such that
ϕkt ⊂ D for t ∈ [0, ε] and k = 1, 2, . . . . Then any omega limit point of (4.2) in the
interior of D is an equilibrium.

In order to apply the theorem to a particular system, it is necessary to find a norm
‖ ·‖ and a matrix P (which then determines the matrix Q) such that D+‖z‖ ≤ −η‖z‖
and to show that an appropriate sequence of surfaces exists.

5. Global analysis of the SIRS model with vaccination. Recalling that
for R0 < 1 the DFE is globally asymptotically stable (Theorem 3.2), we now apply
the theory outlined in the previous section to system (2.2a)–(2.2c) for R0 > 1. Let
D = {(S, I,R) : S,R ≥ 0, I > 0, S + I + R ≤ 1}. The Jacobian matrix at a general
point x = (S, I,R)T is given by

∂f

∂x
=


−d− βI − φ− θ −βS − θ ν − θ

(1− σ)βI β(S + σV − σI)− (d+ γ) −σβI
0 γ −(d+ ν)


 ,(5.1)

where V = 1 − S − I − R from (2.2d). The second additive compound [12] of the
Jacobian matrix is the 3× 3 matrix given by

∂f

∂x

[2]

=




(
β(S + σV − (1 + σ)I)
− [2d+ φ+ θ + γ]

)
−σβI θ − ν

γ −(βI + 2d+ φ+ θ + ν) −(βS + θ)

0 (1− σ)βI

(
β(S + σV − σI)
− [2d+ γ + ν]

)



.

Let P = 1
I I3, where I3 is the 3× 3 identity matrix. Then PfP

−1 = − 1
I
dI
dt I3 with

dI
dt given by (2.2b), and

Q = PfP
−1 + P

∂f

∂x

[2]

P−1

=



−[(1 + σ)βI + d+ φ+ θ] −σβI θ − ν

γ

(
γ − [β(S + σV + I)
+ d+ φ+ θ + ν]

)
−(βS + θ)

0 (1− σ)βI −(σβI + d+ ν)


 .

(5.2)

For z = (z1, z2, z3)
T , let ‖z‖ be given by

‖z‖ =

{
max{|z1|+ |z3|, |z2|+ |z3|} if 0 ≤ z2z3,
max{|z1|+ |z3|, |z2|} if z2z3 ≤ 0.

(5.3)

This norm is used as a Lyapunov function for system (4.4). The following two propo-
sitions, with proofs given in the appendices, lead to our main result.
Proposition 5.1. Assume that in system (2.2a)–(2.2c) the parameters satisfy

the following inequalities:

θ < d+ 2ν,

2γ < d+ φ+ θ + ν,

γ < d+ φ+ ν.

(5.4)
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Then there exists η > 0 such that D+‖z‖ ≤ −η‖z‖ for all z ∈ R
3 and all S, I,R, V ≥ 0,

I �= 0, where z is a solution of (4.4) with Q and ‖ · ‖ given by (5.2) and (5.3),
respectively.

Note that inequalities (5.4) are independent of the transmission coefficient β, the
proportion of newborns vaccinated α, and the vaccine efficacy σ but depend on the
other model parameters.
Proposition 5.2. Let ψ be a simple closed curve in D. There exist ε > 0 and

a sequence of surfaces {ϕk} that minimizes S given by (4.1) relative to Σ(ψ,D) such
that ϕkt ⊂ D for all k = 1, 2, . . . and all t ∈ [0, ε].
Theorem 5.3. If inequalities (5.4) hold, then each positive semitrajectory of

(2.2a)–(2.2c) in D̄ limits to a single equilibrium.
Proof. Let Γ be a positive semitrajectory in D̄ with omega limit set Ω. Suppose

that Ω intersects the interior of D. Propositions 5.1 and 5.2 ensure that Theorem 4.2
can be applied to system (2.2a)–(2.2c). Theorem 4.2 implies that every omega limit
point of (2.2a)–(2.2c) in the interior of D is an equilibrium. Since the system has a
finite number of equilibria, there are only a finite number of points in the interior of
D which can be in Ω. As Γ is bounded, Ω must be connected. Thus, Ω must consist
of a single equilibrium.

Suppose, on the other hand, that Ω is contained in the boundary ∂D of D. Since
omega limit sets are invariant, Ω must be contained in the largest invariant subset
of ∂D. By considering (2.2a)–(2.2c) with the assumption that θ, γ, and αd + φ are
positive, it is easily shown that {X0} is the only invariant subset of ∂D and therefore
Ω = {X0}.

For the parameters given in Table 3.1 and used in Figure 3.2, inequalities (5.4) are
satisfied for φ > 0.063, which contains part of the bistability region. With θ = 1/(1
year) and ν = 1/(14 days), and all other parameters fixed as in Table 3.1, Figure 5.1
shows a two-dimensional bifurcation diagram in the (σ, φ)-plane. Inequalities (5.4)
are satisfied for φ > 0.021, including the entire region for which bistability occurs.
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Fig. 5.1. Bifurcation diagram in the (σ, φ)-plane, for 1/θ equal to one year and 1/ν equal to
two weeks. The second inequality of (5.4) holds for φ above the horizontal line labeled (5.4). The
other two inequalities of (5.4) hold in the whole region.
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Corollary 5.4. Assume that inequalities (5.4) hold for system (2.2a)–(2.2c).
(i) If there is no endemic equilibrium, then all solutions limit to the DFE X0.
(ii) If Rvac > 1, then (S, I,R) tends to the unique endemic equilibrium X∗,

provided that I(0) > 0.
(iii) If there are two endemic equilibria, or if Xc is the only endemic equilib-

rium, then depending on the initial values, the disease dies out or limits to a constant
endemic value.

Proof. Statements (i) and (iii) follow directly from Theorem 5.3. For (ii),Rvac>1,
and so the DFE is unstable with a two-dimensional stable manifold (see (5.1)), which
is {I = 0}. Since from Theorem 5.3 every solution limits to an equilibrium, and since
solutions with I(0) > 0 do not go to the DFE, they must limit to X∗.
Corollary 5.5. Suppose that θ ≤ ν and 2γ < d+φ+θ+ν. Then the conclusions

of Corollary 5.4 hold. Furthermore, if system (2.2a)–(2.2c) has two endemic equilibria,
then the basins of attraction of X∗ and X0 have positive measure and the basin of
attraction of X∗ has zero measure.

Proof. If θ ≤ ν and 2γ < d + φ + θ + ν, then the inequalities (5.4) are satisfied
and so the conclusions of Corollary 5.4 follow. From Theorem 3.2, X∗ is locally
asymptotically stable. Thus it has a basin of attraction with positive measure. It is
shown in section 3 that X∗ is unstable hyperbolic. Thus, the set of points which limit
to X∗ has Lebesgue measure zero. When there are two endemic equilibria, Rvac < 1,
and thus X0 is locally asymptotically stable and has a basin of attraction with positive
measure.

Remark 5.6. For ν sufficiently large (i.e., a sufficiently short period of immunity),
inequalities (5.4) hold and the conclusion of Corollary 5.5 holds. In the limiting case
as ν tends to infinity, upon recovery infective individuals progress directly to the
susceptible class; thus the model reduces to an SIS model with vaccination, similar
to that considered in [10].

Remark 5.7. By using norms other than the norm given by (5.3), inequalities
(5.4) can be replaced with other conditions which lead to the same conclusions. For
example, if ‖z‖ is given by

‖z‖ = max
j=1,2,3

|zj |,

then (5.4) can be replaced with

2γ ≤ d+ ν + θ.(5.5)

Similarly, if ‖z‖ is given by

‖z‖ =




|z1|+ |z2|+ |z3| if sgn(z1) = sgn(z2) = sgn(z3),
max{|z1|+ |z2|, |z1|+ |z3|} if sgn(z1) = sgn(z2) = −sgn(z3),
max{|z1|+ |z3|, |z2|} if sgn(z1) = −sgn(z2) = sgn(z3),
max{|z1|+ |z3|, |z2|+ |z3|} if − sgn(z1) = sgn(z2) = sgn(z3),

then (5.4) can be replaced with

θ < d+ 2ν,

γ < d+ φ+min{θ, ν}.(5.6)

For parameter values given in Table 3.1, the inequalities found in (5.4) are less re-
strictive than those given in (5.5) or (5.6).



GLOBAL RESULTS FOR AN EPIDEMIC MODEL 271

6. Concluding remarks. The model formulated in section 2 incorporates vacci-
nation for a disease in a simple manner, with vaccinated individuals in a class distinct
from that of the individuals who have recovered from the disease. By contrast, in
some models (e.g., [3]) these two classes are combined. The basic reproduction num-
ber as modified by vaccination, namely Rvac as given by (3.2), is a key parameter
in our model. To eradicate the disease, it may not be sufficient to reduce Rvac be-
low one. In the case of bistability, Rvac must be further reduced; see Figure 3.1(d).
Increasing vaccination of either newborns or the population at risk has the effect of
reducing Rvac. An important parameter in Rvac is the efficacy of the vaccine, namely,
1−σ. Bistability may occur for a range of σ values. This range depends on the values
of the other parameters in the model. The occurrence of a backward bifurcation is
illustrated for some parameter values in Figures 3.1(b), 3.1(d), 3.2, 5.1. In the case
of bistability, the asymptotic behavior of the proportion of infectives depends on the
initial conditions. In such a situation, global analysis is more complicated than in a
situation with a unique endemic equilibrium and a compact absorbing set. An ap-
propriate sequence of surfaces that minimizes the functional measuring surface area
must be considered. This novel approach is outlined in section 4 and then applied to
our model in section 5. Global results are proved under mild parameter restrictions,
and it is indicated that alternative restrictions arise from alternative choices of norms.
The rate of vaccination of susceptibles and the vaccine waning rate play a role in these
restrictions, whereas the vaccine efficacy and the proportion of newborns vaccinated
do not. Theorem 5.3 rules out any complicated behavior (e.g., limit cycles) under
mild parameter restrictions, and numerical simulations have found no such behavior
for any parameter values. A more realistic model including vaccination should incor-
porate age structure and demographics (see, e.g., [5]). However, global results are
then not available, and simulations must be performed to gain some insight into the
model behavior and to determine vaccination strategy.

The analysis of our model can be regarded as the first application of using a
minimizing sequence of surfaces in this context. This method may also be useful in
other models for which there exist solutions that limit to boundary equilibria.

Appendix A. Proof of Proposition 5.1.
Proof. We demonstrate the existence of some η > 0 such that D+‖z‖ ≤ −η‖z‖,

where z is a solution of (4.4). By linearity, if this inequality is true for some z, then
it is also true for −z. The proof is subdivided into eight cases based on the octant
and the definition of the norm in (5.3).

Case 1. If 0 < z1, z2, z3 and |z1|+ |z3| > |z2|+ |z3|, then ‖z‖ = |z1|+ |z3| and

D+‖z‖ = D+(|z1|+ |z3|)
= D+(z1 + z3)

=
dz1
dt

+
dz3
dt

= −((1 + σ)βI + d+ φ+ θ
)
z1 + (1− 2σ)βIz2 +

(
θ − (σβI + d+ 2ν)

)
z3.

Noting that (1− 2σ)βIz2 ≤ (1− σ)βIz2 ≤ (1− σ)βIz1,

D+‖z‖ < −(2σβI + d+ φ+ θ)z1 + (θ − (σβI + d+ 2ν))z3

≤ max{−(2σβI + d+ φ+ θ), θ − (σβI + d+ 2ν)} ‖z‖.

Thus, in order that D+‖z‖ be bounded away from zero on the negative side for all z
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and all I > 0, we require that

θ < d+ 2ν.(A.1)

Case 2. If 0 < z1, z2, z3 and |z1|+ |z3| < |z2|+ |z3|, then ‖z‖ = |z2|+ |z3| and
D+‖z‖ = D+(|z2|+ |z3|)

=
dz2
dt

+
dz3
dt

= γz1+
(
γ − (β(S + σV + σI) + d+ φ+ θ + ν

))
z2 −

(
β(S + σI) + d+ θ + ν

)
z3.

Since z1 < z2, this becomes

D+‖z‖ <
(
2γ − (β(S + σV + σI) + d+ φ+ θ + ν

))
z2 −

(
β(S + σI) + d+ θ + ν

)
z3.

In order that D+‖z‖ be bounded away from zero on the negative side for all S, I, V >
0, we require that

2γ < d+ φ+ θ + ν.(A.2)

Case 3. If z1 < 0 < z2, z3 and |z1|+ |z3| > |z2|+ |z3|, then ‖z‖ = |z1|+ |z3| and
D+‖z‖ = D+(|z1|+ |z3|)

= D+(−z1 + z3)

= −dz1
dt

+
dz3
dt

=
(
(1 + σ)βI + d+ φ+ θ

)
z1 + βIz2 − (σβI + d+ θ)z3

= −((1 + σ)βI + d+ φ+ θ
)|z1|+ βI|z2| − (σβI + d+ θ)|z3|.

Since |z2| < |z1|,
D+‖z‖ < −(σβI + d+ φ+ θ)|z1| − (σβI + d+ θ)|z3|

≤ −(d+ θ)‖z‖.
Thus, in this case, D+‖z‖ is automatically bounded away from zero on the negative
side.

Case 4. If z1 < 0 < z2, z3 and |z1|+ |z3| < |z2|+ |z3|, then ‖z‖ = |z2|+ |z3| and
D+‖z‖ = D+(|z2|+ |z3|)

=
dz2
dt

+
dz3
dt

= γz1+
(
γ−(β(S+σV +σI) + d+ φ+ θ + ν

))
z2−

(
β(S + σI) + d+ θ + ν

)
z3

= −γ|z1|+
(
γ − (β(S + σV + σI) + d+ φ+ θ + ν

))|z2|
− (β(S + σI) + d+ θ + ν

)|z3|
<
(
γ − (β(S + σV + σI) + d+ φ+ θ + ν

))|z2| − (β(S + σI) + d+ θ + ν
)|z3|

≤ max
{
γ−(β(S+σV +σI) +d+ φ+ θ + ν

)
,−(β(S + σI) + d+ θ + ν

)} ‖z‖.
Thus we require that

γ < d+ φ+ θ + ν.(A.3)
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Case 5. If z2 < 0 < z1, z3 and |z1|+ |z3| > |z2|, then ‖z‖ = |z1|+ |z3| and

D+‖z‖ = D+(|z1|+ |z3|)
=

dz1
dt

+
dz3
dt

= −((1 + σ)βI + d+ φ+ θ
)
z1 + (1− 2σ)βIz2 +

(
θ − (σβI + d+ 2ν)

)
z3

= −((1 + σ)βI + d+ φ+ θ
)|z1|+ (2σ − 1)βI|z2|+

(
θ − (σβI + d+ 2ν)

)|z3|.
Since (2σ − 1)βI|z2| ≤ σβI|z2| < σβI(|z1|+ |z3|),

D+‖z‖ < −(βI + d+ φ+ θ)|z1|+
(
θ − (d+ 2ν)

)|z3|
≤ max{−(βI + d+ φ+ θ), θ − (d+ 2ν)}‖z‖.

Thus, we require that (A.1) hold.
Case 6. If z2 < 0 < z1, z3 and |z1|+ |z3| < |z2|, then ‖z‖ = |z2| and

D+‖z‖ = D+(|z2|)
= −dz2

dt

= −γz1 −
(
γ − (β(S + σV + I) + d+ φ+ θ + ν

))
z2 + (βS + θ)z3

= −γ|z1|+
(
γ − (β(S + σV + I) + d+ φ+ θ + ν

))|z2|+ (βS + θ)|z3|.

Since −γ|z1| < 0 and |z3| < |z2|,

D+‖z‖ <
(
γ − (β(σV + I) + d+ φ+ ν

))|z2|.
Thus, we require that

γ < d+ φ+ ν.(A.4)

Case 7. If z3 < 0 < z1, z2 and |z1|+ |z3| > |z2|, then ‖z‖ = |z1|+ |z3| and

D+‖z‖ = D+(|z1|+ |z3|)
=

dz1
dt

− dz3
dt

= −((1 + σ)βI + d+ φ+ θ
)
z1 − βIz2 + (θ + σβI + d)z3

= −((1 + σ)βI + d+ φ+ θ
)|z1| − βI|z2| − (θ + σβI + d)|z3|

≤ −(d+ θ)‖z‖.

Thus, in this case, D+‖z‖ is automatically bounded away from zero on the negative
side.

Case 8. If z3 < 0 < z1, z2 and |z1|+ |z3| < |z2|, then ‖z‖ = |z2| and

D+‖z‖ = D+(|z2|)
=

dz2
dt

= γz1 +
(
γ − (β(S + σV + I) + d+ φ+ θ + ν

))
z2 − (βS + θ)z3

= γ|z1|+
(
γ − (β(S + σV + I) + d+ φ+ θ + ν

))|z2|+ (βS + θ)|z3|.
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Noting that |z1|+ |z3| < |z2|,
D+‖z‖ <

(
γ − (β(S + σV + I) + d+ φ+ θ + ν

)
+max{γ, βS + θ})‖z‖.

Thus, we require that (A.2) and (A.4) hold.
Note that (A.2) and (A.4) each imply (A.3). Thus, if inequalities (A.1), (A.2),

and (A.4) hold, then there exists η > 0 such that D+‖z‖ ≤ −η‖z‖ for almost every
z ∈ R

3 and all nonnegative S, I, R, and V . The boundary between the different cases,
including, for example, zj = 0 for some j, is resolved by continuity. Thus, (A.1), (A.2),
and (A.4) (equivalently (5.4)) imply that D+‖z‖ ≤ −η‖z‖ for all z ∈ R

3.

Appendix B. Proof of Proposition 5.2.
Proof. Let ξ = 1

2 min{I : (S, I,R) ∈ ψ} and let ε > 0. Note that the model is well

posed so solutions remain in the nonnegative orthant. In D, dIdt ≥ −(d + ν)I. Thus,
if a solution satisfies I(0) ≥ ξ, then the solution remains in D for time ε.

Therefore, it suffices to show that there exists a sequence of surfaces {ϕk} that
minimizes S relative to Σ(ψ, D̃), where D̃ = {(S, I,R) ∈ D : I ≥ ξ}. Let ϕ =
(S(u), I(u), R(u)) ∈ Σ(ψ,D). Define a new surface ϕ̃ = (S̃, Ĩ, R̃) by

ϕ̃(u) =




ϕ(u) if I(u) ≥ ξ,
(S, ξ,R) if I(u) < ξ and S(u) + ξ +R(u) ≤ 1,(
S

S+R (1− ξ), ξ, R
S+R (1− ξ)

)
if I(u) < ξ and S(u) + ξ +R(u) > 1.

(B.1)

Note that ϕ̃ ∈ Σ(ψ, D̃). We now demonstrate that Sϕ̃ ≤ Sϕ.
Since ϕ is Lipschitzian, the partial derivatives ∂ϕ

∂uj
, j = 1, 2, exist almost every-

where. Thus,

∂ϕ

∂u1
∧ ∂ϕ

∂u2
=




∂S
∂u1

∂I
∂u1

∂R
∂u1


 ∧




∂S
∂u2

∂I
∂u2

∂R
∂u2


 =




det

(
∂S
∂u1

∂S
∂u2

∂I
∂u1

∂I
∂u2

)

det

(
∂S
∂u1

∂S
∂u2

∂R
∂u1

∂R
∂u2

)

det

(
∂I
∂u1

∂I
∂u2

∂R
∂u1

∂R
∂u2

)




is a vector in R
3 for almost every u ∈ B. To examine

∥∥ ∂ϕ̃
∂u1

∧ ∂ϕ̃
∂u2

∥∥, we do a case
analysis based on the definition of ϕ̃ given in (B.1).

Case 1. If I(u) ≥ ξ, then ϕ̃ = ϕ and therefore
∥∥ ∂ϕ̃
∂u1

∧ ∂ϕ̃
∂u2

∥∥ =
∥∥ ∂ϕ
∂u1

∧ ∂ϕ
∂u2

∥∥ when
all of the relevant partial derivatives exist.

Case 2. If I(u) < ξ and S(u) + ξ + R(u) ≤ 1, then ϕ̃(v) = (S(v), ξ, R(v)).
Therefore

∂ϕ̃

∂u1
∧ ∂ϕ̃

∂u2
=




det

(
∂S
∂u1

∂S
∂u2

0 0

)

det

(
∂S
∂u1

∂S
∂u2

∂R
∂u1

∂R
∂u2

)

det

(
0 0
∂R
∂u1

∂R
∂u2

)




=




0

det

(
∂S
∂u1

∂S
∂u2

∂R
∂u1

∂R
∂u2

)

0
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almost everywhere. If yj is equal to either zj or zero for j=1, 2, 3, then ‖(y1, y2, y3)
T ‖≤

‖(z1, z2, z3)T ‖ for the given norm. It follows that
∥∥ ∂ϕ̃
∂u1

∧ ∂ϕ̃
∂u2

∥∥ ≤ ∥∥ ∂ϕ∂u1
∧ ∂ϕ
∂u2

∥∥.
Case 3. If I(u) < ξ and S(u)+ξ+R(u) > 1, then ϕ̃(v) =

(
S

S+R (1−ξ), ξ, R
S+R (1−

ξ)
)
. Therefore

∂ϕ̃

∂uj
= (1− ξ)

R ∂S
∂uj

− S ∂R
∂uj

(S +R)2


 1

0
−1




for j = 1, 2. Thus, ∂ϕ̃
∂u1

and ∂ϕ̃
∂u2

are linearly dependent, and so their wedge product is

zero [19]. Therefore
∥∥ ∂ϕ̃
∂u1

∧ ∂ϕ̃
∂u2

∥∥ = 0 ≤ ∥∥ ∂ϕ∂u1
∧ ∂ϕ
∂u2

∥∥.
The above three cases show that

∥∥ ∂ϕ̃
∂u1

∧ ∂ϕ̃
∂u2

∥∥ ≤ ∥∥ ∂ϕ∂u1
∧ ∂ϕ
∂u2

∥∥ for almost all u ∈ B̄.

We also note that Ĩ(u) = max{I(u), ξ} and thus 1/Ĩ ≤ 1/I. Therefore from (4.1),

Sϕ̃ =

∫
B̄

1

Ĩ

∥∥∥∥ ∂ϕ̃∂u1
∧ ∂ϕ̃

∂u2

∥∥∥∥ du
≤
∫
B̄

1

I

∥∥∥∥ ∂ϕ∂u1
∧ ∂ϕ

∂u2

∥∥∥∥ du
= Sϕ.

Let {ϕk} be a sequence of surfaces that minimizes S relative to Σ(ψ,D). Let
{ϕ̃k} be a sequence of surfaces in Σ(ψ, D̃) defined by the above construction. Since
Sϕ̃k ≤ Sϕk for each k, and Σ(ψ, D̃) is a subset of Σ(ψ,D), it follows that {ϕ̃k}
minimizes S relative to Σ(ψ, D̃).

REFERENCES

[1] J. Chin, ed., Control of Communicable Diseases Manual, 17th ed., American Public Health
Association, Washington, DC, 2000.

[2] J. Dushoff, W. Huang, and C. Castillo-Chavez, Backwards bifurcations and catastrophe
in simple models of fatal diseases, J. Math. Biol., 36 (1998), pp. 227–248.

[3] D. J. D. Earn, P. Rohani, B. M. Bolker, and B. T. Grenfell, A simple model for complex
dynamical transitions in epidemics, Science, 287 (2000), pp. 667–670.

[4] D. Greenhalgh, O. Diekmann, and M. C. M. de Jong, Subcritical endemic steady states in
mathematical models for animal infections with incomplete immunity, Math. Biosci., 165
(2000), pp. 1–25.

[5] H. W. Hethcote, Oscillations in an endemic model for pertussis, Canadian Appl. Math.
Quart., 6 (1998), pp. 61–88.

[6] H. W. Hethcote, The mathematics of infectious diseases, SIAM Rev., 42 (2000), pp. 599–653.
[7] M. W. Hirsch, Systems of differential equations that are competitive or cooperative. VI: A

local Crclosing lemma for 3-dimensional systems, Ergodic Theory Dynam. Systems, 11
(1991), pp. 443–454.

[8] W. Huang, K. L. Cooke, and C. Castillo-Chavez, Stability and bifurcation for a multiple-
group model for the dynamics of HIV/AIDS transmission, SIAM J. Appl. Math., 52 (1992),
pp. 835–854.

[9] C. Kribs-Zaleta and M. Martcheva, Vaccination strategies and backward bifurcation in an
age-since-infection structured model, Math. Biosci., 177/178 (2002), pp. 317–332.

[10] C. Kribs-Zaleta and J. Velasco-Hernández, A simple vaccination model with multiple
endemic states, Math. Biosci., 164 (2000), pp. 183–201.

[11] M. Y. Li and J. S. Muldowney, Global stability for the SEIR model in epidemiology, Math.
Biosci., 125 (1995), pp. 155–164.

[12] M. Y. Li and J. S. Muldowney, On R. A. Smith’s autonomous convergence theorem, Rocky
Mountain J. Math., 25 (1995), pp. 365–379.

[13] M. Y. Li and J. S. Muldowney, A geometric approach to global-stability problems, SIAM J.
Math. Anal., 27 (1996), pp. 1070–1083.



276 J. ARINO, C. C. MCCLUSKEY, AND P. VAN DEN DRIESSCHE

[14] M. Y. Li, H. L. Smith, and L. Wang, Global dynamics of an SEIR epidemic model with
vertical transmission, SIAM J. Appl. Math., 62 (2001), pp. 58–69.

[15] Y. Li and J. S. Muldowney, On Bendixson’s criterion, J. Differential Equations, 106 (1993),
pp. 27–39.

[16] C. C. McCluskey, A model of HIV/AIDS with staged progression and amelioration, Math.
Biosci., 181 (2003), pp. 1–16.

[17] R. A. Smith, Some applications of Hausdorff dimension inequalities for ordinary differential
equations, Proc. Roy. Soc. Edinburgh Sect. A, 104 (1986), pp. 235–259.

[18] B. Song, C. Castillo-Chavez, and J. P. Aparicio, Global dynamics of tuberculosis mod-
els with density dependent demography, in Mathematical Approaches for Emerging and
Reemerging Infectious Diseases: Models, Methods, and Theory, C. Castillo-Chavez, with
S. Blower, P. van den Driessche, D. Kirschner, and A.-A. Yakubu, eds., IMA Vol. Math.
Appl. 126, Springer-Verlag, New York, 2002, pp. 275–294.

[19] M. Spivak, Calculus on Manifolds, W. A. Benjamin, New York, 1965.
[20] P. van den Driessche and J. Watmough, Reproduction numbers and sub-threshold endemic

equilibria for compartmental models of disease transmission, Math. Biosci., 180 (2002),
pp. 29–48.



ANALYSIS OF A VARIATIONAL APPROACH TO PROGRESSIVE
LENS DESIGN∗

JING WANG† , ROBERT GULLIVER‡ , AND FADIL SANTOSA‡

SIAM J. APPL. MATH. c© 2003 Society for Industrial and Applied Mathematics
Vol. 64, No. 1, pp. 277–296

Abstract. We consider a variational approach to the progressive lens design problem. The cor-
responding Euler–Lagrange equation is a fourth-order nonlinear elliptic partial differential equation.
We analyze two linearizations of the equation and show the existence and uniqueness as well as the
regularity of the solutions for various boundary conditions. We end with an example of a progressive
lens designed by solving the elliptic partial differential equation.
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1. Introduction. Presbyopia is very common in people over age forty, and is
caused by the loss of the accommodative power of the human eye. Single-vision
reading glasses can be used to correct this problem; however, they enable good vision
only for nearby objects and have to be taken off for distance vision. To avoid this
inconvenience, more complicated lenses such as the bifocal lens, which consists of
two single-vision lenses with different powers, and the trifocal lens, which adds one
more lens for intermediate vision, have been designed. A major drawback of these
kinds of lenses is the jump in the image as the eye moves from seeing far-distance to
near-distance objects.

One of the best solutions to presbyopia is the progressive addition lens (PAL, for
short). A PAL comprises a large distance-view zone with low power on the upper part
of the lens and a small near-view zone with higher power on the lower part; between
these two zones, the power increases progressively and smoothly.

In progressive lenses, the progression of the power arises from a local variation in
the curvatures of the surface. In ophthalmic optics, the power at each point is given
by the formula

Pow = (1− n)P b +
(n− 1)P f

1− d(1− 1
n )P

f
,

where n is the refractive index of the material, d is the thickness of the lens, and P f

and P b are the mean curvatures of the front and back surfaces, respectively. For a
thin lens (d � 1), the formula simplifies to

Pow = (n− 1)(P f − P b).

In typical progressive lenses, the back surface is usually a surface of constant mean
curvature. Thus P f is the only factor determining the progressive power of the lens.
To simplify notation, we write it as P .
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Suppose that k1, k2 are the two local principal curvatures of the front surface;
then P = (k1 + k2)/2. The quantity

A = (n− 1)|k1 − k2|

is called the local cylinder (or astigmatism).
An ideal progressive surface is one with the prescribed smooth progressive power

and with zero astigmatism everywhere. But in order for the astigmatism to be zero
everywhere, the surface has to be either a sphere or a plane, which will not provide
progressive power. Alternatively, one would wish the surface to have smooth progres-
sive power and as small an astigmatism as possible. In fact, in design of ophthalmic
lenses, certain regions on the surface are required to have very small astigmatism; for
the rest of the surface, the astigmatism should be smooth and as small as possible.
The regions of very small astigmatism are areas of the lenses critical to the eyes for
far, intermediate, and near vision.

There have been some direct methods for designing progressive lenses, e.g., those
of Winthrop [12] and Baudart, Ahsbahs, and Miege [4]. In a direct method, power
is assigned along a curve on the lens. Elsewhere on the lens, power is distributed
smoothly away from this curve. The construction is done in such a way that the
cylinder is as small as possible in the critical areas of the lens. However, the perfor-
mance of such lenses are often less than satisfactory because there is no real control
over the distribution of the cylinder. Indirect methods based on optimization have
been proposed by other lens designers. In such a method, a cost function that at-
tempts to balance the power distribution with the unavoidable cylinder is created.
The goal is to minimize the cost function. An example of such a cost function, and
one which we will analyze in this work, is that proposed by Loos, Greiner, and Seidel
[9]. In their approach, the desired power function over the whole surface is specified.
The task then is to construct the surface with power close to this function and with
a weighted total cylinder as small as possible.

The current paper addresses theoretical issues arising in lens design by the vari-
ational approach. In section 2, we give a brief review of principal curvatures and the
compatibility conditions for the existence of surfaces. Section 3 introduces the varia-
tional approach for the lens design problem. The Euler–Lagrange equation, which is
a fourth-order nonlinear elliptic equation, is also derived there.

A similar variational problem arises in the study of surfaces governed by free
energy functionals. In [10], Nitsche analyzed such a problem with constant weight
functions and power function. He showed that if the constants satisfy the so-called
structural conditions, then for both Dirichlet boundary conditions and natural bound-
ary conditions the solution to the problem exists, is unique, and is in the regular class
C4,λ(Ω), where the Hölder exponent λ is a number in the interval 0 < λ < 1.

For progressive lenses, the power varies among different areas. Also, due to the
fact that there is importance associated with critical areas of the lens, the weight
functions will not be constants. Thus the Euler–Lagrange equation is more compli-
cated. To simplify the analysis of the partial differential equation, we consider two
linearizations.

In section 4, we linearize the equation about a flat surface. The linearized PDE
is very similar to the equation of elastic plate theory (see Ciarlet [7]). We will solve
the problem on a square region. Three types of boundary conditions are considered:
(1) a clamped boundary condition, (2) a partially clamped boundary condition, (3) a
natural boundary condition. For all three boundary conditions, we prove the existence
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and uniqueness of the solutions with reasonable choices of weight functions α and β.
For the third boundary condition, a solution that is unique up to a linear ambiguity
exists. Regularity of the solutions follows from Friedrichs’s work [8]. In section 5,
we consider a linearization near a spherical surface. Similar to the linearization from
a plane, we consider the same boundary conditions as the above linearization about
the flat surface. We show that, with the first boundary condition, the equation has a
unique solution when the size of the square region over which the problem is solved
is less than the radius of the base spherical surface. With the second and the third
boundary conditions, the solution is unique when the size of the square region is
less than 1.15 times the radius of the base spherical surface. Again, for the natural
boundary condition case, the solution is unique up to an addition of a linear function.

A numerical approach for this problem is addressed in a separate work [11], where
we propose a finite element method to solve the resulting PDEs.

2. Compatibility conditions. It is clear that the power and the cylinder of
the front surface are determined only by the principal curvatures. Thus, if we could
control the distribution of the principal curvatures, then we could control the quality
of the lens. Unfortunately, there are complicated relations governing the two principal
curvatures, as shown below.

Given a surface z = u(x, y), we can write it in a parametric form as U(x1, x2) =
(u1(x1, x2), u2(x1, x2), u3(x1, x2)) with u1(x1, x2) = x1 = x, u2(x1, x2) = x2 = y, and
u3(x1, x2) = u(x, y). Let gij = 〈 ∂U∂xi

, ∂U∂xj
〉. Then the first fundamental form is defined

as

I = g11dx
2
1 + 2g12dx1dx2 + g22dx

2
2.

Let n = ∂U
∂x1

× ∂U
∂x2

/| ∂U∂x1
× ∂U

∂x2
| be the unit outer normal vector to the surface, and

let Lij = 〈 ∂2U
∂xi∂xj

, n〉. The second fundamental form is defined as

II = L11dx
2
1 + 2L12dx1dx2 + L22dx

2
2.

Suppose that the principal curvatures are k1 and k2; then the Gauss curvature K
and the mean curvature H are

K = k1 · k2 =
L11L22 − L2

12

g11g22 − g2
12

, H =
k1 + k2

2
=

L11g22 − 2L12g12 + L22g11

2(g11g22 − g2
12)

3/2
.

In terms of the original surface z = u(x, y), H and K can be written explicitly as

H =
(1 + u2

x)uyy − 2uxuyuxy + (1 + u2
y)uxx

2(1 + u2
x + u2

y)
3/2

, K =
uxxuyy − u2

xy

(1 + u2
x + u2

y)
2
.

In general, for any arbitrary specified principal curvatures, the surface may not
exist. Certain conditions must be satisfied for the existence of the surface. These
conditions are called the Gauss equations and Codazzi equations and are given by

∂Γljk
∂xi

− ∂Γlik
∂xj

+ ΓsjkΓ
l
is − ΓsikΓljs = Ljkg

lmLmi − Likg
lmLmj ,(2.1)

ΓlijLlk +
∂Lij
∂xk

= ΓlkjLli +
∂Lkj
∂xi

,(2.2)
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where Γkij =
1
2g
lk(

∂gjl
∂xi

+ ∂gli
∂xj

− ∂gij
∂xl
) are the Christoffel symbols and (gij) is the inverse

matrix of (gij).
These two conditions are exactly the compatibility conditions for the existence of

the surface, as shown in the next theorem (see [3]).
Theorem 2.1 (fundamental theorem of surface theory). Let Ω be an open, simply

connected subset of R
2. Assume

I = g11dx
2
1 + 2g12dx1dx2 + g22dx

2
2, II = L11dx

2
1 + 2L12dx1dx2 + L22dx

2
2,

where gij and Lij are differentiable functions of x for all x ∈ Ω. If I is positive
definite and the Gauss equations (2.1) and Codazzi equations (2.2) are satisfied, then

(i) there exists a surface U : Ω → R
3 whose first and second fundamental forms

are I and iI;
(ii) any two surfaces U and V defined on Ω, which have the same first and second

fundamental forms, differ by an isometry of R
3.

3. Variational approach to progressive surface design. As we see from
the previous section, certain relationships for the principal curvatures must be met
in order that they correspond to a surface. Unfortunately, the relationships are too
complicated to be of direct use in lens design. An indirect method, in which the lens
design problem is posed as a variational problem of attempting to fit the prescribed
power on the surface while minimizing the total weighted cylinder, has been proposed
by Loos, Greiner, and Seidel [9]. We will describe such an approach next.

3.1. Design of an objective functional. Let us consider a surface given by
z = u(x, y) : Ω→ R, where the domain Ω ∈ R

2. Suppose that the desired distribution
of the mean curvature on the graph is specified by a function P (x, y) : Ω→ R. Then
the quality of the surface could be measured by

I(u) =

∫
Ω

{
α(x, y)

(
k1 − k2

2

)2

+ β(x, y)

(
k1 + k2

2
− P (x, y)

)2
}
dx dy,(3.1)

where α(x, y), β(x, y) : Ω → R are two positive weight functions for the surface
astigmatism and power, respectively. The weight α will be large in areas where the
lens is to have minimum astigmatism, while the weight β will be large in areas where
the lens is to have the correct prescribed power. In typical designs, these areas overlap.

In terms of the Gauss curvature K = k1 · k2 and the mean curvature H =
(k1 + k2)/2, the above functional can be rewritten as

I(u) =

∫
Ω

{
α
(
H(x, y)2 −K(x, y)

)
+ β (H(x, y)− P (x, y))

2
}
dx dy.(3.2)

The task of this approach is to minimize I(u). At a minimum, we would have con-
structed a lens with nearly correct powers in the appropriate regions and minimized
the astigmatism in these regions.

Numerical optimization methods could be used to minimize the functional. In [9],
Loos, Greiner, and Seidel first approximated the functional by a quadratic functional,
and then Newton’s method was used to locate a minimum. For the weight functions
α and β, piecewise constant functions were used. Allione, Ahsbahs, and Saux [2]
discussed other types of numerical methods for lens optimization problems.
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3.2. Euler–Lagrange equations. For the surface z = u(x, y), H and K can
be expressed explicitly as

H =
(1 + u2

x)uyy − 2uxuyuxy + (1 + u2
y)uxx

2(1 + u2
x + u2

y)
3/2

and K =
uxxuyy − u2

xy

(1 + u2
x + u2

y)
2
.(3.3)

Thus

I(u) = I(ux, uy, uxx, uxy, uyy)

=

∫
Ω

{
α(x, y)

(
H(ux, uy, uxx, uxy, uyy)

2 −K(ux, uy, uxx, uxy, uyy)
)

+ β(x, y) (H(ux, uy, uxx, uxy, uyy)− P (x, y))
2
}
dxdy.

The necessary condition for I(u) to be the minimum is

d

dt

∣∣∣∣
t=0

I(u+ tδ) = 0 ∀δ ∈ C∞
0 (Ω),

i.e.,

0 =
d

dt

∣∣∣∣
t=0

I(u+ tδ)

=

∫
Ω

{
2 ((α+ β)H − βP )

(
Hux

δx +Huy
δy +Huxx

δxx +Huxy
δxy +Huyy

δyy
)

− α
(
Kuxδx +Kuyδy +Kuxxδxx +Kuxyδxy +Kuyyδyy

)}
dxdy.(3.4)

Suppose that α, β, and P are at least twice differentiable; then integration by
parts twice yields the following fourth-order PDE:

(αKux)x + (αKuy )y − (αKuxx)xx − (αKuxy )xy − (αKuyy )yy

− 2 ((αH + βH − βP )Hux)x − 2
(
(αH + βH − βP )Huy

)
y

+ 2 ((αH + βH − βP )Huxx)xx + 2
(
(αH + βH − βP )Huxy

)
xy

+ 2
(
(αH + βH − βP )Huyy

)
yy
= 0.(3.5)

This is the Euler–Lagrange equation of the problem.
For the nonlinear fourth-order PDE (3.5), it is easy to check that the fourth-order

terms contributed by K are zero, and thus all the fourth-order terms are from H. The
fourth-order leading terms are

P4(D)u =
(α+ β)

(1 + u2
x + u2

y)
3

{
(1 + u2

y)[(1 + u2
x)uyyxx − 2ux uy uxyxx + (1 + u2

y)uxxxx]

− 2ux uy[(1 + u2
x)uyyxy − 2ux uy uxyxy + (1 + u2

y)uxxxy]

+ (1 + u2
x)[(1 + u2

x)uyyyy − 2ux uy uxyyy+(1+u2
y)uxxyy]

}
.
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Since

P4(ξ, η) =
(α+ β)

(1 + u2
x + u2

y)
3
[(1 + u2

x)η
2 − 2ux uyξ η + (1 + u2

y)ξ
2]2

=
(α+ β)

(1 + u2
x + u2

y)
3
[ξ2 + η2 + (uxη − uyξ)

2]2

≥ (α+ β)

(1 + u2
x + u2

y)
3
[ξ2 + η2]2,

we can conclude that the PDE (3.5) is elliptic if α+ β > 0.
To simplify the analysis of (3.5), we are going to linearize it. Two types of

linearizations will be considered. The first linearization is about a plane, under the
assumption that |∇u| � 1. The second linearization is about a sphere; namely, we
will assume that the surface is a slight perturbation from a spherical surface and
suppose that the gradient of the perturbation is small. Due to the fact that a lens is
closer to a sphere than to a plane, the second linearization is of more practical value
for lens design. The techniques used in the analysis of the linearized equation about
a plane will be useful in studying the case of linearization about a sphere.

4. Linearization about the flat surface. If |∇u| � 1, then approximately
H ≈ 1

2∆u and K ≈ uxxuyy − u2
xy. In this case, the variational equation will be

∫
Ω

{(α+ β)∆u∆v − 2α(uxxvyy + uyyvxx − 2uxyvxy)} dx dy =
∫

Ω

2βP∆v dx dy

(4.1)

for all v ∈ C∞
0 (Ω). The corresponding PDE is (again, if all the coefficients are at least

twice differentiable)

∆((α+ β)∆u)− 2[(αuyy)xx + (αuxx)yy − 2(αuxy)xy] = ∆(2βP ).(4.2)

Equation (4.1) is very similar to the equation of Kirchoff plate theory [7]. Borrowing
terms used in plate theory, the boundary condition (BC) can be one of the following
types:

(i) clamped,
(ii) partially clamped,
(iii) natural.
Define the bilinear functional

B(u, v) =

∫
Ω

(α+ β)∆u∆v − 2α(uxxvyy + uyyvxx − 2uxyvxy)dx dy(4.3)

and the linear functional

L(v) =

∫
Ω

2βP∆v dx dy.(4.4)

Then the problem is to solve

B(u, v) = L(v) ∀v ∈ C∞
0 (Ω).(4.5)

The basic tool we use to establish the results in the subsequent analysis is the Lax–
Milgram lemma [7], which we restate here for completeness.
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Lemma 4.1 (Lax–Milgram lemma). Let V be a Banach space with norm ‖·‖. Let
L : V → R be a continuous linear form, and let B : V × V → R be a symmetric and
continuous bilinear form that is V -elliptic, in the sense that there exists a constant
c > 0 such that

B(v, v) ≥ c‖v‖2 ∀v ∈ V.

Then the problem: Find u ∈ V such that

B(u, v) = L(v) ∀v ∈ V

has a unique solution.
The space we will use for establishing the results is H2(Ω), for which the norm is

defined as (see [1])

‖v‖2,Ω =


|v|20,Ω +

2∑
i=1

|∂iv|20,Ω +
2∑

i,j=1

|∂ijv|20,Ω




1/2

,

where |v|0,Ω =
{∫

Ω
|v|2dx dy}1/2

, ∂1 = ∂/∂x, ∂2 = ∂/∂y, and ∂ij = ∂i∂j . Define the
seminorm | · |2,Ω by

|v|2,Ω =



2∑
i,j=1

|∂ijv|20,Ω




1/2

.

4.1. BC (i): Clamped boundary condition. We suppose that u is clamped
on the boundary, i.e., u = 0,∇u = 0 on ∂Ω.

An ingredient critical for this boundary condition is the Poincaré–Friedrichs in-
equality [5].

Lemma 4.2 (Poincaré–Friedrichs inequality). Let Ω be a domain in R
2; then

there exists a constant c > 0 such that

c−1‖v‖2,Ω ≤ |v|2,Ω ∀v ∈ H2
0 (Ω).(4.6)

Theorem 4.3. Let Ω be a domain in R
2. Assume that P (x, y), α(x, y), β(x, y) ≤

M in Ω, where M > 0 is a constant; also α(x, y) ≥ 0 and there exists a constant
β0 > 0 such that β(x, y) ≥ β0 for all (x, y) ∈ Ω. Then the variational equation (4.1)
has a unique solution in H2

0 (Ω). In addition, if α(x, y), β(x, y) ∈ Ck(Ω) and P (x, y) ∈
Hk(Ω), then for every compact subdomain Ω1 of Ω, the solution u ∈ Hk+2(Ω1).

Proof. For all v ∈ C∞
0 (Ω), by Green’s formula,∫

Ω

∂ijv ∂ijv dx dy =

∫
Ω

∂iijv ∂jv dx dy =

∫
Ω

∂iiv ∂jjv dx dy.

Since C∞
0 (Ω) is dense in H2

0 (Ω), the above relation remains true for all v ∈ H2
0 (Ω);

i.e., for all v ∈ H2
0 (Ω), |v|2,Ω = |∆v|0,Ω. Thus by the Poincaré–Friedrichs inequality

(Lemma 4.2),

|∆v|0,Ω = |v|2,Ω ≥ c−1‖v‖2,Ω.

Since α((∆v)2 − 4vxxvyy + 4v2
xy)) = α((vxx − vyy)

2 + 4v2
xy) ≥ 0, this implies

B(v, v) ≥ β|∆v|20,Ω ≥ c−2β0‖v‖2
2,Ω,

and thus B(v, v) is H2
0 (Ω)-elliptic. Thus, by the Lax–Milgram lemma, the variational

problem has a unique solution in H2
0 (Ω).

The regularity of the solution follows from the result in Friedrichs [8].
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Remark. Note that the conditions here for α and β resemble the so-called struc-
tural conditions in Nitsche [10].

4.2. BC (ii): Partially clamped boundary conditions. Let H2
Γ(Ω) be the

subspace of H2(Ω) such that f |Γ = 0, ∂f∂ν |Γ = 0, where Γ is part of the boundary of Ω
with positive measure. A Poincaré-type inequality is still valid, as shown in [7].

Lemma 4.4. Let Ω be a domain in R
2, and let Γ be a measurable subset of ∂Ω

with length (Γ) > 0. Then there exists a constant c > 0 such that

c−1‖v‖2,Ω ≤ |v|2,Ω ∀v ∈ H2
Γ(Ω).

Theorem 4.5. Let Ω be a domain in R
2; assume that P (x, y), α(x, y), and

β(x, y) are bounded above in Ω, and that β(x, y) ≥ α(x, y) ≥ α0 for all (x, y) ∈ Ω,
where α0 > 0 is a constant. Then the variational equation (4.1) has a unique solution
in H2

Γ(Ω). In addition, if α(x, y), β(x, y) ∈ Ck(Ω) and P (x, y) ∈ Hk(Ω), then for
every compact subdomain Ω1 of Ω, the solution u ∈ Hk+2(Ω1).

Proof. When β(x, y) ≥ α(x, y) ≥ α0, we have (α+ β)∆u∆u ≥ 2α(∆u)2, and so

B(u, u) ≥
∫

Ω

2α((∆u)2 − 2uxxuyy + 2u2
xy) dx dy

=

∫
Ω

2α(|uxx|2 + |uyy|2 + 2|uxy|2) dx dy

≥ 2α0|u|22,Ω.
By Lemma 4.4,

B(u, u) ≥ 2α0c
−2‖u‖2

2,Ω.

Then the Lax–Milgram lemma implies that the problem has a unique solution in
H2

Γ(Ω). The regularity of the solution follows from the result in Friedrichs [8].
This means that if the solution is fixed on a part of the boundary and free on the

rest of the boundary, then the PDE has a unique solution.

4.3. BC (iii): Natural boundary conditions. To derive the natural bound-
ary condition, we return to the variational equation (4.5). For the first term of B(u, v)
in (4.3), by Green’s formula, we have∫

Ω

(α+ β)∆u∆v dx dy =

∫
Ω

v∆((α+ β)∆u) dx dy

+

∫
∂Ω

[
(α+ β)∆u

∂v

∂ν
− ∂((α+ β)∆u)

∂ν
v

]
dS.

For the second term of B(u, v) in (4.3), notice that (with Einstein’s convention)

uxxvyy + uyyvxx − 2uxyvxy = uiivjj − uijvij .

Using Green’s formula again, we arrive at∫
Ω

αuii vjj dx dy =

∫
Ω

(αuii)jj v dx dy +

∫
∂Ω

αuii vj νj dS −
∫
∂Ω

(αuii)j v νj dS,

∫
Ω

αuij vij dx dy =

∫
Ω

(αuij)ij v dx dy +

∫
∂Ω

αuij vj νi dS −
∫
∂Ω

(αuij)i v νj dS.
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Thus the second term of B(u, v) becomes∫
Ω

α(uxxvyy + uyyvxx − 2uxyvxy) dx dy

=

∫
Ω

[(αuii)jj − (αuij)ij ] v dx dy

+

∫
∂Ω

[(αiuij νj − αjuii νj) v + αuii vj νj − αuij vj νi] dS.

To simplify this further, let τ be the unit tangent vector along ∂Ω and ν be the unit
outward normal vector to ∂Ω; then we have{

vν = vxνx + vyνy,

vτ = −vxνy + vyνx

and {
vx = vννx − vτνy,

vy = vννy + vτνx.

Using these, we obtain that∫
∂Ω

(αiuijνj − αjuiiνj) v dS =

∫
∂Ω

(−αxuyτ + αyuxτ ) v dS.

Moreover, ∫
∂Ω

(αuiivjνj − αuijvjνi) dS

= −
∫
∂Ω

α(uyxνy − uyyνx)vx + α(uxyνx − uxxνy)vy dS

=

∫
∂Ω

(αuyτvx − αuxτvy) dS

=

∫
∂Ω

−α(uxτνx + uyτνy)vτ + α(uyτνx − uxτνy)vν dS

=

∫
∂Ω

(α(uxτνx + uyτνy))τv + α(uyτνx − uxτνy)vν dS.

The last equality is obtained by integration by parts along the boundary.
Also ∫

Ω

βP∆v dx dy =

∫
Ω

∆(βP )v dx dy +

∫
∂Ω

[
βP

∂v

∂ν
− ∂(βP )

∂ν
v

]
dS.

Thus the natural boundary conditions are



2(αxuyτ − αyuxτ )− ∂((α+ β)∆u)

∂ν
− 2(α(uxτνx + uyτνy))τ + 2

∂(βP )

∂ν
= 0,

(α+ β)∆u− 2α(uyτνx − uxτνy)− 2βP = 0.

(4.7)
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Notice that the differential equation (4.5) and the natural boundary conditions
(4.7) involve only the second and higher derivatives of u. Therefore if u(x, y) is a
solution of the problem, then for any linear function l(x, y) in R

2, u(x, y)+ l(x, y) will
also be a solution of the problem. That is, the solution is not unique. We will show
that the kernel is exactly the space of all the linear functions. We can then apply
Fredholm’s alternative after eliminating the finite dimensional kernel and establish
the well-posedness of the problem.

4.3.1. Kernel of the equation. To show that the kernel is exactly the three
dimensional space of linear functions, we first impose some constraints on u.

Since C2(Ω) is dense in H2(Ω), we first assume u ∈ C2(Ω) with the following
constraints: ∫

Ω

u dx dy = 0,

∫
Ω

ux dx dy = 0,

∫
Ω

uy dx dy = 0.(4.8)

As we mentioned above, with the natural boundary condition, the PDE is equivalent
to the variational equation

B(u, v) = L(v), u, v ∈ H2(Ω).

Here, we will need a more general version of the Poincaré inequality [6].
Lemma 4.6 (generalized Poincaré inequality). Let Ω be a domain in R

2, and let
1 ≤ p < ∞; then there exists a constant c0 such that∫

Ω

|v|pdx dy ≤ c0

{∫
Ω

|∇v|pdx dy +
∣∣∣∣
∫

Ω

v dx dy

∣∣∣∣
p}

(4.9)

for all v ∈ W 1,p(Ω), where c0 = c0(Ω).
Corollary 4.7. Let Ω be a domain in R

2 and u(x, y) ∈ H2(Ω) with the con-
straints (4.8); then there exists a constant c such that

‖u‖2,Ω ≤ c|u|2,Ω.
Proof. First assume u ∈ C2(Ω); then, since

∫
Ω
u dx dy = 0, we have immediately

from (4.9) ∫
Ω

|u|2dx dy ≤ c0

∫
Ω

(|ux|2 + |uy|2)dx dy.

Similarly, due to the constraints that
∫
Ω
ux dx dy = 0 and

∫
Ω
uy dx dy = 0, we have∫

Ω

|ux|2dx dy ≤ c0

∫
Ω

(|uxx|2 + |uxy|2)dx dy,
∫

Ω

|uy|2dx dy ≤ c0

∫
Ω

(|uxy|2 + |uyy|2)dx dy.

Combining the results, we get∫
Ω

|u|2dx dy ≤ c20

∫
Ω

(|uxx|2 + 2|uxy|2 + |uyy|2)dx dy,
∫

Ω

(|ux|2 + |uy|2)dx dy ≤ c0

∫
Ω

(|uxx|2 + 2|uxy|2 + |uyy|2)dx dy,
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which implies

‖u‖2,Ω ≤
√
1 + c0 + c20 |u|2,Ω.

Because C2(Ω) is dense in H2(Ω), the above inequality is also true for all u ∈
H2(Ω).

With Corollary 4.7, the result for the partially clamped boundary condition can
be applied to the natural boundary condition.

Theorem 4.8. Let Ω be a domain in R
2; assume that P (x, y), α(x, y), and β(x, y)

are bounded above in Ω; and take β(x, y) ≥ α(x, y) ≥ α0 for all (x, y) ∈ Ω, where
α0 > 0 is a constant. Then, with the constraints (4.8), the variational equation (4.5)
has a unique solution in H2(Ω). In addition, if α(x, y), β(x, y) ∈ Ck(Ω) and P (x, y) ∈
Hk(Ω), then for every compact subdomain Ω1 of Ω, the solution u ∈ Hk+2(Ω1).

We denote the solution to (4.5) with natural boundary condition (4.7) and con-
straints (4.8) by u0. Now let u be an arbitrary solution of the variational equation
without the constraints, and let

b =
1

|Ω|
∫

Ω

ux dx dy, c =
1

|Ω|
∫

Ω

uy dx dy,

and

a =
1

|Ω|
∫

Ω

(u− bx− cy)dx dy.

Define ũ = u− (a+ bx+ cy); then ũ is also a solution of the variational equation and∫
Ω

ũ dx dy = 0,

∫
Ω

ũx dx dy = 0,

∫
Ω

ũy dx dy = 0.

By Theorem 4.8, ũ ≡ u0 in H2(Ω). This means that any solution to the variational
equation must differ from u0 by a linear function. We summarize the result in the
following.

Theorem 4.9. Let Ω be a domain in R
2; assume that P (x, y), α(x, y), and

β(x, y) are bounded above in Ω; and assume β(x, y) ≥ α(x, y) ≥ α0 for all (x, y) ∈ Ω,
where α0 > 0 is a constant. Then the solution to the variational equation (4.1) is
unique in H2(Ω) up to the addition of a linear function. In addition, if α(x, y),
β(x, y) ∈ Ck(Ω) and P (x, y) ∈ Hk(Ω), then for every compact subdomain Ω1 of Ω,
the solution u ∈ Hk+2(Ω1).

5. Linearization about spherical surfaces. Since a progressive surface is in
practice a slight perturbation from a spherical surface, it is certainly reasonable to
suppose

u = u0 + v,

where u0 is a prescribed spherical surface of radius R and v is the deviation from it.
Then a straightforward calculation from (3.3) leads to

H(u) =
1

R
+
(1 + u2

0x)vyy − 2u0xu0yvxy + (1 + u2
0y)vxx

2g3
+ E1

and

K(u) =
(u0xx + vxx)(u0yy + vyy)− (u0xy + vxy)

2

g4
+ E2,
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where g =
√
1 + u2

0x + u2
0y and E1, E2 are the error terms which satisfy

|Ei| ≤ Ci|∇v|, i = 1, 2.

Here Ci, i = 1, 2, are two constants which depend only on |∇v|, |D2(v)|, |∇u0|, and
|D2(u0)|.

Suppose that the domain satisfies x2+y2 ≤ cR2 with constant c < 1. In addition,
suppose |∇v| � 1 and that |D2(v)| is bounded above in the domain. Then, |Ei| �
1, i = 1, 2, and thus

H(u) ≈ 1

R
+
(1 + u2

0x)vyy − 2u0xu0yvxy + (1 + u2
0y)vxx

2g3
,

K(u) ≈ (u0xx + vxx)(u0yy + vyy)− (u0xy + vxy)
2

g4
.

Let

Hu0(v) =
(1 + u2

0x)vyy − 2u0xu0yvxy + (1 + u2
0y)vxx

2g3
,(5.1)

Ku0(w, v) =
wxxvyy + wyyvxx − 2wxyvxy

g4
.(5.2)

Then Hu0
(v) is linear and Ku0

(w, v) is bilinear and symmetric. Consider again the
functional (3.2):

I(u) =

∫
Ω

[α(x, y)(H(u)2 −K(u)) + β(x, y)(H(u)− P (x, y))2]dx dy.

Assume that uminimizes the above functional, and let δ ∈ C∞
0 (Ω) be the test function.

By computing the first variation of I(u) at u and using the notation (5.1) and (5.2),
we will get ∫

Ω

[2(α+ β)Hu0(v)Hu0(δ)− αKu0(δ, v)] dx dy

=

∫
Ω

[
αKu0(δ, u0) + 2

(
βP − α+ β

R

)
Hu0(δ)

]
dx dy.

Let

B(w, v) =

∫
Ω

[2(α+ β)Hu0(w)Hu0(v)− αKu0(w, v)] dx dy(5.3)

and

L(w) =

∫
Ω

[
αKu0

(w, u0) + 2

(
βP − α+ β

R

)
Hu0

(w)

]
dx dy.(5.4)

Then, it is clear that B(w, v) is bilinear and L(w) is linear. Thus the problem is to
find v ∈ V such that

B(w, v) = L(w) ∀w ∈ V,(5.5)

where V is a subspace of H2(Ω).
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Similar to the linearization about the flat surface, three types of BCs will be
considered:

(i) clamped,
(ii) partially clamped,
(iii) natural.

5.1. BC (i): Clamped boundary condition.
Theorem 5.1. Let Ω be a subdomain of a square region of size d centered at (0, 0)

in R
2, and assume that P (x, y), α(x, y), and β(x, y) are bounded above in Ω. Assume

further that α(x, y) ≥ 0 and that there exists a constant β0 > 0 such that β(x, y) ≥ β0

for all (x, y) ∈ Ω. If d < 0.8165R, then the variational equation (5.5) has a unique
solution in H2

0 (Ω). In addition, if α(x, y), β(x, y) ∈ Ck(Ω) and P (x, y) ∈ Hk(Ω), then
for every compact subdomain Ω1 of Ω, the solution u ∈ Hk+2(Ω1).

Proof. Since u0(x, y) is a spherical surface, then u0(x, y) could be expressed as

u0(x, y) = −
√

R2 − x2 − y2. By direct calculation, we will have

Hu0
(v) =

√
R2 − x2 − y2[(R2 − y2)vyy − 2xyvxy + (R2 − x2)vxx]

2R3
,(5.6)

Ku0
(v, v) =

(R2 − x2 − y2)2(2vxxvyy − 2v2
xy)

R4
.(5.7)

We can rewrite (5.3) as

B(v, v) =

∫
Ω

{
2(α+ β)H2

u0
(v)− αKu0

(v, v)
}
dx dy(5.8)

=

∫
Ω

α
(
2H2

u0
(v)−Ku0

(v, v)
)
dx dy + 2

∫
Ω

βH2
u0
(v)dx dy.

The first integrand of B(v, v) is

α
(
2H2

u0
(v)−Ku0(v, v)

)
=

α(R2 − x2 − y2)

2R6

[(
(R2 − y2)vyy − 2xyvxy + (R2 − x2)vxx

)2
− 2R2(R2 − x2 − y2)(2vxxvyy − 2v2

xy)
]
.

Now, consider the matrix

A =

(
R2 − x2 −xy

−xy R2 − y2

)(
vxx vxy

vxy vyy

)
.

The trace of A is

tr(A) =
[
(R2 − y2)vyy − 2xyvxy + (R2 − x2)vxx

]
,

and the determinant of A is

det(A) = R2(R2 − x2 − y2)(vxxvyy − v2
xy).
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By the fact that tr(A)2 − 4 det(A) ≥ 0 for any 2× 2 matrix A, we have

α (2Hu0(v)Hu0(v)−Ku0(v, v)) ≥ 0.
It remains to analyze the second part of B(v, v) in (5.8):

[(R2 − y2)vyy − 2xyvxy + (R2 − x2)vxx]
2

= [R2∆v − (y2vyy + x2vxx + 2xyvxy)]
2

= R4(∆v)2 − 2R2∆v(y2vyy + x2vxx + 2xyvxy)

+ (y2vyy + x2vxx + 2xyvxy)
2.

Assume |x|, |y| ≤ r = δR, where δ ∈ [0, 1] is to be chosen later. Then
|y2vyy + x2vxx + 2xyvxy| ≤ δ2R2(|vxx|+ |vyy|+ 2|vxy|).

By the Schwarz inequality,

|2R2∆v(y2vyy + x2vxx + 2xyvxy)|
≤ 2R4δ2(|vxx|+ |vyy|)(|vxx|+ |vyy|+ 2|vxy|)
≤ 2R4δ2(3|vxx|2 + 3|vyy|2 + 2|vxy|2);

thus, we have

[(R2 − y2)vyy − 2xyvxy + (R2 − x2)vxx]
2

≥ R4[(∆v)2 − 2δ2(3|vxx|2 + 3|vyy|2 + 2|vxy|2)]
≥ R4[(∆v)2 − 6δ2(|vxx|2 + |vyy|2 + 2|vxy|2)].

If 1− 6δ2 = η > 0, i.e., if δ < 1/
√
6 ≈ 0.4082, then the above inequality implies

[(R2 − y2)vyy − 2xyvxy + (R2 − x2)vxx]
2

≥ R4[(∆v)2 − (1− η)(|vxx|2 + |vyy|2 + 2|vxy|2)]
and

2

∫
Ω

βHu0(v)Hu0(v)dx dy

≥ β0
1− 2δ2

2

∫
Ω

{(∆v)2 − (1− η)(|vxx|2 + |vyy|2 + 2|vxy|2)}dx dy

= β0
1− 2δ2

2
η|v|22,Ω

= c0|v|22,Ω,

where c0 = β0
1−2δ2

2 η > 0. Here, we have used the fact that in H2
0 (Ω), |∆v|0,Ω =

|v|2,Ω. Finally, by the Poincaré–Friedrichs inequality (4.6) and the Lax–Milgram
lemma (Lemma 4.1), equation (5.5) has a unique solution in H2

0 (Ω).
That is, if the size of the square region is less than 0.8165R, then the problem

could be uniquely solved. The regularity of the solution follows from the result in
Friedrichs [8].
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Remarks.
1. If we use the Cauchy ε-inequality (ab ≤ εa2 + b2

4ε ) instead of the Schwarz
inequality, we will have

|2R2∆v(y2vyy + x2vxx + 2xyvxy)|
≤ 2R4δ2(|vxx|+ |vyy|)(|vxx|+ |vyy|+ 2|vxy|)

≤ 2R4δ2

(
(2 + 2ε)(|vxx|2 + |vyy|2) + 2 1

2ε
|vxy|2

)
.

By choosing ε = (
√
2− 1)/2, 2 + 2ε = 1/(2ε), we have

[(R2 − y2)vyy − 2xyvxy + (R2 − x2)vxx]
2

≥ R4[(∆v)2 − 2(
√
2 + 1)δ2(|vxx|2 + |vyy|2 + 2|vxy|2)].

Thus if 1 − 2(√2 + 1)δ2 > 0, i.e., if δ <
√
1/(2(

√
2 + 1)) ≈ 0.4551, then the

conclusion is still true.
2. If we solve the equation on a circular region x2 + y2 ≤ r2 instead of a square
region and assume r = δ R, then with the Schwarz inequality, we will have

[(R2 − y2)vyy − 2xyvxy + (R2 − x2)vxx]
2

≥ R4[(∆v)2 − 5δ2(|vxx|2 + |vyy|2 + 2|vxy|2)].

This means that if δ < 1/
√
5 ≈ 0.4472, then the equation has a unique

solution in the circular region.
If we use the Cauchy ε-inequality, we will have

[(R2 − y2)vyy − 2xyvxy + (R2 − x2)vxx]
2

≥ R4[(∆v)2 − (
√
5 + 2)δ2(|vxx|2 + |vyy|2 + 2|vxy|2)].

Thus if δ <
√
1/(

√
5 + 2) ≈ 0.4859, the above conclusion is still true.

5.2. BC (ii): Partially clamped boundary condition. Let H2
Γ(Ω) be the

subspace of H2(Ω) such that f(x, y)|Γ = 0, ∂f∂ν |Γ = 0. Here Γ is part of the boundary
of Ω with positive measure.

Theorem 5.2. Let Ω be a subdomain of a square region of size d centered at
(0, 0) in R

2, and assume that P (x, y), α(x, y), and β(x, y) are bounded above in Ω.
If β(x, y) ≥ α(x, y) ≥ α0 for all (x, y) ∈ Ω, where α0 > 0 is a constant, then if
d ≤ R, the variational equation (5.5) has a unique solution in H2

Γ(Ω). In addition, if
α(x, y), β(x, y) ∈ Ck(Ω) and P (x, y) ∈ Hk(Ω), then for every compact subdomain Ω1

of Ω, the solution u ∈ Hk+2(Ω1).
Proof. If β(x, y) ≥ α(x, y) ≥ α0, we have

B(u, u) ≥
∫

Ω

[
4αH2

u0
(v)− αKu0(v, v)

]
dx dy,

where Hu0(v) and Ku0(v, v) are given by (5.6) and (5.7).
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Since R2(R2 − x2 − y2) = (R2 − x2)(R2 − y2)− x2y2, Ku0
(v, v) can be rewritten

as

Ku0(v, v) =
(R2 − x2 − y2)2(2vxxvyy − 2v2

xy)

R4

=
2(R2 − x2 − y2)

R6

[
((R2 − x2)(R2 − y2)− x2y2)(vxxvyy − v2

xy)
]
.

Thus

B(v, v) ≥
∫

Ω

α
(R2 − x2 − y2)

R6
(I + 2x2y2v2

xy − II)dx dy,

where

I = (R2 − x2)2v2
xx + (R

2 − y2)2v2
yy + 2(R

2 − x2)(R2 − y2)v2
xy,

II = 4xy(R2 − y2)vxyvyy + 4xy(R
2 − x2)vxyvxx − 2x2y2vxxvyy.

Assume |x|, |y| ≤ r = δR, where δ ∈ [0, 1] is to be chosen later. Then
I = (R2 − x2)2v2

xx + (R
2 − y2)2v2

yy + 2(R
2 − x2)(R2 − y2)v2

xy

≥ (1− δ2)2R4(|vxx|2 + |vyy|2 + 2|vxy|2),
and

II = 4xy(R2 − y2)vxyvyy + 4xy(R
2 − x2)vxyvxx − 2x2y2vxxvyy

≤ 2δ2R4(|vxx|2 + |vyy|2 + 2|vxy|2) + δ4R4(|vxx|2 + |vyy|2)
≤ (2δ2 + δ4)R4(|vxx|2 + |vyy|2 + 2|vxy|2).

Thus, if (1 − δ2)2 > 2δ2 + δ4, i.e., if 1 − 4δ2 > 0, which implies δ < 1/2, then
R2 − x2 − y2 ≥ R2/2 and

B(v, v) ≥
∫

Ω

α
(R2 − x2 − y2)

R2

(
(1− δ2)2 − (2δ2 + δ4)

) |D2v|dx dy

≥
∫

Ω

α0
(1− δ2)2 − (2δ2 + δ4)

2
|D2v|dx dy

= c0|v|22,Ω,

where |D2v|2 = |vxx|2 + |vyy|2 + 2|vxy|2 and c0 = α0
(1−δ2)2−(2δ2+δ4)

2 > 0.
By Lemma 4.4,

B(u, u) ≥ c1‖v‖2
2,Ω.

Then the Lax–Milgram lemma (Lemma 4.1) implies that the problem has a unique
solution. The regularity of the solution follows from the result in Friedrichs [8].

This means that if the solution is fixed on a part of the boundary and free on the
rest of the boundary, then the PDE has a unique solution in H2

Γ(Ω).
From the above proof, it is clear that, to have a unique solution, δ cannot be

arbitrarily large. It is desirable to find δ as large as possible for practical purposes.



VARIATIONAL APPROACH TO PROGRESSIVE LENS DESIGN 293

Remarks.
1. If we use the Cauchy ε-inequality (ab ≤ εa2 + b2

4ε ) instead of the Schwarz
inequality, we will have

II = 4xy(R2 − y2)vxyvyy + 4xy(R
2 − x2)vxyvxx − 2x2y2vxxvyy

≤ δ2R4

(
4ε(|vxx|2 + |vyy|2) + 2

ε
|vxy|2

)
+ δ4R4(|vxx|2 + |vyy|2)

≤ δ2R4

(
(4ε+ δ2)(|vxx|2 + |vyy|2) + 2

ε
|vxy|2

)
.

Solving 4ε+ δ2 = 1/ε, we get ε =
√
δ4+16−δ2

8 . With this choice of ε, we have

B(v, v) ≥
∫

Ω

α(1− 2δ2)

(
(1− δ2)2 − 8δ2

√
δ4 + 16− δ2

)
|D2v|dx dy.

By solving (1− δ2)2 = 8δ2/(
√
δ4 + 16− δ2), we derive 1− 4δ2+ δ4 − 2δ6 = 0,

and with the help of Mathematica we get

δ =

√
1

6
− 23

6(19 + 12
√
23)1/3

+
1

6
(19 + 12

√
23)1/3 ≈ 0.507992.

Thus if r < 0.50799R, then the conclusion of the above theorem is still true.
2. If we solve the equation on a circular region x2 + y2 ≤ r2 instead of a square
region and assume r = δ R, then with the Schwarz inequality, we will have

II = 4xy(R2 − y2)vxyvyy + 4xy(R
2 − x2)vxyvxx − 2x2y2vxxvyy

≤ δ2R4(|vxx|2 + |vyy|2 + 2|vxy|2) + δ4

4
R4(|vxx|2 + |vyy|2)

≤ δ2

(
1 +

δ4

4

)
R4(|vxx|2 + |vyy|2 + 2|vxy|2).

Solving (1− δ2)2 > δ2(1 + δ4

4 ) gives δ <
√

3−√
6

2 ≈ 0.5246.
If we use the Cauchy ε-inequality, we will have

II = 4xy(R2 − y2)vxyvyy + 4xy(R
2 − x2)vxyvxx − 2x2y2vxxvyy

≤ 2δ2R4(|vxx||vxy|+ |vyy||vxy|) + δ4R4

4
(|vxx|2 + |vyy|2)

≤ 2δ2R4

(
ε(|vxx|2 + |vyy|2) + 2 |vxy|

2

4ε

)
+

δ4R4

4
(|vxx|2 + |vyy|2)

= R4δ2

[(
2ε+

δ2

4

)
(|vxx|2 + |vyy|2) + 2 |vxy|

2

2ε

]
.

Let 2ε + δ2

4 = 1
2ε ; we have ε = (−δ2 +

√
δ4 + 64)/8. Solving (1 − δ2)2 >

δ2(δ2 +
√
δ4 + 64)/8 via Mathematica, we get δ2 ≈ 0.37399, which gives

δ ≈ 0.611549.
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5.3. BC (iii): Natural boundary condition. For the same reason that the
variational equations involve only the second derivatives of u, the analysis of the
solution for the natural boundary condition is almost the same as for the linearization
about a flat surface. Therefore, we state the following theorem but omit its proof.

Theorem 5.3. Let Ω be a subdomain of a square region of size d centered at
(0, 0) in R

2, and assume that P (x, y), α(x, y), and β(x, y) are bounded above in Ω. If
β(x, y) ≥ α(x, y) ≥ α0 for all (x, y) ∈ Ω, where α0 > 0 is a constant, then if d ≤ R,
the solution to the variational equation (5.5) exists in H2(Ω) and is unique up to an
addition of a linear function. In addition, if α(x, y), β(x, y) ∈ Ck(Ω) and P (x, y) ∈
Hk(Ω), then for every compact subdomain Ω1 of Ω, the solution u ∈ Hk+2(Ω1).

6. Numerical results. In practice, lenses are designed on a circular region of
diameter 80mm. For computational simplicity, we solve the design problem in the
square domain [−40, 40]⊗ [−40, 40].

We considered both of the linearizations analyzed above and solved the problems
for all three types of boundary conditions by finite element methods. We found that
linearization about a spherical surface with natural boundary conditions produces
the best lens. We will describe the findings below. Detailed analysis of the numerical
methods and description of the setting of the weight functions as well as the prescribed
power functions which produced the result shown can be found in [11].

Figure 6.1 shows the results where the radius of the spherical surface R = 107mm,
the index of the material n = 1.53, and the add-power (power addition from the base
power) is 2 diopters (diopter = (n − 1)/(focal length)) for the near-vision area. The
progressive lens surface is shown in Figure 6.1(a), while Figure 6.1(b) shows the
difference between the progressive lens surface and the initial spherical surface.

To optically analyze the surface, we need to calculate the power and the cylinder of
the surface. However, since the surface produced by the method is piecewise quadratic,
the second derivatives at the grid points are not well defined. Thus it is not possible to
calculate the cylinder and the power of the surface directly. An efficient and popular
method in the lens industry for analyzing lenses is to fit a lens by tensor product
B-splines of degree 3 to 5 and compute the cylinder and the power of the interpolated
surface. This gives a very good approximation of the cylinder and the power of the
true surface. We used the same method with tensor product B-splines of degree 5 for
analyzing our lenses.

Figure 6.2 shows the power and cylinder contours of the surface given in Fig-
ure 6.1(a).
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Fig. 6.1. Numerical results: (a) progressive surface, (b) addition to the spherical surface.



VARIATIONAL APPROACH TO PROGRESSIVE LENS DESIGN 295

x

y

0

0

0.
25

0.25

0.25 0.25

0.25

0.5

0.5

0.
5

0.5

0.5

0.5
0.5

0.5

0.
5

0.75

0.75

0.75

0.75

0.75

0.75

0.75

1

1
1

1

1.25

1.25
1.

25

1.5

1.5

1.
5

1.75

1.75

2

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

(a)

x
y

0.
25

0.25

0.25

0.25

0.25

0.25

0.25

0.
25

0.25

0.5

0.
5

0.5

0.5

0.5

0.5

0.5

0.5

0.75

0.75

0.75

0.75

0.75

0.
75

0.75

0.
75

1

1

1

1

1

1

1

1

1

1.25

1.
25

1.25

1.
25 1.25

1.25
1.25

1.
25

1.5

1.5

1.5

1.
5

1.
5

1.
5

1.75

1.75

1.75 2

2

-40 -30 -20 -10 0 10 20 30 40
-40

-30

-20

-10

0

10

20

30

40

(b)

Fig. 6.2. Numerical results with the natural boundary condition. (a) power contour, (b) cylinder
contour.

The circles in Figures 6.2(a)–(b) indicate the area of radius < 30mm that is actu-
ally used in making prescription lenses. We can see that the add-power of 2 diopters
is achieved and that both the power and the cylinder change smoothly through out
the lens. Moreover, there is a clear corridor connecting the far and near regions in the
cylinder. Note also that the maximum cylinder is about the same as the add-power,
which is typical in progressive lenses.

7. Discussions. In this first of a two-part paper, we have analyzed the varia-
tional problem of progressive lens design. The design problem consists of finding a
surface whose power distribution over a lens is close to a desired distribution, while
minimizing the astigmatism over a specific region. This is a nonlinear optimization
problem. We considered linearizations about a plane and a sphere. The resulting
equations in each case are fourth-order PDEs similar to those that describe defor-
mations of plates. We considered the existence and uniqueness of solutions under
various boundary conditions. For completeness, a numerical example is included,
which demonstrates the effectiveness of the methods.

In the second part of our work [11], we will address in detail the computational
issues arising in this design problem. The results from the present work will serve
to guide the design of accurate and convergent numerical methods for solving the
progressive lens design problem.
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Abstract. Acoustic scattering problems are considered when the material parameters (density
and speed of sound) are functions of position within a bounded region. An integro-differential
equation for the pressure in this region is obtained. It is proved that solving this equation is equivalent
to solving the scattering problem. Problems of this kind are often solved by regarding the effects of
the inhomogeneity as an unknown source term driving a Helmholtz equation, leading to an equation
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1. Introduction. Time-harmonic acoustic waves in an inhomogeneous com-
pressible fluid can be modelled using Bergmann’s equation (see (2.3) below). If the
waves are generated by a point source located at r′, the pressure at r, G(r; r′), satisfies

∇2G(r; r′) − ρ−1(grad ρ) · gradG(r; r′) + k2(r)G(r; r′) = δ(r − r′),(1.1)

where k2(r) = [ω/c(r)]2, ω is the frequency, c(r) is the speed of sound, and ρ(r) is the
density. (G is an exact Green’s function for the problem.) Equation (1.1) is supposed
to hold everywhere in space, and it is to be solved subject to a radiation condition at
infinity.

How does one solve (1.1)? According to a recent review article by Tourin, Fink,
and Derode [39], “the solution of (1.1) can be written as”

G(r; r′) = Ge(r; r
′) +

∫
Ge(r; r1)V (r1)G(r1; r

′) dr1,(1.2)

where the integration is over all of space, V is a “potential operator”, defined by

V (r) = k2
e − k2(r) + ρ−1(grad ρ(r)) · grad ,(1.3)

ke is the wavenumber for a related homogeneous medium, and Ge is the (known)
solution of the problem for that medium: Ge satisfies

∇2Ge(r; r1) + k2
eGe(r; r1) = δ(r − r1)(1.4)

and the radiation condition and is given explicitly by (3.1) below. Equation (1.2) is
not derived in [39] and no indication of its range of validity is given. In fact, as we
shall see, (1.2) is not valid when ρ(r) is discontinuous. (This is unfortunate, because
most of the applications in [39] are to arrays of discrete scatterers, such as steel rods
in water.)
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1.1. A formal derivation. Equations such as (1.1) are often treated by moving
all the complicated terms to the right-hand side where they are regarded as a forcing
term. Thus, write (1.1) as

∇2G(r; r′) + k2
e G(r; r′) = V (r)G(r; r′) + δ(r − r′).

Equation (1.2) then follows by noting that

u(r) =

∫
Ge(r; r

′) f(r′) dr′ solves (∇2 + k2
e )u = f.(1.5)

Formal derivations of this kind are often found in textbooks; see, for example, [9,
sect. 8.9.1] or [18, eqn. (21.37)]. The result (1.5) can be justified readily if one as-
sumes that f is (Hölder) continuous. However, for discrete scatterers, there will be
interfaces across which k(r) and the normal derivative of G, ∂G/∂n, will be discon-
tinuous (although G and ρ−1∂G/∂n are both continuous across such interfaces).

1.2. The present paper. The formal derivation in section 1.1 is incomplete.
It can be repaired so as to give the correct result. Thus, when considered as a
distribution, we have

V G = {V G} + [ρ] δ(S) (ρ−1∂G/∂n),

where {V G} denotes the value of V G anywhere but on the interfaces S and [ρ] denotes
the discontinuity in ρ across S [41, sect. 1.13]. Then, (1.5) suggests an additional term
on the right-hand side of (1.2), namely∫

S

Ge(r; rs) [ρ](rs)

(
1

ρ

∂G
∂n

)
(rs; r

′) ds(rs).(1.6)

In this paper, we shall derive an equation, similar to (1.2), that respects the
proper transmission conditions across interfaces: we do not use distribution theory.
We prove that solving this equation is equivalent to solving the transmission problem
for the acoustic pressure (Theorem 3.1).

We are mainly concerned with the following problem: acoustic scattering by a
bounded inhomogeneity embedded in an unbounded homogeneous medium. The den-
sity and sound-speed are assumed to be functions of position within the inhomogene-
ity, and they can be discontinuous across the interface between the inhomogeneity and
the surrounding fluid. Problems in which the inhomogeneity is spherically symmetric,
so that ρ and c are assumed to be given functions of the spherical polar coordinate r
(only), have been studied by several authors; see [28] for references.

The new equation is derived in section 3. It reduces to the well-known Lippmann–
Schwinger equation when the density in the inhomogeneity is constant and equal to
the density of the surrounding homogeneous fluid. It also reduces to the equation
derived formally above, namely (1.2), but only when there is no discontinuity in the
density across the boundary of the inhomogeneity. If there is such a discontinuity
(as is typical in applications), an extra term is needed; see (1.6) and (4.4) below.
Analogous scattering problems for electromagnetic waves and for elastic waves are
discussed briefly in sections 4.4 and 4.5, respectively.

2. Formulation. Consider the scattering of time-harmonic sound waves in a
homogeneous compressible fluid by an inhomogeneous obstacle. In the exterior fluid,
Be, we can write

pe = pinc + psc,(2.1)
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where pe is the (total) acoustic pressure, pinc is the given incident field, and psc is the
scattered field. The governing equation for psc is

(∇2 + k2
e )psc = 0 in Be,(2.2)

where ke = ω/ce is the wave number (assumed to be real and positive), ω is the
frequency, and ce is the constant speed of sound. We assume that the incident field
pinc satisfies (2.2) everywhere, except possibly at some places in Be (so that pinc could
correspond to a point source in Be, for example). We require that psc satisfies the
Sommerfeld radiation condition at infinity.

Within the obstacle, B, the governing equation is Bergmann’s equation ([3, 28]
and [29, p. 408])

ρi div
(
ρ−1
i grad pi

)
+ k2

i pi = 0 in B,(2.3)

where pi is the pressure and ki = ω/ci. The interior density ρi and speed of sound ci
can vary with position in B. At the interface S between B and Be, we have a pair of
transmission conditions, expressing continuity of pressure and normal velocity. These
are

pe = pi and
1

ρe

∂pe

∂n
=

1

ρi

∂pi

∂n
on S,(2.4)

where ρe is the (constant) density of the fluid in Be.
Summarizing, we have the following problem to solve.
Scattering Problem. Let pinc be a given incident field. Find a pair of functions,

{pe, pi}, where psc = pe − pinc satisfies (2.2) and the Sommerfeld radiation condition,
pi satisfies (2.3), and pe and pi satisfy the transmission conditions (2.4) across the
interface S.

Werner wrote an important paper on the Scattering Problem in 1963 [43]. He
reduced the problem to a system of coupled integral equations, using single-layer,
double-layer, and volume potentials; see Appendix A. Werner’s approach is an ex-
ample of an indirect method , meaning that the unknown quantities do not have any
physical relevance. He proved that the Scattering Problem has exactly one solution;
his uniqueness result is in [42]. However, as far as we know, his system of integral
equations has not been used in computations.

We shall use a direct method , meaning that the unknown quantity is recognized
as a physical variable, namely pi. Moreover, we shall use only volume potentials;
this is convenient from a computational point of view, because one does not have to
approximate a mixture of surface and volume contributions.

In solving the Scattering Problem, we seek classical solutions. We shall appeal
to Werner’s existence result, so we suppose that psc ∈ C2(Be) ∩ C1(Be) and pi ∈
C2(B) ∩ C1(B). We assume that ρi ∈ C2(B) and ci ∈ C1(B) are both positive.
Finally, we assume that S is smooth (C2). It is likely that these conditions can be
weakened; for example, Werner’s uniqueness theorem [42] requires that ρi and ci be
in Hölder spaces, with ρi ∈ C1,α(B) and ci ∈ C0,α(B).

Bergmann’s equation (2.3) can be written in other ways. One alternative is

∇2pi + ρi

(
grad ρ−1

i

) · grad pi + k2
eNpi = 0 in B,(2.5)

where N = (ki/ke)
2 = (ce/ci)

2 is the (square of the) refractive index. Another is

∇2pi + k2
epi = V pi in B,
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where (see (1.3))

V u = k2
e (1 −N)u + ρ−1

i (grad ρi) · gradu.(2.6)

Bergmann’s equation can also be reduced to an equation without first derivatives

by introducing a new dependent variable [3], u = piρ
−1/2
i : u is found to satisfy

∇2u + (k2
i + K)u = 0,(2.7)

where

K = 1
2ρ

−1
i ∇2ρi − 3

4ρ
−2
i |grad ρi|2(2.8)

= −ρ1/2
i ∇2

(
ρ
−1/2
i

)
.(2.9)

Equations (2.7) and (2.8) (but not (2.9)) can be found in [4, p. 171]. Equation (2.7)
can also be written as Schrödinger’s equation [32, eqn. (10.59)].

Much has been written on the case where ρi is constant, so that the second term
on the left-hand side of (2.5) can be deleted [12, Chap. 8]; see [23] for a review of
available point-source solutions (Green’s functions) for various functional forms of N .
Here, we do not make this assumption: we allow both ρi and N to vary with position.
Note that if the material in B is actually homogeneous, so that ρi and ki are both
constants, boundary integral equations over S can be used; see [20] for a review.

Kriegsmann and Reiss [22] have given long-wave approximations to the solution
of the Scattering Problem, assuming that ρi/ρe 
 1. Specifically, they take ρi/ρe =
1 + O(ε2) and kea = O(ε), where a is the diameter of B and 0 < ε � 1.

Colton and Monk [13] have reviewed progress with inverse problems for (2.3),
which they write as div

(
ρ−1
i grad pi

)
+k2

e Ñpi = 0, where Ñ = N/ρi. They also assume
that ρi is constant near S so that the ratio ρe/ρi occurring in (2.4)2 is constant; in
general, this need not be true.

2.1. Uniqueness. The Scattering Problem has at most one solution [42]. This
uniqueness theorem can be proved as follows. Set pinc ≡ 0 and then apply Green’s
theorem to pe and its complex conjugate, pe, in the exterior, giving

2ike lim
R→∞

∫
SR

|pe|2 ds +

∫
S

(
pe

∂pe

∂n
− pe

∂pe

∂n

)
ds = 0.(2.10)

Here, the unit normal to S, n, points out of B, SR is a large sphere of radius R that
encloses S, we have used the radiation condition, and we have assumed that ke is real.
Next, apply the divergence theorem in B to the vector field (pi/ρi) grad pi, giving∫

B

(|grad pi|2 − k2
i |pi|2

) dV
ρi

=

∫
S

pi

ρi

∂pi

∂n
ds,

where we have used (2.3). The imaginary part of this equation gives∫
S

(
pi
∂pi

∂n
− pi

∂pi

∂n

)
ds

ρi
=

∫
B

(
k2
i − k2

i

)
|pi|2 dV

ρi
.

Then, making use of the transmission conditions (2.4), (2.10) gives

ke lim
R→∞

∫
SR

|pe|2 ds + 2

∫
B

Re (ki) Im (ki) |pi|2 ρe

ρi
dV = 0.
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Rellich’s lemma [11, Lem. 3.11] then implies that pe ≡ 0 in Be, provided that

Re (ki) Im (ki) ≥ 0.

The transmission conditions then imply that pi = 0 and ∂pi/∂n = 0 on S. Thus, pi

solves the Cauchy problem for the elliptic partial differential equation (2.3), in which
the (positive) coefficients ρ−1

i and k2
i /ρi are C2 and C1, respectively. It follows that

pi ≡ 0 in B, as required. Here, we have used a unique continuation result due to
Müller [30] and Aronszajn [2]; see [21] for a brief review.

3. An integral representation and an integro-differential equation. We
shall consider integral representations obtained using the free-space Green’s function
for the exterior fluid,

Ge(P,Q) = − exp (ikeR)/(4πR),(3.1)

where P and Q are typical points in three-dimensional space and R = |rP − rQ| is
the distance between P and Q.

An application of Green’s second theorem in Be to psc and Ge gives∫
S

{
Ge(P, q)

∂psc

∂nq
− psc(q)

∂

∂nq
Ge(P, q)

}
dsq =

{
psc(P ), P ∈ Be,
0, P ∈ B.

A similar application in B to pinc and Ge gives∫
S

{
Ge(P, q)

∂pinc

∂nq
− pinc(q)

∂

∂nq
Ge(P, q)

}
dsq =

{
0, P ∈ Be,
−pinc(P ), P ∈ B.

Adding these gives∫
S

{
Ge(P, q)

ρe

ρi

∂pi

∂nq
− pi(q)

∂

∂nq
Ge(P, q)

}
dsq =

{
psc(P ), P ∈ Be,
−pinc(P ), P ∈ B,

(3.2)

where we have used (2.1) and the transmission conditions (2.4). The first of these
gives an integral representation for psc(P ) in terms of a distribution of sources and
dipoles over S. Such representations are common in scattering theory. However, it is
not very convenient here because we do not know pi or ∂pi/∂n on S.

To make progress, recall Green’s first theorem,∫
B

{
φ∇2ψ + (gradφ) · (gradψ)

}
dV =

∫
S

φ
∂ψ

∂n
ds,

where φ and ψ are sufficiently smooth in B. Choose φ(Q) = pi(Q) and ψ(Q) =
Ge(P,Q) with P ∈ Be, whence∫

S

pi(q)
∂

∂nq
Ge(P, q) dsq(3.3)

=

∫
B

{
(grad pi) · (gradQGe) − k2

epi(Q)Ge(P,Q)
}
dVQ,

where we have used (∇2 + k2
e )Ge(P,Q) = 0 for P �= Q. Similarly, if we choose

ψ(Q) = pi(Q) and φ(Q) = (ρe/ρi)Ge(P,Q) with P ∈ Be, we obtain∫
S

ρe

ρi

∂pi

∂nq
Ge(P, q) dsq(3.4)

=

∫
B

ρe

ρi

{
(grad pi) · (gradQGe) − k2

e N(Q) pi(Q)Ge(P,Q)
}
dVQ,
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where we have used (2.5). Subtracting (3.3) from (3.4) gives the left-hand side of
(3.2) for P ∈ Be, whence psc(P ) = (Lpi)(P ) for P ∈ Be, where

(Lv)(P ) =

∫
B

{
(α(Q) − 1) (grad v) · (gradQGe(P,Q))(3.5)

+ (1 −Nα) k2
e v(Q)Ge(P,Q)

}
dVQ

and

α(P ) = ρe/ρi(P ).

We repeat the calculations for P ∈ B, having excised a small sphere centered
at P . The singularity at P = Q has no effect on (3.4) but it causes −pi(P ) to be
added to the left-hand side of (3.3). Then, (3.2) for P ∈ B becomes

−pinc(P ) = −pi(P ) + (Lpi)(P ), P ∈ B.

At this stage, we have proved one half of the following theorem.
Theorem 3.1. Let the pair {pe, pi} solve the Scattering Problem. Then v(P ) ≡

pi(P ) ∈ C2(B) solves

v(P ) − (Lv)(P ) = pinc(P ), P ∈ B,(3.6)

where Lv is defined by (3.5). Conversely, let v solve (3.6). Then the pair {pe, pi},
defined by

pe(P ) = pinc(P ) + (Lv)(P ) for P ∈ Be(3.7)

and pi(P ) = v(P ) for P ∈ B solves the Scattering Problem.
Proof. We have to prove the second half of the theorem. From (3.7), we define

psc using

psc(P ) = (Lv)(P ), P ∈ Be;(3.8)

evidently, psc satisfies (2.2) and the Sommerfeld radiation condition, as it inherits
these properties from Ge.

Next, let us show that pi ≡ v satisfies (2.3). As pinc satisfies (2.2) in B, (3.6)
gives

(∇2 + k2
e )(v − Lv) = 0 in B.(3.9)

Now, from the definition (3.5), we have

(Lv)(P ) = − ∂

∂xPj

∫
B

(α− 1)
∂v

∂xQj
Ge(P,Q) dVQ(3.10)

+ k2
e

∫
B

(1 −Nα) v(Q)Ge(P,Q) dVQ,

where P ≡ (xP1 , x
P
2 , x

P
3 ), Q ≡ (xQ1 , x

Q
2 , x

Q
3 ), and summation over j is implied. The

second integral in (3.10) is an acoustic volume potential, and the first term is the sum
of three first derivatives of volume potentials. The properties of volume potentials are
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summarized in Appendix B. In particular, the result of applying (∇2 + k2
e ) is given

by (B.1), so that we obtain

(∇2 + k2
e )(Lv) = − ∂

∂xPj

{
(α− 1)

∂v

∂xPj

}
+ k2

e (1 −Nα) v(P )

= (∇2 + k2
e )v − ρe div

(
ρ−1
i grad v

)− k2
i (ρe/ρi)v, P ∈ B,

whence (3.9) gives the desired result.
To verify the transmission conditions, observe that (3.6) gives

pi(P ) − pinc(P ) = (Lv)(P ), P ∈ B.(3.11)

However, as Lv comprises a volume potential and first derivatives of volume potentials,
it follows that (Lv)(P ) is continuous as P crosses S (see Appendix B). Thus, (3.8)
and (3.11) show that the first transmission condition, (2.4)1, is satisfied.

For the second transmission condition, we take the normal derivative of (3.8) and
(3.11) to give

∂

∂n
{psc − (pi − pinc)} =

[
∂

∂n
Lv
]

on S,(3.12)

where [f ] is the discontinuity in f across S, defined by

[f(p)] = lim
Pe→p

f(Pe) − lim
P→p

f(P ), Pe ∈ Be, P ∈ B, p ∈ S.(3.13)

It is shown in Appendix B that[
∂

∂n
Lv
]

=

(
ρe

ρi
− 1

)
∂v

∂n
,(3.14)

and then (3.12) and v ≡ pi imply that (2.4)2 is satisfied. This completes the proof of
Theorem 3.1.

4. Discussion of the integro-differential equation (3.6).

4.1. Solvability. We have seen that solving the Scattering Problem is equiva-
lent to solving (3.6), which is an integro-differential equation for v(P ), P ∈ B. This
equation is uniquely solvable. To see this, we appeal to Werner’s existence result [43]:
the solution {pe, pi} of the Scattering Problem exists and, by the first half of Theo-
rem 3.1, pi solves (3.6). For uniqueness, suppose that v0(P ) solves (3.6) with pinc ≡ 0.
Construct pe = (Lv0)(P ) for P ∈ Be and pi = v0(P ) for P ∈ B. By the second half
of Theorem 3.1, these fields solve the homogeneous Scattering Problem; they must
vanish identically by the uniqueness theorem for the Scattering Problem (section 2.1).
In particular, v0(P ) ≡ 0 for P ∈ B, as required.

We note that an integro-differential equation equivalent to (3.6) was derived by
Gerjuoy and Saxon [15] in 1954. In fact, they derived a coupled system, involving the
pressure and the velocity, which they regarded as preferable to a single equation for
the pressure as they were motivated by a desire to obtain variational principles.

4.2. The Lippmann–Schwinger equation. As a special case of the Scattering
Problem, suppose that ρi(Q) = ρe for all Q ∈ B, so that the density of the scatterer is



304 P. A. MARTIN

the same as that of the surrounding homogeneous fluid. Then, the integro-differential
equation (3.6) reduces to the integral equation

v(P ) − k2
e

∫
B

{1 −N(Q)}v(Q)Ge(P,Q) dVQ = pinc(P ), P ∈ B,(4.1)

where N(Q) = (ki/ke)
2 = {ce/ci(Q)}2. This integral equation and its numerical

treatment have been discussed in [10, 5, 46, 8] and [9, sect. 8.9.1]
Let us define N(P ) = 1 for P ∈ Be and

w(P ) =

{
pe(P ), P ∈ Be,
pi(P ), P ∈ B.

Then, we can combine (4.1) with the representation (3.7) to obtain

w(P ) − k2
e

∫
{1 −N(Q)}w(Q)Ge(P,Q) dVQ = pinc(P )(4.2)

for all P ∈ B ∪ Be, where the integration is over all Q. We recognize this equation
as the Lippmann–Schwinger equation [24]; see, for example, [1], [12, sect. 8.2] [32,
sect. 10.3], and [35, Thm. 9.4]. Notice that our derivation shows that the Lippmann–
Schwinger equation is valid even when N(Q) is discontinuous as Q crosses S. This
fact is implicit in [34] and explicit in [44].

4.3. An alternative equation. As we know that v ≡ pi solves (2.5) in B, we
can use this fact to rewrite the expression for Lv. Thus

(α− 1) (grad v) · (gradQGe) = div {(α− 1)Ge grad v} −Ge div {(α− 1) grad v}
and

div {(α− 1) grad v} = (α− 1)∇2v + ρe

(
grad ρ−1

i

) · grad v

= (α− 1)
{∇2v + ρi

(
grad ρ−1

i

) · grad v
}

+ ρi

(
grad ρ−1

i

) · grad v

= (1 − α) k2
eNv − ρ−1

i (grad ρi) · grad v.

Hence, substituting in (3.5), we obtain

(Lv)(P ) =

∫
B

Ge(P,Q) (V v)(Q) dVQ + (LEv)(P ),

where V v is defined by (2.6) and

(LEv)(P ) =

∫
B

div {(α(Q) − 1)Ge grad v} dVQ(4.3)

=

∫
S

{α(q) − 1} Ge(P, q)
∂v

∂n
dsq,

by the divergence theorem. Thus, the Scattering Problem can be reduced to solving

pi(P ) = pinc(P ) +

∫
B

Ge(P,Q) (V pi)(Q) dVQ + pE(P ), P ∈ B,(4.4)

where

pE(P ) = (LEpi) (P ) =

∫
S

(
∂pe

∂n
− ∂pi

∂n

)
Ge(P, q) dsq

and we have used (2.4)2 in (4.3).
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When both ρi and N are constants, (4.4) reduces to an equation obtained pre-
viously by Ramm [37]. However, in this situation, the scatterer is homogeneous and
the problem can be reduced to boundary integral equations over S; see [20].

If we had attempted to solve the Scattering Problem using the formal method
described in section 1.1, we would have obtained precisely (4.4) but with pE(P ) ≡ 0.
In general, this extra term is not zero, and its magnitude is difficult to estimate.
Observe that, from (4.3), pE does vanish if ρi(q) = ρe for all q ∈ S, which means that
the density is continuous across S. Otherwise, the single-layer potential pE(P ) should
be retained.

4.4. Electromagnetic waves. For Maxwell’s equations, we can encounter ex-
actly the same difficulty as in acoustics. Thus, in an inhomogeneous medium, the
electric field E satisfies

µ curl
{
µ−1curlE

}− k2E = 0,

where µ(r) is the magnetic permeability, k(r) = ω
√
µε, and ε(r) is the electric per-

mittivity. Moreover, the transmission conditions across an interface S are that n×E
and n× (µ−1curlE) should both be continuous. (See, for example, [9, sect. 8.9.2]; for
existence and uniqueness theorems, see [31].) We can then mimic the derivations in
section 3 to show that discontinuities in µ across S will lead to an extra term similar
to pE in (4.4).

Specifically, we find the following electromagnetic analogue of (3.6):{
1 − 1

3

(
1 − εi(P )

εe

)}
Ei(P ) −

∫
B

W (P,Q) dVQ = Einc(P ), P ∈ B.(4.5)

Here, Ei is the field in B, Einc is the incident field, εe is the (constant) electric
permittivity in Be, and εi is the electric permittivity in B. The field W is defined by

W (P,Q) =

(
1 − µe

µi

)
(gradQGe) × curlEi(Q)

+

(
1 − εi

εe

){
k2
eGeEi − gradP (Ei · gradQGe)

}
,

where µe is the (constant) magnetic permeability in Be, µi is the magnetic perme-
ability in B, and ke = ω

√
µeεe. The integral in (4.5) is to be interpreted in the

Cauchy principal-value sense with a spherical exclusion volume. In the special case
that µi(Q) ≡ µe, (4.5) reduces to eqn. (2.1.41) in [40].

The electromagnetic analogue of (4.4) is

Ei(P ) = Einc(P ) +

∫
B

Ge(P,Q)V (Q) dVQ +

∫
S

F (P, q) dsq,(4.6)

where

V = (k2
e − k2

i )Ei − (µ−1
i gradµi) × curlEi + grad divEi,

F =

(
1 − εi

εe

)
(n ·Ei) gradq Ge

+

{(
1 − µe

µi

)
(n× curlEi) + n(ε−1

i grad εi) ·Ei

}
Ge,

and ki = ω
√
µiεi. Notice that F vanishes if εi(q) = εe, µi(q) = µe and εi(P ) is constant

near S. Also, in the special case that µi(Q) ≡ µe, (4.6) reduces to eqn. (4.18) in [36].
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4.5. Elastic waves. We can also consider analogous problems for elastic waves:
scattering of elastic waves in a homogeneous solid by an inhomogeneous (and aniso-
tropic) inclusion. It turns out that the formal method of section 1.1 (described in
detail in [33, 17]) and the method of section 3 yield exactly the same equation for the
displacement within the inclusion, u. This is because the “extra term” analogous to
pE involves the discontinuity in the traction vector across the interface: this is zero for
a perfect (welded) interface. (For imperfect interfaces [27], a nonzero contribution is
obtained.) Some applications of the volume equation for u can be found in [38, 6, 7]. A
polarization approach (leading to a coupled system) has been developed by Willis [45].
Long-wave approximations can be found in [45, 38].

Appendix A. Werner’s solution. Werner [43] proved an existence theorem
for a problem that is very similar to our Scattering Problem: he considered inhomo-
geneous forms of (2.2) and (2.3) but supposed that pinc ≡ 0. His method leads to the
following integral representations:

psc(P ) = −
∫
S

{
α(q)µ(q)Ge(P, q) − ν(q)

∂

∂nq
Ge(P, q)

}
dsq, P ∈ Be,

pi(P ) =

∫
S

{
µGe(P, q) − ν

∂

∂nq
Ge(P, q)

}
dsq +

∫
B

ϕ(Q)Ge(P,Q) dVQ, P ∈ B.

The two surface densities, µ(q) and ν(q), and the volume density, ϕ(Q), satisfy the
following system of integral equations:

ν(p) +

∫
S

µ(q) {1 − α(q)}Ge(p, q) dsq +

∫
B

ϕ(Q)Ge(p,Q) dVQ = −pinc,(A.1)

1 + α

2
µ +

∫
S

µ(1 − α)
∂

∂np
Ge(p, q) dsq +

∫
B

ϕ
∂

∂np
Ge(p,Q) dVQ = −∂pinc

∂np
,(A.2)

ϕ +

∫
S

VP

{
µGe(P, q) − ν

∂Ge

∂nq

}
dsq −

∫
B

ϕ (VPGe(P,Q)) dVQ = 0.(A.3)

Equations (A.1) and (A.2) hold for p ∈ S, whereas (A.3) holds for P ∈ B. VP denotes
the operator V (defined by (2.6)) applied with respect to P .

Werner’s proof [43] can be adapted to show that the system (A.1)–(A.3) is
uniquely solvable.

Appendix B. Volume potentials. Define a volume potential W (P ) by

W (P ) =

∫
B

ϕ(Q)Ge(P,Q) dVQ,

where Ge(P,Q) = − exp (ikeR)/(4πR). The properties of such potentials are similar
to those of Newtonian potentials for which ke = 0: thus, define

W0(P ) = − 1

4π

∫
B

ϕ(Q)

R
dVQ.

From [12, sect. 8.2], we have

(∇2 + k2
e )W =

{
0, P ∈ Be,
ϕ(P ), P ∈ B,

(B.1)

where Be is the region exterior to B. Also, if ϕ is piecewise continuous, then W (P )
and its first partial derivatives are continuous everywhere in three-dimensional space;
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see, for example, [19, Chapter VI, sect. 3], [14, Chapter IV, sect. 1.2], [41, sect. 3.9],
[12, Thm. 8.1], and [16, sect. 4.2].

We also require the behavior of the second derivatives of W near the boundary
of B, S. As Kellogg remarks [19, p. 156], “in general, the derivatives of second order
will not exist. It is clear that they cannot all be continuous, for as we pass from an
exterior to an interior point through the boundary where ϕ is not 0, ∇2W0 experiences
a break of ϕ.” This discontinuous behavior is described in [25, p. 175] and [26, p. 125]:[

∂2

∂n ∂xPi
W0(P )

]
= −ϕ(p)ni(p), p ∈ S.

The same formula holds for W because the difference, W−W0, is less singular. Finally,
the result (3.14) is obtained from (3.10), using ϕ(Q) = (1 − α)∂v/∂xQi . Note that
the second term in (3.10) is a volume potential: it does not contribute as its first
derivatives are continuous across S.
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Abstract. This paper examines the postulate of local isotropy in stratified homogeneous turbu-
lence from a theoretical point of view. The study is based on a priori analysis of the evolution equa-
tions governing single-point turbulence statistics that are formally consistent with the Navier–Stokes
equations. The Boussinesq approximation has been utilized to account for the effect of buoyancy—a
simplifying assumption which constitutes an excellent approximation for the case considered here.
The study concludes that the hypothesis of local isotropy is formally inconsistent with the Navier–
Stokes equations in homogeneous stratified turbulence. An estimate is provided that suggests that
local isotropy may constitute only a physically justifiable approximation in the limit of a clear-cut
separation between the time scales associated with the imposed buoyancy and the turbulent eddy
turnover time scale. This is unlikely to happen in most flows, at least those not too far from equi-
librium. The results also suggest that the dynamical dependence of the small-scale turbulence on
large-scale anisotropies associated with imposed density stratification is significantly stronger than
that caused by an imposed mean straining.

Key words. local isotropy, homogeneous turbulence, single-point correlation, density stratifi-
cation, shear turbulence
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DOI. 10.1137/S0036139903421559

1. Introduction. It is well established that the imposition of density stratifica-
tion and mean straining significantly promotes anisotropy on the energetic large-scale
turbulence motion. It is frequently also argued that the small-scale motion would
remain virtually unaffected by the large-scale anisotropy at sufficiently high Reynolds
number (Re). This view inherently assumes that any direct effects of the large-scale
motion on the smallest scales would be negligible at high enough Re and that large-
scale anisotropies would not mediate across the spectral gap fast enough to overcome
the nonlinear scrambling of the cascade process. Small-scale turbulence is therefore
expected to be statistically independent of the large-scale motion at sufficiently high
Re. This is essentially the postulate of local isotropy put forward by Kolmogorov [6]
more than 70 years ago, a postulate that has been enormously influential in turbulence
research.

The conjecture of locally isotropic turbulence is sometimes also based on the
notion of a clear-cut separation of characteristic time scales; since the limiting behavior
of the small-to-large-scale time scale ratio asymptotes to τ/T ∼ Re−1/2 → 0 as
Re → ∞, it is believed that small-scale turbulence would have sufficiently long time
to interact with itself and to establish a state of directional independence, or local
isotropy.

The terminology “local isotropy” alludes to statistical isotropy of the smallest,
dissipative scales of motion, i.e., scales much smaller than the energetic large-scale
motion. Mathematically, “isotropy” implies that any statistical measure must display
invariance to arbitrary reflections and rotations. Local isotropy is, however, not only
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a concept of theoretical interest. It is in fact widely used, for instance, by experi-
mentalists to infer the rate of viscous dissipation of turbulent kinetic energy (formally
defined as ε ≡ 2νs′ijs

′
ij) by only conducting measurements of one of the six inde-

pendent components of the fluctuating rate-of-strain tensor s′ij (defined in (2.8)). In
particular, by imposing the assumption of local isotropy, the number of derivative
correlations that must be determined can be reduced from twelve to just a single one,
e.g., ε ∼ (∂1u1)2; see, e.g., [5].

There exist several hundred articles and papers on the concept of locally isotropic
turbulence. Among the pioneering ones are those due to Kolmogorov [6] and Obukhov
[10], to mention only a few. Monin and Yaglom [8] provide an extensive review on
the early developments of the topic, whereas more recent reviews are provided by
Nelkin [9], Frisch [3], Sreenivasan and Antonia [14], and Warhaft [20]. Among the
many studies there are a growing number of theoretical, experimental, and numerical
investigations that suggest that the concept of local isotropy is somewhat dubious.
Townsend [17] and Uberoi [18] were probably among the first to suggest that there
exists a direct effect of large-scale anisotropy on the dissipative scales of motion,
in addition to the indirect influence through the cascading process. This view was
supported by, e.g., Durbin and Speziale [2] who demonstrated that, as a formally
consistent consequence of the Navier–Stokes equations, there must indeed exist a
direct effect of mean straining on the dissipative scales. They concluded that local
isotropy is a physically implausible argument in turbulence affected by mean straining.

Brasseur and Wei [1] and Yeung, Brasseur, and Wang [22] conducted numerical
studies of the triadic interactions in forced turbulence. These studies demonstrated
that triadic interactions between widely disparate scales directly modified the struc-
ture of the smallest scales in accordance with the structure of the large energetic ones.
Experimental results in uniform turbulent shear flow [12] also imply a direct coupling
between the large- and small-scales in strained turbulence. They further concluded,
fully in line with Durbin and Speziale [2], that the hypothesis of local isotropy in
isothermal turbulent shear flows seems untenable even in the limit of infinite Re.

Sreenivasan [13] reviewed experimental work on local isotropy of passive scalar
fields and suggested that local isotropy is not a natural concept for scalar fields in
shear flows, except perhaps for such extreme Re that are of no practical use on earth.
Van Atta [19] analyzed experimental data in stably stratified turbulence and noted
that the effects are surprisingly rapid, destroying the directional independence of the
smallest scales as soon as buoyancy forces become dynamically important. This was
essentially confirmed by the enormous numerical simulations of Werne and Fritts [21]
who studied a stratified shear layer. They found that turbulence affected by mean
straining tends to develop a state of local streamwise axisymmetry, as opposed to local
isotropy. The concept of locally axisymmetric turbulence in strained homogeneous
flows has been theoretically and experimentally considered by George and Hussain [5]
who concluded that a theory of local axisymmetry provides more credibility to the
numerous measurements that have failed to confirm local isotropy. These findings,
along with many more not mentioned here, add to the body of literature that sheds
new light on the concept of locally isotropic turbulence.

The present study examines local isotropy from a theoretical point of view. It
extends the approach suggested in [2] to homogeneous flows affected by both density
stratification and mean straining. The methodology is based on an examination of
the dynamical equations governing single-point turbulence correlations that are char-
acteristic of small-scale turbulence; these equations are formally consistent with the
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Navier–Stokes equations. The objective of the study is to provide insight into whether
or not the hypothesis of local isotropy is a formally consistent concept in stratified
flows, and if not, to provide also an estimate of under what circumstances it would
constitute a physically plausible approximation. The practical implications are re-
lated to the development of semiempirical models intended to describe the statistical
coupling between large- and small-scale turbulence; a development which is crucial
for improved turbulence model formulations.

2. The evolution of single-point turbulence statistics. The present analy-
sis is based on the incompressible Navier–Stokes equations in the limit of homogeneous
turbulence and to cases where the Boussinesq approximation constitutes a reasonable
assumption. The latter assumption is not believed to be a severe limitation in the
present context; the Boussinesq approximation represents a first-order perturbation
of the fluid density. In cases where this approximation fails, an even stronger effect
of buoyancy is expected.

Single-point turbulence statistics allude to correlations of fluctuating quantities
evaluated at the same position in space and time. Dynamical equations governing
these statistics can be rigorously derived from the conservation equations for mass,
momentum (Navier–Stokes), and energy:

∂iũi = 0,(2.1)

∂tũi + ũk∂kũi = −∂ip̃+ ν∇2ũi +
ρ

ρ0
gi,(2.2)

∂tθ̃ + ũk∂kθ̃ = κ∇2θ̃ + 2
ν

cv
s̃ij s̃ij .(2.3)

Repeated indices imply summation, e.g., ũk∂kθ̃ = ũ1∂1θ̃+ ũ2∂2θ̃+ ũ3∂3θ̃. The super-
script˜denotes instantaneous quantities, the subscript 0 denotes a constant reference
state, and s̃ij ≡ 1

2 (∂iũj + ∂j ũi) is the instantaneous rate-of-strain tensor. Spatial
and temporal differentiation are denoted ∂m ≡ ∂/∂xm and ∂t ≡ ∂/∂t, respectively,
and ∇2 = ∂2

mm ≡ ∂2/(∂xm∂xm). Here, ν = µ/ρ0 is the kinematic viscosity and
κ = α/(ρ0cv) the thermal diffusivity, where µ, α, and cv denote the dynamic vis-
cosity, thermal conductivity, and specific heat, respectively. g is the gravitational
acceleration. According to the Boussinesq approximation, the density ratio ρ/ρ0 in
(2.2) varies according to

ρ

ρ0
= 1− β(θ̃ −Θ0),(2.4)

where β ≡ [−∂log(ρ)/∂θ]Θ defines the thermal expansion coefficient at fixed mean
temperature Θ(x, t).

Equations governing fluctuating quantities can systematically be derived using
the following procedure:

1. Decompose the instantaneous velocity, pressure, and temperature fields into
mean and fluctuating parts, i.e., ã(x, t) = A(x, t) + a(x, t).

2. Average to obtain the dynamical equation for the mean field; A(x, t) ≡
ã(x, t), since a(x, t) ≡ 0 by definition.

3. Obtain the evolution equations for the fluctuating fields a(x, t) by subtracting
2 from 1.
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Using this procedure, the evolution of the ith component of the fluctuating ve-
locity ui(x, t) for an incompressible fluid can then be written as

∂tui + Uk∂kui + uk∂kUi + uk∂kui + uk∂kui = − 1

ρ0
∂ip+ ν∇2ui − βgiθ,(2.5)

∂iui = 0.(2.6)

Here, U(x, t) denotes the mean velocity field and θ(x, t) is the fluctuating temper-
ature field. The corresponding dynamical equation governing the evolution of the
fluctuating temperature field θ(x, t) reads as follows:

∂tθ + Um∂mθ = −um∂mΘ− um∂mθ + κ∇2θ + 4
ν

cv
Sijs

′
ij

+ 2
ν

cv

(
s′ijs

′
ij − s′ijs′ij

)
.(2.7)

Here,

s′ij =
1

2
(∂iuj + ∂jui)(2.8)

and

Sij =
1

2
(∂iUj + ∂jUi)(2.9)

denote the fluctuating and mean rate-of-strain tensor, respectively.
Transport equations governing suitable turbulence correlation can now be con-

structed from (2.5)–(2.7), and the results are formally consistent with the incom-
pressible Navier–Stokes equations in the limit of the Boussinesq approximation. The
assumption of homogeneity constitutes the only additional simplification and it implies
that statistical measures of the flow must be translational invariant, i.e., single-point
correlations are spatially constant.

The fluctuating pressure field p(x, t) in (2.5) is the solution to a Poisson equation
which can be obtained by taking the divergence of (2.5). Invoking the incompressibil-
ity and homogeneity constraints then gives

∇2p = −ρ0∂iuk∂kui − 2ρ0∂kui∂iUk − ρ0βgi∂iθ,(2.10)

which represents nonlocal effects on single-point statistics.1 The fluctuating momen-
tum and temperature equations, (2.5) and (2.7), can symbolically be written in op-
erator form as Rui = 0 and Rθ = 0, respectively. The transport equation governing
the second-order moments, τij = τ ′ij ≡ uiuj , is readily obtained by multiplying (2.5)
by uj , adding the result to itself with i and j interchanged, and finally averaging.
This can symbolically be written as ujRui + uiRuj = 0. The result for homogeneous
turbulence reads

dtτij = − 1

ρ0

(
uj∂ip+ ui∂jp

)− (τik∂kUj + τjk∂kUi)
− εij − β

(
giujθ + gjuiθ

)
,(2.11)

1It is interesting to note that the solution of (2.10) shows that the evolution of single-point mo-
ments implicitly depends on two-point correlations, i.e., correlations of velocity components evaluated
at different position in space; see, e.g., Rotta [11] for more details.
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where dt ≡ d/dt is the local time derivative. Recall that all spatial derivatives of
turbulence correlations are zero in homogeneous turbulence. The second-order viscous
dissipation rate tensor is given by

εij = 2νε′ij ≡ 2ν∂mui∂muj .(2.12)

The evolution equation governing the turbulent kinetic energy, k ≡ 1
2τii, is obtained

by taking the trace of (2.11) and multiplying by 1
2 :

dtk = −τik∂kUi − ε− 1

2
βgiuiθ,(2.13)

where ε ≡ 1
2εii is the rate of turbulent energy dissipation.

By first writing (2.11) as Rτ ′ij = 0, the corresponding transport equation for the
third-order moments, τijk ≡ τ ′ijk ≡ uiujuk, can then be derived as ukRτ ′ij + τ ′ijRuk =
0. The result can be written as

dtτijk = − 1

ρ0

(
τ ′ij∂kp+ τ

′
ik∂jp+ τ

′
jk∂ip

)
− (τmij∂mUk + τmik∂mUj + τmjk∂mUi)

− εijk − β
(
gkτ ′ijθ + gjτ

′
ikθ + giτ

′
jkθ
)
,(2.14)

where

εijk ≡ 2ν
(
uiε′jk + ujε

′
ik + ukε

′
ij

)
(2.15)

denotes the third-order viscous dissipation rate tensor.
The equation governing the transport of turbulent heat flux (uiθ) can readily be

derived as θRui + uiRθ = 0:

dtuiθ = − 1

ρ0
θ∂ip+ Piθ − εiθ − βgiθ2 + 4 ν

cv
Skjuis′kj + 2

ν

cv
uis′kjs

′
kj ,(2.16)

where

εiθ ≡ (κ+ ν) ∂mθ∂mui(2.17)

and

Piθ = − (umθ∂mUi + τmi∂mΘ)(2.18)

represent the rate of dissipation and production of turbulent heat flux, respectively.
To this end the dynamical equations governing the turbulent heat flux (uiθ) and

second- and third-order velocity-moments (τij and τijk) have been derived. This
rather limited choice of basic single-point correlations suffices to assess the validity
of the local isotropy postulate in stratified turbulence and to provide an estimate of
when this hypothesis may constitute a physically plausible approximation. It should
be noted, however, that the above-mentioned correlations are characteristic for the
large-scale energetic part of the turbulence spectrum. In order to study the dynamics
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of the dissipative scales, on the other hand, correlations characteristic for these scales
must be considered. In particular, the dynamical equations governing the dissipation
rate tensors εij , εijk, and εiθ appear in (2.11), (2.14), and (2.16), respectively. These
tensors comprise correlations between fluctuating gradients and characterize therefore
the high wave-number part in spectral space or the small scales in physical space.

The transport equation for dissipation rate εiθ of turbulent heat flux can be
derived as (κ + ν)∂mθ∂m(Rui) + (κ + ν)∂mui∂m(Rθ) = 0, and the result can be
written as

dtεiθ = −εkθ∂kUi − 2Emkθi∂mUk + 4 ν
cv
SkjJikj

− 1

2

(
1 + Pr−1

)
εik∂kΘ− 1

2
β (1 + Pr) giεθ + Fiθ(2.19)

for homogeneous turbulence, where Pr ≡ ν/κ is the Prandtl number, Emkθi =
∂mθ∂kui, and Jikj = ∂mui∂ms′kj . The dissipation rate of temperature variance θ2
is defined as

εθ ≡ 2κ∂mθ∂mθ,(2.20)

whereas the last term in (2.19) is

Fiθ = −κ+ ν
ρ0

∂iθ∇2p+ (κ+ ν)
(
un∂nui∇2θ + un∂nθ∇2ui

)

+(κ+ ν)
2 ∇2θ∇2ui + 2

ν

cv
∂mui∂m(s′kjs

′
kj).(2.21)

The evolution equation for εij is derived as Rεij = 2ν[ui∂m(Ruj)+uj∂m(Rui)] =
0 and the result reads

dtεij = Hij − 2Emkij∂mUk − (εjk∂kUi + εik∂kUj)− β
(
giε′jθ + gjε

′
iθ

)
,(2.22)

where Eijkm ≡ 2ν∂iuk∂jum and

Hij = −4ν2∂2
mkui∂

2
mkuj − 2ν

(
ε′jk∂kui + ε

′
ik∂kuj

)

− 2ν

ρ0
(∂jui + ∂iuj)∇2p.(2.23)

The corresponding evolution equation for third-order dissipation rate tensor εijk,

(2.15), is obtained asRεijk = 2ν(Lkij+Ljik+Lijk) = 0, where Lkij = (ukRε′ij + ε′ijRuk).
After some algebra, the final result can be symbolically written as

dtεijk = Pijk + Uijk + Gijk +Nijk,(2.24)

where

Pijk = Pijk + Pjik + Pkij ,(2.25)

Uijk = Uijk + Ujik + Ukij ,(2.26)

Gijk = Gijk +Gjik +Gkij ,(2.27)

Nijk = Nijk +Njik +Nkij(2.28)
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and

Pkij = −2ν
ρ0

(
(ui∇2uj + uj∇2ui)∂kp

)
− 2ν

ρ0

(
(ui∇2uk + uk∇2ui)∂jp

)
− 2ν

ρ0

(
(uk∇2uj + uj∇2uk)∂ip

)
− 4ν

ρ0
(∂i(ujuk) + ∂j(uiuk) + ∂k(uiuj))∇2p,(2.29)

Ukij = −2ν
(
uk (∂mui∂nuj + ∂mui∂nuj)

)
∂mUn

− εnij∂nUk − εknj∂nUi − εkin∂nUj ,(2.30)

Gkij = −2νβ
(
giukε′jθ + ukε

′
iθ + uiε

′
jθ

)
,(2.31)

Nkij = 2ν
(
uk∂mun (∂nui∂muj + ∂nuj∂mui)− un∂nuk∂mui∂muj

)
− 2ν2

(
∂mui∂muj∇2uk + ∂muk (∂muj∇2ui + ∂mui∇2uj)

)
− 4ν2uk∇2ui∇2uj .(2.32)

It follows directly from (2.29)–(2.32) that Pkij = Pkji, Ukij = Ukji, Gkij = Gkji, and
Nkij = Nkji. Consequently, Pijk, Uijk, Gijk, and Nijk are symmetric for any permu-
tation of indices; see (2.28). This property is obviously required by the definition of
εijk (2.15).

3. Imposing local isotropy a priori. The theory of isotropic turbulence is
essentially based on the fact that all statistical measures of the flow must display
invariance to arbitrary reflections and rotations. The properties of isotropic tensors
can here be put to good use in order to establish whether the postulate is formally
consistent with the Navier–Stokes equations. This methodology was first used by
Durbin and Speziale [2], where it was applied to the second-order dissipation rate
equations (2.12) to investigate the impact of mean straining on the small scales. The
objective here is not only to elucidate the impact of density stratification on small-
scale turbulence, but also to relate it to the impact of mean straining.

It is well known that, at any given order, a general isotropic tensor can be written
as a linear combination of a set of linearly independent isotropic tensors. The number
of independent isotropic tensors depends on the order of the tensor itself. Here, we
will consider tensors up to fourth rank. The most general isotropic forms of any first-,
second-, third-, and fourth-order isotropic tensor2 can be written as

Xi = 0,(3.1)

Xij = α0δij ,(3.2)

Xijk = α1εijk = 0,(3.3)

Xijkl = α2δijδkl + α3δikδjl + α4δilδjk,(3.4)

2These are not specific to turbulence correlation tensors, but generally valid for first- through
fourth-order tensors.
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where the fundamental isotropic tensor of rank 2 is the Kronecker delta,

δij =

{
1 if i = j,
0 otherwise,

(3.5)

and of rank 3 is the Levi–Civita alternating tensor,

εijk =




1 if ijk is from the sequence 12312,
−1 if ijk is from the sequence 32132,
0 otherwise.

(3.6)

As already alluded to, the implications of the small-scale isotropy postulate can be
elucidated by writing the evolution equations (2.12), (2.15), and (2.19) in their most
general isotropic forms using (3.1)–(3.4).

3.1. First-order velocity-temperature correlations. Let us first consider
the equation governing the dissipation rate of turbulent heat flux. The isotropic form
of (2.19) is obtained by substituting

εISOiθ = 0,(3.7)

FISO
iθ = 0,(3.8)

εISOik =
1

3
εmmδik,(3.9)

EISOkmθi ∼ εkmi = 0,(3.10)

J ISO
ikj ∼ εikj = 0,(3.11)

which follows from (3.1)–(3.4). The last two results follow from the symmetry prop-
erties Ekmθi = Emkθi and Jikj = Jijk, where the former only applies to homogeneous
turbulence. The isotropic form of (2.19) then becomes

0 = −2
3
ε∂iΘ− εθgiβPr,(3.12)

where ε ≡ 1
2εmm is the dissipation rate of turbulent kinetic energy. According to

(3.12), isotropy would first require that the gravitation (gi) must act in the direction
of the mean temperature gradient ∂iΘ, which obviously not is generally true. Second,
if the direction of the gravitational acceleration happens to coincide with the mean
temperature gradient, e.g., i = 2, the resulting relationship 2ε∂2Θ = −3εθβg2Pr
seems far too stringent to be generally true. The implication of local isotropy, i.e., that
εiθ = 0, is therefore formally inconsistent with the Navier–Stokes equations. In fact, a
closer examination of the evolution equation governing the third-order “generalized”
dissipation tensor Ekmθi yields the following additional constraints: ε∂iΘ = 0 if m �=
k = i. For m = k �= i, (3.12) is recovered. The terminology “generalized” alludes to
the relation (κ + ν)Emmθi ≡ εiθ. Another interesting observation that can be made
from (2.19) is that mean straining does not formally conflict with the assumption of
local isotropy on this particular level of velocity-temperature correlation.

3.2. Second-order velocity-moments. Local isotropy on the second-order
moment level requires (2.22) to balance in the isotropic limit (3.4). The terms in (2.22)
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are replaced by their most general isotropic counterparts, and the result is

εISOiθ = 0,(3.13)

εISOij =
2

3
εδij ,(3.14)

HISO
ij =

1

3
Hmmδij =

2

3
Hδij ,(3.15)

EISOmkij = ε (α2δijδkl + α3δikδjl + α4δilδjk) ,(3.16)

where the coefficients α2 − α4 are determined by imposing (i) homogeneity (Emkij =
Ekmij), (ii) continuity (Emkmj = 0), and (iii) the definition Emmij = 2ε. These
constraints yield α1 = 4/15, α2 = −1/15 = α3. The resulting isotropic form of (2.12)
can then be written as

dtεδij = Hδij − 2

5
εSij ,(3.17)

where H ≡ 1
2Hmm. This is the equation derived by Durbin and Speziale [2] which

proves that the assumption of local isotropy is formally inconsistent with the Navier–
Stokes equation on the second-order moment level when mean straining is imposed,
i.e., when i �= j. Clearly, the imposition of buoyancy does not render the local
isotropy assumption formally invalid on the second-order velocity-moment level. It
should further be noted that the implicit dependence on the stratification contained
in the fluctuating pressure term in (2.23) does not contribute to the scalar H in
incompressible flows.

Based on the theoretical arguments in the previous section, εISOiθ �= 0 in general.
If we retain εISOiθ �= 0 and the assumption of local isotropy for rank 2 tensors, however,
(3.17) becomes

dtεδij = Hδij − 2

5
εSij − 3

2
β (giεjθ + gjεiθ)︸ ︷︷ ︸

Bij

.(3.18)

Equation (3.18) then provides us with another fact that strongly supports our as-
sumption that εISOiθ �= 0 should be true; it implies that the rate of decay of ε, in
the absence of mean shear (Sij = 0), should be unaffected by any imposed density
stratification if the small-scale turbulence were truly isotropic. However, there is no
numerical or experimental evidence that this should be the case! On the contrary, it
has been observed that even the slightest effect of buoyancy significantly alters the
evolution of ε (dtε); see, e.g., Thoroddsen and Van Atta [16].

In order to provide an estimate of the nonlinear term H in (3.18), let us consider
decaying grid turbulence unaffected by mean straining and stratification. The evolu-
tion equation for the turbulent time scale k/ε is readily obtained by combining (2.13)
and (3.17). The results reads

dt

(
k

ε

)
= −

(
1 +

k

ε2
H
)
.(3.19)

There exists experimental evidence that grid-generated turbulent kinetic energy ex-
hibits a power-law decay, i.e., k ∼ t−n, where the decay exponent is n ≈ 1.3 in a
large number of measurements reported in the literature; cf., e.g., [7]. The value
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Fig. 3.1. Homogeneous shear flow.

of the decay exponent is reported to increase to n ≈ 5/2 in the final period of de-
cay. The power-law behavior of k requires ε ∼ t−(n+1), and henceforth k/ε ∼ t and
dt(k/ε) ∼ O(1). With this, equation (3.19) provides the estimate

H = O
(
ε2

k

)
,(3.20)

which is widely used, almost without exception, by turbulence modelers.
Let us now consider homogeneous shear flow with ∂yU = S > 0, ∂yΘ = C > 0,

and g = [0,−g, 0]; see Figure 3.1. The assumption of local isotropy, in terms of an
imposed density stratification, would then be a formally justified approximation if we
can neglect B as compared to H in (3.18), i.e., if ||B|| � ||H|| or equivalently if

kC � |Rigε2θ|
(Sk
ε

)2

(3.21)

by using the estimate (3.20). The gradient Richardson number Rig ≡ N 2/S2, and
N 2 ≡ βgC is the Brunt–Väisala frequency. If we consider a flow close to equilibrium,
it is reasonable to assume that P2θ/ε2θ = O(1) in (2.16), where P2θ ≡ −τ22C = − 2

3kC.
The last equality is obtained by substituting the isotropic value τ22 =

2
3k. Equation

(3.21) can then be written as

|Rig| =
∣∣∣∣N 2

S2

∣∣∣∣� ( ε
Sk
)2

= O(0.1).(3.22)

The right-hand side of (3.22) has been evaluated using Sk/ε ∼ 6, which typically
is reached in physical and numerical experiments of homogeneous shear flows near
equilibrium [15]. The constraint (3.22) thus implies that local isotropy constitutes
a justifiable approximation only at very small Richardson numbers, in fact, so small
that buoyancy effect cannot essentially be present in practice. The inequality also
suggests that the imposition of density stratification exerts a significantly stronger
effect on the dissipative scales than an imposed mean straining.
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Durbin and Speziale [2] further demonstrated, in the absence of density stratifi-
cation, that

Sk
ε

� O(1)(3.23)

is a necessary condition for local isotropy to constitute a formally justified approxi-
mation in the absence of density stratification. This relation is readily obtained by
requiring ||H|| � ||εS|| in (3.17). Using this and (3.22) yields the combined constraint∣∣∣∣N 2k2

ε2

∣∣∣∣� S2k2

ε2
� O(1).(3.24)

This result implies that the time scales associated with buoyancy and mean shear
must be much larger than the integral turbulent time scale in order for the local
isotropy hypothesis to constitute a formally justified approximation. In the absence
of mean straining, the magnitude of the Brunt–Väisala frequency is thus required to
be much smaller than that of the integral scale turbulent frequency in order for the
hypothesis to constitute a physically plausible approximation. This is not feasible in
homogeneous flows, at least for flows relatively close to equilibrium.

We can also recast (3.22) in terms of the buoyancy and shear Reynolds numbers
frequently used in the literature,

ReB =
∣∣∣ ε
νN2

∣∣∣ = ε

ν|βgC| and ReS =
ε

νS2
,(3.25)

by noting that Rig = ReS/ReB . The result (3.24) can then be written as

1

ReB
� 1

ReS
� 1

Re
,(3.26)

where Re ≡ k2/(εν) is the integral scale turbulent Re.

3.3. Third-order velocity-moments. Let us finally focus our attention on the
evolution of the third-order dissipation rate tensor (εijk). If small-scale turbulence
on the third-order velocity-moment level were truly isotropic, the evolution equation
(2.15) must be fully consistent with the mathematical properties (3.4). The terms
Pijk, Uijk, and Nijk are all third-rank tensors of the fluctuating velocity field. Since
these terms must be symmetric for any permutation of indices, it follows from (3.6)
that

εISOijk = PISOijk = UISOijk = N ISO
ijk = 0 ∀ i, j, k.(3.27)

The term Gijk ∼ gidjθk differs from the other terms in (2.24) in that it only com-
promises a second-rank tensor of fluctuating quantities, i.e., djθk. The most general
isotropic form of djθk can then be written as

dISOjθk =
1

3
umε′mθδjk �= 0,(3.28)

according to (3.2). The result on the third-order velocity-moment level shows that
the assumption of local isotropy is formally consistent with Navier–Stokes equations
on the third-moment level if and only if umε′mθ ≡ 0. This requirement is, on the other
hand, generally not fulfilled.
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4. Concluding remarks. The present study has demonstrated that the hy-
pothesis of local isotropy is formally inconsistent with the Navier–Stokes equations in
homogeneous stratified turbulence, irrespective of whether the stratification is stable
or not. The imposition of a mean temperature gradient is shown to essentially affect
the small-scale turbulence in the same manner as an imposed mean shear, but with a
significantly stronger impact.

George [4] has suggested, based on experimental findings, that the small-scale
motion remains closely linked to the large-scale coherent motion. Anisotropies of the
large scales would thus be reflected over the entire spectral range. These findings are
consistent with the results presented herein.

The outcome of the present analysis is also very similar to the findings of Yeung,
Brasseur, and Wang [22], although their approach is rather different. They considered
the effect of anisotropic large-scale turbulence on the small-scale anisotropy, whereas
the present study focuses on the imposition mean-flow anisotropy. Despite this differ-
ence, both cases reach the same conclusion, namely, that the imposition of large-scale
anisotropy, be it related to turbulence or the mean flow, does not show up on all levels
of small-scale velocity-moments.

In particular, density stratification does not formally conflict with the local isotropy
hypothesis on the second-order level, whereas it shows up for the first- and third-order
correlations examined here. Similarly, mean shear does not formally conflict with the
isotropy assumption on the first- and third-order levels, whereas it is formally incon-
sistent on the second-order level. It is, however, sufficient to show anisotropy on any
small-scale statistics in order for the local isotropy hypothesis to be violated. This
was pointed out by Yeung, Brasseur, and Wang [22], who also argued that the con-
verse is not true; a single statistical measure that displays a state of local isotropy is
a necessary but not a sufficient condition to guarantee small-scale isotropy.

A qualitative analysis of the second-order dissipation rate transport equation has
indicated that local isotropy constitutes a physically justifiable approximation, at this
particular level of single-point moments, only if the imposed time scale associated with
buoyancy, or mean straining, is much larger than the integral turbulent time scale. It
can therefore be concluded that local isotropy does not seem to be a physically plausi-
ble argument in flows relatively close to equilibrium, since the imposed and the eddy
turnover time scales usually are of the same order. A successful continuation in the
development of predictive methods for turbulent flows relies heavily upon the ability
to characterize small-scale turbulence in terms of the large scales. The theoretical
outcome of this study has shown that it seems necessary to include information of
the mean flow field in models for the small-scale turbulence in order to retain some
consistency with the Navier–Stokes equations.
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Abstract. Using boundary-integral projections for time-harmonic electromagnetic (EM) fields,
and their numerical implementation, we analyze EM resonance in slabs of two-phase dielectric pho-
tonic crystal materials. We characterize resonant frequencies by a complex Floquet–Bloch dispersion
relation ω = W (β) defined by the existence of a nontrivial nullspace of a pair of boundary-integral
projections parameterized by the wave number β and the time-frequency ω. At resonant frequen-
cies, the crystal slab supports a source-free EM field. We link complex resonant frequencies, where
the imaginary part is small, to resonant scattering behavior of incident source fields at nearby real
frequencies and anomalous transmission of energy through the slab. At a real resonant frequency,
the source-free field supported by the slab is a bound state. We present numerical examples which
demonstrate the effects of structural defects on the resonant properties of a crystal slab and surface
waves supported by a dielectric defect.

Key words. photonic crystal, boundary integral, Calderón’s projection, resonance, dispersion
relation, bound state, scattering, surface wave
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1. Overview. Photonic crystals are material structures with spatially periodic
electromagnetic (EM) properties. A two-dimensional (2D) dielectric photonic crystal
slab (Figure 1.1) has dielectric permittivity that does not vary in the z direction, is
constant beyond some finite value of |x|, and is periodic in y. The photonic crystal
slabs in our study consist of an array of circular homogeneous rods embedded in a
matrix of a contrasting dielectric permittivity.

It is well known that photonic crystals may act as resonators. In previous work
[1], [2], we investigated resonant behavior in photonic crystal slabs. In particular, a
periodic channel defect in a slab whose period cell is shown in Figure 7.3(3b) below
resulted in the appearance of narrow ranges of frequency values over which the steady-
state field in the crystal exhibited amplitudes that were many times greater than the
amplitude of the polarized, time and space harmonic incident EM source field [2]. The
dielectric materials that we consider have no losses or gains; thus the phenomenon is
due solely to resonant behavior in the scattering by the crystal. Over these narrow
frequency ranges, the transmission of energy through the slab is either enhanced or
inhibited, producing “spikes” in the transmission coefficient (as in Figures 7.1(5) and
7.3(3a) below). The exploitation of photonic crystal resonances in the engineering of
photonic devices has received much attention in the literature in recent years. See,
for example, [3] and [4] for applications to filters and transmission enhancement. The
connection between the structure of transmission dips and properties of quasi-guided
eigenmodes is investigated in [5] for square-patterned slabs on a substrate.
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L The  strip   S

x

y

Fig. 1.1. A cross section of a photonic crystal slab consisting of an array of homogeneous
dielectric rods standing perpendicular to the xy-plane. The rod structure is periodic in the y-
direction, with period L, and extends indefinitely as y → ±∞. The rod structure is finite in the
x-direction. Exterior to the rods is a homogeneous material of contrasting dielectric permittivity
extending to infinity to the right and left. Pseudoperiodic fields in the plane can be analyzed in the
strip S = {(x, y) : −∞<x<∞, 0≤y≤L} consisting of a single period of the dielectric permittivity
function.

A connection between resonant frequencies and proper eigenvalues is known for
Helmholtz resonators. Beale [6] shows that the (complex) resonant frequencies of a
cavity in R

3 with an opening converge to the eigenvalues (bound state frequencies) of
the closed cavity as the opening disappears.

In the present study, we link resonant scattering behavior in dielectric photonic
crystal slabs to certain complex frequencies with a small imaginary part at which
the structure supports a source-free field (the term “source” is defined precisely in
section 4). These are Bloch fields ψ(x, y) = ψ̃(x, y)ei(βy−ωt), with ψ̃(x, y) periodic in
y and real wave number β. If a source-free field exists for a real value of ω, the structure
sustains a traveling or standing wave along the slab that decays exponentially as |x| →
∞ so that the slab acts as a waveguide. We call such a field a localized field or a bound
state, localization being in the strip S = {(x, y) : −∞<x<∞, 0≤y≤L}, consisting
of one period of the dielectric permittivity function (Figure 1.1). Frequencies at which
the crystal slab supports a source-free field are called resonant frequencies, and they
are described by a dispersion relation ω =W (β). We take 	(ω) > 0 and prove that

(W (β)) ≤ 0 with equality if and only if the corresponding source-free field is a bound
state. If 
(W (β)) < 0, then the field grows exponentially as |x| → ∞, but decays in
time.

In numerical experiments with several structures, we find isolated values of the
wave number β for which the frequency ω = W (β) appears to be real, giving rise to
an isolated bound state. At nearby values of β, W (β) attains an imaginary part, and
sources at real frequencies near 	(W (β)) produce resonant scattering behavior. At
these frequencies, the transmission coefficient exhibits anomalous behavior (see Figure
7.1). We also find a wave number range over which we show that the imaginary part
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of the frequency is exactly zero (see Figure 7.2). Indeed, a slab nine rods thick yields
a real branch of the dispersion relation; all but the first rod have equal radii, and
the radius of the first rod is larger. The wave modes sustained by this structure are
mainly supported on the larger rod, demonstrating that waves can exist on a defective
surface of an otherwise perfect crystal.

Following the Floquet–Bloch theory, our mathematical investigation restricts the
analysis to a single period of the dielectric permittivity considered as a function of x
and y. Thus the problem is posed on the strip S = {(x, y) : −∞<x<∞, 0≤y≤L},
where L is the period in the y direction, as illustrated in Figure 1.1. Pseudoperiodic
boundary conditions then apply to the fields: ψ(x, L) = eiβLψ(x, 0) and ∂yψ(x, L) =
eiβL∂yψ(x, 0) for all values of x.

We use boundary-integral projections of Calderón’s type with pseudoperiodic
Green’s functions and Green’s identities on the strip S. In sections 3 and 4 we show
how these projections give rise to a system of two coupled integral equations that
relate the trace of the steady-state field and its normal derivative on the boundaries
of the rods to the trace of the source field and its normal derivative. The latter fields
constitute the forcing. The system is Fredholm of the second kind in the former fields;
that is, the integral operator involved is a compact perturbation of the identity.

The existence of a resonant frequency requires the existence of a nullspace of
the boundary-integral operator; the latter depends parametrically on the dielectric
structure and the parameters β (which we always assume to be real) and ω. To locate
resonant frequencies in section 7, we discretize the integral operator and search for
(β, ω) pairs for which it has an eigenvalue equal to zero. In this way, we calculate
numerically the dispersion relations ω=W (β). In some cases, ω is a real function of β,
so that the relation describes how the frequency of an x-localized wave traveling along
the slab depends on its Bloch wave number. In other cases, ω is a complex function
of β. We prove that, in this case, the corresponding fields become unbounded as
|x|→∞ (they decay as t→∞), and therefore do not represent bound states. They do,
however, force nearby real frequencies to exhibit resonant behavior. This phenomenon
is examined also in [5] using a scattering matrix for square-patterned slabs.

2. Free pseudoperiodic Green’s functions. We consider a lossless photonic
crystal that consists of an array of dielectric rods, each with the same constant dielec-
tric coefficient ε1 > 0, embedded in a matrix of a material with some other constant
dielectric coefficient ε0 > 0. The rods stand perpendicular to the xy-plane and do
not vary with z. The array is truncated to a finite width in the x-direction and ex-
tends periodically in the y-direction, with period 2π. Its planar cross section consists
of a finite union D of planar domains Dj (the cross sections of the rods) with C2

boundaries in the strip S = {(x, y) : 0 < y < 2π} that repeats periodically in the
y-direction. We let ∂S have an inward-pointing normal vector, and we let n(r) denote
the outward-directed normal vector to the boundary ∂D of D.

Let ψ(x, y)e−iωt be the out-of-plane component (electric or magnetic) of a polar-
ized time-harmonic electromagnetic field with nondimensionalized frequency1 ω in the
photonic crystal structure (it is constant in the z-direction). The Maxwell equations
then reduce to the Helmholtz equation

∇2ψ + ε1ω
2ψ = 0 (in D), ∇2ψ + ε0ω

2ψ = 0 (in S \ D̄)

1We use ω for the reduced time-frequency in this paper; it is equal to our k in [1] and [2]. It
relates to the physical frequency Ω (cycles per time) and period L by ω = ΩL/c, where c is the speed
of light.
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and the matching conditions

lim
h→0

(ψ(r− hn(r)) − ψ(r+ hn(r))) = 0,(2.1a)

lim
h→0

(
∂ψ(r− hn(r))

∂n(r)
− ν

∂ψ(r+ hn(r))

∂n(r)

)
= 0,(2.1b)

on the boundary (r ∈ ∂D). In these equations, ∇2 = ∂2/∂x2 + ∂2/∂y2, ν = 1 in the
electric polarization case, and ν = ε1/ε0 in the magnetic polarization case.

We will consider Helmholtz fields ψ that are pseudoperiodic in y. This means
that, for some real number β, ψ = eiβyψ̃, where ψ̃ is periodic in y with the same
period (2π) as the crystal.

First, we present the fundamental pseudoperiodic solutions of the Helmholtz equa-
tion.

Theorem 2.1. Let ε and β be real numbers and ω a complex number such that,
for all integers m, εω2−(m + β)2 �= 0. For each integer m, let µm be defined by

µ2
m − (m + β)2 + εω2 = 0,

with 	(µm) < 0 for all but a finite number of values of m. Then the series

G(r) = − 1

4π

∞∑
m=−∞

1

µm
exp (µm|x| + i(m + β)y)

converges and is of class C∞ for all r = (x, y) ∈ R
2 \ {(0, 2πn) : n ∈ Z} and

∇2G + εω2G = −
∞∑

n=−∞
δ(x, y − 2πn)e2πniβ ,

where δ is the Dirac delta-function in R
2 with unit impulse at the origin.

Proof. We first consider the case in which 	(µm) ≤ 0 for all m ∈ Z. Then
the series defining G(r) converges to a tempered distribution on R

2. This is seen as
follows: Let φ(x, y) be a function of Schwartz class. Then, for m large enough so that
	(µm) < 0, we have

(2.2)

∣∣∣∣
∫∫

1

µm
exp(µm|x| + i(m + β)y)φ(x, y) dx dy

∣∣∣∣
≤ 1

|µm|
∫

e�(µm)|x|
∫

|φ(x, y)| dy dx ≤ −2A

|µm|	(µm)
,

where A is such that

sup
(x,y)∈R2

(1 + y2)|φ(x, y)| < A

(∫
(1 + z2)−1dz

)−1

.

Since 	(µm)/m = O(1) as m → ∞, the series for G(r) converges to a tempered
distribution.

Let Ĝ(s), where s = (s1, s2), be the Fourier transform of G(r):

Ĝ(s) = − 1

4π

∞∑
m=−∞

−2

s2
1 + µ2

m

δ(s2 − (m + β));
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[(∇2 + εω2)G]̂ (s) =
1

2π

∞∑
m=−∞

−s2
1 − (m + β)2 + εω2

s2
1 + µ2

m

δ(s2 − (m + β))(2.3)

= − 1

2π

∞∑
m=−∞

δ(s2 − (m + β))

=⇒ (∇2 + εω2)G = − 1

2π
δ(x)

∞∑
m=−∞

ei(m+β)y

= − 1

2π
δ(x)eiβy

∞∑
m=−∞

eimy = −δ(x)eiβy
∞∑

n=−∞
δ(y − 2πn)(2.4)

= −
∞∑

n=−∞
e2πniβδ(x, y − 2πn).

The result holds if we replace 1/µm exp(µm|x| + i(m + β)y) in G(r) with
−1/µm exp(−µm|x| + i(m + β)y) for a finite number of integers m, because this
amounts to adding a finite number of functions

ψm =
1

µm
(e−µm|x| + eµm|x|)ei(m+β)y =

1

µm
(e−µmx + eµmx)ei(m+β)y,

which satisfy (∇2 + εω2)ψm = 0.
Finally, we note that the ellipticity of ∇2 + εω2 implies that any distribution

solution on a domain must be a function of class C∞. Thus G(r) is of class C∞ on
R

2 \ {(0, 2πn) : n ∈ Z}.
For our purposes, we make the following choices of the sign of µm. For real values

of ω (such that (m + β)2 − εω2 �= 0 for all integers m), we choose µm such that G(r̂)
is a radiating Green’s function. Thus, for the finite number of consecutive integers m
such that (m + β)2 − εω2 < 0 (it is possible that there are no such values of m), we
take µm to lie on the positive imaginary axis; these values of m give the finite number
of outwardly propagating modes. For all other values of m, we take µm < 0; these
give the decaying modes.

In our investigations, we will consider continuous perturbations of ω into the
lower-half complex plane, and we allow the values of µm to vary analytically with ω.
As ω attains a negative imaginary part, the finite number of values of µm that gave
the propagating modes now attain a positive real part and therefore grow as |x| → ∞.
For all other values of m, µm attains a negative imaginary part.

Figure 2.1 shows the number of propagating modes for real values of β and ω.
Pairs (β, ω) for which there are no propagating modes and perturbations of these in
the imaginary ω direction admit no scattering (extended) EM fields in the strip S.

We will make use of the set of Helmholtz fields which, to the right and left of the
scatterer, are equal to a superposition of modes that build the Green’s functions G
that we defined in Theorem 2.1.

Definition 2.2. We say that a function ψ is in the class E(β, ω, ε) if its domain
contains {(x, y) : |x| > x∗} for some x∗ > 0 and

ψ(x, y) =

∞∑
m=−∞

A±
m exp (µm|x| + i(m + β)y) for ± x > x∗
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ω axissqrt (ε) −
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Fig. 2.1. The number of propagating modes for real values of β and ω. The pattern is repeated
periodically in β, with period 1. For fixed β and ω, there is a propagating mode for each m such
that |√εω| > |m+ β|.

for some complex numbers A±
m, where µm =

(
(m + β)2 − εω2

)1/2
with the sign deter-

mination described above.
Remark. The role of the class E(β, ω, ε) is to continue analytically into the complex

ω-plane as |x| → ∞ the standard outgoing radiation condition that applies when
ω is real: E(β, ω, ε) contains the radiating fields when ω is real and their analytic
continuations into the complex ω-plane.

3. The boundary-integral projections. Let ξ ∈ H1(∂D) and η ∈ L2(∂D)
be given (H1 is the linear space of functions on ∂D with square-integrable arclength
derivatives), and denote ξ = (ξ, η)t. For any point r̂ in the strip S exterior to D,
define

ψ(r̂) =

∫
∂D

(
∂G(r̂− r)

∂n(r)
ξ(r) −G(r̂− r)η(r)

)
ds(r) (r̂ exterior to D).(3.1)

This field is an element of E(β, ω, ε). For r̂ ∈ D, define

ψ(r̂) =

∫
∂D

(
−∂G(r̂− r)

∂n(r)
ξ(r) + G(r̂− r)η(r)

)
ds(r) (r̂ ∈ D).(3.2)

Both fields satisfy the Helmholtz equation (in the variable r̂) in their respective do-
mains.

Let r̂ now be a point on ∂D, and consider the limits to r̂ of these exterior and
interior fields and their normal derivatives:

ψe(r̂) =


 ψe(r̂)

∂nψe(r̂)


 :=




lim
h→0+

ψ(r̂+ hn(r̂))

lim
h→0+

∂ψ

∂n(r̂)
(r̂+ hn(r̂))


 ,

ψi(r̂) =


 ψi(r̂)

∂nψi(r̂)


 :=




lim
h→0+

ψ(r̂− hn(r̂))

lim
h→0+

∂ψ

∂n(r̂)
(r̂− hn(r̂))


 .
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These limits are again in H1(∂D) × L2(∂D). See the appendix for a more detailed
discussion of these limits.

The limit of the first-order normal derivatives of the Green’s function produces
singular contributions according to the Plemelj formula, and we obtain

ψe = 1
2 (I + H)ξ,

ψi = 1
2 (I −H)ξ,

in which H is an integral operator from H1(∂D) × L2(∂D) to itself defined by

(Hξ)(r̂) = 2




∫
∂D

(
∂G(r̂− r)

∂n(r)
ξ(r) −G(r̂− r)η(r)

)
ds(r)

lim
h→0

∫
∂D

∂G(r̂+ hn(r̂) − r)
∂n(r̂)∂n(r)

ξ(r)ds(r) −
∫
∂D

∂G(r̂− r)
∂n(r̂)

η(r)ds(r)


 .

(3.3)

H has the form

H

[
ξ

η

]
= 2

[
K −J

L −K ′

][
ξ

η

]
,

in which the entries of the matrix are integral operators on ∂D. The integral kernels
of J , K, and K ′ are G(r̂ − r), ∂G(r̂ − r)/∂n(r), and ∂G(r̂ − r)/∂n(r̂), respectively.
By integration by parts and using the identity

∂2G(r̂− r)
∂n(r̂)∂n(r)

+
∂2G(r̂− r)
∂s(r̂)∂s(r)

= −n(r̂) · n(r)(∂2
x + ∂2

y)G(r̂− r),

one can show that the integral kernel of L is

n(r̂) · n(r)εω2G(r̂− r) +
∂G(r̂− r)

∂s(r̂)

d

ds
,

where s is the arclength parameter and ∂G/∂s is a principal-value kernel (see the
proof of Theorem 2.1 in [2]).

Theorem 3.1. H is a bounded linear operator from H1(∂D)×L2(∂D) into itself,
the operators

Pe = 1
2 (I + H),

Pi = 1
2 (I −H)

are complementary projections, and

H2 = I.

Proof. Let us consider a solution ψ of ∇2ψ + εω2ψ = 0 defined in D that has
a continuous extension to D whose restriction to ∂D is in H1(∂D) and such that
limh→0− ∂ψ/dn(r)(r + hn(r)) exists and belongs to L2(∂D). Then Green’s identity
holds: For r̂ ∈ D,

ψ(r̂) =

∫
∂D

(
−∂G(r̂− r)

∂n(r)
ψ(r) + G(r̂− r)∂ψ(r)

∂n(r)

)
ds(r).(3.4)
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Green’s identity says that (3.2) holds if we put ψ and ∂nψ in place of ξ and η, and
therefore

P 2
i (ξ) = Pi(ψi) = ψi = Pi(ξ),

and thus P 2
i = Pi.

Now let a solution ψ of ∇2ψ + εω2ψ = 0 such that ψ ∈ E(β, ω, ε) be defined in
S \D, and suppose that ψ has a continuous extension to D whose restriction to ∂D is
in H1(∂D) and such that limh→0− ∂ψ/dn(r)(r+hn(r)) exists and belongs to L2(∂D).
Again, Green’s identity holds: For r̂ ∈ S \D,

ψ(r̂) =

∫
∂D

(
∂G(r̂− r)

∂n(r)
ψ(r) −G(r̂− r)∂ψ(r)

∂n(r)

)
ds(r).(3.5)

The contribution from the upper and lower sides of the strip S cancel because of the
pseudoperiodicity of ψ and Gε. Straightforward calculation shows that the contri-
butions from vertical line segments truncating the strip on the left and right vanish
identically as the points of truncation tend to infinity, because both G and ψ are in
E(β, ω, ε). Again, we find that P 2

e = Pe by putting ψ and ∂nψ in place of ξ and η
in (3.1).

It is straightforward to calculate that H2 = I.
The operators in Theorem 3.1 are boundary-integral projections of Calderón’s type.

See Calderón [7], Seeley [8], and Ryaben’kii [9]. Nédélec [10] derives the Calderón’s
projections for the full harmonic Maxwell equations for a bounded domain in R

3.

4. The Fredholm system of boundary-integral equations. We describe
the EM scattering by a photonic crystal slab in terms of the decomposition given by
the boundary-integral projections. We have seen that any pair of functions (ξ, η)t = ξ
in H1(∂D) × L2(∂D) can be expressed uniquely as the sum of the limiting values to
∂D of an interior Helmholtz field and its normal derivative and an exterior Helmholtz
field in E(β, ω, ε) and its normal derivative.

Definition 4.1. An exterior-source field ξ = φε0i has zero exterior component
in the above decomposition over the exterior medium (ε = ε0); that is,

P ε0
e φ

ε0
i = 0, P ε0

i φ
ε0
i = φε0i .

An interior-source field ξ = φε1e has zero interior component in the above decomposi-
tion over the interior medium (ε = ε1); that is,

P ε1
i φ

ε1
e = 0, P ε1

e φ
ε1
e = φε1e .

In other words, when the sources are in the exterior, the source field extends
from ∂D to a Helmholtz field over the medium ε0 in the interior. Similarly, when the
sources are in the interior, the source field extends from ∂D to a Helmholtz field of
class E(β, ω, ε1) over the medium ε1 in the exterior.

Remark. In our numerical calculations of transmission in section 7, we use plane-
wave source fields from the left at real frequencies ω; that is,

ψε0i = exp
(
i
√

ε0ω2 − (m + β)2 x + i(m + β)y
)
, ψε1e = 0.

A solution to the scattering problem has total exterior and interior fields ψext and
ψint, with traces (field and normal derivative) on ∂D given by

ψext = ψε0e + φε0i , ψint = ψε1i + φε1e ,(4.1)
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where ψε1i and ψε0e are the traces of the interior and exterior scattered fields. The
field ψε1i extends to a Helmholtz field in the interior, and ψε0e extends to a Helmholtz
field of class E(β, ω, ε0) in the exterior. When ω is real, the exterior extension of ψε0e
either decays or satisfies the outward radiation condition as |x| → ∞.

The matching conditions at the interface of the two media are given by[
ψint(r̂)

∂nψint(r̂)

]
=

[
1 0

0 ν

] [
ψext(r̂)

∂nψext(r̂)

]
.(4.2)

We write the matching conditions in short form by defining Γ = [ 1 0
0 ν ] and ψ =

[
ψext(r̂)
∂nψext(r̂)

] on ∂D and inserting them into (4.1) to obtain

ψ = ψε0e + φε0i , Γψ = ψε1i + φε1e .(4.3)

We apply the projections P ε0
i and P ε1

e to the two equations, respectively,

P ε0
i ψ = φε0i and P ε1

e Γψ = φε1e .(4.4)

Definition 4.2. By the scattering problem at (β,ω), we mean the system of
equations (4.4) with the source fields (see Definition 4.1) in the right-hand sides be-
longing to the space H1(∂D) × L2(∂D). A scattering state or scattering field is a
Helmholtz field whose trace on ∂D is a solution of the system with a nonzero source.
If there exists a nontrivial solution ψ in the absence of sources (zero right-hand sides),
we call the frequency ω a resonant frequency (for the wave number β). The corre-
sponding Helmholtz field is necessarily in E(β, ω, ε0). If the field decays as |x| → ∞,
we call it a bound state.

Remarks. 1. Our definition of scattering state analytically continues the tradi-
tional scattering states at real frequencies into the complex ω-plane. This is possible
by our analytic continuation of the condition that defines the notion of an outgoing
radiating field (see the Remark after Definition 2.2). A scattering state is an analytic
function of ω, and a resonant frequency is a singularity of this function.

2. We say that a scattering field at a nonresonant real frequency near a resonant
frequency exhibits resonant behavior if it exhibits amplitudes in the crystal structure
that are large compared to the source amplitude.

3. We will need to consider only frequencies ω such that 	(ω) > 0. We will
prove in Theorems 5.1 and 5.2 that, in this case, a dielectric photonic crystal slab
supports only Helmholtz fields with 
(ω) ≤ 0 and that such a field decays as |x| → ∞
if 
(ω)=0, and is unbounded if 
(ω) < 0.

We add the two equations (4.4) to obtain

(P ε0
i + P ε1

e Γ)ψ = φε0i + φε1e .(4.5)

Inserting the expressions

P ε0
i = 1

2 (I + Hε0), P ε1
e = 1

2 (I −Hε1)

from Theorem 3.1, and letting φ = φε0i + φε1e represent the total source field, we
rewrite (4.5) as [

1

2
(I + Γ) +

1

2
(Hε0 −Hε1Γ)

]
ψ = φ.
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Finally, we insert the expression (3.3) for Hε0 and Hε1 to obtain the following ex-
panded version of (4.5) (recall ψ = ψext):

ψext(r̂) +

∫
∂D

[
∂ (Gε1 −Gε0) (r̂− r)

∂n(r)
ψext(r)

− (νGε1 −Gε0)(r̂− r)∂ψext

∂n(r)
(r)

]
ds(r) = φ(r̂),(4.6a)

1 + ν

2

∂ψext

∂n(r̂)
(r̂) +

∫
∂D

[
∂2 (Gε1 −Gε0) (r̂− r)

∂n(r̂)∂n(r)
ψext(r)

− ∂ (νGε1 −Gε0) (r̂− r)
∂n(r̂)

∂ψext

∂n(r)
(r)

]
ds(r) =

∂φ

∂n(r̂)
(r̂).(4.6b)

This is a Fredholm equation of the second kind; cancellation in the difference of
the Green’s functions reduces the leading singularities of all the kernels to at most
logarithmic, making the corresponding operators of Hilbert–Schmidt class in L2(∂D)×
L2(∂D). Equation (4.6) can thus be solved for ψ in L2(∂D) × L2(∂D) whenever the
nullspace is trivial. The solution ψ necessarily belongs to H1(∂D)×L2(∂D); indeed,
(4.6) can be written as ψ = Mψ + 2(I + Γ)−1φ, where M consists of kernels with
at most logarithmic singularities, and is thus bounded from L2(∂D) × L2(∂D) to
H1(∂D) ×H1(∂D). In fact, M is bounded from Hs(∂D) ×Hs(∂D) to Hs+1(∂D) ×
Hs+1(∂D), and so ψ is C∞ if φ = 0, i.e., if ψ is a nullfield. In summary, if the source
field φ belongs to H1(∂D) × L2(∂D), then so does the field ψ.

Boundary integral equations of the second kind for EM fields have also been
derived by Müller [11], Colton and Kress [12], [13], and Nédélec [10].

Theorem 4.3. If the system

P ε0
e f = 0, P ε1

i f = 0

has only the trivial solution, then the scattering problem (4.4) is equivalent to the
Fredholm system (4.5) (equivalently, (4.6)).

Proof. Given (4.5), we may write

P ε0
i ψ = φε0i + f , P ε1

e Γψ = φε1e − f .
Applying P ε0

e to the first relation and P ε1
i to the second relation, we obtain

P ε0
e f = 0, P ε1

i f = 0.

These equations imply f = 0 by the hypothesis of the theorem.
A comparison of the conditions of the theorem with (4.4) allows us to reformulate

the theorem in a more physical way, as follows.
Theorem 4.4 (reformulated Theorem (4.3)). If the inverse dielectric structure

(physics terminology meaning the original geometry with the two dielectric materi-
als interchanged) does not support an electrically polarized field, then our scattering
problem (4.4) is equivalent to the Fredholm system (4.5) (equivalently, (4.6)).

5. Resonant frequencies and bound states. We have seen that the dielectric
structure supports a nonzero source-free electromagnetic field ψ at (β,ω) if and only
if the field satisfies

P ε0
i ψ = 0 and P ε1

e Γψ = 0,(5.1)
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where ψ(r) =
(

limh→0 ψ(r + hn(r)), limh→0 ∂nψ(r + hn(r))
)t

on ∂D. This implies
that

(P ε0
i + P ε1

e Γ)ψ = 0,(5.2)

so that (P ε0
i + P ε1

e Γ) has a nontrivial nullspace at the resonant frequency ω for wave
number β.

We now present a theorem that provides conditions for the existence of resonance
frequencies.

Theorem 5.1. Let the frequency ω and a real value of β be given, and assume
that (m + β)2 − εω2 �= 0 for all integers m. If P ε0

i +P ε1
e Γ has a nontrivial nullspace,

then at least one of the following holds:
(1) ω is a resonant frequency for the structure, with interior dielectric coefficient

ε1 and exterior coefficient ε0 for the wave number β, according to whether
ν = 1 or ν = ε1/ε0 in Γ, or

(2) ω is a resonant frequency for the inverse structure, with ε1 and ε0 switched,
for the wave number β.

If ω2 is real, then the corresponding source-free Helmholtz field ψ in E(β, ω, ε0) or
E(β, ω, ε1) decays to zero as |x| → ∞ and is therefore an x-localized field (a bound
state in the strip S). Otherwise, 
(ω2) < 0 and ψ becomes unbounded as |x| → ∞.

Remarks. 1. In our numerical studies, we will be interested only in the case in
which 	(ω) > 0 and 
(ω) is small and negative. Assuming 	(ω) > 0, the condition

(ω2) < 0 is equivalent to 
(ω) < 0.

2. Suppose that the pair (β0, ω0) with ω0 > 0 admits a bound state and that
the Green’s function has no propagating modes (see Figure 2.1). Then, for (β, ω) in
a neighborhood of (β0, ω0), the Green’s function has only decaying modes, so that
all functions in E(β, ω, ε0) are decaying. This implies that, in a vicinity of β0 (we
always assume β is real), a relation ω = W (β) describing resonant frequencies must
be real-valued and must therefore be a dispersion relation for bound states.

Proof. We assume that (5.2) holds for some nonzero ψ. Theorem 4.3, with
both source fields in (4.4) taken to be zero, implies that equations (5.1) hold (giving
statement (1) in Theorem 5.1) or that there exists a nonzero f such that P ε0

e f = 0
and P ε1

i f = 0 (giving statement (2) in Theorem 5.1).
We defer the proof of the condition on ω2 and the behavior of the fields as |x| → ∞

to the proof of Theorem 5.2.
Theorem 5.2. Suppose that ψ ∈ E(β, ω, ε0) is pseudoperiodic in y, is not iden-

tically zero, and satisfies ∇2ψ + εω2ψ = 0 in S \ ∂D (where ε = ε1 in D and ε0
otherwise) and the matching conditions (4.2) on ∂D. Then 
(ω2) ≤ 0. In addition,
|ψ| → 0 as |x| → ∞ if and only if ω2 is real-valued.

Proof. Let T denote the finite strip {(x, y) : −x0 ≤ x ≤ x0, 0 ≤ y ≤ 2π}, where
x0 > x∗ > 0 and x∗ is given in Definition 2.2, and let ∂T be its boundary with
outward-pointing normal vector n. We also take n pointing outward on ∂D. The
divergence theorem gives∫

∂T

ψ∂nψds +

∫
∂D

(
ψint∂nψint − ψext∂nψext

)
ds =

∫∫
T

(∇ψ · ∇ψ + ψ∇2ψ
)
dA.

Using the relation ψ∂nψ = ψ̃∂nψ̃ + iβny|ψ̃|2 (ny is the y-component of the normal
vector n), we see that the integrals over the top and bottom parts of ∂T cancel, and
the integral over ∂T becomes an integral over ΓL ∪ ΓR, where ΓL and ΓR are the left
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and right sides of ∂T . On the right-hand side, we use the Helmholtz equation. We
now have

∫
ΓL∪ΓR

ψ∂nψds +

∫
∂D

(
ψint∂nψint − ψext∂nψext

)
ds =

∫∫
T

(|∇ψ|2 − εω2|ψ|2) dA.

(5.3)

Using the conjugate equation for the interior of D, ∇2ψint+ε1ω
2ψint = 0, we compute

−
∫∫

D

|ψint|2(ε1ω
2 − ε1ω

2)dA = −
∫∫

D

(
ψintε1ω

2ψint − ψintε1ω
2ψint

)
dA

=

∫∫
D

(
ψint∇2ψint − ψint∇2ψint

)
dA =

∫
∂D

(
ψint∂nψint − ψint∂nψint

)
ds.

Therefore,



∫
∂D

ψint∂nψintds = −ε1
(ω2)

∫∫
D

|ψint|2dA.

Using this and the matching conditions ψint = ψext and ∂nψint = ν∂nψext on ∂D, we
can write the imaginary part of (5.3):



∫

ΓL∪ΓR

ψ∂nψds − ε1(1−ν−1)
(ω2)

∫∫
D

|ψ|2dA = −
(ω2)

∫∫
T

ε|ψ|2dA.(5.4)

By Definition 2.2, since ψ ∈ E(β, ω, ε0), there exist complex numbers A±
m such that

ψ(x, y) =

∞∑
m=−∞

A±
m exp (µm|x| + i(m + β)y) for ± x > x0.

Straightforward computation yields∫
ΓL∪ΓR

ψ∂nψds = 2π

∞∑
m=−∞

µm
(|A−

m|2 + |A+
m|2) e2�(µm)|x0|,

and, after splitting the right-hand side of (5.4) into an interior and an exterior integral,
we obtain

2π

∞∑
m=−∞


(µm)
(|A−

m|2 + |A+
m|2) e2�(µm)|x0|(5.5)

= −
(ω2)

(
ε1ν

−1

∫∫
D

|ψ|2dA + ε0

∫∫
T\D

|ψ|2dA
)

.

If 
(ω2) > 0, all modes are decaying in x (	(µm) < 0 for all m), and we obtain
a contradiction by letting x0 tend to ∞; therefore, 
(ω2) ≤ 0. If 
(ω2) = 0, then

(µm) > 0 for all propagating modes and 
(µm) = 0 for all decaying modes; therefore,
A±
m = 0 for all propagating modes, so that |ψ| → 0 as |x| → ∞. Conversely, if |ψ| → 0

as |x| → ∞, then A±
m = 0 for all nondecaying modes (those for which 	(µm) ≥ 0),

and thus the left-hand side of 5.5 decays exponentially as x0 → ∞. Letting x0 tend
to ∞ shows that 
(ω2) = 0.

Remarks. 1. The quantity 
∫
Γ
ψ∂nψ ds appearing in the proof of Theorem 5.2

is the time-averaged energy flow carried by ψ through Γ.
2. If 
(ω2) < 0, then ψ does not decay as |x| → ∞, and thus by the definition

of E(β, ω, ε), ψ becomes unbounded as |x| → ∞, and this completes the proof of
Theorem 5.1.
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6. Dispersion relations. We define a dispersion relation for a photonic crystal
slab to be a multivalued function ω = W (β) describing pairs (β, ω) for which ω is a
resonant frequency for wave number β. This means that the pair (5.1) is satisfied for

a nonzero field ψ(r) =
(

limh→0 ψ(r+ hn(r)), limh→0 ∂nψ(r+ hn(r))
)t

on ∂D, where
ψ is a pseudoperiodic source-free Helmholtz field in the class E(β, ω, ε0). If we are able
to eliminate the second alternative in Theorem 5.1, then the single equation (5.2) is
sufficient for defining a dispersion relation, as it would then imply the pair (5.1). In
the numerical examples below, we are able computationally to eliminate the second
alternative.

Because our operator is of the Hilbert–Schmidt class from L2(∂D) × L2(∂D), its
determinant is defined, and it depends analytically on β and ω. Thus, a necessary
condition for the pair (β, ω) to support a source-free field in the given crystal is

D(β, ω) := det(P ε0
i + P ε1

e Γ) = 0.(6.1)

The dispersion relation is therefore given by branches of D(β, ω) = 0. Whether this
condition is also sufficient depends on the inverse dielectric structure. Indeed, we
know from Theorem 5.1 that if the inverse structure does not support an electrically
polarized source-free field, then (6.1) does define a dispersion relation for fields in the
original structure.

In practice, we obtain dispersion relations by computing the curves λ(β, ω) = 0
numerically, where λ is an eigenvalue of P ε0

i + P ε1
e Γ. Suppose that zero is a simple

eigenvalue at the pair (β0, ω0). Then the smallest eigenvalue λ is an analytic function
of β and ω in a neighborhood of (β0, ω0), say λ = λ(β, ω). Suppose also that λ(β0, ω) �≡
0 near ω0. By the Weierstraß preparation theorem, there exists an integer n ≥ 1 such
that

λ(β, ω) = h(β, ω)(ωn + Wn−1(β)ωn−1 + · · · + W1(β)ω + W0(β))(6.2)

near (β0, ω0), where h and Wi (i = 0, . . . , n−1) are analytic functions and h �= 0 near
(β0, ω0). Thus, λ = 0 is equivalent to ωn+Wn−1(β)ωn−1 + · · ·+W1(β)ω+W0(β) = 0.
Let us consider the case in which n = 1 (this is when ∂λ/∂ω �= 0 near (β0, ω0)). Then
we have a relation

ω = W (β)

that describes the locus of (β, ω)-pairs for which λ = 0. For real values of β near β0,
the curve ω = W (β) in the complex ω-plane gives a dispersion relation; it is periodic
in β with period 1.

We made two assumptions in the preceding paragraph: that zero is a simple
eigenvalue at (β0, ω0), and that ∂λ/∂ω �= 0 there. Numerical calculations show that
both assumptions are true generically, giving rise to dispersion relations for simple
eigenvalues. When two branches cross, as in Figure 7.3(1a) and (2a) below, we see an
eigenvalue of multiplicity 2. We have not encountered a situation in which there is a
simple eigenvalue at some point (β0, ω0) and ∂λ/∂ω = 0 there, that is, ∂kλ/∂ωk = 0
for k < n and ∂nλ/∂ωn �= 0 for some n > 1 in (6.2). In this situation, (6.2) shows
that there would exist a dispersion relation defined by an equation that is algebraic
in ω and may have several branches emanating from (β0, ω0).

If ω = W (β) lies on the real ω-axis over a range of β-values, then we have a
dispersion relation for x-localized Helmholtz fields ψ in the crystal (bound states in
the strip S). The complex time-dependent electric or magnetic fields associated with
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ψ are ψ(x, y)e−iωt = ψ̃(x, y)ei(βy−ωt) (with ψ̃ periodic in y), which are Bloch waves
traveling along the photonic crystal slab. If ω0 = W (β0) is real but the dispersion
relation goes into the lower-half ω-plane for β �= β0, then there exists a bound state
just for the isolated pair (β0, ω0), and nearby pairs (β,W (β)) are complex resonant
frequencies. We demonstrate numerically below that both situations do occur.

One of the main phenomena observed in this study is that complex resonant
frequencies are linked to resonant scattering behavior and transmission anomalies at
nearby real frequencies. See also [5].

7. Numerical studies: Bound states, surface waves, and resonances. In
this section we present three examples that illustrate the connections between complex
dispersion relations, bound states and resonant frequencies, transmission anomalies,
and resonant behavior of real frequencies. In particular, we calculate a dispersion
relation for surface waves at bandgap frequencies on a thick structure approximating
a semi-infinite crystal, and we provide a mathematical context for understanding
resonant phenomena produced by a channel defect in a crystal slab.

We calculate the dispersion relations numerically as follows. We first search
for a pair (β0, ω0) at which P ε0

i + P ε1
e Γ has an eigenvalue that is practically zero:

λ(β0, ω0) ≈ 0. Then we increment β to β1 and search in a complex vicinity of ω0

for a value ω1 such that λ(β1, ω1) ≈ 0. We continue to increment β, and in this
way trace out a curve ω(β) represented by the computed points (βn, ωn) such that
λ(βn, ωn) ≈ 0. To find the value ωn, we simply compute the minimum of the smallest
eigenvalue λ(β, ω) of P ε0

i + P ε1
e Γ as ω varies over a grid about ωn−1, keeping β fixed

at βn, and then refine the search if necessary. We intend to develop a more efficient
gradient search method for future investigations. In the examples in subsections 7.1
and 7.2, we find the initial pair (β0, ω0) by taking β0 = 0 and computing the minimum
eigenvalue of P ε0

i +P ε1
e Γ, using MATLAB, on a grid of real values of ω in the interval

(0, 1). An initial bound state was easy to find. In the example of subsection 7.3,
we knew to search in the vicinity of a spike in the transmission graph that we had
computed in [2].

To show that λ(β, ω) actually achieves a value of zero, it suffices to fix β and
compute (numerically) a positive winding number of λ as an analytic function of ω
about some small closed curve in the complex ω-plane. We perform this verification
at selected points on the dispersion relations. We also check numerically that the
alternative (part (2)) in Theorem 5.1 does not hold.

To compute the eigenvalues of the boundary-integral operator P ε0
i + P ε1

e Γ, we
discretize the integral system using quadratic basis elements for the fields and point-
sampling of the equations. Complete details of these calculations are presented in [2].
Once we have obtained a numerical solution to (P ε0

i + P ε1
e Γ)ψ = φ, we compute the

scattering and bound (φ = 0) states using Green’s identities (3.4) and (3.5).
In all three examples, we study electrically polarized fields with ε0 = 1 and

ε1 = 12.
In the figures, the fields in the crystals are represented by contour plots of their

magnitudes. White represents the maximal amplitude, and black represents an am-
plitude of zero. One y-period is shown, with the x-direction truncated outside the
support of the crystal slab.

7.1. A single string of rods. (Figure 7.1.) Our first example is a good il-
lustration of the connection between dispersion relations, bound states, and resonant
scattering phenomena. The period of our dielectric structure consists of a single rod in
air, so that the crystal slab degenerates into a string of rods running in the y-direction.
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1. β = 0; bound state frequency ω = W (0) ≈ 0.6691.
Bound state Nearby scattering state

maximum
amplitude
= 2. 7

2. β = 0.01; resonant frequency ω = 	(W (0.01)) ≈ 0.6690.
Scattering state near ω = 0.6690

maximum
amplitude
= 42.5

Scattering state away from ω = 0.6690

maximum
amplitude
= 1. 9

3. β = 0.12; resonant frequency ω = 	(W (0.12)) ≈ 0.6601.
Scattering state near ω = 0.6601

maximum
amplitude
= 4. 8

Scattering state away from ω = 0.6601
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amplitude
= 2. 0
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Fig. 7.1. In the contour plots, one period in y of the crystal is shown, with the magnitude of the
electrically polarized fields plotted. 1. There is a bound state at (β = 0, ω = W (0) ≈ 0.6691). There
is no unusually high amplification of an incident plane-wave source (of amplitude 1) for β = 0
at frequencies ω near the bound-state frequency. 2,3. When �(W (β)) < 0, incident plane-wave
sources are amplified in the rod at frequencies near the real part of W (β). A smaller imaginary part
corresponds to greater amplification. The field structure at resonant frequencies is similar to that
of the bound state. 4. The dispersion relation W (β) plotted in the complex ω plane for real values
of beta from β = 0 to β = 0.38. 5. Spikes in the transmission coefficient near ω = (W (β)) for
β > 0, where �(W (β)) < 0.
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We find numerically a y-periodic (this means β = 0) bound state at ω ≈ 0.6691.
This is a standing wave that exists in the absence of any sources. However, as β moves
away from zero, the bound state disappears and the dispersion relation ω = W (β) en-
ters the lower-half complex ω-plane (Figure 7.1(4)). In place of a bound state, we find
instead resonant scattering states at real frequencies near the real part 	(W (β)) of
the complex resonant frequency on the dispersion relation. These states are sustained
by plane-wave source fields that are amplified as they experience resonant scatter-
ing within the dielectric structure. Coinciding with these large fields are anomalies
(spikes) in the transmission coefficient2 T (β, ω) for real values of ω near 	(W (β)),
for a fixed value of β (see Figure 7.1(5)). These spikes consist of a drop to 0% trans-
mission (T =0) to the left of the frequency of the periodic bound state that exists at
β = 0, followed by a sharp increase to 100% transmission (T = 1) to the right. As
|β| decreases to zero, the width of the spike decreases and the resonant amplification
of the scattering fields increases. The phenomena become more and more localized
about the bound-state frequency. At β = 0, the transmission anomaly and resonant
behavior disappear, and we have in their place the bound state.

We find that, for ω0 ≈ 0.6691, T (β, ω0) ≈ 0.935 for values of β near but not
equal to zero (see Figure 7.1(5)). However, continuing our calculation of the curve
T (0, ω) through ω = ω0 gives T (0, ω0) ≈ 0.739. Thus we demonstrate numerically
that limβ→0 T (β, ω0) �= limω→ω0

T (0, ω), so that we cannot define the transmission
coefficient continuously at (0, ω0). This observation strengthens our belief that there
is a bound state at (0, ω0), that is, that 
(W (0)) is indeed exactly zero.

From Figure 7.1(4), the dispersion relation evidently has the form

ω = ω0 + a(β)β2,

where a is analytic and a(0) �= 0. (W (β) is symmetric about β = 0, as the Green’s
functions at ±β have the same set of modes, and the structure is symmetric in y.)

7.2. Surface waves. (Figure 7.2.) We investigate waves on the surface of a
semi-infinite photonic crystal. We seek waves at the interface between the left half-
plane containing air and the right half-plane filled with a square lattice of circular
rods. If we consider frequencies that cannot propagate through the infinite crystal,
or bandgap frequencies, it is reasonable to approximate the semi-infinite crystal by a
finite slab several rods thick (truncated in the x-direction but still periodic in y). To
capture surface waves at bandgap frequencies, we place a defect on the left surface of
the slab by making the first rod much larger than the others.

There appears to be a periodic (β = 0) bound state at ω ≈ 0.401, as the smallest
eigenvalue of P ε0

i +P ε1
e Γ is practically zero there. The field is localized at the defective

surface of the slab (see Figure 7.2(1))—it is a standing surface wave.
As β moves away from zero, the surface wave disappears, and we obtain a dis-

persion relation ω = W (β) with a very small negative imaginary part. At about
β ≈ 0.345, however, the relation enters a regime in which |W (β)| < minm∈Z(|β +m|),
which is the scenario in which all modes of the Green’s function decay in |x| and the
exterior medium admits no traveling waves. We deduce from Theorem 5.1 (or Theo-
rem 5.2) that this part of the dispersion relation is necessarily real and is therefore a

2Our transmission coefficient is the square root of the ratio of the energy transmitted through the

slab on the right to the energy of a plane-wave source field exp(i
√
ε0ω2 − (m+ β)2 x+ i(m+ β)y)

incident upon the slab from the left. Details of how we calculate the transmission coefficient are
given in [2].
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1. A bound state at β = 0, ω ≈ 0.401: a standing surface wave.

2. A scattering state for β = 0 at a frequency near that of the bound state in (1).

amplitude
maximum

=2.0

3. A scattering state at β = 0.23, ω ≈ 0.368, where |
(W (β))| is very small.
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maximum

=25.8

4. A scattering state at β = 0.28, ω ≈ 0.358, near max |
(W (β))|.

amplitude
maximum

=6.2

5. A bound state at β = 0.40, ω ≈ 0.335: a traveling surface wave.
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Fig. 7.2. A crystal slab with a defect on the left surface, where one rod is bigger than the rest.
In the contour plots, one period in y of the crystal is shown, with the magnitude of the electrically
polarized fields plotted. 1,2. There is a periodic (β = 0) bound state, which is a standing surface
wave localized in the large rod at the surface of the crystal slab. At frequencies near that of the
surface wave, incident plane-wave sources are not amplified in the rod. 3,4. When �(W (β)) < 0,
incident plane-wave sources (with amplitude 1) at frequencies near (W (β)) resonate in the first rod.
5. A bound state at parameter values on the dispersion relation, where ω = W (β) is necessarily real
and the strip admits no scattering (extended) states. 6. (W (β)) plotted against β. �(W (β)) = 0
when (W (β)) < |β| (0.345 < |β| < 0.5). 7. ω = W (β) plotted in the complex ω-plane.
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dispersion relation for x-localized fields. In fact, in this regime, there are no scattering
(extended) states in the strip (see Remark 2 following Theorem 5.1).

We therefore demonstrate the existence of a dispersion relation for waves traveling
along the surface of a photonic crystal slab. Our choice of eight rods to approximate
the semi-infinite crystal appears to be sufficient: Increasing the number of rods results
in no appreciable difference in the calculated curve. Thus, we are led to believe that
the dispersion relation for the semi-infinite crystal exists and that the dispersion
relation for the slab is a good approximation.

As in the case of the single string of rods in the previous example, we see again
how the complex part of the dispersion relation, which is very close to the real axis,
affects the scattering states at nearby real frequencies. We do not find anomalies in
the transmission as we did in that example; however, we believe that they are there
but are too sharp to be detected numerically because of the small size of the imaginary
part of the dispersion relation and the thickness of the slab.

7.3. A channel defect. (Figure 7.3.) In [2], we studied the effect that a periodic
channel through a photonic crystal slab has on the transmission coefficient and the
structure of the scattering states. Our intention was to study resonant behavior at
bandgap frequencies and modes propagating through the channel; however, we also
found intriguing sharp transmission spikes and resonant scattering fields in near–full-
transmission frequency regions. The phenomena are similar in behavior to those in our
previous two examples, and a similar analysis provides us with a better mathematical
understanding of them.

The (β,ω) pairs at which resonant behavior and transmission anomalies occur
for the crystal with a periodic channel are described by a dispersion relation ω =
W (β), which we calculate numerically.3 We demonstrate in [2] that both phenomena
disappear as the width of the channel decreases and the slab returns to its perfect
structure. In the present study, we find that, in place of resonant scattering states,
the perfect slab admits bound states, also described by a dispersion relation.

Our numerical calculations give us dispersion relations that lie practically on
the real ω-axis. However, they may have a small negative imaginary part that we
cannot resolve numerically. Based on our findings in the previous two examples,
we conjecture that the relation is identically real for the perfect slab (there is no
resonant amplification, and there are no transmission spikes) and that it has a very
small negative imaginary part for the slab with a periodic channel (there are high-
amplitude resonances and very sharp transmission spikes).

The structure of the resonant fields near ω = 	(W (β)) when 
(W (β)) is small
resembles the field of a nearby bound state, if such a bound state exists. See Figure
7.3(1) and (3), which shows the y-directional structure of a bound state and a resonant
scattering state. A typical scattering state at small values of β exhibits the structure
of an x-directional interference pattern, a point we discuss in [2].

In summary, we have a plausible explanation for the channel-induced resonant
behavior that we observed in [2]: There is a dispersion relation ω = W (β) for bound
states traveling along the perfect crystal slab. When a periodic channel is introduced,
the new (perturbed) relation ω = W (β) gives resonant frequencies with a small imag-
inary part. These are responsible for the observed buildup of large fields in the slab
and for the transmission anomaly near ω = 	(W (β)). In the limit of zero imaginary

3In [2], we scaled the frequency in this example by 1/6 to compare with the scale of the finer
period of one rod. We did not make that scaling here.
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Fig. 7.3. In the contour plots, a period in y of the crystal is shown, and the strip is truncated
in the x-direction. The magnitude of the electrically polarized fields is plotted. 1.a. Branches of
the dispersion relation for a perfect square-lattice crystal four rods thick. 1.b. The bound state at
β = 0.1 and ω ≈ 1.434. 2.a. Branches of the real part of the dispersion relation for the crystal
with a periodic channel containing an extra half-period of space after every six rows of rods. 2.b. A
resonant scattering state at β = 0.5 and ω ≈ 1.224. 3.a. An anomaly in the transmission coefficient
for β = 0.1. 3.b. A resonant scattering state at β = 0.1 and ω ≈ 1.3842 (slightly to the left of where
the two branches of the dispersion relation cross, on the lower branch). The amplitude of the field
in the crystal reaches about 49 times the amplitude of the incident field.
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part, the anomaly occurs at a single point (the point of the bound state) and is not
observed through the numerical scattering experiment.

The numerical evidence indicates that the slab with a periodic channel supports
resonant frequencies that converge to bound state frequencies as the channel closes
up. A similar phenomenon is known for Helmholtz resonators, in which resonant
frequencies of a cavity with an opening converge to the bound state frequencies of the
closed cavity as the opening disappears (Beale [6]).

8. Appendix. Let D be a domain whose boundary C = ∂D is a closed curve
of class C2 with arclength parameterization γ(t), t ∈ [a, b], and outward-pointing
normal vector n(t) at γ(t). For sufficiently small values of ρ > 0, the function γρ(t) =
γ(t) − ρn(t) parameterizes a C1 closed curve Cρ contained in the interior of D.

The Green’s kernel G(r) (or its derivatives) takes a function φ on C to a function
ψρ on Cρ by

ψρ(r) =

∫
C

G(r̂− r)φ(r)ds(r),

where r̂ ∈ Cρ. This map can be realized as a map taking a function on [a, b] to another
by recycling notation and writing

ψρ(t) =

∫ b

a

G(γρ(t) − γ(s))φ(s) ds.

We make the identifications H1(C) ≡ H1([a, b]) and L2(C) ≡ L2([a, b]).
1. The singular part of the integral kernel G(γ(t) − γ(s)) is log |t − s|, and the

singular part of its derivative, d/dt log |t−s|, which has the Hilbert-transform
singularity, is a principal-value integral. Both are bounded operators from L2

to L2, so G(γ(t) − γ(s)) is a bounded operator from L2 to H1. G(γρ(t) −
γ(s)) and d/dtG(γρ(t)−γ(s)) are regularizations of these singular kernels, so
G(γρ(t) − γ(s)) converges to G(γ(t) − γ(s)) as ρ → 0 as bounded operators
from L2 to H1.

2. By the theory of the double-layer potential and the Plemelj formula, the
integral kernels

∂G(γρ(t) − γ(s))

∂n(γ(s))
, −∂G(γρ(t) − γ(s))

∂n(γ(t))
,

as applied to L2, are a regularization of their limiting form as ρ → 0, which
is 1/2 the identity operator plus a weakly singular integral kernel.

3. Using the identity

∂2G(r̂− r)
∂n(r̂)∂n(r)

+
∂2G(r̂− r)
∂t(r̂)∂t(r)

= −n(r̂) · n(r)(∂2
x + ∂2

y)G(r̂− r)

and the Helmholtz equation

(∂2
x + ∂2

y)G(r̂− r) + εω2G(r̂− r) = 0 for r̂ �= r,

we can rewrite the kernel ∂2G(r̂ − r)/∂n(r̂)∂n(r) for r̂ �∈ ∂D, applied to a
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function ξ ∈ H1:

(8.1)

∫
∂D

∂2G(r̂− r)
∂n(r̂)∂n(r)

ξ(r) ds(r)

=

∫
∂D

(
n(r̂) · n(r)εω2G(r̂− r)ξ(r) +

∂G(r̂− r)
∂t(r̂)

dξ

dt(r)
(r)

)
ds(r).

The kernel ∂G/∂t converges to a principal-value kernel as r̂→ ∂D, and, since
dξ/dt(r) ∈ L2, we see that the operator with kernel ∂2G(r̂ − r)/∂n(r̂)∂n(r)
converges to a bounded operator from H1 to L2 as r̂→ ∂D.
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Abstract. In this article, we conduct a rigorous stability and bifurcation analysis for a highly
idealized model of planetary-scale atmospheric and oceanic flows. The model is governed by the two-
dimensional, quasi-geostrophic equation for the conservation of vorticity in an east-west oriented,
periodic channel. The main result is the existence of Hopf bifurcation of the flow as the Reynolds
number crosses a critical value.

The key idea in proving this result is translating the eigenvalue problem into a difference equation
and treating the latter by continued-fraction methods. Numerical results are obtained by using a
finite-difference scheme with high spatial resolution and these results agree closely with the theoretical
predictions. The spatio-temporal structure of the limit cycle corresponds to a wave that propagates
slowly westward and is symmetric about the midaxis of the channel. For plausible paramater values
that correspond to midlatitude atmospheric flows, the period of this wave is 20–25 days.
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1. Introduction. A key problem in the study of climate dynamics is to under-
stand and predict the periodic, quasi-periodic, aperiodic, and fully turbulent charac-
teristics of large-scale atmospheric and oceanic flows. Bifurcation theory enables one
to determine how qualitatively different flow regimes appear and disappear as control
parameters vary; it provides us, therefore, with an important method to explore the
theoretical limits of predicting these flow regimes. In the present paper, we study bi-
furcations of the original partial differential equations (PDEs) that govern geophysical
flows, whereas most studies so far have only considered systems of ordinary differential
equations (ODEs) that are obtained by projecting the PDEs onto a finite-dimensional
solution space, either by finite differencing or by truncating a Fourier expansion (see
Ghil and Childress [10] and further references there). The present approach should
allow us to overcome some of the inherent limitations of the numerical bifurcation
results that dominate the climate dynamics literature up to this point, and to capture
the essential dynamics of the governing PDE systems.
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The basic equations of large-scale atmospheric and oceanic circulation are the
primitive equations. These equations can be derived from the full Navier–Stokes
equations with gravity, rotation, and variable density by neglecting vertical accel-
erations (the so-called hydrostatic approximation) and compressibility effects (i.e.,
sound waves); see Ghil and Childress [10], Kalnay [21], Lions, Temam, and Wang
[24, 25], and Pedlosky [36]. One philosophy in the geosciences is to study in great
detail simplified models that approximate well the dominant balance of forces on the
planetary-scale atmospheric and oceanic flows before addressing the more complete
PDE systems that govern these flows in all their complexity. By starting with mod-
els that incorporate only the most important effects, and by gradually bringing in
others, one is able to proceed inductively and thereby avoid the pitfalls inevitably
encountered when a great many poorly understood factors are introduced all at once.

The ideas of dynamical systems theory and nonlinear functional analysis have
been applied so far to climate dynamics mainly by careful numerical studies. These
were pioneered by Lorenz [26, 27], Stommel [43], and Veronis [44, 45] among others,
who explored the bifurcation structure of low-order models of atmospheric and oceanic
flows. More recently, pseudoarclength continuation methods have been applied to
atmospheric (Legras and Ghil [23]) and oceanic (Speich, Dijkstra, and Ghil [42] and
Dijkstra [9]) models with increasing horizontal resolution. These numerical bifurcation
studies have so far produced fairly reliable results for two classes of geophysical flows:
(i) atmospheric flows in a periodic midlatitude channel, in the presence of bottom
topography and a forcing jet; and (ii) oceanic flows in a rectangular midlatitude
basin, subject to wind stress on its upper surface. In both cases, the symmetry
properties of the forcing have a decisive effect on the bifurcations that arise—saddle-
node (Charney and DeVore [6] and Pedlosky [35]) or Hopf (Legras and Ghil [23] and
Jin and Ghil [19]) in the atmospheric channel and saddle-node, pitchfork, or Hopf
[2, 4, 14, 16, 18, 32, 37, 38, 42] in the oceanic basin.

More recently, the role of global bifurcations, via homoclinic and heteroclinic
orbits, has been demonstrated numerically in the wind-driven ocean circulation prob-
lem, for both shallow-water (Chang et al. [5], Simonnet et al. [40, 41]) and quasi-
geostrophic (QG) (Meacham [31] and Nadiga and Luce [34]) models. Both of these
models represent further simplifications of the primitive equations [10, 36]. Still, the
only mathematically rigorous proof of a bifurcation in either the atmospheric or the
oceanic problem outlined here appears, as far as we know, in the work of Wolansky
[47, 48], and it extends solely to the existence of asymmetric stationary solutions.

The present paper addresses the somewhat more difficult problem of proving the
existence of Hopf bifurcation in a QG flow in two dimensions. The main difficulty
in solving this problem is in estimating the crucial information on the spectrum of
the problem linearized around the basic flow. The main objective of this article is to
overcome this difficulty and bring a new set of tools to the rigorous study of successive
bifurcations in geophysical fluid dynamics problems.

More precisely, we conduct a bifurcation analysis of the following idealized two-
dimensional (2-D) QG flow problem. The governing equation dictates the conservation
of vorticity, as modified by forcing and dissipation:

∂t∆ψ + εJ(ψ,∆ψ) + ∂xψ = E∆2ψ − τ0 sinπy,(1.1)

where ψ = ψ(x, y, t) is a streamfunction and J(ψ, φ) = ∂xψ∂yφ−∂yψ∂xφ is the advec-
tion operator. The x-axis is directed to the east and the y-axis to the north. The zonal
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and meridional velocity components u and v are obtained from the streamfunction by

u = −ψy, v = ψx.

The relative vorticity ξ and the streamfunction ψ are related by the Poisson equation

∆ψ = ξ.

Equation (1.1) is derived from either the shallow-water equations with rotation or
the primitive equations by the so-called QG approximation, which assumes that the
balance between the Coriolis force and the pressure gradient dominates the flow. This
approximation corresponds to a singular perturbation that filters out the Poincaré
waves, also called inertia-gravity waves (i.e., gravity waves modified by the pres-
ence of rotation). The QG equation (1.1) only supports Rossby waves, whose phase
velocity—in the absence of forcing and dissipation, i.e., with a zero right-hand side—
is comparable to the characteristic particle velocity; see Ghil and Childress [10] and
Pedlosky [36]. Wolansky [48] studied the so-called barotropic, 2-D version of the QG
model (1.1), while Wang [46] obtained results on existence, uniqueness, and long-time
dynamics of the so-called baroclinic, three-dimensional (3-D) version.

The flow domain is a rectangular region Ω = {(x, y); 0 ≤ x ≤ 2/a; 0 ≤ y ≤ 2}.
For simplicity, we use here only the zonal component of the forcing. In an atmo-
spheric model, this forcing represents—in the QG vorticity equation (1.1), in which
there are no explicit thermodynamic effects—the transfer of angular momentum into
midlatitudes due to the tropical Hadley cell (Lorenz [28]). Alternatively, one can
think about a zonal forcing jet that would be in perfect geostrophic equilibrium with
the pole-to-equator temperature gradient (Lorenz [27] and Ghil and Childress [10]).

In an oceanic model, the time-and-longitude independent forcing on the right-
hand side of (1.1) is the curl of the wind stress

∇× τ = −τ0 sinπy;
a wind stress of the form τ = −τ0(cosπy, 0) mimics the annually averaged zonal wind
distribution over the North Atlantic or North Pacific, with westerly (i.e., eastward)
winds over the midlatitudes and easterlies in the tropics and polar latitudes.

The parameters ε and E are positive constants, called the Rossby and Ekman
numbers, respectively. They measure the relative importance of nonlinearity and
lateral diffusion. The effect of the bottom friction is neglected in this article. The
Reynolds number is defined here as

R =
ε

E
.

The unknown streamfunction ψ satisfies periodic boundary conditions at x =
0, 2/a and free-slip boundary conditions at y = 0, 2:{

ψ(t, 2/a, y) = ψ(t, 0, y),
ψ(t, x, 0) = ψ(t, x, 2) = 0; ∂2

yψ(t, x, 0) = ∂2
yψ(t, x, 2) = 0.

(1.2)

Along the meridional boundaries y = 0, 2, ∆ψ = ∂2
yψ = −∂yu, and uy = 0 cor-

responds to free slip along these boundaries. More general, “partial-slip” boundary
conditions—intermediate between free slip and no slip (u = −ψy = 0)—are discussed
in Appendix A of [18] for the 2-D shallow-water equations and in [14] for a 3-D version
of the QG equations.
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It is readily seen that (1.1) with (1.2) admits the steady-state solution ψ0 = ψ0(y),
where

ψ0 =
τ0
π4E

sinπy.(1.3)

We shall take τ0 = 1 below for simplicity.
This midlatitude channel with zonal periodicity is a better model for the atmo-

spheric problem that we outlined above than for the oceanic one. Still, the methods
we apply might eventually be extended to the latter. As mentioned already, Wolan-
sky [47] studied existence, uniqueness, and stability of stationary solutions of (1.1) in
the presence of topography and free-surface effects, which are omitted here. Wolan-
sky [48] showed, for a domain bounded by a closed streamline and nondivergent forc-
ing, that sufficient conditions exist under which a branch of asymmetric stationary
solutions bifurcates from the symmetric branch obtained when the domain, as well as
the forcing, admits a symmetry group. His results were shown to apply in an infinite
channel with the symmetry group of zonal translations.

The main objective of this article is to prove the following theorem.
Theorem 1.1.
(i) Let a ≥ √

3/2 and E > 0. Then (1.1) and (1.2) are linearly stable around ψ0

for any Reynolds number R > 0, where ψ0 = ψ0(y) is given by (1.3).
(ii) Let

√
3/4 ≤ a ≤ α0 and E > 0. Then there exists a critical Reynolds number

R0 > 0 for (1.1) and (1.2). Moreover (1.1) and (1.2) admit a nontrivial,
time-periodic, classical solution ψR branching off ψ0 as the Reynolds number
R crosses R0, provided that E > c0 for some constant c0 > 0.

This theorem is based essentially on the eigenvalue analysis of the spectral prob-
lem with respect to the linearization of (1.1) and (1.2) around ψ0, by using the
continued-fraction method first introduced by Meshalkin and Sinai [33]. For the
2-D Navier–Stokes equations, without the Coriolis term and with periodic bound-
ary conditions in both the x and y directions, stability and bifurcation were studied
in [7, 17, 33]. For the 3-D Navier–Stokes equations, without the Coriolis term and
with periodic boundary conditions in three directions, pitchfork bifurcation was stud-
ied by Chen and Wang [8]. They showed that the bifurcated branches exist for all
Reynolds number values past the critical one and that the stationary solutions on
these branches stay bounded as R → ∞.

For 2-D incompressible viscous flows with periodic boundary conditions, Me-
shalkin and Sinai [33] deduced the linear stability of the steady state (1.3) when
a = 1 with respect to all Reynolds numbers, Iudovich [17] proved the existence of
steady-state bifurcation when 0 < a < 1, and Chen and Price [7] obtained the exis-
tence of Hopf bifurcation for some a with 0 < a <

√
3/2. Steady-state bifurcation,

however, no longer occurs for any a under the free-slip boundary conditions described
by (1.2).

In the present paper, the constant a is bounded from below by
√
3/4 for Hopf

bifurcation to occur. In fact, for 0 < a <
√
3/4 multiple pairs of eigenvalues crossing

the imaginary line do occur, and by applying our approach here in a more sophisticated
manner, the existence of time-periodic solutions can also be proven rigorously in this
case; this will be reported elsewhere. Numerically, the multiple periodic solutions are
found in section 6 here (Figures 6.2 and 6.3).

To prove assertion (ii) of Theorem 1.1 requires verifying a transversal crossing
condition; see (1.7) below. This verification is rendered more difficult by the presence
of the so-called β-term ∂xψ in (1.1), which arises due to the meridional gradient of
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the planetary vorticity [10, 36]. In order to prove the validity of this condition, we
have to assume that E > c0 for some constant c0, although numerical experiments
reveal the occurrence of Hopf bifurcation for large τ0 but small E [14, 18, 40, 41, 42].
Technical difficulties prevent us from covering in Theorem 1.1 the range of x-periods
given by α0 < a <

√
3/2, with 3/4 < α0 � 0.8. The overall situation for our QG

channel flow, governed by (1.1), (1.2), is illustrated in Figure 1.1.

3/23/4 α 00

?Multiple Hopf Stable
(to be shown

Unique Hopf

(proved in Thm 1.1)
elsewhere)

Fig. 1.1. Range of values of the channel aspect ratio a for which various assertions hold. The
equivalence between the spectral problem (1.5) with boundary conditions (1.2) and the difference
equation of (2.5)–(2.10) holds for

√
3/4 ≤ a ≤ √

3/2 (see Lemma 2.2 below). The numerical results
in Figure 6.2 indicate that Hopf bifurcation also occurs for α0 ≤ a <

√
3/2.

To prove Theorem 1.1, we decompose the streamfunction into a stationary part
ψ0(x, y) given by (1.3) and a perturbation with exponential time dependence

ψ(x, y, t) = eρtφ(x, y),(1.4)

where φ satisfies the boundary conditions (1.2). Introducing this solution into the
governing equation and linearizing the latter with respect to the amplitude of the
perturbation, we obtain the spectral problem

ρ∆φ+ ε (∂xφ∂y∆ψ0 − ∂yψ0 ∂x∆φ) + ∂xφ = E∆2φ.

Substituting the basic solution ψ0 from (1.3) yields

L(ρ)φ
.
=

(
E∆2 − ∂x +

R

π3
cosπy(π2 +∆)∂x − ρ∆

)
φ = 0.(1.5)

The stability assertion (i) in the main theorem, i.e., the nonexistence of an eigen-
value ρ with Re ρ ≥ 0 for all R > 0, will be obtained by using the argument that
Meshalkin and Sinai [33] first applied to the linear stability analysis of the 2-D Navier–
Stokes equations.

The main effort is devoted to the proof of the bifurcation assertion (ii) of The-
orem 1.1. Using the functional analysis framework of the Hopf bifurcation theo-
rem in an infinite-dimensional setting (Joseph and Sattinger [20], Marsden and Mc-
Cracken [30]), assertion (ii) of this theorem will follow if the following assertions can
be shown to hold:

(a) There exists a critical Reynolds number R0 > 0 and an eigenvalue ρ = ρ(R0)
of (1.2) and (1.5) such that Re ρ(R0) = 0 and Im ρ(R0) �= 0;

(b) this eigenvalue is simple, i.e.,

1 = dim
⋃
n≥1

{
φ ∈ H4;Ln(ρ)φ = 0

}
;(1.6)
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(c) the transversal crossing condition

Re
dρ(R0)

dR
> 0.(1.7)

Here H4 denotes the complex space

H4 = {φ ∈ L2(Ω); ∆
2φ ∈ L2(Ω), φ satisfies (1.2)},

which contains the solution space of (1.1) and (1.2). This is a Hilbert space in the
norm

‖φ‖H4 = ‖∆2φ‖L2(Ω).

It is readily seen from the definition of H4 that the bifurcating solution can be
represented in the form of the Fourier expansion

ψ(x, y, t)(1.8)

=
∞∑

m=−∞

∑
n≥1−k

1∑
k=0

(Xm,n,k(t) cosmaπx+ Ym,n,k(t) sinmaπx) sin(n+ k/2)πy.

This paper is organized as follows. The rigorous stability and bifurcation anal-
ysis of the problem is carried out in sections 2–5. Section 2 contains the proof of
assertion (i) and a basic lemma on formulating the spectral problem. The proof of
assertion (ii) is completed by combining section 3 on the existence of R0 and ρ(R0),
section 4 on the simplicity of the eigenvalue ρ = ρ(R0), and section 5 on the transversal
crossing condition (1.7).

These analytical results are verified and complemented by numerical results in
section 6. This section also contains comments on the geophysical significance of the
periodic solutions. Brief remarks on the role of symmetry breaking in the bifurcation
of time-periodic vs. stationary solutions follow in section 7.

2. Stability and equivalent formulation of the spectral problem. To
prove the linear stability result of Theorem 1.1 and to obtain an equivalent formu-
lation of the spectral problem, we follow the argument of Meshalkin and Sinai [33]
by transforming the spectral problem into a difference equation, which is solved by
continued-fraction methods.

As stated already in section 1, the free-slip boundary condition in (1.2) is equiva-
lent to the condition φ = ∆φ = 0 at y = 0 and y = 2. An application of this condition
to (1.5) yields the generalized boundary condition

∆nφ = 0 at y = 0 and y = 2 (n = 0, 1, 2, . . .).

Thus the general expansion of the unknown function φ ∈ H4 for the spectral problem
represented by (1.2) and (1.5) takes the form

φ(x, y) =
∞∑

m=−∞

∑
n≥1−k

1∑
k=0

eimaπxinφn,m,k sin(n+ k/2)πy, i =
√−1 .(2.1)

The fact that in appears explicitly in the coefficients of this expansion is only for
convenience of notation in the derivation.
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Note that no bifurcation can occur for Reynolds number R for which the cor-
responding eigenvalue ρ lies in the complex half-plane Reρ < 0. In order to obtain
our stated bifurcation result, it is necessary to specify all of the eigenvalues ρ with
Reρ ≥ 0 and their corresponding eigenfunctions. However, the general expression
of the eigenfunction in (2.1) is too complicated for this purpose. Fortunately, the
eigenfunctions can be expressed in a simpler form, as given by the following lemma.
Lemma 2.1. Let a ≥ √

3/4 and let ρ be an eigenvalue of (1.2) and (1.5) such
that Reρ > −Eπ2(a2 + 1/4). Then a <

√
3/2 and the corresponding eigenfunction

has the form

φ(x, y) = e±iaπx
∞∑
n=0

inφn sin(n+ 1/2)πy.(2.2)

Proof. To begin with, we show that for given integersm and k = 0, 1, the subspace
of H4 

φ ∈ H4; φ =
∑

n≥1−k
eimaπxinφn sin(n+ k/2)πy


(2.3)

is invariant with respect to the spectral operator ∆−2L(ρ), L being defined by (1.5).
For φ in the previous subspace, we see that

e−imaπxLφ

=
∑

n≥1−k
{π2[m2a2 + (n+ k/2)2]ρ− imaπ}inφn sin(n+ k/2)πy

+
∑

n≥1−k
Eπ4[m2a2 + (n+ k/2)2]2inφn sin(n+ k/2)πy

−R
∑

n≥1−k
a[a2 + (n+ k/2)2 − 1]in+1φn cosπy sin(n+ k/2)πy

=
∑

n≥1−k
{π2[m2a2 + (n+ k/2)2]ρ− imaπ}inφn sin(n+ k/2)πy

+
∑

n≥1−k
Eπ4[m2a2 + (n+ k/2)2]2inφn sin(n+ k/2)πy

− R

2

∑
n≥2−k

ma[m2a2 + (n− 1 + k/2)2 − 1]inφn−1 sin(n+ k/2)πy

+
R

2

∑
n≥0

ma[m2a2 + (n+ 1 + k/2)2 − 1]inφn+1 sin(n+ k/2)πy

+
R

2
ma(m2a2 − 3/4)iφ0 sin(k/2)πy.

We thus have

L
∑

n≥1−k
eimaπxinφn sin(n+ k/2)πy =

∑
n≥1−k

eimaπxinψn sin(n+ k/2)πy,(2.4)

where ψn is a linear combination of φn−1, φn, and φn+1. More precisely, for n > 1−k,

ψn = {π2[m2a2 + (n+ k/2)2]ρ− imaπ + Eπ4[m2a2 + (n+ k/2)2]2}φn
− R

2
ma[m2a2 + (n− 1 + k/2)2 − 1]φn−1 +

R

2
ma[m2a2 + (n+ 1 + k/2)2 − 1]φn+1,
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while

ψ1−k = {π2[m2a2 + (1− k/2)2]ρ− imaπ + Eπ4[m2a2 + (1− k/2)2]2}φ1−k

+
R

2
kma[m2a2 + (1 + k/2)2 − 1]φ1 +

R

2
kma(m2a2 − 3/4)iφ0

+
R

2
(1− k)ma(m2a2 + 3)φ2.

This gives the invariance of the subspace (2.3), and thus we may assume that any
eigenfunction φ is in this subspace for some integer m and some k = 0, 1.

We can now prove the desired assertion. Indeed, suppose that (ρ, φ) solves the
spectral problem L(ρ)φ = 0 and thus, by (2.4),

ψn = 0, n ≥ 1− k.(2.5)

If m = 0, this implies immediately φn = 0 for n ≥ 1 − k. If m �= 0, the spectral
problem yields ∑

n≥1−k
[m2a2 + (n+ k/2)2 − 1]ψnφ̄n = 0,

where φ̄n is the complex conjugate of φn, and so its real part satisfies∑
n≥1−k

[m2a2+(n+k/2)2]{Reρ+Eπ2[m2a2+(n+k/2)2]}[m2a2+(n+k/2)2−1]|φn|2 = 0.

(2.6)
This result, together with the condition Reρ+ Eπ2(a2 + 1/4) > 0 and (2.5), implies


φn ≡ 0 when k = 0, a > 0,−∞ < m < ∞,

φn ≡ 0 when k = 1, a >
√
3/2,−∞ < m < ∞,

φn ≡ 0 when k = 1,
√
3/4 ≤ a ≤ √

3/2, |m| ≥ 2,

since m2a2 + (n+ k/2)2 − 1 ≥ 0.
The proof is thus complete.
This lemma immediately gives the stability result contained in assertion (i) of

Theorem 1.1.
As we shall see, it is important to realize that k = 0 corresponds to a function

φ(x, y) that is antisymmetric about the axis y = 1 of the channel, while φ(x, y) is
symmetric about this axis for k = 1. It follows from Lemma 2.1 that no bifurcation
can arise in the problem governed by (1.1) and (1.2) from an antisymmetric instability.

To address the bifurcation problem, we thus consider the spectral equation (1.5)

Re ρ > −Eπ2(a2 + 1/4), φ =

∞∑
n=0

e±iaπxinφn sin(n+ 1/2)πy ∈ H4

in the case
√
3/4 ≤ a <

√
3/2. For simplicity, let

dn =
2π2[a2 + (n+ 1/2)2]ρ− 2aπi+ 2Eπ4[a2 + (n+ 1/2)2]2

Ra[a2 + (n+ 1/2)2 − 1]
;(2.7)

it follows, in particular, that Re d0 < 0 and Re dn > 0 with n ≥ 1.
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For the eigenfunction

φ =

∞∑
n=0

eiaπxinφn sin(n+ 1/2)πy ∈ H4,(2.8)

let

ξn = a[a2 + (n+ k/2)2 − 1]φn.(2.9)

The spectral problem L(ρ)φ = 0 is, by (2.4), equivalent to ψn = 0; see (2.5). With
definitions (2.7) and (2.9), the latter formulation becomes{

d0ξ0 + iξ0 + ξ1 = 0, n = 0,

dnξn − ξn−1 + ξn+1 = 0, n ≥ 1,
(2.10)

and (2.6) can be rewritten as ∑
n≥0

Re dn|ξn|2 = 0.(2.11)

It is readily seen that (2.10) implies that ξn = 0 for all n ≥ 0 whenever there exists
an n0 ≥ 0 for which ξn0

= 0.
Thus we may assume that ξn �= 0 for n ≥ 0. Hence, we obtain from (2.10) that

ξ1
ξ0

= −d0 − i,
ξn
ξn−1

=
1

dn +
ξn+1

ξn

, n ≥ 1.

It follows therewith from (2.8) that ρ = ρ(R) solves the following continued-fraction
equation:

−d0 − i =
1

d1 +
1

d2 +
1

. . .

.(2.12)

Moreover, we see that the spectral problem L(ρ)φ = 0 is equivalent to the complex
conjugate spectral problem L(ρ̄)φ̄ = 0, with

φ̄ =

∞∑
n=0

e−iaπxin(−1)nφ̄n sin(n+ 1/2)πy ∈ H4,

and thus (ρ̄, φ̄) satisfies the complex conjugate of the three-term recursions (2.10),
namely, {

d̄0ξ̄0 − iξ̄0 + ξ̄1 = 0, n = 0,

d̄nξ̄n − ξ̄n−1 + ξ̄n+1 = 0, n ≥ 1.
(2.13)

Note that (2.10) and (2.13) are two distinct difference equations.
The above argument implies the following fundamental lemma.



352 Z.-M. CHEN, M. GHIL, E. SIMONNET, AND S. WANG

Lemma 2.2. For
√
3/4 ≤ a <

√
3/2, the spectral problem described by (1.5) and

(1.2) with unknown spectral solution (ρ, φ) such that

Reρ > −Eπ2(a2 + 1/4), φ(x, y) =

∞∑
n=0

eiaπxinφn sin(n+ 1/2)πy ∈ H4

is equivalent to the difference equation (2.10) with (dn, ξn) satisfying the constraints
(2.7), (2.9), (2.11), and (2.12). Moreover, for a nontrivial eigenfunction φ, the cor-
responding sequence {ξn} may be represented in the product form

ξn = cγ1 · · · γn, n ≥ 1,

ξ0 = c,

where c is an arbitrary complex constant and the factors γn are given by the infinite
continued fractions

γn =
1

dn +
1

dn+1 +
1

. . .

.

Furthermore, the spectral problem described by (1.5) and (1.2) with another un-
known solution (ρ̄, φ̄), the complex conjugate of (ρ, φ), is equivalent to the difference
equation (2.13).

3. Existence of a critical Reynolds number. In this section, we show the
existence of a critical Reynolds number R0 and the existence of an eigenvalue ρ(R)
such that Re ρ(R0) = 0 and Im ρ(R0) > 0. We begin with the existence of the
eigenvalue ρ, which may reach, and eventually cross, the imaginary axis of the complex
plane.
Lemma 3.1. The spectral problem expressed by (1.5) and (1.2) admits a unique

pair of complex conjugate eigenvalues ρ = ρ(R) and ρ̄ = ρ̄(R) for any R > 0 and√
3/4 ≤ a ≤ α0, such that Re ρ > −Eπ2(a2 + 1/4).
Proof. From Lemma 2.2, we see readily that it suffices to show the existence and

uniqueness of a function ρ = ρ(R) that satisfies (2.7)–(2.12). Combining (2.7) and
(2.12), we may write ρ(R) as

ρ = −Eπ2(a2 + 1/4) +
i2aπ + iRa(3/4− a2)

2π2(a2 + 1/4)
+

Ra(3/4− a2)

2π2(a2 + 1/4)

d1 +
1

d2 +
1

. . .

.(3.1)

To derive the existence of the unique pair of eigenvalues that satisfies the required
strong inequality, we denote by ΦR(ρ) the right-hand side of (3.1). It suffices then
to show the existence of a fixed point of ΦR in the complex plane C. Indeed, since
Reρ ≥ −Eπ2(a2 + 1/4), R > 0, and a2 < 3/4, we have

ReΦR(ρ) > −Eπ2(a2 + 1/4)



HOPF BIFURCATION IN QUASI-GEOSTROPHIC CHANNEL FLOW 353

and

|ΦR(ρ)| ≤ Eπ2(a2 + 1/4) +
2aπ +Ra(3/4− a2)

2π2(a2 + 1/4)
+

Ra(3/4− a2)

2π2(a2 + 1/4)

1

Re d1
(3.2)

≤ Eπ2(a2 + 1/4) +
2aπ +Ra(3/4− a2)

2π2(a2 + 1/4)
+

R2a2(3/4− a2)(a2 + 5/4)

8π4(a2 + 1/4)(a2 + 9/4)E
.

Denoting this bound by KR, we see that ΦR maps the closed convex set

CR = {z ∈ C;−Eπ2(a2 + 1/4) ≤ Rez, |z| ≤ KR}(3.3)

into itself. It follows from Brouwer’s fixed point theorem that there exists a value
ρ(R) in this compact set such that ΦR(ρ(R)) = ρ(R). This gives the existence of the
desired pair of eigenvalues.

By Lemmas 2.1 and 2.2, we see that there is a one-to-one correspondence between
each pair of complex conjugate eigenvalues of the spectral problem L(ρ)φ = 0 and
a solution ρ to the difference equation (2.10). In order to show that the pair of
eigenvalues is unique, we suppose the existence of two pairs of complex conjugate
solutions ρj = ρj(R) and ρ̄j = ρ̄j(R), with Reρj > −Eπ2(a2 + 1/4) for j = 1, 2 and
R > 0. This is equivalent to (2.10) admitting two solutions ρj for j = 1, 2 such that

γn(ρj) =
1

dn + γn+1(ρj)
= lim
m→∞

1

dn +
1

dn+1 +
1

. . .
1

dn+m

for dn = dn(ρj) defined by (2.7) and Reρj > −Eπ2(a2 + 1/4). We have

γn(ρ1)− γn(ρ2) = −γn(ρ1)γn(ρ2)[dn(ρ1)− dn(ρ2) + γn+1(ρ1)− γn+1(ρ2)],

and so, by induction,

γ1(ρ1)− γ1(ρ2) =
∑
n≥1

(−1)n[dn(ρ1)− dn(ρ2)]ηn(ρ1)ηn(ρ2)(3.4)

=
∑
n≥1

(−1)n 2π[a2 + (n+ 1/2)2]

Ra[a2 + (n+ 1/2)2 − 1]
ηn(ρ1)ηn(ρ2)(ρ1 − ρ2);

here {ηn(ρj)} is now the solution specified by Lemma 2.2 such that ηn = ξn and
η0 = c = 1. This yields, for ρ1 �= ρ2,

|ρ1 − ρ2|
=

Ra(3/4− a2)

2π2(a2 + 1/4)
|γ1(ρ1)− γ1(ρ2)|

≤ 3/4− a2

2(a2 + 1/4)

∑
n≥1

a2 + (n+ 1/2)2

[a2 + (n+ 1/2)2 − 1]
(|ηn(ρ1)|2 + |ηn(ρ2)|2)|ρ1 − ρ2|

<
3/4− a2

2a2 + 1/2

2∑
i=1

∑
n≥1

[a2 + (n+ 1/2)2]{Reρi + Eπ2[a2 + (n+ 1/2)2]}
[Reρi + Eπ2(a2 + 1/4)][a2 + (n+ 1/2)2 − 1]

|ηn(ρi)|2|ρ1 − ρ2|

= |ρ1 − ρ2|,
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where we have used (2.11). The strong inequality implies ρ1 = ρ2, which completes
the proof of Lemma 3.1.
Lemma 3.2. Let ρ = ρ(R) with R > 0 be one of the two complex conjugate

eigenvalues obtained in Lemma 3.1. Then we have Imρ(R) �= 0.
Proof. Assuming otherwise, i.e., Im ρ = 0, we derive a contradiction. To this end,

notice that∣∣∣∣ Im dn
Re dn

∣∣∣∣ =
∣∣(a2 + (n+ 1/2)2)Im ρπ2 − aπ

∣∣
π2(a2 + (n+ 1/2)2) {E[a2 + (n+ 1/2)2]π2 +Re ρ}

>

∣∣(a2 + (n+ 1 + 1/2)2)π2Im ρ− aπ
∣∣

π2(a2 + (n+ 1 + 1/2)2) {E[a2 + (n+ 1 + 1/2)2]π2 +Re ρ}
=

∣∣∣∣ Im dn+1

Re dn+1

∣∣∣∣ .
This, together with induction on n, implies that

|Im γ1|
Re γ1

<

∣∣∣∣ Im d1

Re d1

∣∣∣∣ .
Thus we have ∣∣∣∣ Im (−d0 − i)

−Re d0

∣∣∣∣ <
∣∣∣∣ Im d1

Re d1

∣∣∣∣ ,
and so

|2(a2 + 1/4)π2Im ρ− 2aπ −Ra(3/4− a2)|
(a2 + 1/4)Re ρ+ E(a2 + 1/4)2π2

<
2|(a2 + 9/4)π2Im ρ− aπ|

(a2 + 9/4)Re ρ+ E(a2 + 9/4)2π2
.

Therefore,

|2(a2 + 1/4)π2Im ρ− 2aπ −Ra(3/4− a2)|
2|(a2 + 9/4)π2Im ρ− aπ| <

(a2 + 1/4)[Re ρ+ E(a2 + 1/4)π2]

(a2 + 9/4)[Re ρ+ E(a2 + 9/4)π2]

≤ a2 + 1/4

a2 + 9/4
,

where we have used the condition Re ρ+ E(a2 + 1/4)π2 > 0. This implies

1 +
Ra(3/4− a2)

2|(a2 + 9/4)π2Im ρ− aπ| <
a2 + 1/4

a2 + 9/4
+

2π2|Im ρ|
|(a2 + 9/4)π2Im ρ− aπ| < 1,

which leads to a contradiction and hence Im ρ > 0. The proof of Lemma 3.2 is thus
complete.
Lemma 3.3. For one of the two eigenvalues obtained in Lemma 3.1, we have

− 1

10
<

2π2

a
lim sup
R→∞

Imρ(R)

R
< 2.(3.5)

Proof. By (2.11), (2.12), and Lemma 2.2, we have

−Re d0|ξ0|2 > Re d1|ξ1|2,
or

−Re d0 > Re d1|d0 + i|2.
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Together with (2.7), this implies

(a2 + 1/4)2

3/4− a2
>

(a2 + 9/4)2

a2 + 5/4

[
2π2(a2 + 1/4)Im ρ− 2aπ

Ra(3/4− a2)
− 1

]2
,

and so

(a2 + 1/4)2(a2 + 5/4)

(3/4− a2)(a2 + 9/4)2
>

[
2π2(a2 + 1/4)

a(3/4− a2)
lim sup
R→∞

Im ρ

R
− 1

]2
.

Therefore, the double inequality (3.5) holds for
√
3/4 ≤ a <

√
3/2 and the proof of

Lemma 3.3 is thus complete.
Now we prove the main result of this section.
Theorem 3.4. Let ρ(R) be either one of the two complex conjugate eigenvalues

obtained in Lemma 3.1. Then there exists a critical Reynolds number R0 such that
Reρ(R0) = 0 and Imρ(R0) �= 0.

Proof. First, we prove the smoothness of ρ(R) by using the implicit function
theorem. Define the function

F (ρ,R) = i+ d0 +
1

d1 +
1

d2 +
1

. . .

(3.6)

with dn = dn(ρ,R) given by (2.7). We see immediately that F (ρ(R), R) = 0, due to
(2.12) and Lemma 3.1. It follows from (3.4) that

∂F (ρ,R)

∂ρ
=
∑
n≥0

(−1)n ∂dn
∂ρ

η2
n =

∑
n �=0

(−1)n 2π[a2 + (n+ 1/2)2]

Ra[(a2 + (n+ 1/2)2 − 1]
η2
n,(3.7)

where {ηn} is the solution specified by Lemma 2.2 such that η0 = 1. Hence we have,
by (2.11), that∣∣∣∣∂F (ρ,R)∂ρ

∣∣∣∣ ≥ 2π2(a2 + 1/4)

Ra(3/4− a2)
|η0|2 −

∑
n≥1

2π2[a2 + (n+ 1/2)2]

Ra[a2 + (n+ 1/2)2 − 1]
|ηn|2(3.8)

=
2π2

Ra

∑
n≥1

[a2 + (n+ 1/2)2][Reρ+ Eπ2(a2 + (n+ 1/2)2)]

[Reρ+ Eπ2(a2 + 1/4)][a2 + (n+ 1/2)2 − 1]
|ηn|2

−
∑
n≥1

2π2[a2 + (n+ 1/2)2]

Ra[a2 + (n+ 1/2)2 − 1]
|ηn|2

=
2π4E

Reρ+ Eπ2(a2 + 1/4)

∑
n≥1

[a2 + (n+ 1/2)2](n+ 1)n

Ra[a2 + (n+ 1/2)2 − 1]
|ηn|2 > 0.

Thus, by the implicit function theorem, ρ = ρ(R) is continuously differentiable.
Next, letting R → 0 in (2.7) and (2.12), we see that

lim
R→0

Re ρ(R) = −Eπ2(a2 + 1/4).

Finally, by Lemma 3.2 and the smoothness of ρ(R), it suffices to show that

lim sup
R→∞

Re ρ(R) > 0.
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To do so, we suppose that lim supR→∞Re ρ(R) ≤ 0, which will lead to a contradiction.
Without loss of generality, by Lemma 3.3, we may suppose that

lim
R→∞

Re ρ(R) = µ, lim
R→∞

2π2Im ρ(R)

Ra
= ν(3.9)

for some constants µ and ν. Otherwise, we may consider instead a subsequence {Rn}
that converges to these values.

Applying (2.12) and Lemma 2.2 yields

−d0 − i =
1

d1 +
1

d2 + γ3

.(3.10)

Hence

lim
R→∞

γ3 =
1

− 1

lim
R→∞

iIm d0 + i
− lim
R→∞

iIm d1

− lim
R→∞

iIm d2(3.11)

= i
lim
R→∞

Im d0 + 1

lim
R→∞

Im d1( lim
R→∞

Im d0 + 1)− 1
− lim
R→∞

iIm d2,

or

lim
R→∞

(Im γ3 + Im d2) =
lim
R→∞

Im d0 + 1

lim
R→∞

Im d1(Im d0 + 1)− 1
.(3.12)

Furthermore, it follows from (3.10) that

−d0 − i =
d2 + γ3

d1(d2 + γ3) + 1
=

(d2 + γ3)(d1(d2 + γ3) + 1)

|d1(d2 + γ3) + 1|2 ,

and thus

−Re d0|d1(d2 + γ3) + 1|2(3.13)

= Re (d2 + γ3)Re (d1(d2 + γ3) + 1)− Im (d2 + γ3)Im d1(d2 + γ3)

= Re (d2 + γ3)(Re d1Re (d2 + γ3) + 1) + Re d1(Im d2 + Im γ3)
2.

Multiplying the last equation by R and passing to the limit R → ∞, we obtain, after
using (3.9), (3.11), (3.12), and the positivity of Re γ3,

lim
R→∞

R|Re d0| =
lim
R→∞

RRe (d2 + γ3) + lim
R→∞

RRe d1 lim
R→∞

(Im d2 + Im γ3)
2

| lim
R→∞

Im d1 lim
R→∞

(Im d2 + Im γ3)− 1|2

≥
lim
R→∞

RRe d2 + lim
R→∞

RRe d1 lim
R→∞

(Im d2 + Im γ3)
2

| lim
R→∞

Im d1 lim
R→∞

(Im d2 + Im γ3)− 1|2

= lim
R→∞

RRe d1( lim
R→∞

Im d0 + 1)2

+ lim
R→∞

RRe d2(1− lim
R→∞

Im d1(Im d0 + 1))2.
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That is,

a2 + 1/4

3/4− a2

[
µ+ E(a2 + 1/4)π2

]

≥ a2 + 9/4

a2 + 5/4

[
µ+ E(a2 + 9/4)π2

](
1− a2 + 1/4

3/4− a2
ν

)2

+
a2 + 25/4

a2 + 21/4

[
µ+ E(a2 + 25/4)π2

] [a2 + 9/4

a2 + 5/4

(
1− a2 + 1/4

3/4− a2
ν

)
ν − 1

]2
.

This, together with the condition −E(a2 + 1/4)π2 ≤ µ ≤ 0, implies

(a2 + 1/4)2

3/4− a2
≥ (a2 + 9/4)2

a2 + 5/4

(
1− a2 + 1/4

3/4− a2
ν

)2

(3.14)

+
(a2 + 25/4)2

a2 + 21/4

[
1− a2 + 9/4

a2 + 5/4

(
1− a2 + 1/4

3/4− a2
ν

)
ν

]2

>
(a2 + 1/4)2

3/4− a2

for
√
3/4 ≤ a ≤ α0, with α0 � 0.80. This leads to a contradiction and hence

limR→∞Re ρ > 0. The proof of Theorem 3.4 is thus complete.

4. Spectral simplicity condition. This section is devoted to the simplicity
of each of the two complex conjugate eigenvalues that cross the imaginary axis. We
prove the following theorem.
Theorem 4.1. Let the critical Reynolds number R0 and the eigenvalue ρ = ρ(R0)

with Imρ > 0 be as shown to exist in Theorem 3.4. Then this eigenvalue is simple,
i.e.,

dim
⋃
n≥1

{
φ ∈ H4; Lnφ = 0

}
= 1,(4.1)

where L = L(ρ) is the linear operator defined in (1.5).
Proof. We introduce the invariant subspaces of the spectral problem (1.5) for any

integer m:

Em,k =


φ ∈ H4; ψ(x, y) =

∑
n≥1−k

inφne
imaπx sin(n+ k/2)πy


 , k = 0, 1.

Hence the simplicity condition holds true provided that the following assertions are
valid:

dim
⋃
n≥1

{φ ∈ Em,k; L
nφ = 0} = 0(4.2)

for (m, k) �= (1, 1), and

dim
⋃
n≥1

{φ ∈ E1,1; L
nφ = 0} = 1.(4.3)
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Equation (4.2) follows immediately from Lemmas 2.1 and 2.2. Thus it remains
to prove (4.3). We first note from Lemma 2.2 and Theorem 3.4 that

dim {φ ∈ E1,1; Lφ = 0} = 1.

By induction, it suffices to show

dim
{
φ ∈ E1,1 ; L2φ = 0

}
= 1.(4.4)

Indeed, rewrite the equation L2φ = 0 as

Lχ = 0,(4.5)

after setting

Lφ = χ(4.6)

for some φ ∈ E1,1. It remains to show that φ ≡ 0. Following the derivation of
(2.10), we obtain the equivalent formulation of (4.5) and (4.6) in terms of two coupled
difference equations: 



dnξ
′
n − ξ′n−1 + ξ′n+1 = ξn, n ≥ 1,

dnξn − ξn−1 + ξn+1 = 0, n ≥ 1,

d0ξ
′
0 + iξ′0 + ξ′1 = ξ0, n = 0,

d0ξ0 + iξ0 + ξ1 = 0, n = 0;

(4.7)

here dn is defined by (2.7) and {ξn/dn}, {ξ′n} ∈ l22, while l
2
2 denotes the Hilbert space

l22 =


{ξn}; ‖{ξn}‖2

l22
=
∑
n≥0

n2|ξn|2 < ∞

 .

Define an operator M : l22 �→ l22 such that M{ξn} = {ηn} with

ηn =
1

dn
(ξn+1 − ξn−1), η0 =

1

d0
(iξ0 + ξ1), n ≥ 1.

Equation (4.7) becomes 


(1 +M){ξ′n} =
{
ξn
dn

}
,

(1 +M){ξn} = 0.

(4.8)

We see that M is compact in l22. It follows from Riesz–Schauder theory (also called
the Fredholm alternative principle; see Theorem 5.3 in [15]) that (4.8) is solvable if
and only if

∑
n≥0

ξnζ̄n
dn

= 0(4.9)

whenever {ζn} ∈ l22 is a nontrivial solution of the dual equation

(1 +M∗){ζn} = 0,(4.10)
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where M∗ is the dual operator of M .
Such a nontrivial solution of (4.10) is given by

ζn +
ζn−1

d̄n−1
− ζn+1

d̄n+1
= 0, n ≥ 1,

ζ0 − iζ0
d̄0

− ζ1
d̄1

= 0, n = 0.

This becomes, by setting ζ̂n = (−1)nζ̄n/dn,
dnζ̂n − ζ̂n−1 + ζ̂n+1 = 0, n ≥ 1,

d0ζ̂0 + iζ̂0 + ζ̂1 = 0, n = 0.

By Lemma 2.2 and Theorem 3.4, we have

ζ̂n = (−1)n ζ̄n
dn

= cξn, n ≥ 0,

for some constant c �= 0. Thus (4.9) becomes

∑
n≥0

ξnζ̄n
dn

= c
∑
n≥0

(−1)nξ2
n = 0.

Hence, it follows from (2.11) that

0 =

∣∣∣∣∣∣
∑
n≥0

(−1)nξ2
n

∣∣∣∣∣∣
≥ |ξ0|2 −

∑
n≥1

|ξn|2

=
1

|Re d0|
∑
n≥1

(Re dn − |Re d0|)|ξn|2.

Since Re dn − |Re d0| > 0 for
√
3/4 ≤ a <

√
3/2, we thus have {ξn} = 0 and hence

(4.4). The proof of Theorem 4.1 is complete.

5. Transversal crossing condition. The objective of this section is to show
that the pair of eigenvalues {ρ(R), ρ̄(R)}) crosses the imaginary axis transversally and
away from the origin. This result reads as follows.
Theorem 5.1. Let ρ = ρ(R0) and R0 be as characterized in Lemma 2.2 and

Theorems 3.4 and 4.1. Then the transversal crossing condition (1.7) holds, provided
that E > c0 for some constant c0 > 0.

Proof. Recalling the definition of the function F = F (ρ,R) in (3.6), we see that
the eigenvalue ρ = ρ(R) satisfies the equation F (ρ(R), R) = 0, and so

∂F

∂ρ

dρ(R)

dR
+
∂F

∂R
= 0.

It follows from the derivation of (3.7) that

∂F

∂R
= − 1

R

∑
n≥0

(−1)ndnη2
n.
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Thus, by (2.7) with R = R0, (3.7), and (3.8), we have

πR0Re
dρ(R0)

dR
= πRe

∑
n≥0

(−1)ndnη2
n

∑
n≥0

(−1)n ∂dn
∂ρ

η2
n

= Re

∑
n≥0

(−1)nπ
3E[a2 + (n+ 1/2)2]2 − ia

a2 + (n+ 1/2)2 − 1
η2
n

∑
n≥0

(−1)n a2 + (n+ 1/2)2

a2 + (n+ 1/2)2 − 1
η2
n

.

This equals, after setting a2 + (n+ 1/2)2 = βn,

Re

∑
n≥0

(−1)nπ
3Eβ2

n − ia

βn − 1
η2
n

∑
n≥0

(−1)n βn
βn − 1

η2
n

= π3Eβ0 +
∑
n≥1

(−1)nπ
3Eβn(βn − β0)

βn − 1
Re (ξ2

n)−
a

β0

∑
n≥1

(−1)n βn − β0

βn − 1
Im (ξ2

n),

where the solution {ξn} is chosen such that

ξ2
0 =

1∑
n≥0

(−1)n βn
βn − 1

η2
n

.(5.1)

We thus have

πR0Re
dρ(R0)

dR

= π3Eβ0


1− 1

β0

∑
n≥1

βn(βn − β0)

βn − 1
|ξn|2


− a

β0

∑
n≥1

(−1)n βn − β0

βn − 1
Im (ξ2

n)

+ π3E
∑
n≥1

βn(βn − β0)

βn − 1
[|ξn|2 + (−1)nRe (ξ2

n)].

Furthermore, by (2.11) and (5.1), we have

1− 1

β0

∑
n≥1

βn(βn − β0)

βn − 1
|ξn|2

= 1− 1

β0

∑
n≥1

β2
n

βn − 1
|ξn|2 +

∑
n≥1

βn
βn − 1

|ξn|2
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= |ξ0|2


∣∣∣∣∣∣
∑
n≥0

(−1)n βn
βn − 1

η2
n

∣∣∣∣∣∣+
∑
n≥1

βn
βn − 1

|ηn|2 + β0

β0 − 1




≥ |ξ0|2


∣∣∣∣∣∣
∑
n≥0

(−1)n βn
βn − 1

Re (η2
n)

∣∣∣∣∣∣+
∑
n≥1

βn
βn − 1

|ηn|2 + β0

β0 − 1




≥ |ξ0|2
∑
n≥1

βn
βn − 1

|ηn|2 − |ξ0|2
∣∣∣∣∣∣
∑
n≥1

(−1)n βn
βn − 1

Re (η2
n)

∣∣∣∣∣∣
≥ |ξ0|2 β1

β1 − 1
(|η1|2 − |Re (η2

1)|)

and ∣∣∣∣∣∣
∑
n≥1

(−1)n βn − β0

βn − 1
Im (ξ2

n)

∣∣∣∣∣∣ ≤
∑
n≥1

βn − β0

βn − 1
|Im (ξ2

n)|

≤ 1

β1

∑
n≥1

β2
n

βn − 1
|ξn|2 = β2

0

β1(1− β0)
|ξ0|2.

Collecting terms while using (2.12) and Lemma 2.2, we have

R0

π2|ξ0|2Re
dρ(R0)

dR

≥ Eβ0(|η1|2 − |Re η2
1 |) + E(β1 − β0)

(
|η1|2 − Re ξ2

1

|ξ0|2
)
− aβ0

π3β1(1− β0)

= Eβ0(|d0 + i|2 − |Re (d0 + i)2|)
+ 2E

(
|d+ i|2 − Re [(d0 + i)2ξ2

0 ]

|ξ0|2
)
− aβ0

π3β1(1− β0)
.

Let us now apply the following lemma, whose proof will be given at the end of
this section.
Lemma 5.2. One of the following two estimates,

lim inf
E→∞

E

R0
> 0(5.2)

or

lim inf
E→∞

|Re d0| > 0,(5.3)

holds true.
If |1 + Im d0| > |Re d0|, we have

R0

π2|ξ0|2Re
dρ(R0)

dR
≥ Eβ0(|d0 + i|2 − |Re (d0 + i)2|)− aβ0

π3β1(1− β0)

= 2Eβ0(Re d0)
2 − aβ0

π3β1(1− β0)
;

the latter is positive due to Lemma 5.2, after letting E > c0 for some constant c0 > 0.
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If |Re d0| ≥ |1 + Im d0| > |Re d0|/4, we see that
R0

π2|ξ0|2Re
dρ(R0)

dR
≥ Eβ0(|d0 + i|2 − |Re (d0 + i)2|)− aβ0

π3β1(1− β0)

= 2Eβ0(1 + Im d0)
2 − aβ0

π3β1(1− β0)

≥ 1

2
Eβ0(Re d0)

2 − aβ0

π3β1(1− β0)
> 0,

which is positive as well for E large enough.
For the remaining case |Re d0|/4 ≥ |1 + Im d0| ≥ 0, we see that −Re (ξ2

0) > 0 due
to (2.11) and (5.1). Hence we have

R0

π2|ξ0|2Re
dρ(R0)

dR

≥ 2E

{
|d+ i|2 − Re [(d0 + i)2ξ2

0 ]

|ξ0|2
}
− aβ0

π3β1(1− β0)

≥ 2E

[
|d+ i|2 + 2(Re d0)(1 + Im d0)Im (ξ2

0)

|ξ0|2
]
− aβ0

π3β1(1− β0)

≥ E(Re d0)
2 − aβ0

π3β1(1− β0)
.

This also implies the desired assertion by letting E be large enough. The proof of
Theorem 5.1 is complete, subject to proving Lemma 5.2.

Proof of Lemma 5.2. Let us first note, from (2.11) and Lemma 2.2, that

Re d1|η1|2 < −Re d0,

or, by (2.12),

β2
0(β1 − 1)

β2
1(1− β0)

> |d0 + i|2 =
[
2π2β0Im ρ− aπ

R0a(1− β0)
− 1

]2
+

[
2π4Eβ2

0

R0a(1− β0)

]2
.(5.4)

This implies

|d1|+ |d2| < c1,(5.5)

and R0 > c2E for some positive constants c1 and c2, independent of E and R0. Thus
E → ∞ implies R0 → ∞.

On the contrary, we suppose that

lim inf
E→∞

E

R0
= 0,(5.6)

which will lead to a contradiction. Indeed, by following the final step in the proof of
Theorem 3.4, we use (2.12) or (3.10) to obtain

lim
E→∞

γ3 =
1

− 1

lim
E→∞

iIm d0 + i
− lim
E→∞

iIm d1

− lim
E→∞

iIm d2(5.7)

= i
lim
E→∞

Im d0 + 1

lim
E→∞

Im d1( lim
E→∞

Im d0 + 1)− 1
− lim
E→∞

iIm d2
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and

lim
E→∞

(Im γ3 + Im d2) =
lim
E→∞

Im d0 + 1

lim
E→∞

Im d1(Im d0 + 1)− 1
,(5.8)

where, for simplicity of notation, we have supposed the existence of the limit.
Furthermore, multiplying (3.13) by R0/E and passing to the limit E → ∞, we

obtain, after applying (5.4), (5.5), (5.6), (5.7), (5.8), and the positivity of Re γ3,

R0

E
|Re d0| =

lim
E→∞

R0

E
Re (d2 + γ3) +

R0

E
Re d1 lim

E→∞
(Im d2 + Im γ3)

2

| lim
E→∞

Im d1 lim
E→∞

(Im d2 + Im γ3)− 1|2

≥
R0

E
Re d2 +

R0

E
Re d1 lim

E→∞
(Im d2 + Im γ3)

2

| lim
E→∞

Im d1 lim
E→∞

(Im d2 + Im γ3)− 1|2 ;

that is,

β2
0

1− β0
≥

β2
2

β2 − 1
+

β2
1

β1 − 1
lim
E→∞

(Im d2 + Im γ3)
2

| lim
E→∞

Im d1 lim
E→∞

(Im d2 + Im γ3)− 1|2

≥ β2
2

β2 − 1
[1− lim

E→∞
Im d1(Im d0 + 1)]2

≥ β2
2

β2 − 1

[
1− β1(1− β0)

4β0(β1 − 1)

]2
.

We thus have

(a2 + 1/4)2

3/4− a2
≥ (a2 + 25/4)2

a2 + 21/4

[
1− (a2 + 9/4)(3/4− a2)

4(a2 + 1/4)(a2 + 5/4)

]2
>

(a2 + 1/4)2

3/4− a2
.

This leads to a contradiction for
√
3/4 ≤ a ≤ α0, and hence (5.2) is valid. The proof

of Lemma 5.2, and hence that of Theorem 5.1, is complete.
As stated in section 1, assertion (i) of Theorem 1.1 was proven in section 2, while

assertion (ii) follows by combining the results of Theorems 3.4, 4.1, and 5.1.

6. Numerical experiments. In this section, we compute numerically the Hopf
bifurcation of the zonally periodic problem (1.1) with boundary conditions given by
(1.2) and for various values of the aspect ratio a. We discretize a steady-state version
of (1.1), as well as the spectral problem (1.5), both using the free-slip boundary
conditions (1.2). The finite-difference discretization uses the Arakawa scheme, which
conserves energy and enstrophy for 2-D incompressible flows [1]. The spatial resolution
is ∆x = ∆y = 0.0249; i.e., there are N = 80 points in the y direction, N∆y = 2; this
resolution is kept the same for all values of a tested (0.2 ≤ a ≤ 0.86).

The basic solution ψ0 = ψ0(xi, yi) is found by a pseudoarclength continuation
algorithm [9, 23, 39, 42] that solves the discretized steady-state version of (1.1) instead
of using (1.3). In order to solve the spectral problem (1.5) we compute the first
10 leading eigenvalues of its discretized version, i.e., those that are closest to the
imaginary axis, since it is prohibitive to compute the whole spectrum for our resolution
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Fig. 6.1. Unstable oscillatory mode for a = 0.5 and R = 13.3: (a) Imaginary part (t = −T/4);
and (b) real part (t = 0). Light contour lines correspond to negative values and heavy contours to
positive ones.

of N×N/a = O(104) variables. This is achieved using a spectral transformation of the
problem combined with a simultaneous iteration technique algorithm (see [39, 40, 42]).
An oscillatory eigenfunctionΦr+iΦi and the corresponding pair of complex conjugate
eigenvalues κr±iκi provide the time-periodic disturbance structure Φ(t) with angular
frequency κi and growth rate κr, i.e.,

Φ(t) = eκrt [Φr cosκit−Φi sinκit] .(6.1)

Figure 6.1 shows the spatial patterns of the leading eigenvector that loses its
stability as R is increased. According to (6.1) this instability propagates westward
and it does so for all aspect ratios a we used. The dipolar east-west structure of
the destabilizing perturbation is also independent of a. The time-periodic solution
is thus characterized by a westward propagation of alternating positive and negative
vortices. When a nonlinearly saturated, finite-amplitude version of this oscillatory
mode is added to the basic zonal flow Ψ0, it results in a meandering of the eastward
jet (not shown).

The numerically obtained spatial patterns also confirm the theoretical result that
this instability is symmetric with respect to the midaxis of the channel. Moreover,
numerical results tend to show that there is no other 2-D instability but this one: for
fairly large values of R >> R0, there is no other eigenvalue that crosses the imaginary
axis.

We now investigate the value of the critical Reynolds number R0 at the Hopf
bifurcation, as a function of the aspect ratio a. We also compute the period T = 2π/κi
of the instability at R0. Both the curves R0 = R0(a) and T = T (a) are shown in
Figures 6.2(a) and 6.2(b), respectively. The vertical asymptote in both panels strongly
suggests that for a ≥ √

3/2 the flow is linearly stable around Ψ0, in excellent agreement
with Theorem 1.1.

Both curves are continuous and monotonic across the entire interval
√
3/4 ≤ a <√

3/2. This indicates that the difficulties in proving Hopf bifurcation for α0 ≤ a <
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Fig. 6.2. Dependence of the model’s oscillatory instabilities on the aspect ratio a: (a) Critical
Reynolds number R0; and (b) period T of the limit cycle at Hopf bifurcation. T has been nondi-
mensionalized by L/U with L = 4000 km and U = 15 ms−1. The vertical dash-dotted straight lines
correspond to a =

√
3/4 and a =

√
3/2, respectively. H refers to the simultaneous crossing of the

imaginary axis by two distinct eigenmodes, with wavenumbers m = 1 and m = 2, respectively.
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Fig. 6.3. Real parts of the three unstable modes for a = 0.2 and R = 26.6.

√
3/2 are purely technical. In this interval, the flow becomes unstable as well, with a

spatial pattern that resembles Figure 6.1 (not shown). The period of the instability
increases as the zonal length of the channel decreases and it tends to infinity as a
tends to the critical value

√
3/2. Numerical experiments also confirm that only a

single instability with wavenumber one is found in the interval
√
3/4 ≤ a <

√
3/2.

For a <
√
3/4, interesting phenomena occur that are not captured by our Theo-

rem 1.1. Numerical experiments indicate the existence of additional oscillatory insta-
bilities, characterized by higher spatial harmonics, as shown in Figures 6.2 and 6.3.
The competition between these instabilities is expected to generate chaotic dynam-
ics as a is decreased. Codimension-2 Hopf–Hopf bifurcations, with complex global
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dynamics nearby, are likely to play a key role in this process. The first of these bifur-
cations is denoted in Figure 6.2(a) by H and it occurs at a � 0.31. At a = 0.2 and
R = 26.6 (not shown in Figure 6.2), three unstable modes, with m = 1, 2, 3, coex-
ist. These modes are shown in Figure 6.3 and are all symmetric about the channel’s
midaxis.

To gain some geophysical insight into the nature of the fundamental instability,
we select characteristic dimensional magnitudes for the width 2L of the channel and
the maximum τ0U/π

3E of the zonal velocity in the midlatitude atmospheric jet. The
value of L = 4000 km thus yields a meridional extent of the channel of 8000 km. The
choice of U = 15 ms−1 and E between 50 and 100 corresponds to maximum zonal jet
velocities between 25 and 50 ms−1 that agree well with those observed. Taking the
midaxis of the β-channel at 45◦ N, as is often done in theoretical studies of large-scale
atmospheric flow, and a � 0.26 yields a channel length of 2L/a that corresponds to
about 360◦ in longitude.

With these choices of L,U , and a, the numerical results shown in Figures 6.2(b)
and 6.3 yield periods of 20–25 days for the instabilities obtained. Of these, the second
one, with zonal wavenumber m = 2, has about the correct dimensional wavelength to
match the westward-traveling Branstator–Kushnir [3, 22] wave. This wave has been
shown to have, indeed, an equivalent-barotropic, i.e., essentially 2-D, structure and a
period of about 25 days [11, 12, 13].

7. Symmetry considerations. As discussed in section 1, the symmetry prop-
erties of the domain and the forcing, on the one hand, and of the perturbation that
gives rise to the bifurcation, on the other, have a decisive effect on whether the bifur-
cation leads to a branch of stationary or oscillatory solutions. Legras and Ghil [23] and
Jin and Ghil [19] pointed out that, in the atmospheric channel problem with bottom
topography, back-to-back saddle-node bifurcations resulted when the zonal forcing
jet had a flat or unimodal velocity profile; see also Charney and DeVore [6] and
Pedlosky [35]. To the contrary, when a higher-order component, which exhibited an
inflection point, was present in the forcing jet, an oscillatory instability with so-called
intraseasonal periods of 30–60 days could set in by resonance with this higher-order
component and lead to a stable limit cycle.

Traveling Rossby waves are the unique type of solutions of (1.1) in the same
periodic-channel geometry and in the absence of forcing, topography, and dissipation.
The longest known period of this type of so-called free Rossby wave is about 16 days
(Madden [29]). The periods of the oscillatory instabilities obtained previously, with
bottom topography [6, 19, 23, 35], and here without it, are considerably longer: 25–50
days. Our rigorous result in Theorem 1.1 shows that Hopf bifurcation occurs even
for a flat bottom of the channel, in agreement with the numerical results of section 6.
The separate effects of forcing and dissipation, on the one hand, and topography, on
the other, on the period of oscillatory solutions will be studied further elsewhere.

In the oceanic rectangular-basin problem, on the other hand, given the antisym-
metric wind-stress forcing profile of (1.1) here, a steady double-gyre circulation re-
sulted that is antisymmetric with respect to the basin’s zonal symmetry axis [4, 18, 42].
This circulation is first destabilized by a pitchfork bifurcation—perfect in QG mod-
els [4, 5, 14] and perturbed in shallow-water models [18, 40, 41]—that arises from
a purely exponential instability, which is symmetric with respect to the symmetry
axis defined here as y = 1. Oscillatory instabilities documented numerically in either
type of model, QG or shallow-water, also included some that have an asymmetric
spatial pattern. The periods of these asymmetric instabilities are also much longer
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than those of the oceanic problem’s free modes (i.e., the Rossby basin modes arising in
the absence of forcing and dissipation); see Simonnet and Dijkstra [39] and Simonnet
et al. [41].

The symmetry properties of the Hopf bifurcation here are thus in agreement with
those obtained numerically for the atmospheric channel flow. The situation for the
oceanic double-gyre problem is more complex and requires further investigation. It
might be possible, using some of these symmetry ideas, to adapt the approach and
methods used here to this oceanic problem, in spite of the fact that analytic stationary
solutions are harder to find for it [18, 44].
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Abstract. We apply the formulation of a stochastic mode reduction method developed in a re-
cent paper of Majda, Timofeyev, and Vanden-Eijnden [Comm. Pure Appl. Math., 54 (2001), pp. 891–
974] (MTV) to obtain simplified equations for the dynamics of structures immersed in a thermally
fluctuating fluid at low Reynolds (or Kubo) number, as simulated by a recent extension of the im-
mersed boundary (IB) method by Kramer and Peskin [Proceedings of the Second MIT Conference
on Computational Fluid and Solid Mechanics, Elsevier Science, Oxford, UK, 2003, pp. 1755–1758].
The effective dynamics of the immersed structures are not obvious in the primitive equations, which
involve both fluid and structure dynamics, but the procedure of MTV allows the rigorous derivation
of a reduced stochastic system for the immersed structures alone. We find, in the limit of small
Reynolds (or Kubo) number, that the Lagrangian particle constituents of the immersed structures
undergo a drift-diffusive motion with several physically correct features, including the coupling be-
tween dynamics of different particles. The MTV procedure is also applied to the spatially discretized
form of the IB equations with thermal fluctuations to assist in the design and assessment of numerical
algorithms.
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1. Introduction. In several applications of modern interest, the governing equa-
tions can be written as a complex system of stochastic differential equations, with the
variables (modes) evolving over a wide range of characteristic time scales. Sometimes,
the variables can be grouped into a “fast” class of modes and a “slow” class of modes,
with a wide separation between the time scales of the two classes. In such a situation,
one can exploit singular perturbation techniques using the ratio of the fast to slow
time scales as a small parameter to reduce the system by averaging the effects of the
fast modes on the system. A rigorous procedure for averaging over fast fluctuations
in a stochastic system was first provided by Khas’minskii [24, 23] and then later de-
veloped into more widely applicable theorems by Kurtz [30] (see also [9]), Ellis and
Pinsky [7], and Papanicolaou [39]. (See the textbook [17] for an applied exposition.)
Recently, Majda, Timofeyev, and Vanden-Eijnden [34, 35, 36] ([36] hereafter referred
to as MTV) have developed these mathematical techniques into a methodological
framework for climate modeling, where the governing equations are often essentially
quadratically nonlinear and contain both slowly varying climate and “mean flow”
modes and more rapidly fluctuating modes. In this work and the companion pa-
per [26], we demonstrate how the MTV framework can be applied productively to
a quite different class of applications, namely the simulation of microscale fluid sys-
tems with immersed structures and thermal fluctuations, such as microphysiological

∗Received by the editors January 30, 2002; accepted for publication (in revised form) June 11,
2003; published electronically December 31, 2003.

http://www.siam.org/journals/siap/64-2/42213.html
†Department of Mathematical Sciences, Rensselaer Polytechnic Institute, 301 Amos Eaton Hall,

110 8th Street, Troy, NY 12180 (kramep@rpi.edu).
‡Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York,

NY 10012 (jonjon@cims.nyu.edu). This author’s research was supported in part by ARO grant
DAAD19-01-10810, NSF grant DMS9972865, and ONR grant N00014-96-1-0043.

369



370 PETER R. KRAMER AND ANDREW J. MAJDA

systems, colloid suspensions, and polymer suspensions. In the present paper, we fo-
cus on the immersed boundary (IB) method [42] for simulating biological systems,
as extended recently by Kramer and Peskin [28] to include thermal fluctuations and
thereby extend its applicability to small scales (microns).

The IB method emphasizes the dynamics of the fluid environment in which the
biological structures, such as polymers, membranes, and particles, are immersed. The
forces generated by the biological structures as they are deformed or interact with
external fields are communicated locally as forces on the fluid. The fluid then responds
dynamically to these forces in a way represented by the Navier–Stokes equations. The
structures are then advected (and strained) by their local fluid velocity. Thermal
fluctuations are introduced through forces on the fluid. The immersed structures
are not directly thermally forced, but rather undergo thermal fluctuations through
advection by the thermally fluctuating fluid [28].

The IB method, then, is described by a coupled system of differential equations
with the fluid modes stochastically forced. The details of this dynamical system will be
presented in section 2. In the microscopic systems for which the method is designed,
viscosity plays a strong role. More precisely, one can define a thermal Reynolds
number (product of particle size and thermal velocity divided by kinematic viscosity)
which will often be small in typical systems of interest. In such instances, the MTV
stochastic mode reduction framework can be applied based on this small parameter
to deduce a simplified system governing the immersed particles and structures, with
the fluid variables eliminated (see section 3). To unify the discussion with the other
simulation methods in [26], it is useful to note that the thermal Reynolds number in
the IB method can be identified with a “thermal Kubo number,” defined as the ratio
of the rate of decorrelation of a particle’s (Lagrangian) thermal velocity due to its
advection into different fluid regions relative to its rate of decorrelation due to viscous
damping.

The main motivation for this work is to obtain a rigorous characterization of the
effective dynamics of immersed structures in the IB method at low thermal Reynolds
(or Kubo) number. These results can then be used to assess the physical fidelity of
the simulation method, to point out possible areas for improvement in the simulation
scheme, and to calibrate the numerical parameters in applications. As discussed in [27]
and section 2 below, thermal fluctuations are incorporated into the IB simulation
equations in a rational manner based on statistical mechanics, but because of a basic
approximation in the IB method, it is not a priori clear that the simulated Brownian
motion of particles displays physically appropriate behavior. In [27], an approximate
semianalytical calculation shows that in fact the IB equations do generate correct
physical scaling behavior for various statistical features of multiparticle Brownian
motion. Several of these results are corroborated and extended in the present work
by the rigorous application of the MTV stochastic mode reduction procedure. In
particular, a reduced set of stochastic differential equations describing the dynamics
of the immersed structures is derived, with the role of the weak advective nonlinearity
operating over long time scales and the nonlinear interaction between the immersed
structures rigorously assessed. Such nonlinear effects are neglected in [27].

The immersed structures in the IB method are shown, through the stochastic
mode reduction procedure, to obey effective drift-diffusive dynamics at long times,
with both the drift coefficient and diffusion coefficient explicitly presented in section 4.
Through a study of how the drift of the structures is related to the forces they feel,
the structure of the self-diffusion coefficient, and the correlations between the diffusive
motion of different particles, we explore to what extent the IB method, in ideal form
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without numerical discretization issues, can capture various statistical physical aspects
of thermally fluctuating systems. We find that many statistical physical features are
properly described by the IB method, but identify a discrepancy between how the
correlation in the diffusion of two closely separated particles is simulated by the IB
method and its physically proper form for rigid particles. The source of the difference
appears to be the lack of a sense of rigidity of particles in the IB method, rather than
an artifact arising from the discretization of the fluid.

A cruder physical derivation of the same results is presented in section 5 as an
aid to intuitive interpretation. Next, in section 6, we show how the effective dynamics
are modified under spatial discretization. We do not consider temporal discretization,
since the MTV procedure is not formulated for discrete-time systems, though it would
seem that the conclusions concerning the effective dynamics would not be altered
substantially [14]. Here we give explicit formulas that indicate how the discrete and
continuous long-time dynamics are related. This allows us to calibrate parameters
in the discrete numerical simulation as a design principle. A detailed analysis and
comparison with numerical simulations will be presented in [27].

We close the introduction by describing some connections of the present work
with some other stochastic analytical techniques. Our main technical tool is a singular
perturbation analysis of the Kolmogorov backward equation (adjoint to the Fokker–
Planck equation), a deterministic second-order parabolic partial differential equation
associated with the stochastic dynamics of the full system [9, 30, 39]. The solution of
this equation, in the limit of small thermal Reynolds (or Kubo) number, can be shown
through a theorem of Kurtz [9, 30] to approach the solution of another second-order
parabolic partial differential equation in which the variables corresponding to the
fluid modes have been eliminated. The effective stochastic dynamics of the immersed
structures, including their drift and diffusion coefficients, can be read off from this
limiting equation.

This approach allows the treatment of a system with slow and fast modes, both
of which are influenced by each other, as is the case for the IB method in general
when the immersed structures do exert force. If, however, the immersed structures
are simply force-free particles, then the evolution of the fluid is independent of the
particle dynamics. The effective particle dynamics under the IB method can then be
analyzed by a variety of other techniques. For example, the dynamics of the particles
can be viewed as a random evolution problem [20, 21, 40], where the fluid variables
play the role of the auxiliary Markov process parametrizing the advection operator.
The long-time limiting effective dynamics, averaging out the influence of the fluid
variables, can then be calculated through other fast-averaging formulas [2, 20, 21, 40].
Another approach is to view the motion of the particles as tracers in a turbulent
diffusion problem, with the fluid velocity field treated as a prescribed Markovian
random, time-dependent field and zero “bare” molecular diffusivity [10, 33]. The long-
time behavior of the immersed particles can then be treated through homogenization
techniques [1, 11]. If the nonlinear advection term can be safely ignored (due to the low
Reynolds number), then the fluid velocity field is nothing more than a superposition
of Ornstein–Uhlenbeck processes, for which a simpler analysis is possible [4, 11, 27].
We remark though that the standard turbulent diffusion assumption of point particles
must be revised to account for the finite effective size of particles in the IB method.

The derivation of effective dynamics for interacting particle systems on large scales
and long times can also be approached through “hydrodynamic limit” techniques
[15, 18, 38, 50]. Here, one seeks to pass rigorously from a detailed description of the
individual particle dynamics to continuum field equations describing the evolution
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of the density and momentum of the collective medium formed by the particles. To
our knowledge, such work is primarily focused on Hamiltonian systems with small or
zero noise, or on random lattice dynamics with conservation laws. We are not aware
of any such applications to systems of particles with strong damping and stochastic
driving from the environment, which is the mathematical context of our present study.
Moreover, hydrodynamic limit techniques seem most suited for systems in which the
constituent particles interact with all other particles according to a universal law
governed by their separation distance. It is not clear how to adapt these methods
to polymer systems with a variety of bonded interactions. And if hydrodynamic
limit techniques could be applied in certain circumstances to the IB method at low
thermal Reynolds (or Kubo) number, the results would be complementary. Rather
than preserving the Lagrangian framework which accounts for arbitrary N -particle
interactions, the hydrodynamic limit would generally be expressed in an Eulerian
framework in terms of number densities and correlation functions of the immersed
particles.

2. Variables and equations for the IB method. In the IB method [42], the
entire system of the fluid with immersed structures is treated as a constant density
fluid. We moreover assume that the fluid domain Ω is a cube of side length L with
periodic boundary conditions. This is typical for applications of the IB method,
because it permits the use of a fast Fourier transform [42]. For the moment, though,
we will still consider the space-time domain as continuous.

The evolution of the fluid is given by the incompressible Navier–Stokes equations

ρ

(
∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t)

)
= µ∇2u(x, t)−∇p(x, t) + f(x, t),

∇ · u(x, t) = 0,

(2.1)

where u(x, t) is the fluid velocity, ρ is the density, µ is the dynamic viscosity, p is the
pressure, and f(x, t) is a force density. We decompose the force density into a sum,

f(x, t) = fIS(x, t) + fT (x, t),

with fIS(x, t) representing the contribution arising from the immersed structures and
fT (x, t) representing thermally fluctuating forces from microscopic processes. We next
describe how these contributions to the force density are expressed concretely.

The collection of immersed structures will be modelled as a finite collection of
Lagrangian particles, located at positions X = {Xα}α∈A, where α is a Lagrangian
labelling index taking values from some finite set A. The various stresses exerted
by the immersed structures in response to deformations will be modelled in general
through gradients of some interparticle potential Φ(X). Note that stresses such as
those arising from bending resistance can be modelled by n-body interactions with
n > 2, and still fall within our scope. We assume that there are no external forces,
so that the total momentum of the system is conserved (

∑
α∈A∇αΦ(X) = 0, where

∇α denotes a gradient with respect to the position of the Lagrangian particle Xα).
By choosing an appropriate inertial frame, we can then assume that the total system
momentum is always zero. (We briefly discuss in section 4.3 how the results would be
modified if external forces were allowed to be present.)

With the potential prescribed, we can then describe the force density exerted
on the fluid by applying the force exerted on each Lagrangian particle at its current
position Xα(t), spread out via a smoothed delta function δa(x) with length scale a.
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The choice of smoothing is dictated by numerical considerations, such as compact
support and the minimization of oscillations in the fluid-particle interaction as the
particles move with respect to the fluid grid [42]. We therefore write

fIS(x, t) = −
∑
α∈A

∇αΦ(X(t))δa(x−Xα(t)).(2.2)

The parameter a acts as an effective particle size.
The thermal force density is obtained using a fluctuation-dissipation theorem from

statistical hydrodynamics [27, 31] and is most clearly expressed in terms of its Fourier
series expansion:

fT (x, t) =
∑
k∈S

fT,k(t)e
2πik·x/L,

fT,k(t) =

√
8π2k2µkBT

L5

dW̃k(t)

dt
,

(2.3)

where kB is Boltzmann’s constant, T is the absolute temperature, and {W̃k(t)}k∈S are
a collection of standard complex Brownian processes, which are mutually independent
except for the complex conjugacy relation

W̃−k(t) = W̃k(t),(2.4)

which arises from the need to keep fT (x, t) real-valued. By a “standard complex
Brownian motion,” we refer to a mean-zero Gaussian process with stationary incre-
ments satisfying

〈dW̃(t)⊗ dW̃(t′)〉 = 0, 〈dW̃(t)⊗ dW̃(t′)〉 = Iδ(t− t′) dt dt′,(2.5)

where I is the identity matrix. Please note that the definition of complex Brownian
motion processes used in MTV [36] differs by a factor of two in normalization of the
variance. In (2.3) and elsewhere in the paper, for simplicity in exposition, we occa-
sionally use the formal notation dW̃(t)/dt for the white noise derivative of Brownian
motion. Of course, the equations can be given a rigorous interpretation through use
of the more proper Itô stochastic differential notation [37]. The set of wavenumbers
is just the lattice of integers in three dimensions, with the zero mode excluded since
it will always vanish: S = Z

3 \ {0}.
We note that the continuum formulation in which all these modes are retained

requires care in a serious interpretation, because the velocity field induced by the
thermal forcing in (2.3) exhibits an ultraviolet catastrophe due to singular small scale
structure. We will not concern ourselves with such subtleties here, because in any
numerical implementation the number of modes simulated is finite. Therefore, we
will proceed just as if S were a finite collection of modes corresponding to some
symmetric Galerkin truncation. However, in our actual discretized implementation,
the IB equations are not simply crudely cut off in this way, and we show in section 6
how the results and arguments should be modified to apply to the actual numerical
discretization.

With the Navier–Stokes equations (2.1) and the equations (2.2) and (2.3) for
the force density, we have defined how the fluid evolves. The particle positions are
updated by simple advection by the fluid at a locally interpolated fluid velocity:

dXα(t)

dt
= ua(Xα(t), t).
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The same smoothed delta function that was used to spread force is used to interpolate
velocity:

ua(x, t) =

∫
Ω

u(x′, t)δa(x− x′) dx′;(2.6)

this choice (along with the enforced reflection symmetry δa(x) = δa(−x)) conserves
energy in the particle-fluid interactions [42]. Note that, particularly in this integration,
the delta function δa should be viewed as periodic (with its spikes centered at every
point of the form (n1L, n2L, n3L) with n1, n2, and n3 integers). Equivalently, the
convolution in (2.6) should be viewed as convolution on a torus [25].

2.1. Summary of IB equations in dimensional form. Summarizing, we
have the following system of equations for the IB method:

ρ

(
∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t)

)
= µ∇2u(x, t)−∇p(x, t) + fT (x, t)

−
∑
α∈A

∇αΦ(X(t))δa(x−Xα(t)),

∇ · u(x, t) = 0,

dXα(t)

dt
= ua(Xα(t), t),

ua(x, t) =

∫
Ω

u(x′, t)δa(x− x′) dx′,

(2.7a)

with the thermal forcing given by the following random process:

fT (x, t) =
∑
k∈S

√
8π2k2µkBT

L5
e2πik·x/L dW̃k(t)

dt
.(2.7b)

These equations are supplemented with initial conditions

Xα(t = 0) = X0,α, u(x, t = 0) = u0(x).

2.2. Nondimensionalization. To prepare for the asymptotic results and calcu-
lations in subsequent sections, we nondimensionalize the IB equations. This will make
manifest the role of the relevant Kubo number as a small parameter. We choose to
nondimensionalize with respect to a length and time scale associated with the thermal
forcing.

2.2.1. Parameters of externally specified functions. To facilitate the pa-
rametrization of the contributions from the initial data and the prescribed force law
of the immersed structures, we express each in terms of dimensionless functions.

The initial velocity field will be described by a magnitude U0 and length scale �v,
and we write

u0(x) = U0ũ
0(x/�v),

where ũ0 is a dimensionless function.
We identify ψ as a force density induced by the immersed structures, and �f as a

length scale on which the immersed structure forces vary. More explicitly, we assume

Φ(X) = ψ�fa
3Φ̃(X/�f )
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for some nondimensional function Φ̃ with order unity amplitude and order unity gra-
dients of its argument. Then an elementary constituent particle (with volume a3) will
experience a force of magnitude ψa3.

Envisioning that the immersed structures will be modelled as a collection of ele-
mentary constituent particles with effective size a and spacing on the order of a, we
will nondimensionalize X0,α with respect to a:

X0,α = aX̃0,α.

Of course, the functions described above could have various amplitudes and length
scales, depending on the model, but such complications do not bear on the central
point of this work.

2.2.2. Reference units. We choose the following units to normalize the equa-
tions with respect to the thermal dynamics of the particles:

(i) length scale �T = a,
(ii) time scale τT =

√
ρa5/kBT ,

(iii) mass mT = ρa3.
For example, the mass reference unit is just the mass associated with an elementary
particle in the IB formulation (a single delta function), and length and time units are
chosen so that the reference velocity

VT ≡ �T
τT

=

√
kBT

ρa3

has the order of magnitude of the thermalized velocity of an elementary particle (since
the IB system with thermal forcing respects the equipartition law [27]). Note that,
after nondimensionalization, the fluid density, the width of the delta function (as well
as the grid spacing), and the root-mean-square of the fluid velocity averaged over an
elementary particle region are all order unity.

2.2.3. Nondimensional groups. With the above nondimensionalization, the
IB dynamics are governed by the following nondimensional groups:

(i) Kubo number based on thermal forcing

KuT =
�2T
ντT

=

√
kBT

ρν2a
,(2.8)

where ν = µ/ρ is the kinematic viscosity of the fluid;
(ii) nondimensionalized measures of the effects of structural forces and initial

velocity

φ =
ψa4

kBT
, Υ =

√
U2

0 ρa
3

kBT
=

U0

VT
;

(iii) length scale ratios

K̃ =
L

a
, �̃f =

�f
a
, �̃v =

�v
a
.

We pause to clarify why the nondimensional group KuT is identified as a Kubo
number and can also be viewed here as a thermal particle Reynolds number. A
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Kubo number is generally defined as the ratio of the time scales of decorrelation of a
particle’s motion due to intrinsic (Eulerian) processes to that due to advection across
variable spatial structure [29, 52]. In the present context, τT = �T /VT is the time scale
on which one of the Lagrangian particles would change its velocity due to its motion
(at typical speed VT ) because of its sampling of a new environment after it moves a
distance equal to its size �T = a. The time scale �2T /ν = a2/ν, on the other hand,
describes the intrinsic (Eulerian) decorrelation rate of the fluid velocity averaged over
the region occupied by a particle of size a.

Alternatively, the group (2.8) can be viewed as a thermal particle Reynolds num-
ber ReT, since it is the product of a characteristic particle length scale (�T = a) and
the thermal velocity of the fluid VT = �T /τT divided by the kinematic viscosity [51].
(Note that the notion of the thermal velocity of a fluid makes sense only if it is dis-
cretized or smoothed over some finite region (here taken to be of width a).) The fact
that the thermal particle Reynolds number ReT = KuT decreases with the length scale
a may be surprising; the reason is that the root-mean-square velocity sampled over a
region a scales as a−3/2 because of its short-range correlations. Therefore, while ReT
is small, it is not as minuscule as one might expect based on macroscopic intuition.
For typical parameter values kB = 1.4× 10−16erg/K, T = 300 K, ν = 0.01 cm/s, we
have

ReT ≈
√

5× 10−4µm

a
.

The elementary constituent size in a numerical simulation will be of the order a ∼
0.01− 0.1µm, and thus we see that the Reynolds number based on the thermal forc-
ing can be expected to be on the order of 10−2–10−1. We emphasize the thermal
Kubo number interpretation because it allows the most parallel handling of the three
simulation methods discussed in the companion paper [26].

2.2.4. Nondimensionalized IB equations. We now nondimensionalize the
independent and dependent variables with respect to the reference units described
in section 2.2.2, but denote their nondimensional versions by the same symbols. We
retain special symbols for the nondimensionalized externally prescribed functions, as
defined in section 2.2.3,(

∂u(x, t)

∂t
+ u(x, t) · ∇u(x, t)

)
= Ku−1

T ∇2u(x, t)−∇p(x, t) + fT (x, t)

− φ
∑
α∈A

∇αΦ̃

(
X(t)

�̃f

)
δ1(x−Xα(t)),

∇ · u(x, t) = 0,

dXα(t)

dt
= u1(Xα(t), t),

u1(x, t) =

∫
Ω

u(x′, t)δ1(x− x′) dx′,

(2.9a)

with the thermal forcing given by the following random process

fT (x, t) = Ku
−1/2
T K̃−3/2

∑
k∈S

√√√√2

(
4π2

(
k

K̃

)2
)
e2πik·x/K̃ dW̃k(t)

dt
(2.9b)
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and initial data

Xα(t = 0) = X̃0,α, u(x, t = 0) = Υũ0

(
x

�̃v

)
.(2.9c)

(We note that ∇αΦ̃(X/�̃f ) is to be interpreted as the gradient with respect to the α

coordinate of Φ̃, evaluated at X/�̃f .)

3. Stochastic mode reduction procedure. For the microscopic applications
for which the IB method with thermal fluctuations has been designed, the systems
are at low thermal Kubo number, so the fluid motion is strongly damped by viscosity.
The positions of the immersed structures, however, have no such damping terms in
their equations of motion, and should therefore evolve on a slower time scale than the
fluid variables. To make these notions quantitative, we consider the Kubo number
based on the thermal forcing, KuT, as a small parameter. Then we see from (2.9)
that, at least formally, the (nondimensionalized) fluid variables evolve on the fast time
scale Ku−1

T , while the immersed structure positions evolve on a slower time scale of
O(1) or longer. The IB equations are therefore well suited for the stochastic mode
reduction framework developed in MTV. That is, we can systematically eliminate
the fluid variables from consideration for small KuT and obtain a closed stochastic
equation for the immersed structure positions {Xα}α∈A alone. We now sketch this
stochastic mode reduction procedure for the IB system. The detailed calculations can
be found in the appendix. The result will be presented at the beginning of section 4.

3.1. Fourier expansion of IB equations. We prepare by expanding the ve-
locity field (which is assumed periodic) in a Fourier series:

u(x, t) =
∑
k∈S

e2πik·x/K̃ ûk(t).(3.1)

The Navier–Stokes equations now become a coupled collection of stochastic ordinary
differential equations. The nondimensionalized IB system (2.9), expressed in terms of
the Fourier coefficients of the velocity field, reads

dûk(t) = −Bk(U(t),U(t)) dt− 4π2(k/K̃)2Ku−1
T ûk(t) dt

− φPk

∑
α∈A

∇αΦ̃(X(t)/�̃f )δ̂1,ke
−2πik·Xα(t)/K̃ dt

+Ku
−1/2
T K̃−3/2

√
2(4π2(k/K̃)2)PkdW̃k(t),

dXα(t) = K̃3
∑
k∈S

e2πik·Xα(t)/K̃ ûk(t)δ̂1,k dt,

(3.2a)

with initial data

Xα(t = 0) = X̃0,α, ûk(x, t = 0) = Υˆ̃u
0

k,�̃v .(3.2b)

The Fourier expansion coefficients of the nonlinear advection term are

Bk(U,U) = 2πiK̃−1Pk

∑
k′∈S

(uk′ · k)uk−k′ .(3.2c)
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The effect of the pressure has been replaced in the standard way [32] through the
introduction of a projection tensor which enforces incompressibility of each Fourier
velocity mode:

Pk = I − k⊗ k

k2
.

In our notation, variables with k subscripts indicate Fourier coefficients, as defined

through the nondimensionalized Fourier transform (3.1). Note that {ˆ̃u0

k,�̃v}k∈S are

the Fourier coefficients of ũ0(x/�̃v) and not of ũ0(x). Finally, U is a shorthand for the
collection of all Fourier velocity modes {ûk}k∈S , though we recall that the zero mode
u0 ≡ 0 because of our assumption that the global system momentum is conserved.
To avoid excessive proliferation of Pk symbols, we will consider the variables ûk

to always be constrained to satisfy the incompressibility condition k · ûk = 0. We
will not concern ourselves unduly with the infinite number of modes in S, an ideal
continuum fluid system. Indeed, all results converge, and our main interest is really
in a discretized finite version of these equations (section 6).

For the sake of integration and differentiation, it will be convenient to follow a
convention in complex analysis of treating ûk and û∗

k as independent variables, each
with two degrees of freedom (due to the transversality condition k · ûk = k · û∗

k = 0).
Note, however, that because u(x, t) is a real-valued vector field, its Fourier coefficients
must satisfy the complex conjugacy relations

û−k(t) = û∗
k(t).

Therefore, we can consider {ûk}k∈S as a complete set of independent fluid coordinates.

3.2. Kolmogorov backward equation formulation. The calculation is per-
formed on the Kolmogorov backward equation associated with the nondimensionalized
IB equations (3.2):

−∂ρ(s,X,U|t)
∂s

=
∑
k∈S

[
−Bk(U,U)− φPk

∑
α∈A

∇αΦ̃

(
X

�̃f

)
δ̂1,ke

−2πik·Xα/K̃

−Ku−1
T

(
4π2

(
k

K̃

)2
)
ûk

]
· ∂ρ

∂ûk

+Ku−1
T

∑
k∈S

K̃−3

(
4π2

(
k

K̃

)2
)

∂

∂û∗
k

· ∂ρ

∂ûk

+ K̃3
∑
α∈A

∑
k∈S

e2πik·Xα/K̃ δ̂1,kûk · ∂ρ

∂Xα
,

ρ(s = t,X,U|t) = f(X,U).

(3.3)

The solution ρ(s,X,U|t) to this Kolmogorov backward equation has the mathematical
interpretation as the following conditional expectation:

ρ(s,X,U|t) = E [f(X(t),U(t))|X(s) = X,U(s) = U] ,(3.4)

where X(t) and U(t) evolve according to the IB equations (3.2) forward in time,
conditioned on their starting at time s < t from values X(s) = X and U(s) = U,
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and E denotes an average over the stochastic noise terms in the evolution equations.
Because of the slight complication of using complex coordinates, we provide a formal
derivation of the Kolmogorov backward equation in the appendix.

Some notational remarks are in order. We hope the reader will not be confused
by our previous use of ρ as a symbol for fluid density; with the nondimensionalization
in section 2.2, the fluid density has been removed from the problem and we have
reallocated its symbol. To avoid straining the reader’s eyes with numerous subscripts
upon subscripts, we have used partial derivative notation to represent gradients with
respect to vectorial modes when they apply to functions of both U and X:

∂

∂ûk
= ∇ûk

,
∂

∂Xα
= ∇Xα

.

We still use the abbreviation ∇α for ∇Xα when applied to a function only of X.
Following the usual practice in complex analysis, ûk and û∗

k are considered to be in-
dependent variables in differentiation, so that, for example, ∂g(û∗

k)/∂ûk = 0. Finally,
we have suppressed the time arguments of most terms in the Kolmogorov backward
equation; they are all understood to be evaluated at the running time argument s.

The Kolmogorov backward equation is not being used here to actually solve for
the evolution of some expectation of some function of the system variables, but merely
as a tool to cast the stochastic dynamics in terms of a deterministic PDE. Perhaps the
Kolmogorov forward (or Fokker–Planck) equation, which describes the evolution of
the probability density of the system variables, may be a more intuitive formulation,
but rigorous theorems are generally easier to prove for the backward equation (see
MTV section 4.4 and references therein).

3.3. Identification of small parameter and rescaling of time. We identify
ε = KuT as the small parameter and rescale to a longer time t→ t/ε. This temporal
rescaling is necessary to see nontrivial dynamics in the ε ↓ 0 limit, as we shall discuss
in section 5. The Kolmogorov backward equation for the rescaled function

ρε(s,X,U|t) = ρ(s/ε,X,U|t/ε)

may then be written as

−∂ρε(s,X,U|t)
∂s

= ε−2L1ρ
ε + ε−1L2ρ

ε,

ρε(s = t,X,U|t) = f(X,U),

(3.5a)

with differential operators

L1 =
∑
k∈S

[
−
(
4π2

(
k

K̃

)2
)
ûk

]
· ∂

∂ûk
+

(
4π2

(
k

K̃

)2
)

K̃−3 ∂

∂û∗
k

· ∂

∂ûk
,

L2 =
∑
k∈S

[
−Bk(U,U)− φPk

∑
α∈A

∇αΦ̃

(
X

�̃f

)
δ̂1,ke

−2πik·Xα/K̃

]
· ∂

∂ûk

+ K̃3
∑
α∈A

∑
k∈S

e2πik·Xα/K̃ δ̂1,kûk · ∂

∂Xα
.

(3.5b)
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3.4. Computation of limiting equation. We now apply singular perturbation
techniques to this problem to find the equation satisfied by ρ0 ≡ limε↓0 ρε. This
calculation is presented in the appendix. We find that

−∂ρ0

∂s
= L̄ρ0,

ρ0(s = t,X|t) = f(X),

(3.6a)

where the limiting differential operator is given by

L̄g(X) = −φK̃3
∑
k∈S

δ̂2
1,k

4π2(k/K̃)2
Pk

∑
α,α′∈A

∇α′Φ̃

(
X

�̃f

)
e2πik·(Xα−Xα′ )/K̃ · ∂g(X)

∂Xα

+ K̃3
∑

α,α′∈A

∑
k∈S

|δ̂1,k|2
4π2(k/K̃)2

e2πik·(Xα−Xα′ ) ∂

∂Xα
· Pk · ∂g(X)

∂Xα′
.

(3.6b)

3.4.1. Passage to reduced stochastic representation. We realize now that
the PDE for ρ0 is again a Kolmogorov backward equation for a Markov process, which
we present in the next proposition. This relation can be checked through a stochastic
Taylor expansion [22], as in the appendix. We use the fact that δ̂1,k = δ̂∗1,k due to the
assumed even symmetry δ1(x) = δ1(−x).

4. Effective dynamics for immersed structures at low thermal Kubo
number. The outcome of the stochastic mode reduction procedure is summarized in
the following proposition.

Proposition 4.1 (IB dynamics at small Kubo number). Suppose the IB system
(2.9) conserves total momentum (

∑
α∈A∇αΦ(X) = 0). Then, in the limit KuT → 0,

with all other nondimensional quantities held fixed, the solution for the immersed
structure dynamics {Xα(t)}α∈A, obtained from the complete coupled fluid-structure
system and rescaled in time as

X̄α(t) = lim
KuT→0

Xα(t/KuT),

converges in law to the solution of the following simplified stochastic differential system
involving only the structure variables {X̄α(t)}:

dX̄α(t) = V̄α(X̄(t)) dt+
∑
k∈S

Sk(X̄α(t)) dW̃k(t),

X̄α(t = 0) = X̃0,α,

(4.1)

where the stochastic complex white noise terms dW̃k(t) are defined below (2.3) and
are given the Itô interpretation. The explicit expression for the drift term is

V̄α(X) = −φ
∑
α′
M̄(Xα −Xα′)∇α′Φ̃(X/�̃f ),(4.2)

and the matrix coefficients of the stochastic terms are

Sk(x) =

√
2 ˆ̄Mke

2πik·x/K̃ .(4.3)
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We have defined the mobility matrix function

M̄(r) =
∑
k∈S

ˆ̄Mke
2πik·r/K̃(4.4)

and its Fourier coefficients

ˆ̄Mk ≡ K̃3 Pk|δ̂1,k|2
4π2(k/K̃)2

.

The {δ̂1,k}k∈S are the Fourier coefficients of the delta function δ1(x) (which we recall
is to be viewed as a periodic smoothed delta function on the lattice generated by the
fundamental cubic fluid domain),

δ̂1,k =
1

K̃3

∫
Ω

e−2πik·x/K̃δ1(x) dx,

and we have introduced the projection tensor which enforces incompressibility of each
Fourier velocity mode:

Pk = I − k⊗ k

k2
.

The asymptotic statement in the proposition can be justified rigorously (see MTV
section 4.4), provided that only a finite number of Fourier modes are retained. Later,
in section 6, we modify these results to describe finite truncations which are better
suited for numerical simulations. The asymptotics reported in the proposition are
uniformly valid if the parameters φ and Υ are order unity or become small. Large
values of φ might be of interest in structural models with some vibrational modes
that may have time scales comparable to those of the fluid (or at least much faster
than other translational and rotational modes of the structures). In this case, it may
be desirable to apply the stochastic mode reduction procedure to eliminate some of
the fast vibrational modes as well as the fluid modes. This falls outside the scope of
our present results, and we leave its study for future work.

We will defer a discussion of the physical origin of the dynamics for X̄(t) until
section 5. There we will also develop the somewhat complicated formulas for the
effective drift and diffusion coefficients into some more transparent consequents for
one- and two-particle motion.

Here, we make only some brief remarks about the mathematical structure (sec-
tion 4.1) and physical fidelity (section 4.2) of the effective dynamics, and comment on
how the situation would be changed in a system which did not conserve momentum
(section 4.3).

4.1. Mathematical remarks.
1. Perhaps somewhat surprisingly, in the low thermal Kubo number limit, the

nonlinear advection term in the Navier–Stokes equation has no influence on the effec-
tive equation for X̄(t). This fact is a consequence of the nonlinear advection term’s
having zero mean when averaged against the invariant measure (see (A.5)) for the
velocity modes:

〈u · ∇u〉 = 〈∇ · (u⊗ u)〉 = 0.

A fundamental reason for the vanishing of the nonlinear advection term is the sym-
metry of the velocity field statistics under parity inversion:

x→ −x, u→ −u.(4.5)
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2. The factors of K̃3 and K̃3/2 in the drift and noise coefficients do not indicate
a divergence with the size of the period cell, since δ̂1,k scales as O(K̃−3) and decays

rapidly for |k| ≥ K̃. Therefore, the K̃ →∞ limits of the drift and noise contributions
are in fact finite.

4.2. Physical fidelity of effective dynamics.
1. The drift term V̄α(X) is in accord with what one would expect on physi-

cal grounds, based on a low Reynolds number approximation in which the Navier–
Stokes approximations are governed by a quasi-steady balance between the viscous
and forcing terms (see section 5.1 below). The IB dynamics, however, do not pro-
duce a divergence-drift term, which, strictly speaking, should be present on physical
grounds. We discuss this term in more detail in [26], where we can see its explicit
form in the coarse-graining of particle-based dynamics. This term is small except
when the elementary particles are close together (compared to their sizes); see [12,
pp. 232–233].

2. The mobility matrix M̄(r) describing the particle velocities in response to
forces is a symmetric, nonnegative definite matrix function by Khinchin’s theorem [53].
This implies that for any configuration of N particles the 3N × 3N matrix relating
the effective hydrodynamic velocity of each particle to the force on each particle is a
symmetric, nonnegative definite matrix in the ordinary sense. This is also in accord
with what one expects from physical arguments [19].

3. The random component of the IB dynamics can be shown to generate a
physically appropriate absolute diffusion and relative diffusion of Lagrangian particles,
provided that the particles are not too close together (relative to their sizes) [28]. In
the IB dynamics, however, the motion of one particle is completely unaffected by the
presence of other particles which do not generate force. In physical reality, though, the
diffusion of a particle is hindered over the long run by the presence of other particles
because they affect the fluid motion through a change of boundary conditions induced
by rigidity of the particle, even if the particle does not induce any net force or torque
[44, 45]. This correction to the motion of the particles is naturally proportional to
the volume density occupied by the immersed particles.

4. The reduced system for the effective dynamics of the immersed structures
obeys the Einstein relation [6, 16, 46]. The mobility matrix M̄(r) in (4.4) is exactly
the same as the matrix of relative diffusivities between different particles, as we show
explicitly in section 5.2. The IB system should, on first principles, satisfy this Einstein
relation because it is founded on statistical mechanical principles, but this fact is not
at all transparent in the primitive formulation (2.9).

In summary, the IB method appears to generate physically correct dynamics of
immersed structures in the presence of thermal fluctuations, provided that the parti-
cles constituting the structures are not too closely situated relative to their effective
sizes. On the other hand, our analysis in the present work indicates that there is some
quantitative difference between the statistical behavior of particles in the IB method
and the physical behavior of rigid particles when the separation distance is compara-
ble to the particle sizes. In practice, the structures (polymers, membranes, etc.) in
the IB method are generally constructed with the elementary particles separated by
a distance on the order of their effective size, so this regime is worth some scrutiny.
One reason for the difference in behavior is surely that the Lagrangian particles in
the IB method do not act on the fluid as rigid particles with a definite surface do.
In particular, the fluid does not respond to the presence of an IB elementary particle
unless that particle experiences a force, whereas a force-free rigid particle does exert
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stress on the fluid to move it out of the way and to satisfy the no-slip condition on
the surface. For physiological applications for which the IB method is primarily de-
signed [42], the immersed structures are often elastic, so it may well be desirable to
simulate it numerically using elementary particles that are not fully rigid. Moreover,
the closely spaced IB particles will, often in applications, be modelled with some di-
rect force interaction whose effects may dominate those of the rigidity of the particles.
If some partial rigidity (or solidity) effects are still desired, however, they could per-
haps be incorporated through a modification [41] of the IB approach described in [28].
A detailed exploration of theses issues is beyond the scope of this work and will be
explored elsewhere.

We remark that the possible need for special handling of closely spaced particles
in a fluid would not be unique to the IB method. Straightforward implementations
of the particle-based method of simulations (to be described in [26]) based on Oseen
(see [8]) or Rotne and Prager [47] hydrodynamic interaction approximations, which
cause the divergence-drift term to cancel out, simulate rigid particle motion accu-
rately only when their separation distance is large compared to their sizes. Only
through a more elaborate introduction of lubrication forces as in Stokesian dynamics
[3, 48] could the hydrodynamic interaction between closely spaced rigid particles be
simulated accurately.

4.3. Changes in presence of nontrivial global system momentum. The
simplified stochastic equations would require changes if the global system momentum
were not a conserved quantity, such as if the system were subject to some fixed external
potential. First of all, we would need to include the zero Fourier mode of the velocity,

u0(t) = K̃−3

∫
Ω

u(x, t) dx,

as a slow mode along with the immersed structure positions. The extent to which
the effective dynamics are changed by the inclusion of this slow mode depends on its
amplitude.

4.3.1. Weak zero velocity mode. If the slow mode u0(t) has a small ampli-
tude (O(KuT) or less), then the stochastic mode reduction procedure can be carried
through with simple changes, and the resulting effective equations would be changed
in the following way:

1. The stochastic differential equations (4.1) for dXα(t) would include a drift

term u�0(t) dt, where u
�
0 = Ku−1

T u0(t).

2. The following evolution equation for u�0(t) would be included in the effective
dynamics:

du�0(t) = −φ�
∑
α′
∇α′Φ̃(X/�̃f ) dt,

where φ� = φKu−1
T .

Two situations in which the global system momentum can be expected to be weak
are when

1. the forcing by the immersed structures is weak (φ ∼ O(KuT)), or
2. the external force couples to the system in such a way that the total force

experienced self-averages to a small quantity when there are many immersed struc-
tures.
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4.3.2. Strong zero velocity mode. If, on the other hand, the zero velocity
mode has stronger amplitude, then more significant changes need to be made. For
example, if the zero velocity mode has amplitude comparable with the (order unity)
amplitudes of the other Fourier modes, then the hierarchy of significant dynamical
variation is altered in the following way:

1. As before, the fluid velocity modes (other than the zero mode) vary on a fast
time scale O(KuT) (in the original nondimensional time coordinate).

2. The presence of a global system momentum would induce immersed structure
motion on an O(1) time scale and would itself vary on an O(1) time scale as the
structures were moved through the external potential.

3. The drift and diffusive motion due to internal forces and thermal fluctuations
evolve on a slow time scale O(Ku−1

T ).
Now, the fast velocity mode dynamics are unchanged by the presence of the global

momentum. The evolution of the zero velocity Fourier mode and immersed structure
positions on the O(1) time scale is, to leading order, independent of the fast velocity
modes. It is hard, however, to provide a general closed-form description for these
O(1) time scale dynamics for general nonlinear external potentials. Of course, the
equations are easily solved for linear external potentials (such as gravity), but the
resulting dynamics will be unphysical at long time scales (global system momentum
growing unboundedly) unless the effects of backflow are somehow introduced. Of
central interest in this paper is the effective drift-diffusive motion of the immersed
structures on time scales Ku−1

T . The stochastic mode reduction procedure can be
carried through to do this only if we can find an appropriate change of variables
which removes the O(1) time-scale motion of the particles. The formal procedure for
doing so is presented in MTV section 5.3, but an explicit result requires a closed-form
solution of the O(1) time-scale dynamics, which is not generally available for the IB
equations in the presence of a nonlinear external potential.

For simplicity, we hereafter consider only systems which conserve global system
momentum, which we can arrange to be zero.

5. Physical discussion of effective dynamics. We wish here to provide some
simple physical derivations of the drift and diffusion terms for the immersed structures
as reported in Proposition 4.1, to provide an intuitive picture to complement the
systematic mathematical derivation of section 3.

5.1. Drift term. At low Kubo number, the viscous dissipation term in the fluid
momentum evolution equation in (2.9a) formally dominates the inertial terms. As the
thermal forcing has mean zero, we can then suppose that the fluid motion inducing
the deterministic part of the evolution of the immersed structures is given by the
following simplified balance of viscous and pressure forces against the forces induced
by the straining of the immersed structures:

Ku−1
T ∇2u(x, t)−∇p(x, t)− φ

∑
α∈A

∇αΦ̃(X(t)/�̃f )δ1(x−Xα(t)) = 0,

∇ · u(x, t) = 0.

Solving this linear system by a Fourier transform, we obtain

u(x, t) =
∑
k∈S

e2πik·x/K̃ ûk(t),

ûk(t) = −KuTφ
∑

α′∈A

Pk∇α′Φ̃(X(t)/�̃f )δ̂1,ke
−2πik·Xα′ (t)/K̃

4π2(k/K̃)2
,
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with the Fourier symbols defined in section 3.1. Substituting this into the evolution
equation in (3.2a) for Xα(t), we obtain the following expression for the deterministic
component of the motion for the immersed structures at low Kubo number:

(
dXα(t)

dt

)
det

= −KuTφK̃
3
∑

α′∈A

Pk∇α′Φ̃(X(t)/�̃f )δ̂
2
1,ke

2πik·(Xα(t)−Xα′ (t))/K̃

4π2(k/K̃)2
.

Note how the velocity induced by the immersed structure is O(KuT), and so will only
produce a significant displacement over a O(Ku−1

T ) time scale. Upon rescaling time
in this way, we recover the systematically computed drift coefficient (4.2).

5.2. Diffusion term. The stochastic dynamics of the immersed structures are in
response to the stochastic fluctuations of the fluid, which are in turn due to the thermal
forcing. We ignore structural forces here since they contribute, to leading order, to the
deterministic rather than the random component of the particle motion. The motion
of the structures is then purely random (with zero mean drift) and is described at
a basic level by the evolution of the second-order moments of the coordinates. One
such measure of the random motion, which can be cleanly computed, is the diffusion
correlation tensor

D(r) ≡
1

2

d

dt
〈(Xα(t)−Xα(t

′))⊗ (Xα′(t)−Xα′(t′)) |Xα(t
′) = x+ r,Xα′(t′) = x〉t=t′ ,

(5.1)
which describes the correlation in the random motion of two particles during the mo-
ment at which they are situated with relative separation r. Note that this diffusion
correlation tensor does not depend on x nor t′, provided that the fluid is in thermal
equilibrium so that the system is statistically invariant under space and time transla-
tions. The single-particle diffusivity is just given by the diagonal entries D(0) because
two coincident particles will move as a single particle due to the common random flow
environment.

We now provide a direct but approximate calculation for the diffusion correlation
tensor and then show that it agrees with the results of Proposition 4.1. To do this,
we will ignore the nonlinear advection term in the fluid equation, on the grounds that
the Reynolds number is small. We have the following approximation for the evolution
of the random component of the Fourier modes of the fluid velocity field:

dûk(t) = −4π2(k/K̃)2Ku−1
T ûk(t) dt+Ku

−1/2
T K̃−3/2

√
2(4π2(k/K̃)2)PkdW̃k(t).

These linear stochastic differential equations can be solved explicitly when the fluid
is in thermal equilibrium. We find that each Fourier mode of the velocity field is
independent of the others and evolves as a mean-zero Gaussian Markov process with
correlation function

〈ûk(t)⊗ ûk(t
′)〉 = 0,

〈ûk(t)⊗ û∗
k(t

′)〉 = K̃−3e−Ku−1
T

4π2(k/K̃)2|t−t′|Pk.

The fluctuating component of the smoothed version of the velocity field, u1, which ad-
vects the immersed structures, also has independent Fourier coefficients which evolve
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according to mean-zero Gaussian random processes with correlation structure

〈û1,k(t)⊗ û1,k(t
′)〉 = 0,

〈û1,k(t)⊗ û∗
1,k(t

′)〉 = K̃3e−Ku−1
T

4π2(k/K̃)2|t−t′||δ̂1,k|2Pk.
(5.2)

It will be convenient in the following development to define the increment in the
Lagrangian particle positions:

∆Xα(t) = Xα(t+∆t)−Xα(t).

Suppose that at time t we have two elementary particles situated atXα(t) = x+r and
Xα′(t) = x. The second-order moments of the changes in position of these particles
due to the random thermal fluctuations in the fluid are given by

〈∆Xα(t)⊗∆Xα′(t)〉

=

∫ t+∆t

t

ds

∫ t+∆t

t

ds′ 〈u1(Xα(s), s)⊗ u1(Xα′(s′), s′)〉

=
∑
k∈S

∑
k′∈S

∫ t+∆t

t

ds

∫ t+∆t

t

ds′ 〈û1,k(s)⊗ û1,k′(s′)e2πi(k·Xα(s)+k′·Xα′ (s′))/K̃〉.

(5.3)

Suppose now that we consider KuT � ∆t� 1. The velocity field decorrelates on the
short time scale KuT (see (5.2)), but the particle positions, which integrate this fluid
velocity, will change very little over the time interval ∆t. Therefore, if we condition on
the position of the particles at time t, as in the definition of the diffusion correlation
tensor (5.1), we can reasonably approximate Xα(s) and Xα′(s′) to be frozen within
the last integrand in (5.3):

D(r) ≈ 1

2∆t

∑
k∈S

∑
k′∈S

∫ t+∆t

t

ds

∫ t+∆t

t

ds′ 〈û1,k(s)⊗ û1,k′(s′)〉e2πi(k·(x+r)+k′·x)/K̃

=
K̃3

2∆t

∑
k∈S

|δ̂1,k|2Pk

∫ t+∆t

t

ds

∫ t+∆t

t

ds′ e−Ku−1
T

4π2(k/K̃)2|s−s′|e2πik·r/K̃

≈ K̃3

∆t
KuT

∑
k∈S

|δ̂1,k|2 Pk

4π2(k/K̃)2
e2πik·r/K̃∆t for KuT � ∆t� 1.

Therefore, the diffusion correlation tensor in the low Kubo number limit is given by
the above approximate calculation as

D(r) = K̃3KuT

∑
k∈S

|δ̂1,k|2 Pk

4π2(k/K̃)2
e2πik·r/K̃ .(5.4)

Notice again that this diffusion is O(KuT), so the random motion is significant only
on O(Ku−1

T ) time scales.
After this rescaling, this heuristically deduced law of coupled diffusion of the

immersed structures agrees with what the noise terms of the effective dynamics in
Proposition 4.1 would produce in the absence of drift. Indeed, if we have X̄α(t) = x+r
and X̄α′(t) = x, then applying the rules of (Itô) stochastic calculus [37], we have over
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a short time interval of duration ∆t

〈∆X̄α(t)⊗∆X̄α′(t)〉 =
〈(∑

k∈S
Sk(x+ r)∆W̃k(t)

)
⊗
(∑

k′∈S
Sk′(x)∆W̃k′(t)

)〉

+ o(∆t)

=
∑

k,k′∈S
〈Sk(x+ r)〈∆W̃k(t)⊗∆W̃k′(t)〉 · S†

k′(x)〉,

with the noise increment

∆W̃k(t) ≡
∫ t+∆t

t

dW̃k(t).

Now using the statistical properties of the complex white noise processes (see (2.5)
and surrounding discussion), we have

〈∆X̄α(t)⊗∆X̄α′(t)〉 =
∑

k,k′∈S
〈Sk(x+ r) · I∆tδk,−k′ · S†

k′(x)〉+ o(∆t)

=
∑
k∈S

〈Sk(x+ r) · S†
−k(x)〉∆t+ o(∆t).

Substituting the expression (4.3) for Sk(x), dividing by 2∆t, and taking ∆t → 0, we
obtain agreement with the heuristically deduced expression (5.4). The difference of
the factor KuT is due to the fact that X̄α is defined with respect to the rescaled time
t/KuT.

We now directly observe the Einstein relation, which in our nondimensionalization
reads D(r) =M(r) = KuTM̄(r), where M(r) is the mobility matrix (4.4) expressed
in terms of the original time scale.

5.3. Discussion. The physical derivations of the drift and diffusion at low Kubo
number are intended to provide some intuition for the results stated in Proposition 4.1.
These formal arguments, however, involve assumptions which have varying degrees of
plausibility and confidence, so the systematic and rigorous approach developed in sec-
tion 3 is valuable. In particular, the systematic calculation allows precise assessment
of the influence of the nonlinear advection term. Though indeed it is O(KuT) weak
relative to the viscous diffusion term, we are considering motion on O(Ku−1

T ) time
scales, so the nonlinearity could in principle have an O(1) integrated influence on the
particle motion. We found though, in section 3 that the nonlinear advection term
does not in fact have an O(1) effect due to cancellation caused by a parity symmetry
(4.5) which it possesses.

6. Coarse-graining of the discretized IB method. In a numerical imple-
mentation, the velocity field can be represented by only a finite number of parameters.
For a spectral code which retains the Fourier representation of the derivatives applied
to the linear terms in the Navier–Stokes equations, the results of the continuum for-
mulation would carry over by a simple Galerkin truncation. But such an abrupt
spectral cutoff is usually not desirable in numerical simulations.

The version of the IB method implemented by Kramer and Peskin in [28] defines
the fluid on a discrete, periodic, cubic mesh with (dimensional) spacing h = L/K,
where K is an integer. The traditional IB method [42] has h = a, but there is no
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difficulty in extending the numerical simulation approach for h = ma, where m is a
nonnegative integer. An equivalent representation of the velocity field is through a
finite set of Fourier coefficients {ûk} sufficient to resolve the velocity field on this mesh.
The spatial derivatives appearing in the Navier–Stokes equations in (2.9a) must be
replaced by operators with domain and range consistent with the finite-dimensional
function space supported by the numerical resolution. The usual implementation is
through finite-difference operators. We work out now how the effective dynamics of
the particles are altered due to the discretization. These results are important for
providing a benchmark against which numerical simulations can be compared more
precisely. Temporal discretization lends itself less readily to the MTV framework, so
we keep time continuous here.

6.1. Spatial discretization. We write the dynamical equations in the spatially
discretized IB system (2.9) as

∂u(x, t)

∂t
+ B(d)

k (u,u)(x, t) = Ku−1
T (∆

(d)

h̃
u)(x, t)− (∇(d)

h̃
p)(x, t) + fT (t)

− φ
∑
α∈A

∇αΦ̃

(
X(t)

�̃f

)
δ1(x−Xα(t)),

(∇̃(d)

h̃
· u)(x, t) = 0,

dXα(t)

dt
= u1(Xα(t), t),

u1(x, t) = h̃3
∑

x′∈h̃Z3
K

u(x′, t)δ1(x− x′).

(6.1)

In these equations, x is restricted to taking values on the periodic cubic lattice h̃×Z
3
K ,

where

Z
3
K ≡ [1, 2, . . . ,K]3,

and h̃ is a nondimensional length scale ratio:

h̃ ≡ h

a
=

K̃

K
.

B(d)
k is some finite-difference approximation for the nonlinear advection operator,

∆
(d)

h̃
is a discrete Laplacian, ∇(d)

h̃
is a discrete gradient, and ∇̃(d)

h̃
is another dis-

crete gradient used in defining a divergence operator. The current implementation of
the IB method [42] takes the usual centered-difference approximations for the linear
differential operators, namely,

∇(d)

h̃
=

3∑
m=1

êmD0
h̃,m

,

∆
(d)

h̃
=

3∑
m=1

D+

h̃,m
D−
h̃,m

,

∇̃(d)

h̃
= ∇(d)

h̃
,

(6.2)
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where

(D+

h̃,m
g)(x) =

g(x+ h̃êm)− g(x)

h̃
,

(D−
h̃,m

g)(x) =
g(x)− g(x− h̃êm)

h̃
,

(D0
h̃,m

g)(x) =
g(x+ h̃êm)− g(x− h̃êm)

2h̃
,

and êm denotes a unit vector in the mth coordinate direction. The nonlinear term
in the Navier–Stokes equation is discretized by a skew-symmetric central differencing
scheme which conserves energy exactly (see [42]):

B(d)
k (u,u)(x, t) ≡ 1

2

(
u(x, t) · ∇(d)

h̃
u(x, t) +∇(d)

h̃
· (u(x, t)⊗ u(x, t))

)
.

Other discretizations can also be contemplated. For example, an upwind differ-
encing scheme for the nonlinear term has often been used for numerical simulations at
higher Reynolds number to provide numerical stability [43]. A purely divergence-form
discretization would conserve total momentum exactly. Finally, Cowen [5] is investi-
gating other discretizations for the divergence operator, adapted to the choice of the
interpolation/spreading delta function, which improve volume conservation proper-
ties. For this reason, we will express the formulas for the effective drift and diffusion

coefficients in terms of the general abstract differential operators ∇(d)

h̃
, ∇̃(d)

h̃
, and ∆

(d)

h̃
,

without assuming that they take the specific form of (6.2). It is important to note,

however, that the pressure term will conserve energy only if ∇̃(d)

h̃
= ∇(d)

h̃
.

Because the finite-difference derivative operators remain invariant under transla-
tions by a grid spacing h̃, they act diagonally as multiplication operators on Fourier
modes. In this way we can define their action on Fourier modes k through the symbols
Fk(·), defined in general for an operator O with translation invariance on the basic
lattice, by

Og(x, t) =
∑

k∈Z3
K

e2πik·x/K̃Fk(O)ĝ(k, t),

where

g(x, t) =
∑

k∈Z3
K

e2πik·x/K̃ ĝ(k, t).

For the implemented version described in (6.2), the Fourier representation of the
finite-difference operators would be

Fk(∆
(d)

h̃
) = − 4

h̃2

3∑
m=1

sin2 πkm
K

,

Fk(∇(d)

h̃
) = Fk(∇̃(d)

h̃
) =

i

h̃

3∑
m=1

êm sin
2πkm
K

.

Note that these Fourier representations of the discretized operators converge to the
Fourier representation of the corresponding continuum operators as K → ∞ (with
the period cell length K̃ = Kh̃ held fixed).
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The thermal forcing must be changed as follows (see [28]) in order to maintain
the correct statistical mechanics for the spatially discretized system (6.1):

fT (x, t) = Ku
−1/2
T K̃−3/2

∑
k∈SK

√
2Fk(−∆(d)

h̃
)e2πik·x/K̃P(dI)

k

dW̃k(t)

dt
,(6.3)

where

SK = Z
3
K \ (K,K,K)(6.4)

and the projection tensor

P(dI)
k = I − Fk(∇̃(d)

h̃
)⊗Fk(∇̃(d)

h̃
)

Fk(∇̃(d)

h̃
· ∇̃(d)

h̃
)

(6.5)

must be included when ∇̃(d)

h̃
�= ∇(d)

h̃
for proper results. When ∇̃(d)

h̃
= ∇(d)

h̃
, the inclu-

sion or omission of the factor P(dI)
k in (6.3) has no effect on the system dynamics.

6.2. Changes in drift and diffusion due to discretization. Whatever the
precise forms of the discretized derivatives, the resulting drift and noise terms in the
effective dynamics (4.1) have the form

V̄α(X) = −φ
∑

α′∈A
∇α′Φ̃

(
X

�̃f

)
M̄(d)(Xα′ ,Xα −Xα′),

Sk(x) =
√
2K̃3/2P(dI)

k e2πik·x/K̃√
Fk(−∆(d)

h̃
)

∑
p∈Z3

δ̂1,Kp+ke
2πip·x/h̃,

(6.6a)

with the mobility matrix function given by

M̄(d)(x′, r) =
∑
q∈S

∑
p∈Z3

ˆ̄M(d)

p,qe
2πiq·r/K̃e2πip·x/h̃,

ˆ̄M(d)

p,q = K̃3
P(dII)

q δ̂1,Kp+qδ̂
∗
1,q

Fq(−∆(d)

h̃
)

.

(6.6b)

Note that in general we must distinguish two versions of the projection tensor Pk in
the discretized formalism:

P(dII)
k = I − Fk(∇(d)

h̃
)⊗Fk(∇̃(d)

h̃
)

Fk(∇(d)

h̃
· ∇̃(d)

h̃
)

,

and P(dI)
k as given in (6.5). In the discretized formalism, the projection tensors Pk

appearing in the dynamical equation for the velocity modes in (3.2a), except in front of

the noise term, are to be replaced by P(dII)
k . On the other hand, the projection tensor

Pk appearing in front of the noise term and in (A.11) should be replaced by P(dI)
k .

The effective drift and random terms for the discretized IB formalism have the
same form as those appearing in the continuum IB formalism (Proposition 4.1), with
the following key differences:
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1. The mobility matrix function depends not only on the relative separation of
the location of applied force and the responding particle, but also on the absolute
location of the applied force relative to the fluid grid. Indeed, the mobility matrix
function is readily seen to be periodic in the force location x′ along the grid axes with
period equal to the grid spacing h̃. This implies that the dynamics of the particles
will depend somewhat on their position relative to the fluid grid. The grid-induced
oscillations of the mobility matrix function are quantified by the p �= 0 terms in (6.6b)
and will be studied quantitatively in [27].

2. The formulas involve a clear aliasing of wavenumbers separated by integer
vector multiples of K, the number of grid points in each direction.

3. The mobility matrix function M̄(d)(r) is a symmetric, nonnegative definite

matrix function if and only if the discretized derivatives obey ∇(d)

h̃
= ∇̃(d)

h̃
. In this

case, the effective dynamics still obey the Einstein relation between the mobility
matrix and the relative diffusivities of particles, though we no longer have a simple
relation between the Fourier coefficients of the noise and the mobility matrix as in

(4.3). The violation of the Einstein relation when ∇(d)

h̃
�= ∇̃(d)

h̃
occurs because the

discretized pressure term does not conserve energy in this case.
4. The dissipation factor for each mode is naturally changed from the contin-

uum value 4π2(k/K̃)2 to the value Fk(−∆(d)

h̃
) appropriate to the discretized viscous

diffusion operator.
5. The sum is taken over a finite set of modes SK (6.4), and there is no issue

of ultraviolet divergence.
As we emphasize in section A.6, the nonlinear advection term in the continuum

formulation makes no contribution to the effective structure dynamics in the low KuT

limit due to a parity symmetry (4.5). This symmetry is also preserved under the
implemented discretization (6.2) or if the nonlinear advection term is alternatively
discretized by upwind differencing. In general, provided the discretization scheme
respects the parity symmetry (4.5), the presence of the discretized weak nonlinear
advection term does not change the effective dynamics of the particles on nondimen-
sional time scales O(Ku−1

T ) to leading order. If, however, the discretization violates
this symmetry, there may be spurious contamination from the discretized nonlinearity.

The effective immersed structure dynamics derived for the immersed structures
evolving according to the discretized IB method can be used as a design criterion for
a numerical procedure. For example, the single-particle diffusivity (which is the same
as D(0) given by a discretized modification of the formula (5.4) following the above
discussion) may be used as a means to identify the effective size of the simulated
particle. Of course this size will be order unity in our nondimensionalized units,
but since the elementary particles are represented as smoothed delta functions rather
than objects with rigid boundaries, it is not a priori clear how to associate a definite
size value to the particles. The general Stokes–Einstein formula [16, 46] relating the
diffusivity of a particle to its size, along with the explicit formulas for the effective
diffusion of the IB particles, gives us a quantitative way to associate the simulation
parameters with the effective particle sizes which are desired in a simulation. The
above formulas for the coarse-grained discretized IB dynamics are used extensively in
[28, 27] to explore how well the IB method replicates the correct statistical physics of
immersed structure motion and to provide a benchmark for the results of numerical
simulations.

7. Conclusions. We have demonstrated how the stochastic mode reduction
framework developed by Majda, Timofeyev, and Vanden-Eijnden (MTV) can be ap-
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plied to obtain coarse-grained approximations for the equations underlying the IB
method for the simulation of microfluid systems with thermal fluctuations. In this
way we were able to characterize rigorously the effective drift and diffusion behavior
of immersed structures in the IB method. In particular, with full rigor, the equations
governing the coarse-grained spatially continuous and discrete IB methods have been
compared with each other and also with the desired physical behavior. Provided that
the pressure gradient is discretized in an energy-conserving way and the nonlinear
advection term is discretized in a manner (such as a central difference approximation)
which respects the parity symmetry (4.5), the continuous and spatially discretized
IB methods have structurally similar coarse-grained dynamics with explicit formu-
las identifying the drift and diffusion coefficients. The main difference between the
structural form of the coarse-grained dynamics of the elementary particles in the IB
method and those of physically proper rigid particles (as well as the particle-based
simulation methods discussed in [26]) is the absence of the “divergence-drift” term
for the IB method, which is significant only for Lagrangian particles spaced closely
compared to their effective sizes. As discussed in section 4.2, one source of this dis-
crepancy is lack of rigidity of the Lagrangian particles in the IB method, which may
be desirable for physiological systems with flexible and elastic structures. Incorpora-
tion of rigidity into the IB method [41] might bring its effective dynamics into closer
agreement with those of rigid particle-based methods [3, 8, 26, 48] at small separation
distances. Finally, the explicit formulas for the effective diffusion of the Lagrangian
particles under spatial discretization provide a means for choosing the size parameter
precisely in applications so as to match desired diffusion coefficients.

Appendix. Details of computations for stochastic mode reduction. The
details of the calculation from section 3 are presented here.

A.1. Derivation of Kolmogorov backward equation. We provide here a
formal derivation of the Kolmogorov backward equation (3.3) based on a stochastic
Taylor expansion [22, 37]. Consider the change of ρ(s,X,U|t) over a small time
interval ∆s, using its definition (3.4) and the law of total expectation (see [49]):

ρ(s+∆s,X,U|t)− ρ(s,X,U|t)
= ρ(s+∆s,X,U|t)

− E [f(X(t),U(t))|X(s) = X,U(s) = U]

= ρ(s+∆s,X,U|t)
− E

[
E (f(X(t),U(t))|X(s+∆s),U(s+∆s))

∣∣X(s) = X,U(s) = U
]

= ρ(s+∆s,X,U|t)
− E [ρ(s+∆s,X(s+∆s),U(s+∆s)|t)|X(s) = X,U(s) = U]

= E
[
ρ(s+∆s,X,U|t)− ρ(s+∆s,X(s+∆s),U(s+∆s)|t)∣∣X(s) = X,U(s) = U

]
.

Now we will want to perform a stochastic Taylor expansion of the second term, using
the following expressions for the increments in the system variables during the small
time step ∆s:

Xα(s+∆s)−Xα(s) = K̃3
∑
k∈S

e2πik·Xα(s)ûk(s)δ̂1,k∆s+O((∆s)2),
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∆ûk(s) ≡ ûk(s+∆s)− ûk(s) = −Bk(U(s),U(s))∆s− 4π2(k/K̃)2Ku−1
T ûk(s)∆s

− φPk

∑
α∈A

∇αΦ̃(Xα(s)/�̃f )δ̂1,ke
−2πik·Xα(s)∆s

+Ku
−1/2
T K̃−3/2

√
2(4π2(k/K̃)2)Pk∆W̃k(s) + o(∆s),

which arise upon integrating the equations of motion (3.2) over the short time interval
∆s and using the Itô property of the noise [37]. The noise increments ∆W̃k(s) =∫ s+∆s

s
dW̃k(s) are Gaussian, mean-zero complex random variables, which are inde-

pendent except for the complex conjugacy property

∆W̃−k = ∆W̃k.(A.1)

Their covariances are given by integration of (2.5):

〈∆W̃k ⊗∆W̃k〉 = 0, 〈∆W̃k ⊗∆W̃k〉 = ∆sI.(A.2)

Now we can compute

ρ(s+∆s,X,U|t)− ρ(s,X,U|t)

= E

[
ρ(s+∆s,X,U|t)−

(
ρ(s+∆s,X,U|t) +

∑
α∈A

(∆Xα) · ∂ρ(s,X,U|t)
∂Xα

+
∑
k∈S

(∆ûk) · ∂ρ(s,X,U|t)
∂ûk

+
1

2

∑
k,k′∈S

(∆ûk) · ∂
2ρ(s,X,U|t)
∂ûk∂ûk′

· (∆ûk′)

)∣∣∣∣∣ X(s) = X,U(s) = U

]

+ o(∆s)

= −K̃3
∑
α∈A

∑
k∈S

e2πik·Xα(s)δ̂1,kûk(s) · ∂ρ(s,X,U|t)
∂Xα

∆s

+
∑
k∈S

[
Bk(U(s),U(s)) + 4π2

(
k

K̃

)2

Ku−1
T ûk(s)

+ φPk

∑
α∈A

∇αΦ̃

(
Xα(s)

�̃f

)
δ̂1,ke

−2πik·Xα(s)

]
· ∂ρ(s,X,U|t)

∂ûk
∆s

−
∑
k∈S

Ku−1
T K̃−3

(
4π2

(
k

K̃

)2
)
Pk :

∂2ρ(s,X,U|t)
∂ûk∂û∗

k

∆s+ o(∆s).

(A.3)

We used (A.1) and (A.2) to collapse the sum over k and k′ in the last term to a single
sum (with k′ = −k). Dividing the final relation by ∆s, then sending ∆s → 0, leads
to the Kolmogorov backward equation (3.3). The Pk can be dropped from the term
involving second derivatives of ûk because k ·∂/(∂ûk) = 0 follows automatically from
the fact that ûk is understood to always be restricted so that k · ûk = 0.
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A.2. Asymptotic expansion of solution. We show now how to derive the
limiting equation (3.6) from the original Kolmogorov backward equation (3.5) with
the small parameter ε. We expand the solution in powers of ε:

ρε = ρ0 + ερ1 + ε2ρ2 + · · · .

Then, writing out the first three equations of the asymptotic hierarchy, we have

L1ρ0 = 0,

L1ρ1 = −L2ρ0,

L1ρ2 = −∂ρ0

∂s
− L2ρ1.

(A.4)

We will now solve these in succession; all three must be considered to obtain a full
description of the evolution of ρ0. Our presentation will take the form of a formal
calculation, but the results find rigorous support from the theorem of Kurtz [9, 30]
for any finite truncation of the set of modes S.

Since we are interested in deriving effective equations for only the (slow) particle
coordinates X, we can restrict attention to initial data which depends only on X:

f = f(X).

In the solvability conditions that will follow after consideration of the second- and
higher-order equations of the hierarchy, it will be helpful to explicitly identify some
analytical properties of L1. Since L1 is the generator of the Ornstein–Uhlenbeck
process, the projection PN onto its null space can be identified with the operation of
averaging against its invariant measure (MTV):

(PNg)(X) = (EOUg)(X) ≡
∫

CS

dUπOU (U)g(X,U),

πOU (U) =

(∏
k∈S

K̃3

4π

)
exp

(
−1

2
K̃3

∑
k∈S

|ûk|2
)

.

(A.5)

Also, the null space of L∗
1 is exactly spanned by πOU , so in applying the solvability

conditions, it is helpful to note that (see [13])

g ∈ RanL1 ⇔ g ∈ (KerL∗
1)

⊥ ⇔ EOUg = 0.(A.6)

A.3. First equation in asymptotic hierarchy. The leading-order equation
in (A.4) implies simply that ρ0 does not depend on the fast variables U:

ρ0 = ρ0(s,X|t).

Another way of expressing this is

EOUρ0 = ρ0.

A.4. Second equation in asymptotic hierarchy. The solvability condition
for the second equation in (A.4) is

EOUL2ρ0 = EOUL2EOUρ0 = 0,
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which is trivially satisfied because EOUL2EOU = 0.
Therefore, the equation may be solved directly by writing

ρ1 = −L−1
1 L2EOUρ0 + ρ̃1.(A.7)

Since L1 has a one-dimensional null-space, the inverse operator L−1
1 should be thought

of as a particular continuous choice of an inverse image associated with each function
in the range of L1. We make a specific choice in section A.6. The function ρ̃1 =
ρ̃1(X, s|t) is a function in the null space of L1; its presence reflects the one-dimensional
indeterminacy of the inversion of L1.

A.5. Third equation in asymptotic hierarchy. Substituting the solution
(A.7) into the third equation in (A.4) and applying the solvability condition, we
obtain the desired evolution equation for ρ0 in operator-theoretic form:

−∂ρ0

∂s
= −EOUL2L−1

1 L2EOUρ0,

ρ0(s = t,X|t) = f(X).

(A.8)

The arbitrary function ρ̃1 ∈ KerL1 has now disappeared because EOUL2ρ̃1 = 0.
Therefore, we see that the evolution equation for ρ0 will not depend on the particular
way in which we choose to invert L1.

A.6. Explicit computation of limiting PDE. To express the differential op-
erator

L̄ ≡ −EOUL2L−1
1 L2EOU ,

appearing on the right-hand side of (A.8), in a concrete form, we follow the develop-
ment in Appendix B of MTV. To map the formulas appearing there to the present
problem, we write

L1 =
∑
k∈S

(
−γkûk · ∂

∂ûk
+

σ2
k

2

∂

∂ûk
· ∂

∂û∗
k

)
,

with

γk ≡ 4π2(k/K̃)2, σk ≡
√
2K̃−3(4π2(k/K̃)2).(A.9)

We pass to the representation of L2 acting on Fourier transformed functions of
the fast variables U. We must be careful in defining this Fourier transform, however,
because the variables constituting U are complex and are constrained by the complex
conjugacy relations û−k = û∗

k. Therefore, we define the Fourier transform of functions
g(U) by

ĝ(P) =

∫
CS

exp

[
1

4
i
∑
k∈S

(
ûk · (pk + p∗

−k) + û∗
k · (p−k + p∗

k)
)]

g(U) dU,

where P = {pk}k∈S . This artifice first ensures that the exponent is purely imaginary
(so that the Fourier integration is at least well defined in each mode), and second
allows us to identify p−k with p∗

k just as we have been identifying û−k with û∗
k.

Indeed, ĝ must perforce depend on pk and p∗
−k in the same way, and thus these
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variables can be identified with each other. Also, we can and will restrict the domain
of definition of the variables pk to the hyperplane pk · k = 0; the component of
pk parallel to k is irrelevant because of the restriction ûk · k = 0. Finally, it can
be readily checked that the Fourier transform rules for derivatives carry over to our
present definition of the Fourier transform in a straightforward way:

ûk → −i
∂

∂pk
,

∂

∂ûk
→ −ipk.

Proceeding, then, we write down the Fourier transform of the operator L2 as

L̂2 =
∑
k∈S

[
−2πK̃−1Pk

∑
k′∈S

k · ∂

∂pk′

∂

∂pk−k′

+ iφPk

∑
α∈A

∇αΦ̃

(
X

�̃f

)
δ̂1,ke

−2πik·Xα/K̃

]
· pk

− iK̃3
∑
k∈S

δ̂1,k
∑
α∈A

e2πik·Xα/K̃
∂

∂pk
· ∂

∂Xα
.

We can now adapt relation (B.4) of MTV to our present case with complex-valued
variables:

−EOUL2L−1
1 L2EOUg(X)

=

∫
CS

dP ˆ̄POU (P)L̂2

∫ ∞

0

dt

exp

(∑
k∈S

γkt− 1

4

∑
k∈S

σ2
k|pk|2
γk

(e2γkt − 1)

)[
L̂2(g(X)δ(P′))

]
P′=β(P,t)

,

where P is shorthand notation for the collection {pk}k∈S (similarly for P′),

ˆ̄POU (P) = exp

(
−1

4

∑
k∈S

σ2
k|pk|2
γk

)

is the Fourier transform of the invariant measure πOU (U) in (A.5), and

β(P, t) = {eγktpk}k∈S .
We have here chosen to define L−1

1 in terms of its Fourier transform:

(L̂−1
1 b)(P) = −

∫ ∞

0

exp

(
−1

4

∑
k∈S

σ2
k|pk|2
γk

(e2γkt − 1)

)
exp

(∑
k∈S

γkt

)
b̂(β(P, t)) dt.

Computing now the action of the rightmost L̂2, we obtain

exp

(∑
k∈S

γkt

)([
L̂2(g(X)δ(P′))

]
P′=β(P,t)

)

= −iK̃3
∑
k∈S

δ̂1,ke
−γkt

∑
α∈A

e2πik·Xα/K̃
∂g

∂Xα
· ∂δ(P)

∂pk
.
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Continuing,

L̂−1
1 L̂2(g(X)δ(P))

= −
∫ ∞

0

dt exp

(
−1

4

∑
k∈S

σ2
k|pk|2
γk

(e2γkt − 1)

)

×
[
−iK̃3

∑
k∈S

δ̂1,ke
−γkt

∑
α∈A

e2πik·Xα/K̃
∂g

∂Xα
· ∂δ(P)

∂pk

]

= iK̃3
∑
k∈S

δ̂1,k
∑
α∈A

e2πik·Xα/K̃
∂g

∂Xα
· ∂δ(P)

∂pk

∫ ∞

0

e−γkt dt

= iK̃3
∑
k∈S

δ̂1,k
γk

∑
α∈A

e2πik·Xα/K̃
∂g

∂Xα
· ∂δ(P)

∂pk
.

Next, using the distribution identity pk ⊗ ∂δ(pk)
∂pk

= −Iδ(pk), we have

L̂2L̂−1
1 L̂2(g(X)δ(P))

= −iK̃3
∑
k∈S

[
−2πK̃−1Pk

∑
k′∈S

k · ∂

∂pk′

∂

∂pk−k′

+ iφPk

∑
α∈A

∇αΦ̃

(
X

�̃f

)
δ̂1,ke

−2πik·Xα/K̃

]

·
[
δ̂1,k
γk

∑
α∈A

e2πik·Xα/K̃
∂g(X)

∂Xα
δ(P)

]

+ K̃6
∑

k,k′∈S

δ̂1,kδ̂1,k′

γk

∑
α,α′∈A

e2πi(k·Xα+k′·Xα′ )/K̃ ∂2g(X)

∂Xα∂Xα′
:

∂2δ(P)

∂pk∂pk′

+ K̃6
∑

k,k′∈S

δ̂1,kδ̂1,k′

γk

∑
α∈A

e2πi(k+k′)·Xα/K̃
∂g(X)

∂Xα
· ∂2δ(P)

∂pk∂pk′
· (2πik).

(A.10)

Finally, taking the leftmost expectation defining L̄, we have

L̄g(X) = −
∫

CS

ˆ̄POU (P)L̂2L̂−1
1 L̂2(g(X)δ(P))

= −K̃3
∑
k∈S

φPk

∑
α′∈A

∇α′Φ̃

(
X

�̃f

)
δ̂1,ke

−2πik·Xα′/K̃ δ̂1,kγ
−1
k

∑
α∈A

e2πik·Xα/K̃ · ∂g(X)

∂Xα

+ K̃6
∑
k∈S

|δ̂1,k|2σ2
k

2γ2
k

∑
α,α′∈A

e2πik·(Xα−Xα′ )/K̃ ∂

∂Xα
· Pk · ∂g(X)

∂Xα′

+ K̃6
∑

k,k′∈S

δ̂1,kδ̂1,k′σ2
k

2γ2
k

∑
α∈A

∂g(X)

∂Xα
· Pk · (2πik)
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= −φK̃3
∑
k∈S

δ̂2
1,k

γk
Pk

∑
α,α′∈A

∇α′Φ̃

(
X

�̃f

)
e2πik·(Xα−Xα′ )/K̃ · ∂g(X)

∂Xα

+ K̃6
∑

α,α′∈A

∑
k∈S

|δ̂1,k|2σ2
k

2γ2
k

e2πik·(Xα−Xα′ )/K̃ ∂

∂Xα
· Pk · ∂g(X)

∂Xα′
.

We have used the fact that

EOU
∂2δ(P)

∂pk∂pk′
=

{
− σ2

k

2γk
Pk if k+ k′ = 0,

0 otherwise.
(A.11)

We show in more detail how the contribution from the first term in brackets in
(A.10), arising from the nonlinear advection term in the Navier–Stokes equations,
vanishes upon averaging. From (A.11) we have

EOU

∑
k′

∂

∂pk′

∂δ(P)

∂pk−k′
= 0 unless k = 0.

However, since this expression appears in an inner product with k in (A.10), the term
arising from nonlinear advection in the Navier–Stokes equations makes no contribution
at all upon averaging.

We finally complete the calculation of L̄ by converting back to our original problem
parameters, using the expressions (A.9) for γk and σk. We thereby arrive at (3.6).
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Abstract. We illustrate the stochastic mode reduction procedure as formulated recently by
Majda, Timofeyev, and Vanden-Eijnden [Comm. Pure Appl. Math., 54 (2001), pp. 891–974] (MTV)
on the equations of motion underlying various particle-based simulation approaches (such as Stokes-
ian dynamics and Brownian dynamics) and the conceptually distinct dissipative particle dynamics
(DPD) simulation approaches for complex microfluid systems. The resulting coarse-grained dynamics
are compared and contrasted with each other. We show that the stochastic mode reduction procedure
provides a way to recover the Smoluchowski dynamics for a standard model of multiple interacting
particles in a fluid. The DPD, however, has some subtle aspects which obstruct the application of
the stochastic mode reduction procedure. We discuss the mathematical and physical properties of
the DPD method that underlie this difficulty.

Key words. Brownian dynamics, Brownian motion, dissipative particle dynamics, Smolu-
chowski reduction

AMS subject classifications. 60H10, 60H30, 60J60, 60J65, 60J70, 76R50, 82C31, 82C70,
82C80
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1. Introduction. In [24], we showed how the stochastic mode reduction frame-
work of Majda, Timofeyev, and Vanden-Eijnden [31, 32, 33] (with MTV hereafter
referring to [33]) could be used to assist in the design and analysis of the immersed
boundary (IB) method [26, 25, 40] for numerically simulating microphysiological sys-
tems consisting of various elastic structures and particles immersed in a fluid with
thermal fluctuations. The procedure exploited the smallness of the thermal Reynolds
number, which implied a separation of time scales for the dynamics of the fluid and
the immersed structures, and derived a simplified stochastic system for the immersed
structures with the fluid variables eliminated using rigorous singular perturbation
techniques [14, 18, 29, 39]. It is natural to explore how this approach works on other
numerical simulation techniques for complex fluid systems consisting of immersed
structures and thermal fluctuations. We study here the application of the stochastic
mode reduction framework of MTV to the equations underlying particle-based (PB)
dynamics schemes such as Brownian dynamics [10], Stokesian dynamics [6, 46], and
the conceptually distinct dissipative particle dynamics [1, 11, 13, 23, 35, 38]. These
numerical approaches differ fundamentally from the IB method in that they do not
treat the fluid dynamically, but rather immediately model its effective influence on
the particles. The detailed equations of motion for each of the simulation methods
involve some nontrivial approximations or assumptions, even before any numerical
discretization is contemplated.

As we shall discuss briefly in the relevant sections, even though the equations
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and variables underlying these simulation approaches are rather different from each
other and the IB method, they each can be treated within the MTV framework to
deduce a simplified system governing the immersed particles and structures when the
viscous friction with the fluid is sufficiently strong. The notion of Reynolds number
is a bit obscure for the methods discussed in the present paper, since viscosity does
not enter as a governing parameter. Instead, we take the small parameter in the
asymptotic analysis as a certain “thermal Kubo number,” which is defined as the
ratio of the rate of decorrelation of a particle’s (Lagrangian) thermal velocity due to
its advection into different fluid regions relative to its rate of decorrelation due to
viscous damping. The limit of small thermal Kubo number seems appropriate for
many microfluid applications and plays a universal role in preparing for a stochastic
mode reduction procedure for the methods described in the present paper as well as
the IB method discussed in [24].

For the IB method, a small thermal Kubo number implies a separation between
the fast time scales of the fluid and the slow time scales of the immersed structures.
For the methods treated in the present paper, the fluid is not treated dynamically.
Instead, the system variables consist of the positions and momenta of the elementary
components of the immersed structures. Stochastic forcing modeling thermal fluc-
tuations is naturally applied to the momenta of the particles. A low thermal Kubo
number implies that the time scale for the momentum variables is much faster than
that of the position variables. The stochastic mode reduction procedure of MTV then
suggests a simplification of the system through elimination of the momentum vari-
ables and the development of a new set of effective “coarse-grained” equations for the
position variables. By coarse-grained dynamics for the particles in these simulation
schemes we mean a simplified description involving only the particle positions and
not the rapidly fluctuating velocities. The derivations of the simplified coarse-grained
dynamics can be accomplished rigorously for the classical equations underlying PB
methods such as Brownian dynamics and Stokesian dynamics, but the dissipative par-
ticle dynamics (DPD) scheme has some aspects which can obstruct the deduction of
simplified effective dynamics.

The application of the MTV procedure to eliminate the fast momentum variables
from the classical PB equations (section 2) yields the standard Smoluchowski (or
Brownian dynamics) limit for the positions of the immersed structures, which have
been computed previously with several other approaches [10, 37, 47, 49, 50]. The
variation of the Chapman–Enskog procedure used in [47] has some foundational sim-
ilarities to the method of derivation we present, but the present approach is based
on a rigorous theorem [29], whereas the validity of the Chapman–Enskog expansion
is less certain [45, 47]. Moreover, we calculate the differential operators associated
with the simplified dynamics in a different way, involving a slight extension of the
framework developed in MTV to a context in which the noise driving the fast modes
is not diagonal.

A similar calculation can be made to derive effective equations for the elementary
particles in a DPD system (section 3). These resulting equations look formally very
similar to those arising from the classical PB equations. Due to the finite-ranged
nature of the frictional interactions, however, degeneracies emerge which can spoil
the MTV stochastic mode reduction procedure. The formal calculation appears to
apply only for some fraction of realizations of the dynamics which increases with
increasing density. We cannot yet, however, make this into a rigorous statement. It
would be interesting to extend the rigorous aspect of the MTV framework to cover
systems with degeneracies such as DPD, but we will not attempt this here.
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2. Application of stochastic mode reduction for PB simulation meth-
ods. Many scientists and engineers wishing to simulate microscopic fluid-particle
systems with thermal fluctuations adopt a PB perspective in contrast to the fluid-
based perspective of the IB method. In the PB setup, one appeals to the low Reynolds
number of the system to eliminate the fluid degrees of freedom by assuming that the
fluid is always in a quasi-steady state determined by the time-independent Stokes
equations responding to whatever forces the particles happen to be exerting at that
moment [6, 10, 20]. The fluid then ceases to be an independent dynamical quantity.
The state of the system can be completely described by the positions X = {Xα}α∈A
and velocities V = {Vα}α∈A of each immersed particle. These variables are updated
according to Newton’s laws, incorporating three kinds of forces:

(i) interparticle forces governed by some general potential of the particle con-
figuration Φ(X),

(ii) hydrodynamic drag forces which are determined by the momentary positions
and velocities of the particles, and

(iii) thermally fluctuating forces.
We provide details in section 2.1. Note that the approximation that the fluid evolves
according to the quasi-steady Stokes equations requires stronger assumptions than
simply noting that the Reynolds number is small [8], and these stronger assumptions
are not necessarily met in practice [25].

While the PB simulation approaches are founded on these Newton law evolution
equations for X and V, these equations are not suitable for numerical simulation in
many situations where the particle velocities decorrelate on a much faster time scale
than the time over which the particle position variables change significantly. The
equations of motion in this case are very stiff, but the disparity in time scales also
permits a simplification of the system to one involving only the slow variables (particle
positions). For the present example, this is known as the reduction of the full Fokker–
Planck equation (involving position and momentum variables) to the Smoluchowski
equation (involving only position variables). This procedure has been undertaken in
various ways (formal asymptotic arguments [27], multiple time scale expansions [3],
Chapman–Enskog expansion [47], projection operators [37, 49], asymptotic moment
equation expansions [50], and asymptotic integration of stochastic differential equa-
tions [10, 22]). We show here how this reduction can be performed within the MTV
stochastic mode reduction framework. While the ideas behind the calculations are
related to those in the earlier works (particularly the adaptation of the Chapman–
Enskog expansion approach in [47] and the multiple time scale derivations for the
case of a single particle in [3, 49]), the MTV framework has a distinct organizational
and computational structure which is systematic, fairly transparent, and founded on
a rigorous theorem [29].

2.1. Formulation. We now write the equations on which the PB methods are
based, with particle position and momentum resolved. For simplicity in exposition,
we assume that all particles have the same mass m, though similar procedures can be
applied to the more general case, as we shall discuss in section 2.5.

dXα(t) = Vα(t) dt,

mdVα(t) = −
∑

α′∈A
Rα,α′(X(t))Vα′(t) dt−∇αΦ(X(t)) dt

+
√
2kBT

∑
α′∈A

Sα,α′(X(t)) dWα′ .

(2.1)
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These equations, as previously stated, are nothing more than Newton’s second law,
with the right-hand side of the second equation in (2.1) describing the three kinds
of forces that are assumed to act on the particles. The first term is the model for
the force felt by the particles due to the fluid, under the governing assumption that
the fluid is always in a quasi-steady state responding to the currently applied forces
and positions of the particles. The tensor R is the hydrodynamic resistance matrix
[6, 20], which is symmetric, positive definite, and depends on the momentary particle
configuration X. Its entries Rα,α′ indicate how the motion of particle α′ induces a
hydrodynamic drag force on particle α. The second term in the second equation in
(2.1) is just the force felt by a particle due to its direct interaction with other particles
via the generalized potential Φ, just as in the IB method, but it is now permissible
for Φ to include external forces which do not conserve total momentum. The third
term describes the random thermal fluctuations, with strength specified by the matrix
S(t), which is (any) square root of the symmetric, positive definite matrix R(t):

R(X) = S(X)S†(X).

The {Wα}α∈A are a collection of independent standard real-valued Brownian mo-
tions, which are mean zero Gaussian processes with stationary increments satisfying

〈dW(t)⊗ dW(t′)〉 = Iδ(t− t′) dt dt′.(2.2)

Note that the Brownian motion Wα does not describe the Brownian motion of the
particle with label α. Indeed, the Brownian motions of the particles are actually
coupled, while {Wα(t)}α∈A are independent. One may think of the {Wα(t)}α∈A as
a diagonalization of the thermal noise driving the particles. If the particles are well
separated, then Wα(t) gives a leading order approximation to the thermal Brownian
motion of particle α.

The equations of motion are supplemented by the initial conditions

Xα(t = 0) = X0,α, Vα(t = 0) = V0,α.

In Stokesian dynamics [6, 46], an imposed background spatially linear flow u∞(x)
is admitted, and can be incorporated into our framework by generalizing the resistance
force term in (2.1) to

−
∑

α′∈A
Rα,α′(X(t)) · (Vα′(t)− u∞(Xα′(t))) + (RE(X(t)):E∞)α.

Here RE(X) is another resistance tensor (with one particle and two spatial indices)
relating to the imposed (constant) strain E∞ = 1

2 (∇u∞ + (∇u∞)†). We see that this
generalization is mathematically equivalent to adding a (nonconservative) force

−
∑

α′∈A
Rα,α′(X(t)) · u∞(Xα′(t)) + (RE(X(t))E∞)α,

which can be handled in the same way as the interparticle force term. To avoid extra
burden in the calculations and nondimensionalization, we therefore proceed with no
imposed flow u∞ ≡ 0 but comment in subsection 2.3 on how it could be incorporated.

2.2. Nondimensionalization.

2.2.1. Parameters of externally specified functions. We nondimensionalize
the potential for the interacting particles by

Φ(X) = F
f Φ̃(X/
f ),
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where F is a typical force amplitude and 
f is a length scale characterizing the range
of the interparticle forces. Note that we are now using a force magnitude rather than
a force density magnitude as we did for the IB method in [24]; this is due to the shift
from a fluid-based to PB perspective. We let 
0 be a length scale characterizing the
typical initial separation between particles, and V0 a typical magnitude of the initial
particle velocities, and write

X0,α = 
0X̃0,α, V0,α = V0Ṽ0,α,

where X̃0,α and Ṽ0,α are nondimensionalized initial data which are to be thought of
(at least formally) as order unity.

The resistance tensor R depends both on the current configuration X(t) of the
particles and on their sizes and shapes. For now, we will assume that all particles are
identical, with maximal diameter a and hydrodynamic drag friction γ. In the dilute
limit (where the particle separation scale is much larger than the particle size a), we
would have R = γI, where I is the identity matrix, but the resistance tensor in a
nondilute solution will have both diagonal and off-diagonal modifications due to hy-
drodynamic coupling between different particles. We can express the resistance tensor
in terms of a nondimensional function R̃ (depending on the shape of the particles) [20]
which has order unity variations (i.e., is properly normalized):

R(X) = γR̃(X/a).

The amplitude of the thermal forces is similarly expressed in terms of a nondimensional
normalized function:

S(X) =
√
γS̃(X/a),

with S̃S̃† = R̃. We will assume that R is appropriately mollified to avoid singularities
as two or more particles coalesce, as must be done in any numerical implementation.

2.2.2. Reference units. We use the following:
(i) length scale 
T = a,
(ii) time scale τT =

√
ma2/kBT ,

(iii) mass scale mT = m.
These units are chosen with motivation similar to those used to nondimensionalize the
IB equations in [24]. We have simply chosen 
T = a, both because physiological sys-
tems are typically composed of extended structures such as polymers and membranes
which will be modeled by stringing together particles separated by distances compa-
rable to their sizes and because it matches most closely the nondimensionalization
choices made for other simulation methods discussed in this paper. The characteristic
velocity is again the order of magnitude of the thermal velocity of a particle:

VT =

T
τT

=

√
kBT

m
.

2.2.3. Nondimensional groups.
(i) The thermal Kubo number

KuT =

√
mkBT

γa
,
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which describes the ratio of the time scale of frictional decorrelation m/γ to the time
scale 
T /VT over which the particles would move across a spatial structural length

T = a. Note that if the fluid density ρ is comparable to the particle mass density
m/a3, we can also think of the thermal Kubo number as a thermal particle Reynolds
number 
TVT /ν, because the self-friction constant scales as γ ∼ ρνa. We note, though,
that the equations for PB dynamics are most accurate in the limit in which the particle
mass density is much greater than that of the fluid [8, 21, 30, 36, 44, 48].

(ii) Nondimensionalized measures of the effects of structural forces and initial
velocity,

φ =
Fa

kBT
, Υ =

V0

VT
.

(iii) The length scale ratios


̃f =

f
a
, 
̃0 =


0
a
.

2.2.4. Nondimensionalized PB dynamics. Nondimensionalizing with re-
spect to the reference units described in section 2.2.2 and denoting nondimensional
variables (but not externally prescribed functions) by the same notation as for their
dimensional form, we obtain

dXα(t) = Vα(t) dt,

dVα(t) = −φ∇αΦ̃(X(t)/
̃f ) dt−
∑

α′∈A
Ku−1

T R̃α,α′(X(t))Vα′(t) dt

+
√
2Ku

−1/2
T S̃α,α′(X(t)) dWα′ .

The nondimensionalized initial conditions are

Xα(t = 0) = 
̃0X̃0,α, Vα(t = 0) = ΥṼ0,α.

2.3. Effective dynamics for PB dynamics at low thermal Kubo num-
ber. Elimination of the fast momentum modes yields the following description of the
evolution of the positions of the particles.
Proposition 2.1 (PB dynamics at small Kubo number). In the limit KuT → 0

with all other nondimensional quantities held fixed, the solution for the particle posi-
tions {Xα(t)}α obtained from the complete system (2.1) and rescaled in time as

X̄α(t) = lim
KuT→0

Xα(t/KuT)

converges in law to the solution of the following simplified closed stochastic differential
system involving only the particle positions {X̄α(t)}:

dX̄α(t) = V̄α(X̄(t)) dt+
∑

α′∈A
Sαα′(X̄(t)) dWα′(t),

X̄α(t = 0) = X̃0,α,

(2.3)

where the stochastic real white noise terms dWα(t) are defined near (2.2) and are
given the Itô interpretation. The explicit expression for the drift term is

V̄α(X) =
∑

α′∈A

[
−((R̃(X))−1)α,α′ · ∇α′Φ̃(X/
̃f ) +∇α′ · (R̃−1(X))α′,α

]
,(2.4)
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and the matrix coefficients of the stochastic terms are

Sαα′(X) =
√
2(R̃−1/2(X))α,α′ .

The drift term here includes not only the motion of the particles responding to
the interparticle forces under the quasi-steady assumption for the fluid state, but a
“divergence-drift” term, which appears due to the spatial dependence of R̃ and is
present even in the absence of forces on the particles [10, 19, 41]. The clearest way to
understand the divergence-drift is by noting that the diffusion correlation tensor

D(r) ≡ 1

2

d

dt
〈(Xα(t)−Xα(t

′))⊗ (Xα′(t)−Xα′(t′)) |Xα(t
′) = x+ r,Xα′(t′) = x〉t=t′

(2.5)
is, for the nondimensionalized PB system, exactly D(X) = (R̃(X))−1, so that the
divergence-drift term is ∇ · D. Roughly speaking, the divergence-drift arises because
variable diffusivity induces a bias to the mean particle motion due to the asymmetric
strength of fluctuations in opposite directions. This term is important only when two
particles happen to be close together relative to their sizes [15, pp. 232–233], and is
omitted in simulations based only on Oseen or Rotne–Prager approximations to the
resistance tensor [2, 9, 10, 17, 28, 43].

The coarse-grained PB dynamics respect the Einstein relation between mobility
and diffusion correlations. Unlike the IB method, it is permissible for the potential
in the PB dynamics to include external forces (so that total momentum need not be
conserved), and the conclusions of Proposition 2.1 are unchanged.

If a steady background flow u∞(x) is imposed which is not too strong relative
to the thermal fluctuations, the only change in the effective dynamics is the addition
of the nondimensionalized form of the terms u∞(Xα(t)) + (R−1 · RE :E∞)α to the
right-hand side of the expression (2.4) for the effective drift, in agreement with how
these effects are handled within Stokesian dynamics [6].

2.4. Stochastic mode reduction for PB dynamics. We now derive Propo-
sition 2.1, following the general prescription from MTV, which we presented in some
detail in [24]. We focus here only on those aspects of the calculation that are particular
to the PB equations; the basic notation and formalism are the same as in [24].

2.4.1. Kolmogorov backward equation formalism. We identify ε = KuT

as the small parameter and rescale to a longer time t → t/ε. We denote the system
variables in terms of the collection of particle positions X and velocities V. Then the
Kolmogorov backward equation under this time rescaling can be written as

−∂ρε(s,X,V|t)
∂s

= ε−2L1ρ
ε + ε−1L2ρ

ε,

ρε(s = t,X,V|t) = f(X,V),

with differential operators

L1 =
∑

α,α′∈A
−Vα · R̃α,α′(X) · ∂

∂Vα′
+

∂

∂Vα
· R̃α,α′(X) · ∂

∂Vα′
,

L2 = −
∑
α∈A

φ∇αΦ̃

(
X(t)


̃f

)
· ∂

∂Vα
+Vα · ∂

∂Xα
.
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2.4.2. Asymptotic expansion of solution. We assume that f depends only
on the slow variables f = f(X) to avoid consideration of irrelevant initial transients.
The solvability conditions for the equations in the asymptotic hierarchy are obtained
by integrating against the invariant measure πOU associated with the operator L1,
which here is

πOU (V) =

(∏
α∈A

1

2π

)
exp

(
−1

2

∑
α∈A

|Vα|2
)
.

The first two equations in the asymptotic hierarchy are solved in the same way as
in [24], and the solvability condition resulting from the third equation is again

−∂ρ0

∂s
= −EOUL2L−1

1 L2EOUρ0,

ρ0(s = t,X|t) = f(X);

(2.6)

thus the main task is to compute explicitly

L̄ ≡ −EOUL2L−1
1 L2EOU .

2.4.3. Explicit computation of limiting PDE. Thus far, our derivation
largely coincides with the expansion procedure in [47]. However, instead of diago-
nalizing L1 in terms of Hermite polynomials, we follow in the spirit of the procedure
developed in Appendix B of MTV. We show how this approach can be modified to
directly treat a case such as the present one, where L1 is not diagonal in the fast
variables V.

We pass again to fast Fourier variables P = {pα} defined through

ĝ(P) =

∫
RN

exp

[
i
∑
α∈A

pα ·Vα

]
g(V) dV.

The differential operators act on functions of P and X as follows:

L̂1 =
∂

∂P
· R̃(X) ·P−P · R̃(X) ·P,

L̂2 = iφP · ∇XΦ̃

(
X


̃f

)
− i

∂

∂P
· ∂

∂X
.

We have written these operators in a “grand matrix” form, which will facilitate later
computations. We just think of quantities like X and P as vectors with 3N compo-
nents, and matrices like R̃ as 3N × 3N matrices. Scalar products between vectors
(and vector operators) then involve summing over particle labels in addition to the
Cartesian dimensions.

We now need to compute L̂−1
1 and will have to generalize Lemma A.2 in MTV

to allow for the nondiagonal structure of L̂1. Since a similar result will be needed for
the DPD calculation below, we present here a lemma sufficient for both calculations.
Lemma 2.2. Suppose we are given a first order differential operator of the form

L̂1 =
∂

∂P
· A ·P−P · A ·P,
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where A is a positive definite symmetric matrix. Then, given any function ĝ(P)

satisfying L̂†
1ĝ = 0, ĝ has an inverse image of L̂1 of the following form:

(L̂−1
1 ĝ)(P) = −

∫ ∞

0

exp

(
TrAt− 1

2
P · (exp(At) · exp(At)− I) ·P

)
ĝ(β(t)) dt,

where

β(t) = exp(At) ·P.

Note that L̂1 has a one-dimensional kernel (consisting of constant functions), and
thus the inverse of L̂1 is not uniquely defined. However, all choices of inverse images
under L̂1 differ only by functions of X, which are annihilated in the computation of L̄.
Therefore, any choice of inverse image will suffice. Note also that Lemma 2.2 is indeed
a generalization of Lemma A.2 in MTV, even though an extra constant parameter
appears in the latter; this can always be removed by suitable rescaling of the variables
P. We will prove Lemma 2.2 below in section 2.6.

We are now ready to write down the form for the differential operator L̄ describing
the effective particle dynamics on time scales O(Ku−1

T ) in the limit KuT → 0. Modify-
ing the development in Appendix B of MTV in the manner indicated by Lemma 2.2,
we have

L̄g(X) = −EOUL2L−1
1 L2EOUg(X)

=

∫
RN

dP ˆ̄POU (P)L̂2

∫ ∞

0

dt
[
L̂2(g(X)δ(P′))

]
P′=β(P,t)

× exp

(
( Tr R̃)t− 1

2
P · (exp(R̃t) · exp(R̃t)− I) ·P

)
,

(2.7)

where

β(P, t) = exp(R̃t) ·P,

and

ˆ̄POU (P) = exp

(
−1

2

∑
α∈A

|pα|2
)

(2.8)

is the invariant measure for the particle velocities, expressed in terms of the Fourier
coordinates P. We compute this expression in pieces:

[
L̂2(g(X)δ(P′))

]
P′=β(P,t)

= −i
[
∂g

∂X
· ∂δ(P

′)
∂P′

]
P′=β(P,t)

= −i(Det (exp(R̃t)))−1 ∂g

∂X
· exp (− R̃t

) · ∂δ(P)

∂P
.

Thanks to the delta function of P and the relation Det (exp(R̃t)) = exp(Tr R̃t), the
integral over t can be evaluated to give

L̂−1
1 L̂2EOUg(X) = i

∂g

∂X
· exp (− R̃t

) · ∂δ(P)

∂P
= i

∂g

∂X
· R̃−1 · ∂δ(P)

∂P
,
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since R̃ is a positive definite matrix [6]. Continuing,

L̂2L̂−1
1 L̂2EOUg(X) = Tr

∂

∂X

(
∂g

∂X
· R̃−1 · ∂

2δ(P)

∂P⊗2

)

+ φ
∂g

∂X
· R̃−1 · ∇XΦ̃

(
X


̃f

)
δ(P).

Finally, integrating against the invariant measure (2.8) for P and using the symmetry
of R̃, we obtain

L̄g(X) =
∂

∂X
·
(
R̃−1 · ∂g

∂X

)
− φ

(
(R̃)−1 · ∇XΦ̃

(
X


̃f

))
· ∂g
∂X

.

Returning to our more concrete notation, this reduced operator has exactly the (nondi-
mensionalized) Smoluchowski form

L̄g(X) =
∑

α,α′∈A

[
∂

∂Xα
·
(
(R̃−1)α,α′ · ∂g

∂Xα′

)

− φ

(
(R̃−1)α,α′ · ∇α′Φ̃

(
X


̃f

))
· ∂g

∂Xα

]
.

The drift and diffusion coefficients stated in Proposition 2.1 are read off this effective
Kolmogorov backward operator in the standard way.

2.5. Generalized mass matrix. The above calculation can be directly general-
ized to systems of particles with unequal masses or even systems involving nondiagonal
mass matrices (as in the case where some coordinates may correspond to rotational
degrees of freedom) [4, 5, 6]. The nondimensionalization requires some modification,
but this is straightforward for any particular system under consideration. (For exam-
ple, the reference mass might be chosen as the average mass or mass of the largest
particle, etc.) We assume that this nondimensionalization has been done. There will
be some other nondimensional parameters characterizing the system (e.g., mass and
particle size ratios), but all these will be considered to be held fixed in the low ther-
mal Kubo number limit, and so we do not need to account for them specifically. We
restrict attention to the case in which the system variables X and V involve only rigid
motions of bodies so that the mass matrix is constant.

We start with the nondimensional form of the particle dynamics equations with
general nondimensionalized mass matrix M̃:

dXα(t) = Vα(t) dt,∑
α′∈A

M̃α,α′ · dVα′(t) = −φ∇αΦ̃(X(t)/
̃f ) dt

+
∑

α′∈A

[
−Ku−1

T R̃α,α′(X(t))Vα′(t) dt+
√
2Ku

−1/2
T Sα,α′(X(t)) dWα′(t)

]
,

(2.9)

with S̃S̃† = R̃ (see [6]).



STOCHASTIC MODE REDUCTION FOR MICROFLUID SYSTEMS 411

We can transform this system with generalized nondimensional mass matrix to the
simplified case considered above (i.e., (2.1)), where the nondimensional mass matrix
is the identity matrix, as follows,

V(M̃) = M̃1/2 ·V, X(M̃) = M̃1/2 ·X,
noting that the mass matrix M̃ is symmetric and positive definite. Multiplying the
first equation in (2.9) by M̃1/2 and the second equation in (2.9) by M̃−1/2 and making
this change of variables, we find that

dX(M̃)
α (t) = V(M̃)

α (t) dt,

dV(M̃)
α (t) = −φ

∑
α′∈A

(M̃−1/2)α,α′ · ∇α′Φ̃(X(M̃)(t)/
̃f ) dt

+
∑

α′∈A

[
−Ku−1

T R̃(M̃)
α,α′(X

(M̃)(t))V
(M̃)
α′ (t) dt+

√
2Ku

−1/2
T S(M)

α,α′(X
(M̃)(t)) dWα′(t)

]
,

where

R̃(M̃) = M̃−1/2 · R̃ · M̃−1/2,

S(M) · S(M)† = R̃(M̃).

Consequently, the effective coarse-grained dynamics for a system of particles governed
by a general nondimensional mass matrix can be obtained by making the following
replacements in Proposition 2.1:

X̄ −→ M̃1/2 · X̄,
R̃ −→ M̃−1/2 · R̃M̃−1/2,

∇XΦ̃(X/
̃f ) −→ M̃−1/2 · ∇XΦ̃(X/
̃f ).

We find in this way that the effective drift and diffusion coefficients for the particle
coordinates X are to be replaced by

V̄α(X) =
∑

α′∈A
−((R̃(X))−1)α,α′ · ∇α′Φ̃(X/
̃f )

+
∑

α′,α′′∈A
∇α′ · (R̃−1(X))α′,α′′(M̃1/2)α′′,α,

Sαα′(X) =
√
2(R̃−1/2(X))α,α′ .

In other words, only the divergence-drift term needs modification by the generalized
mass matrix.

2.6. Proof of Lemma 2.2. Following Appendix B of MTV, we write

L̂−1
1 = −

∫ ∞

0

eL̂1t dt.(2.10)

Since L̂1 is still a first order differential operator, we can compute T (t) ≡ eL̂1t using
the method of characteristics. The characteristic equation is

dΠ(β, t)

dt
= −AΠ(β, t), Π(β, t = 0) = β,
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which has solution Π(β, t) = exp(−At)β. The transformation to the characteristic
coordinate β is therefore given by

β(P, t) = exp(At)P.(2.11)

Along the characteristics, the evolution operator obeys the ODE

∂

∂t
(T (t)ĝ|P=Π(β,t)) = (TrA−Π(β, t) · A ·Π(β, t)) T (t)ĝ|P=Π(β,t) ,

which has solution

T (t)ĝ|P=Π(β,t) = exp

(
TrAt−

∫ t

0

Π(β, s) · A ·Π(β, s) ds

)
ĝ

∣∣∣∣
P=β

.

The integral can be evaluated exactly, using the given fact that A is a symmetric
matrix: ∫ t

0

Π(β, s) · A ·Π(β, s) ds =

∫ t

0

β · exp(−As)A exp(−As) · β

=
1

2
β · (I − exp(−At) exp(−At)) · β.

Reverting from the characteristic coordinate β to the original coordinate P via (2.11),
we have

T (t)ĝ = exp

(
TrAt− 1

2
P · (exp(At) exp(At)− I) ·P

)
ĝ(β(P, t)).

Upon substitution into (2.10), we obtain the statement in Lemma 2.2.

3. Application of stochastic mode reduction for DPD. The final simu-
lation method which we will treat with the stochastic mode reduction procedure is
DPD [1, 7, 11, 13, 23, 35, 38]. This simulation scheme has several formal similarities
to the PB methods mentioned in section 2, but differs fundamentally in interpreta-
tion. DPD is intended to be used for “complex fluid” systems such as suspensions of
polymers, colloids, or other macromolecules. Rather than attempting to resolve the
coordinates and configurations of the macromolecules, DPD instead coarse-grains the
system in terms of fluid particles which represent some parcel of the fluid suspension.
These fluid particles are mesoscopic in size and interact with each other through some
force laws that endeavor to capture constitutively the properties of the multiphase
mixture. These forces include both conservative and dissipative components. More
precisely, under DPD the equations of motion for the fluid particles can be written in
the following form [13, 35]:

mdVα(t) =


−∇αΦ(X(t))−

∑
α′ =α

γω(rαα′(t)/
γ)(êαα′(t) ·Vαα′(t))êαα′(t)


 dt

+
∑

α′ =α

σω̃(rαα′(t)/
γ)êαα′(t) dWαα′(t),

dXα(t) = Vα(t) dt,

(3.1a)
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with initial conditions

Xα(t = 0) = X0,α, Vα(t = 0) = V0,α.(3.1b)

We use the same notation as in other simulation approaches to describe analogous
structures and concepts in the DPD framework. The new notation is the following:

(i) rαα′(t) = |Xα(t)−Xα′(t)| is the distance between two DPD particles;
(ii) êαα′(t) = (Xα(t)−Xα′(t))/rαα′(t) is the unit vector directed from particle

α′ to α;
(iii) Vαα′(t) = Vα(t)−Vα′(t) is the relative velocity between two DPD parti-

cles;
(iv) γ describes the frictional coupling constant between two DPD particles;
(v) σ denotes a normalization factor for the thermal forces;
(vi) 
γ denotes a length scale over which the fluid particles exert thermal and

frictional forces on each other (this may loosely be viewed as an effective size of the
fluid particles);

(vii) ω and ω̃ are dimensionless functions which describe the strength of the
frictional and thermal coupling between particles when they are separated by various
distances; these functions typically vanish beyond some particle separation distance;

(viii) {Wαα′(t)}α =α′ is a collection of independent standard real-valued one-
dimensional Brownian motions (see the discussion near (2.2)) whose differentials de-
scribe random thermal force exchanges between particles α and α′.

The fluctuation-dissipation theorem, or consistency with Gibbs–Boltzmann statis-
tics for a thermal equilibrium state, implies the following relationships between the
above parameters:

γ =
mσ2

2kBT
, ω = ω̃2.

Equations (3.1) have a discontinuity when two or more particles coalesce, unless ω(r)
and ω̃(r) are chosen to vanish at small r. This is physically reasonable, since if the
soft fluid particles overlap significantly, the forces they exert on each other should
begin to cancel out because of the integration of their interaction over wide angles.
The published numerical implementations appear to leave the discontinuity in their
simulated equations, which does not matter much because coalescence is a rare event
(in three dimensions). For mathematical purposes, it will be convenient to assume
that ω(r) (and therefore also ω̃(r)) vanishes smoothly at r = 0.

Note that the thermal forces in DPD conserve momentum because the DPD
particles alone compose the complex fluid system, in contrast to the rigid particles
in the standard PB simulation method, which can exchange momentum with the
fluid medium. Also, note that the friction term in DPD is different from that in the
rigid PB formalism (2.1). We have restricted our attention to isothermal systems
so that a common temperature T characterizes all of the DPD fluid particles. The
generalizations of DPD to systems with thermal gradients [1, 11] involve an extra
equation for the dynamics of the internal energy of the fluid particles which does not
fit well within the stochastic modeling framework of MTV.

We will obtain here, using the MTV stochastic modeling framework, a simplified
formal description of the dynamics of the DPD particles at low thermal Kubo number.
This procedure may be viewed as an analogue of the Smoluchowski reduction for the
conventional dynamic model of particles in a fluid (section 2), and indeed the results
and calculations are rather similar after certain identifications are made. The results
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from the stochastic mode reduction procedure will determine the effective drift and
diffusivity of the DPD particles. As these are fictitious particles, it is not so important
that these quantities correspond to fundamental physical laws (in contrast to the IB
method [26, 25]).

We must stress that, unlike in the previous sections where the results had a rig-
orous foundation, the stochastic mode reduction procedure has only a limited formal
validity for the DPD system. The reason is that the finite range of the frictional inter-
actions allows the dynamical and uncontrolled appearance of slow modes of particle
motion which do not feel frictional damping. The simplified dynamics can be expected
to be relevant only for sufficiently dense systems, as we shall explain in section 3.3.4.
However, we are not yet able to make this into a rigorous statement.

The coarse-grained dynamics of the DPD particles have previously been charac-
terized in a different way in [12, 34] through the calculation of kinetic coefficients such
as viscosities of the DPD fluid via Chapman–Enskog expansions. Our framework for
calculation provides more detail than these kinetic coefficients in one sense because it
incorporates the spatial correlation structure of the DPD fluid particle motion. On
the other hand, the stochastic mode elimination framework does not seem well suited
to computing quantities such as effective viscosity or pressure of the DPD fluid, since
the velocities of the DPD particles, which are needed for these calculations, are fast
modes which are eliminated.

3.1. Nondimensionalization.

3.1.1. Parameters of externally specified functions. The thermal and fric-
tional coupling has already been expressed in terms of nondimensional functions ω
and ω̃. We nondimensionalize the potential and initial velocities as we did for PB
dynamics,

Φ(X) = F
f Φ̃(X/
f ), V0,α = V0Ṽ0,α,

and the initial particle locations as in the IB method,

X0,α = 
γX̃0,α;

this latter nondimensionalization is naturally suggested by the notion that 
γ is a
typical fluid particle size and the fluid particles should be space-filling.

3.1.2. Reference units. Here we will use the following:
(i) length scale 
T = 
γ ,

(ii) time scale τT =
√
m
2γ/kBT ,

(iii) mass scale mT = m.
We have chosen these reference units based on thermal (and frictional properties) of
the particles, as we did for the other methods. Note that the reference velocity scale,

vT ≡ 
T
τT

=

√
kBT

m
,

is the order of magnitude which the velocity of the fluid particles would have in
thermal equilibrium in the absence of applied forces.

3.1.3. Nondimensional groups.
(i) The thermal Kubo number

KuT =

√
mkBT

γ2
2γ
.
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If we were to assume that the frictional constant for the DPD particles scales with
respect to physical parameters in the same way as rigid particles in viscously over-
damped flows (γ ∝ (m/
3γ)ν
γ), then we can also think of KuT as a thermal particle
Reynolds number.

(ii) Nondimensionalized measures of the effects of structural forces and initial
velocity

φ =
F
γ
kBT

, Υ =
V0

vT
.

(iii) The length scale ratio


̃f =

f

γ
.

3.1.4. Nondimensionalized DPD equations. Nondimensionalizing with re-
spect to the reference units described in section 3.1.2 and denoting nondimensional
variables (but not externally prescribed functions) by the same notation as their di-
mensional form, we obtain

dXα(t) = Vα(t) dt,

dVα(t) =


−φ ∑

α′ =α

∇αΦ̃(X(t)/
̃f )

−
∑

α′ =α

Ku−1
T ω(rαα′(t))(êαα′(t) ·Vαα′(t))êαα′(t)


 dt

+
∑

α′ =α

√
2Ku

−1/2
T ω1/2(rαα′(t))êαα′(t) dWαα′(t),

with initial conditions

Xα(t = 0) = X̃0,α, Vα(t = 0) = ΥṼ0,α.

3.2. Effective dynamics for DPD particles at low Kubo number. As we
shall discuss in section 3.3.4, there is a degeneracy in the DPD equations which does
not appear to allow a direct, rigorous application of the theorem by Kurtz [29] to
obtain the simplified small Kubo number dynamics. However, it appears that the
degeneracy plays only a small role in sufficiently dense systems, and that the formal
procedure should be meaningful in these situations. We therefore state the results of
stochastic mode reduction on the DPD equations in terms of a formal, nonrigorous
proposition.
Proposition 3.1 (DPD at small Kubo number (only formal)). Consider the

DPD system (3.1) under the restriction that
∑

α∈A ∇αΦ(X) = 0 and the system
is sufficiently dense. Then in the limit KuT → 0 with all other nondimensional
quantities held fixed, the solution for the particle positions {Xα(t)}α, obtained from
the complete DPD system (3.1) and rescaled in time as

X̄α(t) = lim
KuT→0

Xα(t/KuT),
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can be approximated in some weak sense by the solution of the following simplified
stochastic differential system involving only the particle positions {X̄α(t)}:

dX̄α(t) = V̄α(X̄(t)) dt+
∑

α′∈A
Sαα′(X̄(t)) dWα′(t),

X̄α(t = 0) = X̃0,α,

(3.2)

where the stochastic real white noise terms dWα(t) are defined near (2.2) and are
given the Itô interpretation. The explicit expression for the drift term is

V̄α(X) = −
∑

α′∈A
((Q̃(X))−1)α,α′ · ∇α′Φ̃(X/
̃f ) +

∑
α′∈A

∇α′(Q̃−1(X))α′,α,(3.3)

and the matrix coefficients of the stochastic terms are

Sαα′(X) =
√
2(Q̃−1/2(X))α,α′ ,

where

Q̃α,α′ ≡=

{∑
α′′ =α ω(rαα′′)êαα′′ ⊗ êαα′′ for α′ = α.

−ω(rαα′)êαα′ ⊗ êαα′ for α′′ �= α.(3.4)

The inverse of Q̃ is to be understood as having domain orthogonal to the null-space
of Q̃.

On a formal level, the coarse-grained DPD is quite similar to that of the coarse-
grained PB dynamics described in Proposition 2.1; the resistance tensor R̃ is simply
replaced by an effective DPD resistance tensor Q̃ defined in (3.4). However, the re-
strictions for the validity of the effective coarse-grained DPD stated in Proposition 3.1
are substantial.

First, the total momentum of the system must be conserved, as for IB dynamics.
This rules out consideration of external potentials, which would induce O(1) motion
of the center of mass of the DPD particle system over O(1) time scales. This center
of mass motion would influence the relative motion of the DPD particles because of
the forces applied by the external potential. As with the IB method discussed in [24],
we do not know how to generalize our simplified stochastic dynamics to incorporate
these changes.

Secondly, the system must be sufficiently dense so that, with large probability,
the collection of particles does not (or rarely does) break up into two or more clus-
ters which feel no frictional or thermal coupling with each other. Indeed, in such a
configuration, the relative position of the centers of mass of these two clusters would
be a degree of freedom that would not feel the strong damping at all and cannot be
described within the stochastic mode reduction framework. (It acts as a slow mode,
but we cannot identify it a priori!) We discuss this issue below in the context of the
actual stochastic mode elimination procedure.

3.3. Stochastic mode reduction for DPD. We now derive Proposition 3.1
following the general prescription from MTV, which we presented in some detail
in [24]. We focus here only on those aspects of the calculation that are particular
to the DPD equations; the basic notation and formalism are the same as for PB dy-
namics in section 2.4. We will encounter a technical gap, so the calculations here
should only be viewed as formal.
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3.3.1. Kolmogorov backward equation formalism. We identify ε = KuT

as the small parameter and rescale to a longer time t → t/ε. We denote the system
variables in terms of the collection of particle positions X and velocities V, as in
section 2. Then the Kolmogorov backward equation under this time rescaling can be
written as

−∂ρε(s,X,V|t)
∂s

= ε−2L1ρ
ε + ε−1L2ρ

ε,

ρε(s = t,X,V|t) = f(X,V),

with differential operators

L1 =
∑

α =α′
ω(rαα′)

[
1

2

(
êαα′ ·

(
∂

∂Vα
− ∂

∂Vα′

))2

− êαα′ · (Vα −Vα′)êαα′ · ∂

∂Vα

]
,

L2 =
∑
α∈A

−φ∇αΦ̃

(
X(t)


̃f

)
∂

∂Vα
+Vα · ∂

∂Xα
.

3.3.2. Asymptotic expansion of solution. We follow the same formalism as
in [24], again assuming f depends only on the slow variables f = f(X) to avoid
consideration of initial transients. The solvability conditions for the equations in the
asymptotic hierarchy are obtained by integrating against the invariant measure πOU
associated with the operator L1, which here is

πOU (V) =

(∏
α∈A

1

2π

)
exp

(
−1

2

∑
α∈A

|Vα|2
)
.

The first two equations in the asymptotic hierarchy are solved in the same way as
in [24], and the solvability condition resulting from the third equation is again (2.6),
so the main task is to compute explicitly

L̄ ≡ −EOUL2L−1
1 L2EOU .

3.3.3. Explicit computation of limiting PDE. We again follow the spirit of
the calculation in Appendix B of MTV but, as in section 2.4.3, need to make some
modifications because L1 is not diagonal in the fast variables V.

We pass again to fast Fourier variables P = {pα} defined through

ĝ(P) =

∫
RN

exp

[
i
∑
α∈A

pα ·Vα

]
g(V) dV.

The differential operators act on functions of P and X as follows:

L̂1 =
∑

α =α′
ω(rαα′)

[
−1

2
(êαα′ · (pα − pα′))

2
+ êαα′ ·

(
∂

∂pα
− ∂

∂pα′

)
êαα′ · pα

]

=
∑

α =α′
ω(rαα′)

[
−1

2
(êαα′ · (pα − pα′))

2
+ êαα′ · ∂

∂pα
êαα′ · (pα − pα′)

]
,

L̂2 = i
∑
α∈A

φpα · ∇αΦ̃

(
X(t)


̃f

)
− i

∂

∂pα
· ∂

∂Xα
.
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We proceed again as in section 2.4.3 but need to pay special attention to the
structure of L̂1. Note that L̂1 has a form satisfying the hypotheses of Lemma 2.2
with the symmetric matrix A = Q̃ defined in (3.4), except that we need to take care
about positive definiteness. As we discuss in section 3.3.4, we can readily show that
Q̃ is nonnegative definite, but it may possess several nontrivial zero eigenvalues. Q̃
will always have one zero eigenvalue corresponding to an eigenvector with all entries
equal; this simply reflects the fact that the momentum of the center of mass feels no
damping. If there are no external forces, this momentum remains constant and can
be projected away without difficulty. Of greater concern is the possible presence of
additional zero eigenvalues, with eigenvectors depending on the particle configuration.
These would imply that certain combinations of the velocities acted as slow rather
than fast modes. Since these combinations are configuration-dependent, we cannot
simply project them away or reclassify them a priori as slow modes. Zero eigenvalues
of Q̃ beyond the one corresponding to center of mass motion, therefore, would obstruct
our ability to obtain simplified dynamics for DPD in the small Kubo number limit.
We will refer to particle configurations X that give rise to multiple zero eigenvalues
of Q̃ as “degenerate configurations.” As we shall discuss in section 3.3.4, we cannot
exclude the possibility of these degenerate configurations, but the probability that any
given realization of the dynamics will pass through a degenerate configuration over
some finite time interval should become small as the density of the system increases.
(In fact, this probability would appear to remain uniformly small over a fixed interval
in the rescaled time t → t/KuT as KuT → 0.) A larger class of realizations may go
through degenerate configurations for sufficiently brief periods of time that the coarse-
grained dynamics are unaltered. Therefore, we expect that the simplified stochastic
dynamical description should apply in some sense to a large fraction of realizations
if the density of the system is sufficiently large. To make such a statement have
true mathematical sense would require a more proper formulation. Indeed, over any
finite time interval, some nonzero fraction of realizations of the simplified dynamics
described in Proposition 3.1 will pass through degenerate configurations for which the
equations are not well defined; thus it is not appropriate to speak of convergence in
law to the formal coarse-grained DPD equations.

We defer further discussion of these important technical matters until section
3.3.4. For now, let us suppose that we are restricting attention to the subset of
systems which do not pass through a degenerate configuration, so that Q̃ has, over
the (rescaled) time interval of interest, exactly three zero eigenvalues corresponding
to motion of the center of mass. We can project these degrees of freedom away from
consideration by working in a frame comoving with the (constant) center of mass
velocity, and then, by analogy to (2.7), we compute

L̄g(X) = −EOUL2L−1
1 L2EOUg(X)

=

∫
RN

dP ˆ̄POU (P)L̂2

∫ ∞

0

dt
[
L̂2(g(X)δ(P′))

]
P′=β(P,t)

× exp

(
( Tr Q̃)t− 1

2
P · (exp(Q̃t) · exp(Q̃t)− I) ·P

)
,

where

β(P, t) = exp(Q̃t) ·P
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and

ˆ̄POU (P) = exp

(
−1

2

∑
α∈A

|pα|2
)
.

Then by making the same kind of calculations as we did for the PB dynamics in
section 2.4.3, we obtain

L̄g(X) =
∑

α,α′∈A

[
∂

∂Xα
·
(
(Q̃−1)α,α′ · ∂g

∂Xα′

)

− φ

(
(Q̃−1)α,α′ · ∇α′Φ̃

(
X


̃f

))
· ∂g

∂Xα

]
.

This is exactly the Kolmogorov backward differential operator corresponding to the
stochastic dynamics recorded in Proposition 3.1.

3.3.4. Positive definiteness of Q̃. We now discuss in more detail the positive
definiteness of Q̃ in (3.4).
Definition 3.2. Given a frictional coupling function ω(r), a particle configura-

tion X will be said to be frictionally connected if for each pair of particles α and α′

and each pair of unit vectors ê, ê′ ∈ R
3 there exists a finite chain of particles {α(i)}ni=1

with α(1) = α and α(n) = α′ obeying the following conditions:
(i) ω(|Xα(i+1) −Xα(i) |) > 0 for 1 ≤ i ≤ n− 1,
(ii) (Xα(i+1) −Xα(i)) · (Xα(i) −Xα(i−1)) �= 0 for 2 ≤ i ≤ n− 1,
(iii) ê · (Xα(2) −Xα(1)) �= 0 and ê′ · (Xα(n) −Xα(n−1)) �= 0.

Otherwise, the configuration is said to be frictionally disconnected.
Colloquially, a frictionally connected configuration is one for which any relative

motion of any pair of particles induces some sort of frictional damping. This need
not be a direct frictional coupling. Imagine, for example, a large but dense cluster
of particles with cluster diameter larger than the distance over which frictional cou-
pling acts. Choose two particles at opposite edges of the cluster, and pick arbitrary
directions ê and ê′ associated with the respective particles. Suppose that a chain of
particles can be found between these two particles such that each pair of successive
particles has a nonzero frictional interaction, no two successive pairs have orthogonal
separation vectors, and the separation vectors of the pairs at the ends are not orthog-
onal to ê and ê′. Then any motion of the first particle along ê and the second particle
along ê′ will create some frictional damping within the chain, no matter how the
other particles are chosen to move along with the two given particles. If no such chain
can be found between the two particles, then that implies that they lie in frictionally
decoupled subclusters, so that there is an extra degree of freedom (rigid motion of
each subcluster) beyond center of mass motion which is not frictionally damped. To
understand the nonorthogonality restrictions in the definition of frictional connect-
edness, note that, for any pair of frictionally interacting particles, the motion of one
particle along a line normal to their separation vector incurs frictional damping only
at second order in its displacement (and so is vanishing to first order).

Direct calculations establish the following result.
Proposition 3.3. The matrix Q̃ in (3.4) is always nonnegative definite: V ·

Q̃ ·V ≥ 0 for any vector V. Let K be the null-space of Q̃: V ∈ K ↔ Q̃ ·V = 0.
This null-space always contains a three-dimensional subspace of vectors characterized
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by Vα = Vα′ for all α,α′ ∈ A. The null-space is strictly larger than this three-
dimensional subspace whenever the configuration X is frictionally disconnected.

The general three-dimensional subspace of null vectors corresponds to the center
of mass motion, and we can easily eliminate them from our system by a simple linear
projection if there is no external potential. The additional vectors in the null-space
from frictionally disconnected configurations represent additional undamped modes in
the system involving relative motion. For example, if there exists a cluster {α ∈ Ac}
of particles which are not in frictional contact with any particles not in this cluster,
then the null-space of Q̃ contains all vectors V with the property Vα = Vα′ for all
α,α′ ∈ Ac, and Vα = 0 for all α /∈ Ac.
Conjecture 3.4. For frictionally connected configurations X, the null-space of

the matrix Q̃ is precisely the three-dimensional space described in Proposition 3.3.
There are no additional null eigenvectors.

The reason for the conjecture is that, from a physical standpoint, the system
has no undamped relative degrees of freedom other than center of mass motion. We
have not been able to provide a mathematical proof, however. The matrix Q̃ has
the form of an infinitesimal generator of a continuous time Markov chain [42], except
that the off-diagonal components consist of nonnegative dyadic matrices rather than
nonnegative scalars. The usual arguments for characterizing the null-space of an
infinitesimal generator, however, suffered algebraic defects when we tried to apply
them to the case at hand.

If we grant the conjecture, then a sufficiently dense system should remain fric-
tionally connected with high probability, and one could imagine applying Kurtz’s the-
orem [29] only on such realizations. A proper technical framework, however, would
need to be constructed to make such a statement mathematically meaningful, and
this is beyond the scope of the present work.

4. Conclusion. The MTV stochastic mode reduction procedure provides a way
to recover rigorously the Smoluchowski equation for PB models at low thermal Kubo
number. In contrast, the governing equations for DPD have an algebraic structure
amenable to the MTV procedure, but they incur analytical obstacles due to the
finite range of the frictional interaction. This feature introduces a mobile degeneracy
which prevents the a priori identification of the fast and slow modes in the system;
slow modes can, rather, emerge dynamically. It would be interesting to formulate a
mathematically sound way to obtain and describe the simplified dynamics of such a
system, particularly when the degeneracies occur rarely.
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Abstract. We analyze the electrophoretic motion of a freely suspended closely fitting sphere,
eccentrically positioned within an infinitely long cylindrical pore, when subjected to a uniform electric
field acting parallel to the pore. The thin Debye-layer approximation is employed. Using singular
perturbation expansions, the fluid domain is separated into an “inner” gap region around the sphere’s
equator, wherein electric field and velocity gradients are large, and an “outer” region, consisting of
the remaining fluid domain, wherein field variations are moderate. Laplace’s equation is solved within
the gap region using stretched coordinates, whereby matching with the outer solution is facilitated
by use of an integral conservation equation for the electric field flux. Using a reciprocal theorem,
the electrokinetic contributions to the force (torque) on the sphere are represented as quadratures
of the electric field over the sphere surface, with the respective stress fields pertaining to purely
translational (rotational) motions appearing as Green’s functions. The translational velocity of a
concentrically positioned sphere is found to be half that for a sphere in an unbounded fluid. Both
the translational and rotational sphere mobilities increase in magnitude with increasing eccentricity.
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1. Introduction. The effects of boundaries upon the electrophoretic motion of
colloidal particles have been the subject of many studies, as these effects are inevitable
in any practical system. The complete system of electrokinetic equations is strongly
coupled and nonlinear, making analytic treatment difficult even for the simplest ge-
ometries [17]. This has led to extensive use of the “thin Debye layer” approximation,
which results in linear equations in the outer “bulk” region, lying outside of the Debye
double layers surrounding the various surfaces, say S, in contact with the electrolytic
fluid (i.e., particle and wall surfaces). Indeed, in many practical cases the Debye-layer
thickness, say λD, is of the order of nanometers [20], which allows use of this asymp-
totic approximation, even for micron-size particles. Within the framework of this
approximation [9], the flow in the bulk region is governed by the conventional Stokes
equations (without any electrical body force), albeit satisfying a slip condition on S.
This condition reflects the finite velocity jump across the layer, which is proportional
to the electric field existing at its outer edge (in the bulk domain). This field is derived
from an electric potential, which satisfies a Neumann-type boundary-value problem
in the bulk region.

The simplicity of the former model allows the solution of electrophoretic problems
posed for geometric configurations that involve both a particle and a wall. It is
common to use a sphere as a simple geometric model for particle shape in various
applications.1 In cases where the sphere is remote from the wall compared with its
radius, the electrostatic and flow problems can be solved using reflection techniques.
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2003; published electronically December 31, 2003. This work was supported by a postdoctoral grant
from Eli Lilly and Company.

http://www.siam.org/journals/siap/64-2/41111.html
†Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, MA

02478 (yariv@mit.edu, hbrenner@mit.edu).
1Even long molecules, such as DNA, tend to coil into spherical equilibrium shapes.

423



424 EHUD YARIV AND HOWARD BRENNER

This has been done for the cases of a sphere moving far from a planar wall [9], as
well as for a relatively small sphere moving within an infinitely long circular cylinder
[9, 21]. First-order electrophoretic wall effects are found in such circumstances to

be proportional to (a/b)
3
, where a is the sphere’s radius and b is a typical sphere-

wall distance. As such, these effects are rather weak compared with the O (a/b)
hydrodynamic interactions (in the absence of electrophoretic effects) occurring during
sedimentation of a sphere which interacts with a distant boundary [8].

Exact sphere-boundary solutions, valid for a/b ∼ O(1), may be obtained using
eigenfunction expansions. Such solutions are difficult to derive, except for rather sim-
ple configurations involving elementary geometrical symmetries. Roughly speaking,
these types of solutions are classified into two categories. The first consists of two-
sphere interactions [16, 11], as well as sphere motion in proximity to a plane [10, 13].
The second involves sphere motion in bounded regions, as in the case of a concen-
trically positioned sphere translating within an infinitely long circular cylinder [12].
More complex geometries necessitate the use of strictly numerical methods, such as
collocation [14] or boundary integrals [18].

While these exact solutions are valid in principle for all O(1) sphere-sphere or
sphere-boundary separations, numerical convergence of the pertinent series solutions
becomes poor for small separations. It is exactly in such circumstances that elec-
trophoretic flows exhibit a unique behavior, qualitatively different from that occurring
during conventional, electrolyte-free Stokes flows. In the latter case, particle drag be-
comes unbounded (and, consequently, particle mobility goes to zero) as the sphere-wall
gap thickness shrinks to zero, reflecting the increasingly large viscous stresses existing
within the narrow gap. However, this is not the general rule in electrophoretic mo-
tions. The most notable difference occurs during the movement of a sphere parallel
to a wall, wherein the results of [10] predict increasingly large magnitudes of sphere
velocities as the sphere-wall separation vanishes. In the case of sphere motion within
a cylindrical pore, the results of [12] predict sphere velocities comparable with those
for an unbounded domain.

It is important to emphasize that all previously mentioned results were obtained
under the thin-Debye-layer approximation, and thus do not represent interactions
between the respective particle and wall double layers. As such, this singular behavior
has to do with gap separations that are small compared with particle size but still
large relative to the Debye-layer thickness, λD. Mobility models for such thin gap
geometries are important in the analysis of colloidal dispersion phenomena, especially
in the formation of electrophoretic aggregates. Furthermore, the continuous progress
achieved to date in microfabrication techniques has resulted in microfluidic devices
whose channel depth is comparable to colloidal particle size [7]. The importance of
the availability of accurate mobility models covering the entire range of separations
has led to the development of improved numerical series solution schemes [24], as well
as to the proposal of empirical formulae.

Analytic, closed-form analyses of near-contact geometries may be affected by
using singular perturbation schemes. Usually, the range of validity of such asymptotic
solutions overlaps those of the “exact” solutions. Thus, the combination of asymptotic
approximation together with exact solutions provides uniformly valid hybrid mobility
models. Several asymptotic solutions have already been obtained for geometries of the
first category. In this context, analysis of the motion of a sphere parallel to a plane wall
was presented in [22]. This study clearly demonstrates the strong effect upon particle
mobility arising from the intense electric field existing within the narrow gap region.
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The present investigation deals with a singular case associated with the second
category, namely the motion of a closely fitting sphere in a direction parallel to the wall
of an infinitely long circular cylinder. We consider the general case of an eccentrically
positioned sphere. This geometry, which is extremely difficult to analyze in the case of
arbitrary sphere-to-channel radius ratios (for which only the concentric case has been
solved; see [12]), lends itself to analytic treatment within an appropriate asymptotic
framework. The conventional, electrolyte-free, Stokes motion of a closely fitting sphere
has already been analyzed in [4]. The same geometry was also used in the analysis
of van der Waals and double-layer sphere-channel interactions [1]. During the course
of the subsequent analysis, we solve the electrostatic problem for this geometry in
order to obtain the electric field distribution. It is convenient to separately solve
Laplace’s equation in the narrow gap region between the sphere and wall using scaled
variables. The matching procedure is based upon the balance of net electric flux
along the channel, thereby avoiding the difficult solution of Laplace’s equation in the
“outer” region. With the electrostatic solution in hand, the linear Stokes flow problem
is well defined. This problem is decomposed into four distinct parts, labeled (a)–(d),
reflecting different boundary condition contributions. The first two parts constitute
“simple” Stokes flows, with no electrokinetic effects, already available in [4]. The
remaining problems, (c) and (d), reflect the electrokinetically driven portion of the
flow.

In principle, the Stokes equations governing the latter problems need to be solved
in analytic detail, subject to the pertinent slip conditions imposed by the electric
field at the respective channel wall and sphere surfaces. However, by virtue of the
existence of a reciprocal theorem [2], such detailed solutions become unnecessary, since
the theorem allows the force and torque acting on the sphere to be expressed directly
in terms of appropriate quadratures of the electric field over its surface, wherein
the purely hydrodynamic translational and rotational stress fields available from [4]
appear as Green’s functions.

The present paper furnishes leading-order asymptotic solutions of the electrostatic
and Stokes flow problems. These solutions rationalize the O(1) velocities obtained
in [12] for closely fitting geometries. While the present asymptotic scheme may be
utilized to systematically derive higher-order corrections, such corrections would have
but small practical significance, as the basic channel-sphere geometry itself already
constitutes a rather simplified model of the actual systems encountered in practice.

This paper is organized as follows: In the next section we formulate the mathe-
matical problem governing the electric potential and flow fields. The flow problem is
then decomposed into the above-mentioned parts, (a)–(d). Geometrical descriptions
of the pertinent equations and boundary conditions appropriate to small gap widths
are outlined. The electrostatic problem, governing the electrical potential, is solved
in section 3. Following that, a reciprocal theorem is used in section 4 to compute
the “electrokinetic” flow contribution, part (c). In section 5 we demonstrate that
the “potential” part, (d), does not contribute to the force and torque acting on the
sphere. Finally, the separate force and torque contributions of the preceding sections
are combined in section 6, and the linear and angular velocities of a freely suspended
sphere are derived therefrom.

2. Problem formulation. Consider a spherical particle (radius a) eccentrically
positioned within an infinitely long circular cylinder [radius (1+ε)a; ε > 0] filled with
an electrolyte solution. The cylinder wall, W, as well as the sphere surface, P, are
assumed to possess uniform surface charge densities, with respective zeta potentials
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Fig. 2.1. Schematic of the sphere-cylinder geometry.

ζw and ζp. A uniform electric field, E∞, is applied parallel to the cylinder walls
(see Figure 2.1), causing translation and rotation of the sphere relative to W with
respective velocities U and Ω.

We focus on the case of thin Debye layers [9] around both W and P. As the gap
separation, εa, constitutes the smallest bulk scale, the usual limit, namely λD/a →
0, is here modified to λD/εa → 0. Thus, the electric potential ϕ is governed by
Laplace’s equation in the bulk region and satisfies a “no-flux” boundary condition on
W ∪ P, namely n̂ · ∇ϕ = 0 (n̂ being a generic vector normal to W ∪ P). Since the
fluid in the bulk region is electrically neutral, no electrical body forces appear in the
pertinent Stokes equations. The electric field affects the bulk flow only through the
finite velocity slip, εelζα∇ϕ/µ (with µ and εel, respectively, denoting the presumably
uniform fluid viscosity and dielectric permittivity coefficients), experienced by the
fluid on the respective wall (α = w) and particle (α = p) surfaces. This slip embodies
Smoluchowski’s result governing the velocity jump across the Debye layer.

In nondimensionalizing the pertinent equations, we normalize length variables
with a, the electric potential with E∞a, linear velocities with the characteristic elec-
trophoretic velocity U0 = εelE∞ζp/µ , angular velocities with U0/a, stresses (and
pressure) with µU0/a, forces with µU0a, and torques with µU0a

2. Thus, the dimen-
sionless electric potential satisfies (i) Laplace’s equation in the fluid domain,

∇2ϕ = 0;(2.1)
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(ii) Neumann-type boundary conditions on the solid boundaries,

n̂w · ∇ϕ = 0 on W,(2.2)

n̂p · ∇ϕ = 0 on P(2.3)

(with unit normal vectors n̂w and n̂p on W and P pointing in the respective directions
depicted in Figure 2.1); and (iii) the far-field condition

∇ϕ → −ẑ as |z| → ∞,(2.4)

wherein ẑ is a unit vector pointing in the direction of the applied electric field.
The fluid velocity and pressure fields in the bulk region, (v, p), satisfy the incom-

pressible Stokes equations, namely

∇ · v = 0, ∇p = ∇2v,(2.5)

as well as the boundary conditions

v = γ∇ϕ on W,(2.6)

v = ∇ϕ+U +Ω× r on P.(2.7)

In the above, γ = ζw/ζp, and r is a position vector measured relative to the sphere
center O. These conditions incorporate both rigid-body motion (on P) and electroki-
netic slip on both surfaces. Far from the sphere, the velocity field approaches an
electroosmotic “plug flow,”

v → −γẑ as |z| → ∞,(2.8)

with z a rectilinear coordinate measuring distance parallel to the cylinder walls (see
Figure 2.1). This condition isolates the present motion from effects giving rise to
mechanically driven motion of the fluid (and sphere), thus rendering the fluid motion
purely “electrophoretic.” (In circumstances where the motion is driven by both me-
chanical and electrical agencies, the force and torque associated with the pressure- or
net-flow-driven motions [4] may be superimposed upon the present results.)

Once the velocity and pressure fields are obtained, the hydrodynamic stress field
in the bulk region may be calculated by the Newtonian expression

π = −pI+
[
(∇v) + (∇v)†

]
.(2.9)

The force and torque acting upon the particles are then given by the respective ex-
pressions

F =

∮
P
dA n̂p · π,(2.10a)

T =

∮
P
dA r × (n̂p · π) .(2.10b)

The mathematical problem governing the flow on the bulk scale, namely (2.5)–
(2.10), retains the conventional form of a Stokes problem, albeit with electrokinetic slip
conditions on P and W. This allows for the use of general creeping-flow theorems (cf.
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section 4). Moreover, given the linearity of the flow problem, it proves convenient to
decompose the flow field (v, p) into four distinct parts, labeled (a)–(d), each satisfying
the linear Stokes equations (cf. [22]). The linear boundary conditions (2.6)–(2.7) and
the up- or downstream velocity profile (far from the sphere) are separated as follows:

(a) (b) (c) (d)
on P : v = U v = Ω× r v = (1− γ)∇ϕ v = γ∇ϕ
on W : v = 0 v = 0 v = 0 v = γ∇ϕ

as |z| → ∞ : v → 0 v → 0 v → 0 v → −γẑ

The total hydrodynamic force (and torque) on the sphere is obtained by superposing
the comparable contributions resulting from flow fields (a)–(d). Flow field (a) is
identical to that resulting from translation (sans rotation) of the sphere with linear
velocity U within the cylinder and with no slip on the walls. Similarly, flow field
(b) arises from the rotation (sans translation) of the sphere with angular velocity Ω
within the cylinder and with no slip on the walls. Parts (c) and (d) constitute the
“electrokinetic” portions of the overall flow. Each individual flow field contributes, in
general, to the force and torque acting on the sphere. Imposition of the requirement
of zero net force and torque serves to determine U and Ω.

2.1. Sphere-cylinder geometry; closely fitting sphere. In dimensionless
form, the cylinder possesses a radius 1 + ε. The sphere center O is positioned at a
distance εe from the cylinder axis (see Figure 2.1). Clearly, 0 < e < 1, the respective
lower and upper bounds corresponding to concentric and fully eccentric positions. The
cylinder-sphere configuration possesses two symmetry planes, both passing through O:
a cross-sectional plane, say π1, normal to the cylinder axis, and a meridian plane, say
π2. It is convenient to employ particle-fixed Cartesian (x, y, z) and circular cylindrical
(ρ, φ, z) coordinate systems, centered about O. The z axis lies parallel to the cylinder’s
symmetry axis, the x axis lies along the line of intersection formed from π1 and π2

(with the unit vector x̂ pointing from the cylinder axis towards O), and the direction
of the unit vector ŷ is taken such that the (x, y, z) axes constitute a right-handed
orthogonal system. The azimuthal angle φ is measured from π2. Thus, π1 coincides
with the plane z = 0, whereas π2 is given by φ = (0, π). The cylinder wall surface W
and sphere surface P are described in these coordinates by the respective relations
(see Figure 2.2(a))

ρw(φ) =
[
(1 + ε)

2 − ε2e2 sin2 φ
]1/2

− εe cosφ,(2.11)

ρp(z) = (1− z2)1/2.(2.12)

In terms of the system of circular cylindrical coordinates, the electric potential satisfies
the following relations:

∂2ϕ

∂ρ2
+

1

ρ

∂ϕ

∂ρ
+

1

ρ2

∂2ϕ

∂φ2
+

∂2ϕ

∂z2
= 0 for ρp(z) < ρ < ρw(φ),(2.13)

n̂p ·
(
ρ̂
∂ϕ

∂ρ
+ ẑ

∂ϕ

∂z

)
= 0 at ρ = ρp(z),(2.14)

n̂w ·
(
ρ̂
∂ϕ

∂ρ
+ φ̂

1

ρ

∂ϕ

∂φ

)
= 0 at ρ = ρw(φ),(2.15)

∂ϕ

∂z
→ −1 as |z| → ∞.(2.16)
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Fig. 2.2. The cross-sectional plane z = 0: (a) particle- and wall-fixed coordinate systems. (b)

geometrical relations between the unit vectors ρ̂, φ̂, and n̂w.

Owing to the cylinder-sphere configurational symmetry, it is obvious (and, indeed,
consistent with (2.11)–(2.16)) that ϕ is an odd function of z and, moreover, that it
possesses symmetry with respect to reflection in the plane π2; that is, it is invariant
under the transformation φ → 2π − φ. A dynamical consequence of the underlying
geometric symmetry is that the sphere translates parallel to the wall and rotates in a
direction normal to π2; that is, U = ẑU and Ω = ŷΩ.2

In what follows, we focus upon the case of a closely fitting sphere, ε � 1. The
purely hydrodynamic, potential-independent flows, (a) and (b), respectively corre-
sponding to a translating and rotating sphere, have already been obtained [4] for that
limiting case. These “mechanical” flows are highly singular, with large velocity and
pressure variations occurring in the gap region, |z| � 1. The same will be seen to be
true for the “electrokinetic” flows, (c) and (d). Indeed, consider the flux of electric
field through the following pair of cross-sectional planes, the first passing through the
sphere (−1 < z < 1), the second being remote (|z| � 1). As the electric vector field
is solenoidal, as well as tangent to both P and W (see (2.1)–(2.3)), the uniform flux
in the remote plane has to pass through the accessible part of the first plane, say S2

(see Figure 2.1), requiring that

∫ 2π

0

dφ

∫ ρw(φ)

ρp(z)

dρ ρ
∂ϕ

∂z
= −π (1 + ε)

2
.(2.17)

2This rectilinear motion is consistent with the linear structure of the problem formulation. It
is expected that both nonlinear electrokinetic effects, as well as Brownian diffusion, may result in
a lateral migration of the particle. As such, the incorporation of both mechanisms is essential for
either stability or averaging analysis of the present problem.
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For |z| � 1, the annular integration domain becomes small, leading to a large electric
field magnitude. As the electric field is the driver of the fluid motion (cf. (2.6)–(2.7)),
it is expected that the concomitant flow fields, (c) and (d), will be singular as well.
It is therefore convenient to analyze the electric field (and, subsequently, the flow)
problems in the gap “inner” region independently of the more distant behavior of the
pertinent fields.

For ε � 1, the cylinder wall is described by the relation

ρw(φ) ∼ 1 + ε(1− e cosφ)− ε2 1

2
(e sinφ)

2
+ ε3 1

2
(e sinφ)

2
+O

(
ε4
)
.(2.18)

Define a new radial coordinate ξ as

ξ = 1 + ε(1− e cosφ)− ρ.(2.19)

Since ξ ∼ O(ε2) on W, this variable approximates the distance measured from the
wall (along a line normal to the z axis; see Figure 2.2(a)). In terms of this new
variable, and for |z| � 1, the equation describing P (cf. (2.11)) adopts the form

ξ = ε(1− e cosφ) +
1

2
z2 +

1

8
z4 +

1

16
z6 + · · · .(2.20)

In what follows, we rescale the coordinates in accordance with the scheme of [4]:
Defining the “stretched” variables,

X = ξ/ε, Z = z/ε1/2,(2.21)

leads to the following representation of the surface P:

X = H(φ,Z) +
1

8
εZ4 +

1

16
ε2Z6 + · · · ≡ Xp(φ,Z; ε).(2.22)

Here,

H(φ,Z) = [τ(φ)]
2
+

1

2
Z2(2.23)

constitutes the leading-order scaled gap separation width, with τ(φ) = (1−e cosφ)1/2.
The comparable expansion of W is

X = ε
1

2
(e sinφ)

2 − ε2 1

2
(e sinφ)

2
+ · · · ≡ Xw(φ,Z; ε).(2.24)

For future reference, we note that the gradient operator is given in terms of the
stretched coordinates by the expression

∇ = −ε−1ρ̂
∂

∂X
+ ε−1/2ẑ

∂

∂Z
+ φ̂

(
∂

∂φ
+ e sinφ

∂

∂X

)
,(2.25)

wherein (ρ̂, φ̂, ẑ) denote the respective unit vectors in the circular cylindrical coordi-
nate system (see Figure 2.2(a)).
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3. The electric potential within the gap. The potential ϕ(X,φ, Z; ε) in the
gap region is governed by (i) Laplace’s equation in the fluid domain, Xw(φ,Z; ε) <
X < Xp(φ,Z; ε),

(3.1)
∂2ϕ

∂X2
+ ε

[
∂2ϕ

∂Z2
− 1

1 + ε (1− ε cosφ−X)

∂ϕ

∂X

]

+ ε2 1

[1 + ε (1−ε cosφ−X)]
2

(
∂2ϕ

∂φ2
+e2 sinφ

∂2ϕ

∂X2
+2e sinφ

∂2ϕ

∂X∂φ
+e cosφ

∂ϕ

∂X

)
=0;

(ii) the boundary condition on P,

∂ϕ

∂X
+ ε

[
(1− e cosφ−X)

∂ϕ

∂X
− Z

∂ϕ

∂Z

]
= 0 at X = Xp(φ,Z; ε);(3.2)

and (iii) the boundary condition on W,

n̂w ·
[
ρ̂
∂ϕ

∂X
− εφ̂

1

1 + ε (1− e cosφ−X)

(
∂ϕ

∂φ
+ e sinφ

∂ϕ

∂X

)]
(3.3)

= 0 at X = Xw(φ,Z; ε).

From (2.24) and (2.25) we obtain the following expression for the direction of a vector
normal to W:

ρ̂− εφ̂ e sinφ [1 +O (ε)] .(3.4)

Thus, to first order in ε, the corresponding unit vector n̂w is given by ρ̂− εφ̂e sinφ.
This result could have been anticipated from Figure 2.2(b), wherein to leading order
the small angle δ is given by εe sinφ.

The inner electric field may be related to the uniform field (at the “infinity” of the
outer problem) via the global flux condition (2.17), written in terms of the stretched
coordinates3 as

ε1/2

∫ 2π

0

dφ

∫ Xp(φ,Z;ε)

Xw(φ,Z;ε)

dX [1 + ε (1− e cosφ−X)]
∂ϕ

∂Z
= −π (1 + ε)

2
.(3.5)

This condition, serving to illustrate the singular nature of the electric field, suggests
the trial expansion

ϕ(X,φ, Z; ε) ∼ ε−1/2
[
ϕ(0)(X,φ, Z) + εϕ(1)(X,φ, Z) + · · ·

]
.(3.6)

The sequence of boundary-value problems governing the respective fields
{
ϕ(i)

}
(i ≥

0) are obtained from (3.1)–(3.4), with the boundary conditions transferred from the
actual boundaries, Xw(φ,Z; ε) and Xp(φ,Z; ε), to the corresponding virtual bound-
aries, X = 0 and X = H(φ,Z), using standard techniques. The leading-order term,
ϕ(0)(X,φ, Z), satisfies the following equations:

∂2ϕ
(0)

∂X2
= 0 for 0 < X < H(φ,Z),(3.7)

∂ϕ
(0)

∂X
= 0 at X = 0, H(φ,Z).(3.8)

3Obviously, if the exact problem governing ϕ were to be solved, this condition would prove
redundant.



432 EHUD YARIV AND HOWARD BRENNER

The comparable O(ε) balance yields

∂2ϕ
(1)

∂X2
= −∂2ϕ

(0)

∂Z2
for 0 < X < H(φ,Z),(3.9)

∂ϕ
(1)

∂X
= 0 at X = 0,(3.10)

∂ϕ
(1)

∂X
= Z

∂ϕ
(0)

∂Z
at X = H(φ,Z).(3.11)

As noted above, the electric field in the gap region is related to that in the outer
region through the integral flux balance (3.5), which, to leading order, yields∫ 2π

0

dφ

∫ H(φ,Z)

0

dX
∂ϕ(0)

∂Z
= −π.(3.12)

It is obvious from (3.7)–(3.8) that ϕ
(0)

= ϕ
(0)

(φ,Z). This function is to be obtained
from the solvability conditions (cf. [19]) governing the first-order problem (3.9)–(3.11),
namely

∂2ϕ
(0)

∂Z2
+

Z

H(φ,Z)

∂ϕ
(0)

∂Z
= 0.(3.13)

This second-order differential equation possesses the solution

∂ϕ
(0)

∂Z
=

C(φ)

H(φ,Z)
, ϕ

(0)

=

√
2C(φ)

τ(φ)
arctan

Z

τ(φ)
√
2
+D(φ).(3.14)

The functions of integration, C(φ) and D(φ), cannot be determined from the formu-
lation of the gap problem alone. (Indeed, as the far-field condition (2.16) is inappli-
cable within the gap region, the boundary-value problem posed by (3.1)–(3.3) does
not possess a unique solution.) In standard asymptotic approaches, such functions
are determined by matching of the inner gap solution with an appropriate outer one.
To leading order, the outer problem consists of a sphere positioned within a circular
cylinder of an equal radius. Since these two geometric surfaces do not belong to a
common orthogonal family of coordinates, the solution of this problem would appear
to be extremely difficult to obtain.

In what follows we present an alternative matching procedure to obtain ϕ
(0)

,
invoking a line of reasoning similar to that of [4]. The ansatz lies in the existence of
the limit

∆ϕ
(0)

(φ) = lim
Z→−∞

ϕ
(0)

(φ,Z)− lim
Z→∞

ϕ
(0)

(φ,Z) = −
√
2πC(φ)

τ(φ)
.(3.15)

Since the electric field is O(1) in the outer region, it is obvious that this limit con-
stitutes the leading-order term in the expression for the outer potential difference
(namely between the values in the region just below the sphere equator, z < 0, and
that immediately above, z > 0). But this term cannot depend upon φ, for otherwise
it would produce O(ε−1/2) electric fields in the outer region. We therefore conclude
that

C(φ) = −∆ϕ
(0)

π
√
2

τ(φ),(3.16)
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wherein the potential difference ∆ϕ
(0)

is a constant which depends only upon the
position of the sphere within the cylinder cross section. (As another consequence,
we find that D(φ) cannot depend upon φ and may thus be taken to be zero.) This
constant is obtained from (3.12), yielding

∆ϕ
(0)

=
πµ0√
2
,(3.17)

wherein the parameter

µ0 =
2π∫ 2π

0
τ(φ) dφ

(3.18)

is a function of e. Back substitution into (3.16) yields

C(φ) = −µ0τ(φ)

2
,(3.19)

which completes the calculation of the leading-order electric potential in the gap
region. With this latter field available, we now turn to analyze the flow fields derived
by this field, namely parts (c) and (d).

4. Flow field (c). The boundary-value problem governing the flow field (c)
consists of (i) Stokes equations in the fluid domain,

∇ · v = 0, ∇2v = ∇p;(4.1)

(ii) the nonhomogeneous boundary condition on the sphere,

v = (1− γ)∇ϕ on P;(4.2)

and (iii) the homogeneous boundary conditions on the wall and at infinity,

v = 0 on W,(4.3)

v → 0 as |z| → ∞.(4.4)

In principle, once this problem is solved, the accompanying force and torque may
be obtained via integration (2.10) of the resulting stress field, obtained from (2.9).
However, this detailed calculation can be avoided by utilizing a result, obtained [2] for
the case of a particle positioned in an arbitrary Stokes flow which vanishes at infinity.
Specifically, the hydrodynamic force and torque acting on the particle are expressed
as linear functionals of the prescribed velocity field at its surface, say ṽ. This result,
in the present dimensionless notation, is formulated in the following relations:

F k =

∮
P
dA n̂p ·Π†

tr · ṽ, T =

∮
P
dA n̂p ·Π†

rot · ṽ,(4.5)

whereinΠtr andΠrot denote the respective translational and rotational triadic “stress”
fields [8]. Explicitly, the dyadic stress field arising from translational motion of the
particle with an arbitrary velocity U is given by Πtr ·U ; similarly, the dyadic stress
field arising from rotational motion of the particle with an arbitrary angular velocity
Ω is given by Πrot ·Ω.

The original derivation [2] of this result was given for a particle in an unbounded
fluid. However, equations (4.5) are equally applicable to bounded systems so long
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as the velocity field vanishes on the walls (cf. [5, 22]). As such, it directly applies
to flow field (c) (which is actually the reason for the separation of the electrokinetic
contribution into the two distinct parts, (c) and (d)). It is readily verified that the
respective nonvanishing components of the force (in the z direction) and torque (about
the y direction) acting on the sphere are, respectively, given by

F =

∮
P
dA n̂p · πtr · ṽ, T =

∮
P
dA n̂p · πrot · ṽ,(4.6)

wherein πtr (πrot) denotes the stress field associated with pure translation (rotation)
of the sphere with a unit linear (angular) velocity in the z (y) direction. The trans-
lational and rotational stress fields, πtr and πrot, may be obtained by substitution
of the respective velocity fields into (2.9). In the present context, the outward unit
vector n̂p is simply given by ρρ̂+zẑ, whereas the velocity field on P is ṽ = (1−γ)∇ϕ.

Consider first the force acting on the sphere. The translational velocity field, say
vtr, for the case of a closely fitting sphere, was evaluated by [4]. The corresponding
tractions on P are symmetric with respect to z, as too is the electric field (cf. (3.14)).
We thus obtain

F = 2(1− γ)

∫ 2π

0

dφ

∫ 1

0

dz n̂p · πtr · ∇ϕ.(4.7)

Introduction of an intermediate parameter χ (ε1/2 � χ � 1) enables the decomposi-
tion of this integral into respective “inner” (i.e., gap) and “outer” contributions

Finner = 2(1− γ)

∫ 2π

0

dφ

∫ χ

0

dz n̂p · πtr · ∇ϕ,(4.8)

Fouter = 2(1− γ)

∫ 2π

0

dφ

∫ 1

χ

dz n̂p · πtr · ∇ϕ.(4.9)

Within the gap region, the translational velocity and pressure fields were shown
[4] to possess the following expansions:

u ∼ ε−1/2
[
u(0)(X,φ, Z) + εu(1)(X,φ, Z) + · · ·

]
,(4.10)

v ∼ ε−1/2
[
v(0)(X,φ, Z) + εv(1)(X,φ, Z) + · · ·

]
,(4.11)

w ∼ ε−1
[
w(0)(X,φ, Z) + εw(1)(X,φ, Z) + · · ·

]
,(4.12)

p ∼ ε−5/2
[
p(0)(X,φ, Z) + εp(1)(X,φ, Z) + · · ·

]
.(4.13)

In the above, (u, v, w) denote the respective velocity components relative to the circu-
lar cylindrical system. The corresponding tractions within the gap region are obtained
via substitution of the above expansions into (2.9), yielding

n̂p · πtr ∼ −
{
ε−5/2ρ̂ p(0) − ε−3/2φ̂

∂v(0)

∂X
− ε−2ẑ

[
Zp(0) +

∂w(0)

∂X

]}
[1 +O (ε)] .

(4.14)

The leading-order expression for ∇ϕ is obtained using (2.25) and (3.6) (note that ϕ(0)

is independent of X):

∇ϕ ∼
[
−ε−1/2ρ̂

∂ϕ(1)

∂X
+ ε−1/2φ̂

∂ϕ(0)

∂φ
+ ε−1ẑ

∂ϕ(0)

∂Z

]
[1 +O (ε)] .(4.15)
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Thus, the leading-order inner contribution to the force is

Finner ∼ 2ε−5/2(1− γ)

∫ 2π

0

dφ

∫ χ/ε1/2

0

dZ

[
p(0) ∂ϕ

(1)

∂X

− Zp(0) ∂ϕ
(0)

∂Z
− ∂w(0)

∂X

∂ϕ(0)

∂Z

]
X=H

.(4.16)

Use of (3.11) reveals that the first two terms in the brackets cancel one another at
X = H. The expressions of [4] give

[
∂w(0)/∂X

]
X=H

= 3τ5η0/H
2, wherein the

parameter

η0 =
2π∫ 2π

0
[τ (φ)]

5
dφ

(4.17)

is a function of e. Since the bracketed expression in (4.16) is integrable over 0 < Z <
∞ (cf. (3.14)), and since χ is an arbitrary parameter, the upper range of the integral
over Z may be set equal to ∞:

Finner ∼ 3(1− γ)µ0η0ε
−5/2

∫ 2π

0

dφ [τ (φ)]
6
∫ ∞

0

dZ

[H (φ,Z)]
3 .(4.18)

Performing the integration [6] yields

Finner ∼ (1− γ)ε−5/2 f
(0)
el (e),(4.19)

wherein

f
(0)
el (e) =

9
√
2π2η0(e)

8
.(4.20)

It is obvious that the leading-order outer region contribution is asymptotically smaller,
since to leading order the outer region geometry is independent of ε (cf. [22]). The
total force resulting from the “electric” flow field (c) thus possesses the expansion

F = (1− γ)fel(e; ε),(4.21)

wherein

fel(e) ∼ ε−5/2f
(0)
el (e) [1 +O (ε)] .(4.22)

Next, consider the torque acting on the sphere. The rotational flow field, associ-
ated with rotation of the sphere at unit angular velocity, possesses the same structure
as the translational one, namely (4.10)–(4.13), except that all leading-order fields
vanish identically. (This is equivalent to the pertinent expansions beginning at one
higher-order exponent in ε.) Thus, the counterpart of (4.16) is

Tinner ∼ 2ε−3/2(1− γ)

∫ 2π

0

dφ

∫ χ/ε1/2

0

dZ

[
p(1) ∂ϕ

(1)

∂X

− Zp(1) ∂ϕ
(0)

∂Z
− ∂w(1)

∂X

∂ϕ(0)

∂Z

]
X=H

,(4.23)

with p(1) and w(1) now denoting flow variables of the rotational problem. As with the
comparable expression (4.16), the first two terms in the brackets cancel one another.
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The detailed solution of the rotational problem appears in [3], from which it is found
that [

∂w(1)

∂X

]
X=H

=
2eη0 [τ (φ)]

5

[H (φ,Z)]
2 +

4 [τ (φ)]
2
cosφ

[H (φ,Z)]
2 − 4 cosφ

H (φ,Z)
.

Substitution into (4.23) of this expression, in conjunction with (3.14), yields

Tinner ∼ 2(1− γ)µ0ε
−3/2

∫ 2π

0

dφ

∫ ∞

0

dZ

{
eη0 [τ (φ)]

6

[H (φ,Z)]
3(4.24)

+
2 [τ (φ)]

3
cosφ

[H (φ,Z)]
3 − 2 [τ (φ)] cosφ

[H (φ,Z)]
2

}
.

Effecting the integration [6] gives

Tinner ∼ ε−3/2 g
(0)
el (e),(4.25)

wherein

g
(0)
el (e) =

3
√
2π2

4
e η0(e) +

(
1− e2

)1/2 − 1

e (1− e2)
1/2

√
2π2µ0(e)

2
.(4.26)

Again, as with the comparable expression governing the force, the contribution of the
outer region to the torque is asymptotically smaller than that given by the preceding
expression. The total torque resulting from flow field (c) is thus

T = (1− γ)gel(e),(4.27)

wherein

gel(e; ε) ∼ ε−3/2g
(0)
el (e) [1 +O (ε)] .(4.28)

5. Flow field (d). Here, the flow field satisfies the following boundary condi-
tions:

v = γ∇ϕ on P,(5.1)

v = γ∇ϕ on W,(5.2)

v → γ∇ϕ = −γẑ as |z| → ∞.(5.3)

As any irrotational flow field satisfies the Stokes equations identically, it is obvious that
v ≡ γ∇ϕ (cf. [22]). Moreover, following (2.1), no pressure variations are associated
with this flow field. The corresponding stress field (see (2.9)) is

π = 2γ∇∇ϕ.(5.4)

Consider the resulting force on the sphere, given by (see (2.10a))

F = 2γ

∮
P
dA n̂p · ∇∇ϕ.(5.5)
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As the stress field is divergence free, the surface of integration may be deformed into
any conveniently configured surface within the fluid domain, say P ′, that completely
encloses the sphere; that is,

F = 2γ

∮
P′

dA n̂ · ∇∇ϕ,(5.6)

wherein n̂ denotes a generic unit vector pointing out of P ′. Thus, we choose a finite
cylinder, say of height 2h, whose envelope, which coincides laterally with W, possesses
two flat ends, z = ±h. In effecting the requisite integration, it is convenient to
employ a second circular cylindrical coordinate system, (R, θ, z), centered about the
intersection O′ of the cylinder axis with π1 (see Figure 2.2). The gradient operator
in this system is

∇ = R̂
∂

∂R
+ θ̂

1

R

∂

∂θ
+ ẑ

∂

∂z
,(5.7)

wherein R̂ and θ̂ denote the respective radial and azimuthal unit vectors. Note that
the unit vectors (R̂, θ̂, ẑ) are independent of both R and Z. In terms of the new
coordinates, the boundary condition (2.2) on the cylinder wall, R = 1+ ε, adopts the
simple form

∂ϕ

∂R
= 0.(5.8)

Now, consider the force tractions acting on this wall, wherein n̂ = R̂. The integrand
of (5.5) possesses the form

n̂ · ∇∇ϕ = R̂
∂2ϕ

∂R2
+ θ̂

(
1

R

∂2ϕ

∂θ∂R
− 1

R2

∂ϕ

∂θ

)
+ ẑ

∂2ϕ

∂Z∂R
.(5.9)

In light of the boundary condition (5.8), both terms involving mixed derivatives vanish
identically. The other two terms are antisymmetric in z, which results in the respective
tractions for the regions z > 0 and z < 0 cancelling one another. Thus, the wall
portion of P ′ does not contribute to the force. On the two ends of P ′, whereon
z = ±h and n̂ = ±ẑ, the integrand possesses the form

n̂ · ∇∇ϕ = ±
(
R̂

∂2ϕ

∂Z∂R
+ θ̂

1

R

∂2ϕ

∂θ∂Z
+ ẑ

∂2ϕ

∂Z2

)
.(5.10)

As h becomes large, all the derivatives in this expression become small (see (2.16)),

while the area of the integration domain, namely (1 + ε)
2
, remains constant. As the

force is independent of h, it is clear that the contributions from the two ends also
vanish.

The torque acting on the sphere is given by

T = 2γ

∮
P
dA r × (n̂p · ∇∇ϕ) .(5.11)

To evaluate this integral, we use the spherical form of the gradient operator,

∇ = r̂
∂

∂r
+

1

r
∇e,(5.12)
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wherein r = |r|, with r̂ a radial unit vector pointing away from O (that is, r = rr̂)
and the operator ∇e = r(I− r̂r̂) · ∇ representing differentiation on the surface of the
unit sphere P. (In principle, this operator may be expressed in terms of any two polar
angles about O.) Note that r = r̂ = n̂p on P and that r̂ is independent of r. Hence,

T /2γ =

∮
P
dA r̂ × ∂

∂r
(∇ϕ)

=

∮
P
dA r̂ ×

[
r̂
∂2ϕ

∂r2
+

1

r
∇e

(
∂ϕ

∂r

)
− 1

r2
∇eϕ

]

=

∮
P
dA r̂ ×

[
∇e

(
∂ϕ

∂r

)
−∇eϕ

]
.(5.13)

In terms of the spherical coordinate r, the potential ϕ satisfies the following condition
on P (see (2.3)): (

∂ϕ

∂r

)
r=1

= 0.(5.14)

As the operator ∇e is r-independent, it commutes with evaluation at r = 1. Thus,
the first term in the brackets of (5.13) vanishes; explicitly,

T /2γ = −
∮
P
dA r̂ ×∇eϕ

= −
∮
P
dA r̂ ×∇ϕ = −

∮
P
dA n̂p ×∇ϕ.(5.15)

Since ∇ϕ is a curl-free field, the last integral may be evaluated over any surface within
the fluid domain for which we again employ the finite cylinder P ′. On the wall portion
of P ′, wherein n̂ = R̂, we obtain the contribution∫ 2π

0

dθ

∫ h

−h
dz

(
θ̂
∂ϕ

∂z
− ẑ 1

R

∂ϕ

∂θ

)
.(5.16)

In view of the antisymmetric dependence of ϕ upon z, the second term does not
contribute to this integral. Performing the inner integration furnishes the intermediate
expression ∫ 2π

0

[ϕ(R = 1 + ε, θ, h)− ϕ(R = 1 + ε, θ,−h)] θ̂(θ) dθ.(5.17)

As h becomes large, the dependence of the bracketed terms upon θ becomes expo-

nentially weak. Since
∫ 2π

0
θ̂(θ) dθ = 0, the above integral must vanish. Finally, on

the two ends of the cylinder, wherein n̂ = ±ẑ, ∇ϕ tends to −ẑ as h becomes large;
hence, n̂ ×∇ϕ approaches zero there. We thus conclude that the surface integral of
n̂×∇ϕ over P ′ must vanish, and, consequently, that flow field (d) does not generate
a torque on the sphere.

6. Sphere mobility. With the contributions of flows (c) and (d) evaluated,
the various terms in the expressions for the force and torque on the sphere may be
assembled. The force and torque resulting from the translational flow field (a) have
already been calculated [4] for ε � 1 and are represented in the respective forms

F = Uftr(e; ε), T = Ugtr(e; ε).(6.1)
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Similarly, the force and torque resulting from the rotational flow field (b) are repre-
sented as

F = Ωfrot(e; ε), T = Ωgrot(e; ε).(6.2)

The respective force and torque coefficients appearing above have been shown [4] to
possess the following asymptotic expansions:

ftr(e; ε) ∼ ε−5/2f
(0)
tr (e) [1 +O (ε)] , gtr(e; ε) ∼ ε−3/2g

(0)
tr (e) [1 +O (ε)] ,(6.3)

frot(e; ε) ∼ ε−3/2f
(0)
rot (e) [1 +O (ε)] , grot(e; ε) ∼ ε−1/2g

(0)
rot(e) [1 +O (ε)] .(6.4)

The force and torque resulting from the “electric” portion (c) were obtained in sec-
tion 4 (see (4.21)–(4.22), (4.27)–(4.28)). Also, as was demonstrated in section 5,
part (d) does not contribute to either the force or the torque.

The total force and torque exerted on the sphere, resulting from superposition of
contributions (a)–(d), are thus, respectively, given by∑

F = Uftr +Ωfrot + (1− γ)fel,(6.5) ∑
T = Ugtr +Ωgrot + (1− γ)gel.(6.6)

Hence, the respective particle velocities of a freely suspended sphere are

U = (1− γ)
frot gel − grot fel

ftr grot − frot gtr
, Ω = (1− γ)

gtr fel − ftr gel

ftr grot − frot gtr
,(6.7)

which, to leading order, yield

U ∼ (1− γ)U (0)(e) [1 +O (ε)] , Ω ∼ (1− γ)Ω(0)(e) [1 +O (ε)] ,(6.8)

wherein

U (0)(e) =
f

(0)
rot g

(0)
el − g

(0)
rotf

(0)
el

f
(0)
tr g

(0)
rot − f

(0)
rot g

(0)
tr

, Ω(0)(e) =
g
(0)
tr f

(0)
el − f

(0)
tr g

(0)
el

f
(0)
tr g

(0)
rot − f

(0)
rot g

(0)
tr

.(6.9)

These velocities reflect a balance between the electrical driving forces4 and the retard-
ing hydrodynamic forces arising from the fluid viscosity. It may appear surprising that
despite the large O(ε−5/2) drag acting on the sphere, the latter still moves with an
O(1) speed. This result obviously arises from the large O(ε−1/2) potential drop across
the gap, which has to be supplied by the external voltage supply.5 Both sphere veloc-
ities are proportional to the potential difference 1−γ, a result common to other types
of sphere-wall geometries [9, 10, 23, 22, 21]. Indeed, were the zeta potentials of the
sphere and wall equal (corresponding to the case γ = 1), the boundary-value problem
(2.5)–(2.7) would possess the trivial irrotational solution, v = ∇ϕ, which results in
neither a force nor a torque acting on the sphere.

Consider the dependence of U (0) upon e. Explicit expressions for f
(0)
el and g

(0)
el

are given in (4.20) and (4.26), whereas those for the comparable translational and
rotational coefficients are provided in [4] as

f
(0)
tr = −9

4
π2

√
2η0, g

(0)
tr = −3

2
π2

√
2eη0, g

(0)
rot = −π2

√
2e2η0 − 2

√
2η3,(6.10)

4The electric field acts directly on the electrically nonneutral fluid elements within the Debye
layer. On the bulk scale, this action is manifested by the slip condition (2.6)–(2.7).

5This added potential drop constitutes, however, only a small portion of the applied voltage, the
latter also maintaining an electric field along the “infinite” channel length.
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Fig. 6.1. Variation with e of leading-order linear and angular velocities.

and, obviously, f
(0)
rot = g

(0)
tr . In the above, the e-dependent parameter η3 is defined as

η3 =
1

π

∫ 2π

0

cos2 φ

τ(φ)
dφ,(6.11)

whereas η0 was defined in (4.17). These parameters are easily expressed in terms of
complete elliptic functions [4]. Using similar means, it readily follows that

µ0(e) =
π(1−m/2)1/2

2E
(
m1/2

) ,(6.12)

wherein m = 2e/(1 + e), with E the complete elliptic integral of the second kind [6].
Note that µ0(0) = 0, whereas µ0(1) = π/2

√
2.

Using the limiting values of the functions η0 and η3 [4], one finds that U (0)(0) =
1/2, corresponding to exactly half of the value of the electrophoretic sphere velocity
in the absence of wall effects. This result is in agreement with the numerical trend
observed by Keh and Chiou [12], who provide the value 0.50177 for the largest ratio

of sphere-to-channel radius studied by them, namely (1 + ε)
−1

= 0.999. For a highly
eccentric sphere, 1− e � 1, we find that

U (0)(e) ∼ π2

24 (1− e2)
1/2
(
ln 32

1−e − 8
3

) ,(6.13)

representing only a very moderate divergence. (Recall, however, that the present
calculation breaks down as the minimum separation distance within the gap becomes
comparable with the Debye length.)

The variation of U (0) with e is presented in Figure 6.1. Also presented is the
variation of the angular velocity Ω(0): in the axisymmetric case e = 0 this velocity
vanishes, whereas for 1 − e � 1 it becomes increasingly large in magnitude, with
Ω(0)/U (0) → −3/2. (The cross-over of the U (0) and Ω(0) curves occurs for e very close
to unity, and is not shown in the figure.)
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Abstract. The problem of segmentation of a given image using the active contour technique
is considered. An abstract calculus to find appropriate speed functions for active contour models
in image segmentation or related problems based on variational principles is presented. The speed
method from shape sensitivity analysis is used to derive speed functions which correspond to gradient
or Newton-type directions for the underlying optimization problem. The Newton-type speed function
is found by solving an elliptic problem on the current active contour in every time step. Numerical
experiments comparing the classical gradient method with Newton’s method are presented.

Key words. segmentation, active contours, level set method, shape sensitivity analysis, New-
ton’s method
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1. Introduction. Identifying curve-like objects in images is one of the funda-
mental tasks in image analysis. In image segmentation we are interested in finding
boundary curves for regions with approximately constant color or gray values. These
curves usually represent boundaries of objects in the image. Image segmentation is
therefore often the starting point for the treatment of other, more involved problems
in image analysis such as automatic object recognition or image registration.

In recent years, image segmentation has been greatly influenced by two differ-
ent ideas. On the one hand, global energy principles which should be satisfied for
the optimal contour have been introduced and successfully applied. On the other
hand, deformable (active) contours, which are represented as zero level sets of a time-
dependent function u : R

2 × [0, T ] → R, have been used to describe the geometric
variable. Kass, Witkin, and Terzopoulos [22] introduced parametrized curves (now
referred to as classical snakes) which evolve in such a way that the sum of an internal
energy, comprising an elasticity and a rigidity term, and an external energy, indicat-
ing the presence of edges in the image, is minimized. Caselles, et al. [6] introduced a
geometrically intrinsic (parametrization-independent) formulation of active contours,
treating the propagating curve as the zero level set of a function u : R

2 × [0, T ] → R.
The propagation of the level set function u is driven by an appropriate speed function
F : R

2 → R, which occurs in the level set equation

ut + F |∇u| = 0 on R
2.(1.1)

The speed function F proposed in [6] is given by

F = g
(
div

( ∇u

|∇u|
)
+ ν
)
,(1.2)
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where g : R
2 → R is an edge detector and ν is a constant. The edge detector is

chosen in such a way that g = 0 at ideal edges of the image and g > 0 otherwise.
The construction of the speed function F is such that the active contour propagates
according to a curve-shortening mean curvature flow (see, e.g., [19]) with an additional
constant deflation velocity ν. The motion of the curve is stopped at points which are
located on (strong enough) edges where g ∼ 0. Thus, g functions as a stopping
criterion.

Several authors (see, e.g., [8, 26, 27, 37, 30]) have observed that a similar speed
function, given by

F = div

(
g
∇u

|∇u|
)
= g div

( ∇u

|∇u|
)
+

1

|∇u| 〈∇g,∇u〉,(1.3)

can be interpreted as the gradient direction for the cost functional

J(Γ) =

∫
Γ

g dS(1.4)

with respect to the contour Γ, where S denotes the arclength measure on Γ. The
flow in the negative gradient direction with respect to the cost functional (1.4) can
therefore be considered as a geodesic flow with respect to the Riemannian metric
g : R

2 → R. Thus, the intrinsic curve propagation (1.1) with speed function (1.3)
can also be derived from variational principles. In fact, it can be proved (see [8, 4])
that minimizing the classical snake model and the geodesic model (1.4) are (in some
sense) equivalent.

It has turned out to be useful to add a domain integral term to the cost functional
(1.4) to speed up the propagation. A corresponding cost functional has the form

J(Γ) =

∫
Γ

g dS + ν

∫
Ω

g dx.(1.5)

Many variants of the speed functions (1.2) and (1.3) or their corresponding vari-
ational principle have been considered in the literature, including affine invariant
geodesic flow [30, 29], generalizations to three-dimensional situations [25, 9], region-
based active contours [31, 20, 21], segmentation of moving objects [7], and active
contour models based on the Mumford–Shah functional [13, 11, 12, 10]. We also re-
fer to the recent monographs [5, 32], which treat the image segmentation problem
extensively and provide numerous references to further literature on the subject.

Usually, in the image processing literature, parametrized contours and methods
from classical calculus of variations (see [8, 37, 4]) are used to derive the Euler–
Lagrange equation for a cost functional of type (1.4), even if the propagation of the
contour is treated in the intrinsic level set formulation. We propose (and advertise)
the use of an alternative technique with which we can calculate sensitivities with
respect to geometric variables on a purely intrinsic basis. We shall use the speed
method, which is commonly applied for the sensitivity analysis of shape optimization
problems but, as it seems, is not very well known in the image processing community.
The speed method has several advantages over the use of parametrized curves (or
surfaces). It is intrinsic, i.e., independent of the chosen parametrization, it can treat
the case where the current contour consists of several disjoint closed curves in a unified
way, and it has (via the Hadamard–Zolésio structure theorem [15, sect. 3.3, p. 348])
a very natural link to the level set formulation of curve propagation. We also stress
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the fact that the Euler–Lagrange equations for many of the cost functionals discussed
in the references, which we listed in the previous paragraph, can be easily derived
using the speed method. Application of Lemmas 1 and 3 will do the job for most
cases. Most of the results related to shape sensitivity calculus (with the exception of
the usage of the shape derivative of the signed distance function) can be found in the
book by SokoElowski and Zolésio [36] and in the new book by Delfour and Zolésio [15].
The advantage of utilizing shape sensitivity analysis in combination with the level set
method as motivated above was previously observed in [24] in the context of inverse
problems.

We also want to stress the nature of the segmentation problem as a (nonlinear)
optimization problem. It is our goal to find the optimal contour in the least possible
number of time steps and to achieve maximal descent in each individual step. This
objective is quite different from aiming for a smooth propagation of a contour, which
is often the focus of attention for level set–based propagating interface problems. For
this reason, we propose applying and adapting ideas from nonlinear programming to
active contour propagation. In the following we shall employ line search methods and
preconditioning of the gradient direction. To realize the latter idea, we calculate a
Newton-type speed function for the level set formulation of the variational problem
(1.4). It turns out that the calculation of the Newton-type speed function involves
the solution of an elliptic equation on the active contour Γ. That is, we have to track
the zero level set at every step of the propagation, and we have to assemble appro-
priate (geometry-dependent) stiffness and mass matrices. This implementational and
computational effort is repaid by a significant reduction of the number of iterations.

The structure of the paper is the following. In section 2, we recall basic facts
and formulas from shape sensitivity analysis. Section 3 deals with the calculation
of certain useful identities concerning the shape derivative of the signed distance
function of a smooth open domain. These identities will prove to be very helpful
in section 5. In section 4, we explain how the gradient of a shape functional of
the form (1.4) can be interpreted as a normal vector field to the boundary of the
current shape via the Hadamard–Zolésio structure theorem and how a connection
to the level set formulation can be drawn. In this section, we also introduce the
concept of second order (Newton-type) preconditioning of the shape gradient. Section
5 deals with the calculation of the Newton direction for a shape functional of type
(1.4). In this context it turns out that, if we restrict our consideration to a certain
class of possible speed functions, we get a symmetric shape Hessian, which depends
only on intrinsic properties of the current contour. Moreover, this restricted class of
speed functions has desirable properties for the stable propagation of the level set
function according to the level set equation (1.1). In section 6, we derive the elliptic
equation on the actual contour which defines the Newton-type speed function. This
equation involves the Laplace–Beltrami operator. The Newton-type algorithm and
its numerical realization are the subject of section 7. Also, a numerical technique for
relaxing the CFL-condition for the time step size in the level set equation is considered.
Finally, in section 8, a report on numerical test runs of the new algorithm and a
comparison with the method based on the negative gradient as the speed function are
given.

2. Shape sensitivity analysis via the speed method. We briefly recall the
speed method from shape optimization, which can be used to calculate sensitivities of
a functional with respect to a geometric variable such as a domain or the boundary
of an open domain. Our main references for this section are the books [15, 36]. This
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section also contains basic facts from tangential calculus on smooth boundaries of
open sets.

In image analysis, sensitivities with respect to geometric objects such as contours
are usually calculated using parametrized curves and techniques from classical calculus
of variations as, e.g., in [8, 37]. We now present a technique for sensitivity analysis
which works on boundaries of open sets instead of parametrized curves.

Let Γ = ∂Ω be the boundary of an open set Ω ⊂ R
2. We call such a boundary Γ

a contour in R
2. Suppose V : R

2 → R
2 is a given smooth vector field with compact

support in R
2. We consider the initial value problem{

X′(t) = V
(
X(t)

)
,

X(0) = x,
(2.1)

with x ∈ R
2 given. The flow (or time-t map) with respect to V is defined as the

mapping Tt : R
2 → R

2, with

Tt(x) = X(t),(2.2)

where X(t) is the solution to (2.1) at time t. If Γ is a contour, we define

Γt = {Tt(x) : x ∈ Γ} = Tt(Γ).(2.3)

In an analogous way, we define Ωt = Tt(Ω) for an arbitrary open set Ω. Note that, if
V ∈ Ck0 (R2,R2), then Tt ∈ Ck(R2,R2); thus, smoothness properties of Γ are inherited
by Γt, provided that the vector field V is smooth enough.

Suppose we are given a functional J : G → R, where G is an appropriate set of
contours. We define the Eulerian derivative of J at a contour Γ in the direction of a
perturbation vector field V by

dJ(Γ;V ) = lim
t↓0

1

t

(
J(Γt)− J(Γ)

)
.(2.4)

Let B be a Banach space of perturbation vector fields. We say that the functional
J is shape differentiable at Γ in B if dJ(Γ;V ) exists for all V ∈ B and the mapping
V �→ dJ(Γ;V ) is linear and continuous on B. We use the analogous definition for
functionals J(Ω) which depend on an open set Ω as an independent variable instead
of on a contour Γ.

We now present a series of lemmas which cover some results from shape calculus
which will become useful later on. We start with the Eulerian derivative of a domain
integral.

Lemma 1. Suppose φ ∈ W 1,1
loc (R

2) and Ω ⊂ R
2 is open and bounded. Then, the

functional

J(Ω) =

∫
Ω

φdx

is shape differentiable for perturbation vector fields V ∈ C1
0(R

2;R2). The Eulerian
derivative of J is given by

dJ(Ω;V ) =

∫
Ω

div (φV ) dx.(2.5a)
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If Γ = ∂Ω is of class C1, then

dJ(Ω;V ) =

∫
Γ

φ 〈V,n〉 dS,(2.5b)

where n denotes the exterior unit normal vector to Ω, 〈·, ·〉 the inner product on R
2,

and dS the arclength measure on Γ.
Proof. See Propositions 2.45 and 2.46 in [36, p. 77].
For a vector field V ∈ C1

0(R
2;R2) and an open set of class C2 with boundary Γ,

we define the tangential divergence of V by

div ΓV = (div V − 〈DV · n,n〉) ∣∣
Γ
,(2.6)

where DV denotes the Jacobian matrix of V . If the vector field V is defined only on
Γ, we can still define the tangential divergence of V as the tangential divergence of
an arbitrary extension of V . It can be shown (cf. [36, Prop. 2.51, p. 82]) that the
definition does not depend on the particular choice of the extension. With this, we
are able to state the following result on boundary integrals.

Lemma 2. Suppose φ ∈ W 2,1
loc (R

2) and Γ is a contour of class C1. Then, the
functional

J(Γ) =

∫
Γ

φdS(2.7)

is shape differentiable for perturbation vector fields V ∈ C1
0(R

2;R2) with

dJ(Γ;V ) =

∫
Γ

(〈∇φ, V 〉+ φdiv ΓV
)
dS.(2.8)

Proof. See sections 2.18 and 2.19 in [36].
Using tangential calculus (see sections 2.19 and 2.20 in [36] or the results in [16]),

we can simplify the expression (2.8). We define the tangential gradient of a function
h ∈ C2(Γ) as

∇Γh = ∇h̃
∣∣
Γ
− ∂h̃

∂n
n(2.9)

on Γ, where h̃ denotes an arbitrary smooth extension of h. It can be shown that the
definition (2.9) does not depend on the specific choice of the extension. We have the
following Green’s formula on Γ.

Proposition 1 (Green’s theorem on Γ). Suppose Γ is a contour of class C2,
h ∈ C2(Γ), and V ∈ C1

0(R
2;R2) with 〈V,n〉 = 0 for every point x ∈ Γ. Then, we have∫
Γ

〈∇Γh, V 〉 dS = −
∫

Γ

hdiv ΓV dS.(2.10)

Remark 1. Green’s formula also holds for functions h in the Sobolev space H1(Γ).
In this case, (2.10) acts as a definition for the tangential gradient ∇Γh.

Suppose we are given a smooth vector field V . We set Vτ = V − 〈V,N〉N as the
tangential component of V with respect to Γ. Here N denotes an extension of the
normal vector field n on Γ. We have

div ΓV = div ΓVτ + div Γ

(〈V,N〉N )
= div ΓVτ +

(
div
(〈V,N〉N )− 〈D(〈V,N〉N ) · N ,N 〉) ∣∣

Γ

= div ΓVτ +
(〈V,N〉 (divN − 〈DN · N ,N〉 )) ∣∣

Γ

= div ΓVτ + 〈V,N〉 div ΓN
∣∣
Γ
.
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The term div ΓN|Γ is usually denoted by κ and is called the curvature of Γ. Thus,
we find

div ΓV = div ΓVτ + κ〈V,n〉
on Γ. We thus obtain an equivalent expression for the Eulerian derivative of the cost
functional (2.7). We have

dJ(Γ;V ) =

∫
Γ

(〈∇φ, V 〉+ φdiv ΓV
)
dS

=

∫
Γ

(〈
∇Γφ+

∂φ

∂n
n, V

〉
+ φdiv Γ(Vτ ) + φκ 〈V,n〉

)
dS

=

∫
Γ

(∂φ
∂n

+ φκ
)
〈V,n〉 dS +

∫
Γ

(
〈∇Γφ, Vτ 〉+ φdiv Γ(Vτ )

)
dS.

The last integral is zero due to Proposition 1. We therefore obtain the following
lemma.

Lemma 3. Under the assumptions of Lemma 2 the Eulerian derivative of the cost
functional (2.7) is equivalently given by

dJ(Γ;V ) =

∫
Γ

(∂φ
∂n

+ φκ
)
〈V,n〉 dS.(2.11)

It is also useful to be able to calculate sensitivities for more general functionals
of the form

J(Ω) =

∫
Ω

φ(Ω,x) dx(2.12)

or

J(Γ) =

∫
Γ

ψ(Γ,x) dS(x),(2.13)

where the functions φ(Ω) : Ω → R and ψ(Γ) : Γ → R themselves depend on the
geometric variables Ω and Γ, respectively. In this case, formulas (2.5) and (2.11) have
to be corrected by terms which take care of the derivatives of φ and ψ with respect to
Ω or Γ. We define the following two variants of derivatives of a geometry-dependent
function with respect to the geometry.

Definition 1. Suppose ψ(Γ) ∈ B(Γ) for all Γ ∈ G, where B(Γ) is some appropri-
ate Banach space of functions on Γ, and let V ∈ C1

0(R
2,R2). We set ψt = ψ(Γt)◦Tt(V )

and ψ0 = ψ(Γ), and we assume that ψt ∈ B(Γt) for all 0 < t < T with some T > 0.
If the limit

ψ̇(Γ;V ) = lim
t↓0

1

t

(
ψt − ψ0

)
(2.14)

exists in the strong (weak) topology on B(Γ), then ψ̇(Γ;V ) is called the strong (weak)
material derivative of ψ at Γ in direction V .

The analogous definition holds for functions φ(Ω) which are defined on open sets
and not on contours.

The material derivative is the derivative of φ (or ψ) with respect to the geometry
for a moving (Lagrangian) coordinate system. Let us first consider the case of a
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domain function φ : Ω → R. It is easily seen that, for the special case where φ is
independent of Ω, we find

φ̇(Ω;V ) = φ̇(V ) = 〈∇φ, V 〉.
For a function which does not depend on Ω, any reasonable derivative with respect
to Ω in a fixed (Eulerian) coordinate system must be 0. It is therefore natural to
subtract the term 〈∇φ, V 〉 from φ̇ to define a derivative of φ with respect to Ω in a
stationary coordinate system. This is the idea of the following definition.

Definition 2. Suppose that the weak material derivative φ̇(Ω;V ) and the ex-
pression 〈∇φ(Ω), V 〉 exist in B(Ω). Then, we set

φ′(Ω;V ) = φ̇(Ω;V )− 〈∇φ, V 〉(2.15)

and we call φ′(Ω;V ) the shape derivative of φ at Ω in direction V .
Note that

φ′(Ω;V ) = φ′(V ) = 0

for any function φ which does not depend on Ω.
For boundary functions ψ(Γ) : Γ → R, the expression 〈∇ψ, V 〉 does not make

sense. In this case, we define the shape derivative as

ψ′(Γ;V ) = ψ̇(Γ;V )− 〈∇Γψ, V 〉∣∣
Γ
.(2.16)

With these definitions we are able to calculate the Eulerian derivatives for the
shape functionals (2.12) and (2.13).

Proposition 2. Suppose φ = φ(Ω) is given such that the weak L1-material
derivative φ̇(Ω;V ) and the shape derivative φ′(Ω;V ) ∈ L1(Ω) exist. Then, the cost
functional (2.12) is shape differentiable and we have

dJ(Ω;V ) =

∫
Ω

φ′(Ω;V ) dx+
∫

Γ

φ 〈V,n〉 dS.(2.17)

For boundary functions ψ(Γ) we get, under the same technical assumptions for
the cost functional (2.13),

dJ(Γ;V ) =

∫
Γ

ψ′(Γ;V ) dS +

∫
Γ

κψ 〈V,n〉 dS.(2.18)

If ψ(Γ) = φ(Ω)
∣∣
Γ
, then we have

dJ(Γ;V ) =

∫
Γ

φ′(Ω;V )
∣∣
Γ
dS +

∫
Γ

(∂φ
∂n

+ κφ
)
〈V,n〉 dS.(2.19)

Suppose that φ(Ω) satisfies φ(Ω)|Γ = 0 for all (admissible) domains Ω, and let
ϑ ∈ D(R2) be given. We define the cost functional

J0(Γ) =

∫
Γ

ϑφ(Ω) dS = 0

for arbitrary Γ. Thus,

0 = dJ0(Γ;V ) =

∫
Γ

ϑφ′(Ω, V ) dS +

∫
Γ

∂

∂n

(
ϑφ(Ω)

)
〈V,n〉 dS.
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If we choose ϑ such that

∂ϑ

∂n
= 0 on Γ(2.20)

and if we use the fact that the set of test functions which satisfy (2.20) is dense in
L2(Γ), we get

φ′(Ω;V )
∣∣
Γ
= −∂φ

∂n
〈V,n〉∣∣

Γ

on Γ. We have therefore proved the following lemma.
Lemma 4. Suppose that φ(Ω) ∈ H

3
2+ε(Ω) satisfies φ(Ω)|Γ = 0 for all (admissible)

domains Ω and that the shape derivative φ′(Ω;V ) exists in H
1
2+ε(Ω) for some ε > 0.

Then, we have

φ′(Ω;V )
∣∣
Γ
= −∂φ

∂n
〈V,n〉∣∣

Γ
.(2.21)

Remark 2. The Hadamard–Zolésio structure theorem [15, Thm. 3.6 and Cor. 1,
p. 348f] states that the Eulerian derivative of a domain or boundary functional always
has a representation of the form

dJ(Ω;V ) =
〈
G, 〈V,n〉〉C−k(Γ),Ck(Γ)

=
〈
Gn, V

〉
C−k
2 (Γ),Ck

2 (Γ)
;(2.22)

that is, the Eulerian derivative is concentrated on Γ and can be identified with the
normal vector field Gn on Γ. We set

DΓJ(Ω) = Gn,(2.23)

and we call this expression the shape gradient of J at Ω.

3. Shape derivative of the signed distance function. The signed (or ori-
ented) distance function is a useful tool in shape analysis. Many differential geometric
quantities such as the normal vector field of a contour Γ or its curvature can be easily
expressed in terms of the signed distance function bΓ of Γ. We shall now apply the
techniques introduced in the previous section to calculate the shape derivative of the
signed distance function of a given (open, bounded) set Ω. This will be helpful later
on when we have to calculate Eulerian derivatives of functionals which depend also
on geometric properties of Γ such as normal direction or curvature. The following
definitions and facts are taken from [15, Chap. 5]. The distance function dA of a
subset A ⊂ R

2 is defined as

dA(x) = inf
y∈A

|y − x|.(3.1)

The signed distance function bΩ of a bounded open set Ω ⊂ R
2 is defined as

bΩ(x) = dΩ(x)− dR2\Ω(x).(3.2)

If we set Γ = ∂Ω, we can express dΩ in terms of Γ. We have

bΩ(x) =



dΓ(x) for x ∈ int(R2 \ Ω),
0 for x ∈ Γ,

−dΓ(x) for x ∈ Ω.

(3.3)
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We shall use the notation bΓ = bΩ. Note in particular that

bΓ
∣∣
Γ
= 0.(3.4)

It can be shown that bΓ is uniformly Lipschitz continuous on R
2 and hence, by

Rademacher’s theorem, differentiable a.e. on R
2 with |∇bΓ| = 1 a.e. on R

2 \ Γ. If
meas(Γ) = 0, then we have

|∇bΓ|2 = 1 a.e. on R
2.(3.5)

If Γ is smooth and compact (C1,1 is enough), then ∇bΓ is Lipschitz continuous, and
we have ∇bΓ(x) = n(pΓ(x)) for all x in some neighborhood of Γ, where pΓ denotes the
projection onto Γ. Thus, ∇bΓ can be considered as an extension of the unit normal
vector field n onto a neighborhood of Γ, and we have

∇bΓ
∣∣
Γ
= n.(3.6)

Moreover, the second fundamental form of Γ can be expressed in terms of bΓ. For a
C2-submanifold Γ ⊂ R

2 we have

∆bΓ
∣∣
Γ
= κ.(3.7)

See [15, p. 369] for the last relation. Taking the gradient on both sides of the Eikonal
equation (3.5) yields

D2bΓ · ∇bΓ = 0 on Γ.(3.8)

Let W ∈ C1
0(R

2,R2) be a given perturbation vector field. We shall derive certain
properties of the shape derivative b′Γ = b′Γ(Γ;W ) of the signed distance function.
The signed distance function satisfies the Eikonal equation (3.5) together with the
boundary condition (3.4). The weak form of (3.5) is given by∫

R2

|∇bΓ|2 ψ dx =

∫
R2

ψ dx(3.9)

for all test functions ψ ∈ D(R2). Taking the Eulerian derivative on both sides of (3.9)
and using (2.17), we get

2

∫
R2

〈∇b′Γ,∇bΓ〉ψ dx = 0(3.10)

for all ψ ∈ D(R2). Note that, since the functional (3.9) is defined on a fixed domain
and depends on Γ only via bΓ in the integral, the boundary term in (2.17) vanishes.
This can be see by writing∫

R2

|∇bΓ|2 ψ dx =

∫
Ω

|∇bΓ|2 ψ dx+

∫
R2\Ω

|∇bΓ|2 ψ dx

and applying (2.17) to both terms on the right-hand side. The boundary integrals
from both contributions sum up to zero. Equation (3.10) implies that

〈∇b′Γ,∇bΓ〉 = 0.(3.11)
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Equation (3.11) holds at least on some neighborhood of Γ on which bΓ is smooth
enough to guarantee the existence of a (weak) material derivative and hence the
applicability of (2.17).

If we apply Lemma 4 to bΓ and use (3.5), we get b
′
Γ|Γ=−∂bΓ

∂n 〈V,n〉|Γ=−〈∇bΓ,∇bΓ〉
· 〈V,n〉 = −〈V,n〉 by (3.5). With vn = 〈V,n〉, we obtain

b′Γ
∣∣
Γ
= −vn.(3.12)

Since ∇b′Γ is orthogonal to n by (3.11), we have

∇b′Γ = ∇Γb
′
Γ = −∇Γvn on Γ.(3.13)

Moreover, we have ∆b′Γ
∣∣
Γ
= div (∇b′Γ)

∣∣
Γ
= div Γ(∇Γb

′
Γ)+〈D2b′Γ·∇bΓ,∇bΓ〉

∣∣
Γ
. Because

0 = ∇〈∇b′Γ,∇bΓ〉 = D2b′Γ · ∇bΓ + D2bΓ · ∇b′Γ and since D2bΓ is symmetric, we can
conclude that 〈D2b′Γ · ∇bΓ,∇bΓ〉 = −〈D2bΓ · ∇b′Γ,∇bΓ〉 = 〈∇b′Γ, D

2bΓ · ∇bΓ〉 = 0 due
to (3.8). Therefore, we obtain

∆b′Γ
∣∣
Γ
= −∆Γvn.(3.14)

4. Gradient and Newton-type level set flow for a shape optimization
problem. For the numerical solution of a shape optimization problem one can use
shape sensitivity information to move the geometric variable step by step in the direc-
tion of the negative gradient. Alternatively, one can use some other descent direction,
which can be obtained from the gradient by applying a Newton-type preconditioner
to the negative gradient. Like the shape gradient, the descent direction should have
the form of a normal vector field on Γ (see Remark 2). Suppose F n is such a descent
direction, where F : Γ → R is a scalar function which depends on Γ. If we embed the
discrete iterative optimization procedure in a continuous flow Γ(t) which propagates
in direction F n, we get the following propagating front formulation for Γ(t):

ẋ(t) = F
(
x(t),Γ(t)

)
n(x(t)) for x(t) ∈ Γ(t).(4.1)

An equivalent formulation is given by the level set equation

ut + F̃ |∇u| = 0 on R
2 × (0, T ),(4.2)

where the propagating front is the zero level set of the function u, i.e.,

Γ(t) = {x ∈ R
2 : u(x, t) = 0}.(4.3)

In (4.2), the scalar function F̃ : R
2 × [0, T ) → R is chosen such that F̃ |Γ(t) = F (Γ(t)).

See [35] for an extensive exposition of propagating front problems and their analytical
and numerical treatment in the level set context. Note that by the Hadamard–Zolésio
structure theorem (see Remark 2), the shape gradient DΓJ can always be interpreted
as a scalar speed function G on Γ, which can be used in the level set formulation.
Thus, shape sensitivity analysis and the level set method can be combined in a very
natural way.

We want to use a speed function F : Γ → R, which represents a Newton-type
descent direction for the shape optimization problem (1.4). This function is deter-
mined in the following way. Let F : Γ → R and G : Γ → R be given functions.
We now establish a one-to-one correspondence between scalar speed functions and a
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certain class of perturbation vector fields. Let F̃ and G̃ denote extensions of F and
G, respectively, which are constructed as solutions to the transport equations

〈∇F̃ ,∇bΓ〉 = 0 on R
2, F̃

∣∣
Γ
= F,(4.4)

and

〈∇G̃,∇bΓ〉 = 0 on R
2, G̃

∣∣
Γ
= G.(4.5)

Note that Γ is noncharacteristic with respect to the transport equation; thus, (4.4)
and (4.5) have unique solutions, at least locally in some neighborhood of Γ, which is
small enough such that the characteristics of (4.4) (which are straight lines) do not
intersect. With these solutions, we define the vector fields

VF = F̃ ∇bΓ and VG = G̃∇bΓ(4.6)

on some neighborhood of Γ on which F̃ , G̃, and ∇bΓ are smooth. Outside this
neighborhood we assume that VF and VG are extended in some smooth way. Note
that the construction of VF and VG is such that

〈VF ,n〉 = F and 〈VG,n〉 = G on Γ.(4.7)

Now we consider a cost functional of type (1.4). Let d2J(Γ;V ;W )=d(dJ(Ω;V ))(Ω;W )
be the second Eulerian derivative of the cost functional (1.4). In general, the second
Eulerian derivative is not symmetric in the two arguments V and W and does not
depend only on V |Γ andW |Γ. From the subsequent computation we shall see, however,
that for perturbation vector fields of the form (4.6), the second Eulerian derivative is
symmetric in (VF , VG) and depends only on F and G.

We propose the following optimization algorithm. We define a Newton-type speed
function F : Γ → R as the solution to

d2J(Γ;VF ;VG) = −dJ(Γ;VG) for all G : Γ → R.(4.8)

We then find the extension F̃ of F onto some neighborhood of Γ by solving the
transport equation (4.4). Finally, we use F̃ as speed function for one time step in the
level set equation

ut + F̃ |∇u| = 0.(4.9)

The step size is chosen such that some line search criterion is satisfied. With the
updated geometry, we start the procedure over again until some stopping criterion is
reached.

5. Calculation of the Newton-type speed function. In this section, we
calculate the second Eulerian derivative for shape functionals of the form

J1(Γ) =

∫
Γ

φdS(5.1)

and

J2(Ω) =

∫
Ω

φdx(5.2)

for some fixed φ ∈ W 2,1
loc (R

2). For the following calculations we assume that Γ is of class
C2, which implies that bΓ ∈ C2 on some neighborhood of Γ (see [15, Thm. 4.3, p. 219]).
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When it is clear from the context, we omit “|Γ.” We start with the calculation for J1.
Using (2.11), (3.6), and (3.7), we obtain

dJ1(Γ, VF ) =

∫
Γ

(∂φ
∂n

+ φκ
)
〈VF ,n〉 dS

=

∫
Γ

(〈∇φ,∇bΓ〉+ φ∆bΓ
) 〈VF ,∇bΓ〉 dS.(5.3)

In this section, we consider only perturbation vector fields VF , which satisfy (4.6).
Note that dJ1(Γ;VF ) (for fixed VF ) is a shape functional of type (2.13). Therefore, the
second Eulerian derivative can be calculated by applying formula (2.19) to dJ1(Γ;VF ).
With b′Γ = b′Γ(Γ;VG) we get

d2J1(Γ;VF ;VG) =

∫
Γ

∂

∂n

[(〈∇φ,∇bΓ〉+ φ∆bΓ
) 〈VF ,∇bΓ〉

]
〈VG,n〉 dS

+

∫
Γ

κ
(∂φ
∂n

+ φκ
)
〈VF ,n〉 〈VG,n〉 dS

+

∫
Γ

(〈∇φ,∇b′Γ〉+ φ∆b′Γ
) 〈VF ,n〉 dS

+

∫
Γ

(∂φ
∂n

+ φκ
)
〈VF ,∇b′Γ〉 dS

= I1 + I2 + I3 + I4.

Using (4.7), (3.13), (3.14), and Green’s formula (2.10), the integral I3 simplifies to

I3 = −
∫

Γ

(〈∇φ,∇ΓG〉+ φ∆ΓG
)
FdS

= −
∫

Γ

(〈∇φ,∇ΓG〉F − 〈∇Γ(φF ),∇ΓG〉) dS
=

∫
Γ

φ 〈∇ΓF,∇ΓG〉 dS.(5.4)

Now let us consider I1. We have

I1 =

∫
Γ

(∂2φ

∂n2
+

∂φ

∂n
κ+ φ〈∇(∆bΓ),∇bΓ〉

)
F GdS

+

∫
Γ

(∂φ
∂n

+ κφ
) ∂

∂n
〈VF ,∇bΓ〉GdS

= K1 +K2.

From (3.5), we conclude

0 = ∆〈∇bΓ,∇bΓ〉 = 2〈∇(∆bΓ),∇bΓ〉+ 2D2bΓ : D2bΓ,

where A : B =
∑
i,j ai,j bi,j denotes the tensor product of matrices A = (ai,j) and

B = (bi,j). Thus,

〈∇(∆bΓ),∇bΓ〉 = −‖D2bΓ‖2
F ,

where ‖ · ‖F denotes the Frobenius norm of a matrix.



454 MICHAEL HINTERMÜLLER AND WOLFGANG RING

In I2 we find a term of the form φκ2 F G. We have κ2 = (trace(D2bΓ))
2. In two

dimensions, the relation

(traceD2bΓ)
2 − ‖D2bΓ‖2

F = 2(bΓ)x1,x1(bΓ)x2,x2 − 2(bΓ)
2
x1,x2

= 2det(D2bΓ) = 0

holds due to (3.8). With this, we obtain

I2 +K1 =

∫
Γ

(∂2φ

∂n2
+ 2

∂φ

∂n
κ
)
F GdS.(5.5)

The remaining term is K2 + I4. We find

K2 + I4 =

∫
Γ

(∂φ
∂n

+ κφ
)( ∂

∂n
〈VF ,∇bΓ〉G− 〈VF ,∇ΓG〉

)
dS

=

∫
Γ

(∂φ
∂n

+ κφ
)( ∂

∂n
〈VF ,∇bΓ〉G− 〈VF ,∇ΓG〉

)
dS.

For the second expression in the above integral, we obtain, using (4.7) and definition
(2.9),

〈VF ,∇ΓG〉 =
〈
VF ,∇〈VG,∇bΓ〉 − ∂

∂n
〈VG,∇bΓ〉n

〉
.

Thus, we get

(5.6) K2 + I4

=

∫
Γ

(∂φ
∂n

+κφ
)( ∂

∂n
〈VF ,∇bΓ〉G+ ∂

∂n
〈VG,∇bΓ〉F−〈∇〈VG,∇bΓ〉, VF

〉)
dS.

Note that the first two terms ∂
∂n 〈VF ,∇bΓ〉G+ ∂

∂n 〈VG,∇bΓ〉F in (5.6) are symmetric
in VF and VG, but they cannot be determined just from the restrictions F = 〈VF ,n〉|Γ
and G = 〈VG,n〉|Γ. The term 〈∇〈VG,∇bΓ〉, VF 〉 has the same nonintrinsic behavior
and is not even symmetric in VF and VG. Now let us assume that VF and VG satisfy
(4.6) on some neighborhood of Γ. Using this assumption, together with (3.8), we get

∇〈VF ,∇bΓ〉 = DVF · ∇bΓ +D2bΓ · VF = D(F̃ ∇bΓ) · ∇bΓ + F̃D2bΓ · ∇bΓ

= 〈∇F̃ ,∇bΓ〉 · ∇bΓ + 2〈VF , D2∇bΓ · ∇bΓ〉 = 0,

hence

∂

∂n
〈VF ,∇bΓ〉 =

〈∇〈VF ,∇bΓ〉,∇bΓ
〉
= 0,

and, with the same reasoning,

∂

∂n
〈VG,∇bΓ〉 = 0.

Thus, if we restrict our attention to perturbation vector fields of the form (4.4)–(4.6),
the nonintrinsic and asymmetric terms in d2J1(Γ;VF , VG) vanish.

Taking all intermediate results together, we obtain the following expression for
the second Eulerian derivative of J1:

d2J1(Γ;VF ;VG) =

∫
Γ

[(∂2φ

∂n2
+ 2

∂φ

∂n
κ
)
F G + φ〈∇ΓF,∇ΓG〉

]
dS.(5.7)
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For J2 we obtain, using Lemma 1,

dJ2(Ω;VF ) =

∫
Γ

φ 〈VF ,∇bΓ〉 dS.(5.8)

If we apply (2.19) in Proposition 2 and Lemma 4, we get

d2J2(Ω;VF , VG) =

∫
Γ

(∂φ
∂n

+ κφ
)
〈VF ,n〉 〈VG,n〉 dS

+

∫
Γ

φ
( ∂

∂n
〈VF ,n〉G− 〈VF ,∇ΓG〉

)
dS.

As in the discussion of expression (5.6), we find that the second integral is zero if VF
and VG satisfy (4.6). We therefore get

d2J2(Ω;VF ;VG) =

∫
Γ

(∂φ
∂n

+ κφ
)
F GdS.(5.9)

6. Gradient and Newton-type flow for variational image segmentation.
In this section, we apply the results of sections 2 and 4 to cost functionals of the
form (1.5). We consider a grayscale image given by its intensity map I : R

2 → R,
which assigns each point x its gray value I(x) ∈ R. For simplicity (to avoid special
treatment of the boundary), we assume that the image is defined on all of R

2. Let
g̃ : [0,∞) → (0,∞) be a given decreasing function which satisfies g̃(r) → 0 as r → ∞.
The function gI(x) = g̃(|∇I|(x)) acts as an edge detector in the sense that gI(x) = 0
if x lies on an ideal edge of I. In this paper, we use

gI(x) =
1

1 +
(|∇I|(x))k with k = 1, 2.(6.1)

To suppress the influence of noise, we replace ∇I in the above expression by a
smoothed version ∇Î. For the sake of simplicity, we use Gaussian smoothing, but
other, more effective geometric smoothers (see, e.g., [3]) can be used as well. The
method we propose also works for other edge detectors of the form gI : R

2 → R for
which gI ∼ 0 on edges and g ∼ c with c > 0 otherwise, provided that they satisfy
the necessary smoothness requirements for performing shape sensitivity analysis of a
functional of type (6.2) as exposed in sections 2–5.

Segmentation of an image is the task of partitioning a given image into disjoint
parts of approximately constant gray value. Let Γ be the union of the boundaries of
these homogeneous regions. Since homogeneous regions with different gray values are
separated by edges, it is likely that the boundary Γ is located at points where the edge
detector gI has small values. In Figure 1 it is seen that the edges of the image coincide
with the deep valley in the edge detector. This motivates the following variational
approach. We seek the final segmenting contour Γ as the minimizer of the functional

J(Γ) =

∫
Γ

gI dS + ν

∫
Ω

gI dx,(6.2)

where Γ = ∂Ω and ν > 0. We find the minimizer of (6.2) as the steady state of a family
of propagating contours Γ(t) which approach the minimal contour from the outside.
Note that a contour of length zero (a point) is a global minimizer for (6.2). This,
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Fig. 1. Grayscale image I and corresponding edge-map g.

however, is not the desired segmenting contour. Rather, we want the propagation
of the active contour to get stuck at the bottom of the valley of the edge detector,
which is a local minimizer for (6.2). The second term in (6.2) is a regularization
term, which helps shrink the active contour in the homogeneous regions where the
influence of the edges is not very strong. The parameter ν must not be chosen too
large, because otherwise the algorithm might overshoot the edge and end up at the
global minimizer.

The Euler–Lagrange equation for the cost functional (6.2) with respect to the ge-
ometrical variable Γ was derived, e.g., in [8, 37] using parametrized curves Γ = Γ(s, t),
where s denotes the curve parameter and t is a time variable describing the move-
ment of the curve. We derive the same result applying the speed method described
in section 2. Applying Lemma 3 and (2.5b) in Lemma 1 immediately yields

dJ(Γ;V ) = 〈DΓJ, V 〉 =
∫

Γ

〈(∂gI

∂n
+ gI (κ+ ν)

)
n, V

〉
dS.

Thus, the flow for a contour Γ(t) which propagates in the direction of the negative
gradient with respect to the functional (6.2) is given by

Γt = −(gI (κ+ ν) + 〈∇gI ,n〉
)
n.(6.3)

Note that in our case n denotes the exterior normal vector to the region enclosed by
Γ, so we have different signs in the expression (6.3) as, e.g., in [8, 37]. The level set
formulation corresponding to (6.3) (see [35]) is given by

ut = gI

(
div

( ∇u

|∇u|
)
+ ν|∇u|

)
+ 〈∇gI ,∇u〉 =

(
div

(
gI

∇u

|∇u|
)
+ ν

)
|∇u|.(6.4)

For ν = 0, (6.3) or (6.4) can be interpreted as geodesic curve-shortening flow with
respect to an image-dependent metric gI (cf. [8, 30]).

We now use the results from section 5 for the setup of a Newton-type algorithm
as described in section 4, specifically in (4.8), (4.6), (4.5), and (4.4) for variational
image segmentation. Using (5.7) and (5.9), we find that (4.8) for the Newton-type
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speed function F has the form of an elliptic equation on Γ: Find F : Γ → R such that

(6.5)

∫
Γ

[(∂2gI

∂n2
+ (2κ+ ν)

∂gI

∂n
+ ν κ gI

)
F G + gI〈∇ΓF,∇ΓG〉

]
dS

= −
∫

Γ

(∂gI

∂n
+ (κ+ ν) gI

)
GdS

for all test functions G : Γ → R.
The elliptic problem (6.5) has a unique solution, and the solution to (6.5) is a

descent direction with respect to (6.2) if the bilinear form on the left-hand side is
coercive on H1(Γ). Since gI > 0 on R

2, this is the case if

(∂2gI

∂n2
+ (2κ+ ν)

∂gI

∂n
+ ν κ gI

)
> 0 on Γ.(6.6)

See [36, section 2.21] for a comprehensive treatment of elliptic problems on contours.
We give some heuristic arguments why condition (6.6) is likely to be satisfied in a
neighborhood of the optimal contour. Let us consider the case ν = 0. If the optimal
contour is located at the bottom of a valley for the edge detector gI and if the contour
is approximately aligned with the direction of the valley, we have ∂gI

∂n ∼ 0 and gI is

convex in the direction normal to the contour, i.e., ∂
2gI
∂n2 > 0. Thus, (6.6) is satisfied

for such a contour.
The positive definiteness of (6.5) is an important computational issue. For the

actual computations, the Hessian has to be modified such that positive definiteness
is maintained also for contours outside the (possibly very small) neighborhood of the
optimal contour, where the convexity of gI in the normal direction is strong enough
to guarantee coercivity. This topic (among others) is addressed in the next section.

7. Implementation of an active contour algorithm for image segmenta-
tion based on the Newton-type speed function. It is often said that the speed
function

F = −(gI κ+ 〈∇gI ,n〉
)

corresponds to the negative gradient direction with respect to the cost functional (6.2)
with ν = 0 and, therefore, propagation with this speed function decreases the cost
functional as fast as possible. On the other hand, it is observed that the decrease of J
along the propagation of the level set function u is not very fast and that the time steps
in the numerical implementation of the level set algorithm must be chosen relatively
small. Otherwise, zig-zagging trajectories for the points on the contour are observed.
In the worst case, the time-stepping procedure can even become unstable. In other
words, the numerical realization of the front-propagation problem (6.4) suffers from
many drawbacks which are well known for gradient-based algorithms in nonlinear
programming. Usually, the constant (expanding or shrinking) term, i.e., ν > 0 in
(6.2), is added to the speed function F to speed up the propagation. This procedure
has the disadvantage that an additional parameter (the constant deflation or inflation
speed) is introduced into the algorithm. It is a difficult task to choose this parameter
in a reasonable way. If it is too large, it is possible that weak edges in the image are
not recognized and the propagation of the contour does not stop at the edge. If it is
chosen too small, the desired speed-up cannot be achieved (see Table 2).

We propose a speed-up method for the propagating interface problem which—in
ideal cases—is even parameter free, i.e., ν = 0 is set in all iterations. The method
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can be considered as a preconditioned gradient method or, alternatively, as a Newton-
type technique. As speed function F in the level set equation (1.1), we choose the
Newton-type direction with respect to the cost functional (6.2) as calculated in section
5. Additionally, we use a line search technique in order to relax the restriction on
the time step size in the discretization of the level set equation given by the CFL-
condition. We consider the following algorithm.

Algorithm 1.
(1) Initialization. Choose an initial (closed) contour Γ0. Initialize the level set

function u0 such that Γ0 is the zero level set of u
0; set k = 0. Choose a

bandwidth w ∈ N and ν ∈ R.
(2) Newton direction. Find the zero level set Γk of the actual level set function

uk. Solve (6.5) to obtain the Newton-type direction F k.
(3) Extension. Extend F k to a band around the actual zero level set Γk with

bandwidth w yielding F kext.
(4) Update. Perform a time step in the level set equation with speed function

F kext to update uk on the band. Let ûk+1 denote this update.
(5) Reinitialization. Reinitialize ûk+1 in order to obtain a signed distance func-

tion uk+1 with zero level set given by the zero level set of ûk+1. Set k = k+1
and go to (2).

Before we discuss steps (1)–(5) of Algorithm 1 in detail, we note that the algo-
rithm operates only on a band around the actual zero level set (or contour) Γk. This
so-called narrow band approach was introduced by Chopp [14]. The key aspect is the
fact that typically only knowledge around the actual contour is of importance in the
propagation of the contour through the level set equation (which, then, is also con-
sidered only on the band). Clearly, in our situation the shape gradient and the shape
Hessian used in (6.5) are both defined only on Γk. Thus, the narrow band approach
is appropriate. In the discrete setting, the restriction to a band around the actual
zero level set reduces the computational time and the memory requirement. In [1] a
fixed band is chosen with respect to the contour and then, as soon as the propagated
contour approaches the boundary of the band, the band is reinitialized with respect
to the actual contour. In contrast to this technique, we allow a continuously moving
band, i.e., the band is moved together with the contour. This enables us to take larger
time steps while preserving a low computational cost. For more details on the narrow
band approach in level set methods we refer to [14, 1, 35].

Now let us discuss the steps of Algorithm 1 and the respective numerical realiza-
tion.

Initialization. In the literature there exist different characteristic choices with
respect to ν in the cost functional (6.2). In the following discussion, we decide to
consider deflation, i.e., we choose ν ≥ 0 and Γ0 such that the objects which should be
segmented are within the area enclosed by Γ0. Depending on Γ0, a signed distance
function u0 is computed with Γ0 as zero level set. This is done by utilizing the fast
marching technique [33, 34] on the band around Γ0 for solving the Eikonal equation

|∇u0| = 1 with u0 = 0 on Γ0.

Unless it is chosen too small, the algorithm is not sensitive (except for computa-
tional time) with respect to the bandwidth w.

Newton direction. This step is the core part of the new algorithm. As already
mentioned in the previous section, the coercivity in H1(Γ) of the bilinear form in (6.5)
is essential for having a well-defined Newton-type descent direction. Typically, in the
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grid intersection point 

d

di+1,j

i,j

Fig. 2. Computation of additional intersection points (on the discrete contour).

course of the iteration it happens that

∂2gI

∂n
+ (2κ+ ν)

∂gI

∂n
+ νκgI ≤ 0 on some parts of Γk.

Thus, the coercivity of the corresponding bilinear form is lost. To circumvent these
difficulties, we incorporate the following modification of (6.5). Find F : Γ → R such
that

(7.1)

∫
Γ

[(∂2gI

∂n2
+ (2κ+ ν)

∂gI

∂n
+ ν κ gI

)
+
F G + gI〈∇ΓF,∇ΓG〉

]
dS

= −
∫

Γ

(∂gI

∂n
+ (κ+ ν) gI

)
GdS

for all test functions G : Γ → R. Above we use (·)+ = max(·, ε) for 0 < ε � 1. In
our numerical tests it turns out that frequently ε = 0 can be set, i.e., we basically
cut off the nonconvex part of the shape Hessian. For ε > 0, equation (7.1) realizes a
small correction of the Newton direction towards the steepest descent direction, i.e.,
the negative shape gradient.

The discretization of (7.1) is a rather delicate issue. This is due to the fact that
〈∇ΓF,∇ΓG〉 corresponds to the Laplace–Beltrami operator on Γ = Γk. We first need
a discrete model Γhk of Γk. For this purpose, we recall that one of the advantages of
the level set method is the fact that it operates on a fixed (Cartesian) grid. In our
case, the nodes are given by the pixels of the image. The information on the contour
Γk is included in uk, i.e., it is the zero level set of uk. In order to get Γhk we compute
additional points on the grid lines (which are the lines joining the pixels of the given
image) representing the discrete contour. Let us assume that xi,j , i = 1, . . . ,M and
j = 1, . . . , N , denote the grid points (nodes) and ukh is the signed distance function
defined on the nodes. Whenever it is observed that ukh(xi,j) and ukh(xi+1,j) change
sign, then the interface obviously passes through the grid line connecting xi,j and
xi+1,j . An analogous observation is true for xi,j and xi,j+1. Since di,j = |ukh(xi,j)|
and di+1,j = |ukh(xi+1,j)| give the distances to the contour, we compute an additional
intersection point zkl as outlined in the graphic in Figure 2. The black node and
the white node indicated different signs of ukh at these points. The discrete contour
is given by the piecewise linear approximation joining the intersection points. For
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simplicity, we temporarily assume that ∂Γhk = 0 for all k and that NΓh
k
represents the

number of intersection points. Thus, Γhk is a polygon. Let nkh denote the normal to
Γkh, and let [zkl , z

k
l+1] represent a linear piece of Γhk . For the discretization of F k we

use the ansatz

F kh (z) =

N
Γh
k∑

l=1

F kl φh,l(z)

with φh,l the linear functions on Γhk , which are globally continuous and satisfy
φh,l(z

k
j ) = δlj for l, j = 1, . . . , NΓh

k
. We define the discretized tangential gradient

∇Γh
k
by

∇Γh
k
F kh (z) =

N
Γh
k∑

l=1

F kl ∇Γh
k
φh,l(z)

with

∇Γh
k
φh,l(z) =




h−1
l if z ∈ [zkl−1, z

k
l ],

h−1
l+1 if z ∈ [zkl , z

k
l+1],

0 else.

Here hl is the length of [zkl−1, z
k
l ]; this is analogous for hl+1. Note that ∇Γh

k
F kh is

constant on each linear piece of Γhk .
Let akh denote the piecewise constant approximation of

a(z) =

((
∂2gI

∂n2

)
+ (2κ+ ν)

(
∂gI

∂n

)
+ ν κ gI

)
+

(z) for z ∈ Γk

with

akh(z
k
l ) =

((
∂2gI

∂n2

)
h

+ (2κh + ν)

(
∂gI

∂n

)
h

+ ν κh gI

)
+

(zkl ) for zkl ∈ Γhk .

The approximation of the normal derivatives and the mean curvature in zhl , l =
1, . . . , NΓh

k
, are discussed below. Let bkh denote the piecewise constant approximations

of gI , which are defined as

bkh(z) =
1

2
(gI,h(z

k
l ) + gI,h(z

k
l+1)) for z ∈ [zkl , z

k
l+1].

For the discretization of the first term under the integral in (7.1), we use a mass
lumping technique which yields a positive definite diagonal matrix. The right-hand
side is approximated by utilizing the trapezoidal rule on each linear piece of Γhk . The
discretization of (7.1) is then given by

N
Γh
k∑

l=1

Fl

(
akh(z

k
l )hl +

∫
Γh
k

bkh〈∇Γh
k
φh,l∇Γh

k
φh,j〉

)
=

N
Γh
k∑

l=1

ckh(z
k
l )ĥl(7.2)

for j = 1, . . . , NΓh
k
. Above, ĥl is given by ĥl =

1
2 (hl + hl+1). In the case where Γhk

contains nonclosed components, ĥl has to be modified on terminal linear pieces of
these components.
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When assembling the system matrix in (7.2) one has to be careful in order to
produce a tridiagonal band matrix. In order to obtain this structure we employ the
following technique. We compute a list containing all intersection points. First, we
check whether one of the intersection points in the list is located on the grid lines
joining the boundary pixels of the image. If this is the case, then we start with an
intersection point on the boundary. In any case, we take zl with the minimal l and
follow the corresponding piece of the contour, compute the respective entries in the
stiffness matrix corresponding to the actual intersection point, and delete this point
from the list. If we have finished the piece of the discrete contour and the list is not
empty, we repeat this procedure by checking intersection points on the boundary. If
it turns out that there are no intersection points located on a boundary grid line, then
we take zl with minimal l. The final stiffness matrix is tridiagonal allowing efficient
solutions of the discretization of (7.2).

For details concerning asymptotic error estimates for the finite element discretiza-
tion of the elliptic equation (7.1) as described above, we refer to [17, 18].

The discretization of κ on the (fixed) grid points is based on finite differences like
those in [35]. To obtain an approximation of ∂gI∂n , we evaluate gI in the grid points,

compute ∇hgI by central differences, and compute nh =
∇hu

k
h

|∇huk
h
| as an approximation

to the normal derivative in all grid points. Then(
∂gI

∂n

)
h

(xi,j) = ∇hgI(xi,j)
Tnh(xi,j).

Values for κh and (∂gI∂n )h at intersection points are obtained as weighted averages of
the respective quantity at neighboring grid points.

Extension. Since dJ(Γk;VG), d
2J(Γk;VF ;VG), and, thus, the Newton-type di-

rection F k are defined only on Γk, but the level set equation is defined on Ω (or at
least on a band around Γk), an extension of F

k to Ω (or the band) must be computed.
There exist many possible ways to extend F k. According to (4.4), F kext in step 3 of
Algorithm 1 must satisfy

〈∇F kext,∇uk〉 = 0, F kext|Γk
= F k.(7.3)

On the discrete level, we realize (7.3) by employing the technique of [2]. Again, the
fast marching method is used on the narrow band only. For more details we refer to
[2].

Update. The discretization of the level set equation follows the standard sug-
gestions in, e.g., [35]; i.e., the time stepping is done by using an explicit Euler scheme
combined with an ENO-scheme for the term involving the spatial derivatives. Usu-
ally, the CFL-condition gives a link between the step size of the time and the spatial
discretization such that the difference scheme is stable [23]. In our situation, the
CFL-condition yields

‖F kext,h‖∞∆tk ≤ ∆x,

where ∆tk denotes the time step size in iteration k and ∆x is the mesh size of the
spatial discretization. Obviously, this might lead to very small time step sizes. This
is especially true at early stages of the iteration process where the shape gradient is
still large. Close to the discrete solution the CFL-condition becomes less stringent
since F kext,h becomes “smaller.”
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In contrast to the requirement induced by the CFL-condition, we determine ∆tk

based on considerations coming from optimization concepts. First, we relax ∆tkCFL,
the time step size required by the CFL-condition, by choosing a threshold T k :=
2∆tkCFL with 2 > 1. Due to our modification of the shape Hessian (its discretization
induces a positive definite matrix), we expect that F k is a local descent direction; i.e.,
for sufficiently small time step sizes the cost functional J is reduced by propagating Γk
through the level set equation. A so-called sufficient decrease condition, well known
from nonlinear programming [28], is given by the Armijo-condition. In our context
this condition becomes

J(Γk+1)− J(Γk) ≤ µ∆tk〈F k, dJ(Γk;F k)〉 < 0

with a fixed parameter µ ∈ (0, 1). Numerically we realize the Armijo-condition in the
following way: Let Γhk(∆t) denote the zero level of ukh(∆t), the result of a time step
with ∆t in the discretized level set equation with speed function given by F kext,h. At
every iteration level k, we utilize the following algorithm.

Algorithm 2.
(1) Set a0 = ∆tkCFL, b0 = T k, r0 = b0 − a0, 0 < ξ � 1

2 . Choose ∆t0 ∈
(a0 + ξr0, b0 − ξr0) and 0 < µ1 < µ2 < 1; set l = 0. Choose the maximal
number of cycles L ∈ N.

(2) Perform a time step in the level set equation with time step size ∆tl and speed
function F kext,h, and compute ukh(∆tl).

(3) Compute the zero level set Γhk(∆tl) of u
k
h(∆tl). If l = L, then ∆tk = ∆tl,

ûk+1
h := ukh(∆tk) and RETURN to Algorithm 1. If Γhk(∆tl) satisfies

Jh(Γ
h
k(∆tl))− Jh(Γ

h
k) ≤ µ2∆tl〈F kh , dJ(Γk;F k)h〉 < 0,(7.4)

then al+1 = ∆tl, bl+1 = bl, rl+1 = bl+1 − al+1, and compute ∆tl+1 ∈ (al+1 +
ξrl+1, bl+1 − ξrl+1). If (7.4) is satisfied with µ2 replaced by µ1 and

Jh(Γ
h
k(∆tl))− Jh(Γ

h
k) > µ2∆tl〈F kh , dJ(Γk;F k)h〉,

then ∆tk = ∆tl, û
k+1
h := ukh(∆tk) and RETURN to Algorithm 1. If

Jh(Γ
h
k(∆tl))− Jh(Γ

h
k) > µ1∆tl〈F kh , dJ(Γk;F k)h〉,(7.5)

then bl+1 = ∆tl, al+1 = al, rl+1 = bl+1 − al+1, and compute ∆tl+1 ∈ (al+1 +
ξrl+1, bl+1 − ξrl+1). Set l = l + 1 and go to step (2).

This step size strategy takes place in step 4 of the discrete analogue of Algorithm
1. The output (of Algorithm 2) is ûk+1

h = ukh(∆tk).
Relaxing the CFL-condition significantly and computing time steps by Algo-

rithm 2 is substantiated by the fact that we are not as interested in tracking an
interface as we are in finding—as quickly as possible—a contour which locally mini-
mizes the cost functional.

Reinitialization. Since we allow larger time steps compared to the typical
choices for level set–based front propagation, the reinitialization is of importance.
Like in the initialization phase, we use a fast marching technique for solving the
Eikonal equation

|∇u| = 1 with u = 0 on Γk+1

numerically. Here, Γk+1 is the zero level set of ûk+1.
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Fig. 3. Image with zero level sets of ukh based on the parameter free (ν = 0) Newton-type
direction (left) and on the gradient-based direction with parameter ν = 1 (right).

Table 1
Time step sizes and cost functional values for the left graph of Figure 3.

k ∆tk ∆tkCFL Jk
h Jk

h,r

1 0.00027 0.00014 67.71894 67.73983
2 0.00916 0.00458 63.62859 63.58714
3 0.05119 0.01462 55.69355 55.30486
4 0.07655 0.02187 45.59301 45.34222
5 0.11608 0.03317 37.06772 36.81020
6 0.16018 0.04577 28.19008 27.54977
7 0.20494 0.05856 16.41064 15.95286
8 0.31020 0.08862 9.73240 9.92598
9 0.34469 0.09848 4.01012 3.83231

8. Numerical results. In this section we report on numerical tests attained by
Algorithm 1 for the discretization described in the previous section. With respect
to the grayscales contained in the image data, the first two examples represent the
ideal situation. We use these examples to demonstrate the advantages of the Newton-
type direction compared to the gradient direction with deflation or inflation. Also
comparisons with a method based on the negative gradient are given. The third
example is related to the task of segmenting a contrast agent–based image of a kidney.
Here we show that the new algorithm can handle inflation, i.e., ν < 0, efficiently.

Let us start by reporting on the results for the image in Figure 3. Table 1
displays the time step sizes ∆tk accepted by Algorithm 2, the corresponding CFL-
based time step ∆tkCFL, the cost value Jkh prior to the reinitialization, and Jkh,r after
the reinitialization for Algorithm 1. Moreover, ν = 0 is chosen. From Table 1 we
can see that the Newton-type method stops after 9 iterations. The time step sizes
∆tk and ∆tkCFL are increasing, which is expected since F kh should ideally vanish at a
local solution. Also, our step size rule (Algorithm 2) yields significantly larger time
steps than obtained from the CFL-condition. The cost functional is monotonically
decreasing, and the reinitialization has only a slight influence on the cost functional
value. If the speed function is changed from the Newton-type direction to the gradient
direction with ν = 0, then the algorithm (with step size strategy) needs 327 iterations
(instead of 9 iterations for the Newton-type direction) to reduce the objective value
from J1

h = 66.8179 to J327
h = 3.6318. If we allow a constant deflation by choosing
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Table 2
Comparison of algorithms.

Newton
ν = 1
with Alg. 2

Newton
ν = 0
with Alg. 2

Gradient
ν = 1
with Alg. 2

Gradient
ν = 1
no Alg. 2

Gradient
ν = 0
with Alg. 2

# it. 8 9 13 31 327

Fig. 4. Image with zero level sets of ukh based on the Newton-type direction with ν = 0.01 (left)
and on the gradient-based direction with parameter ν = 1 (right).

ν = 1 in the gradient-based method, then 13 iterations are needed. The fact that ν
has to be chosen appropriately in order to avoid overshooting the desired contour or a
slowly converging algorithm is a clear disadvantage. We also ran the algorithm with
the gradient-based speed function with ν = 1 and no step size strategy; i.e., ∆tk =
∆tkCFL was chosen. Then 31 iterations are needed for finding the local minimum
numerically. In our test runs we also observe that the Newton-type direction acts
more globally than the gradient direction. In fact, in the right graph of Figure 3
we can observe that the gradient direction detects certain parts of the contour rather
quickly, while it takes some time to correctly detect the nonconvex part of the contour.
The Newton-type direction yields a rather global propagation of the zero level set
towards the desired contour; i.e., in the detection process (evolution of the zero level
set of ukh) the zero level sets approach the desired contour more uniformly; see the left
graph of Figure 3. Also, the contours based on the gradient-type propagation are less
regular than the contours obtained from the Newton-type propagation. This behavior
does not depend on our preference for employing Algorithm 2. It merely reflects
our theoretical findings, i.e., computing F k as the solution of the elliptic equation
(7.1) induces additional smoothness properties of F k. In Table 2 we summarize the
convergence behavior.

Our second example is concerned with the segmentation of the letters “O” and
“K” as displayed in Figure 4. Besides the aspect that our initial contour has to split
into two disjoint contours, it is interesting to investigate how the Newton direction
copes with the contours of “K” which involve, e.g., rather acute angles and specific
nonconvexities. We shall also see that the appropriate choice of ν is a delicate issue for
the gradient method. This is due to the fact that we have to balance the two objectives
of fast progress and accurate segmentation. For the Newton method, on the other
hand, a rather small value for ν already gives good progress without degrading the
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Fig. 5. Image with zero level sets of ukh based on the Newton-type direction with ν = −0.3 (left)
and the corresponding initial and final contours (right).

segmentation behavior.
The gradient-based direction with constant deflation (ν = 1) with or without

Algorithm 2 typically overshoots the right uppermost and lowermost corners. As a
consequence, the segmentation misses the “K.” For smaller values for ν the conver-
gence speed of the gradient-based algorithm is significantly reduced, and too small ν
eventually prevents the algorithm from convergence. From the right graph in Figure 4
we can observe that, like in the previous example, the contours for the gradient-based
speed function are quite irregular. This prevents the algorithm from taking larger
time step sizes.

For the Newton-type speed function, we choose ν = 0.01 and still get reasonable
progress in every iteration (successful termination after 33 iterations) but avoid the
overshooting of the corners of “K.” The evolution of the contours is displayed in
the left graph of Figure 4. We initialize the algorithm with the outermost ellipse
which shrinks towards the convex hull of the two letters and finally collapses onto two
separate contours. With the same value for ν, the gradient-based algorithm with a
step size strategy needs more then 100 iterations.

The final example is concerned with the task of segmenting a contrast agent–
based image of a kidney. We initialize the algorithm by choosing a small circle inside
the part of the image which we aim to segment. Thus, ν has to be assigned a negative
value in order to allow inflation of the initial contour. In the left graph of Figure 5
we display some of the iterates of the Newton-type method with ν = −0.3. The
algorithm detects the correct contour after 47 iterations. The right graph shows the
initial and the final contours for the Newton-type method.
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Abstract. In the present paper a kinetic model for vehicular traffic leading to multivalued
fundamental diagrams is developed and investigated in detail. For this model phase transitions can
appear depending on the local density and velocity of the flow. A derivation of associated macroscopic
traffic flow equations from the kinetic equation is given. Moreover, numerical experiments show the
appearance of stop and go waves for highway traffic with a bottleneck.
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1. Introduction. Classical models for vehicular traffic consider the continuity
equation for the density ρ closing the equation by an equilibrium assumption on the
mean velocity u, which means approximating u by a uniquely determined equilibrium
value Ue(ρ) (see [21]). The function Qe(ρ) = ρUe(ρ) is the so-called fundamental
diagram. An additional momentum equation for u has been introduced by Payne [19]
and Whitham [21] in analogy to fluid dynamics. Daganzo [3] has pointed out in-
consistencies, like wrong-way traffic, of models such as the Payne–Whitham model
in certain situations. The inconsistencies are resolved by the introduction of a new
macroscopic model by Aw and Rascle [2]. For a mathematical discussion, see [1] or
Greenberg [4]. Another basic problem of macroscopic traffic-flow equations has been
described by Kerner [10, 11, 12]. The observations there suggest a more complicated
dependence of the homogeneous steady speed states on density: the states are not
given by a uniquely defined function u = Ue(ρ), as used in the above models, but
cover a whole range in the density-flow diagram.

Kinetic equations for vehicular traffic can be found, for example, in [20, 18, 16, 13].
Procedures for deriving macroscopic traffic equations, including the Aw–Rascle model,
from underlying kinetic models have been performed in different ways by several au-
thors; see, for example, [6] and [15]. These procedures are developed by analogy to the
transition from the kinetic theory of gases to continuum gas dynamics. In the present
paper a kinetic model is developed allowing for multiple stationary solutions. This
leads to multivalued fundamental diagrams. Different steady speed states can appear
for fixed density. They may be interpreted as traffic jams or free flow/synchronized
traffic; compare [12]. An overview on these issues is given in [7]. Moreover, we refer to
Nelson and Sopasakis [17] for investigations on this point for the Prigogine model, and
to [5] for investigations on a simplified macroscopic model. Finally, the macroscopic
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equations derived from the kinetic model exhibit the desired features such as stop and
go behavior.

The paper is arranged in the following way. In section 2 the kinetic model is pre-
sented, reduced to a cumulative description of the highway. In section 3 the stationary
distributions of the kinetic model are investigated, and the multivalued fundamental
diagrams are determined. Section 4 contains the derivation of macroscopic mod-
els. Each section concludes with the discussion of an example. Finally, in section 5,
numerical results are given showing the density-velocity relation and the different
homogeneous stationary states which appear in the model. Moreover, a nonhomoge-
neous traffic flow situation with a bottleneck is investigated, showing the appearance
of stop and go waves.

2. The kinetic model. The kinetic model developed here is based on the work
in [14] and describes highway traffic in a cumulative way, averaging over all lanes.

2.1. Preliminaries. The basic quantity in a kinetic approach is the single-car
distribution f(x, v) describing the density of cars at x with velocity v. Here and in
the following we do not write the time dependence explicitly. The total density ρ on
the highway is defined by

ρ(x) =

∫ w

0

f(x, v)dv,

where w denotes the maximal velocity. Let F (x, v) denote the probability distribution
in v of cars at x, i.e., f(x, v) = ρ(x)F (x, v). The mean velocity is

u(x) =

∫ w

0

vF (x, v)dv.

An important role is played by the distribution f (2)(x, v, h, v+) of pairs of cars at
the spatial point x with velocity v and leading cars at x + h with velocity v+. This
distribution function has to be approximated by the one-vehicle distribution function
f(x, v). We use the chaos assumption

f (2)(x, v, h, v+) = q(h, v; ρ, u) f(x, v)F (x + h, v+);

compare Nelson [16]. For a vehicle with velocity v the function q(h, v; ρ, u) denotes
the distribution of leading vehicles with distance h under the assumption that the
velocities of the vehicles are distributed according to the distribution function f .

Moreover, we introduce the following thresholds for braking (HB) and accelera-
tion (HA):

HX(v) = H0 + vTX , X = B,A.

TB = TB(ρ, u) and TA = TA(ρ, u) with TB < TA are reaction times which may
depend on ρ and u. H0 denotes the minimal distance between the vehicles. We write
HX = HX(v) = HX(v; ρ, u). From a microscopic point of view, drivers will brake once
the distance between the driver and its leading car becomes smaller than a threshold
HB , and will accelerate once this distance becomes larger than HA. Otherwise the cars
will not change velocities. Velocities are changed instantaneously once acceleration or
braking lines are reached. Models including acceleration of the cars can be developed
as well; see [8] for an example.
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The basic additional feature here compared to previous models (see [15]) is the
fact that the reaction times may depend on ρ and u. This will be sufficient to obtain
multivalued fundamental diagrams. Using different values for the reaction times, we
assume that, according to their local situation, drivers react with different behavior.
Having different TB , they allow for different distances to their leading cars. Free flow
of cars will be related to smaller distances and thus smaller TB between cars driving
at a given speed. So-called synchronized traffic is associated with slightly larger TB
and thus slightly larger distances between cars for a given speed. Traffic which is
not synchronized is associated with even larger TB and thus with lower speeds at the
above fixed density. A special choice of TB = TB(u) is given and discussed in detail
in section 5.

The distribution of leading vehicles q(h, v; ρ, u) is prescribed a priori. The main
properties that q(h, v; ρ, u) has to fulfill are positivity,∫ ∞

0

q(h, v; ρ, u)dh = 1,

and ∫ w

0

∫ ∞

0

hq(h, v; ρ, u)dhF (v)dv =
1

ρ
.(1)

Equation (1) means that the average headway of the cars is 1/ρ. The leading vehicles
are assumed to be distributed in an uncorrelated way with a minimal distance HB

from the car under consideration (see Nelson [16]):

q(h, v; ρ, u) = ρ̃ e−ρ̃(h−HB(v)) χ[HB(v),∞)(h).

The reduced density ρ̃ has to be defined in such a way that (1) is fulfilled. One obtains

ρ̃ =
ρ

1 − ρ
∫ w
0
HB(v)F (v)dv

=
ρ

1 − ρHB(u; ρ, u)
.(2)

Remark 2.1. The reduced density ρ̃ must be positive, i.e.,

1 − ρHB(u; ρ, u) = 1 − ρ (H0 + uTB(ρ, u)) > 0.

This defines a range of admissible values in the (ρ, u)-plane.
The probability Pov for overtaking or lane changing and the corresponding prob-

ability PB = 1 − Pov for braking are determined from microscopic considerations. A
car overtakes if there is sufficent space in the new lane, i.e., if the cars in the new lane
have at least a distance HB(v) from the changing car. Averaging over the distribution
function yields

Pov(v; ρ, u) = ρ

∫ w

0

∫ w

0

∫ ∞

HB(v)+HB(v′)

∫ ∞

h

q(h′, ṽ; ρ, u)dh′dhF (ṽ)dṽF (v′)dv′.(3)

Remark 2.2. The main mechanism for obtaining features like multivalued fun-
damental diagrams and stop and go behavior is the choice of TB, i.e., the assumption
that there are different states of drivers. We note that the exact choice of TB is not
important. Such an assumption is directly related to the assumption that drivers have
different behavior concerning the accepted headway to their leading cars HB. This, in
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turn, is related to the probability of overtaking. We note that the probability of over-
taking is most important in the theory of Kerner [12] for explaining multivalued fun-
damental diagrams. Thus, the present approach can be compared—and justified—by
comparing the results for the probability of overtaking obtained here to the qualitative
results of Kerner [12]. For such a comparison, see the figures in [12] and Figure 7
below.

Remark 2.3. In the following we present a kinetic model. Note that the results
like multivalued fundamental diagrams and stop and go behavior of the derived macro-
scopic equations do not depend on the exact choice of the microscopic interactions that
we have chosen here. The model developed in the next section is only chosen due to
the fact that explicit stationary solutions are available.

2.2. The evolution equation. The kinetic model is given by the following
evolution equation for the distribution function f :

∂tf + v∂xf = Ĉ+(f)(4)

= (Ĝ+
B − L̂+

B)(f) + (Ĝ+
A − L̂+

A)(f) + (ĜS − L̂S)(f).

Ĝ+
B , L̂

+
B denote the gain and loss terms due to braking, and Ĝ+

A, L̂
+
A those due to

acceleration interactions. ĜS and L̂S are terms describing a random behavior of the
drivers. They are explained in the following.

For the braking interaction one obtains the gain term

Ĝ+
B(f) =

∫ ∫
v̂>v̂+

|v̂ − v̂+|q(HB(v̂), v̂; ρ, u)PB(v̂; ρ, u)

σB(v; v̂, v̂+)f(x, v̂)F (x + HB(v̂), v̂+)dv̂dv̂+

with the distribution σB of new velocities v after the interaction. The loss term is
given by

L̂+
B(f) =

∫
v̂+<v

|v − v̂+|q(HB(v), v; ρ, u)PB(v; ρ, u)f(x, v)F (x + HB(v), v̂+)dv̂+.

In other words, the driver is braking if he is not changing to the left lane for overtaking.
Reaching the braking line, the vehicle brakes such that the new velocity v is distributed
with a distribution function σB , depending on the old velocities v̂, v̂+.

For the acceleration interaction the gain term is given by

Ĝ+
A(f) =

∫ ∫
v̂<v̂+

|v̂ − v̂+|q(HA(v̂), v̂; ρ, u)σA(v; v̂, v̂+)f(x, v̂)F (x + HA(v̂), v̂+)dv̂dv̂+.

The loss term is

L̂+
A(f) =

∫
v̂+>v

|v − v̂+|q(HA(v), v̂+; ρ, u)f(x, v)F (x + HA(v), v̂+)dv̂+.

Thus, the new velocity is again distributed according to σA depending on the old
velocities. Finally, a relaxation term is introduced, describing a random behavior of
the drivers. It is given by

ĜS(f) = ν(ρ, u)

∫ w

0

σS(v, v̂)f(x, v̂)dv̂,
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where ν denotes an interaction frequency and
∫∞
0

σS(v, v̂)dv = 1. The loss term is

L̂S(f) = ν(ρ, u)

∫ w

0

σS(v̂, v)f(x, v)dv̂ = ν(ρ, u) f(v).

Remark 2.4. For remarks on this Boltzmann–Enskog approach to traffic flow
modelling, see [13].

In the following, (4) is simplified by using appropriate averages. We consider the
functions q(HX(v), v; ρ, u), X = A,B appearing in the above integrals and replace
the velocity v in these expressions with the mean velocity u. This means that we
approximate

q(HA(v), v; ρ, u) ∼ q(HA(u), u; ρ, u) := qA(ρ, u) = ρ̃ e−ρ̃(TA−TB)u

and

q(HB(v), v; ρ, u) ∼ q(HB(u), u; ρ, u) := qB(ρ, u) = ρ̃.

The probability for braking is approximated using formula (3) and substituting HB(v)
and q(h, v) by HB(u) and q(h, u), respectively. We obtain

Pov(ρ, u) = (1 − ρHB(u))e
− ρHB(u)

1−ρHB(u) .(5)

With PB = 1 − Pov this gives

PB(ρ, u) = 1 − (1 − ρHB(u))e
− ρHB(u)

1−ρHB(u) .(6)

To rewrite the equations in a simpler form, we use

k = k(ρ, u) =
PB qB

qA + PBqB

and

γ = γ(ρ, u) =
qA

1 − k
= qA + PBqB .

Finally, we define c by

γ c = ν

and assume for simplicity that c depends on ρ, u through k, which means

c = c(k).

Using these approximations, (4) is rewritten as

∂tf + v∂xf = C+(f)(7)

= γ
[
k(G+

B − L+
B)(f) + (1 − k)(G+

A − L+
A)(f) + c(GS − LS)(f)

]
,
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with

G+
B(f) =

∫ ∫
v̂>v̂+

|v̂ − v̂+|σB(v; v̂, v̂+)f(x, v̂)F (x + HB(v̂), v̂+)dv̂dv̂+,

L+
B(f) =

∫
v̂+<v

|v − v̂+|f(x, v)F (x + HB(v), v̂+)dv̂+,

G+
A(f) =

∫ ∫
v̂<v̂+

|v̂ − v̂+|σA(v; v̂, v̂+)f(x, v̂)F (x + HA(v̂), v̂+)dv̂dv̂+,

L+
A(f) =

∫
v̂+>v

|v − v̂+|f(x, v)F (x + HA(v), v̂+)dv̂+,

GS(f) =

∫ w

0

σS(v, v̂)f(x, v̂)dv̂,

LS(f) = f(v).

2.3. An example. For the probability distributions σA, σB we choose the fol-
lowing simple expressions:

σB(v, v̂, v̂+) =
1

v̂ − v̂+
χ[v̂+,v̂](v)(8)

and

σA(v, v̂, v̂+) =
1

v̂+ − v̂
χ[v̂,v̂+](v).(9)

This means that we have an equidistribution of the new velocities between the velocity
of the car and the velocity of its leading car. Finally,

σS(v, v̂) =
1

w
.(10)

A special choice of c is given in the last section.

3. Stationary distributions and multivalued fundamental diagrams. In
this section we investigate the stationary homogeneous equations and determine the
multivalued fundamental diagrams.

3.1. The general case. We consider the local interaction operator

C(f) = γ [k(GB − LB)(f) + (1 − k)(GA − LA)(f) + c(GS − LS)(f)]

with f = ρF . The gain and loss terms GB , LB , etc., are defined in the same way as
G+
B , L+

B , etc.; however, x+HX(v), X = A,B is substituted by x wherever it appears.
The homogeneous stationary equation is

C(f) = 0.

We assume that for fixed ρ and k there is a unique solution

f = fe = ρF e(k, v)

of this equation. This is true for the example stated above. The exact form of the
distribution functions is given in detail below.
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Thus, for fixed k the mean value of F e is then

ue(k) :=

∫ w

0

vF e(k, v)dv.

The function ue is uniquely determined due to the above assumption as a function
of k. However, this does not immediately yield the fundamental diagram, i.e., an
equilibrium relation between flux and density.

Instead, the fundamental diagram is determined from the following considerations.
Let u be the (possibly multivalued) solution of the equation

u = ue(k(ρ, u))

for fixed ρ. We denote this (possibly multivalued) solution by u = Ue(ρ). If there
is a unique solution, we obtain a well-defined relation for equilibrium velocity and
density and the usual fundamental diagram Qe(ρ) = ρUe(ρ). However, in general this
equation will have a multitude of different solutions u, even infinitely many. Plotting
a dependence of this solution on the density, one obtains in the general case a two-
dimensional region in the density-velocity plane, where the solutions are located. The
fundamental diagram is then a multivalued function Qe(ρ) = ρUe(ρ).

3.2. The example. First we determine the stationary solutions F e(k) for a
fixed value of the parameter k. Substituting the explicit expressions (8)–(10) for
σX , X = A,B, S, one obtains

GB(f) = GA(f) = ρ

∫ v

0

F (v̂) dv̂

∫ w

v

F (v̂) dv̂,

LB(f) = ρF (v)

[
v

∫ v

0

F (v̂) dv̂ −
∫ v

0

v̂F (v̂) dv̂

]
,

LA(f) = ρF (v)

[∫ w

v

v̂F (v̂) dv̂ − v

∫ w

v

F (v̂) dv̂

]
,

GS(f) =
ρ

w
,

LS(f) = f.

Defining F : [0, w] → [0, 1] by F(v) =
∫ v
0
F (v̂) dv̂ and denoting the inverse function

with v(p), a straightforward computation shows that the integral equation C(f) = 0
is equivalent to the following boundary value problem for v(p):

v′′ = v′
3p + k − 2

p(1 − p) + c
w

, v(0) = 0, v(1) = w.(11)

Using

h(p) =
k − p(

q − (p− 1
2

)) 1
2+r (

q +
(
p− 1

2

)) 1
2−r

with

q =

√
c

w
+

1

4
, r =

2k − 1

4q
,
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the solution of (11) is explicitly given as

v(p) = w
h(p) − h(0)

h(1) − h(0)
.

A parameter representation of the unique stationary solutions F = F e(k, v) for fixed
k is given as

F e(k, v(p)) =
1

v′(p)
.

The mean velocity ue(k) of F e(k) is given by

ue(k) =

∫ w

0

vF e(k, v) dv =

∫ 1

0

v(p̃) dp̃ = w
H(1) −H(0) − h(0)

h(1) − h(0)

with

H(p) =

∫ p

0

h(p̃)dp̃ =

(
q −

(
p− 1

2

)) 1
2−r (

q +

(
p− 1

2

)) 1
2+r

.

The multivalued fundamental diagrams are then obtained as the solutions of the
equation u = ue(k(ρ, u)) for fixed ρ. A numerical investigation of this nonlinear
equation is given in the last section. (Plots of ue(k) and of the fundamental diagram
are shown in Figures 4 and 5, 6, respectively.)

4. Derivation of macroscopic models. In this section macroscopic equations
for density and mean velocity are derived following the procedure in [15].

4.1. Balance equations. Multiplying the inhomogeneous kinetic equation (7)
with 1 and v and integrating it with respect to v, one obtains the following set of
balance equations:

∂tρ + ∂x(ρu) = 0,(12)

∂t(ρu) + ∂x(P + ρu2) + E = S,

with the “traffic pressure”

P =

∫ w

0

(v − u)2fdv,(13)

the Enskog flux term

E =

∫ w

0

v[C(f)(x, v, t) − C+(f)(x, v, t)]dv,(14)

and the source term

S =

∫ w

0

vC(f)(x, v, t)dv.(15)

To obtain closed equations for ρ and u one has to specify the dependence of P ,
E, and S on ρ and u.
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4.2. Closure relations. We use the ansatz fex = fex(ρ, u) = fex(ρ, u; v) for
the distribution function to approximate the true distribution f and to close the
equations. Let the function F ex be defined by

fex = ρF ex.

We require that F ex(u) fulfill two properties, namely, having density

1 =

∫ w

0

F ex(u, v)dv(16)

and mean value

u =

∫ w

0

vF ex(u, v)dv.(17)

Note that the equilibrium distribution F e(k(ρ, u), v) has a mean value ue(k(ρ, u)) and
does not necessarily fulfill the above requirement. We construct F ex using the one
parameter family F e(k, v) and choosing a suitable value for k. The following simple
ansatz for F ex fulfills conditions (16), (17):

F ex(u, v) = F e(ke(u), v),

where F e = F e(k, v) is the uniquely defined function from section 3 and ke = ke(u)
is the inverse function to ue, i.e.,

ue(ke(u)) = u.

Here ke is well defined if we assume that ue(k) is strictly monotone decreasing in k.
This is true for our example; see Figure 4. We note that for this definition of fex(ρ, u)
one obtains a positive function fex for all values of v.

Equation (12) is now closed by approximating the traffic pressure P in (13) by

P =

∫ w

0

(v − u)2fdv ∼
∫ w

0

(v − u)2fex(ρ, u; v)dv =: P ex(ρ, u) = ρΘex(u),

where the definition of the variance Θex is given by the last equality sign. Further
approximation of the variance gives

P ∼ ρΘex(u) ∼ ρΘex(ue(k)) =: ρθe(k).

Moreover, the Enskog term E is approximated by linearizing expression (14) for E in
H and substituting fex(ρ, u) for f . One obtains

E ∼ ρAex(u)∂xu,

where Aex(u) is defined by

Aex = −I(F ex, ∂uF
ex),

with

I(f, g) = IB(f, g) + IA(f, g),

IB(f, g) = γk

∫ ∫
v̂>v̂+

|v̂ − v̂+|HB(v̂)f(v̂)g(v̂+)

[∫ w

0

vσB(v, v̂, v̂+)dv − v̂

]
dv̂+dv̂,
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and

IA(f, g) = γ(1 − k)

∫ ∫
v̂<v̂+

|v̂ − v̂+|HA(v̂)f(v̂)g(v̂+)

[∫ w

0

vσA(v, v̂, v̂+)dv − v̂

]
dv̂+dv̂.

To compute Aex we use

∂uF
ex(u) =

∂kF
e(ke(u))

∂kue(ke(u))
.

Further approximation gives

Aex(u) ∼ Aex(ue(k)) =: ae(k)

and

E ∼ ρae(k(ρ, u))∂xu.

Finally, the source term S has to be approximated:

S ∼ Sex(ρ, u) =

∫ w

0

vC(fex)dv.

Further approximations are discussed in the next subsection.
One obtains macroscopic equations of the form

∂tρ + ∂x(ρu) = 0,(18)

∂t(ρu) + ∂x(ρθe(k) + ρu2) + ρae(k)∂xu = Sex(ρ, u),

with k = k(ρ, u) given above.

4.3. The example. In the case of our example the above expressions can be
simplified. A short computation shows that for any distribution function f we have
the following relation between P = P (f) and S = S(f):

S = γ

((
1

2
− k

)
P + cρ

(
w

2
− u

))
.(19)

Computation of P ex and θe. Using the distribution function f = F e(k), the above
expression is equal to 0 for arbitrary k, since S(F e(k)) is equal to zero by definition
of F e. Choosing k = ke = ke(u), we get

P ex(ρ, u) = ρc(ke(u))
w
2 − u

ke(u) − 1
2

.

Further approximation as before gives

P ex(ρ, u) ∼ ρθe(k(ρ, u))

with

θe(k) = c(k)
w
2 − u

k − 1
2

.
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Fig. 1. Probability Pov(ρ, u).

Computation and approximation of Sex. To compute Sex we use (19) and substi-
tute P ex found above. We obtain

Sex(ρ, u) = γρ

(
w

2
− u

)(
c(k) − c(ke(u))

1
2 − k

1
2 − ke(u)

)
.

A simplification is given by substituting ρθe(k) instead of P ex into (19):

Sex(ρ, u) ∼ ργc(k) (ue(k) − u) ;

i.e., the right-hand side has relaxation form.
Computation of Aex. Aex and ae are computed as described above using the

special form of F e.
Remark 4.1. The macroscopic equations are then given by (18) with the explicit

formulas derived above. As can be observed numerically (see [15]), the term containing
ρθe(k) in (18) is small compared to the other terms. Eventually, we obtain

∂tρ + ∂x(ρu) = 0,(20)

∂t(ρu) + ∂x(ρu2) + ρae(k)∂xu = ρν (ue(k) − u) .

Thus, one obtains a multimodal variant of the Aw–Rascle equations with a multimodal
relaxation term on the right-hand side. This is exactly what has been used and further
investigated in [5].

5. Numerical investigations. In this section we investigate the example de-
scribed in the text. The stationary homogeneous kinetic equation is discussed together
with the resulting macroscopic equations.

5.1. Choice and further discussion of free parameters. For the numerical
simulations, we normalize and choose w = 1 and H0 = 1. As described above, we use
different reaction times to describe the drivers’ behavior in different flow situations.
Smaller reaction times are associated with higher velocities. To put things as simply
as possible, we choose

TB =

{
10, u < 0.2,

5, u ≥ 0.2.
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Thus, in terms of the accepted distance HB to the leading car, drivers behave in
the following way: once their velocity falls below a certain speed, relatively larger
distances are required as before. Here, we do not distinguish between three traffic
states like free flow, synchronized traffic, and jam, but rather between two states. For
numerical reasons the step function has been smoothed.

As mentioned before, different choices of TB would yield similar results as long
as TB was not constant. Choosing a constant reaction time TB results in a uniquely
determined and not a multivalued fundamental diagram.

The resulting probability of overtaking Pov(ρ, u), according to (5), is plotted in
Figure 1 in the range of admissible values (ρ, u), according to (2).

Either TB or Pov should be viewed as the basic quantity of the multivalued ap-
proach presented here. In particular, as shown in Figure 7 below, considering Pov
for the equilibrium velocity gives good qualitative coincidence with the corresponding
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Fig. 5. Density-velocity dependence Ue(ρ).

figures in [12], justifying the choice of TB .
Moreover, we set TA = 2TB and choose c as in Figure 2. A reasonable function

c should be zero for maximal density (k = 1). In this case there is no more random
behavior of the drivers; all drivers have velocity 0. For the case k = 0 we have chosen
c as a finite quantity. If these two features are fulfilled, the qualitative behavior of
the model, in particular the multimodal behavior, does not depend on the exact form
of c. Moreover, changing the interaction rules for braking and acceleration, results
similar to those below can be obtained with models as in [15] with c = 0.

5.2. The spatially homogeneous case (stationary, homogeneous kinetic
equation). Using the values described above, we compute the stationary solution of
the homogeneous kinetic equation following section 3.

The stationary distribution functions are shown in Figure 3.
For maximal density (k = 1) the stationary distribution function f(v) is a δ

function at v = 0. For the low density case the distribution function is a function
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Fig. 7. Probability Pov(ρ, Ue(ρ)).

with a certain positive variance, depending on the value of c at k = 1.
According to section 3, we can compute the function ue(k) from these stationary

distributions in a straightforward way. The dependence of the function ue on k is
plotted in Figure 4.

Moreover, the results found for the nonlinear equation u = ue(k(ρ, u)) are as
follows. There are values ρ1 and ρ2 such that for ρ < ρ1 we have only one solution,
U1
e (ρ). For ρ1 < ρ < ρ2 three solutions U1

e (ρ), U2
e (ρ), and Ū(ρ) exist. For the region

ρ > ρ2 again only one solution U2
e (ρ) exists. Figure 5 shows the speed-density relation.

We note that these values are contained in the admissible range of values (ρ, u) defined
by (2). Figure 6 shows the associated multivalued fundamental diagram (flux-density
relation).

The resulting multivalued probability of overtaking for equilibrium values of the
velocity Pov(ρ, U

e(ρ)) is plotted in Figure 7.
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As mentioned, Pov(ρ, U
e(ρ)) can be compared to the corresponding figures in [12].

Good qualitative coincidence is observed here.

5.3. The spatially inhomogeneous case (macroscopic equations). Fi-
nally, the macroscopic equations are investigated for a bottleneck situation. For the
computations we choose a second-order shock-capturing method as in [9]. Figures 8
and 9 show the density and flux for a three lane highway with a reduction of lanes
from three to two at x = 0. One clearly observes large changes in density ρ and
flux q = ρu in the backwards travelling traffic jam, which might be interpreted as
stop and go behavior. As one can check numerically, the outgoing flux in Figure 9 is
approximately equal to (correctly) averaged flux in the stop and go region.

Summary.
• Multivalued fundamental diagrams are obtained from kinetic equations which

match—at least qualitatively—experimental observations in [11, 12]. In par-
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ticular, the fundamental quantity, the probability of overtaking Pov, shows
good qualitative coincidence with the corresponding results here.

• Macroscopic traffic flow models are derived from the kinetic equation. These
models are able to show stop and go patterns for highway traffic with a
bottleneck.
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Abstract. In this paper we discuss the stability and instability properties of two classes of con-
servative dynamical systems which are comprised of a finite dimensional and an infinite dimensional
subsystem. The finite dimensional component is a linear mechanical system with gyroscopic terms.
The mechanical system is coupled to a wave equation defined on an infinite spatial domain via two
different types of coupling which we denote by Lamb coupling and wave field coupling. We also
investigate the effect of dispersion on the coupled system. In particular, we analyze the conditions
under which coupling to a wave system induces instability in the finite dimensional system. Analytic
results are compared to computer simulations.

Key words. conservative systems, dissipation, stability

AMS subject classifications. 35L10, 34D05

DOI. 10.1137/S0036139902418717

1. Introduction. Energy transfer within interconnected mechanical systems is
important in many real world settings. When a finite dimensional system is coupled
to an infinite dimensional system, energy can be radiated from the finite dimensional
system and absorbed by the infinite dimensional system. We call this process radi-
ation damping. For example, satellites and space stations have a central rigid body
which can radiate energy through flexible components such as solar panels and an-
tennae. Radiation damping can also describe dissipation (e.g., friction, viscosity) in
a conservative context, where energy dissipates from one form (such as motion of a
mechanical system) into another form (such as heat) of a larger conservative system.
In general relativity, energy may be radiated from a system of masses via gravitational
waves (see [23] for details). The Lagrangian or Hamiltonian structure of such systems
is also of interest (see [21] or [4], for example).

An early physical model of radiation damping was introduced by Lamb [18]. In
the Lamb model, an oscillator coupled to a string describes the free vibrations of
a nucleus in an extended medium. The oscillator transfers energy to the string by
generating waves as it moves; see also [12]. A model of a particle coupled to a wave
field is studied in [15].

In many linear and nonlinear partial differential equations, it is fruitful to view
the dynamics in terms of “particle-like” and “field-like” components. A decompo-
sition into these types of modes leads to an equivalent description in terms of two
coupled subsystems: the first is finite dimensional and governs the “particle-like” or
bound state part of the solution, while the second is infinite dimensional and disper-
sive. Coupling terms are responsible for how the dynamics of “particles” influence the
field and how the dispersive wave field influences the particle dynamics. An approxi-

∗Received by the editors November 27, 2002; accepted for publication (in revised form) May 15,
2003; published electronically December 31, 2003.

http://www.siam.org/journals/siap/64-2/41871.html
†Department of Mathematics, University of Michigan, Ann Arbor, MI 48109 (hagerty@umich.edu,

abloch@math.lsa.umich.edu). The research of the first author was partially supported by the National
Science Foundation and the AFOSR. The research of the second author was partially supported by
National Science Foundation grants DMS 981283, 0103895, and 305837 and by the AFOSR.

‡Fundamental Mathematics Research Department, Bell Laboratories, 600 Mountain Avenue, Mur-
ray Hill, NJ 07974 (miw@research.bell-labs.com). The research of this author was partially supported
by the National Science Foundation.

484



RADIATION INDUCED INSTABILITY 485

mate closed equation for the particle dynamics can, in some cases, be derived, where
the effect of the dispersive radiation field appears in the form of radiation damping
corrections to the finite dimensional dynamics. This approach has been used in the
context of the theory of quantum resonances [28], [22], ionization and parametric res-
onance problems [14], [13], and in the context of the decay of “breather-like” states
of nonlinear wave equations [29]. In this paper we explore how, in manner analogous
to the mechanism by which dissipation can induce instability [5], radiation damping
can induce instability in mechanical systems.

In section 2, we present the stability properties and Hamiltonian formalism of gy-
roscopic systems, also referred to as Chetaev systems. We also describe the Chetaev
system as a normal form of the linearized equations of motion about a relative equi-
librium of a simple mechanical system acted on by an abelian group. As we increase
the gyroscopic forces in a Chetaev system, it is possible to stabilize (or specifically gy-
roscopically stabilize) an equilibrium of the system. For example, a charged, inverted
spherical pendulum can be gyroscopically stabilized by increasing the strength of the
ambient magnetic field.

In section 3, we describe a gyroscopic version of the Lamb model coupled to a
standard nondispersive wave equation and to a dispersive wave equation, expanding on
the results in [10]. We show that instabilities will arise in certain mechanical systems.
However, dispersive wave coupling restricts the oscillator access to low frequency wave
modes and allows for a band of stability to exist.

In the dispersionless case, the system is of the form

∂2w

∂t2
(z, t) = c2

∂2w

∂z2
(z, t), z ∈ R − {0}, t ∈ R,

M q̈(t) + Sq̇(t) + V q(t) = T
[∂w
∂z

]
z=0

,

w(0, t) = q(t),

(1.1)

where c is the speed of transverse waves in the string, T is the tension of the string,

w =
[
w1(z, t) . . . wn(z, t)

]T
is the displacement of the string in the first n dimensions,

and [∂w
∂z ]z=0 is the jump discontinuity in the slope of the string.

In section 4, we introduce a nonlocal field coupling of a gyroscopic system to
a dispersive or a nondispersive infinite dimensional system. Dispersive waves still
allow for a band of stability, but the instabilities produced by the nondispersive wave
coupling have a broader destabilizing effect on mechanical systems. In contrast to the
analogous dissipation induced instability, field radiation induces instability in stable,
as well as gyroscopically stable, mechanical systems. In this setting, the coupled wave
equation and the gyroscopic system take the form

M q̈+ Sq̇+ V q = κ

∫
R

χ(z)w(z, t)dz



1
...
1


 ,

ẅ − c2
∂2w

∂z2
= κχ(z)



1
...
1




T

q,

(1.2)

where κ is a coupling parameter and χ(ξ) is a suitable distribution.
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In section 5 we consider an example of a more complicated finite dimensional
mechanical system: a rigid body with rotors coupled to a wave field. In this case the
configuration space of the system includes a nonabelian group, SO(3).

Finally, we include an appendix which discusses some of details of the physical
models used in this paper and the numerical techniques used in simulations.

2. Gyroscopic systems. We recall some general properties of linear systems
with gyroscopic forces. The general form of a gyroscopic system is

M q̈+ Sq̇+ V q = 0,(2.1)

where q ∈ R
n, M is a positive definite symmetric n × n matrix, S is skew, and V is

symmetric. As in [5], we shall call this the Chetaev system (see [8]). An important
property of this system is that it is the normal form for a simple mechanical system
about a relative equilibrium which is given modulo an abelian group; see [20] and
section 5.

We say the system is gyroscopically stable if for S = 0 the origin is an unstable
equilibrium, but for S �= 0, the origin is a spectrally stable equilibrium (i.e., the
eigenvalues of the linearized system have nonpositive real part). The matrix S is
sometimes referred to as a magnetic term as it can arise from charged oscillators in a
magnetic field.

If we include the magnetic terms in the symplectic form, then the Hamiltonian,
H : T ∗Q → R, of a gyroscopic system is the sum of the kinetic energy and potential
energy,

H =
1

2
pTM−1p+

1

2
qTV q.(2.2)

The symplectic form, Ω, is defined by the Poisson bracket on the cotangent bundle
T ∗Q,

Ω(XF , XK) = {F,K}magnetic =
∂F

∂qi

∂K

∂pi
− ∂K

∂qi

∂F

∂pi
− Sij ∂F

∂pi

∂K

∂pj
,(2.3)

where XG denotes the Hamiltonian vector field with Hamiltonian G.
Proposition 2.1. The Hamiltonian vector field XH on the symplectic vector

space (R2n,Ω) has an equivalent representation XH̃ on the symplectic vector space

(R2n, Ω̃), where

H̃ =
1

2
pTM−1p+

1

2
qT (V + W )q+ pTXq,

Ω̃(XF , XK) = {F,G}canonical =
∂F

∂qi

∂K

∂pi
− ∂K

∂qi

∂F

∂pi

(2.4)

for a skew matrix X and a symmetric matrix W defined implicitly by

XM + MX = −S, W = −XMX.(2.5)

Furthermore, the Lyapunov equation (2.5) can be solved using the Fredholm alterna-
tive.

Proof. We obtain the implicit definitions of X and W by matching equations of
motion on each manifold. Using the Fredholm alternative, we show that (2.5) has a
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Fig. 1. Inverted spherical pendulum.

solution for X. Let us define the linear operator on skew matrices L(X) = XM+MX
and show that S is orthogonal to the kernel of LT with the inner product on skew
matrices being the trace 〈A,B〉 = Trace(AB). Computing LT , we have 〈A,L(B)〉 =
〈L(A), B〉 = Trace((MA+AM)B). Hence L is self-adjoint with respect to this inner
product.

Suppose that Y is in the kernel of LT ; then we have

MY + YM = 0, Y = −M−1YM .(2.6)

We also have that MY + (MY )T = −2YM , and hence YM is symmetric. Using the
commuting property of the trace, we compute that S is orthogonal to Y , 〈S, Y 〉 = 0.
The Fredholm alternative is satisfied and we can solve (2.5) for X. This completes
the proof.

Classically, the two representations of the Chetaev systems are equally useful.
However, the classical symplectic form, Ω̃, is preferable when quantizing the mechan-
ical system. (See [5], [2], [8] for further physical discussions.)

2.1. Examples of Chetaev systems. Two physical models of Chetaev systems
which can be gyroscopically stabilized are (i) an oscillator in a magnetic field and (ii)
an oscillator on a rotating disk. We derive the dynamics from a Lagrangian and a
Hamiltonian perspective.

2.1.1. Planar oscillator in a constant magnetic field. The linearized equa-
tions of motion of a charged spherical pendulum in a magnetic field are those of a
charged planar oscillator in a magnetic field (see Figure 1). The equations of motion
form a Chetaev mechanical system. (For derivation of the full equations see Appendix
A.) We describe here the motion of a planar charged oscillator in a magnetic field.
Let B be a divergence-free vector field. Let A be the vector potential B = ∇ ×A.
Note that if we choose B to be the constant magnetic field in the direction normal
to the plane of oscillation, the vector potential can be chosen as A = 1

2B× q, where
q = (x, y, 0)T is the position of the oscillator.
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Assume the oscillator has unit mass and unit charge and that the speed of light
is unity. The Lagrangian, L : TR

2 → R, is defined mechanically by the kinetic energy
minus the potential energy:

L(q, q̇) =
1

2
‖q̇‖2 +A · q̇− U(q)

=
1

2
(ẋ2 + ẏ2) +A · (x, y, 0)T − 1

2
(αx2 + βy2).

(2.7)

Choosing B to be of constant strength B normal to the plane of oscillation, we have

L =
1

2
(ẋ2 + ẏ2)− 1

2
(αx2 + βy2) +

1

2
B(xẏ − yẋ),(2.8)

where the last term is the velocity dependent magnetic term.
The associated Hamiltonian, H : T ∗

R
2 → R, is

H = pxẋ + py ẏ − L =
1

2
(p2

x + p2
y) +

1

2
(αx2 + βy2) + HB ,(2.9)

where

HB =
1

2
B(pxy − pyx) +

1

8
B2(x2 + y2),(2.10)

and the associated momenta are given by

px =
∂L

∂ẋ
= ẋ− 1

2
By, py =

∂L

∂ẏ
= ẏ +

1

2
Bx .(2.11)

In the above notation, HB is the contribution of a magnetic field. Since we include
the magnetic terms in the Hamiltonian, we use the canonical symplectic form, Ω̃, to
obtain the equations of motion:

−ṗx =
∂H

∂x
=

(
α +

1

4
B2

)
x− 1

2
Bpy, − ṗy =

∂H

∂y
=

(
β +

1

4
B2

)
y +

1

2
Bpx,

ẋ =
∂H

∂px
= px +

1

2
By, ẏ =

∂H

∂py
= py − 1

2
Bx .

(2.12)

We thus have the dynamics

ẍ−Bẏ + αx = 0,

ÿ + Bẋ + βy = 0 .
(2.13)

If α and β are both negative, the oscillator is gyroscopically stabilized (i.e., the eigen-
values are purely imaginary) if B2 + α + β > 2

√
αβ. Hence we can increase the

strength of the magnetic field to stabilize the oscillator.

2.1.2. Planar oscillator on a rotating plate. Another physical model of a
Chetaev system is a planar oscillator on a plate rotating with angular velocity ω (see
Figure 2). We write the Lagrangian as the kinetic energy minus the potential energy,

L =
1

2
((ẋ− ωy)2 + (ẏ + ωx)2)− 1

2
(αx2 + βy2) .(2.14)
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Fig. 2. Rotating plate with springs.

In the Hamiltonian setting we have

H =
1

2
(p2

x + p2
y) +

1

2
(αx2 + βy2) + Hω,(2.15)

Hω = ω(pxy − pyx),(2.16)

and the associated momenta are given by

px =
∂L

∂ẋ
= ẋ− ωy, py =

∂L

∂ẏ
= ẏ + ωx.(2.17)

We obtain the equations of motion:

−ṗx =
∂H

∂x
= αx− ωpy, − ṗy =

∂H

∂y
= βy + ωpx,

ẋ =
∂H

∂px
= px + ωy, ẏ =

∂H

∂py
= py − ωx.

(2.18)

This gives the dynamics

ẍ− 2ωẏ + (α− ω2)x = 0,

ÿ + 2ωẋ + (β − ω2)y = 0.
(2.19)

Remark 1. The rotating disc affects the oscillator differently from a magnetic
field—compare (2.19) and (2.13). While the magnetic field only adds q̇ terms, the
rotating disc also adds additional q terms to the dynamics. For the equations (2.13),
we can see that in the case of a physically stable oscillator with α, β > 0 for rotation
rate ω sufficiently large, the system becomes only gyroscopically stable, i.e., the coef-
ficients α−ω2 and β −ω2 are negative but the eigenvalues are on the imaginary axis
due to the presence of gyroscopic terms.

Remark 2. In either case above, if the system is gyroscopically stable, it can be
shown that adding a small amount of dissipation to the system renders it unstable
(i.e., there are unstable eigenvalues). For a more precise statement and generalization,
see section 2.2.
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2.2. Stability of Chetaev systems. In this section we first summarize the sta-
bility properties of Chetaev systems and then discuss their dissipative perturbations.
The stability of the Chetaev system depends both on the signature of the bilinear
form associated with a quadratic Hamiltonian and also on the magnetic terms in the
symplectic form. In particular, the magnetic terms can stabilize gyroscopic systems
with negative eigenvalues of V .

As for gyroscopic stability, the number of negative eigenvalues of the quadratic
form plays a crucial part as discussed in [8]. We summarize this in the following
proposition.

Proposition 2.2. Consider the canonical gyroscopic system M q̈+Sq̇+V q = 0,
where M is a symmetric positive definite matrix, S is a skew-symmetric matrix, and
V is a symmetric matrix:

• If V has an odd number of negative eigenvalues (counting multiplicity), then
the origin is an unstable equilibrium.

• If V has an even number of negative eigenvalues (counting multiplicity), we
can choose S so that the origin is a spectrally stable equilibrium.

Proof. By standard reduction to a first order system for (q, q̇), it suffices to
consider the first order linear operator L,

L =

[
0 I

−M−1V −M−1S

]
.(2.20)

Let p(λ) be the characteristic polynomial of the matrix L, and let λ1, . . . , λn be the
eigenvalues of the matrix V .

p(0) = detL = (−1)n det(−M−1V ) = det(M−1)

n∏
i=1

λi .(2.21)

Suppose that V has an odd number of negative eigenvalues. Due to the positive-
definiteness of M , we have p(0) < 0. Since

lim
λ→∞

p(λ) = lim
λ→∞

det
(
L− λI

)
= lim

λ→∞
(−1)2nλ2n + O(λ2n−1) = ∞,(2.22)

p(λ) must change sign and by continuity has a positive root, corresponding to a real
and positive eigenvalue of L, an instability.

Hence, if V has an odd number of negative eigenvalues (counting multiplicity),
then the characteristic polynomial of L has a positive real root and the origin cannot
be gyroscopically stabilized.

Now to prove the second item, suppose that V has an even number of negative
eigenvalues (counting multiplicity). By choosing a basis in which V is diagonal, we
can introduce a skew matrix S to stabilize each pair of negative eigendirections, as in
the gyroscopic stabilization for n = 2 shown in introductory examples. This completes
the proof.

Gyroscopically stable systems exhibit interesting instability when perturbed by
dissipative forces. Suppose now that V has at least one negative eigenvalue. A key
result of [5] is that adding small dissipation always yields instability. More precisely,
we show the following.

Theorem 2.3. Under the above conditions, if we modify the general Chetaev
system by adding a small Rayleigh dissipation term,

M q̈+ (S + εR)q̇+ V q = 0(2.23)
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for small ε > 0, where R is symmetric and positive definite, then the perturbed lin-
earized equations

ż = Lεz,

where z = (q, p), are spectrally unstable, i.e., at least one pair of eigenvalues of Lε is
in the right half plane.

This result builds on basic work of [30], [8], and [11]. We refer to this as dissipa-
tion induced instability. Some of the radiation induced instabilities that arise in the
gyroscopic Lamb model are analogous to the dissipation induced instability. Using
the Hamiltonian representation with canonical symplectic form, Ω̃, we see that the
Hamiltonian of a gyroscopically stabilized Chetaev system is indefinite. In this case,
with the addition of Rayleigh dissipation, the Hamiltonian does not bound the mo-
tion of the Chetaev system. In particular, the displacement and velocities may grow
exponentially.

As in section 5.1.2, we present the Chetaev system as a normal form of the
linearized equations of motion about the relative equilibrium of an abelian group
action. [5] also proves a similar stability result for the nonabelian case, but the
abelian result is sufficient for our purposes.

3. Lamb coupling. In the original Lamb model [18], an oscillator is physically
coupled to a string (see Figure 3). The vibrations of the oscillator transmit waves
into the string and are carried off to infinity. Hence, the oscillator loses energy and is
effectively damped by the string.

Fig. 3. Lamb model of an oscillator coupled to a string.

Let w(x, t) be the displacement of the string at position x ∈ R at time t. Let ρ be
the mass density of the string, and let T be the tension. We can compute the wave
speed of transverse oscillations of the free string to be c = T

ρ . Assuming a singular
mass density at x = 0, we can couple the dynamics of an oscillator, q, of mass M , to
the otherwise free wave to resolve the singularity:

∂2w

∂t2
= c2

∂2w

∂x2
,

Mq̈ + V q = T [wx]x=0,

q(t) = w(0, t),

(3.1)
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where
√

V/M is the frequency of the uncoupled oscillating mass M and [wx]x=0 =
wx(0+, t) − wx(0−, t) is the jump discontinuity of the slope of the string. Note that
(3.1) is a Hamiltonian system, as demonstrated for a more complex system in section
3.1.

Perturbing the oscillator at time t = 0 from its equilibrium position, we can use
the d’Alembert solution to the wave equation to solve for w,

w =

{
Ce(ct−|x|)ω for |x| < ct,

0 for |x| > ct,
(3.2)

where ω = − T
Mc + i

√
V 2

M2 − ( T
Mc )

2 and C is the size of the initial displacement. For

small tension we have damping and oscillator motion, while for large tension, we have
pure damping. From the solution of the wave equation, we can compute the jump
condition of the oscillator,

[wx]x=0 = −2Cωeωct = −2

c
q̇.(3.3)

We obtain a reduced form of the dynamics describing the explicit motion of the
oscillator subsystem,

Mq̈ +
2T

c
q̇ + V q = 0.(3.4)

The coupling term arises explicitly as a Rayleigh dissipation term 2T
c q̇ in the dynamics

of the oscillator. For the gyroscopic Lamb coupling, the dissipation term will induce
instabilities in gyroscopically stabilized Chetaev systems.

3.1. Gyroscopic Lamb model. In this section, we investigate a variant of
the Lamb model, a Chetaev system which includes gyroscopic terms coupled to the
standard wave equation (see, e.g., Figure 4). We have the boundary constraint that
the displacement of the gyroscopic oscillator fixes a point of the string. We show
that this local coupling perturbation destabilizes gyroscopically stabilized Chetaev
systems.

Fig. 4. Gyroscopic Lamb coupling to a spherical pendulum.
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We begin with a model of a string in R
n+1, whose transverse vibrations are

independent. Suppose the string lies initially along the xn+1-axis. For simplicity, we
denote the xn+1 dimension as the z dimension. Coupling the transverse motion to
an n dimensional gyroscopic system, we use the method described in [16] to solve the
following:

∂2w

∂t2
(z, t) = c2

∂2w

∂z2
(z, t), z ∈ R − {0}, t ∈ R,

M q̈(t) + Sq̇(t) + V q(t) = T
[∂w
∂z

]
z=0

,

w(0, t) = q(t),

where c is the speed of transverse waves in the string, T is the tension of the string,

w =
[
w1(z, t) . . . wn(z, t)

]T
is the displacement of the string in the first n dimensions,

and [∂w
∂z ]z=0 is the jump discontinuity in the slope of the string. Let us define the

initial conditions on the string by w1(z) = ∂w
∂t (z, 0) and w0(z) = w(z, 0).

By direct computation we obtain an exact reduced dynamical system for q. This
reduction contains explicit dissipation terms reflecting the oscillator/field coupling.
The results on reduction and stability are summarized in the following two results.
The proofs are given in section 3.1.2.

Proposition 3.1. If the initial data w0 and w1 have compact support, then for
±ct /∈ supp(w0) ∪ supp(w1) the oscillator dynamics of the gyroscopic Lamb model
reduces to

M q̈(t) +

(
S +

2T

c

)
q̇(t) + V q(t) = 0.(3.5)

In [5], small dissipation is shown to induce instability in gyroscopically stable
systems (see Theorem 2.3). In the gyroscopic Lamb model, radiation (energy trans-
fer into an infinite dimensional system) produces a Rayleigh dissipation term which
depends on the tension of the string. Since dissipation induces instability in these sys-
tems for small dissipation, small tension coupling yields radiation induced instability
via an analogous mechanism. We summarize the main result of radiation induced
instability in gyroscopically stabilized Chetaev systems with a theorem.

Theorem 3.2. If a gyroscopic mechanical system is gyroscopically stable (i.e., V
has a negative eigendirection), then local coupling via the Lamb model induces insta-
bility for small coupling parameter T .

The ability to describe the coupled system in a conservative manner is one of the
key differences between radiation induced instability and dissipation induced insta-
bility. We delay the proofs of the above theorems to demonstrate the conservative
nature of the gyroscopic Lamb model. While we can obtain the equations of motion
from a force calculation, we emphasize the conservative nature of the gyroscopic Lamb
model by representing the system as the flow of a Hamiltonian vector field.

3.1.1. Hamilton’s equations of motion. For an uncoupled wave equation,
the kinetic energy, Tstring, depends on the velocity of the string, while the potential
energy, Ustring, depends on the shape of the string,

Tstring =

n∑
i=1

∫
R

∥∥∥∥∂wi

∂t

∥∥∥∥
2

dz, Ustring =

n∑
i=1

∫
R

c2
∥∥∥∥∂wi

∂z

∥∥∥∥
2

dz.(3.6)
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Let Z = H1(R) × L2(R), where H1(R) is the space of square integrable functions
whose first derivatives are also square integrable and L2(R) is the space of square
integrable densities. Hence (wi, πi) ∈ Z if wi and ∂wi

∂z are each square integrable and
πi = π′

idz, where π′ is a square integrable function on R. We define the canonical
symplectic form, ΩZ , on the vector space Z as

ΩZ((w1, π1), (w2, π2)) =

∫
R

w1π2 − w2π1.(3.7)

Proposition 3.3. The gyroscopic Lamb model (3.1) has a Hamiltonian repre-
sentation with Hamiltonian (H, (Z,ΩZ)n), with

H(w, π) =

∫ n∑
i=1

1

2
(π′

i)
2 +

1

2
c2
∥∥∥∥∂wi

∂z

∥∥∥∥
2

+ δ(z)Hosc.(w, π′)dz,

Hosc.(w, π′) =
1

2
π′TM−1π′ +

1

2
wT (V + W )w + π′TXw − TwT [wz]z=0.

(3.8)

Proof. The symplectic form induces Hamilton’s equations for field theory,

Ω(XH , ·) = dH,(3.9)

∂wi

∂t
=

δH

δπi
,

∂πi

∂t
= − δH

δwi
.(3.10)

Computing the variations, we have

∫
δH

δπi
· δπidz = lim

ε→0
ε−1(H(w, π + εδπi)−H(w, π))

=

∫ (
π′

i + δ(z)
∂Hosc.

∂πi

)
· δπidz

(3.11)

and ∫
δH

δwi
· δwidz = lim

ε→0
ε−1(H(w + εδwi, π)−H(w, π))

=

∫ (
−c2

∂2wi

dz2
+ δ(z)

∂Hosc.

∂wi

)
· δwidz.

(3.12)

For z �= 0, we have

∂wi

∂t
= π′

i,
∂π′

i

∂t
= c2

∂2wi

∂z2
,(3.13)

or equivalently

∂2w

∂t2
(z, t) = c2

∂2w

∂z2
(z, t), z ∈ R − {0}, t ∈ R.(3.14)
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For the singular part of the Hamiltonian at z = 0, we define q(t) = w(0, t) and
p(t) = π′(0, t). Notice that [wz]z=0 is independent of variations δw(0). We use the
induced canonical symplectic form, Ω̃, on T ∗

R
n to obtain the Hamilton’s equations

of motion:

q̇ =
∂Hosc.

∂p
= M−1p+ Xq,

ṗ =
∂Hosc.

∂q
= (V + W )q−Xp− T [wz]z=0.

(3.15)

Differentiating and writing the above first order system as a second order system, we
obtain

M q̈+ Sq̇+ V q = T [wz]z=0.(3.16)

This completes the proof.

3.1.2. Radiation induced instability in the Lamb model. To prove radi-
ation induced instability, we obtain a reduced form of the Chetaev subsystem. We
can use the d’Alembert method of solving the wave equation or find the solution via
Laplace transforms. We save the latter technique for the more general dispersive case.

Proof of Proposition 3.1. [16] explicitly develops the d’Alembert solution of the
wave equation coupled to a simple harmonic oscillator. We use the same method
applied to a Chetaev system coupled to a higher dimensional wave equation. The
method is to use the d’Alembert method of solving the wave equation on the do-
main unaffected by the coupling. Inside the domain affected by the coupling, we use
continuity and coupling dynamics to solve for the wave equation.

Our model decomposes into n independent one dimensional wave equations; we
can use the d’Alembert decomposition to two traveling waves:

u(z, t) = f±(z − ct) + g±(z + ct), ±z > 0,(3.17)

where f±,g± are functions on R
n. In components, we have

f± =
[
f±1 . . . f±2n

]T
, g± =

[
g±1 . . . g±2n

]T
,(3.18)

where fi, gi, i = ±1, . . . ,±n are real-valued functions on R. By the d’Alembert method
of solving the wave equation, we have the formulas

f±(z) =
1

2
w0(z)− 1

2c

∫ z

0

w1(v)dv, ±z > 0,(3.19)

g±(z) =
1

2
w0(z) +

1

2c

∫ z

0

w1(v)dv, ±z > 0.(3.20)

Since the d’Alembert formula for |z| ≥ c|t| is defined in terms of known functions,
the method remains valid and we have

w(z, t) =
w0(z − ct) +w0(z + ct)

2
+

1

2c

∫ z+ct

z−ct

w1(v)dv.(3.21)
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To use the d’Alembert formula for |z| < c|t|, we need to define f+(z) for z < 0 and
to define g−(z) for z > 0. From the boundary condition and from continuity of the
string, we have

f±(−ct) + g±(ct) = q(t), t > 0,(3.22)

M q̈(t) = −Sq̇(t)− V q(t) + T

[
∂f+
∂z

(−ct) +
∂g+

∂z
(ct)− ∂f−

∂z
(−ct)− ∂g−

∂z
(ct)

]
.

(3.23)

Differentiating and solving for f ′+ and g′
−, where the ′ denotes ∂

∂z , we have

−cf ′+(−ct) = q̇(t)− cg′
+(ct),

cg′
−(ct) = q̇(t) + cf ′−(−ct), t > 0.

(3.24)

Substituting, we arrive at a differential equation for q in terms of known functions

M q̈(t) + Sq̇(t) + V q(t) = 2T

[
g′

+(ct)− f ′−(−ct)− 1

c
q̇(t)

]
, t > 0.

= −2T

c
q̇(t) + T

[
w′

0(ct)−w′
0(−ct) +

1

c
(w1(ct) +w1(−ct))

]
.

(3.25)

The effect of coupling to a wave equation (3.25) is manifested by the presence of an
explicit dissipative term. If we assume that the initial conditions of the string are such
that w1 and w0 both have compact support, then for large t we have ±ct outside the
support of |w0|+ |w1|, reducing (3.25) to

M q̈(t) + Sq̇(t) + V q(t) = −2T

c
q̇(t),

± ct /∈ supp(|w0|+ |w1|).
(3.26)

This completes the proof the of proposition.
Proof of Theorem 3.2. Assuming that the initial string has a finite energy, we

have that w and w1 decay as |z| → ∞. Hence, there are initial conditions of the
string which have compact support in an H1 Sobolev neighborhood of w. Hence we
can use the result from Proposition 3.1. We construct a Lyapunov function W as the
sum of the energy of the system and a magnetic term,

W (q) =
1

2
q̇TM q̇+

1

2
qTV q+ δqTVM q̇.(3.27)

In [5], W is shown to have a negative eigendirection for δ sufficiently small if V has
a negative eigendirection, and that Ẇ is negative definite. Invoking the Lyapunov
instability theorem, the gyroscopic Lamb model is spectrally unstable if V has a
negative eigendirection.

The results from Theorem 3.2 are consistent with Krĕın signature results on in-
stability (see [1] and [5]), in contrast to the broader instability one sees in the nonlocal
coupling case (see section 4).
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3.2. Dispersive gyroscopic Lamb model. In this section, we develop an ex-
plicit solution to a dispersive gyroscopic Lamb model, i.e., a gyroscopically stable
Chetaev system coupled to a dispersive wave equation. As the dispersive wave equa-
tion we choose the Klein–Gordon equation with “mass” m:

∂2w

∂t2
(z, t) = c2

∂2w

∂z2
(z, t)−m2w(z, t), z ∈ R − {0}, t ∈ R,

M q̈(t) + Sq̇(t) + V q(t) = T
[∂w
∂z

]
z=0

,

w(0, t) = q(t).

(3.28)

The coupled system has a Hamiltonian, H, given by

H(w, π) =

∫ n∑
i=1

1

2
(π′

i)
2 +

1

2
c2
∥∥∥∥∂wi

∂z

∥∥∥∥
2

+
1

2
m2‖w‖2 + δ(z)Hosc.(w, π′)dz,

Hosc.(w, π′) =
1

2
π′TM−1π′ +

1

2
wT (V + W )w + π′TXw − Tw

[
wz

]
z=0

(3.29)

on the same symplectic vector space ((Z,ΩZ)n) as the gyroscopic Lamb model.
Equation (3.28) is linear translation invariant in time, so the initial value problem

can be solved by a Laplace transform, which we denote by

L[f ](s) =

∫ ∞

0

f(t)estdt.

In the transformed space, we have

(s2M + sS + V )L[q] = M(q̇(0) + sq(0)) + sq(0) + T
[
L[wz]

]
z=0

,

(s2 + m2)L[w]− c2L[wzz] = wt(z, 0) + sw(z, 0), z �= 0,

L[w](0, s) = L[q](s).

(3.30)

For simplicity of the calculation, we assume that q(0) = wt(z, 0) = w(z, 0) = 0 and
that the perturbation comes from a nontrivial velocity of the oscillator at the origin.
We can integrate the homogeneous dispersive wave equation on each interval to obtain

L[w](z, s) =


ae

√
s2+m2z

c for z < 0,

ae−
√

s2+m2z
c for z > 0.

(3.31)

From the boundary constraints, we have L[q] = a.
Solving for L[w] as a function of L[q] and computing the jump condition of the

string at z = 0, we have

L[wz](z, s) = −sign(z)

√
s2 + m2

c
e−sign(z)

√
s2+m2z

c L[q],

[
L[wz]

]
z=0

= −2

√
s2 + m2

c
L[q].

(3.32)

The equations of motion for the coupled Chetaev system decouple from the dispersive
wave equation, (

s2M + sS + V + 2T

√
s2 + m2

c
I

)
L[q] = M q̇(0).(3.33)
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Taking the inverse Laplace transform and using the identity

L
[
J1(t)

t

]
=
√

s2 + 1− s,(3.34)

we obtain

M q̈+

(
S +

2T

c
I

)
q̇+ V q = −2Tm

c

∫ t

0

1

t− s
J1(m(t− s))q(s)ds,(3.35)

where J1 is the Bessel function of the first kind. We can define the approximate

identity Jε =
J1(

t
ε )

t . Since J1 is an L1(R) function such that
∫∞
0

J1(t)dt = 1, we can
use the approximate identity nature of the convolution to have a necessary condition
on stability summarized in a lemma.

Lemma 3.4. If q is continuous and bounded for all time, then

lim
ε→0

Jε ∗ q(t) = q(t).(3.36)

By the above lemma, we obtain an asymptotic expansion for the perturbed dy-
namics of the coupled oscillator.

Proposition 3.5. Consider the dynamical system

M q̈+

(
S +

2T

c
I

)
q̇+

(
V +

Tm

c
I

)
q = 0.(3.37)

As m tends to infinity, the zero equilibrium of the dispersive Lamb model becomes
unstable if the zero equilibrium of system (3.37) is unstable.

Proof. In order to produce a contradiction, assume that the dispersive Lamb
model is stable as m → ∞. By applying Lemma 3.4 to the reduced dynamics (3.35),
we have

M q̈+

(
S +

2T

c
I

)
q̇+

(
V +

Tm

c
I

)
q = O

(
1√
m

)
.(3.38)

Hence, the associated dynamical system (3.37) must also have a stable zero equilib-
rium. This contradicts the assumption that the system (3.37) is unstable. Our as-
sumption that the dispersive Lamb model is stable as m → ∞ must be false. This com-
pletes the
proof.

For large values of m, the asymptotic analysis suggests that a gyroscopically
stabilized Chetaev system will maintain its stability after dispersive Lamb coupling.
The dispersive nature of the wave equation restricts the access of the oscillator from
interacting with low frequencies of the wave. This restriction effectively shifts the
potential of the oscillator. The potential shift can even stabilize previously unstable
oscillators.

The evolution of a Chetaev subsystem mirrors that of stable Chetaev system with
dissipation. In the limit as m tends to zero, the asymptotic behavior of the system
retains the explicit damping contribution as in the nondispersive coupling.
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4. Nonlocal field coupling to gyroscopic Chetaev systems. While the
Lamb model imposes the boundary constraint that the oscillator is physically attached
to the wave field, we now investigate the effect of an ambient field on a Chetaev system
without such a constraint. Energy is transmitted between the ambient field and the
Chetaev system not through boundary constraints, but rather through coupling in the
Hamiltonian. We analyze the contribution of a nonlocal distribution on the wave field
acting as a force on the oscillator. Mathematically the field acts through a coupling
distribution which for simplicity we take for computations to be a Dirac-δ function.

4.1. Nondispersive, nonlocal wave field coupling to a Chetaev system.
Here we investigate a field coupling of the mechanical gyroscopic system to the wave
equation. As before, we have the standard nondispersive wave equation

∂2w

∂t2
− c2

∂2w

∂z2
= 0.(4.1)

We model force of the wave field on the Chetaev system by the magnitude of
the wave field. In the spirit of conservation, the coupled system remains Hamiltonian,
while each perturbed subsystem may not. Coupling of this type is important in various
physical models; see [28], [27], [29] and references therein. The interaction between
the wave equation and the Chetaev system is modeled with a coupling parameter κ
and with a coupling distribution χ(ξ); the equations of motion are

M q̈+ Sq̇+ V q = κ

∫
R

χ(z)w(z, t)dz



1
...
1


 ,

∂2w

∂t2
− c2

∂2w

∂z2
= κχ(z)



1
...
1




T

q.

(4.2)

For simplicity, we choose χ(z) to be the Dirac-δ distribution. (So in fact, even though
we will continue to use the terminology “nonlocal coupling” for the type of system
discussed in this section, the special case we consider here is also a type of focused,
local with respect to the ambient field, coupling without boundary constraints.)

The above coupled system remains Hamiltonian with H defined as

H =
1

2

(∫
R

w2
t + c2w2

zdz + q̇TM q̇+ qTV q

)
− κ



1
...
1




T

q

∫
R

χ(z)w(z, t)dz.(4.3)

Notice that the Hamiltonian is indefinite; hence the energy of the system does not
uniformly bound the motion of the Chetaev system nor the motion of the wave field.
Furthermore, the magnetic terms are present in the mechanical symplectic form de-
fined by the Chetaev symplectic form, Ω, defined in (2.3).

4.1.1. Reduction of nondispersive system to a finite dimensional sys-
tem. Even though the Chetaev system and the wave equation seem intimately cou-
pled, we can decouple the wave motion from that of the Chetaev system as follows.
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Taking the Fourier transform with respect to z in the wave equation yields

ŵ(k, t) =

∫
R

e−ikzw(z)dz,

ŵtt(k, t) + c2k2ŵ(k, t) = κ
[
1 . . . 1

]
q(t),

ŵ(k, t) = κ

∫ t

0

sin(ck(t− s))

ck



1
...
1




T

q(s)ds + ŵfree(k, t).

(4.4)

The above equation is the retarded Green’s function for the wave equation, and wfree

is the homogeneous solution satisfying initial conditions. Computing w(0, t), we have

w(0, t) =
1

2π

∫
R

ŵ(k, t)dk

= wfree(0, t) +
κ

4πc

∫ t

0

∫
R

2 sin(ck(t− s))

ck
d(ck)



1
...
1




T

q(s)ds

= wfree(0, t) +
κ

2c

∫ t

0

sgn(t− s)



1
...
1




T

q(s)ds

= wfree(0, t) +
κ

2c

∫ t

0

[
1 . . . 1

]
q(s)ds.

(4.5)

Thus the Chetaev system reduces to

M q̈+ Sq̇+ V q = κwfree(0, t)
[
1 . . . 1

]T
+

κ2

2c
Ones(n)

∫ t

0

q(s)ds,(4.6)

where Ones(n) is an n× n matrix with each matrix element equal to one.

4.1.2. Differentiated system. We can interpret (4.6) as an integral feedback
on the Chetaev system. To analyze the stability, we investigate the stability of the
differentiated system.

Suppose that initially the coupling field is identically zero, and hence wfree(0, t) =
0 for all time t > 0. Since our system decouples, we consider the related system of
ordinary differential equations. Let us write the system as a first order system with
the variable Q:

Q =
[
qT q̇T q̈T

]T
.(4.7)

Differentiating the reduced system yields

Q̇ = AQ,(4.8)

where

A =


 0 I 0

0 0 I
κ2

2cM
−1Ones(n) −M−1V −M−1S


 .(4.9)
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Proposition 4.1. If κ �= 0, then the system (4.8) is unstable.
Proof. Since Trace(M−1S) = −Trace(SM−1) = −Trace(M−1S), M−1S is trace-

less. For nonzero κ, we compute the rank of A as rank(A) = 2n + 1. The matrix
A has an odd number (2n + 1) of nonzero eigenvalues which sum to zero. Since the
nonzero eigenvalues satisfy an odd degree polynomial with real coefficients, A has at
least one nonzero real eigenvalue. Hence, A has an eigenvalue with positive real part;
thus the system is unstable.

Example. Assume n = 2, M = I, S =
[

0 −B
B 0

]
, and V =

[
α 0
0 β

]
. Computing the

characteristic equation of the matrix A, we have

p(µ) = µ

(
µ5 + (B2 + α + β)µ3 − 2

κ2

2c
µ2 + αβµ− κ2

2c
(α + β)

)
.(4.10)

Let µ1, . . . , µ5 be the nonzero eigenvalues of A. Then we have

5∏
i=1

µi =
κ2

2c
(α + β).(4.11)

Note the system is gyroscopically stabilized when B2 + α + β ≥ 2
√
αβ. Also,

Trace(A) = 0. Hence if γ(α + β) �= 0, then A has an eigenvalue with positive real
part. In particular, if α, β < 0 and κ �= 0, then there are real negative eigenvalues.
Thus, there exists a conjugate pair of eigenvalues with positive real part. Hence the
differentiated system is unstable.

We can quantify the rate at which the coupled system becomes unstable. If we
additionally have α �= β, we use first order perturbation theory to compute the speed
at which the eigenvalues leave the imaginary axis,

µ′ =
dµ

dγ

∣∣∣
γ=0

.(4.12)

Computing µ′, we have

µ′ =
2µ2 + (α + β)

5µ4 + 3(w2
0 + w2

1)µ
2 + w2

0w
2
1

,(4.13)

where the eigenvalues of the unperturbed system are ±iw0,±iw1. Simplifying in terms
of w0 and w1, we have

(±iwj)
′ =

−2w2
j + (α + β)

2w2
j (w

2
j − w2

1−j)
.(4.14)

We compare µ′ with the µ′ from a purely dissipative perturbation (see the analogous
calculation in [19], [5] and references therein); we have

(±iwj)
′ =

(±iwj)
′
dissipative

w2
j

.(4.15)

Since we use the differentiated systems, we require the existence of higher deriva-
tives. In particular, a C3 solution to the reduced system (4.6) is a solution to the
differentiated system (4.8). Conversely, a solution to the differentiated system (4.8)
is a solution to the reduced system (4.6) if initial conditions are satisfied. Satisfying
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the initial conditions imposes a mild linear constraint on the system that is easily
satisfied. We summarize the result with a theorem.

Theorem 4.2. The Chetaev system coupled to the standard, nondispersive wave
equation via nonlocal coupling (4.2), where χ(z) is the Dirac-δ distribution, yields the
reduced finite dimensional system (4.6). All C2 solutions of this system are unstable.

Proof. Let us write the solution to the differentiated problem as

q(t) =
∑

i

λiAie
µit,(4.16)

where µi,Ai are eigenvalues and position components of the eigenvectors for the linear
system and λi is a scaling chosen to satisfy initial conditions. Evaluation of (4.6) at
t = 0 with wfree = 0 yields

M q̈(0) + Sq̇(0) + V q(0) = 0.(4.17)

We have

q̈(0) =
∑

i

µ2
iAi, q̇(0) =

∑
i

µiAi, q(0) =
∑

i

Ai.(4.18)

Using the fact that µi is an eigenvalue of the differentiated system, we have

(µ3
iM + µ2

iS + µiV − γOnes(n))Ai = 0.(4.19)

Substituting, the initial condition is satisfied if

γOnes(n)
∑

i,µi 
=0

λi

µi
Ai = 0.(4.20)

This is just a linear constraint on the initial conditions, which can be satisfied while
exhibiting a negative eigendirection.

This instability is unlike the effect of Rayleigh dissipation of the type in gyroscopic
Lamb coupling (3.5), i.e., dissipation arising from a term consisting of a positive defi-
nite symmetric matrix multiplying velocities. For small coupling, Rayleigh dissipation
induces instability only if the Chetaev system is gyroscopically stable (i.e., it is unsta-
ble for B = 0 but stable for suitably large B). In the nonlocal field coupling model,
instability is always induced. (See Chetaev [8] and [5] for a discussion of Rayleigh
dissipation induced instability).

Example 1. For n = 2, α = −1, β = −2, c = 1, and B = 3, the origin of the
uncoupled system is gyroscopically stabilized. Increasing the coupling parameter, we
show that the weaker eigenvalues destabilize as κ increases from 0 to 1 in Figure 5.

Example 2. As discussed above, we have shown that nonlocal coupling has a
broader destabilizing effect than dissipation. In particular, the integral coupling can
destabilize a system regardless of whether or not it is gyroscopically stabilized, while
Rayleigh dissipative perturbations destabilize a Chetaev system only if it is initially
gyroscopically stabilized. For α = 1, β = 2, c = 1, and B = 3, we show numerically
how increasing the coupling parameter destabilizes the system; see Figure 6.

4.2. Dispersive, nonlocal wave field coupling to a Chetaev system. In
this section, we demonstrate that the nature of the wave field, to which the Chetaev
system is coupled, has a significant impact on the stability of the overall system. We
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Fig. 5. Destabilization of a gyroscopically stabilized system.
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Fig. 6. Destabilization of stabilized system (α = 1, β = 2, B = 3, c = 1). κ increases from 0
to 1. A lone eigenvalue escapes from the origin, while the eigenvalues of the original system move
into the left half plane.

now consider the case of a gyroscopic system coupled to the linear Klein–Gordon
equation, a standard dispersive wave equation,

M q̈+ Sq̇+ V q = κ

∫
R

χ(z)w(z, t)dξ



1
...
1


 ,

∂2w

∂t2
− c2

∂2w

∂z2
+ m2w = κχ(z)

[
1 . . . 1

]
q.

(4.21)

In this case, we show that a region of stability is possible for small coupling.

4.2.1. Energy bounds. For some potentials, we can explicitly show that the
Hamiltonian is positive definite and hence can be used to bound the motion of the
system. In the case that the Hamiltonian is indefinite, our system may or may
not be stable. The main stability results of this section we present in the following
theorem.

Theorem 4.3. If |κ| < min(m2, c2), then the nonlocal dispersive wave coupling
to a mechanical gyroscopic system (4.21), with χ(z) = δ(z), is stable if V −|κ|Ones(n)
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is positive definite, where Ones(n) is an n× n matrix with each entry equal to unity.
Explicitly, we have a uniform bound of ‖w‖H1 , ‖wt‖, |q|, and |q̇| in terms of initial
energy.

Proof of Theorem 4.3. We will use energy estimates to give a uniform bound in
phase space of the gyroscopic system coupled to the Klein–Gordon equation.

We use the form of the Chetaev system with the magnetic terms in the symplectic
form, Ω. In this case, the Hamiltonian of the coupled system becomes

H =
1

2
pTM−1p+

1

2
qTV q+

1

2

∫
R

w2
t + c2w2

z + m2w2dz − κw(0, t)qΣ,(4.22)

where qΣ =
[
1 . . . 1

]
q. Using the Cauchy–Schwarz inequality, we have the following

energy estimate:

H ≥ 1

2
pTM−1p+

1

2
qTV q

+
1

2
(‖wt‖2

L2
+ min(c2,m2)‖w‖2

H1)− 1

2
|κ|(w(0, t)2 + (qΣ)2)

=
1

2
pTM−1p+

1

2
qT (V − |κ|Ones(n))q

+
1

2
(‖wt‖2

L2
+ min(c2,m2)‖w‖2

H1)− 1

2
|κ|w(0, t)2,

(4.23)

where Ones(n) is an n × n matrix with all entries equal to unity. From a standard
Sobolev inequality, we have the result that if w ∈ C1

0 (R
2), then w(0, t)2 ≤ ‖w‖2

H1 .
Using the Sobolev inequality, we have another bound on the energy:

H ≥ 1

2
pTM−1p+

1

2
qT

(
V − |κ|Ones(n)

)
q

+
1

2

(
‖wt‖2

L2
+ (min(c2,m2)− |κ|)‖w‖2

H1

)
.

(4.24)

Our Hamiltonian is positive definite if |κ| < min(c2,m2) and the matrix H̃ is positive
definite, where

H̃ =

[
V − |κ|Ones(n) 0

0 M−1

]
.(4.25)

Equivalently, H is positive definite if |κ| < min(c2,m2) and V −|κ|Ones(n) is positive
definite.

By the same argument we obtain the following theorem.
Theorem 4.4. Suppose |κ| < 1

n min(m2, c2), and let λ1, . . . , λn be eigenvalues
of V . Let α = mini=1,...,n(|λi|). If |κ| < α, then the nonlocal dispersive wave field
coupling to the Chetaev system (4.21), with χ(z) = δ(z), is stable. Explicitly, we have
a uniform bound of ‖w‖H1 , ‖wt‖, |q|, and |q̇| in terms of initial energy.

Proof. Using the Cauchy–Schwarz inequality in each component of q in equation
(4.23), we have

H ≥ 1

2
pTM−1p+

1

2
qT (V − |κ|I)q(4.26)

+
1

2

(
‖wt‖2

L2
+ (min(c2,m2)− n|κ|)‖w‖2

H1

)
.
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4.2.2. Linear algebra and stability of Chetaev systems. By energy es-
timates, stability is guaranteed if either the matrix V − |κ|Ones(n) or the matrix
V −|κ|I is positive definite. Dispersion enables purely stable Chetaev systems (stable
if S = 0) to remain stable for small coupling parameters. In this subsection, we prove
some spectral results for these perturbed matrices to see how large the perturbation
can be and guarantee stability. Even though positive definiteness of the Hamilto-
nian is a sufficient condition for stability, it is not a necessary condition as seen in
gyroscopically stabilized Chetaev systems.

Proposition 4.5. Let λ1, . . . , λn be eigenvalues of a symmetric n × n matrix
V . Let α = mini=1,...,n(|λi|). If |κ| < α

n , then W = V − κOnes(n) has the same
signature as V .

Proof. Since V is symmetric and Ones(n) is symmetric, W is symmetric and
hence has real eigenvalues. Since a change of signature requires a zero eigenvalue of
the perturbed matrix, we equivalently show

det
(
V − κOnes(n)

)
�= 0 ∀κ ∈

(
0,

α

n

)
.(4.27)

If V and Ones(n) commute, we can find a change of basis which simultaneously
diagonalizes both V and Ones(n). Working in this basis, we have that

det
(
V − κOnes(n)

)
= det

(
diag(λ1, . . . , λn)− κdiag(σ(0, . . . , 0, n))

)
�= 0 ∀κ ∈

(
0,

α

n

)
,

(4.28)

where σ is a permutation of n elements. The eigenvalues of W are the eigenvalues
of V with the exception that one of the eigenvalues is moved to the left by κn units.
Hence if 0 < κ < α

n , then V and W have the same signature, as desired.
In the general case, we define a function f of κ as follows:

f(κ) = det
(
V − κOnes(n)

)
.(4.29)

Changing bases so that Ones(n) is diagonal, we have

f(κ) = det(Ṽ − κdiag(n, 0, 0, . . . , 0)),(4.30)

where Ṽ does not depend on κ. Hence f is linear in κ.
We now find a bound on the slope of f(κ).

f ′(κ) = f ′(0) = lim
ε→0

1

ε
(f(ε)− f(0)) = lim

ε→0

1

ε

(
det

(
V − εOnes(n)

)
− det(V )

)
= lim

ε→0

1

ε

(
f(0) det

(
I − ε(V −1Ones(n))

)
− f(0)

)
= lim

ε→0

1

ε

(
f(0)

(
1− εTrace

(
V −1Ones(n)

)
+ O(ε2)

)
− f(0)

)
= −det(V )Trace

(
V −1Ones(n)

)
.

(4.31)

Let C be an orthogonal matrix that diagonalizes Ones(n) to D = diag(n, 0, 0, . . . , 0).

Trace
(
V −1Ones(n)

)
= Trace

(
CV −1C−1COnes(n)C−1

)
= Trace

(
CV −1C−1D

)
.

(4.32)
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A well-known result of [25] states that the diagonal elements of CV −1C−1 lie in the
convex hull of the permutations of { 1

λ1
, . . . , 1

λn
}. Minimizing over permutations yields

∣∣∣Trace
(
CV −1C−1D

)∣∣∣ ≤ max
d=(d1,...,dn)

(
nd1

|λσ(1)| +

n∑
i=2

d2

|λσ(i)|

)
,(4.33)

where σ is a permutation of n elements and di ≥ 0 with
∑n

i=1 di = 1. The right-hand
side of the above equation is a linear function on a convex set and hence attains its
maximum at an extreme point,∣∣∣Trace

(
CV −1C−1D

)∣∣∣ ≤ max
i∈{1,...,n}

( n

|λi|
)
≤ n

α
.(4.34)

Let β = maxi=1,...,n(|λi|). Finally, we have a bound on the slope of f(κ),

|f(0)|
β/n

≤ |f ′(κ)| ≤ |f(0)|
α/n

.(4.35)

Thus for |κ| < α
n we have f(κ) �= 0; hence the signatures of V and of V − κOnes(n)

are the same, as desired.
Corollary 4.6. Let λ1, . . . , λn be eigenvalues of a symmetric, positive definite

n × n matrix V . Suppose κ > maxi=1,...,n(λi). Then V − κOnes(n) has a different
signature from the signature of V . In particular, V − κOnes(n) has at least one
negative eigenvalue.

Proof. For κ > maxi=1,...,n(λi), we have Trace(V − κOnes(n)) < 0. A symmetric
matrix with negative trace has at least one negative eigenvalue.

Corollary 4.7. Let λ1, . . . , λn be eigenvalues of a symmetric n × n matrix V .
Suppose |λi| > 0 for i = 1, . . . , n. Let α = mini=1,...,n(|λi|) and β = maxi=1,...,n(|λi|).
We have the following results:

• As |κ| increases, the matrix V − |κ|Ones(n) changes signature at most once.
• If V − |κ|Ones(n) changes signature, it does so for |κ| ≤ β

n .• If V − |κ|Ones(n) changes signature, then an odd number of eigenvalues
change sign.

Proof. Linearity of f(κ) = det(V − κ
nOnes(n)) in κ proves the first and third

claims. Bounds in the f ′(κ) prove the second claim.

4.2.3. Reduction of dispersive system to a finite dimensional system.
Analogously to the computation in section 4.1.1, we eliminate the dynamics of the
wave field to obtain reduced dynamics of a perturbed Chetaev system. Taking the
Fourier transform of the field equation, we have

¨̂w + ω2(k)ŵ = κχ̂qΣ(t),(4.36)

where ω =
√
c2k2 + m2 and

qΣ(s) =



1
...
1




T

q(s).

Let ĝ be the Green’s function for the above equation,

¨̂g + ω2ĝ = δ(t), ĝ = H(t)
sinωt

ω
,(4.37)
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where H(t) is the Heaviside function. Computing w(0, t) from the Green’s function,
we have

w(0, t) = wfree(0, t) +
1

2π

∫
R

ŵ dk

= wfree(0, t) +
1

2π

∫
R

(κχ̂qΣ) ∗ ĝ dk

= wfree(0, t) +
κ

2π

∫
R

∫
R

χ̂qΣ(s)ĝ(t− s) ds dk,

(4.38)

where wfree is a homogeneous solution to the dispersive wave equation. Assuming
that the coupling starts at t = 0, we have qΣ(t) = 0 for t < 0. We can interchange
the order of integration,

w(0, t) = wfree(0, t) +
κ

2π

∫ t

0

∫
R

χ̂qΣ(s)
sinω(t− s)

ω
dk ds.(4.39)

Choosing χ to be the Dirac-δ distribution and zero initial conditions in the wave field,
the reduced dynamics becomes

M q̈+ Sq̇+ V q =
κ2

2π

∫ t

0

∫
R

qΣ(s)
sinω(t− s)

ω
dk ds



1
...
1


 .(4.40)

Explicitly using the form of the Klein–Gordon coupling, we can integrate the interior
integral, ∫

R

sinωs

ω
dk = 2

∫ ∞

m

sinωs

c
√
ω2 −m2

dω =
π

c
J0(ms),(4.41)

where J0 is the Bessel function of the first kind. We obtain an integrodifferential
equation for the reduced dynamics,

M q̈+ Sq̇+ V q =
κ2

2c
Ones(n)

∫ t

0

J0(m(t− s))q(s) ds.(4.42)

From the reduced dynamics (4.42), we can investigate the stability.

4.3. Asymptotic analysis and numerical simulations. For small coupling,
we have shown that strongly stable Chetaev systems remain stable for m �= 0 by
Theorems 4.3 and 4.4. However, the energy bound results yield no information for
gyroscopically stabilized Chetaev systems. Using the compact reduced form (4.42),
asymptotic analysis suggests that gyroscopic systems maintain their stability under
dispersive wave field perturbations. Moreover, the asymptotic analysis also suggests
that an unstable system may be stabilized for a band of coupling parameters. In
this section, we develop asymptotic expansions for the reduced dynamics (4.42) and
compare the results with numerical simulations.

For large values of m, the wave field’s effect on the Chetaev system appears to
be a convolution with an approximate identity, mJ0(mt). Since J0(t) is not in L1(R),
showing the approximate identity nature of the convolution becomes nontrivial, but
nonetheless true, which is summarized in a theorem.

Theorem 4.8. Consider the integrodifferential equation (4.42) with the nonres-
onant hypothesis H1 and the stability hypothesis H2:
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H1. M q̈+ Sq̇+ V q = O(κ2),
H2. q and q̇ are bounded.

As the dispersion parameter, m, tends to infinity, we have an asymptotic expansion
for the dynamics,

M q̈+ Sq̇+
(
V − κ2

2mc
Ones(n)

)
q = O(κ2m

−3
2 ).(4.43)

Since the error of the asymptotic expansion is O(κ2m
−3
2 ), the expansion will re-

main valid even for large coupling parameter κ, provided m is sufficiently large. The
hypotheses H1 and H2 guarantee the validity of the expansion, but numerical simula-
tions suggest that the expansion is accurate even when the system becomes unstable.
In either case, the stability of the dynamical system (4.43) is a necessary condition
for the stability of the coupled Chetaev system. If we relax the H2 hypothesis, the
asymptotic expansion holds over any finite time interval.

We also note that the asymptotic expansion is consistent with the results from
energy bounds. In particular, we can use the results from section 4.2.2 to investigate
the stability of the Chetaev system

M q̈+ Sq̇+
(
V − κ2

2mc
Ones(n)

)
q = 0.(4.44)

For small values of m, we retain the nondispersive wave field dynamics.
Theorem 4.9. An asymptotic expansion of the reduced wave field dynamics

(4.42), as m tends to zero, is given by

M q̈+ Sq̇+ V q =
κ2

2c
Ones(n)

∫ t

0

q(s)ds + O(m).(4.45)

We now begin the proofs of the theorems.
Proof of Theorem 4.8. The strategy used in this proof is to reduce the coupling

term to a convolution with an approximate identity though integration by parts and
substitution of H1. To simplify notation, we define the following integrals for Bessel
function parameters ν ∈ {0, 1} and n ∈ {0, 1, 2} derivatives of q:

In,ν =

∫ t

0

Jν(m(t− s))

(t− s)ν
dn q(s)

dsn
ds.(4.46)

In the new notation, our reduced system becomes

M q̈+ Sq̇+ V q =
κ2

2c
Ones(n)I0,0.(4.47)

Integrating I0,0 by parts and using the fact that sJ0(s) = d/ds(sJ1(s)), we have

I0,0 =

∫ t

0

J0(m(t− s))q(s)ds

=

∫ t

0

J0(m(t− s))(t− s)
q(s)

t− s
ds

= − 1

m
J1(m(t− s))q(s)

∣∣∣t
0
+

1

m

∫ t

0

J1(m(t− s))

(
q̇(s) +

q(s)

t− s

)
ds

=
J1(mt)

m
q(0) +

1

m
I0,1 +

1

m2
J0(m(t− s))q̇(s)

∣∣∣t
0
− 1

m2
I2,0

=
J1(mt)

m
q(0) +

1

m2
(q̇(t)− J0(mt)q̇(0)) +

1

m
I0,1 − 1

m2
I2,0.

(4.48)
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Similarly to the dispersive Lamb model, we recognize In,1 as an approximate identity

convolution with dnq
dtn as m tends to infinity.

With the H1 nonresonant hypothesis, we solve I0,0 to order κ2 in terms of ap-
proximate identity convolutions, In,1, and nonintegral terms. In particular, we have

q̈ = −M−1Sq̇−M−1V q+ O(κ2).(4.49)

We also integrate by parts to simplify I1,0:

I1,0 =

∫ t

0

J0(m(t− s))(t− s)
q̇(s)

t− s
ds

= − 1

m
J1(m(t− s))q̇(s)

∣∣∣t
0
+

1

m

∫ t

0

J1(m(t− s))
(
q̈(s) +

q̇(s)

t− s

)
ds

=
J1(mt)

m
q̇(0) +

1

m
I1,1 +

1

m

∫ t

0

J1(m(t− s))q̈(s)ds.

(4.50)

Employing the H1 hypothesis, we have

I1,0 =
J1(mt)

m
q̇(0) +

1

m
I1,1

− 1

m

∫ t

0

J1(m(t− s))
(
M−1Sq̇(s) + M−1V q(s)

)
ds + O(κ2)

=
J1(mt)

m
q̇(0) +

1

m
I1,1 − 1

m2
J0(m(t− s))M−1Sq̇(s)

∣∣∣t
0
+

1

m2
M−1SI2,0

− 1

m

∫ t

0

J1(m(t− s))M−1V q(s)ds + O(κ2)

=
(J1(mt)

m
+

J0(mt)

m2
M−1S

)
q̇(0)− 1

m2
M−1Sq̇(t) +

1

m
I1,1 +

1

m2
M−1SI2,0

− 1

m

∫ t

0

J1(m(t− s))M−1V q(s)ds + O(κ2)

=
(J1(mt)

m
+

J0(mt)

m2
M−1S

)
q̇(0)− 1

m2
M−1Sq̇(t) +

1

m
I1,1 +

1

m2
M−1SI2,0

+
1

m2
M−1V

(
J0(mt)q(0)− q(t)

)
+

1

m2
M−1V I1,0 + O(κ2).

(4.51)

Integrating the nonresonant hypothesis H1, we have

I2,0 = −M−1SI1,0 −M−1V I0,0 + O(κ2).(4.52)

Taking linear combinations of (4.48), (4.51), and (4.52), we have an approximation
for I0,0 in terms of approximate identity convolutions of the form In,1 and nonintegral
terms. Using H2 and invoking the convolution Lemma 3.4, we have

lim
m→∞ In,1 =

dn

dtn
q(t).(4.53)

In particular, the error in the limit is O(m
−1
2 ). Collecting highest order terms in m

of the linear combination, we have

I0,0 =
1

m
I0,1 + O(m

−3
2 ) =

1

m
q(t) + O(m

−3
2 ).(4.54)
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Hence we have an asymptotic expansion of the perturbed dynamics,

M q̈+ Sq̇+
(
V − κ2

2mc
Ones(n)

)
q = O(κ2m

−3
2 ),(4.55)

as desired.
Proof of Theorem 4.9. Since q analytically depends on the parameter, m, we have

M q̈+ Sq̇+ V q =
κ2

2c
Ones(n)

∫ t

0

J0(m(t− s))q(s)ds
∣∣∣
m=0

+ O(m)

=
κ2

2c
Ones(n)

∫ t

0

q(s)ds + O(m)

(4.56)

as m tends to zero.
We have already shown the instability of the nondispersive wave field coupling,

and the asymptotic analysis suggests that the nondispersive limit has a similar insta-
bility.

4.3.1. One dimensional example: Simple harmonic oscillator coupled
to the Klein–Gordon equation. We illustrate the asymptotic behavior first in
the case of a one dimensional Chetaev system coupled to a dispersive wave equation.
Consider a simple harmonic oscillator coupled to the Klein–Gordon equation with the
following Hamiltonian system:

H = H0 + κ2H1,

H0 =
1

2
(ẋ2 + αx2) +

1

2

∫
R

w2
t + c2w2

z + m2q2dz,

H1 = − 1

κ
w(0, t)x.

(4.57)

The Hamiltonian equations of motion are

ẍ + α2x = κw(0, t),

ẅ − c2
∂2w

∂z2
+ m2w = κδ(z)x.

(4.58)

We can reduce the coupled system to an integral equation for a perturbed oscil-
lator by solving for w(0, t):

w(0, t) =
1

2π

∫
R

ŵ(k, t)dk

=
κ

2π

∫ t

0

x(s)

∫
R

sin(ω(t− s))

ω
dkds

=
κ

2c

∫ t

0

J0(m(t− s))x(s)ds,

(4.59)

where ω =
√
c2k2 + m2 and J0 is the Bessel function of the first kind. The perturbed

oscillator remains Hamiltonian with the following dynamics:

ẍ + α2x =
κ2

2c

∫ t

0

J0(m(t− s))x(s)ds.(4.60)
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Fig. 7. Bifurcation of eigenvalues. One dimensional dispersive wave field coupling: Ω = 1,
n = 32, m = 5, c = 1, and α = 1.

For the large m limit, we have

ẍ +

(
α2 − κ2

2mc

)
x � 0.(4.61)

Figure 7 shows a bifurcation diagram of the asymptotic results compared to a numer-
ical solution to the full system. The maximum real part of the spectrum is plotted
as a function of κ. The full coupled system is discretized with lattice size Ω and n
lattice points for the wave system.

4.3.2. Two dimensional gyroscopic system coupled to a dispersive wave
equation. The interesting gyroscopic behavior of a Chetaev system is captured in the
two dimensional model. We see from section 4.2.2 the large m coupling can effectively
move an eigenvalue of V to the left. The continuous nature of the movement allows for
bands of stability for small coupling parameter κ and instability for larger coupling.
We demonstrate, with numerical results, that stability is maintained for small coupling
parameter. See Figures 8 and 9.

The effective movement of an eigenvalue of V allows for an interesting gyro-
scopic stabilization of an unstable Chetaev system for an interval of positive coupling
parameters κ. We realize this dispersive wave field stabilization numerically and
asymptotically in Figure 10.

5. The nonabelian setting. In this section we present an example of wave field
coupling to a more complicated mechanical system—a rigid body with rotors. The
configuration space is this case is the cross product of a nonabelian group, SO(3),
and two copies of the circle. This system models a controlled satellite. To analyze
this system we need a little more geometry.

5.1. Normal form of principle bundles. Here we present a geometric devel-
opment of the Chetaev system as a normal form of a group action on a mechanical
system. For a more complete development of the normal forms and reduction theory
of nonabelian group actions, see [5] and [26], from which we highlight some results.
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Fig. 8. Bifurcation of eigenvalues. Two dimensional dispersive wave field coupling to stable
Chetaev system: Ω = 1, n = 32, m = 10, c = 1, α = 1, β = 2, and B = 3.
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Fig. 9. Bifurcation of eigenvalues. Two dimensional dispersive wave field coupling to gyro-
scopically stabilized Chetaev system: Ω = 1, n = 32, m = 10, c = 1, α = −1, β = −2, and
B = 3.

We show that the Chetaev system is the normal form of the linearized motion about
a relative equilibrium of an abelian group action.

We consider the configuration space, Q, to be a Riemannian manifold with metric
〈〈 , 〉〉. Let G be a Lie group which acts freely on Q by isometries. By lifting the group
action to the tangent bundle, TQ, or to the cotangent bundle, T ∗Q, we have that G
acts symplectically. For a mechanical system, the Lagrangian is of the form

L(q, v) =
1

2
‖v‖2

q − V (q),(5.1)

and the Hamiltonian is of the form

H(q, p) =
1

2
‖p‖2

q + V (q),(5.2)
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Fig. 10. Bifurcation of eigenvalues. Two dimensional dispersive wave field coupling to unstable
Chetaev system: Ω = 1, n = 32, m = 10, c = 1, α = 1

10
, β = −2, and B = 3.

where ‖ · ‖q is the norm on TqQ or the norm induced on T ∗
q Q, and where V is a

G-invariant potential. Since G acts freely on Q, the projection π : Q → Q/G defines
a principle G-bundle.

Recall that the infinitesimal generator of ξ ∈ g on Q is denoted ξQ and defined

ξQ(q) =
d

dt

∣∣∣
t=0

exp(ξt) · q.(5.3)

For each q ∈ Q, we can define the locked inertia tensor to be the map I : g → g∗

defined by 〈Iη, ξ〉 = 〈〈ηQ(q), ξQ(q)〉〉. For coupled rigid bodies, I(q) is the classical
moment of inertia tensor. We can now define a mechanical connection A.

Definition 5.1. We define the mechanical connection on the principle bundle
Q → Q/G to be the map A : TQ → g given by A(q, v) = I(q)−1(J(q, v)), where
J : TQ → g∗ is the momentum map defined by 〈J(q, v), ξ〉 = 〈〈v, ξQ(q)〉〉. In other
words, A is the map that assigns to each (q, v) the corresponding angular velocity of
the locked system.

For µ ∈ g∗, we let Gµ be the isotropy subgroup for the co-adjoint action of G on
g∗,

Gµ = {g ∈ G | Ad∗g−1µ = µ}.(5.4)

The mechanical connection provides a natural decomposition into a horizontal
space, horq, and a vertical space, verq,

horq = {(q, v) | J(q, v) = 0} ⊂ TqQ(5.5)

verq = {ξQ(q) | ξ ∈ g} = g · q ⊂ TqQ.(5.6)

The horizontal space is the space horizontal to G-orbits. The vertical space is the
kernel of the projection map π.

We obtain the Chetaev system from the reduced dynamics of a Hamiltonian
system about a relative equilibrium, ze = (qe, ve), defined by the Hamiltonian vector
field at ze pointing in the direction of the group orbit through ze,

XH(ze) ∈ Tze(G · ze).(5.7)
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From the relative equilibrium theorem, there exists a ξ ∈ g such that ze is a critical
point of the augmented Hamiltonian, Hξ,

Hξ(z) = H(z)− 〈J(z)− J(ze), ξ〉.(5.8)

To investigate the stability of the relative equilibrium modulo GJ(ze), we analyze the
second variation of δ2Hξ(ze) (the first variation vanishes at ze) and the corresponding
symplectic form Ω. Assuming that ze is a regular point and J(ze) is a generic point of
g∗, we can define a rigid-internal splitting such that δ2Hξ(ze) block diagonalizes. The
rigid component has a co-adjoint orbit representation, while the internal component,
or shape-space, consists of T ∗(Q/G).

The rigid component is a subset of the vertical space, verze
, orthogonal to the

isotropy Lie algebra, gµ, for the momentum of the relative equilibrium µ = J(ze).
Explicitly, we have

VRIG = {ξQ(ze) ∈ TzeQ | 〈Iξ, η〉 = 0 ∀η ∈ gJ(ze)}.(5.9)

The internal coordinates or shape-space represents the part of the system which
is unaffected by the group action, Q/M . Due to the linearization of the system about
the relative equilibrium, the internal variables live in T[ze]Q/G:

VINT = {δq ∈ TzeQ | [δq] ∈ T[ze]Q/G}.(5.10)

In this splitting ((r, q, p) ∈ VRIG × VINT × V∗
INT ; see [26], [5] and references

therein) δ2Hξ block diagonalizes

δ2Hξ =


Aµ 0 0

0 V 0
0 0 M−1


 ,(5.11)

with symplectic form, Ω,

Ω =


 Lµ C 0
−CT S I

0 −I 0


 ,(5.12)

where Aµ is the energy from the co-adjoint orbit block and V is the amended potential.
The linearized Hamiltonian vector field is defined from Ω(XH , ·) = dH·,

XH(r, q, p) =


 −L−1

µ Aµ 0 −L−1
µ CM−1

0 0 M−1

−CTL−1
µ Aµ −V −S̃M−1




rq
p


 ,(5.13)

where S = S̃ − CTLµC.

5.1.1. Nonabelian example: Rigid body with two internal rotors. We
consider a rigid body with two symmetric internal rotors; see Figure 11. For more
detail on the stability of the rigid body, see [6] and [5]. The configuration space is
SO(3) × S1 × S1, where each of the rotors has a configuration space of S1. The
Lagrangian is a function on the tangent bundle, T (SO(3)×S1×S1). Let Ibody be the
inertia tensor of the rigid body, Irotor = diag(J1

1 , J
2
2 , 0) the diagonal matrix of rotor

inertia about the principle axes, and I
′
rotor be the remaining rotor inertia about the

other axes. We define the locked inertia tensor, Ilock, of the full system as

Ilock = Ibody + Irotor + I
′
rotor = diag(B1, B2, B3).(5.14)
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Fig. 11. Rigid body with two internal rotors.

Let Ilock − Irotor = diag(A1, A2, A3). Assume B1 > B2 > B3.
As a simple mechanical system, the Lagrangian is the kinetic energy of the system,

i.e., the total kinetic energy of the body plus the total kinetic energy of the rotor.

L((R, θr), (Ω,Ωr)) =
1

2
Ω · IbodyΩ +

1

2
Ω · I′rotorΩ +

1

2
(Ω + Ωr) · Irotor(Ω + Ωr)

=
1

2
Ω · (Ilock − Irotor)Ω +

1

2
(Ω + Ωr) · Irotor(Ω + Ωr),

(5.15)

where R ∈ SO(3) is the attitude of the rigid body relative to an inertial frame,
θr ∈ S1 × S1 × {0} is the angular configuration of the rotors, Ω ∈ R

3 ∼= so(3) is the
vector of body angular velocities, and Ωr ∈ R

2 × {0} ∼= Tθr (S
1 × S1) × {0} is the

vector of rotor angular velocities about the principle axes with respect to a body fixed
frame.

The Euler–Lagrange equations of motion are

(Ilock − Irotor)Ω̇ = (IlockΩ + IrotorΩr)× Ω,

(Ilock − Irotor)Ω̇r = Ω× (IlockΩ + IrotorΩr),

Ṙ = RΩ,

θ̇r = Ωr.

(5.16)

We consider the normal form of the linearized equations of motion about the rela-
tive equilibrium ze = (qe, ve) with qe = (R, 0, 0) and ve = (Ωe,Ωe

r) with Ωe = (0, 0, ω)T
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and Ωe
r = (0, 0, 0)T . The relative equilibrium, ze, is a member of an equivalence class

of TQ/G, where the action of G = SO(3) can be lifted from acting on Q by rotations
of the rigid body to acting on the tangent bundle isometrically. Notice that the asso-
ciated Hamiltonian vector field XH on T ∗Q evaluated at ze points in the direction of
the group orbit through ze,

XH(ze) = (RΩe, 0, 0, 0) ∈ Tze
(G · ze).(5.17)

We will use the mechanical connection to split the configuration variables into rigid
and internal components. After the reduction of the phase space, TQ/G, the rigid
component of the splitting is the subset of the rigid tangent space, so(3), orthogonal
to the isotropy subgroup Gµ = S1. The internal component is the part of phase space
which is not affected by the group action.

First, we define the rigid component of the principle bundle:

VRIG = {ξQ(qe) ∈ TqeQ | 〈I(q)ξ, η〉 = 0 ∀η ∈ s1 ⊂ so(3)}
= {ξQ(qe) ∈ TqeQ | dΩ3 · ξQ(qe) = 0}
= {((δΩ1, δΩ2, 0)×R, 0, 0, 0) ∈ TqeQ | (δΩ1, δΩ2, 0) ∈ so(3) ∼= R

3}
= {(δΩ1, δΩ2) ∈ R

2}.

(5.18)

We can realize s1 as the Lie algebra to the isotropy subgroup for J(ze) ∈ so(3)∗ for
the co-adjoint action of SO(3) on so(3)∗. Thus, the rigid variables, r = (δΩ1, δΩ2),
are even dimensional and represent the co-adjoint orbit block.

In this case, the internal component is the T (T2). We can choose the natural
configuration for the shape-space, q = M−1δθr, with associated reduced momenta,
p = δΩr. From the linearized equations of motions, we have

d

dt


rq
p


 =


 −L−1

µ Aµ 0 −L−1
µ CM−1

0 0 M−1

−CTL−1
µ Aµ −V −S̃M−1




rq
p


 ,(5.19)

where

Lµ =

[
0 − 1

ω
1
ω 0

]
, Aµ =

[
B3−B1

A2
0

0 B3−B2

A1

]
,

M−1 =

[
J1
1

A2
0

0
J2
2

A1

]
, S̃ =

[
0 ω
−ω 0

]
,

C = −I, V = 0.

(5.20)

5.1.2. Abelian group action. If the group G is an abelian group, the co-adjoint
orbit block becomes trivial. The isotropy subgroup, Gµ, of the co-adjoint action is
all of G. Hence the linearized system about a relative equilibrium contains only the
internal components,

Hlinear =

[
V 0
0 M−1

]
,(5.21)

with symplectic form

Ω =

[
S I
−I 0

]
.(5.22)
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The corresponding second order equations are precisely the Chetaev system

Mq̈ + Sq̇ + V q = 0.(5.23)

The abelian case is a classical result dating back to [24].

5.2. Nonabelian example of a wave field coupling: Rigid body with
internal rotors. In the previous sections, we have coupled a wave equation to the
Chetaev system and investigated the stability of the trivial equilibrium. In this sec-
tion, we demonstrate a similar destabilizing effect for a wave field coupling to the
relative equilibrium of a nonabelian group action. In particular, we couple the stan-
dard wave equation to a rigid body with internal rotors. We use the same notation
as introduced in section 5.1.1. We model internal radiation, that is, the field coupling
to the internal rotors:

(Ilock − Irotor)Ω̇ = (IlockΩ + IrotorΩr)× Ω,

(Ilock − Irotor)Ω̇r = Ω× (IlockΩ + IrotorΩr) + κ

∫
R

χ(ξ)u(ξ, t)dξ


1
1
0


 ,

θ̇r = Ωr,

ü− c2uξξ = κχ(ξ)Ones(3)θr.

(5.24)

Assuming the distribution χ is the Dirac-δ distribution, the wave equation decouples
in precisely the same way as in the abelian case, yielding the following equations of
motion for the rigid body:

(Ilock − Irotor)Ω̇ = (IlockΩ + IrotorΩr)× Ω,

(Ilock − Irotor)Ω̇r = Ω× (IlockΩ + IrotorΩr) +
κ2

2c
Ones(3)

∫ t

0

Ωr(s)ds,

θ̇r = Ωr,

(5.25)

ignoring the free wave homogeneous contribution.
We linearize the system about the relative equilibrium ze ∈ so(3)× T (T2), where

ze = ((0, 0, ω), (0, 0), (0, 0)). We have the following integral equation in terms of

Q =
[
r q p

]T
, with r = δΩ, q = M−1δθr, and p = δΩr:

Q̇ =


 −L−1

µ Aµ 0 −L−1
µ CM−1

0 0 M−1

−CTL−1
µ Aµ −V + κ2

2mc (Ilock − Irotor)
−1Ones(3)

∫ t

0
M · ds −S̃M−1


Q,

(5.26)

where

Lµ =

[
0 − 1

ω
1
ω 0

]
, Aµ =

[
B3−B1

A2
0

0 B3−B2

A1

]
,

M−1 =

[
J1
1

A2
0

0
J2
2

A1

]
, S̃ =

[
0 ω
−ω 0

]
,

C = −I, V = 0.

(5.27)
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Differentiating the system, we reduce the integrodifferential equation into a standard
ordinary differential equation,

d

dt



ṙ
q
q̇
ṗ


 =




−L−1
µ Aµ 0 0 −L−1

µ CM−1

0 0 I 0
0 0 0 M−1

−CTL−1
µ Aµ

κ2

2mc (Ilock − Irotor)
−1Ones(3)M −V −S̃M−1





ṙ
q
q̇
ṗ


 .

(5.28)

Implicitly, we define the matrix W as

d

dt



r
q
q̇
ṗ


 = W



r
q
q̇
ṗ


 .(5.29)

We can clearly see that the diagonal in W is zero; thus the sum of the eigenvalues
is zero. To show instability we need only show that there exists an eigenvalue with
nonzero real part. We can also see that the matrix W is rank 5 under the generic
condition

ω2κ2
(
A1(B2 −B3)(B3 −B2 + J1

1 ) + A + 2(B1 −B3)(B3 −B2 + J2
2 )
)
�= 0.(5.30)

Generically, W has an odd number of nonzero eigenvalues. The matrix W has real
entries, so the complex eigenvalues come in conjugate pairs. There must exist a real
nonzero eigenvalue. Thus, our system becomes unstable.

We have presented only one example of the nonabelian coupling, but the insta-
bility is completely analogous to the abelian or Chetaev case. We plan to address the
general instability of the nonabelian case in future research.

6. Conclusion. We have presented several mechanisms through which internal
energy transfer may destabilize a system. One such mechanism models radiation
damping, or energy transfer from a finite dimensional subsystem to an infinite dimen-
sional subsystem.

We have generalized the Lamb model of an oscillator coupled to a wave equation
to include coupling of Chetaev systems. For gyroscopic Lamb coupling, energy is
transferred from the oscillator into the wave field, inducing instability. The radiation
induced instability is analogous to dissipation induced instability studied in [5]. When
we include dispersion in the gyroscopic Lamb model, there is effectively a stabilizing
shift in the potential of the oscillator to balance the damping term.

Similarly to the gyroscopic Lamb model, the wave field coupling can exhibit radi-
ation induced instability. In contrast to the Lamb model, the wave field coupling to an
oscillator does not rely on boundary constraints as a mechanism for energy transfer.
We investigate a local coupling whose interaction with an oscillator depends on the
strength of the field at a point. While the gyroscopic Lamb model induces instability
in gyroscopically stabilized oscillators, the wave field coupling induces instability in
all oscillators. For large dispersion, the mechanical system has restricted access to
low frequency wave modes, allowing a band of stable coupling parameters to exist.
Furthermore, largely dispersive wave field coupling also shifts the potential to allow
even unstable oscillators to be stabilized.

In addition to dispersive and nondispersive wave equations, future research plans
include investigating the stability of the beam equation coupled to a rigid body. This
is of particular interest in modeling antennae on satellites.
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Another avenue of research includes coupling multiple oscillators through a wave
equation or a beam equation. It might be possible to tune the system so as to trap
energy between the oscillators. We can further extend the model to describe a lattice
of nonlinear, coupled oscillators, such as the Toda lattice, via an infinite dimensional
system.

Appendix A. Spherical pendulum. In this section, we derive the linearized
equations of motion for the whirling spherical pendulum about the inverted equilib-
rium.

Consider a rigid spherical pendulum moving in a constant gravitational field. Let
θ, φ, and r be the standard spherical coordinates for the pendulum.

We compute the equations of motion in a rotating frame. Since our pendulum is
rigid, r is constant. The Lagrangian is

L(q, q̇) =
1

2
m‖q̇‖2 − U(q) =

1

2
m(r2θ̇2 + r2 sin2 θφ̇2)−mg cos θ.(A.1)

The Euler–Lagrange equation of motion are

mr2θ̈ −mr2φ̇2 sin θ cos θ −mg sin θ = 0,(A.2)

mr2(sin2 θφ̈ + 2 sin θ cos θφ̇θ̇) = 0.(A.3)

Expanding the Lagrangian about θ = π, the stable equilibrium, and keeping terms to
second order in θ yields the following Lagrangian:

L(θ, φ, θ̇, φ̇) =
1

2
m(r2θ̇2 + r2θ2φ̇2) + mg

(
1− 1

2
θ2

)
,(A.4)

with Euler–Lagrange equations of motion

mr2θ̈ −mr2φ̇2θ + mgθ = 0,(A.5)

mr2(θ2φ̈ + 2θφ̇θ̇) = 0.(A.6)

In a rotating coordinate system, we make the change of variables x = rθ cos(φ−ψ),
y = rθ sin(φ − ψ), where ψ is the angle of rotation. Let the angular velocity ω = ψ̇
be constant. In the new coordinates the Lagrangian becomes

L(x, y, ẋ, ẏ) =
1

2
m((ẋ− ωy)2 + (ẏ + ωx)2) + mg

(
1− x2 + y2

2

)
.(A.7)

Our linearized equations of motion are

ẍ− 2ωẏ + (g − ω2)x = 0,(A.8)

ÿ + 2ωẋ + (g − ω2)y = 0.(A.9)

We now physically motivate the rotating frame by modeling a rotor, with moment
of inertia I, which rotates the pendulum. The Lagrangian is as follows:

L(θ, φ, θ̇, φ̇) =
1

2
m(r2θ̇2 + r2 sin2 θφ̇2)−mg cos θ +

1

2
Iω2.(A.10)

The Euler–Lagrange equations of motion remain unchanged with an additional equa-
tion:

mr2θ̈ −mr2φ̇2 sin θ cos θ −mg sin θ = 0,(A.11)

mr2(sin2 θφ̈ + 2 sin θ cos θφ̇θ̇) = 0,(A.12)

ω̇ = 0.(A.13)
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Without a coupling term, a rotating frame is indistinguishable from the inertial frame.
The linearization remains identical.

We now wish to stabilize the inverted equilibrium by creating a restoring potential
that breaks the symmetry of the motion of the pendulum. Imagine the pendulum with
the pivot at the origin. Assume there is an asymmetric potential within the sphere.
In particular, we have a potential V dependent on θ and φ−ψ, where ψ is the angle of
equatorial rotation of the spherical shell and φ is the standard angle of the pendulum.

Assuming that the rotor that is spinning the spherical shell is rotating with a
constant angular velocity ω, we compute the Lagrangian

L(θ, φ, θ̇, φ̇) =
1

2
m(r2θ̇2 + r2 sin2 θφ̇2)−mg cos θ − V (θ, φ− ωt).(A.14)

The Euler–Lagrange equations of motion are

mr2θ̈ −mr2φ̇2 sin θ cos θ −mg sin θ +
∂V (θ, φ− ωt)

∂θ
= 0,

mr2(sin2 θφ̈ + 2 sin θ cos θφ̇θ̇) +
∂V (θ, φ− ωt)

∂φ
= 0.

(A.15)

We work out the equations of motion for an explicit asymmetric potential V :

V (θ, φ− ψ) = −mr2 sin2 θ

2
(α cos2(φ− ψ) + β sin2(φ− ψ)).(A.16)

Expanding the Lagrangian about the inverted equilibrium θ = π, and in the rotating
coordinate system, we have x = rθ cos(φ− ψ), y = rθ sin(φ− ψ), and

L =
1

2
m((ẋ− ωy)2 + (ẏ + ωx)2) + mg

(
1− x2 + y2

2

)
+

m

2
(αx2 + βy2).(A.17)

Our linearized equations of motion are

ẍ− 2ωẏ + (g − ω2 − α)x = 0,(A.18)

ÿ + 2ωẋ + (g − ω2 − β)y = 0.(A.19)

We would like to perturb the motion of the spherical pendulum by coupling it to
a magnetic field.

Let B be a divergence-free vector field. Let A be the vector potential, B = ∇×A.
Note if B is a constant magnetic field, we can choose A = 1

2B× q.
Assume the bob on a spherical pendulum has a charge e and mass m. The

Lagrangian, as a function from TS2 to R, is

L(q, q̇) =
1

2
m‖q̇‖2 +

e

c
A · q̇− U(q)(A.20)

=
1

2
m(r2θ̇2 + r2 sin2 θφ̇2)−mg cos θ +

e

c
A · q̇.(A.21)

We now assume that the magnetic field B is constant, parallel to the gravitational
field. The Lagrangian becomes

L(θ, φ, θ̇, φ̇) =
1

2
m(r2θ̇2 + r2 sin2 θφ̇2)−mg cos θ +

e

2c
Bφ̇r2 sin2 θ.(A.22)
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The Euler–Lagrange equations are

mr2θ̈ −mr2 sin θ cos θφ̇2 −mg sin θ − e

c
Bφ̇r2 sin θ cos θ = 0,(A.23)

mr2 sin2 θφ̈ + mr2θ̇ sin θ cos θ

(
φ̇ +

eB

2mc

)
= 0.(A.24)

We expand the Lagrangian about θ = π and keep terms to second order in θ. In the
coordinates x = rθ cos(φ− ψ), y = rθ sin(φ− ψ), we have the Lagrangian

L =
1

2
m((ẋ− ωy)2 + (ẏ + ωx)2) + mg − mg + eBω

c

2
(x2 + y2) +

eB

2c
(xẏ − yẋ).

(A.25)

The angular velocity of rotation ω is constant; hence the Euler–Lagrange equations
follow

ẍ−
(
2ω +

eB

mc

)
ẏ +

(
g − eBω

mc
− ω2

)
x = 0,(A.26)

ÿ +

(
2ω +

eB

mc

)
ẋ +

(
g − eBω

mc
− ω2

)
y = 0.(A.27)

Similarly, linearization about the inverted equilibrium yields the following equations
of motion:

ẍ−
(
2ω +

eB

mc

)
ẏ −

(
g +

eBω

mc
+ ω2

)
x = 0,(A.28)

ÿ +

(
2ω +

eB

mc

)
ẋ−

(
g +

eBω

mc
+ ω2

)
y = 0.(A.29)

We can increase the magnetic field to gyroscopically stabilize the inverted equilibrium.

Explicitly, for B2 ≥ 4gm2c2

e2 , the inverted equilibrium is gyroscopically stabilized.

Appendix B. Network theory. It is also of interest to discuss the linked
Chetaev system and the wave equation from the point of view of network theory and
linear systems theory. As have seen, the wave coupling induces instability. It is of
interest (see [3]) to analyze infinite dimensional systems from the point of view of
systems theory and, in particular, to understand asymptotic stability or instability.
One problem of interest is the Darlington synthesis problem (see, e.g., [7], [17] and
references therein), where one shows that one can realize any positive real transfer
functions by terminating a lossless two port by a 1-ohm resistor. One can then extend
this to the infinite dimensional Hamiltonian setting by terminating by an infinite
transmission line.

The situation here is somewhat different but related: In particular, we view the
Chetaev system as a two port connected to a wave system with integral coupling.
The previous calculations show that this system can be reduced to a two port with
integral feedback.

Consider the two-degree-of-freedom Chetaev system with inputs:

ẍ−Bẏ + αx = ux,

ÿ + Bẋ + βy = uy.
(B.1)
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Without coupling, we can think of this system as a linear four dimensional first
order system with two inputs ux and uy (to be determined) and two outputs x and
y. This makes the Chetaev system a classical two port.

We can also think of the wave field as a first order system:

∂

∂t
w = Aw,(B.2)

where w = [w, ẇ]T and

A =

[
0 1

m2 + c2 ∂2

∂ξ2 0

]
.

We think of the input as the second variable ẇ.
With the integral coupling, we connect the finite and the infinite systems through

their inputs. Equivalently, the Chetaev system is given dynamical feedback through
the wave equation. In this context, the reduced system in each type of coupling (3.35
and 4.42) becomes a first order system with integral feedback. Moreover, the integral
feedback affects the Chetaev system in a not-necessarily-Hamiltonian fashion: as we
have seen we may have only one unstable eigenvalue.

We remark also that instead of the mechanical systems discussed here we can
physically realize the Chetaev system via coupled LC-circuits. The discussion also
extends essentially without change to the n port case.

Appendix C. Bessel functions. In this appendix, we explicitly derive the
integral formula

2

∫ ∞

m

sinωs

c
√
ω2 −m2

dω =
π

c
J0(ms),(C.1)

where J0 is the Bessel function of the first kind.
Let us begin by taking the Laplace transform, denoted L[·], with respect to s of

the right-hand side of equation (C.1),

L
[
2

∫ ∞

m

sinωs

c
√
ω2 −m2

dω
]
= 2

∫ ∞

0

∫ ∞

m

sinωs

c
√
ω2 −m2

e−szdωds,(C.2)

provided Re(z) > 0. Integrating with respect to s, we have∫
e−sz sinωs ds = −esz ω cosωz + z sinωs

ω2 + z2
(C.3)

and

L
[
2

∫ ∞

m

sinωs

c
√
ω2 −m2

dω
]
= 2

∫ ∞

m

w

c
√
ω2 −m2(ω2 + z2)

dω.(C.4)

With an appropriate substitution, we use the integral

∫
w√

ω2 −m2(ω2 + z2)
dω =

arctan
(√

ω2−m2√
m2+z2

)
√
m2 + z2

(C.5)
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to finish computing the Laplace transform:

L
[
2

∫ ∞

m

sinωs

c
√
ω2 −m2

dω
]
=

π

c
√
m2 + z2

.(C.6)

To finish deriving (C.1), we need only compute the Laplace transform of J0(s). This
computation can be done explicitly with contour integration (see [9]); however, we
present a more dynamic approach. From the Bessel differential equation, of which
J0(s) is a solution, we have

sJ ′′
0 (s) + J ′

0(s) + sJ0(s) = 0, J0(0) = 1, J ′
0(0) = 0,

∫ ∞

0

J0(s)ds = 1.

(C.7)

Taking the Laplace transform of the differential equation, we obtain

− d

dz

(
z2L

[
J0

]
− J ′

0(0)− zJ0(0)
)

+ zL
[
J0

]
− J0(0)− d

dz
L
[
J0

]
= 0.(C.8)

We solve the above differential equation, with the initial condition L[J0](0) =
∫∞
0

J0(s)ds
= 1, to get

L
[
J0

]
=

1√
1 + z2

.(C.9)

A change of variables produces the desired result,

L
[π
c
J0(ms)

]
=

π

c
√
m2 + z2

.(C.10)
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Abstract. We consider the inverse diffraction problem to recover a two-dimensional periodic
structure from scattered waves measured above and beneath the structure. The task is reformulated
in the form of an optimization problem including special regularization terms. The solvability and
the dependence on the parameter of regularization is analyzed. Numerical results for synthetic data
demonstrate the practicability of the inversion algorithm.

Key words. diffraction grating, profile reconstruction, optimization method, conjugate gradient
algorithm
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1. Introduction. The scattering theory in periodic structures has many appli-
cations in micro-optics, where periodic structures are often called diffraction gratings
(cf. [21] for an introduction to the direct problem). The treatment of the inverse
problem, recovering the periodic structure or the shape of the grating profile from
the scattered field, is useful, e.g., in quality control and design of diffractive elements
with prescribed far field patterns (see [5], [22]).

Various methods for the computation of the grating profile curve of perfectly
conducting gratings have been proposed by Ito and Reitich [14], Arens and Kirsch
[3], Hettlich [18], Bruckner, Elschner, and Yamamoto [8], and Bruckner and Elschner
[7]. Chandezon, Poyedinchuk, and Yashina [9] propose an algorithm for the determi-
nation of the interface separating dielectric substrate and superstrate materials. We
follow the technique of [8] (cf. [11, section 5.4] for the original algorithms applied to
obstacle scattering). However, we consider reflection by and transition through grat-
ings described by general material dependent wave number functions and replace the
boundary integral approach of [8] by a finite element algorithm (cf. [1] for a similar
finite element optimization of a different functional over a set of transition curves).
A related nonperiodic inverse scattering problem has been studied by Angell, Hsiao,
and Wen [2] using a similar optimization procedure based upon a domain integral
representation.

To be more precise, we start with a short introduction to the direct problem of
diffraction by gratings in section 2. The (transverse electric) TE component of the
electric field of the time-harmonic light wave is the solution of a two-dimensional
Helmholtz equation over the cross section of the grating device. We recall the varia-
tional formulation corresponding to the coupling of differential and boundary integral
representations and define the Rayleigh coefficients of the Helmholtz solution. These
correspond to the portion of light and the phase shift of the reflected and transmitted
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modes. In section 3 we introduce the inverse problem. From measured Rayleigh co-
efficients for several incidence directions, we wish to reconstruct the grating, i.e., the
wave number distribution over the grating cross section. The solution is obtained as
the minimizer of an optimization problem, where the objective function consists of
three terms. The first is the residual of the Helmholtz equation, the second the devi-
ation of the computed Rayleigh coefficients from the measured data, and the third is
a regularization term to cope with the ill-posedness of the inverse problem. We show
the existence of minimizers and prove the convergence of these minimizers to the true
solution if the regularization parameter tends to zero. Section 4 is devoted to the finite
element discretization of the Helmholtz equation, and section 5 to the discretization
of the optimization problem. For the solution of the finite-dimensional optimization
problem we propose the conjugate gradient algorithm of Fletcher, Reeves, Polak, and
Ribière (cf., e.g., [20]). In the last section we present numerical experiments. In
particular, we compare the conjugate gradient algorithm with an SQP method.

Finally, we remark that the proposed treatment of the inverse problem is a first
theoretical approach. Due to the severe ill-posedness of the problem, the accuracy
of the reconstruction cannot be satisfactory for realistic applications. For better
approximations the class of admissible gratings must be restricted in accordance with
the technical requirements.

2. The direct problem. Consider an ideal optical grating (cf. the cross section
in Figure 2.1). This is an ideal infinite plate in three-dimensional space covering a
half space filled by a substrate material. The plate consists of different materials.
Moreover, the materials are disposed in such a manner that the material does not
change in one of the two directions parallel to the plane of the plate. With respect
to the other direction parallel to the plane, the material distribution is supposed to
be periodic with period d. The materials are nonmagnetic with the permeability µ0

and have the dielectric constants ε. The coordinate system is chosen such that the x2

axis is perpendicular to the plane of the grating, such that the material distribution
together with the resulting diffraction solution is invariant in the x3 direction, and such
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Fig. 2.1. Cross section of grating.
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that the x1 axis is parallel to the plane of the grating. Thus the materials of the
problem are determined by the function ε(x1, x2), which is d-periodic in x1. Due
to the invariance with respect to x3, it is sufficient to consider the electromagnetic
fields restricted to the plane spanned by the x1 and x2 axes. More precisely, we
introduce two artificial boundaries Γ± := {(x1, x2) : x2 = b±} forming the upper and
lower bounds of the cross section of the grating structure, respectively, and denote
by Ω the rectangle (0, d)× (b−, b+), which covers one period of the cross section. We
assume that the material above Γ+ and below Γ− is homogeneous with ε = ε+ > 0
and ε = ε−, respectively. Between Γ+ and Γ− the material may be inhomogeneous,
and we assume that the function ε is piecewise continuous. Further, we introduce
the wave number function k = k(x1, x2) := ω

√
µ0ε and k± := ω

√
µ0ε± with ω the

angular frequency of the incident light wave. Thus the wave can be described by a
time independent factor times exp(−iωt). We suppose that

k+ > 0, �e k− > 0, �m k− ≥ 0, �e k(x1, x2) > 0, �m k(x1, x2) ≥ 0.(2.1)

Moreover, we suppose that there exists b±1 with b− < b−1 < b+1 < b+ such that
k|Ω± ≡ k± for Ω− := (0, d)× (b−, b−1 ) and Ω+ := (0, d)× (b+1 , b

+).
Assume that an incoming plane wave is incident in the (x1, x2)-plane upon the

grating from the top with the angle of incidence θ ∈ (−π/2, π/2). Then the electro-
magnetic field does not depend on x3. For simplicity, we restrict ourselves to the case
of TE polarization, i.e., the electric field E is supposed to remain parallel to the x3 axis
(to the grooves) and is therefore determined by a single scalar quantity v = v(x1, x2)
(the transverse component of E). Due to our special geometry, Maxwell’s equations
for the electric and magnetic field reduce to a single equation for v. The function v
satisfies the two-dimensional Helmholtz equation

∆v + k2v = 0(2.2)

in the regions with continuous permittivity ε. In the infinite regions the usual outgoing
wave conditions are required. At the material interfaces the solutions are subjected
to the transmission conditions, i.e., the solution v and its normal derivative ∂nv have
to cross the interface continuously.

The diffraction problems admit variational formulations in the bounded periodic
cell Ω which were introduced in [23, 6, 5, 15]. The incoming wave has the form
vi(x1, x2) = exp(iαx1 − iβx2), where α = k+ sin θ, β = k+ cos θ. If we define the
function u(x1, x2) := v(x1, x2) exp(−iαx1), then u can be shown to be d-periodic,
and the diffraction problem for TE polarization can be transformed to a variational
problem for u in the rectangle Ω. In fact, multiplying the differential equation (2.2)
by some smooth function, applying Green’s formula, and taking into account the
transmission conditions at the material interfaces and the outgoing wave condition on
Γ±, it can be shown (cf. [23, 5, 12]) that the diffraction problem for TE polarization
is equivalent to the variational equation

BTE(u, ϕ) :=
∫

Ω

∇αu · ∇αϕ−
∫

Ω

k2 u ϕ̄+

∫
Γ+

(T+
α u) ϕ̄+

∫
Γ−

(T−
α u) ϕ̄

= −
∫

Γ+

2iβ exp(−iβb+) ϕ̄(2.3)

for all ϕ, where ∇α = (∂x1,α, ∂x2) := ∇+ i(α, 0) and T±
α are the usual hypersingular

Dirichlet-to-Neumann maps for the solution in the outer domain. In particular, the
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functions T±
α u are defined on Γ± as

(T±
α u)(x1, b

±) := −
∞∑

n=−∞
iβ±
n û

±
n exp(inKx1),(2.4)

where K := 2π/d, and û±n denote the Fourier coefficients of u(x1, b
±):

û±n :=
1

d

∫ d

0

u(x1, b
±) exp(−inKx1) dx1.

The numbers β±
n are defined as

β±
n = β±

n (α) :=
√
(k±)2 − α2

n, 0 ≤ arg β±
n < π,

where as usual αn := α + nK and k± = k±(x1, b
±). Note that any solution of (2.3)

satisfies on Γ± the nonlocal boundary conditions

∂nu|Γ+ + T+
α u|Γ+ = −2iβ exp(−iβb+), ∂nu|Γ− + T−

α u|Γ− = 0.(2.5)

The variational equation (2.3) should be satisfied for all test functions ϕ ∈
H1
per(Ω), that is, the function space of all complex-valued functions ϕ which are d-

periodic in x1 and which together with their first-order partial derivatives are square
integrable in Ω (cf. [10] for the variational approach to classical elliptic boundary
value problems).

The variational formulation (2.3) is very useful, because the transmission and
outgoing wave conditions are enforced implicitly, and it allows us to seek the solution
in the function space H1

per(Ω), which is natural for second-order partial differential
equations on nonsmooth domains. Here one can apply well-established methods for
the analysis and numerical solution of the diffraction problems.

Theorem 2.1 (cf., e.g., [12]). Suppose that k satisfies condition (2.1). Then the
sesquilinear form BTE is strongly elliptic over H1

per(Ω).
We recall that a bounded sesquilinear form BTE(·, ·) given on the Hilbert space

H1
per(Ω) is called strongly elliptic if there exist a complex number φ, |φ| = 1, a

constant c > 0, and a compact form Q(·, ·) such that

�eBTE(φu, u) ≥ c‖u‖2X −Q(u, u) ∀ u ∈ H1
per(Ω).

As usual, the sesquilinear form BTE corresponds to a bounded linear operator B
mapping H1

per(Ω) into its dual H1
per(Ω)

′ via BTE(u, v) = 〈Bu, v〉, u, v ∈ H1
per(Ω).

According to the proof of the last theorem (cf. [12]), the bilinear form BTE splits into
the compact form Ck(u, v) := −k2

∫
Ω
uv, a strongly elliptic form P with P(u, u) ≥

c‖u‖2H1
per(Ω) and constant c > 0, and a finite-dimensional form T . Correspondingly,

we get B = P +T +Ck with 〈Pu, u〉 ≥ c‖u‖2H1
per(Ω), with finite range operator T , and

with compact Ck. From this splitting we infer that B is a Fredholm operator of index
zero. Thus the strong ellipticity is the basis for proving the invertibility of operator
B under additional conditions.

We write B = B(k, θ) to indicate the dependence of B on the wave number
function k and on the incidence angle θ. The variational equation (2.3) is equivalent
to the operator equation B(k, θ)u = w with w ∈ H1

per(Ω)
′. Here 〈w,ϕ〉, i.e., the

functional w applied to ϕ ∈ H1
per(Ω) is defined by the right-hand side of (2.3). The

operator B(k, θ) is a second-order differential operator. To get an equation with a
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well-conditioned operator acting in the single space H1
per(Ω), we multiply the equation

by the inverse of B̃(θ) := B(k̃, θ) with a fixed simple wave number function k̃. Thus

(2.3) is equivalent to [B̃(θ)−1B(k, θ)]u = B̃(θ)−1w.

The invertibility of the operators B̃(θ) and B(k, θ) will be supposed in the fol-
lowing. Partial results on this are reported, e.g., in [23, 5, 12]. Here we give only a
stability result with respect to the wave number function.

Theorem 2.2. Suppose that the squared wave number functions k2
n form a weakly

convergent sequence in the space L2(Ω). (Note that the squared wave number function
enters linearly into the scene.) If B(k0, θ) is the operator defined with k0 such that
k2
0 is the weak limit of the k2

n and if this B(k0, θ) is invertible, then there exist an
integer n0 > 0 and a real c > 0 such that ‖B(kn, θ)u‖H1

per(Ω)′ ≥ c‖u‖H1
per(Ω) for any

u ∈ H1
per(Ω) and n ≥ n0. Since the B(kn, θ) are Fredholm operators with index zero,

the last estimate implies the invertibility of B(kn, θ) if n ≥ n0.
Proof. If the theorem were not true, then there is a sequence {un} ⊂ H1

per(Ω) such
that ‖un‖H1

per(Ω) = 1 and ‖B(kn, θ)un‖H1
per(Ω)′ → 0. Then, without loss of generality,

we may suppose that un tends weakly to u0 in H1
per(Ω). Hence, ‖un − u0‖Lp(Ω) →

0 for any p with 1 ≤ p < ∞ . From the weak convergence of un we infer the
weak convergence in H1

per(Ω)
′ of [P + T ]un ⇀ [P + T ]u0. Indeed, Tun → Tu0 and

〈Pun, ϕ〉 = 〈un, P ′ϕ〉 → 〈u0, P
′ϕ〉 = 〈Pu0, ϕ〉 for all ϕ ∈ H1

per(Ω).
Furthermore, since ‖un − u0‖Lp(Ω) → 0 for any p < ∞, we obtain the relation

‖unϕ − u0ϕ‖L2(Ω) → 0 for any ϕ ∈ H1
per(Ω). Hence, Ck(un, ϕ) = − ∫

Ω
k2
nunϕ →

− ∫
Ω
k2
0u0ϕ. Together with the weak convergence [P + T ]un ⇀ [P + T ]u0, we have

B(kn, θ)un ⇀ B(k0, θ)u0. This implies B(k0, θ)u0 = 0 and u0 = 0. Consequently,
Cknun → 0 and Tun → 0 together with ‖B(kn, θ)un‖H1

per(Ω)′ → 0 yield Pun → 0,

which contradicts 〈Pun, un〉 ≥ c‖un‖2H1
per(Ω) = 1.

Note that any periodic solution of (2.3) can be represented as a Fourier series on
Γ±, i.e.,

u(x1, b
+) =

∞∑
n=−∞

A+
n exp(iβ+

n b
+) exp(inKx1) + exp(−iβb+),

u(x1, b
−) =

∞∑
n=−∞

A−
n exp(−iβ−

n b
−) exp(inKx1)

(2.6)

for suitable coefficients A±
n . It is not hard to see that the extensions of these series

multiplied by the factor exp(iαx1) (recall that v(x1, x2) = u(x1, x2) exp(iαx1)),

∞∑
n=−∞

A±
n exp(±iβ±

n x2) exp(i[α+ n]Kx1), x2
>
< b±,(2.7)

define solutions of the Helmholtz equation satisfying the outgoing wave condition.
The coefficients A±

n in the expansion (2.7) are called Rayleigh coefficients. The most
interesting are those with n ∈ U±,

U± :=

{
{n ∈ Z : |n+ α| < k±} if �m k± = 0,

∅ if �m k± > 0.

Indeed, these coefficients A±
n describe the magnitude and the phase shift of those
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terms A±
n exp(i[α+ n]Kx1) exp(±iβ±

n x2) in the representation of u(x1, x2) exp(iαx1)
for x2 <

> b±, which correspond to propagating plane waves. The terms with n �∈ U±

lead to evanescent waves only. Hence, the A±
n with n ∈ U± can be considered to be the

far field data of the diffraction problems at optical gratings. The optical efficiencies
of the grating are defined by

e±n := (β±
n /β)|A±

n |2, (n,±) ∈ U∗ :=
{
(n,+) : n ∈ U+

} ∪ {(n,−) : n ∈ U−} ,(2.8)

which is the ratio of the energy of the nth propagating mode to the energy of the
incident wave.

Restricting the solution Ω  (x1, x2) !→ u(k, θ)(x1, x2) to Γ
±, we get the Rayleigh

coefficients A±
n by computing the Fourier coefficients according to (2.6). The linear

operator of restricting u to Γ± and of computing the Rayleigh coefficients A±
n will be

denoted by F (θ), i.e.,

A :=
(
A±
n

)
(n,±)∈U∗ = F (θ) u+Ai,

Ai :=
(− exp(−iβb+)δ(n,±),(0,+)

)
(n,±)∈U∗ .

If the refractive indices of the cover material above the grating and the substrate
material beneath the grating are fixed, then the operator F (θ) is independent of the
function k inside the grating.

3. The inverse problem. For the inverse problem, we suppose that the dis-
tribution of the material in the grating between the lines {(x1, b

+
1 ) : 0 < x1 < d}

and {(x1, b
−
1 ) : 0 < x1 < d} is unknown. In other words, our task is to deter-

mine the unknown function k(x1, x2) for b−1 < x2 < b+1 . To get this, we illumi-
nate the grating by plane waves vi(x1, x2) = exp(ik+ sinθ x1 − ik+ cosθ x2) under
the incident angles θ = θl, l = 1, . . . , L, and measure the Rayleigh coefficients
A±
meas,n(θl) for (n,±) ∈ U∗ = U∗(θl) and for each angle θl, l = 1, . . . , L. We

seek a material distribution and the corresponding wave number function k(x1, x2)
such that the Rayleigh coefficients A±

n = A±
n (k, θl), obtained by solving the vari-

ational equation (2.3) with respect to u(x1, x2) = u(k, θl)(x1, x2) and by comput-
ing the Fourier coefficients A±

n (k, θl) of u|Γ± according to (2.6), coincide with the
measured data A±

meas,n(θl) for (n,±) ∈ U∗(θl) and l = 1, . . . , L. In other words,
we seek an unknown squared wave number function k2 and the corresponding so-
lutions u(k, θl) from [B̃(θ1)

−1B(k, θl)]u(k, θl) = B̃(θ1)
−1w(θl) such that the com-

puted Rayleigh coefficients A(θl) = F (θl)u(k, θl) +A
i(θl) coincide with the measured

Ameas(θl) := (A±
meas,n(θl))(n,±)∈U∗(θl). Expressing our objective in formulae, we seek

k2 and ul = u(k, θl) such that

L∑
l=1

∥∥∥[B̃(θ1)−1B(k, θl)
]
ul − B̃(θ1)−1wl

∥∥∥2
L2(Ω)

= 0,

L∑
l=1

∥∥[F (θl) ul +Ai(θl)
]−Ameas(θl)

∥∥2
�2

C
(U∗(θl))

= 0.

Here wl = w(θl) stands for the right-hand-side functional in (2.3) with θ replaced by
θl. The symbol )2

C
(U∗(θl)) denotes the complex Euclidean space of vectors over the

index set U∗(θl).
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The operator F (θl) is smoothing and the equation F (θl)ul = A(θl) − Ai(θl) is
severely ill-posed. To cope with measurement errors in the values of Ameas(θl) we
need a regularization, i.e., we try to find solutions k2 and ul such that the left-hand
sides of the last two equations are small and that, simultaneously, the solution is
relatively smooth. Relatively smooth means that the H1

per Sobolev norms of ul and

the H
1/2
per Sobolev norm of k2 do not blow up. This will be helpful also if the solution

should not be unique. Finally, we define the nonlinear objective functional

F (k2, u1, . . . , uL; γ
)
:=

L∑
l=1

∥∥∥B̃(θ1)−1B(k, θl)ul − B̃(θ1)−1wl

∥∥∥2
L2(Ω)

L∑
l=1

∥∥∥B̃(θ1)−1wl

∥∥∥2
L2(Ω)

+ cd

L∑
l=1

∥∥[F (θl) ul +Ai(θl)
]−Ameas(θl)

∥∥2
�2

C
(U∗(θl))

L∑
l=1

‖Ameas(θl)‖2�2
C
(U∗(θl))

+ cvγ
∥∥k2
∥∥2
H

1/2
per (Ω)

+ csγ

L∑
l=1

‖ul‖2H1
per(Ω) .(3.1)

Here cd, cv, and cs denote appropriate equilibration constants which are to be de-
termined by numerical experiments. At first glance, one might think that the last
regularization term in (3.1) is unnecessary. Indeed, the first term containing the con-
straint condition forces ul to have a bounded L2 norm. Unfortunately, our proof
heavily relies on the boundedness of the stronger H1 norm. In our numerical exper-
iments (cf. section 6), we have tested various choices of cs. We have found that a
certain small csγ leads to better results than cs = 0. The number γ is a small positive
regularization parameter which is to be chosen in dependence on the measurement
error. Using the functional F , we finally arrive at the optimization problem

F (k2, u1, . . . , uL; γ
) −→ min,(3.2)

with k2 ∈ H1/2
per (Ω),

ul ∈ H1
per(Ω), l = 1, . . . , L.

This optimization problem will be discretized and solved numerically in the subsequent
sections. For its solvability and its connection to the exact inverse problem, we get
the following two theorems.

Theorem 3.1. For any fixed positive regularization parameter γ, there exists a
minimizer {k2

0, ul,0, l = 1, . . . , L} of the optimization problem (3.2).
Proof. Suppose {k2

n, ul,n, l = 1, . . . , L}n∈N is a minimizing sequence. Without

loss of generality we may suppose k2
n ⇀ k2

0 in H
1/2
per (Ω), k2

n → k2
0 in L2(Ω), and ul,n ⇀

ul,0 weakly in H1
per(Ω) since ‖k2

n‖H1/2
per (Ω)

and ‖ul,n‖H1
per(Ω) are trivially bounded.

Similarly to the proof of Theorem 2.2, we conclude B(kn, θl)ul,n ⇀ B(k0, θl)ul,0
weakly in H1

per(Ω)
′, and thus B̃(θ1)

−1B(kn, θl)ul,n ⇀ B̃(θ1)
−1B(k0, θl)ul,0 weakly

in H1
per(Ω). Hence, B̃(θ1)

−1B(kn, θl)ul,n → B̃(θ1)
−1B(k0, θl)ul,0 strongly in L2(Ω).

Moreover, ul,n ⇀ ul,0 implies that ul,n|Γ± → ul,0|Γ± strongly in L2(Γ±) and the



532 J. ELSCHNER, G. C. HSIAO, AND A. RATHSFELD

strong convergence F (θl)ul,n → F (θl)ul,0. In other words, the first two terms in the
objective functionals converge, and the limit relations for weakly convergent sequences
‖ul,n‖H1

per(Ω) ≤ lim inf ‖ul,n‖H1
per(Ω) and ‖k2

0‖H1/2
per (Ω)

≤ lim inf ‖k2
n‖H1/2

per (Ω)
lead us to

the upper estimate F(k2
0, u1,0, . . . , uL,0; γ) ≤ lim inf F(k2

n, u1,n, . . . , uL,n; γ). Since
{k2

n, ul,n, l = 1, . . . , L}n∈N is a minimizing sequence, we conclude that the value
F(k2

0, u1,0, . . . , uL,0; γ) is the attained minimum.
Theorem 3.2. Suppose that, for the given data Ameas(θ1), . . . , Ameas(θL), there

exists a wave number function k2
∗ ∈ H1/2

per (Ω) such that the Rayleigh coefficients corre-
sponding to k∗ exactly match the values Ameas(θ1), . . . , Ameas(θL), i.e., F (θl)u(k∗, θl)+
Ai(θl) = Ameas(θl) for the solutions u(k∗, θl) of B(k∗, θl)u(k∗, θl) = wl. Further
suppose 0 < γm → 0 and that {k2

m, ul,m, l = 1, . . . , L} is a minimizer of the

functional F(. . . ; γm). Then there exists a k2
0 ∈ H

1/2
per (Ω) and a subsequence of

{k2
m}m∈N converging to k2

0 weakly in H
1/2
per (Ω) and strongly in L2(Ω). The corre-

sponding solutions u(k0, θl) of the variational equations (cf. (2.3)) or equivalently of
B(k0, θl)u(k0, θl) = wl satisfy F (θl)u(k0, θl)+A

i(θl) = Ameas(θl); i.e., their Rayleigh
coefficients coincide with the measured data Ameas(θl) for l = 1, . . . , L.

Proof. From our assumption on the existence of k∗ and from

cvγm
∥∥k2

m

∥∥2
H

1/2
per (Ω)

+ csγm

L∑
l=1

‖ul,m‖2H1
per(Ω) ≤ F (k2

m, u1,m, . . . , uL,m; γm
)

≤ F (k2
∗, u(k∗, θ1), . . . , u(k∗, θL); γm

)
= cvγm

∥∥k2
∗
∥∥2
H

1/2
per (Ω)

(3.3)

+ csγm

L∑
l=1

‖u(k∗, θ1)‖2H1
per(Ω) −→ 0,

we obtain the uniform boundedness of ‖k2
m‖H1/2

per (Ω)
and ‖ul,m‖H1

per(Ω). Therefore, we

can switch to weakly convergent subsequences. Without loss of generality suppose
that k2

m and ul,m converge weakly in the corresponding Sobolev spaces. Repeating
the arguments of the proof to Theorem 3.1 and using (3.3) leads to

F (k2
m, u1,m, . . . , uL,m; γm

) −→
L∑
l=1

∥∥∥B̃(θ1)−1B(k0, θl)ul,0 − B̃(θ1)−1wl

∥∥∥2
L2(Ω)

L∑
l=1

∥∥∥B̃(θ1)−1wl

∥∥∥2
L2(Ω)

+ cd

L∑
l=1

∥∥[F (θl) ul,0 +Ai(θl)
]−Ameas(θl)

∥∥2
�2

C
(U∗(θl))

L∑
l=1

‖Ameas(θl)‖2�2
C
(U∗(θl))

= 0.

The assertions of the theorem follow.
Corollary 3.3. Suppose the assumptions of the last theorem and, addition-

ally, that the wave number function k∗ is the unique solution of the inverse problem,
i.e., that the relations F (θl)u(k, θl)+A

i(θl) = Ameas(θl) and B(k, θl)u(k, θl) = wl for
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k = 1, . . . , L imply k∗ = k. Then the whole sequence {k2
m}m∈N converges to k2

∗ weakly

in H
1/2
per (Ω) and strongly in L2(Ω).

Proof. The proof is straightforward since a sequence is convergent if all subse-
quences have subsequences with a fixed limit.

Remark 3.1. In general, the uniqueness assumption is hard to verify. For per-
fectly conducting gratings bounded by a curve of small oscillation represented as a
finite Fourier series, uniqueness is proved in [16]. In [15] it has been shown that
the knowledge of a finite number of Rayleigh coefficients even for all incident an-
gles is not sufficient to determine the grating. The situation improves slightly if the
measurement of Rayleigh coefficients is replaced by the measurement of the field u
restricted to the lines {(x1, b

+
2 ) : 0 < x1 < d} and {(x1, b

−
2 ) : 0 < x1 < d} with

b−2 < b− < b+ < b+2 . Note that the differences between the two data types are not
so essential if the second data type is discretized. Moreover, the theoretical results of
this section remain valid for the new kind of measurements. The case of smooth wave
number functions depending only on the x1 variable is treated in [15]. For grating
structures corresponding to perfectly conducting gratings bounded by C2 curves and
for the reflected data measured in any direction of incidence, uniqueness is shown
in [16]. A fixed incidence direction together with measured data corresponding to a
finite number of wave lengths λ is treated in [19]. Gratings consisting of two materials
(corresponding to the wave numbers k±) separated by a Lipschitz curve and absorb-
ing substrate materials are considered in the subsequent Theorem 3.5. If only local
uniqueness in the inverse problem is known, then the optimization problem and the
numerical methods in section 5 with suitable initial guess can be used to recover the
grating. For local uniqueness, we refer to the local stability results and the papers
quoted in [13].

Corollary 3.4. Suppose the assumptions of Theorem 3.2 are satisfied. How-
ever, consider noisy data Anoisymeas (m, θl) ∈ )2C(U∗(θl)) such that the error to the exactly
measured data Ameas(θl) satisfies ‖Anoisymeas (m, θl)−Ameas(θl)‖�2

C
(U∗(θl)) ≤ γm. Suppose

the minimizers are determined for the functional F(. . . ; γm) with Ameas(θl) replaced
by Anoisymeas (m, θl). Then the assertions of Theorem 3.2 remains valid. If, additionally,
k∗ is the unique solution of the inverse problem, then the assertions of Corollary 3.3
stay in force.

Proof. The proof is a straightforward modification of that to Theorem 3.2.

Theorem 3.5. Assume that the graphs {(x1, fj(x1)) : 0 < x1 < d} of two
different Lipschitz continuous functions fj (j = 1, 2) cut Ω into an upper region
{(x1, x2) : fj(x1) < x2 < b+} with constant wave number k+ > 0 and a lower
region {(x1, x2) : b− < x2 < fj(x1)} with constant wave number k− such that
�e k− > 0 and �m k− > 0. For these two gratings and for one planar incident wave
(L = 1), we assume that u1 and u2 are the solutions of the TE problem. (That
is, #uj − [k+]2uj = 0 holds on {(x1, x2) : fj(x1) < x2 < b+} and #uj − [k−]2uj = 0
holds on {(x1, x2) : b− < x2 < fj(x1)}, and the functions uj and their normal
derivatives are continuous across the surfaces {(x1, fj(x1)) : 0 < x1 < d}.) Then
coincidence of the data u1|Γ+ = u2|Γ+ and u1|Γ− = u2|Γ− implies f1 = f2.

Remark 3.2. This generalizes the uniqueness result by Bao [4] for a perfectly
reflecting substrate material below the interface.

Proof. Setting f(x1) := max{f1(x1), f2(x1)} and g(x1) := min{f1(x1), f2(x1)},
we consider the function u := u1 − u2. Then u|Γ+ = 0, u|Γ− = 0, ∂νu|Γ+ = 0, and
∂νu|Γ− = 0 (cf. (2.5)), which together with the unique continuation theorem implies
u = 0 in the regions {(x1, x2) : f(x1) < x2 < b+} and {(x1, x2) : b

− < x2 < g(x1)}.
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Fig. 3.1. Gratings defined by two graphs.

If D (cf. Figure 3.1) is a simply connected region bounded by the graphs of f and g
(and possibly by the vertical lines {(x1, x2) : x2 = 0} and {(x1, x2) : x2 = d}), then
we have ∆u1 + [k+]2u1 = 0 and ∆u2 + [k−]2u2 = 0 in D, or vice versa. Additionally,
we get u1 = u2 and ∂νu1 = ∂νu2 on the boundary ∂D of D, where ∂ν stands for the
normal derivative at the boundary points of ∂D. Applying Green’s formula, which is
justified for uj ∈ H2(Ω), j = 1, 2, we arrive at

0 =

∫
D

{u1∆u1 − u1∆u1} =

∫
∂D

{u1∂νu1 − u1∂νu1} =

∫
∂D

{u2∂νu2 − u2∂νu2}

=

∫
D

{u2∆u2 − u2∆u2} = 2i�m [k−]2
∫
D

|u2|2 = 0.

Note that for the third equality we have used the quasi-periodicity of the solutions uj
leading to {uj∂νuj − uj∂νuj} = 0 over the vertical boundary parts of D. Therefore,
u2 = 0 in D. Consequently, u2 = 0 in Ω, which is a contradiction to the fact that u2

is the scattered wave component corresponding to a nonzero incident wave.

4. The finite element solution. To define the finite element method, we split
domain Ω into the union of triangles such that the diameter of each triangle is less than
a prescribed mesh size h and that the triangles have no interior points in common.
Moreover, we assume that any two triangles of the partition are either disjoint or their
intersection is a common edge or a common corner point (no hanging nodes). By S1

h

we denote the set of all piecewise linear functions subordinate to the partition. Then,
the finite element solution uh of the Helmholtz equation (2.2) in its variational form
(2.3) is the unique solution uh ∈ S1

h satisfying

BTE(uh, ϕh) =
∫

Ω

∇αuh · ∇αϕh −
∫

Ω

k2 uh ϕh +

∫
Γ+

(T+
α uh)ϕh +

∫
Γ−

(T−
α uh)ϕh

= −
∫

Γ+

2iβ exp(−iβb+)ϕh ∀ϕh ∈ S1
h.(4.1)

Clearly, choosing the usual hat function basis {ϕh,j : j = 1, . . . , N} of S1
h, the

last discrete variational equation is equivalent to an equation in the N -dimensional
complex Euclidean space )2

C
(N), i.e., to the matrix equation Bhξ = η for the unknown
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coefficients ξj of the function uh, where

Bh := (BTE(ϕh,j , ϕh,j′))j′,j=1,...,N ,

ξ := (ξj)j=1,...,N , uh(x1, x2) =

N∑
j=1

ξj ϕh,j(x1, x2),

η := (ηj)j=1,...,N , ηj := −
∫

Γ+

2iβ exp(−iβb+)ϕh,j .

In other words, if the function k = k(x1, x2) is given, then we can determine an
approximate solution uh by solving Bhξ = η. Clearly, the matrix, the right-hand
side, and the solution depend on the angle of incidence θ and on the wave number
function k = k(x1, x2). To indicate this dependence, we write uh = uh(k, θ) and the
matrix equation as Bh(k, θ)ξ(k, θ) = η(θ).

Restricting the solution Ω  (x1, x2) !→ uh(k, θ)(x1, x2) to Γ
±, we get the Rayleigh

coefficients A±
n by computing the Fourier coefficients according to (2.6). We denote

the so-obtained approximate values of A±
n by A±

h,n and get the approximate efficiencies

by setting e±h,n := (β±
n /β)|A±

h,n|2. The linear operator of restricting uh to Γ± and of

computing the Rayleigh coefficients A±
h,n will be denoted by Fh(θ), i.e.,

Ah :=
(
A±
h,n

)
(n,±)∈U∗ = Fh(θ) ξ +Ai(θ).

If the refractive indices of the cover material above the grating and the substrate
material beneath the grating are fixed, then the operator Fh(θ) is independent of the
function k inside of the grating.

Finally, we remark that the linear system of equations Bh(k, θ)ξ(k, θ) = η(θ) is
the discretization of a second-order differential equations. Consequently, the condition
number of the finite element matrix Bh(k, θ) behaves likeO(h−2) for h tending to zero.
Therefore, a preconditioner is used for the iterative solution of Bh(k, θ)ξ(k, θ) = η(θ),

i.e., we solve [B̃h(θ)
−1Bh(k, θ)]ξ(k, θ) = B̃h(θ)

−1η(θ) instead of Bh(k, θ)ξ(k, θ) = η(θ)

with a matrix B̃h(θ) easy to invert and close to Bh(k, θ). Several preconditioning

techniques are possible. In our special case, we can choose B̃h(θ), e.g., as the finite

element matrix B̃h(θ) := Bh(k̃, θ), where the wave number function k̃(x1, x2) is equal
to k+ for x2 > (b− + b+)/2 and equal to k− for x2 < (b− + b+)/2. If the partition
of the finite element method is obtained by dividing the rectangles of a uniform
rectangular partition of the rectangle Ω along the diagonals, then Bh(k̃, θ) is easy to
invert. Indeed, if we group the degrees of freedom in clusters according to their x2

coordinates, then Bh(k̃, θ) is a triangular block matrix with circular blocks.

5. The discretized inverse problem. For a numerical solution of the in-
verse problem of section 3, we switch to the discrete level, i.e., we seek the co-
efficient vectors ξ(l) of the finite element solutions uh(k, θl) =

∑
ξ(l)jϕh,j from

B̃h(θ1)
−1Bh(k, θl)ξ(l)≈ B̃h(θ1)

−1η(θl) such that the computed Rayleigh coefficients
Ah(θl) = Fh(θl)ξ(l) + Ai(θl) differ only slightly from the measured Ameas(θl) :=
(A±

meas,n(θl))(n,±)∈U∗(θl). The unknown squared wave number function k2 is to be
approximated by a function from a discrete space. We fix a partition coarser than
that of the finite element method and choose the space S0

h as the set of all func-
tions which are piecewise constant subordinate to the fixed partition and which fulfil
k2(x1, x2) = [k+]2 for 0 < x1 < d and b+1 < x2 < b+ as well as k2 = [k−]2 for
0 < x1 < d and b− < x2 < b−1 . As usual, the corresponding basis of functions equal
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to one over one triangle of the grid and to zero over the others will be denoted by
{χh,j : j = 1, . . . ,M}. We can identify the functions k2 ∈ S0

h with the vectors of
coefficients κ = (κj)j=1,...,M satisfying k(x1, x2)

2 =
∑

j κjχh,j(x1, x2). In particular,

we write Bh(κ, θl) for Bh(
∑

j

√
κjχh,j , θl). Using the discretized and reduced H

1/2
per (Ω)

norm

‖κ‖2V (Ω) :=
∑
j

|κj |2 wj +
∑
j,j′:

indices of

neighbors

|κj − κj′ |2√wj

with wj the measure of the jth triangle, we define the discrete nonlinear objective
functional by

Fh (κ, ξ(1), . . . , ξ(L); γ) :=

L∑
l=1

∥∥∥B̃h(θ1)
−1Bh(κ, θl)ξ(l)− B̃h(θ1)

−1η(θl)
∥∥∥2
�2

C
(N)

L∑
l=1

∥∥∥B̃h(θ1)
−1η(θl)

∥∥∥2
�2

C
(N)

+ cd

L∑
l=1

∥∥[Fh(θl) ξ(l) +Ai(θl)
]−Ameas(θl)

∥∥2
�2

C
(U∗(θl))

L∑
l=1

‖Ameas(θl)‖2�2
C
(U∗(θl))

+ cvγ ‖κ‖2V (Ω) + csγ

L∑
l=1

∥∥∥∥∥∥
N∑
j=1

ξ(l)jϕh,j

∥∥∥∥∥∥
2

H1
per(Ω)

.(5.1)

Here cd, cv, and cs denote appropriate equilibration constants which are to be deter-
mined by numerical experiments, and γ is the regularization parameter. Using the
functional Fh, we finally arrive at the discrete optimization problem

Fh (κ, ξ(1), . . . , ξ(L); γ) −→ min,(5.2)

with κ ∈ )2
C
(M),

ξ(l) ∈ )2
C
(N), l = 1, . . . , L.

This will be solved using the following nonlinear conjugate gradient algorithm, which
we prepare by giving formulae for the gradients. Note that the complex variables are
treated as couples of real variables.

First we observe that the matrix-valued mapping k2 !→ [Bh(k, θl) − Bh(0, θl)] =
(− ∫

Ω
k2ϕh,jϕh,j′)j′,j is linear and independent of θl. We easily get that

∇κBh(κ, θl) = ∇κBh =
(
[∇κBh]j

)
j=1,...,M

,

[∇κBh]j :=

(
−
∫

Ω

ϕh,iϕh,i′χh,j

)
i′,i=1,...,N

,

∇κBh κ
′ =

M∑
j=1

[∇κBh]j κ
′
j .
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If 〈·, ·〉�2
C
(N) stands for the scalar product in the N -dimensional Euclidean space, then

the gradient of Fh is given by

∇Fh (κ, ξ(1), . . . , ξ(L); γ) (κ′, ξ(1)′, . . . , ξ(L)′)
=
(∇κFh (κ, ξ(1), . . . , ξ(L); γ) κ′,∇ξ(1)Fh (κ, ξ(1), . . . , ξ(L); γ) ξ(1)′,
∇ξ(2)Fh (κ, ξ(1), . . . , ξ(L); γ) ξ(2)′, . . . ,∇ξ(L)Fh (κ, ξ(1), . . . , ξ(L); γ) ξ(L)′

)
,

∇κFh (κ, ξ(1), . . . , ξ(L); γ)κ′

= �e
〈
2ρ1

L∑
l=1

〈
B̃h(θ1)

−1 [Bh(κ, θl)ξ(l)−η(θl)] , B̃h(θ1)
−1∇κBh ξ(l)

〉
�2

C
(N)

, κ′
〉
�2

C
(M)

+2cvγ
∑
j

�e
[
κjκ′j

]
ωj + 2cvγ

∑
j,j∗

�e
[
(κj − κj∗)(κ′j − κ′j∗)

]√
ωj ,

∇ξ(l)Fh (κ, ξ(1), . . . , ξ(L); γ) ξ(l)′

= �e
〈
2ρ1

[
B̃h(θ1)

−1Bh(κ, θl)
]∗ [

B̃h(θ1)
−1Bh(κ, θl)ξ(l)−B̃h(θ1)

−1η(θl)
]
, ξ(l)′

〉
�2

C
(N)

+�e〈2ρ2 Fh(θl)
∗ [[Fh(θl) ξ(l) +Ai(θl)

]−Ameas(θl)
]
, ξ(l)′

〉
�2

C
(N)

+�e
〈
2 csγ


 N∑
j=1

ξ(l)jϕh,j


 ,

 N∑
j′=1

ξ(l)′j′ϕh,j′



〉
H1

per(Ω)

,

ρ1 :=
1

L∑
l=1

∥∥∥B̃h(θ1)
−1η(θl)

∥∥∥2
�2

C
(N)

, ρ2 :=
cd

L∑
l=1

‖Ameas(θl)‖2�2
C
(U∗(θl))

.

Here [B̃h(θ1)
−1Bh(κ, θl)]

∗ is the adjoint (transposed and complex conjugate) of matrix

[B̃h(θ1)
−1Bh(κ, θl)], and Fh(θl)

∗ that of Fh(θl). Treating the gradients as vectors, we
arrive at

∇Fh (κ, ξ(1), . . . , ξ(L); γ)
=
(∇κFh (κ, ξ(1), . . . , ξ(L); γ) ,∇ξ(1)Fh (κ, ξ(1), . . . , ξ(L); γ) ,
∇ξ(2)Fh (κ, ξ(1), . . . , ξ(L); γ) , . . . ,∇ξ(L)Fh (κ, ξ(1), . . . , ξ(L); γ)

)
,

∇κFh (κ, ξ(1), . . . , ξ(L); γ)=
(
∇κFh (κ, ξ(1), . . . , ξ(L); γ)j

)
j=1,...,M

∈ )2
C
(M),

∇κFh (κ, ξ(1), . . . , ξ(L); γ)j:= 2ρ1

×
L∑
l=1

〈
B̃h(θ1)

−1Bh(κ, θl)ξ(l)− B̃h(θ1)
−1η(θl), B̃h(θ1)

−1 [∇κBh]j ξ(l)
〉
�2

C
(N)

+ 2 cvγ



wjκj +

√
wj
∑

j′:j,j′ are

indices of

neighbors

[κj − κj′ ]−
∑

j′:j,j′ are

indices of

neighbors

√
wj′ [κj − κj′ ]



,
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∇ξ(l)Fh (κ, ξ(1), . . . , ξ(L); γ)=
(
∇ξ(l)Fh (κ, ξ(1), . . . , ξ(L); γ)j

)
j=1,...,N

∈ )2
C
(N),

∇ξ(l)Fh (κ, ξ(1), . . . , ξ(L); γ)j:= 2ρ1

×
[[
B̃h(θ1)

−1Bh(κ, θl)
]∗ [

B̃h(θ1)
−1Bh(κ, θl)ξ(l)− B̃h(θ1)

−1η(θl)
]]

j

+ 2ρ2

[
Fh(θl)

∗ [[Fh(θl) ξ(l) +Ai(θl)
]−Ameas(θl)

]]
j

+ 2 csγ

〈
 N∑
j′=1

ξ(l)j′ϕh,j′


 , ϕh,j

〉
H1

per(Ω)

.

Now the nonlinear conjugate gradient algorithm of Fletcher–Reeves modified by Polak–
Ribière (cf., e.g., [20]) takes the following form.

Conjugate Gradient Algorithm.
Given the constant 0 < c1 = 10−3;

Given the initial guess (κ0, ξ0(1), . . . , ξ0(L));

Evaluate Fh,0 := Fh (κ0, ξ0(1), . . . , ξ0(L); γ) and the

gradient ∇Fh,0 := ∇Fh (κ0, ξ0(1), . . . , ξ0(L); γ);

Set the first search direction p0 :=
(
κd0, ξ

d
0(1), . . . , ξ

d
0(L)

)
= −∇Fh,0 and

set j = 0;

while ∇Fh,j = ∇Fh (κj , ξj(1), . . . , ξj(L); γ) �= 0

Compute step size αj of the correction
(
αjκ

d
j , αjξ

d
j (1), . . . , αjξ

d
j (L)

)
such that αj is the largest number in {256, 128, 64, 32, 16, . . .} with

Fh
(
κj + αjκ

d
j , ξj(1) + αjξ

d
j (1), . . . , ξj(L) + αjξ

d
j (L); γ

)
≤ Fh (κj , ξj(1), . . . , ξj(L); γ) + c1αj∇FT

h,j

(
κdj , ξ

d
j (1), . . . , ξ

d
j (L); γ

)
;

Set the new iterate solution (κj+1, ξj+1(1), . . . , ξj+1(L)) to(
κj + αjκ

d
j , ξj(1) + αjξ

d
j (1), . . . , ξj(L) + αjξ

d
j (L)

)
;

Evaluate gradient ∇Fh,j+1 := ∇Fh (κj+1, ξj+1(1), . . . , ξj+1(L); γ);

Set βj+1 = max

{∇FT
h,j+1(∇Fh,j+1 −∇Fh,j)

‖∇Fh,j‖2 , 0

}
;

Set new search direction pj+1 =
(
κdj+1, ξ

d
j+1(1), . . . , ξ

d
j+1(L)

)
to

pj+1 := −∇Fh,j+1 + βj+1

(
κdj , ξ

d
j (1), . . . , ξ

d
j (L)

)
;

Set j = j + 1

end(while)

The line search part, i.e., the determination of αj , can be improved. In fact,
instead of changing αj to half its value, we can take the argument of the minimum of
a quadratic interpolation to αj !→ Fh(κj+αjκdj , ξj(1)+αjξdj (1), . . . , ξj(L)+αjξdj (L); γ)
as the next value for αj .

Usually, this conjugate gradient method converges to a local minimum of the ob-
jective function Fh. The determination of the global minimum for high-dimensional
optimization is a difficult and expensive problem. Note that a high number of degrees
of freedom is required for the finite element method in order to resolve the oscillations
of the Helmholtz equation. Even if a fast method for the computation of the global
minimum were available, we would have to be careful. Indeed, the global solution
of the optimization problem with regularization parameter γ set to zero might be
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Fig. 6.1. The two gratings: Rectangular and two towers.

close to a local minimum of the regularized problem (γ > 0) different from the global
minimum. In any case, due to the locality of the conjugate gradient solution, the
choice of the initial solution is very important. Fortunately, for our numerical exper-
iments, the choice of the initial guess as the mean value wave number function and
the corresponding solutions of the Helmholtz solutions, i.e.,

κ0,j := k2
0, j = 1, . . . ,M, k0 :=

k− + k+

2
,

ξ0(l) := [Bh(k0, θl)]
−1η(θl), l = 1, . . . , L,

was satisfactory.

6. The numerical experiment. The conjugate gradient approach. For
our numerical tests we consider two gratings. Both are chosen with b− = −0.2µm,
b−1 = 0µm, b+1 = 0.5µm, and b+ = 0.7µm. The period is d = 1µm. The grating
materials are characterized by the refractive index ν, which determines the value of
the wave number function by the formula k = νd/λ. The wave length of light is
λ = 635 nm. The cover material over the grating (for x2 > b+1 ) is air with ν = 1.
The index of the substrate material (for x2 < b−1 ) is ν = 1.5. The first grating is
rectangular (cf. Figure 6.1, where a continuous linear interpolation of the piecewise
constant function is plotted), i.e., the refractive index is

ν = ν(x1, x2) :=

{
1.5 for

∣∣x1 − 1
2

∣∣ ≤ 1
6 and x2 ≤ 1

4 ,

1.0 for
∣∣x1 − 1

2

∣∣ > 1
6 or x2 >

1
4 .
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The second (cf. Figure 6.1) is a two tower grating with

ν = ν(x1, x2) :=




1.5 for
∣∣x1 − 3

4

∣∣ ≤ 1
6 and x2 ≤ 1

8 ,

1.35 for
∣∣x1 − 1

4

∣∣ ≤ 1
6 and x2 ≤ 3

8 ,

1.5 for x2 < 0,

1.0 else.

For the two gratings, we have computed the Rayleigh coefficients corresponding to
nonevanescent modes under the angles of incidence θl, l = 1, . . . L.

{θl : l = 1, . . . L} :=




{0} if L = 1,
{−60, 0, 60} if L = 3,
{−60,−40,−20, 0, 20, 40, 60} if L = 7,
{−60,−55,−50,−45, . . . , 45, 50, 55, 60} if L = 25.

Depending on the angle of incidence, these Rayleigh coefficients are three numbers of
the A+

n , n = −2,−1, 0, 1, 2, and five numbers of the A−
n , n = −3,−2,−1, 0, 1, 2, 3.

From these numbers we have to recover the grating by the inverse algorithm described
in section 5.

Since our simulated measurement data should be obtained by a method different
from that involved in the inverse algorithm, we have computed the A±

n by a finite ele-
ment method over a high level nonuniform triangulation. Actually we have employed
a standard grid generator and more than 200 000 unknown finite elements. The finite
element operator Bh(k, θ) used for the algorithm of section 5 is based on a coarse
uniform triangulation. More precisely, we split the domain Ω = (0, 1) × (−0.2, 0.7)
into 40 × 36 equal squares and divide each square into two triangles by a cut along
the diagonal. Taking into account the periodicity, the resulting number of finite ele-
ments is 1600. The unknown wave number function is sought as a function piecewise
continuous over the triangulation resulting from halving the squares of a 20× 18 uni-
form rectangular partition. This means there are 720 triangles in Ω and exactly 400
unknowns for the wave number function corresponding to the triangles falling into
the strip (0, d)× (b−1 , b

+
1 ) = (0, 1)× (0, 0.5).

The constants cs, cd, cv, and γ have to be adapted to the special case at hand. So
one should take a typical example with known wave number solution and determine
the constants such that the resulting approximation of the wave number function
is the closest to the known exact solution. Then the unknown gratings should be
recovered using the just obtained constants. Note that, in general, the determination
of the regularization parameter is a hard problem. It is probably easiest to adjust it
for a simple case with known solution and to reuse it for the general case.

Following this philosophy, we have determined the “optimal” constants for the
first rectangular grating. We have set cd = 0.005, and the other numbers, including
the number of necessary conjugate gradient iterations, are given in Table 6.1. More
precisely, we have chosen the equilibration parameter cd such that the first term
in the functional (5.1) is about the same size as the second (cf. the choice of the
analogous parameter γ following (5.56) in [11]). The equilibrium parameters cv and
cd have been optimized together with the regularization parameter γ. In a series
of calculations we have doubled and halved, independently, the values cvγ and csγ
and found the “optimal” values presented in Table 6.1. Here “optimality” means
that the approximate values of the refractive index at the points (0.0083,0.1417),
(0.5167,0.1583), and (0.8167,0.2583) are closest to the exact values 1., 1.5, and 1.,
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Table 6.1
Constants for the objective functional.

L cvγ csγ Iterations

1 0.000 000 9 0.000 001 5 2 000
3 0.000 000 5 0.000 000 25 8 000
7 0.000 000 03 0.000 000 005 25 000
25 0.000 000 2 0.000 000 000 05 50 000
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Fig. 6.2. Reconstructed rectangular grating. L = 1 and L = 3. Conjugate gradient method.

respectively. The plots of the resulting reconstructed wave number functions are
shown in Figures 6.2 and 6.3. With larger L, i.e., with more measurement data, the
recovered wave number improves slightly.

Next we have taken the optimal parameters of the rectangular grating and em-
ployed them in the algorithm for the two towers grating. Figures 6.4 and 6.5 show
the results of the reconstruction which are close to the exact function (cf. Figure 6.1).

The SQP approach. Clearly, the conjugate gradient algorithm for the optimiza-
tion problem (5.2) can be replaced by different optimization methods. For example,
we consider the implementation SNOPT 5.3-4 of the SQP method [17]. Since this
method is capable of dealing with constraints, we define

(6.1)

Fsqp
h (κ, ξ(1), . . . , ξ(L); γ) := cd

L∑
l=1

∥∥[Fh(θl) ξ(l) +Ai(θl)
]−Ameas(θl)

∥∥2
�2

C
(U∗(θl))

L∑
l=1

‖Ameas(θl)‖2�2
C
(U∗(θl))

+ cvγ ‖κ‖2V (Ω) + csγ

L∑
l=1

∥∥∥∥∥∥
N∑
j=1

ξ(l)jϕh,j

∥∥∥∥∥∥
2

H1
per(Ω)
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Fig. 6.3. Reconstructed rectangular grating. L = 7 and L = 25. Conjugate gradient method.
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Fig. 6.4. Reconstructed two towers. L = 1 and L = 3. Conjugate gradient method.

and solve the optimization problem with constraints

Fsqp
h (κ, ξ(1), . . . , ξ(L); γ) −→ min,(6.2)

with κ ∈ )2
C
(M),

ξ(l) ∈ )2
C
(N), l = 1, . . . , L,

Bh(κ, θl)ξ(l) = η(θl).
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Fig. 6.5. Reconstructed two towers. L = 7 and L = 25. Conjugate gradient method.
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Fig. 6.6. Reconstructed rectangular grating. L = 3 and L = 7. SQP method.

Taking cd = 0.005 and the parameters from Table 6.1, we arrive at visually the same
pictures of reconstructed gratings (cf. Figures 6.6 and 6.7 and compare with Figures
6.1–6.5). Due to the extra effort for solving the constraint equations Bh(κ, θl)ξ(l) =
η(θl) exactly, the SQP method is much slower. Moreover, the SQP algorithm requires
more storage capacity. However, to be fair, we have to admit that our simple test
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Fig. 6.7. Reconstructed two towers. L = 3 and L = 7. SQP method.

is performed employing a general code and default parameters. Changing the SQP
parameters and including preconditioners might improve the performance.

Acknowledgments. The authors thank A. Möller and R. Henrion for many
helpful consultations concerning the implementation of the optimization algorithms.
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Abstract. If the initial and boundary data for a partial differential equation (PDE) do not
obey an infinite set of compatibility conditions, singularities will arise in its solutions. For dissipative
equations, these singularities are well localized in both time and space, and an effective numerical
remedy is available for accurate computation of initial transients. This study analyzes the nature of
similar corner discrepancies for dispersive equations, such as ut − uxxx = 0 and iut − uxx = 0.
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1. Introduction. Solutions to initial-boundary value problems (IBVPs) will fea-
ture “corner singularities” in the space-time domain where initial and boundary data
meet, unless these two data sets are connected by an infinite number of compatibility
conditions [2]. Since the two data sets usually arise from different considerations,
these singularities are almost always present. Although the issue has been analyzed
at least since the 1950s (as surveyed in [2] and [3]), the focus has mostly been the-
oretical rather than numerical. For dissipative equations, the irregularities that are
caused by these corner singularities are short-lived in time and remain local in space.
These features allowed for the development of a highly effective strategy for restoring
full numerical accuracy with little extra computational cost, as described in [4]. For
dispersive PDEs, the irregularities do not stay local in space, and it depends on the
equation whether or not they will be short-lived in time. Methods for effective numeri-
cal treatment will likely vary from equation to equation. The goal of the present paper
is to give illustrating examples of dispersive corner singularities, largely by means of
finding corner basis functions, which illuminate the mixing of temporal and/or spatial
scales that occurs initially. If the boundaries are introduced to the problem only for
the purpose of truncating what otherwise would have been an infinite domain, the
preferred strategy would quite certainly be to create artificial boundary conditions in
such a way that these space-time domain corner singularities do not arise.

Section 2 introduces the concept of corner basis functions, first for the well-known
model equations ut+ux = 0 and ut−uxx = 0. It is shown how corner basis functions
describe the nature of the corner singularities for these equations. Since the general
character of solutions to dispersive equations may be less familiar, section 3 starts
with some illustrative solutions for the linearized KdV equation, ut − uxxx = 0, and
then proceeds with establishing its corner basis functions. Section 4 contains a similar
discussion for the linear Schrödinger equation, iut − uxx = 0. Based on these corner
basis functions, we discuss in section 5 the character of IBV solutions for the two
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dispersive equations just mentioned. The final section offers some concluding remarks,
summarizing the nature of corner singularities for PDEs of the type ut ± unx = 0,
n = 1, 2, 3, . . . , in terms of corner basis functions.

2. Corner basis functions for ut + ux = 0 and ut − uxx = 0. The quarter
plane problem (x > 0, t > 0)

PDE: ut + ux = 0,

IC: u(x, 0) = f(x),

BC: u(0, t) = g(t)

(2.1)

has the analytic solution

u(x, t) =

{
f(x− t), x > t,

g(t− x), x < t.
(2.2)

Assuming that f(x) and g(t) are smooth functions, the solution (2.2) is smooth for
all times if and only if an infinite sequence of compatibility conditions holds in the
corner at x = 0, t = 0 [2], [3]:

g(0) − f(0) = 0, continuity

gt(0) + fx(0) = 0, PDE

gtt(0) − fxx(0) = 0, differentiated versions of the PDE

gttt(0) + fxxx(0) = 0, ↓
...

gnt(0) + (−1)n+1fnt(0) = 0.

(2.3)

If we are given a problem (2.1) for which any of the equalities in (2.3) fail to hold, one
strategy for transforming the problem to one with a smooth solution (better suited for
most numerical methods) is to create an explicitly known function s(x, t) which also
satisfies the PDE and which possesses an identical corner singularity. To construct
s(x, t), we introduce the concept of corner basis functions un(x, t) with the properties

(i) un(x, t) satisfies the PDE away from the corner,(2.4)

(ii) un(x, 0) ≡ 0,

(iii)
1

n!

∂jun(0, t)

∂tj
=

{
1 for j = k,
0 for j �= k.

The corner basis functions are derived by Taylor expanding the boundary condition
(BC) in time and then for each term in the expansion solving the PDE with zero
initial condition (IC), as shown below in the case of (2.1).

u0(x, t) =

{
0, x > t,
1, x < t,

u1(x, t) =

{
0, x > t,
t− x, x < t,

u2(x, t) =

{
0, x > t,
(t− x)2, x < t,

· · · ,

(2.5)
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i.e.,

un(x, t) =

{
0, x > t,

(t− x)n, x < t,
n = 0, 1, 2, . . . .

If the right-hand sides of (2.3) were not equal to 0, 0, 0, 0, . . . but instead equal
to r0, r1, r2, r3, . . . , the function

s(x, t) = r0 u0(x, t) +
r1
1!

u1(x, t) +
r2
2!

u2(x, t) +
r3
3!

u3(x, t) + · · ·(2.6)

would have exactly the same corner singularity as the solution u(x, t). Standard
numerical methods can then be applied to the difference function

v(x, t) = u(x, t) − s(x, t),(2.7)

which is infinitely smooth and well suited for numerics (satisfying the same PDE
and IC, and having known BCs). However, in practice, we are limited to machine
precision and thus need to use only a finite number p of compatibility conditions,
corresponding to a truncated version of (2.6). The difference in (2.7) will be of size
O(tp), the first neglected term in the expansion s(x, t). For small t, we can make this
difference arbitrarily small by choosing p sufficiently large.

This idea of creating corner singularity functions un(x, t), n = 0, 1, 2, . . . , and
then subtracting a combination of them is of no particular utility for (2.1) since the
analytic solution (2.2) is almost as simple algebraically as are the corner functions
(2.5). Furthermore, the corner irregularity will persist for all times. If (2.1) is gener-
alized to variable coefficients, the singularity will travel along a curved characteristic
path, and cancellation based solely on corner information is not feasible.

Turning to the heat equation, it may at first appear that corner corrections are
not needed. Figures 2.1(a), (b) show the analytic solution to the IBVP

PDE: ut − uxx = 0,

IC: u(x, 0) = 0, 0 ≤ x ≤ 1,

BCs:

{
u(0, t) = sin 2πt,

ux(1, t) = 0,
t > 0,

(2.8)

over 0 ≤ x ≤ 1, 0 ≤ t ≤ 1 and 0 ≤ x ≤ 10−3, 0 ≤ t ≤ 10−3, respectively. No matter
how much we zoom in on the area near the origin, the solution surface will graphically
look indistinguishable from the one shown to the right (Figure 2.1(b)).

However, this apparent regularity of the solution near the origin is severely mis-
leading. The seemingly smooth solution in fact features a sharp irregularity, as the
plot over 0 ≤ x ≤ 1, 0 ≤ t ≤ 10−3 in Figure 2.2(a) reveals.

A 21-node numerical Chebyshev solution (implemented without grid clustering at
the right boundary, cf. [6, section 5.1, Example 3], and using a fourth-order Runge–
Kutta method in time) will feature errors of the order 10−4 near the origin during
the first moments, due to the fact that the PDE is not satisfied in the corner (0, 0) by
the solution. This numerical observation is theoretically proven in [3]. At later times,
the error decreases to around 10−12. In Figure 2.2(b), the numerical corner error has
already decayed to around 10−6 by the first displayed time level.
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Fig. 2.1. Analytic solution to the IBV problem (2.8) shown over (a) 0 ≤ x ≤ 1, 0 ≤ t ≤ 1 and
(b) 0 ≤ x ≤ 10−3, 0 ≤ t ≤ 10−3.
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Fig. 2.2. (a) Analytic solution to IBV problem (2.8). (b) Error in Chebyshev numerical solu-
tion. Both are shown over 0 ≤ x ≤ 1, 0 ≤ t ≤ 10−3 and displayed on a grid that is quadratically
refined at the left edge.

Although corner irregularities for the heat equation persist only a very short
time, corrections for them are needed in order to obtain an accurate solution of initial
transients. For the constant coefficient case

PDE: ut − uxx = 0,

IC: u(x, 0) = f(x), x > 0,

BC: u(0, t) = g(t), t > 0,

(2.9)

we need to replace the compatibility conditions (2.3) by

g(0) − f(0) = 0, continuity

gt(0) − fxx(0) = 0, PDE

gtt(0) − fxxxx(0) = 0, differentiated versions of the PDE

. . . , ↓
gnt(0) − f(2n)x(0) = 0,
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and the corner functions (2.5) by

u0(x, t) = Erfc
(

x
2
√
t

)
,

u1(x, t) = −
√

t
π x e−x

2/(4t) +
(
t + x2

2

)
Erfc

(
x

2
√
t

)
,

u2(x, t) = − 1
6

√
t
π x (10 t + x2) e−x

2/(4t) +
(
t2 + t x2 + x4

12

)
Erfc

(
x

2
√
t

)
,

u3(x, t) = − 1
60

√
t
π x (132 t2 + 28 t x2 + x4) e−x

2/(4t)

+
(
t3 + 3

2 t
2x2 + 1

4 t x
4 + x6

120

)
Erfc

(
x

2
√
t

)
,

. . . .

(2.10)

These functions all satisfy the PDE with the IC and BC un(x, 0) = 0, un(0, t) =
tn, n = 0, 1, 2, . . . .

One way to derive (2.10) is to note that the change of variables ξ = x√
t
, τ = log t

transforms ut − uxx = 0 into uτ = uξξ + ξ
2uξ. The u0(x, t) solution corresponds to an

equilibrium solution of the transformed PDE. With the BCs u(0) = 1, u(∞) = 0 we

find u(ξ) = Erfc( ξ2 ) (= 1 − 2√
π

∫ ξ/2
0

e−ς
2

dς), and consequently u0(x, t) = Erfc( x
2
√
t
).

The subsequent corner functions can then (like for all other PDEs) be generated
recursively:

un(x, t) = n

∫ t

0

un−1(x, t) dt, n = 1, 2, . . . .(2.11)

Alternatively, we can obtain a general expression for all the un(x, t) functions in
terms of Kummer’s confluent 1F1 hypergeometric functions:

un(x, t) = tn
{

1F1(−n, 1
2 ,−x2

4t ) − x Γ(n+1)√
t Γ(n+ 1

2 ) 1F1( 1
2 − n, 3

2 ,−x2

4t )
}
, n = 0, 1, 2, . . . .

(2.12)

To arrive at (2.12), we generalize the observation above regarding the u0(x, t) corner

function by noting that un(x,t)
tn becomes a function of one variable ξ = x√

t
only, which

we write as un(ξ). From its definition and the governing PDE, this function will need
to satisfy

(un)ξξ +
ξ

2
(un)ξ − n un = 0 with

{
un(0) = 1,

un(∞) = 0.

The general solution to the ODE can be written

un(ξ) = c1 1F1(−n, 1
2 ,− ξ2

4 ) + c2 ξ 1F1( 1
2 − n, 3

2 ,− ξ2

4 ).

The condition un(0) = 1 says that c1 = 1, and leading order asymptotics of the

1F1 functions (see [1]) demonstrate that cancellation of growths as ξ → ∞ requires
c2
c1

= − Γ(n+1)

Γ(n+ 1
2 )

.

Figure 2.3 shows u0(x, t), u1(x, t), and u2(x, t) displayed over two different time
intervals. The irregularity remains local in both time and space. For dissipative
equations like (2.9), corner functions form a very effective means of improving the
accuracy of numerical calculations since, as is shown in [4],
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Fig. 2.3. The corner functions u0(x, t), u1(x, t), and u2(x, t) for the heat equation ut−uxx = 0,
shown over 0 ≤ x ≤ 1 and (left column) 0 ≤ t ≤ 1, (right column) 0 ≤ t ≤ 0.001. The grid is again
quadratically refined towards the left edge.

1. only 3–4 correction functions typically suffice for correction to machine pre-
cision, and

2. generalizations to variable coefficients are straightforward.

3. Illustrative solutions and corner functions for ut − uxxx = 0. Similar
to the heat equation, IBV solutions to the linearized KdV equation

ut − uxxx = 0(3.1)

will typically feature two scales: (1) a slow, long-term part and (2) a high-frequency
part emanating from the corners and described by corner basis functions. Initially,
the high-frequency part of the solution is of infinitesimal size but then expands to
cover the whole domain. To illustrate the first part and to provide a background for
discussing the latter part, we first consider different half-plane problems containing
only slow long-term scales.

3.1. Traveling wave solutions in different half-planes.

3.1.1. The upper half-plane (t > 0). With the IC

IC: u(x, 0) = cos(kx),(3.2)

the solution of (3.1) becomes

solution: u(x, t) = cos(kx− k3t).(3.3)
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Fig. 3.1. Upper half-plane solution to ut − uxxx = 0 with IC u(x, 0) = cos(x).

This is a single Fourier mode whose phase speed increases with the wave number k
as c = k2. We can note that all waves travel to the right, as shown in Figure 3.1 for
k = 1.

3.1.2. The right half-plane (x > 0). For the equation (3.1) we need to impose
two BCs on the left side (taken to be x = 0). Two cases can be noted. The first case
has a sinusoidal forcing on the boundary, with the first derivative ux(0, t) = 0.

Case 1.

BCs:

{
u(0, t) = sin(k3t),

ux(0, t) = 0,

solution: u(x, t) = 1√
3

[
cos(kx− k3t + π

3 ) − e−
√

3
2 kx cos( 1

2kx + k3t + π
3 )
]
.

In the second case, the solution is zero and it is the first derivative that has a
sinusoidal forcing:

Case 2.

BCs:

{
u(0, t) = 0,

ux(0, t) = sin(k3t),

solution: u(x, t) = 1√
3 k

[
cos(kx− k3t + π

6 ) − e−
√

3
2 kx cos( 1

2kx + k3t− π
6 )
]
.

Figures 3.2 and 3.3 show Cases 1 and 2, respectively. We notice in Figure 3.2
how the crests of the waves emerge perpendicularly to the left boundary in order
to accommodate the zero first derivative BC. Similarly, Figure 3.3 shows how the
waves again are deformed near the boundary, this time to accommodate the condition
u(0, t) = 0. As these two cases demonstrate, forcing the left boundary with a Fourier
mode will produce outgoing waves with the same wave number, differing between
the two cases only in amplitude and phase shift. It is therefore possible to create a
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Fig. 3.2. Solution to the right half-plane problem for ut − uxxx = 0 with the left BCs u(0, t) =
sin t, ux(0, t) = 0.
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Fig. 3.3. Solution to the right half-plane problem for ut − uxxx = 0 with left BCs u(0, t) =
0, ux(0, t) = sin t.

BC so that the outgoing waves cancel, and only the exponential decay to the right
remains. However, this is a very special case; sinusoidal forcing will in general produce
sinusoidal waves traveling to the right.

3.1.3. The left half-plane (x < 0). For the right half-plane problems, we
considered forcing on the left side. We now consider forcing on the right side, requiring
only one BC for the PDE:

BC: u(0, t) = sin(k3t),

solution: u(x, t) = e
√

3
2 kx sin( 1

2kx + k3t).

There can be no waves traveling to the left for (3.1), and the solution therefore decays
exponentially away from the boundary, as is seen in Figure 3.4. This also implies that
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Fig. 3.4. Solution to the left half-plane problem for ut − uxxx = 0 with forcing u(0, t) = sin t
on the right boundary.

when waves arrive from the left to a right boundary, there can be no reflection, but
only decay. With incoming waves of the form u(x, t) = cos(kx − k3t), closed form
solutions for the cases with Neumann and Dirichlet right BCs become as follows.

Case 1.

BC: ux(0, t) = 0,

solution: u(x, t) = cos(kx− k3t) + e
√

3
2 kx cos( 1

2kx + k3t + π
3 ).

Case 2.

BC: u(0, t) = 0,

solution: u(x, t) = cos(kx− k3t) − e
√

3
2 kx cos( 1

2kx + k3t).

These solutions are shown in Figures 3.5 and 3.6.
In both cases, the incoming wave from the left undergoes a transition near the

right boundary in order to accommodate the BCs at the right edge. The half-plane
solutions for (3.1) can be summed up as waves traveling solely to the right, with at
most a thin transition region at a right-hand boundary. The character of these half-
plane solutions set the stage for solving the quarter-plane problem, leading us to sets
of left and right corner basis functions.

3.2. Left corner functions. Since (3.1) needs two BCs to the left, we need to
obtain two independent sets of corner functions un(x, t) and vn(x, t). These functions
should all obey the PDE, the IC un(x, 0) = vn(x, 0) = 0, and the BCs

{
un(0, t) = tn, ∂

∂xun(0, t) = 0,

vn(0, t) = 0, ∂
∂xvn(0, t) = tn,

n = 0, 1, 2, . . . .

Following the approach which led us to the corner functions (2.12) for the heat
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Fig. 3.5. Solution to the left half-plane problem for ut − uxxx = 0 with incoming sinusoidal
wave and right BC ux(0, t) = 0.
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Fig. 3.6. Solution to the left half-plane problem for ut − uxxx = 0 with incoming sinusoidal
wave and right BC u(0, t) = 0.

equation, we note that un(x,t)
tn = un(ξ) and vn(x,t)

tn+1/3 = vn(ξ) both are functions of
ξ = x

3√t only, satisfying

(un)ξξξ +
ξ

3
(un)ξ − n un = 0, {un(0) = 1, (un)ξ(0) = 0, un(∞) = 0}

and

(vn)ξξξ +
ξ

3
(vn)ξ − (n + 1

3 ) vn = 0, {vn(0) = 0, (vn)ξ(0) = 1, vn(∞) = 0},
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Fig. 3.7. First three corner functions un(x, t) for ut − uxxx = 0, displayed over 0 ≤ t ≤ 0.1
and 0 ≤ t ≤ 0.001 (left and right column, respectively).

respectively, leading to the general expressions for the corner functions:

un(x, t) = tn
{

1F2(−n, { 1
3 ,

2
3},− x3

27t ) − x2

2t2/3

Γ(n+1)

Γ(n+ 1
3 ) 1F2( 2

3 − n, { 4
3 ,

5
3},− x3

27t )
}
,

n = 0, 1, 2, . . . ,

and

vn(x, t) = tn+ 1
3

{
1F2(−n, { 2

3 ,
4
3},− x3

27t ) − x2

2t2/3

Γ(n+1)

Γ(n+ 2
3 ) 1F2( 1

3 − n, { 4
3 ,

5
3},− x3

27t )
}
,

n = 0, 1, 2, . . . .

Figures 3.7 and 3.8 display the first three corner functions of each of the two types.

3.3. Right corner functions. Since the PDE is incapable of transporting any
waves to the left, waves reaching a right side boundary will get absorbed no matter
what BC is used there. As a consequence, the right corner functions on the domain
x < 0, t > 0 will be nonoscillatory and reminiscent of the ones for the heat equation.
Denoting these by wn(x, t), n = 0, 1, 2, . . . , we find by the same means as in the
previous section

wn(x, t) = tn
{

1F2(−n, { 1
3 ,

2
3},− x3

27t ) + x
t1/3

Γ(n+1)

Γ(n+ 2
3 ) 1F2( 1

3 − n, { 2
3 ,

4
3},− x3

27t )

+ (−1)n
√

3
4π

x2

t2/3 Γ(n + 1) Γ( 2
3 − n) 1F2( 2

3 − n, { 4
3 ,

5
3},− x3

27t )
}
, n = 0, 1, 2, . . . .
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Fig. 3.8. First three corner functions vn(x, t) for ut − uxxx = 0, displayed over 0 ≤ t ≤ 0.1
and 0 ≤ t ≤ 0.001 (left and right column, respectively).
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Fig. 3.9. The right corner functions w0(x, t) and w1(x, t) to ut − uxxx = 0.

Figure 3.9 displays the first two wn(x, t)-functions.
For all the corner functions we have derived (un(x, t) for the heat equation and

un(x, t), vn(x, t), wn(x, t) for the linearized KdV equation), the first hypergeometric
function has −n as its first parameter. This implies that, for n = 0, 1, 2, . . . , its
usually infinite Taylor series truncates to become a finite degree polynomial.

To conclude this discussion of right corner functions, we note that a general
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solution to (3.1) with

IC: u(x, 0) = f(x), x < 0,

BC: u(0, t) = g(t), t > 0,

can be expressed in terms of coupled contour principal value integrals [5].

4. Corner analysis for iut − uxx = 0. The next example we consider is the
linear Schrödinger equation

iut − uxx = 0.(4.1)

Although this also is a dispersive PDE, it will be shown that the character of IBV
solutions for this equation is fundamentally different than for the linear KdV equation
(3.1). Like the diffusion equation ut − uxx = 0, equation (4.1) requires only one BC
on each side. Also, since the analysis is similar to that for the diffusion equation, we
will here not consider any introductory half-plane problems.

4.1. Corner functions. Since iut−uxx = 0 differs from the heat equation only
by a factor of i, the same similarity transformation ξ = x√

t
and τ = log t will again

lead us to the corner functions. Substituting these transformations into iut−uxx = 0
yields

iuτ − iξ

2
uξ − uξξ = 0.(4.2)

The equilibrium solution satisfies

uξξ +
iξ

2
uξ = 0,

leading to

u0(x, t) = Erfc

(√
i

x

2
√
t

)
=

1 + i√
2π

∫ ∞

x√
t

e−i
η2

4 dη.(4.3)

Separating (4.3) into real and imaginary parts results in

u0(x, t) = 1 − S

(
x√
2πt

)
− C

(
x√
2πt

)
+ i

[
S

(
x√
2πt

)
− C

(
x√
2πt

)]
,

where S and C are the Fresnel sine,
∫ z
0

sin(πt2/2)dt, and cosine,
∫ z
0

cos(πt2/2)dt,
functions. Higher-order corner functions are again most easily expressed in terms of
hypergeometric functions. In analogy to (2.12), we obtain

un(x, t) = tn
{

1F1(−n, 1
2 ,

−ix2

4t ) − x
√
i√
t

Γ(n+1)

Γ(n+ 1
2 ) 1

F1( 1
2 − n, 3

2 ,
−ix2

4t )
}
, n = 0, 1, . . . ,

which satisfies (4.1) with IC u(x, 0) = 0 and the BCs u(0, t) = tn, u(∞, t) = 0.
The real and imaginary parts of the corner functions u0(x, t) and u1(x, t) are

plotted in Figure 4.1.
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Fig. 4.1. Real and imaginary part of the first two corner functions u0 and u1 to iut − uxx = 0.

5. Qualitative solution features in the case of two boundaries. In this
section, the properties of ut − uxxx = 0 are contrasted with those of iut − uxx = 0.
In the former case (ut − uxxx = 0), high-frequency waves race across the interval and
become absorbed at the opposite boundary. Like for the heat equation, the solutions
are infinitely differentiable for all t > 0. In the latter case (iut−uxx = 0), the waves are
reflected off the boundaries for all times, resulting in a solution that is several times
differentiable only for rare values of t > 0 (when recurrences to the IC happen to
occur). This lack of smoothness has severe impact on the accuracy of straightforward
numerical calculations.

5.1. Features of the solution to ut − uxxx = 0 in the case of two bound-
aries. Although the IBV problem

PDE: ut − uxxx = 0,

IC: u(x, 0) = 0, 0 < x ≤ 1,

BCs: u(0, t) = f(t), ux(0, t) = g(t), u(1, t) = 0, t > 0,

(5.1)

does not appear to admit a simple closed form solution for general functions f(t) and
g(t), it can be verified that the function

u(x, t) =
3

2π

∫ ∞

0

e
1
2 rx−r3t

r
sin

(√
3

2
r(x− 1)

)(
e−3r/2 + 2 cos

(√
3

2
r

))
dr(5.2)

satisfies it for some particular choice of f(t) and g(t). We note the following:
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Fig. 5.1. Solution u(x, t) (5.2) to the IBV problem for ut − uxxx = 0, displayed for time
0 ≤ t ≤ 10−3.

• limt→0+ u(x, t) = 0 for 0 < x ≤ 1 (although the integral for u(x, t) diverges if
t = 0 is substituted directly into it).

• The function f(t) (as obtained from (5.2)) is not identically equal to one
although it satisfies f(0) = 1 and fk(0) = 0, k = 1, 2, . . . .

Figure 5.1 shows u(x, t) for 0 ≤ t ≤ 10−3, illustrating how high-frequency waves
emerge out of the singular corner and then get absorbed (with no reflections) at the
right edge.

5.2. Features of the solution to iut − uxx = 0 in the case of two bound-
aries. Consider the IBV problem

PDE: iut − uxx = 0,

IC: u(x, 0) = 0, 0 ≤ x ≤ 1,

BCs: u(0, t) = sin t, u(1, t) = 0, t > 0.

(5.3)

The long-term solution

uL(x, t) =
i

2

(
eit

sin(1 − x)

sin 1
− e−it

sinh(1 − x)

sinh 1

)

satisfies the PDE and the BCs. The fast scale solution, emanating from the corner, is

uT (x, t) = u(x, t) − uL (x, t)
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Fig. 5.2. Full solution u(x, t), long-term solution uL(x, t), and transient solution uT (x, t) for
(5.3).

and will again need to satisfy the PDE but with different IC and BC:

IC: uT (x, 0) = − i
2

(
sin(1−x)

sin 1 − sinh(1−x)
sinh 1

)
, 0 ≤ x ≤ 1,

BC: uT (0, t) = uT (1, t) = 0, t > 0.

It can be written as a simple sine series expansion:

uT (x, t) = 2πi

∞∑
k=1

k

1 − (kπ)4
ei(kπ)2t sin kπx.(5.4)

Figure 5.2 shows the real and imaginary parts of the u(x, t), uL(x, t), and uT (x, t).
Figure 5.3 shows the full solution over a short time interval, revealing

1. emanating waves from the corner, as described by the un(x, t) corner functions
(cf. Figure 4.1) and

2. the reflection of all waves at the boundaries.
The latter fact means that, in contrast to the heat equation, ut − uxx = 0, or the
linear KdV equation, ut−uxxx = 0, the solution will not become smoother with time.

Indeed, (5.4) shows that ∂4u
∂x4 and ∂2u

∂t2 will fail to exist at almost all x and t. Unless
(5.3) is modified to contain some form of dissipation (interior or at the boundaries),
accurate numerical solutions would appear to be quite difficult to obtain.
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for 0 ≤ t ≤ 0.02.

6. Concluding remarks. Since the initial data and the boundary data for
PDEs typically arise from different considerations, discrepancies will almost always
occur in the corners of the time-space domain. Unless infinitely many compatibility
conditions hold in the corners, the solutions will feature singularities which may or
may not remain local in time and space. With modern high-order or spectral meth-
ods, these discrepancies are often the dominant source of numerical error. It is thus
essential to

1. identify and understand the nature of the corner singularities for the IBV
problem being solved, and

2. devise numerical remedies to restore expected levels of accuracy.
Both issues have been addressed for second-order convective-diffusive equations in

[4]. This study has focused on the first point above for dispersive equations, showing
that the concept of corner basis functions, introduced in [4], is critical in understanding
the nature of the singularities.

To summarize the different characters of the corner singularities for the PDEs
considered, analytic expressions for the first corner basis function, u0(x, t), are given
in Table 6.1 and are graphically contrasted over two different time intervals in Figure
6.1. The analytical form of the corner basis functions for the general PDE ut±unx = 0,
n = 1, 2, 3, . . . , has also been included in the table. The constants ck are determined
by the BC u0(0, t) = 1 and all higher derivative BCs equal to zero. The dissipative
case ut − u4x = 0 is also illustrated.
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Table 6.1
Analytic expressions for the u0(x, t) corner functions for some PDEs of the form ut ± unx = 0.

Equation Elementary
form

Hypergeometric
form

ut − ux = 0 0 if x > t
1 if x < t

—–

ut − uxx = 0 Erfc

(
x

2
√
t

)
1− x√

πt
1F1

(
1
2
, 3
2
,−x2

4t

)
ut − uxxx = 0 —– 1 −

√
3 Γ( 2

3
) x2

4π t2/3 1F2

(
2
3
,
{
4
3
, 5
3

}
,− x3

27t

)

ut + u4x = 0 —–
1 − 1

2
√
π

x2

t2/4 1F3

(
2
4
,
{
3
4
, 5
4
, 6
4

}
, x4

256t

)
+

Γ( 3
4
)

6π
x3

t3/4 1F3

(
3
4
,
{
5
4
, 6
4
, 7
4

}
, x4

256t

)
...

...
...

ut ± unx = 0 —–

∑n−1

k=0

[
ck

xk

tk/n

× 1Fn−1

(
k
n
,
{

k+1
n
, k+2

n
, . . . , k+n

n

}
,±xn/t

nn

)]
,

where the ck are constants; the entry = 1 is

omitted in the sequence
{

k+1
n
, k+2

n
, . . . , k+n

n

}
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Fig. 6.1. The u0(x, t) corner functions for the equations, ut ± unx = 0, n = 1, . . . , 4, and
iut − uxx = 0 (real part).
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The nature of the corner singularities for each PDE is different, including prop-
agation of the discontinuity throughout the domain, dissipation of it locally, and
high-frequency oscillations which either get absorbed or reflected at boundaries. In
subsequent studies, numerical techniques for restoring accuracy of high-order and
spectral methods for dispersive IBV problems will be explored.
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Abstract. We develop new direction- and frequency-averaged approximations to the equations
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1. Introduction. We consider industrial radiative heat transfer (RHT) pro-
cesses, such as those that occur in gas turbines, or in the cooling of hot glass molds.
These phenomena are governed by the radiative transfer equations [7], which in scaled
form contain the dimensionless parameter

ε =
1

κrefxref
,(1.1)

where κref and xref are reference absorption and length scales. Physically, ε is the
ratio of a typical photon mean free path to a typical length scale of the problem.
For a spatial point x in a domain V ⊂ R

3 consisting of glass, the following radiative
transfer equations hold for all ε > 0:

ε2
∂T

∂t
= ε2∇ · k∇T −

∫ ∞

ν1

∫
S2

κ(B − I) dΩdν,(1.2a)

Ω ∈ S2 : εΩ · ∇I = κ(B − I).(1.2b)

Here, B denotes Planck’s function for black body radiation in glass:

B(ν, T ) = n2
1

2hP ν
3

c2

(
ehP ν/kBT − 1

)−1

,

which contains Planck’s constant hP , Boltzmann’s constant kB , the index of refrac-
tion in glass n1, the speed of light c, and the material temperature T . On the sys-
tem boundary (x ∈ ∂V ), the incident radiation intensity I is prescribed by semi-
transparent, i.e., partly reflective, boundary conditions

∀n · Ω < 0 : I(Ω) = ρ(n · Ω)I(Ω′) +
[
1− ρ(n · Ω)]B(a)(ν, Tb),(1.2c)
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where the direction Ω′ of the exiting ray in (1.2c), which specularly reflects into the
incident ray Ω, is given by

Ω′ = Ω− 2(n · Ω)n.

Note that we have to use Planck’s function B(a) for air,

B(a)(ν, T ) = n2
2

2hP ν
3

c2

(
ehP ν/kBT − 1

)−1

,

in the boundary conditions. The temperature at the boundary obeys

εk n · ∇T = h(Tb − T ) + απ
∫ ν1

0

[
B(a)(ν, Tb)−B(a)(ν, T )

]
dν.(1.2d)

At the initial time t = 0, T is prescribed for all x ∈ V by

T (x, 0) = T0(x).(1.2e)

In (1.2), I(x, t,Ω, ν) denotes the specific radiation intensity at point x ∈ V trav-
eling in direction Ω ∈ S2 with frequency ν > 0 at time t ≥ 0. T (x, t) denotes the
material temperature at point x ∈ V at time t ≥ 0.

The outside radiation is assumed to be a Planckian for air, B(a)(ν, Tb), at specified
temperature Tb for incident directions on the boundary (satisfying n · Ω < 0, where
n denotes the outward normal on ∂V ). Equations (1.2) contain the known opacity
κ(ν), heat conductivity k, and convective heat transfer coefficient h. The integration
in the second term of the temperature boundary condition (1.2d) is performed on the
opaque interval of the spectrum [0, ν1], where radiation is completely absorbed. The
refractive indices at the boundary are n1 (glass) > n2 (exterior air).

The reflectivity ρ ∈ [0, 1] is, from (1.2c), the fraction of exiting radiation that is
reflected back into V . This is defined by

ρ(µ) =

{
1, sin θ1 ≥ n2/n1,

1
2

(
tan2(θ1−θ2)
tan2(θ1+θ2)

+ sin2(θ1−θ2)
sin2(θ1+θ2)

)
, sin θ1 < n2/n1,

(1.3)

where the refraction angles θ1 and θ2 are given by cos θ1 = |n · Ω| = µ and

n1 sin θ1 = n2 sin θ2.

Finally, the hemispheric emissivity α is defined in terms of the reflectivity ρ by

α = 2n1

∫ 1

0

[1− ρ(µ)] dµ.

In astrophysical problems, an extra term ∂I/c∂t is often included in the left-hand side
of (1.2b). However, for the problems of glass annealing considered in this paper, this
term is negligibly small, so we ignore it. For a full discussion of the above equations
and their applications we refer, for example, to [6], [10], [5] and the monographs [3]
and [8].
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In the optically thick regime, where the opacity κ is large and the radiation is con-
veyed in a diffusion-like manner, it is appropriate to consider the above equations for
ε	 1. In this “diffusive regime, the solution of the transport equation asymptotically
limits to the solution of the equilibrium diffusion equation (see [6])

∂T

∂t
= ∇ · k∇T +∇ ·

(4π
3

∫ ∞

ν1

1

κ

∂B

∂T
dν
)
∇T,(1.4)

which is independent of the direction and frequency variables.
Considering numerical solutions of the above equations, the solution of the ra-

diative transfer equations is much more complex and costly than the solution of the
equilibrium diffusion equation. However, in many situations, the equilibrium diffu-
sion solution is not sufficiently accurate. For example, in the annealing (cooling) of
glass, the radiative transfer process produces boundary layers in T at the outer glass
surface. These give rise to mechanical stresses—due to the thermal contraction of the
glass upon cooling—which can cause defects or breaking. The equilibrium diffusion
approximation does not accurately describe these important boundary layer regions.

Therefore, approximations to the full radiative transfer model that are computa-
tionally less time consuming, yet sufficiently more accurate than equilibrium diffusion
theory, have been sought. In [7], simplified PN (SPN) approximations are developed
as alternatives to the full radiative transfer equations and the usual PN (spherical
harmonic) approximations. The SPN approximations are derived by asymptotic and
variational analyses and employ frequency-dependent diffusion equations, or coupled
systems of frequency-dependent diffusion equations. Approximate models of this type
contain boundary layer effects and can be remarkably accurate—much more accurate
than equilibrium diffusion theory; see [7].

A drawback of the SPN approximations, from the point of view of efficient sim-
ulations, is the large number of frequency bands often encountered in applications.
For the RHT equations and their PN and SPN approximations, this leads to a cou-
pled system of equations, since each frequency band is treated in a separate equation.
In the present paper, we develop a new grey simplified PN (GSPN) approximation
that eliminates the frequency variable. (More precisely, the new grey approximation
compresses all the frequency bands into one. The term “grey,” borrowed from the
astrophysical literature, means “frequency-independent.”) We also develop “partially
averaged” approximations, in which the number of frequency bands is reduced, but
not to one. (A “fully averaged” approximation would have only one band, and would
be “grey.”) The elimination or reduction of frequency significantly reduces computa-
tion time. Yet, our numerical results show that this process yields solutions that are
much more accurate than the equilibrium diffusion solution and are often nearly as
accurate as the SPN solution, even in the important boundary layers. We believe that
the resulting approximations will provide practical industrial tools for simulating the
annealing of glass.

The remainder of this paper is organized as follows: In section 2, the outer asymp-
totic expansion to derive the frequency-dependent SPN approximations to (1.2a) and
(1.2b) are reviewed. In sections 3 and 4, the GSPN procedure—in which the frequency
is eliminated as an independent variable—is presented. This procedure has the prac-
tical advantage that it leads to equations that are much less expensive to compute.
However, it represents a significant step beyond standard SPN theory. In section 5,
numerical comparisons of the SPN, GSPN, and equilibrium diffusion approximations
are presented. We conclude with a discussion in section 6.
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2. The SP1 and SP2 approximations. To solve (1.2a) in the domain V , we
write the transport equation as(

1 +
ε

κ
Ω · ∇

)
I(x, t,Ω, ν) = B(ν, T )

and use a Neumann series to formally solve for I. Assuming a homogeneous medium,
one obtains

I =
(
1 +

ε

κ
Ω · ∇

)−1

B(2.1)

∼
=
[
1− ε
κ
Ω · ∇+

ε2

κ2
(Ω · ∇)2 − ε

3

κ3
(Ω · ∇)3 +

ε4

κ4
(Ω · ∇)4 · · ·

]
B.

Integrating with respect to Ω and using∫
S2

(Ω · ∇)nf dΩ = [1 + (−1)n]
2π

n+ 1
∇nf,

where ∇2 = ∇ · ∇ is the spatial Laplacian and f is sufficiently smooth, we obtain

φ(x, t, ν) =

∫
S2

I(x, t,Ω, ν) dΩ

= 4π
[
1 +

ε2

3κ2
∇2 +

ε4

5κ4
∇4 +

ε6

7κ6
∇6 · · ·

]
B +O(ε8).

Hence

4πB =
[
1 +

ε2

3κ2
∇2 +

ε4

5κ4
∇4 +

ε6

7κ6
∇6
]−1

φ+O(ε8)

=

{
1−

[ ε2
3κ2

∇2 +
ε4

5κ4
∇4 +

ε6

7κ6
∇6
]

+
[ ε2
3κ2

∇2 +
ε4

5κ4
∇4 +

ε6

7κ6
∇6
]2

−
[ ε2
3κ2

∇2 +
ε4

5κ4
∇4 +

ε6

7κ6
∇6
]3

· · ·
}
φ+O(ε8),

=
[
1− ε2

3κ2
∇2 − 4ε4

45κ4
∇4 − 44ε6

945κ6
∇6
]
φ+O(ε8).(2.2)

If we discard terms of O(ε4) or O(ε6)—and rearrange asymptotically, if necessary,
to obtain robust second-order partial differential equations—we obtain the SP1 and
SP2 approximations, respectively, for φ(x, t, ν). We now summarize these different
approximate equations and boundary conditions, derived in [7] (see also [9], [2]).

The SP1 approximation, which is equivalent to the P1 spherical harmonic approx-
imation, is

− ε2∇ ·
( 1

3κ
∇φ
)
+ κφ = κ(4πB) +O(ε4), x ∈ V,(2.3)

∂T

∂t
= ∇ · (k∇T ) +

∫ ∞

ν1

∇ ·
( 1

3κ
∇φ
)
dν +O(ε2),(2.4)

φ(x, ν, t) +
(1 + 3r2
1− 2r1

)( 2ε
3κ

)
n · ∇φ(x, ν, t) = 4πB(a)(ν, Tb), x ∈ ∂V.(2.5)
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The SP2 approximation is

− ε2∇ ·
( 3

5κ
∇φ
)
+ κφ = κ(4πB) +O(ε6), x ∈ V,(2.6)

∂T

∂t
= ∇ · (k∇T ) +

∫ ∞

ν1

∇ ·
(

1

3κ
∇φ
)
dν +O(ε4),(2.7)

φ(x, ν, t) +

(
1 + 3r2
1− 4r3

)(
4ε

5κ

)
n · ∇φ(x, ν, t)(2.8)

= 4πB(a)(ν, T ) +

(
1− 2r1
1− 4r3

)(
24π

5

)
[B(a)(ν, Tb)−B(a)(ν, T )], x ∈ ∂V.

The constants r1, r2, and r3 in (2.5) and (2.8) are moments of ρ(µ):

rn =

∫ 1

0

µnρ(−µ) dµ, n = 1, 2, 3.

The boundary and initial conditions for T in both the SP1 and SP2 approxima-
tions are given by (1.2d) and (1.2e).

The SP1 approximation (2.3)–(2.5) and the SP2 approximation (2.6)–(2.8) do not
contain the direction variable Ω, but they do contain the frequency variable ν. Our
goal in this paper is to develop accurate frequency-independent (grey) and partially
frequency-averaged approximations to these frequency-dependent SPN approxima-
tions.

In [7], the differential equations (2.3), (2.4), (2.6), and (2.7) are derived by an
asymptotic analysis based on (2.2). The formal asymptotic order of error is indicated
in each of these above equations. However, the boundary conditions (2.5) and (2.8)
were derived by an approximate variational analysis, not by an asymptotic analysis,
and it is not known if a rigorous asymptotic order of error can be assigned to them.
In spite of this lack of strict asymptotic “pedigree,” the SP1 and SP2 approximations
have been shown to be accurate approximations to the full radiative transfer equations
for small and even intermediate values of ε (see [7]).

In this paper, we treat the SP1 and SP2 approximations as fundamental equa-
tions and derive formal asymptotic approximations to them. Specifically, we derive (i)
the GSP1 approximation, a grey (frequency-independent) approximation to the SP1

equations with O(ε2) error, and (ii) the GSP2 approximation, a grey approximation
to the SP2 equations with O(ε3) error. The GSP1 approximation is equivalent to
the well-known Rosseland, or equilibrium diffusion approximation, while the GSP2

approximation is new and represents an asymptotic correction to the Rosseland ap-
proximation. We also derive “partially averaged” approximations, in which frequency
is not eliminated from the problem, but the number of frequency bands is significantly
reduced.

If the SP1 equations are an O(ε2) approximation to the full radiative transfer
model (this assumption amounts to asserting that (2.5) has O(ε2) error), then the
GSP1 equations approximate the radiative transfer model with O(ε2) error. Likewise,
if the SP2 equations are an O(ε3) approximation to the full radiative transfer model
(this assumption amounts to asserting that (2.8) has O(ε3) error), then the GSP2

equations approximate the radiative transfer model with O(ε3) error.

We do not attempt to calculate a grey approximation to the SP1 equations with
error O(ε3) or smaller, because the resulting grey approximation can have no better
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than O(ε2) error relative to the full radiative transfer equations. It does make sense
to attempt to calculate a grey approximation to the SP2 equations with error O(ε4),
because the resulting grey approximation could then have O(ε4) error relative to the
full radiative transfer equations. However, the best that we could manage is the O(ε3)
approximation presented in this paper.

Regardless of these asymptotic subtleties, numerical simulations presented in sec-
tion 5 demonstrate that the GSP2 approximation is significantly more accurate than
the GSP1 (Rosseland) approximation, yet is only slightly more expensive to com-
pute. For very difficult problems, the partially averaged equations are shown to be
even more accurate than the grey equations, typically almost as accurate as the orig-
inal SPN equations on which the approximations developed in this paper are directly
based. As might be expected, the cost of the partially averaged simulations is greater
than the cost of the grey calculations but less than the cost of the full SPN calcula-
tions.

3. The GSP1 approximation. The starting point for deriving the GSP1 ap-
proximation is the system of SP1 equations (2.3)–(2.5) stated above.

In (2.3) and (2.4), we have indicated that the formal errors are O(ε4) and O(ε2),
respectively (see [7] for details). Overall, the error in the SP1 equations is expected
to be O(ε2). If we delete the O(ε2) diffusion term in (2.3) and also the boundary
condition (2.5)—since these are not strictly needed—(2.3) yields, with O(ε2) error,

φ = 4πB.(3.1)

Then (2.4) becomes, also with O(ε2) error,

∂T

∂t
−∇ · (k∇T ) =

∫ ∞

ν1

∇ · 4π
3κ

∇ B(ν, T )dν

= ∇ ·
∫ ∞

ν1

4π

3κ

∂B

∂T
(ν, T ) ∇Tdν

= ∇ ·
(4π

3

∫ ∞

ν1

1

κ

∂B

∂T
(ν, T )dν

)
∇T.

Equivalently,

∂T

∂t
= ∇ · [k + kR(T )] ∇T,(3.2)

with

kR(T ) =
4π

3

∫ ∞

ν1

1

κ(ν)

∂B

∂T
(ν, T )dν.(3.3)

Equations (3.2), (3.3), (1.2d), and (1.2e) constitute the familiar Rosseland, or equi-
librium diffusion, approximation. In our lexicon, we also call this the grey simplified P1

(GSP1) approximation, because it is a frequency-independent (grey) approximation
to the frequency-dependent SP1 equations. The formal error in this approximation is
O(ε2), which is the same as the formal error in the SP1 approximation.

However, in discarding the ε2∇ · 1
3κ∇φ term in (2.3) and the boundary con-

dition (2.5) on φ, we thereby discarded the boundary layers in the SP1 solution.
The frequency-dependent SP1 solution contains boundary layers, but the frequency-
independent GSP1 (Rosseland) solution does not.
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4. The GSP2 approximation.

4.1. GSP2 equations. The starting point now is the system of SP2 (2.6)–(2.8).
Equation (2.6) for a homogeneous medium gives(

1− 3ε2

5κ2
∇2

)
φ = 4πB +O(ε6),

so

φ =

(
1 +

3ε2

5κ2
∇2

)
4πB +O(ε4).(4.1)

Then,

φ

3κ
=

4π

3

B

κ
+ ε2∇2 4π

5

B

κ3
+O(ε4)(4.2)

and

1

3

∫ ∞

ν1

φ

κ
dν =

4π

3

∫ ∞

ν1

B

κ
dν + ε2∇2 4π

5

∫ ∞

ν1

B

κ3
dν +O(ε4).(4.3)

Thus, if we define

W (x, t) =
1

3

∫ ∞

ν1

φ(x, ν, t)

κ(ν)
dν(4.4)

and

fn(T ) =
4π

n+ 2

∫ ∞

ν1

B(ν, T )

κn(ν)
dν (n = 1, 3),(4.5)

which satisfy f ′n(T ) > 0, then (2.7) and (4.3) become, with O(ε4) error,

∂T

∂t
= ∇ · (k∇T ) +∇2W,(4.6)

W = f1(T ) + ε
2∇2f3(T ).(4.7)

It is now trivial to use (4.7) to eliminate W from (4.6), producing a nonlinear
fourth-order (in space) differential equation for T :

∂T

∂t
= ∇ · (k∇T ) +∇2f1(T ) + ε

2(∇2)2f3(T ),(4.8)

which has formal error O(ε4). However, this equation is ill-conditioned, so we do not
propose to attempt to solve it for T . Instead we convert (4.7) into a well-conditioned
second-order differential equation for W , with formal O(ε4) asymptotic error.

To do this, we first write (4.7) as

W = f1(T ) +O(ε2),

so

∇W = f ′1(T )∇T +O(ε2),

and hence

∇T =
1

f ′1(T )
∇W +O(ε2).(4.9)
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Equations (4.7) and (4.9) now give, with O(ε4) error,

W = f1(T ) + ε
2∇2f3(T )

= f1(T ) + ε
2∇ · f ′3(T )∇T

= f1(T ) + ε
2∇ · f

′
3(T )

f ′1(T )
∇W,

or

−ε2∇ ·
(
f ′3(T )
f ′1(T )

∇W
)
+W = f1(T ).(4.10)

In (4.10), the positive function

f ′3(T )
f ′1(T )

≡ D(T )

has the role of a space-dependent diffusion coefficient. This is physically appropriate,
asW is an intensity-like quantity, and the diffusion coefficient forW should intuitively
depend on T .

The GSP2 equations, which are defined throughout the physical system V , consist
of the two coupled (4.6) and (4.10) for T and W . The formal error in these equations
is O(ε4). Next, we derive initial and boundary conditions for these equations. Unfor-
tunately, the error in the boundary condition for W is O(ε3), not O(ε4). Still, this is
more accurate than the O(ε2) error in the Rosseland approximation.

4.2. GSP2 initial and boundary conditions. As before, the initial and
boundary conditions for (4.6) are (1.2e) and (1.2d), respectively. Using the boundary
condition (2.8), we shall derive a boundary condition for

W (x, t) =
1

3

∫ ∞

ν1

φ(x, ν, t)

κ(ν)
dν,

i.e., for (4.10), with O(ε3) error.
When we introduce the constants

α1 ≡ 4

5

(
1 + 3r2
1− 4r3

)
,

α2 ≡ 6

5

(
1− 2r1
1− 4r3

)
,

then (2.8) may be written

φ+
εα1

κ
n · ∇φ = 4π

[
B(a) + α2(B

(a)
b −B(a))

]
, x ∈ ∂V.(4.11)

Dividing by 3κ and integrating over ν1 ≤ ν <∞, we obtain, using (4.4) and (4.5),

W +
εα1

3
n · ∇

∫ ∞

ν1

φ

κ2
dν = f

(a)
1 (T ) + α2[f

(a)
1 (Tb)− f (a)

1 (T )].(4.12)

However, (4.1) gives

φ = 4πB +O(ε2).
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Dividing by κ2 and integrating over ν1 ≤ ν <∞, we obtain∫ ∞

ν1

φ

κ2
dν = 4π

∫ ∞

ν1

B

κ2
dν +O(ε2) = 4f2(T ) +O(ε2).

Hence (4.12) becomes, with O(ε3) error,

W +
4α1ε

3
n · ∇f2(T ) = f (a)

1 (T ) + α2[f
(a)
1 (Tb)− f (a)

1 (T )], x ∈ ∂V.(4.13)

We also have from (4.10)

W = f1(T ) +O(ε2), x ∈ V.(4.14)

The previous two equations imply

W +
4α1ε

3
(f2)

′(T ) n · ∇T = f
(a)
1 (T ) + α2[f

(a)
1 (Tb)− f (a)

1 (T )],

n · ∇W = (f1)
′(T ) n · ∇T +O(ε2).

Eliminating n · ∇T , we obtain, with O(ε3) error,

W +

(
4α1ε

3

(f2)
′(T )

(f1)′(T )

)
n · ∇W = f

(a)
1 (T ) + α2[f

(a)
1 (Tb)− f (a)

1 (T )], x ∈ ∂V.
(4.15)

This boundary condition for W can be used with (4.10). The positive quantity

4α1ε

3

(f2)
′(T )

(f1)′(T )

in (4.15) plays the role of an extrapolation distance, which is familiar from neutron
transport.

4.3. GSP2 approximation: Summary. To summarize, we propose the follow-
ing GSP2 equations for T (x, t) and W (x, t), which hold for all x ∈ V and t > 0:

∂T

∂t
= ∇ · (k∇T ) +∇2W,(4.16)

−ε2∇ ·
(
f ′3(T )
f ′1(T )

∇W
)
+W = f1(T ).(4.17)

The following boundary conditions for T and W hold for x ∈ ∂V and t > 0:

εk n · ∇T = h(Tb − T ) + απ
∫ ν1

0

[
B(a)(ν, Tb)−B(a)(ν, T )

]
dν,(4.18)

W +

(
4α1ε

3

(f2)
′(T )

(f1)′(T )

)
n · ∇W = f

(a)
1 (T ) + α2[f

(a)
1 (Tb)− f (a)

1 (T )].(4.19)

The following initial condition for T holds for x ∈ V :
T (x, 0) = T0(x).(4.20)
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The GSP2 equations formally approximate the SP2 equations with O(ε3) error. If
the SP2 equations themselves approximate the radiative transfer equations with O(ε3)
error—this is tantamount to an assumption on the accuracy of the SP2 boundary
condition—then the GSP2 equations also approximate the radiative transfer equations
with O(ε3) error.

If one chooses to approximate the GSP2 equations by allowing O(ε2) errors, then
the derivative term on the left side of (4.17) can be dropped, and the boundary
condition (4.19) for W can then be dropped because it is not needed. The result-
ing equations reduce to the GSP1, or Rosseland equations. Hence the above GSP2

equations are an O(ε3) correction to the O(ε2) Rosseland equation.
In our derivation of the GSP2 equations and boundary conditions, we assumed

that all quantities involved in the manipulations (i.e., the solution and its derivatives)
are O(1). The goal of our asymptotic manipulations has been to obtain a set of
equations and boundary conditions that

(a) is well-conditioned,
(b) is asymptotically accurate if the solution and all its derivations are O(1), and
(c) is robust if derivatives of the solution are large (possibly, in boundary layer

regions).
Thus there is no guarantee that the above GSP2 equations are accurate for problems
with boundary layers. Indeed, no boundary layer scaling or analysis has been used in
the derivation of these equations! Nevertheless, we show next that numerical solutions
of the GSP2 equations are (i) much more accurate than the Rosseland solution, even
in boundary layer regions, and (ii) often of comparable accuracy to the SP2 equa-
tions, even in boundary layer regions. Thus, even though our derivation of the GSP2

equations does not explicitly account for boundary layers, it seems to accomplish this
in some implicit manner.

5. Partial averaging. To obtain more accurate results the averaging procedure
may be slightly modified. We proceed in the same way as described above; however,
we integrate only over certain intervals in frequency space instead of integrating the
respective terms over the whole frequency interval [ν1,∞). This procedure does not
lead to a single-band or grey approximation but to a multiband approximation.

Starting with a multiband model (i.e., a piecewise constant absorption coefficient)
with N bands, the number of bands can be strongly reduced with such a procedure.
We denote the number of frequency bands after the averaging procedure with M .

The procedure leads to the following partially averaged SP2 equations for T (x, t)
and Wi(x, t), i = 1, . . . ,M , which hold for all x ∈ V and t > 0:

∂T

∂t
= ∇ · (k∇T ) +∇2

M∑
i=1

Wi,(5.1)

−ε2∇ ·
(
(f

(i)
3 )′(T )

(f
(i)
1 )′(T )

∇Wi

)
+Wi = f

(i)
1 (T ),(5.2)

with

f (i)
n (T ) =

4π

n+ 2

∫ νi+1

νi

B(ν, T )

κn(ν)
dν (n = 1, 3, i = 1, . . . ,M),(5.3)

where νM+1 = ∞.
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The following boundary conditions for T and Wi hold for x ∈ ∂V and t > 0:

εk n · ∇T = h(Tb − T ) + απ
∫ ν1

0

[
B(a)(ν, Tb)−B(a)(ν, T )

]
dν,(5.4)

Wi +

(
4α1ε

3

(f
(i)
2 )′(T )

(f
(i)
1 )′(T )

)
n · ∇Wi = f

(a,i)
1 (T ) + α2[f

(a,i)
1 (Tb)− f (a,i)

1 (T )].(5.5)

The following initial condition for T holds for x ∈ V :

T (x, 0) = T0(x).(5.6)

As can be seen in section 6, choosing suitable intervals in frequency space and
averaging in the way described above leads to strongly improved results.

6. Numerical comparisons. We now compare solutions of the full radiative
transfer equations with solutions of the approximate SP2 equations, GSP2 equations,
and Rosseland (GSP1) equation. We investigate problems in one-dimensional slab ge-
ometry, in which the temperature and radiation depend spatially on the x-coordinate
but not on the y- or z-coordinates. The direction-dependent radiation is assumed to
be rotationally symmetric around the x-axis.

The problems considered correspond to the cooling of a uniform slab of glass
surrounded by air at room temperature Tb = 300K. Initially, the temperature inside
the glass is taken to be T0(x) = 1000K. The radiation outside the glass is assumed
to be a Planckian, i.e., isotropic with Ib(Ω, ν) = B(a)(ν, Tb, ). For t > 0, the glass
cools down by the processes considered in this paper: regular heat conduction (linear
diffusion) and thermal RHT.

We used standard finite difference techniques to discretize the diffusion equations,
with uniform space and time grids. We chose ∆x = 0.02 in the scaled interval [0, 1]
and 100 equal time steps ∆t = 10−5 to reach the final time t = 10−3.

We assumed the scaled physical parameters k and h to have the values k = 1 and
h = 1. The refractive coefficients were chosen to be n1 = 1.46 (glass) and n2 = 1
(air). The corresponding hemispheric emissivity is α = 0.92.

We approximated the opacity κ(ν) by a piecewise constant step function defined
on the frequency bands [νi, νi+1], i = 1, . . . , N (νN+1 = ∞), and with associated
absorption rates κ(ν) = κi for ν ∈ [νi, νi+1].

We first considered several problems with only two frequency bands. For ν1 =
4.28 · 1014Hz and ν2 = 9.99 · 1014Hz (corresponding to λ1 = 3µm and λ2 = 7µm,
respectively), we considered the following cases: κ1 = 1 and κ2 = 2, κ1 = 10 and
κ2 = 20, κ1 = 50 and κ2 = 100, κ1 = 1 and κ2 = 10, κ1 = 1 and κ2 = 100 (see
Figures 6.1–6.5.) In all these problems, the SP2 solution agrees very well with the full
radiative transfer solution, and the GSP2 solution is significantly closer to these than
is the Rosseland solution.

We also studied a more realistic problem with eight frequency bands. The ab-
sorption coefficients were chosen according to Table 6.1; these data have been used for
practical simulations of annealing in glass. The edge of the opaque part of the spec-
trum is located at the wavelength λ = 7µm, thus giving ν1 = c/λ1 = 4.28 · 1013s−1.
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Fig. 6.1. Comparison of the different approximations for κ1 = 1 and κ2 = 2.
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Fig. 6.2. Comparison of the different approximations for κ1 = 10 and κ2 = 20.

Figure 6.6 shows the frequency-averaged GSP2 solution in comparison with the
full RHT solution, the (grey) Rosseland solution, and the (frequency-dependent) SP2

solution. Again, the GSP2 solutions are in much closer agreement with the full radia-
tive transfer solution and the SP2 solution than is the Rosseland solution.

In additional to the GSP2 solution in Figure 6.6, averaging was also done partially
with respect to certain frequency bands as explained above. In the following two
figures the results of partial averaging are plotted. Figure 6.7 shows results where
averaging is done over the first two and the last six of the frequency bands, thus
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Fig. 6.3. Comparison of the different approximations for κ1 = 50 and κ2 = 100.
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Fig. 6.4. Comparison of the different approximations for κ1 = 1 and κ2 = 10.

resulting in a 2-band model. Figure 6.8 shows results with averaging over bands 1
and 2, bands 3 and 4, and bands 5 to 8, resulting in a 3-band model. In both cases very
good agreement of the averaged solutions with the radiative heat transfer solution can
be observed. Research on how to choose the frequency bands for partial averaging in
an optimal way is referred to future work.

However, we do observe, for each of the above problems, that when the GSP2

solution disagrees with the full radiative transfer solution, the main region of dis-
agreement is in the outer boundary layers; in these cases, the GSP2 boundary layers
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Fig. 6.5. Comparison of the different approximations for κ1 = 1 and κ2 = 100.

Table 6.1
Opacities of the eight-band model for glass. The bands are defined by wavelength intervals (data

kindly provided by Fraunhofer ITWM Kaiserslautern).

Band i λi [µm] λi+1 [µm] κi [1/m]
1 0 0.20 0.40
2 0.20 3.00 0.50
3 3.00 3.50 7.70
4 3.50 4.00 15.45
5 4.00 4.50 27.98
6 4.50 5.50 267.98
7 5.50 6.00 567.32
8 6.00 7.00 7136.06
– 7.00 ∞ opaque

are steeper than the those in the exact radiative transfer solution. The Rosseland
solution, on the other hand, tends to underpredict the steepness of the boundary
layers. The more expensive partially averaged solutions generally provide much more
accurate estimates of the temperature in the outer boundary layers. At this time we
are not certain whether these trends apply consistently in all problems.

Finally, Table 6.2 below displays a run-time comparison of the different models for
the 8-band problem, with data measured on a PC with the AMD-K6 200 processor,
running MATLAB 5 under Linux 2.2. The Rosseland solution is (as expected) the
least expensive, the GSP2 solution is only slightly more expensive, the frequency-
dependent SP2 calculation is significantly more expensive, and the frequency-and-
angle-dependent radiative transfer calculation is by far the most expensive of these
simulations. The computation time for the partially averaged models is proportional
to the number of equations (number of frequency bands plus temperature equation)
used in the models. It ranges from the computation time needed for GSP2 up to the
time needed for SP2.
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Fig. 6.6. Numerical results for the temperature of the averaged models and the RHT model in
the case of eight frequency bands.
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Fig. 6.7. Numerical results for the temperature with partial averaging of eight frequency bands
using two averaged bands.

Table 6.2
Computational costs of the Rosseland, GSP2, and SP2 approximations, and the full transport

equation, using eight frequency bands.

Rosseland GSP2 SP2 RHT

flops [×106] 3.7 4.1 36.8 417.0

time [sec] 52.0 54.6 220.4 6423.8
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Fig. 6.8. Numerical results for the temperature with partial averaging of eight frequency bands
using three averaged bands.

7. Conclusions. Summarizing our numerical results, we conclude that the GSP2

approximation yields significantly more accurate temperatures in the interior of the
physical system than does the Rosseland approximation. In the important outer
boundary layers, where thermal stresses can cause cracking of glass, the GSP2 solution
is often extremely accurate, and when not, it seems to overpredict the steepness of
the boundary layers. Thus, annealing schedules based on the GSP2 solution should
generally overpredict the time required for the glass to cool. On the other hand,
annealing schedules based on the Rosseland model should generally underpredict the
cooling time which may lead to cracking. The partially averaged solutions provide
very accurate estimates of the temperature in the boundary layers. Of course, the
optimal cooling schedule will be obtained using the full radiative transfer solution,
but solving this equation is significantly more expensive than solving the grey or
frequency-averaged SPN equations.

We now wish to discuss more thoroughly a point that has already been mentioned
in this paper and previously in [7]. Specifically, the asymptotic analysis in this paper
and in [7] contains no boundary layer analysis and no expansion of the solution of the
underlying radiative transfer problem. Instead, we perform in this paper asymptotic
manipulations on the frequency-dependent SPN equations to obtain simpler equations
and boundary conditions. In all cases, we seek (systems of) second-order equations in
space that are well conditioned and that behave robustly in the presence of boundary
layers. Our formal manipulations (i) assume that spatial derivatives are O(1) and (ii)
do not explicitly account for boundary layers. Also, the underlying SPN boundary
conditions are obtained not by an asymptotic analysis—which seems to be forbid-
dingly complex—but rather by a variational analysis. In spite of these limitations,
the SPN approximations are remarkably accurate in boundary layers [2], [7], [9]. For
the problems considered in this paper, the SP2 solutions are nearly identical to the
radiative transfer solutions. Moreover, the less accurate GSP2 and the partially av-
eraged SP2 approximations also perform well in the boundary layers—certainly, they
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are much more accurate than the Rosseland approximation. Overall, it is unclear
why this favorable result should hold. There may be processes at work, not fully
understood by the authors, that allow the approach taken in this paper to yield accu-
rate results in boundary layers, even though the underlying asymptotic scaling never
explicitly takes these layers into account.

Because the GSP2 and the partially averaged SP2 equations capture boundary
layer effects, extra care must be taken in selecting spatial grids for them. In particular,
spatial grids used for GSP2 and partially averaged SP2 must be finer in the boundary
layer region than the grids used Rosseland’s approximation in order to resolve the
boundary layers that are not present in the Rosseland solution.

This discussion of boundary layers leads an interesting question: if the main
deficiency of the Rosseland approximation occurs in boundary layer regions, then
would it be preferable to develop an approximate theory employing the Rosseland
equation in the interior of the system, coupled to one-dimensional boundary layer
solutions that are valid at the outer boundary (or interface) parts of the system? (For
example, see [1] or [4] and the references cited therein.) The conceptual advantages
of this approach are that the underlying Rosseland equation is simpler to solve than
the coupled GSP2 equations, and the one-dimensional boundary layer solutions will
probably contain more accurate transport physics than the GSP2 equations.

The methodology adopted in the present paper is to explore the gains of accuracy
that are attainable from the SP2 and GSP2 approximation to the RHT equations.
A significant advantage of this approach is that differential (diffusion) equations are
obtained having a structure that is very similar to equations already implemented
in industrial (diffusion) codes. Thus the implementation of the (G)SP2 equations
in these codes is relatively straightforward. (This advantage of SPN approximations
is widely recognized in the nuclear engineering community.) A second advantage is
that the GSP2 equations are only slightly more expensive to solve than the Rosseland
equation (see Table 6.2), while the GSP2 solutions are significantly more accurate than
the classic Rosseland solution. A third advantage is that the treatment of boundary
layers in the GSP2 equations is “natural”; the boundary layers exist directly within
the GSP2 equations and do not have to be “matched” to the solution of a (Rosseland)
diffusion problem. (This is particularly important because the underlying problem is
nonlinear.)

However, we must nonetheless acknowledge the fact that when the GSP2 solutions
disagree with the exact solution, the disagreement occurs mainly in the boundary
layer regions. More precisely, the GSP2 approximation is not generally capable of
the accuracy of the SP2 equations—which are accurate in the boundary layers. It
is possible that some of the physics and accuracy that are lost in collapsing the SP2

equations down to the GSP2 equations could be regained by including boundary layer
solutions into the approximate GSP2 solution, similar to the procedure in [1]. This
would add to the complexity of the method, and to the difficulty of implementation,
but it could well raise the accuracy of the overall solution. This is a significant
possibility for future research on this problem.

Finally, in developing a grey approximation to the SPN equations, we also devel-
oped (i) an alternative grey O(ε3) approximation to the SP2 equations and (ii) a grey
O(ε3) approximation to the SP3 equations. However, numerical simulations showed
that these approximations are less accurate than the GSP2 approximation, so it did
not seem appropriate to discuss them in detail here. As discussed in the previous
paragraphs, there is room for improvement in the GSP2 approximation developed in
this paper, particularly in the boundary layer regions. For example, an approxima-
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tion that is more accurate (formally O(ε4) rather than O(ε3)) in the boundary layers
would certainly be desirable. However, this advance must await fresh insights and
future work.
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Abstract. Jenike’s radial solution, widely used in the design of materials-handling equipment,
is a similarity solution of steady-state continuum equations for the flow under gravity of granular
material through an infinite, right-circular cone. In this paper we study how the geometry of the
hopper influences this solution. Using perturbation theory, we compute a first-order correction to
the (steady-state) velocity resulting from a small change in hopper geometry, either distortion of the
cross section or tilting away from vertical. Unlike for the Jenike solution, all three components of
the correction velocity are nonzero; i.e., there is secondary circulation in the perturbed flow.
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1. Introduction. In manufacturing industries, raw materials are stored in gran-
ular form in a silo, and when needed, they are expected to flow out of the silo under
gravity through a hopper. Problems in the discharge process are frequent and expen-
sive; see, e.g., [8]. As demonstrated by a Rand Corporation study [9], these problems
are symptomatic of our poor understanding of the behavior of granular materials.1

Jenike’s radial solution is a central component of silo design. Despite its impor-
tance, this solution is subject to many severe restrictions:

1. Granular material is modeled as a continuum, with an ad hoc constitutive law.
2. The flow is assumed to be steady.
3. The flow domain, a mathematical idealization, is an infinite cone, given in

spherical polar coordinates by the formula

{(r, θ, φ) : 0 < r < ∞, 0 ≤ θ < θw} (θw = constant).

4. Only similarity solutions are considered.
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1The study compared the design output and the actual output of a total of 60 manufacturing
plants in various industries, 22 that were based primarily on liquids-processing technology and 38 on
solids-processing technology. On average, the liquids-processing plants produced at 84% of design
capacity while the solids-processing plants produced at only 63% of design capacity. To quote Merrow
[9], “In economic terms, the difference between 63% of design and 84% is very large. It implies a
capital cost per unit of output about one-third higher for the solids-processing plants, on the basis of
poor performance alone. In addition, poor performance is inevitably associated with higher operating
and maintenance costs per unit of product.” Moreover, the standard deviation of the solids-processing
data set was much greater, indicative of our difficulties in predicting the behavior of granular solids.
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In this paper we relax restrictions 3 and 4 partly. Specifically, we generalize the
domain to an infinite pyramidal hopper described by the inequality

0 ≤ θ < θw + ε cosmφ,(1.1)

where ε is a small parameter and m is a positive integer. Assuming a perturbation
series

v(0) + εv(1) + · · ·
for the flow velocity in the domain (1.1), where v(0) is Jenike’s solution, we derive
a linear PDE for the first-order correction v(1). The r-dependence of v(1) still has
similarity form, and the φ-dependence may be handled by separation of variables. In
this way we reduce solving the PDE for v(1) to solving a two-point boundary problem
on the interval 0 < θ < θw.

In Jenike’s solution, only the radial component v
(0)
r of the velocity is nonzero. By

contrast, all three components of the correction velocity v(1) are nonzero. In other
words, distortion of the conical domain leads to secondary circulation. For example,
in Figure 5.1 below, the flow in the θ, φ-directions is shown for a circular hopper that
is tilted slightly to the right, and in Figure 5.2, for a slightly distorted vertical hopper.

Circulation was previously observed by Williams and Rege in discrete element
simulations of granular systems [11], [13]. While a connection between such time-
dependent, discrete simulations and the steady-state continuum theory below is un-
clear, the similarities are uncanny. Both find a secondary circulation in essentially
two-dimensional granular systems undergoing a uniform compression.

The outline of the paper is as follows. In section 2, the governing equations are
recalled together with Jenike’s construction of similarity solutions in conical domains.
For nonaxisymmetric domains of the type (1.1), the problem is then linearized about
Jenike’s solution in section 3. The resulting system is discretized in section 4. Nu-
merical results and discussion are offered in section 5.

2. The model.

2.1. Governing equations and boundary conditions. The unknowns are
the 3-component velocity vector v, the 3× 3 symmetric stress tensor T , and a scalar
plasticity coefficient λ. (The density ρ is a constant.) In total, there are 3 + 6 + 1 =
10 unknown functions. In writing the equations for these variables, we need the
strain rate tensor V = −1/2(∇v +∇vT ) and the deviatoric part of the stress tensor
dev T = T − 1

3 (trT ) I. Note the sign convention: V measures the compression rate of
the material; analogously, positive eigenvalues of T correspond to compressive stresses.
This sign convention reflects the fact that granular materials disintegrate under tensile
stresses.

Following [12], we require that these variables satisfy

∇ · T = ρ g,(2.1)

V = λ dev T,(2.2)

|dev T |2 = 2s2(trT /3)2,(2.3)

where g is the (vector) acceleration of gravity, | · | denotes the Frobenius norm

|T |2 =

3∑
i,j=1

T 2
ij = trT 2
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(the latter equality only for symmetric tensors), and s = sin δ, with δ being the an-
gle of internal friction of the material under consideration (see [10]). Equation (2.1)
expresses force balance; i.e., Newton’s second law with inertia neglected because the
flow is assumed slow; it is equivalent to three scalar equations. Equations (2.2) and
(2.3) are constitutive laws, the alignment condition and the von Mises yield condi-
tion, respectively; they are equivalent to six and to one scalar equations, respectively.
Thus (2.1)–(2.3) is a determined system, ten equations for ten unknowns. Since (2.3)
contains no derivatives, this system has a differential-algebraic character. Taking the
trace of (2.2), we see that div v = −trV = 0; thus, incompressibility is part of the
constitutive assumptions. Incidentally, for a solution to be physical, the function λ
in (2.2) must satisfy λ ≥ 0 everywhere; otherwise, friction would be adding energy
to the system rather than dissipating it. In fact, we want λ to be strictly positive
since one of the assumptions underlying the derivation of (2.1)–(2.3) is that material
is actually deforming.

We seek solutions of (2.1)–(2.3) in a pyramidal domain, expressed in spherical
polar coordinates as

Ω = {(r, θ, φ) : 0 ≤ θ < C(φ)},(2.4)

where C is a given smooth 2π-periodic function. Such a domain represents a mathe-
matical idealization of a converging hopper, in general, a nonaxisymmetric one.

On the boundary ∂Ω = {(r, C(φ), φ)}, wall impenetrability imposes one boundary
condition on the velocity; i.e.,

vN = 0,(2.5)

where vN is the normal velocity. Two additional boundary conditions come from
Coulomb’s law of sliding friction. The surface traction τ—i.e., the force exerted by
the wall on the material—is given by

τi =

3∑
j=1

TijNj ,

where N is the unit interior normal to ∂Ω. If the vector τ has normal component τN
and tangential component τT = τ − τNN , then we require that

τT = −µw τN (v/|v|),(2.6)

where µw is the coefficient of friction between the wall and the material. Note the
following: (i) If T is positive definite (i.e., if all stresses are compressive), then τN > 0.
(ii) While τN is a scalar, τT is effectively a two-component vector; thus, (2.6) is
equivalent to two scalar equations. (iii) Because of (2.5), the velocity v is tangential
to ∂Ω; we are assuming that v �= 0 at the boundary.

2.2. Jenike’s similarity solution. Suppose that the domain (2.4) is axisym-
metric; i.e., suppose

Ω = {(r, θ, φ) : 0 ≤ θ < θw},(2.7)

where θw is a constant. In this case Jenike [7] found that (2.1)–(2.3) have solutions
that are independent of φ and have a similarity dependence on r,

v(0)(r, θ) = r−2 v̂(0)(θ), T (0)(r, θ) = r T̂ (0)(θ).(2.8)
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(Here and below, a hat above a variable indicates a function that depends on θ alone.)

Moreover, only the radial component of velocity is nonzero; i.e., v
(0)
θ = v

(0)
φ = 0.

Similarly, T
(0)
rφ = T

(0)
θφ = 0. Indeed, all components of T can be expressed in terms of

two scalar variables, the so-called Sokolovskii variables [10]: the mean stress p(0) =
trT (0) /3 and an angle ψ; specifically,

dev T (0) = s p(0)




− 2√
3
cos 2ψ − sin 2ψ 0

− sin 2ψ 1√
3
cos 2ψ 0

0 0 1√
3
cos 2ψ


 ,(2.9)

where p(0) = rp̂(0) and the function ψ, like p̂(0), depends only on θ.
The boundary conditions (2.5), (2.6) may be written more explicitly when Ω is

axisymmetric. Equation (2.5) reduces to

vθ = 0.(2.10)

Let us decompose the vector equation (2.6) into a direction and a magnitude. Re-
garding the direction, the vectors τT and v are parallel if

Trθvφ − Tθφvr = 0.(2.11)

Jenike’s solution satisfies both (2.10) and (2.11) trivially. The two sides of (2.6) have
equal magnitude if

Trθ + µwTθθ = 0.(2.12)

We briefly summarize the construction of Jenike’s solution, referring to [12] for
more details. The ansatz (2.9) arranges that (2.3) holds automatically. On substi-
tution into (2.1), we obtain a first-order 2 × 2 system of ODEs for p̂(0) and ψ. This
system has a regular singular point at θ = 0, and one boundary condition comes from
requiring that the solution be regular there; the other boundary condition comes from
(2.12). Thus the stresses are determined as the solution of a two-point boundary-value
problem. (In axial symmetry, the stress equations decouple from the velocity.) Once

the stresses are known, (2.2) reduces to a linear first-order ODE for v̂
(0)
r . The veloc-

ity is determined only up to a multiplicative constant, but the normalization of the
velocity will scale out of the calculations below.

Incidentally, for Jenike’s solution the plasticity coefficient λ in (2.2), which cancels

out in the derivation of the equation for v̂
(0)
r , has the form

λ(0)(r, θ) = r−4λ̂(0)(θ).

Using (2.2), the function λ̂(0) may be determined from v̂
(0)
r .

3. Linearized analysis for a nearly axisymmetric domain.

3.1. Derivation of linearized differential equations. Equations (2.1)–(2.3),
a 10× 10 nonlinear DAE system that is elliptic in the sense of Agmon, Douglis, and
Nirenberg [1], present formidable mathematical and numerical challenges. In this
paper, we consider a simplified problem that prepares the way for computations with
the full problem on a general domain.
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Suppose the function C specifying the boundary of Ω in (2.4) has the expansion

C(φ) = θw + ε cos(mφ) +O(ε2),(3.1)

where m is a positive integer. For example, a slightly tilted (circular) cone admits
such a representation with m = 1, where ε measures the angle of tilt; likewise for a
(vertical) pyramidal hopper having a slightly elliptical cross section, with m = 2.

An expansion of the solution

v = v(0) + εv(1) +O(ε2), T = T (0) + εT (1) +O(ε2)(3.2)

is sought, where v(0), T (0) are equal to Jenike’s radial solution; see (2.8). Substituting
(3.2) into (2.1)–(2.3), we derive the equations for the first-order perturbation

∇ · T (1) = 0,(3.3)

V (1) = λ(1) devT (0) + λ(0)devT (1),(3.4)

tr(devT (0) devT (1)) = 2 s2 p(0)p(1),(3.5)

where p(i) = trT (i)/3, i = 0, 1, are the mean stresses.
The correction velocity v(1) has the same r-dependence as the Jenike solution

(although all three components of v(1) may be nonzero), and its φ-dependence can
be obtained through separation of variables. Indeed, suppose each component of v(1)

has the form

v
(1)
j = r−2 v̂

(1)
j (θ) trigmφ,(3.6)

where trigmφ denotes either cosmφ or sinmφ. In order to satisfy the appropriately

modified version of the boundary condition (2.10) on the perturbed domain, v
(1)
θ will

have to be in phase with (3.1); i.e., we need

v
(1)
θ = r−2 v̂

(1)
θ (θ) cosmφ.

It is readily seen that if

v(1)
r = r−2 v̂(1)

r (θ) cosmφ and v
(1)
φ = r−2 v̂

(1)
φ (θ) sinmφ,

then all terms in

∇ · v(1) = ∂rv
(1)
r + 2r−1v(1)

r + r−1∂θv
(1)
θ + r−1 cot θv

(1)
θ + r−1 csc θ∂φv

(1)
φ(3.7)

are proportional to r−3 cosmφ; i.e., variables separate in the equation ∇ · v = 0.
Tables 3.1–3.3 help systematize the elimination of φ-dependence in (3.3)–(3.5)

with separation of variables. The appropriate r- and φ-dependencies for the scalar
p(1), for the vector v(1), and for the tensor T (1) are indicated in Table 3.1. (Note
that symmetric 3× 3 tensors are represented as vectors in R6, the components being
enumerated in the order shown.) In Table 3.2 we record, for the reader’s convenience,
the expressions in spherical coordinates for four differential operators that occur in
these equations.

The main point, which makes separation of variables work in this problem, is that
the θ-dependent part of each of these linear operators is given by

∇̂p = (g1∂θ + g0)p̂,(3.8a)

∇̂ · v = (dT1 ∂θ + dT0 )v̂,(3.8b)

V̂ = −(G1∂θ +G0)v̂,(3.8c)

∇̂ · T = (D1∂θ +D0)T̂ ,(3.8d)
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Table 3.1
The r- and φ-dependence of scalars, vectors, and tensors in separation of variables.

Scalars : p = r p̂(θ) cosmφ

Vectors : v = 1
r2

[
v̂r(θ) cosmφ
v̂θ(θ) cosmφ
v̂φ(θ) sinmφ

]
Tensors : T = r




T̂rr(θ) cosmφ

T̂rθ(θ) cosmφ

T̂θθ(θ) cosmφ

T̂rφ(θ) sinmφ

T̂θφ(θ) sinmφ

T̂φφ(θ) cosmφ




Table 3.2
Differential operators in spherical coordinates.

∇p = [ ∂rp, r−1∂θp, r
−1 csc θ∂φp ]

T

∇ · v = ∂rvr + 2r−1vr + r−1∂θvθ + r−1 cot θvθ + r−1 csc θ∂φvφ

V =




Vrr
Vrθ
Vθθ
Vrφ
Vθφ
Vφφ


 = −




∂rvr
1
2

(
r−1∂θvr − r−1vθ + ∂rvθ

)
r−1 (vr + ∂θvθ)

1
2

(
r−1 csc θ ∂φvr − r−1vφ + ∂rvφ

)
1
2
r−1
(
∂θvφ − cot θ vφ + csc θ∂φvθ

)
r−1
(
vr + cot θ vθ + csc θ ∂φvφ

)




∇ · T =

[
∂rTrr + r−1 csc θ ∂φTrφ + r−1∂θTrθ + r−1(2Trr − Tφφ − Tθθ + Trθ cot θ)

∂rTrθ + r−1 csc θ ∂φTθφ + r−1∂θTθθ + r−1
(
3Trθ + (Tθθ − Tφφ) cot θ

)
∂rTrφ + r−1 csc θ ∂φTφφ + r−1∂θTθφ + r−1(3Trφ + 2Tθφ cot θ)

]

where g1, g0, . . . , D0 are the matrices given in Table 3.3.
The calculation needed to verify (3.8b) was described above; the other equations

may be verified similarly. Incidentally, (3.8a) may be derived by substituting T = pI
in (3.8d), and (3.8b) may be derived by taking the trace of (3.8c).

With this notation, (3.3)–(3.5) reduces to a system of ODEs in θ,

(D1∂θ +D0)T̂
(1) = 0,(3.9)

−(G1∂θ +G0)v̂
(1) = λ̂(1) devT̂ (0) + λ̂(0)devT̂ (1),(3.10)

tr(devT̂ (0) devT̂ (1)) = 2 s2 p̂(0)p̂(1).(3.11)

Recalling the representation of symmetric tensors as 6-component vectors, we observe
that the left-hand side of (3.11) may be rewritten as an inner product

tr
(
devT̂ (0) devT̂ (1)

)
= devT̂ (0)TM devT̂ (1),

where M is the 6× 6 matrix

M = diag(1, 2, 1, 2, 2, 1);

thus we may rewrite (3.11) as

devT̂ (0)TMdevT̂ (1) = 2 s2 p̂(0)p̂(1).(3.12)
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Table 3.3
Matrices in (3.8).

g1 =
[

0 1 0
]T

g0 =
[

1 0 m
sin θ

]T
d1 =

[
0 1 0

]T
d0 =

[
0 cot θ m

sin θ

]T

G1 =




0 0 0
1/2 0 0
0 1 0
0 0 0
0 0 1/2
0 0 0


 G0 =




−2 0 0
0 −3/2 0
1 0 0

− m
2 sin θ

0 −3/2

0 − m
2 sin θ

− cot θ
2

1 cot θ m
sin θ




D1 =

[
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 0 1 0

]
D0 =

[
3 cot θ −1 m

sin θ
0 −1

0 4 cot θ 0 m
sin θ

− cot θ
0 0 0 4 2 cot θ − m

sin θ

]

Let us show that the deviatoric stresses in (3.9), (3.10), (3.12) can be eliminated
from these equations to obtain

(D1∂θ +D0)

(
− 1

λ̂(0)
(G1∂θ +G0)v̂

(1) − λ̂(1)

(λ̂(0))2
V̂ (0)

)
+ (g1∂θ + g0)p̂

(1) = 0,(3.13)

(dT1 ∂θ + dT0 )v̂
(1) = 0,(3.14)

where in (3.13)

λ̂(1) = − 1

2s2

1

(p̂(0))2λ̂(0)
V̂ (0)TM(G1∂θ +G0)v̂

(1) − λ̂(0)

p̂(0)
p̂(1).(3.15)

Equation (3.14) follows on taking the trace of (3.10). Next, we rewrite (3.10) as

devT̂ (1) = − 1

λ̂(0)
(G1∂θ +G0)v̂

(1) − λ̂(1)

(λ̂(0))2
V̂ (0),(3.16)

where we have eliminated devT̂ (0) using the relation V̂ (0) = λ̂(0)devT̂ (0)—effectively,
(2.2) for Jenike’s solution. Recalling that T̂ (1) = devT̂ (1) + p̂(1)I, we substitute (3.16)
into (3.9) to derive (3.13). Similarly, (3.15) follows on substituting (3.16) into (3.12)
and rearranging.

As a final simplification, we substitute (3.15) into (3.13), obtaining the linear,
homogeneous system of ODEs

−(A2∂θθ +A1∂θ +A0)v̂
(1) + (b1∂θ + b0)p̂

(1) = 0,(3.17)

(dT1 ∂θ + dT0 )v̂
(1) = 0,(3.18)

where, with the definition

P = I − 1

2s2(p̂(0))2(λ̂(0))2
V̂ (0)V̂ (0)TM,



590 PIERRE A. GREMAUD, JOHN V. MATTHEWS, DAVID G. SCHAEFFER

the coefficient matrices are given by

A2 =
1

λ̂(0)
D1PG1,

A1 =
1

λ̂(0)
(D0PG1 +D1PG0) +D1∂θ

(
1

λ̂(0)
PG1

)
,

A0 =
1

λ̂(0)
D0PG0 +D1∂θ

(
1

λ̂(0)
PG0

)
,

b1 = g1 +D1
V̂ (0)

p̂(0)λ̂(0)
,

b0 = g0 + (D1∂θ +D0)
V̂ (0)

p̂(0)λ̂(0)
.

These matrices depend on θ and in fact several are singular as θ → 0. In Corollary 4.2
below, we show that this system has a six-dimensional solution space.

The combination V̂ (0)/(p̂(0)λ̂(0)), which occurs in various places in the above for-
mulas, admits a convenient representation; i.e., combining (2.2) and (2.9), we deduce
that

1

p̂(0)λ̂(0)
V̂ (0) = s




− 2√
3
cos 2ψ

− sin 2ψ
1√
3
cos 2ψ

0
0

1√
3
cos 2ψ



.(3.19)

The following supplementary information will be needed in section 4.
Lemma 3.1. Under the reflection θ �→ −θ, the functions in separation of variables

have the parities

p̂(−θ) = (−1)mp̂(θ),(3.20a)

v̂(1)
r (−θ) = (−1)mv̂(1)

r (θ),(3.20b)

v̂
(1)
θ (−θ) = (−1)m+1v̂

(1)
θ (θ),(3.20c)

v̂
(1)
φ (−θ) = (−1)m+1v̂

(1)
φ (θ).(3.20d)

Proof. The reflection θ �→ −θ and the rotation φ �→ φ+ π are different represen-
tations of the same mapping. Therefore, since p is a scalar,

p̂(−θ) cosmφ = p̂(θ) cosm(φ+ π) = (−1)mp̂(θ) cosmφ,

which proves (3.20a). Equation (3.20b) follows from the same argument since vr
transforms as a scalar under changes in the angular coordinates. Rather than analyze
the parities of vθ and vφ, we prefer an indirect argument. Since ∇ · v(1) is a scalar,
∇ · v(1) has parity (−1)m under the reflection θ �→ −θ, and on inspecting (3.7), we
deduce (3.20c), (3.20d).

Incidentally, although we shall not need that information below, we remark that
under this reflection T̂rr, T̂θθ, T̂θφ, and T̂φφ have parity (−1)m, while T̂rθ and T̂φr
have parity (−1)m+1.
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Table 3.4
Leading orders in the expansions at θ = 0 of the coefficient matrices of (3.17)–(3.18).

A2(θ) =

[
1
2

0 0

0 5
6

0

0 0 1
2

]
+O(θ)

A1(θ) = θ−1

[
1
2

0 0

0 5
6

m
3

0 −m
3

1
2

]
+O(1)

A0(θ) = θ−2


 −m2

2
0 0

0 −m2

2
− 5

6
− 4m

3

0 − 4m
3

− 5m2

6
− 1

2


+O(θ−1)

b1(θ) = (1 + s/
√
3)
[

0 1 0
]T

+O(θ)

b0(θ) = θ−1(1 + s/
√
3)
[

0 0 −m
]T

+O(1)

d1(θ) =
[

0 1 0
]T

(exactly)

d0(θ) = θ−1
[

0 1 m
]T

+O(1)

3.2. Boundary conditions at the centerline. Equations (3.17), (3.18) have
a regular singular point at θ = 0. The leading orders of the coefficient matrices in
these equations are given in Table 3.4. This information may be determined without
knowing the Jenike solution explicitly since, using the fact that ψ(0) = 0, we deduce
from (3.19) that

V̂ (0)

p̂(0)λ̂(0)
(0) =

s√
3

[ −2 0 1 0 0 1
]T

.

According to the method of Frobenius [3], equations (3.17), (3.18) admit solutions
of the form

v̂(1)(θ) = θνF (θ), p̂(1)(θ) = θν−1f(θ),(3.21)

where F (θ) and f(θ) are analytic near θ = 0. Suppose the exponent ν is real; if 1 ≤ ν,
such a solution is continuous; if ν < 0, it is singular; and if 0 ≤ ν < 1, it is continuous,
provided f(0) = 0.

Proposition 3.2. There are exactly three linearly independent solutions of
(3.17), (3.18) of the form (3.21) that are continuous at θ = 0.

Proof. Substitution of (3.21) into (3.17), (3.18) gives an indicial equation with
roots

ν = ±(m+ 1),±m,±(m− 1).(3.22)

If m ≥ 2, three of the roots of (3.22) are negative and three are positive. The three
solutions associated with the positive indices are linearly independent and continuous.
(We remark that since the positive roots differ by integers, in principle these solutions
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might contain log terms. This would not affect their continuity. Moreover, using
Maple we have verified that no such log terms arise. See section 5.2 for more details
about the Maple code.)

If m = 1, there are four nonnegative roots of (3.22), including zero which is a
double root. Because of a log term, the double root zero contributes at most one
continuous solution. Again using Maple we have eliminated the various alternative
possibilities to show that zero and the two positive roots (3.22) contribute exactly
three linearly independent continuous solutions and these do not contain any log
terms.

Incidentally, since the roots of the indicial equation are integers and since no log
terms arise, the continuous solutions of the lemma are actually analytic near θ = 0.

Note that there are six roots (3.22) of the indicial equation. Therefore (3.17),
(3.18) has a six-dimensional solution space. (We also prove this by a different ar-
gument in Corollary 4.2.) Thus, according to the proposition, the condition that
solutions be regular at θ = 0 is equivalent to three boundary conditions. Therefore,
regularity at θ = 0 plus the three boundary conditions (2.5), (2.6) will provide a
complete set of boundary conditions.

3.3. Boundary conditions at the hopper wall. We derive the perturbed
version of (2.5) in some detail; similar issues arise for (2.6), and we treat the latter
equation more succinctly. The calculations are greatly simplified by the fact that we
may neglect any quantity that is O(ε2). To exploit this simplification efficiently, we
temporarily use the notation F ∼ G to mean that F = G+O(ε2).

Including a prefactor of r2 to remove all r-dependence from the equation, we may
rewrite (2.5) as

r2v(r, θw + ε cosmφ, φ) ·N = 0.(3.23)

Because of the perturbation, (3.23) differs from (2.10) in three respects:
– the velocity v contains an additional term, v ∼ v(0) + εv(1);
– the velocity is evaluated at a location shifted by ε cosmφ;
– the direction of the normal N is changed.

Regarding the first two points, we observe that

r2v(r, θw + ε cosmφ, φ) ∼ v̂(0)(θw) + ε cosmφ∂θv̂
(0)(θw) + ε trigmφ v̂(1)(θw),

where trigmφ equals cosmφ or sinmφ, depending on the component of v̂(1). Regard-
ing the third point, ∂Ω is the zero set of the function θ − θw − ε cosmφ. Taking the
gradient of this function, we conclude that the (inward) normal is

N ∼
[
0 −1 −ε sinmφ

sin θw

]T
.

Modulo an O(ε2)-error, N has unit length. Substituting the previous two equations
into (3.23), we deduce that

−r2v(r, θw + ε cosmφ, φ) ·N ∼ v̂
(0)
θ (θw) + ε cosmφ

(
∂θv̂

(0)
θ (θw) + v̂

(1)
θ (θw)

)
+ ε

sinmφ

sin θw
v̂
(0)
φ (θw).

However, since v
(0)
θ and v

(0)
φ vanish identically for Jenike’s solution, the velocity bound-

ary condition for the perturbed problem reduces to

v̂
(1)
θ (θw) = 0.(3.24)
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We turn to the stress boundary condition (2.6). As regards the scalar τN in (2.6),

we observe that, since T
(0)
rφ and T

(0)
θφ vanish for Jenike’s solution,

τN =

3∑
i,j=1

TijNiNj ∼ T
(0)
θθ + εT

(1)
θθ .(3.25)

The vectors τT and vT in (2.6) lie in a two-dimensional subspace tangent to ∂Ω. Note
that the unperturbed tangent space is spanned by the r and φ coordinate directions.
Even allowing for the perturbation, the two sides of (2.6) will be equal iff their r- and
φ-components are equal; in symbols, iff[

τTr
τTφ

]
= −µwτN

|v|
[

vr
vφ

]
.

This equality will hold iff (i) the two sides of the equation are parallel vectors and
(ii) the first components of the two sides are equal; again, in symbols, iff

τTrvφ − τTφvr = 0 and(3.26)

τTr + µwτN (vr/|v|) = 0.(3.27)

Regarding v, it is clear that[
vr
vφ

]
∼
[

v
(0)
r

0

]
+ ε

[
v
(1)
r

v
(1)
φ

]
.(3.28)

Regarding τT = τ − τNN , we claim that[
τTr
τTφ

]
∼ −

[
T

(0)
rθ

0

]
− ε

[
T

(1)
rθ

T
(1)
θφ

]
.(3.29)

Verifying this claim is straightforward except that, in analyzing the second component,

one must invoke the fact that Jenike’s solution satisfies T
(0)
θθ = T

(0)
φφ . On substituting

(3.28) and (3.29) into (3.26), we obtain the equation

ε
(
T

(0)
rθ v

(1)
φ − v(0)

r T
(1)
θφ

)
= 0 at θ = θw + ε cosmφ.

The difference between evaluating this expression at θ = θw and at the perturbed lo-
cation is O(ε2). Removing the r-dependence (proportional to r) and the φ-dependence
(proportional to sinmφ) from this equation, we obtain the first stress boundary con-
dition for the perturbed problem:(

T̂
(0)
rθ v̂

(1)
φ − v̂(0)

r T̂
(1)
θφ

)
= 0 at θ = θw.(3.30)

Regarding (3.27), we claim that

|v| =
√

v2
r + v2

θ + v2
φ ∼ |vr|.

Indeed, it is clear from (3.28) that the contribution of vφ to |v| is O(ε2), and by (3.24)
the contribution of vθ to |v| is O(ε4). Thus, vr/|v| ∼ −1. Substituting (3.25) and
(3.29) into (3.27), we obtain the condition

(T
(0)
rθ + εT

(1)
rθ ) + µw(T

(0)
θθ + εT

(1)
θθ ) ∼ 0 at θ = θw + ε cosmφ.
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By (2.12), T
(0)
rθ + µwT

(0)
θθ vanishes at θ = θw, but at the perturbed location these

terms make an O(ε)-contribution. Allowing for this contribution and eliminating the
r- and φ-dependence, we derive the second stress boundary condition for the perturbed
problem:

T̂
(1)
rθ + µwT̂

(1)
θθ = −∂θ

(
T̂

(0)
rθ + µwT̂

(0)
θθ

)
at θ = θw.(3.31)

We have put the inhomogeneous term, which does not involve the perturbation T (1),
on the right side of the equation. (By contrast, (3.30) and (3.24) are homogeneous.)

It is noteworthy that the perturbed boundary conditions (3.24), (3.30), (3.31)
resemble (2.10), (2.11), (2.12) rather closely.

4. Numerical approximation of the two-point boundary-value problem.
The coefficients in (3.17), (3.18) depend on the zeroth-order solution discussed in
section 2.2. This solution can be found numerically without difficulty; see, e.g., [6],
where a shooting method is used, or [10]. We will consider the zeroth-order solution
as given, and we will focus on the corrections v̂(1) and p̂(1).

To simplify the notation before discretization, we set

w = v̂(1), z =
d

dθ
v̂(1), and q = p(1)

and rewrite equations (3.17), (3.18) as a first-order system
 I 0 0

0 −A2 b1
0 0 0




 w′

z′

q′


+


 0 −I 0

−A0 −A1 b0
dT0 dT1 0




 w

z
q


 =


 0

0
0


 ,(4.1)

where the coefficient matrices are the same as above. System (4.1) is completed by
the three boundary conditions (3.24), (3.30), (3.31).

The above system (4.1) is differential-algebraic; in the next lemma, we show it
has index one. (The meaning of this term is defined in the proof, or see [4].) The
approximation of solutions of the initial-value problem for such low-index DAEs is
relatively well understood; see, for instance, [4] for convergence results. Moreover,
some results for the initial-value problem may be extended to boundary-value prob-
lems; see [5]. These considerations provide a theoretical justification for our using the
midpoint rule to solve (4.1) numerically.

Lemma 4.1. Assuming downward flow, i.e., vr(θ) < 0 for any θ, the first-order
system is differential-algebraic of index one.

Proof. We need to show that by differentiating some of the components of (4.1) at
most once, the algebraic character of the system can be eliminated, leaving a purely
differential equation. Let us differentiate only the last component of (4.1),

dT0 w + dT1 z = 0.(4.2)

The resulting system may be written as
 I 0 0

0 −A2 b1
0 dT1 0




 w′

z′

q′


+


 linear

zeroth-order
terms


 = 0.(4.3)

We claim the coefficient matrix in (4.3) is nonsingular. Then, multiplying (4.3) by
the inverse of this matrix, we obtain a purely differential equation.
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To prove the claim, it suffices to show that

B =

[
+λ̂(0)A2 b1

dT1 0

]
(4.4)

is nonsingular, where, without changing invertibility, we have inserted a factor of−λ̂(0)

in the upper left, which simplifies the calculation. Let us introduce the notation W
for the column vector on the right-hand side of (3.19), so that V̂ (0)/(p̂(0)λ̂(0)) = sW .
Then from the definitions following (3.17), (3.18), we have b1 = g1+sD1W. Similarly,

regarding A2, since MG1 = DT
1 , we have λ̂(0)A2 = D1G1 − 1

2 (D1W )(D1W )T . But

D1W =
[
− sin 2ψ 1√

3
cos 2ψ 0

]T
.

Hence matrix (4.4) equals

B =




1
2 − 1

2 sin
2 2ψ ∗ ∗ −s sin 2ψ

1
2
√

3
cos 2ψ sin 2ψ ∗ ∗ 1 + s√

3
cos 2ψ

0 0 1
2 0

0 1 0 0


 ,

where ∗ indicates elements that do not affect the invertibility of B. It is readily
calculated that

detB = −1

4

(
cos2 2ψ +

s√
3
cos 2ψ

)
.

As shown on p. 43 of [12], the assumption that v
(0)
r < 0 implies that |ψ(θ)| < π/4,

and the claim follows.

Corollary 4.2. The solution space of (4.1) has dimension six.

Proof. The solution space of (4.3), which is seven-dimensional, may be param-

eterized by initial values
[

w(θ0) z(θ0) q(θ0)
]T

. Since (4.3) was obtained from
(4.1) by differentiating (4.2), we conclude that for a solution of (4.3),

dT0 w(θ) + dT1 z(θ) ≡ 0 iff dT0 w(θ0) + dT1 z(θ0) = 0.

Thus the solution space of (4.1) may be identified with the set of solutions of (4.3)
whose initial conditions satisfy the scalar equation (4.2).

The boundary-value problem (4.1), (3.24), (3.30), (3.31) is discretized using a
symmetric implicit Runge–Kutta method [2], [4]. Since the solutions are expected
to behave smoothly with respect to θ, the simplest of those methods, namely the
midpoint rule, is chosen. In spite of being only second-order accurate, this choice is
shown to be adequate below. The interval (0, θw) is divided into N subintervals of
size ∆θ = θw/N , defining a uniform mesh with nodes θi = i∆θ, i = 0, 1, . . . , N . At
each grid point θi there are seven unknowns,

U i = [wi1 wi2 wi3 zi1 zi2 zi3 qi]T .

Since there are N+1 grid points, there are 7(N+1) unknowns in total. The midpoint
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Table 4.1
Numerical boundary conditions at θ = 0.

m = 1 w0
1 = 0 w0

2 + w0
3 = 0 z03 = 0 q0 = 0

m ≥ 2 w0
1 = 0 w0

2 = 0 w0
3 = 0 q0 = 0

rule for the ODE (4.1) is applied on each interval [θi−1, θi], i = 1, . . . , N , leading to
7N equations for the 7(N + 1) unknowns.

Seven additional equations are needed to close the system, and these are provided
by the boundary conditions. At θ = θw, the three conditions (3.24), (3.30), (3.31) are
imposed, and at θ = 0, the four numerical boundary conditions listed in Table 4.1 are
imposed. The latter boundary conditions may be justified as follows. According to
(3.21), (3.22), as θ → 0,

w ∼ θν , q ∼ θν−1,

where ν ≥ m− 1. Thus w(0) = 0 if m ≥ 2, and q(0) = 0 if m ≥ 3. In fact, if m = 2,
direct calculation of the Frobenius solution (3.21) shows that q(0) = 0 remains true
in this case, too. If m = 1, we refer to Lemma 3.1: by parity, w1, q, and z3 = dw3/dθ
all vanish at θ = 0. The fourth boundary condition in Table 4.1 follows from the last
equation in (4.1) in the limit θ → 0.

The resulting 7(N + 1)× 7(N + 1) system has the following structure:




S1 R1

S2 R2

. . .
. . .

SN RN

B0 Bw







U0

U1

...

UN−1

UN



=




0

0
...

0

Q



.(4.5)

The last row of the above system corresponds to the implementation of the boundary
conditions; the 7 × 7 matrices B0 and Bw contain the coefficients entering in the
formula from Table 4.1 and (3.24), (3.30), (3.31), respectively, while Q corresponds
to the nonhomogeneous part of the boundary condition (3.31).

5. Numerical results.

5.1. Secondary circulation. We claim that, for solutions of (4.1), secondary
circulation—i.e., flow tangential to the spherical cap {r = const}—may be described
in terms of the stream function

Ψ =
1

mr
sin θ sinmφw2(θ).

In other words, we must show that

v
(1)
θ =

1

r sin θ
∂φΨ,(5.1a)

v
(1)
φ = −1

r
∂θΨ.(5.1b)

Since v
(1)
θ = r−2w2(θ) cosmφ, equation (5.1a) follows by direct differentiation. On
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Fig. 5.1. Stream function showing secondary flow in a tilted hopper (m = 1, θw = 30◦,
δ = 30◦, angle of wall friction = 14◦), i.e., µw = tan 14◦. By symmetry, only half of the hopper is
represented.
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Fig. 5.2. Stream function showing secondary flow in an “elliptical” hopper (m = 2, θw = 30◦,
δ = 30◦, angle of wall friction = 14◦).

the other hand, since v
(1)
r = r−2w1(θ) cosmφ, we have (∂r + 2r−1)vr = 0, so by (3.7)

(∂θ + cot θ)w2(θ) cosmφ+ csc θ w3(θ) ∂φ(sinmφ) = 0,

from which (5.1b) follows. Figures 5.1 and 5.2 show plots of the level lines of Ψ, which
equal the projection of the streamlines onto a spherical cap {r = const}. Figure 5.1
corresponds to a tilted hopper (m = 1), while Figure 5.2 corresponds to an “ellip-
tical” hopper (m = 2). The grains do not move along radial lines but follow more
complicated and fully three-dimensional trajectories.

The sign of the main circulation changes when µw increases. The corresponding
transition is independent of the value of m, but is a property of the radial solution
itself. Specifically, the circulation vanishes when the boundary condition for the cor-

rection terms (3.31) is homogeneous, i.e., ∂θT̂
(0)
rθ +µw∂θT̂

(0)
θθ = 0 at θ = θw. The range

of θw in Figure 5.3 is limited by the mass-flow limit—exceeding this limit leads to
flows with rigid regions, to which the present model does not apply. The range of µw
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Fig. 5.3. Critical values leading to sign changes of the circulation (internal friction δ = 30◦).
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Fig. 5.4. Influence of the geometry on the mean stress corrections (θw = 30◦, δ = 30◦, angle of
wall friction = 14◦); upper left: m = 1, upper right: m = 2, lower left: m = 3, lower right: m = 4.

is limited by the condition that µw < sin δ = 1/2; here the upper bound corresponds
to a fully rough wall [7].

The effects of the geometry on the mean stress corrections are illustrated in Fig-
ure 5.4.

5.2. Checks on the computation. For comparison with the above numerical
solution, the method of Frobenius was applied directly to the system (3.17), (3.18)
using Maple. Given Jenike’s radial field, a linear system for the coefficients of the
series solution is readily formed and solved, yielding a solution with three free param-
eters, corresponding to the three linearly independent solutions in Proposition 3.2.
Subsequently, the three boundary conditions (3.24), (3.30), (3.31) provide the needed
relations to determine the solution to the full boundary-value problem.
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Fig. 5.5. Comparison of v
(1)
θ

from the purely numerical method of section 4 and from the
Frobenius method of section 5.2. (Using m = 1, θw = 10◦, δ = 30◦, and µw = 0.3.)

Two methods of obtaining the radial field were employed. Under the assumption
that θ2

w and µw/θw are both small and of the same order, a series representation of the
Jenike field was computed within Maple itself. Under the less restrictive assumption
that only θw be small (say 10◦), numerical solutions were computed in MATLAB,
fitted to polynomials, and then imported into Maple. In both cases, the resulting
polynomials were then used to compute the first-order correction. The corrections
to the stress and velocity obtained through this symbolic approach agree extremely
well with the results of the purely numerical method of sections 4 and 5: for the
representative values m = 1, θw = 10◦, δ = 30◦, and µw = 0.3, the corrections
obtained by the two different methods have a relative difference of less than 1%; see
Figure 5.5.

Acknowledgments. The authors thank Bob Behringer, Steve Campbell, Tim
Kelley, Tony Royal, and Michael Shearer for many helpful discussions.

REFERENCES

[1] S. Agmon, A. Douglis, and L. Nirenberg, Estimates near the boundary for solutions of
elliptic partial differential equations satisfying general boundary conditions II, Comm. Pure
Appl. Math., 17 (1964), pp. 35–92.

[2] U.M. Ascher and L.R. Petzold, Computer Methods for Ordinary Differential Equations and
Differential-Algebraic Equations, SIAM, Philadelphia, 1998.

[3] C.M. Bender and S.A. Orszag, Advanced Mathematical Methods for Scientists and Engi-
neers, International Series in Pure and Applied Mathematics, McGraw–Hill, New York,
1978.

[4] K.E. Brenan, S.L. Campbell, and L.R. Petzold, Numerical Solution of Initial-Value Prob-
lems in Differential-Algebraic Equations, Classics Appl. Math. 14, SIAM, Philadelphia,
1996.

[5] K.D. Clark and L.R. Petzold, Numerical solution of boundary value problems in differential-
algebraic systems, SIAM J. Sci. Statist. Comput., 10 (1989), pp. 915–936.

[6] P.A. Gremaud, J.V. Matthews, and M. Shearer, Similarity solutions for granular materials
in hoppers, in Nonlinear PDE’s, Dynamics, and Continuum Physics, Contemp. Math., 255,
J. Bona, K. Saxton and R. Saxton, eds., AMS, Providence, RI, 2000, pp. 79–95.

[7] A.W. Jenike, Gravity flow of bulk solids, Bulletin 108, Utah Eng. Expt. Station, University of
Utah, Salt Lake City, 1961.

[8] T.M. Knowlton, J.W. Carson, G.E. Klinzing, and W.C. Yang, The importance of storage,
transfer and collection, Chem. Eng. Prog., 90 (1994), pp. 44–54.

[9] E.W. Merrow, A quantitative assessment of R&D requirements for solids processing technol-
ogy, Publication R-3216-DOE/PSSP, Rand Corporation, Santa Monica, CA, 1986.



600 PIERRE A. GREMAUD, JOHN V. MATTHEWS, DAVID G. SCHAEFFER

[10] R.M. Nedderman, Static and Kinematic of Granular Materials, Cambridge University Press,
Cambridge, UK, 1992.

[11] N. Rege, Computational Modeling of Granular Materials, Ph.D. thesis, Department of Civil
and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA,
1996.

[12] D.G. Schaeffer, Instability in the evolution equations describing incompressible granular flow,
J. Differential Equations, 66 (1987), pp. 19–50.

[13] J.R. Williams and N. Rege, The development of circulation cell structures in granular ma-
terials undergoing compression, Powder Technol., 90 (1997), pp. 187–194.



RESONANCES FOR MICROSTRIP TRANSMISSION LINES∗

HABIB AMMARI† AND FAOUZI TRIKI†

SIAM J. APPL. MATH. c© 2003 Society for Industrial and Applied Mathematics
Vol. 64, No. 2, pp. 601–636

Abstract. In this paper we rigorously derive asymptotic formulae for resonances associated
with a microstrip transmission line mounted on a planar waveguide with variable electromagnetic
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1. Introduction. In this paper we discuss resonance problems inherent in mi-
crostrip transmission lines mounted on planar open waveguides. Microstrip transmis-
sion lines are widely used in printed-circuit technology, microwave integrated circuits,
and the antenna industry [7], [15], [6], [11]. Since microstrip transmission lines are
highly resonant structures, an accurate determination of their resonances is of great
importance [4], [7], [15], [6], [11]. Our aim in this work is to rigorously derive asymp-
totic formulae for resonances associated with the full Maxwell’s equations in a mi-
crostrip transmission line mounted on a planar open waveguide when the width of the
microstrip transmission line goes to zero. The waveguide is half space (y > 0) with the
Dirichlet boundary condition on y = 0. The region 0 < y < h is considered the core
of the fiber, while the remainder is considered the cladding. The electric permittivity
of the waveguide is y-dependent in the core and is constant in the cladding. The
magnetic permeability is constant in each part. The electromagnetic characteristics
of the waveguide are then given by

ε(y) =

{
ε1(y) in ]0, h[,

ε2 in ]h,+∞[

and

µ(y) =

{
µ1 in ]0, h[,

µ2 in ]h,+∞[,

where ε1(y)µ1 ≥ ε2µ2 and µ1 �= µ2.
This resonant problem is a spectral problem nonlinear in the spectral variable,

that is, the frequency. By integral equations, we reduce this problem to the existence
and the distribution of the characteristic values of two families of self-adjoint integral
operators in the complex plane. Powerful techniques from the theory of meromor-
phic operator-valued functions and careful asymptotic analysis of integral kernels are
combined for solving this problem. Our results are expected to lead to sophisticated
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numerical tools for working engineers and scientists in the design and analysis of mi-
crostrip structures and circuits to be installed on waveguides. It is also hoped that
this work will provide some insight into correct analysis of both the resonant and the
radiation problems for microstrip transmission lines.

The paper is organized as follows. In section 2, we model the search of the
resonances of the microstrip transmission line as two nonlinear spectral problems (2.6)
and (2.7). Then, in section 3, we reformulate (2.6) and (2.7) as two systems of integral
equations depending on the small parameter 2α which is the width of the transmission
line. We transform these systems into the determination of the characteristic values
of two integral operator-valued functions Aα and Bα in the complex plane. The main
ingredient for doing this is an inverse transform formula stated in Lemma 3.1. A
similar formula was first derived by Magnanini and Santosa [8]. A generalization of
the Rouché theorem to operator-valued functions shows the existence of resonances
close to the resonant frequencies of the waveguide, considered as a reference structure.
The idea of reducing the resonant problem to the study of characteristic values of some
integral operators has been introduced by Russian authors; see [12] and the references
listed there. Section 4 is devoted to the rigorous derivation of asymptotic expansions
of the resonances as α goes to zero. In Appendix A, we give a proof of Lemma 3.1.
Appendix B contains statements of the main results from the work of Gohberg and
Sigal [2] that are used here.

Our asymptotic formulae can be interpreted as follows. As will be shown in
this paper, the introduction of the microstrip transmission line perturbs the guided
frequencies and transforms the guided modes into radiative modes with a complex
z-wave number γ (�(γ) > 0). In other words, the complex part of the perturbations
in γ that are due to the transmission line corresponds to losses in the guided modes
by the planar waveguide. The main problem in applications then is to reduce these
losses.

It should also be remarked that the leading order resonances perturbations result-
ing from the presence of the microstrip transmission line are of order O( 1

lnα ). This
finding is closely connected with the work of Ozawa [10] (see also [5]). Ozawa derives
an asymptotic expression of the eigenvalues of the Laplacian in a bounded domain in
R

2 in the presence of an interior small perfectly conducting ball (with the Dirichlet
boundary condition on its boundary). Ozawa’s asymptotic expression bears some re-
semblance to ours. We finally note that our approach can be used to correctly solve
the radiation problem for microstrip transmission lines. The resonant problem for
microstrip gratings that are planar periodic structures can also be solved by a similar
method.

2. Position of the problem. Let (ex, ey, ez) be an orthonormal basis of R
3.

The microstrip structure extends in the domain R
3
+ = R × R+ × R and is invariant

under any translation in the z-direction. It consists of a perfectly conducting ground
plane G×R = R×{y = 0}×R coated with a dielectric layer of constant thickness h.
A single infinite strip line P × R = ]− α, α[ × {y = h} × R of width 2α is posed on
the upper plane {y = h}. The exterior medium, characterized by a positive constant
electric permittivity ε2 and a positive constant magnetic permeability µ2, fills the
upper domain O2 × R = R× ]h,+∞[× R. The dielectric layer fills the lower domain
O1 ×R = R× ]0, h[×R. We assume that the electric permittivity ε1 of the dielectric
layer is a variable function in the y-direction and its magnetic permittivity is a positive
constant µ1. Throughout this paper, we adopt the following notation: f

± is the limit
of f(y) when y → h±; [f ] = f+ − f− on P denotes the jump between the boundary
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values of f on the two sides of P .
The microstrip transmission line is illuminated by a harmonic incident plane wave,

E inc(x, y, z, t) and Hinc(x, y, z, t). We denote by ω its frequency, by �k = kxex+kyey+

kzez its wave vector, and by �X = (x, y, z) the space vector. The frequency ω = |�k| is
a fixed positive real. Thus we have

E inc( �X, t) = Einc
0 ( �X)e−iωt+
k. 
X ,

Hinc( �X, t) = Hinc
0 ( �X)e−iωt+
k. 
X .

Let (E ,H) be the total electric and magnetic fields in the waveguide structure. Hence

E( �X, t) = E inc( �X, t) + Esca( �X, t),
H( �X, t) = Hinc( �X, t) +Hsca( �X, t),

where Esca and Hsca are the scattered electric and magnetic fields, respectively. The
vector fields E and H are the solutions of the following linear Maxwell system:{

curl E( �X, t) = µ(y) ∂tH( �X, t),
curlH( �X, t) = −ε(y) ∂tE( �X, t).

Guided modes of the waveguide structure are particular solutions such that{ E(x, y, z, t) = � (E(x, y, z) exp(−iωt)) ,
H(x, y, z, t) = � (H(x, y, z) exp(−iωt)) ,

which gives that the electric field E(x, y, z) satisfies


curl

(
1

µ(y)
curlE

)
+ ω2ε(y)E = 0 in R

3
+ \ P × R,

div(ε(y)E) = 0 in R
3
+ \ P × R,

E ∧ ey = 0 on (G ∪ P )× R.

(2.1)

The z-invariance of the microstrip line structure yields to a z-dependency of the form
eiγz for the field E(x, y, z), where γ is real, called the z-wave number:

E(x, y, z) = eiγzE(x, y).(2.2)

Hence, if ε1(y) is assumed to be constant, then the problem (2.1) may be reduced to
a system of three two-dimensional Helmholtz scalar equations. We refer the reader to
[1] for a proof.

Lemma 2.1. The components Ex, Ey, and Ez of the electric field E(x, y) defined
by (2.2), where E is a solution to (2.1), solve the following transmission boundary-
value problems: 



∆Ey + (ω2ε(y)µ(y)− γ2)Ey = 0 in O1 ∪ O2,

[∂yEy] = 0 on L,

[εEy] = 0 on L \ P,
∂yEy = 0 on G ∪ P,

(2.3)
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∆Ex + (ω2ε(y)µ(y)− γ2)Ex = 0 in O1 ∪ O2,

[Ex] = 0 on L,[
1

µ
∂yEx

]
=

1

µ2

(
1− ε2µ2

ε1(h)µ1

)
∂xE

+
y on L \ P,

Ex = 0 on G ∪ P,

(2.4)

and 


∆Ez + (ω2ε(y)µ(y)− γ2)Ez = 0 in O1 ∪ O2,

[Ez] = 0 on L,[
1

µ
∂yEz

]
=
iγ

µ2

(
1− ε2µ2

ε1(h)µ1

)
E+
y on L \ P,

Ez = 0 on G ∪ P.

(2.5)

Our aim in this work is to investigate the problem of finding γ2(ω) such that
at least one of the scalar Helmholtz equations (2.3)–(2.5) has a nontrivial solution
subject to a radiation condition at infinity. This behavior at infinity will be made
clear after (3.6).

We will consider a slightly more general problem. Throughout this paper, we
assume that ε1(y) is a variable function in ]0, h[. This would allow us to solve as
well the general resonant problem in the acoustic case. We denote by Σ the set of
these numbers. We remark that since (2.3) is independent of the two other Helmholtz
equations, the set Σ is then the union of two families:

Family (a): the electric field E(x, y) = (Ex, 0, Ez). This solution is called a
longitudinal section electric mode. One of the components Ex or Ez is nontrivial and
satisfies 



∆u+ (ω2εµ− γ2)u = 0 in O1 ∪ O2,

[u] = 0 on L,[
1

µ
∂yu

]
= 0 on L \ P,

u = 0 on G ∪ P.

(2.6)

Family (b): the electric field E(x, y) = (Ex, Ey, Ez). This solution is called a
longitudinal section magnetic mode. The component Ey is nontrivial and satisfies



∆v + (ω2εµ− γ2)v = 0 in O1 ∪ O2,

[∂yv] = 0 on L,

[εv] = 0 on L \ P,
∂yv = 0 on G ∪ P.

(2.7)

Let Σa and Σb be the set of values of γ for fixed ω (or equivalently ω for fixed γ) such
that (2.6), respectively (2.7), has a nontrivial solution. Then, we have Σ = Σa ∪ Σb.
The eigenfunctions associated with γ in Σ are called degenerate modes. If Σa∩Σb = ∅,
then Ex and Ez are uniquely determined for any γ ∈ Σb. Note that because the
treatments of families (a) and (b) are quite different, we consider both of them in
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detail. We recall the following definitions. We refer the reader to Appendix B for
more details.

Definition 2.2. A complex number γ is called a resonance if and only if the
system of Helmholtz equations (2.3)–(2.5) has a nontrivial solution.

Definition 2.3. Let X and Y be two Banach spaces and L(X,Y ) be the space
of bounded linear operators acting from X to Y . We denote by 0X (respectively, 0Y )
the null element of X (respectively, Y ). Let A : C → L(X,Y ) be an operator-valued
function. The complex number Γ∗ is a characteristic value of A if and only if the
function A(Γ) is holomorphic in a punctured neighborhood of Γ∗; there exists a func-
tion x : C→ X such that x(Γ∗) �= 0X ,Γ �→ x(Γ), and Γ �→ A(Γ)x(Γ) are holomorphic
in Γ = Γ∗, and A(Γ∗)x(Γ∗) = 0Y . The order of Γ∗, as a zero of Γ �→ A(Γ)x(Γ), is
called its multiplicity. The function Γ �→ x(Γ) is a root function associated with Γ∗.

Definition 2.4. Let D be an open connected domain in C. The full multiplicity
of the operator-valued function Γ �→ A(Γ) in D, denoted by M(A, ∂D), is defined by

M(A, ∂D) = N(A, ∂D)− P (A, ∂D),

where P (A, ∂D) (respectively, N(A, ∂D)) is the number of poles (respectively, char-
acteristic values) of A in D, counted according to their multiplicity.

3. Integral representation formulae. We assume that y → ε1(y) is a de-
creasing, positive, and piecewise C1 function. We introduce the following notation:

q(y) = ω2(ε1(0)µ1 − ε(y)µ(y)),
d2(ω) = ω2(ε1(0)µ1 − ε2µ2) ≥ 0,

ε̃(y) =

{
ε1(h) in ]0, h[,

ε2 in ]h,+∞[.

Note that the function q(y) is positive since y → ε1(y) is a decreasing function and
d2(ω) is its minimum.

3.1. Family (a). In this subsection, we study the completeness of an associated
one-dimensional eigenvalue problem. We derive an integral representation formula of
solutions u(x, y) to (2.6). Then we prove that the jump between the boundary value
of 1

µ(y)∂yu(x, y) on the two sides of the transmission line P is a characteristic function

of an integral operator-valued function.
Let ga(y, λ) be defined by



∂yyga(y, λ) + (λ− q(y))ga(y, λ) = 0 in ]0, h[ ∪ ]h,+∞[,

[ga(., λ)] = 0 on y = h,[
1

µ
∂yga(., λ)

]
= 0 on y = h,

ga(0, λ) = 0 and ∂yga(0, λ) =
√
λ.

(3.1)

Setting φa(y, λ) the solution of the ODE,{
∂yyφa(y, λ) + (λ− q(y))φa(y, λ) = 0 in ]0, h[,

φa(0, λ) = 0 and ∂yφa(0, λ) =
√
λ,

(3.2)
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we then write

ga(y, λ) =



φa(y, λ) if y ∈]0, h[,

φa(h, λ) cos
[√
λ− d2(y − h)

]
+
µ2

µ1

∂yφa(h, λ)√
λ− d2 sin

[√
λ− d2(y − h)

]
if y ∈ ]h,+∞[.

For λ ≥ d2, ga(y, λ) is bounded. For λ < d2, in view of the above expression of
ga, we impose the dispersion relation

φa(h, λ) +
µ2

µ1

∂yφa(h, λ)√
λ− d2 = 0(3.3)

to make ga(y, λ) bounded in R
+. According to [8], there will be a finite number of roots

λal (ω) to (3.3) with associated solutions: ga(y, λ
a
l ) for l = 1, 2, . . . ,ma. Moreover, the

set of eigenfunctions ga(y, λ), λ ∈ ]0,+∞[ is complete in L2(R+). When the magnetic
permeabilities µ1 and µ2 are equal (µ1 = µ2), Magnanini and Santosa [8] proved the
completeness of the associated eigenvalue problem and rigorously derived an inverse
transform formula. See also the work of Wilcox [13], [14], where the spectrum of the
Pekeris operator is investigated. Here the following more general inverse transform
formula will prove essential. We refer the reader to Appendix A for a proof.

Lemma 3.1. Let f ∈ L2(R+,
dy
µ(y) ). We have the inverse transform formula:

f(x) =

ma∑
l=1

2µ1

√
d2 − λal

∫ +∞
0

ga(y, λ
a
l )f(y)

dy
µ(y)

µ1

µ2
φa(h, λal )

2 + 2
√
d2 − λal

∫ h

0
φa(y, λal )

2dy
ga(x, λ

a
l )

+
1

π

∫ +∞

d2

µ2

√
λ− d2 ∫ +∞

0
ga(y, λ)f(y)

dy
µ(y)

(λ− d2)φa(h, λ)2 + (µ2

µ1
)2∂yφa(h, λ)2

ga(x, λ)dλ.(3.4)

We now return to the Helmholtz equation (2.6). Let

U(x, λ) =

∫ +∞

0

u(x, y)ga(y, λ)
dy

µ(y)
.

Multiplying (2.6) by 1
µ(y)ga(y, λ) and integrating with respect to the variable y over

the interval ]0,+∞[, we obtain after some straightforward manipulations for x ∈ R

∂xxU(x, λ) + (ω2ε1(0)µ1 − λ− γ2)U(x, λ) = φa(h, λ)

[
1

µ
∂yu

]
(x, h)χ(]− α, α[),(3.5)

where χ(] − α, α[) denotes the characteristic function of the interval ] − α, α[. The
solution of (3.5), which is outgoing for 0 ≤ λ+ γ2 < ω2ε1(0)µ1 and decays exponen-
tially for λ+ γ2 > ω2ε1(0)µ1 as |x| → +∞, is readily given for x ∈ R by the following
expression:

U(x, λ) = φa(h, λ)

∫ α

−α

ei|x−ζ|
√

ω2ε1(0)µ1−λ−γ2

2i
√
ω2ε1(0)µ1 − λ− γ2

[
1

µ
∂yu

]
(ζ, h)dζ.(3.6)

By the inversion formula in Lemma 3.1, we have

u(x, y) =

ma∑
l=1

2µ1

√
d2 − λal U(x, λal )

µ1

µ2
φa(h, λal )

2 + 2
√
d2 − λal

∫ h

0
φa(y, λal )

2dy
ga(y, λ

a
l )

+
1

π

∫ +∞

d2

µ2

√
λ− d2U(x, λ)

(λ− d2)φa(h, λ)2 + (µ2

µ1
)2∂yφa(h, λ)2

ga(y, λ)dλ ∀ (x, y) ∈ R
2
+;
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hence, by (3.6) and by interchanging the order of integration, we obtain that the jump
between the boundary values of 1

µ(y)∂yu(x, y) on the two sides of the transmission line

P solves the integral equation:

∫ α

−α

[
ma∑
l=1

µ1

√
d2 − λal φa(h, λal )2

µ1

µ2
φa(h, λal )

2 + 2
√
d2 − λal

∫ h

0
φa(y, λal )

2dy

ei|x−ζ|
√

ω2ε1(0)µ1−λa
l −γ2

i
√
ω2ε1(0)µ1 − λal − γ2

+
1

π

∫ +∞

d2

µ2

√
λ− d2φa(h, λ)2

(λ− d2)φa(h, λ)2 + (µ2

µ1
)2∂yφa(h, λ)2

ei|x−ζ|
√

ω2ε1(0)µ1−λ−γ2

2i
√
ω2ε1(0)µ1 − λ− γ2

dλ

]

×
[
1

µ
∂yu

]
(ζ, h)dζ

= 0

for all x ∈] − α, α[. By the change of variables X = x
α and X ′ = ζ

α we immediately
obtain

(3.7)

α

∫ 1

−1

[
ma∑
l=1

µ1

√
d2 − λal φa(h, λal )2

µ1

µ2
φa(h, λal )

2 + 2
√
d2 − λl

∫ h

0
φa(y, λal )

2dy

eiα|X
′−X|

√
ω2ε1(0)µ1−λa

l −γ2

i
√
ω2ε1(0)µ1 − λal − γ2

+
1

π

∫ +∞

d2

µ2

√
λ− d2φa(h, λ)2

(λ− d2)φa(h, λ)2 + (µ2

µ1
)2∂yφa(h, λ)2

eiα|X
′−X|

√
ω2ε1(0)µ1−λ−γ2

2i
√
ω2ε1(0)µ1 − λ− γ2

dλ

]

×
[
1

µ
∂yu

]
(αX ′, h)dX ′

= 0

for all X ∈ ]− 1, 1[.

Let ω be a nonnegative real, 0 ≤ l0 ≤ m, and Γ =
√
ω2ε1(0)µ1 − λal0 − γ2

a complex value, where λal0(ω) is a fixed root of the dispersion relation (3.3). We
introduce the kernel

aα(Γ;X,X
′) =

1
lnαµ1

√
d2 − λal0φa(h, λal0)2

µ1

µ2
φa(h, λal0)

2 + 2
√
d2 − λal0

∫ h

0
φ(y, λal0)

2dy

eiα|X
′−X|Γ

iΓ

+

ma∑
l=1,l �=l0

1
lnαµ1

√
d2 − λal φa(h, λal )2

µ1

µ2
φa(h, λal )

2 + 2
√
d2 − λal

∫ h

0
φa(y, λal )

2dy

eiα|X
′−X|

√
λl0

−λa
l +Γ2

i
√
λal0 − λal + Γ2

+
1

π lnα

∫ +∞

d2

µ2

√
λ− d2φa(h, λ)2

(λ− d2)φa(h, λ)2 + (µ2

µ1
)2∂yφa(h, λ)2

eiα|X
′−X|√λa

l0
−λ+Γ2

2i
√
λal0 − λ+ Γ2

dλ

and Aα(Γ) to be the integral operator defined by

Aα(Γ) : (H1/2)′(−1, 1) −→ H̃1/2(−1, 1),

ψ(X) −→ Aα(Γ)ψ(X) =

∫ 1

−1

aα(Γ;X,X
′)ψ(X ′) dX ′,
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where (H1/2)′(−1, 1) is the L2-dual of H1/2(−1, 1) and H̃1/2(−1, 1) denotes the space
of functions in H1/2(−1, 1) such that their extensions by 0 on ]−∞,−1[ ∪ ]1,+∞[
are in H1/2(R). Identity (3.7) may alternatively be written in the form

Aα(Γ)

[
1

µ
∂yu

]
(αX) = 0 ∀ X ∈ ]− 1, 1[.

It is therefore obvious that the function X ′ → [ 1µ∂yu](αX
′, h) is then a characteristic

function of the integral operator-valued function Aα. We will give a rigorous study
of the integral operator-valued function Γ → Aα(Γ), when Γ is in a small complex
neighborhood of 0.

3.2. Family (b). In this subsection we derive an integral representation formula
for the solution v(x, y) to the Helmholtz equation (2.7). We prove that the jump of
ε(y)v(x, y) across the transmission line P is a characteristic function of an integral
operator-valued function. Let gb(y, λ) denote the solution to



∂yygb(y, λ) + (λ− q(y))gb(y, λ) = 0 in ]0, h[ ∪ ]h,+∞[,

[ε̃(.)gb(., λ)] = 0 on y = h,

[∂ygb(., λ)] = 0 on y = h,

gb(0, λ) = 1 and ∂ygb(0, λ) = 0.

(3.8)

We introduce φb(y, λ) as the solution of{
∂yyφb(y, λ) + (λ− q(y))φb(y, λ) = 0 in ]0, h[,

φb(0, λ) = 1 and ∂yφb(0, λ) = 0
(3.9)

to get

gb(y, λ) =




φb(y, λ) if y ∈ ]0, h[,

ε1(h)

ε2
φb(h, λ) cos

[√
λ− d2(y − h)

]
+
∂yφb(h, λ)√
λ− d2 sin

[√
λ− d2(y − h)

]
if y ∈ ]h,+∞[.

For λ ≥ d2, gb(y, λ) is bounded. For λ < d2, we should impose as before the
condition

φb(h, λ) +
ε2
ε1(h)

∂yφb(h, λ)√
λ− d2 = 0(3.10)

to make φb bounded in R
+. We now know that there is a finite number of roots

λbl (ω) to the dispersion relation (3.10) with associated solutions gb(y, λ
b
l ) for l =

1, 2, . . . ,mb. Furthermore, the associated system of eigenfunctions gb(y, λ) for λ ∈
]0,+∞[ is complete in L2(R+). We will need the following inverse transform.

Lemma 3.2. Let f ∈ L2(R+, ε̃(y)dy). We have the inverse transform formula

f(x) =
1

ε2

mb∑
l=1

2
√
d2 − λbl

∫ +∞
0

gb(y, λ
b
l )f(y) ε̃(y)dy

ε2
ε1(h)φb(h, λ

a
l )

2 + 2
√
d2 − λbl

∫ h

0
φb(y, λbl )

2dy
gb(x, λ

b
l )

+
1

π

ε2
ε21(h)

∫ +∞

d2

√
λ− d2 ∫ +∞

0
gb(y, λ)f(y) ε̃(y)dy

(λ− d2)φb(h, λ)2 + ( ε2
ε1(h) )

2∂yφb(h, λ)2
gb(x, λ)dλ.(3.11)
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Let us introduce

V (x, λ) =

∫ +∞

0

v(x, y)gb(y, λ) ε̃(y)dy.

As for establishing identity (3.5), multiplying (2.7) by ε̃(y)gb(y, λ) and integrating in
the variable y over the interval ]0,+∞[, we arrive at

∂xxV (x, λ) + (ω2ε1(0)µ1 − λ− γ2)V (x, λ) = ∂yφb(h, λ)[εv](x, h)χ(]− α, α[)(3.12)

for x ∈ R. The solution of the ODE (3.12), which is outgoing for 0 ≤ λ + γ2 <
ω2ε1(0)µ1 and decays exponentially for λ+ γ2 > ω2ε1(0)µ1 as |x| → +∞, is given by

V (x, λ) = ∂yφb(h, λ)

∫ α

−α

ei|x−ζ|
√

ω2ε1(0)µ1−λ−γ2

2i
√
ω2ε1(0)µ1 − λ− γ2

[εv](ζ, h)dζ ∀ x ∈ R.

Hence, by Lemma 3.2 and by interchanging the order of integration, we obtain
from the Neumann boundary condition that is imposed on the transmission line P ,
∂yv(x, h) = 0, for any x ∈ ]− α, α[, that the following integral equation on P holds:

∫ α

−α


mb∑
l=1

1
ε2

√
d2 − λbl∂yφb(h, λbl )2

ε2
ε1(h)φb(h, λ

b
l )

2 +
√
d2 − λbl

∫ h

0
φb(y, λbl )

2dy

ei|x−ζ|
√

ω2ε1(0)µ1−λb
l−γ2

i
√
ω2ε1(0)µ1 − λbl − γ2

+
1

π

∫ +∞

d2

ε2
ε21(h)

√
λ− d2∂yφb(h, λ)2

(λ− d2)φb(h, λ)2 + ( ε2
ε1(h) )

2∂yφb(h, λ)2
ei|x−ζ|

√
ω2ε1(0)µ1−λ−γ2

2i
√
ω2ε1(0)µ1 − λ− γ2

dλ

]

×[εv](ζ, h)dζ = 0

for all x ∈ ]− α, α[. By the change of variables X = x
α and X ′ = ζ

α the last integral
equation becomes

Bα(Γ) ([εv](α., h)) (X) = 0 ∀ X ∈ ]− 1, 1[,

where the integral operator-valued function Bα(Γ) is defined by

Bα(Γ) : H̃1/2(−1, 1) −→ H−1/2(−1, 1),

ψ(X) −→ Bα(Γ)ψ(X) =

∫ 1

−1

bα(Γ;X,X
′)ψ(X ′)dX ′.

Here Γ =
√
ω2ε1(0)µ1 − λbl0 − γ2, where ω is a positive real, 0 ≤ l0 ≤ m, λbl0(ω) is a

fixed root of (3.10), and the the kernel bα is given by

bα(Γ;X,X
′) =

α2

ε2

√
d2 − λbl0∂yφb(h, λbl0)2

ε2
ε1(h)φb(h, λ

b
l0
)2 +

√
d2 − λbl0

∫ h

0
φb(y, λbl0)

2dy

eiα|X
′−X|Γ

iΓ

+

mb∑
l=1,l �=l0

α2

ε2

√
d2 − λbl∂yφb(h, λbl )2

ε2
ε1(h)φb(h, λ

b
l )

2 +
√
d2 − λbl

∫ h

0
φb(y, λbl )

2dy

e
iα|X′−X|

√
λb
l0
−λb

l+Γ2

i
√
λbl0 − λbl + Γ2

+
α2

π

∫ +∞

d2

ε2
ε21(h)

√
λ− d2∂yφb(h, λ)2

(λ− d2)φb(h, λ)2 + ( ε2
ε1(h) )

2∂yφb(h, λ)2
ei|x−ζ|

√
ω2ε1(0)µ1−λ−γ2

2i
√
ω2ε1(0)µ1 − λ− γ2

dλ

for all X,X ′ ∈]− 1, 1[.
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4. Characteristic problem and asymptotic expansions. In this section, we
first prove that the resonances are exactly the characteristic values of the operator-
valued functions Aα(Γ) and Bα(Γ). Next, we derive an asymptotic formula for these
functions. By the generalized Rouché theorem [2] (see Theorem B.4 in Appendix B
for a precise statement of this theorem), we derive the leading order terms in the
asymptotic expansions of the resonances and their associated guided modes.

4.1. The operator-valued function Aα(Γ). Let ω be a fixed positive real,

0 ≤ l0 ≤ ma, and Γ =
√
ω2ε1(0)µ1 − λal0 − γ2 a complex variable, where λal0(ω) is a

root of the dispersion relation (3.3) that is supposed to be different from d2(ω). Then
0 is a resonance of the reference waveguide. In this section, we prove that in a fixed
neighborhood of 0 lying in the set

V0 =

{
Γ ∈ C, |Γ| < min

λ∈{(λa
l )0≤l≤ma,l �=l0

,d2}
|λal0 − λ|

}
,

there exists a unique resonance of the microstrip line for small values of α, defined
as the unique characteristic value of the operator-valued function Γ �→ Aα(Γ) in V0.
The following results hold.

Theorem 4.1. Let Dδ0(0) = {Γ ∈ C, |Γ| < δ0}, for δ0 > 0, be a complex
neighborhood around 0 in V0. δ0 is chosen such that 0 is the unique pole of Aα(Γ)
in Dδ0(0). Then there exists a constant α0 > 0 such that, for |α| ≤ α0, we have the
following:

(a) The operator-valued function Aα(Γ) is finitely meromorphic and of Fredholm
type at every point of the domain Dδ0(0).

(b) The following asymptotic formula holds:

Aα(Γ) = A
α
0 +

1

lnα

(
A1(Γ) +

A−1

Γ

)
+O(α),(4.1)

where O(α) is uniform in the set
{
φ ∈ (H1/2)′(−1, 1), ||φ||(H1/2)′(−1,1) ≤ 1

}
and for Γ ∈ ∂Dδ0(0) = {Γ ∈ C, |Γ| = δ0}. The operators Aα

0 , A1(Γ), and A−1

are defined by

Aα
0 : (H1/2)′(−1, 1) −→ H̃1/2(−1, 1),

Aα
0φ(X) = − a0µ2

π lnα

(
µ1

µ2

)2 ∫ 1

−1

ln(α|X ′ −X|)φ(X ′)dX ′,

A1(Γ) : (H
1/2)′(−1, 1) −→ H̃1/2(−1, 1),

A1(Γ)φ(X) = C(Γ)

∫ 1

−1

φ(X ′)dX ′,

A−1 : (H
1/2)′(−1, 1) −→ H̃1/2(−1, 1),

A−1φ(X) = 2µ1c
a
l0

∫ 1

−1

φ(X ′)dX ′,

where Γ→ C(Γ) is a holomorphic function in the disc Dδ0(0),

cal =
1

i

√
d2 − λal φa(h, λal )2

µ1

µ2
φa(h, λal )

2 + 2
√
d2 − λal

∫ h

0
φ(y, λal )

2dy
, 1 ≤ l ≤ ma,(4.2)
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and

a0 = a0(η) = (1− η)
+∞∑
k=0

(
k∑

p=0

Cp
k(−2)p

C
(p+1)
2(p+1)

22(p+1)

)
ηk for η =

(µ1

µ2
)2 − 1

(µ1

µ2
)2 + 1

.

(4.3)

In order to prove this theorem it is convenient to first establish two technical
auxiliary results. These results are stated in the following lemmas.

Lemma 4.2. For every y ∈ [0, h] we have

φa(y, λ) = sin(
√
λy)− cos(

√
λy)

2
√
λ

∫ y

0

q(τ)dτ +O

(
1

λ

)
,(4.4)

∂yφa(y, λ) =
√
λ cos(

√
λy) +

1

2
sin(
√
λy)

∫ y

0

q(τ)dτ +O

(
1√
λ

)
,(4.5)

where O( 1
λ ) and O(

1√
λ
) are uniform in y ∈ [0, h].

Proof. Let y ∈ ]0, h]. Multiplying the ODE (3.2) by sin
√
λ(y−τ) and integrating

by parts over ]0, y[ with respect to the variable τ , we obtain that∫ y

0

q(τ) sin(
√
λ(y − τ))φa(τ, λ)dτ +

√
λ(sin(

√
λy)− φa(y, λ)) = 0.

Therefore

φa(y, λ) = sin(
√
λy) +

1√
λ

∫ y

0

q(τ) sin(
√
λ(y − τ))φa(τ, λ)dτ.(4.6)

Let θ(λ) = max 0 ≤ y ≤ h|φa(y, λ)|. Since q(τ) ≥ 0, for τ ∈ (0, h), it immediately
follows from the last equation that

θ(λ) ≤ 1 +
θ(λ)√
λ

∫ h

0

q(τ)dτ,

which gives that

θ(λ) ≤ 1

1− 1√
λ

∫ h

0
q(τ)dτ

≤ 1

2
as λ→ +∞,

and so

φa(y, λ) = sin(
√
λy) +O

(
1√
λ

)
,

where O( 1√
λ
) is uniform in y ∈ [0, h]. Substituting now the last expansion into (4.6)

and using the piecewise differentiability of the function ε1(τ), we get

φa(y, λ) = sin(
√
λy)− cos(

√
λy)

2
√
λ

∫ y

0

q(τ)dτ +O

(
1

λ

)
.

Multiplying the ODE (3.2) by cos(
√
λ(y− τ)) and integrating by parts over ]0, h[, we

find that

∂yφa(y, λ) =
√
λ cos

√
λy +

1√
λ

∫ y

0

q(τ) cos(
√
λ(y − τ))φa(τ, λ)dτ.(4.7)
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Therefore, substituting (4.4) into (4.7) and using one more time the piecewise differ-
entiability of ε1(τ) leads to the promised result.

Now, multiplying (3.2) by ∂yφa(y, λ) and integrating by parts over ]0, h[, we
obtain that

∂yφ
2
a(h, λ) + λφ

2
a(h, λ) = λ+ 2

∫ h

0

q(y)φa(y, λ)∂yφa(y, λ)dy.

As a consequence, we calculate

∂yφ
2
a(h, λ) +

(
µ1

µ2

)2

(λ− d2)φ2
a(h, λ) = λ

[
1 +

((
µ1

µ2

)2

− 1

)
φ2
a(h, λ)

]

+ 2

∫ h

0

q(y)φa(y, λ)∂yφa(y, λ)dy −
(
µ1

µ2

)2

d2φ2
a(h, λ).

Since y → q(y) is C1-piecewise, the function of λ given by

∫ h

0

q(y)φa(y, λ)∂yφa(y, λ)dy

is O(1) as λ→ +∞. A direct application of Lemma 4.2 yields

φ2
a(h, λ)

(µ1

µ2
)2(λ− d2)φa(h, λ)2 + ∂yφa(h, λ)2 =

φ2
a(h, λ)

λ[1 + ((µ1

µ2
)2 − 1)φ2

a(h, λ)]
+R2,a(λ),

where

R2,a(λ) = φ2
a(h, λ)

−2 ∫ h

0
q(y)φa(y, λ)∂yφa(y, λ)dy + (µ1

µ2
)2d2φ2

a(h, λ)

λ[1 + ((µ1

µ2
)2 − 1)φ2

a(h, λ)]((
µ1

µ2
)2(λ− d2)φa(h, λ)2 + ∂yφa(h, λ)2)

= O

(
1

λ2

)
as λ→ +∞.

(4.8)

From Lemma 4.2 it also follows that

φ2
a(h, λ)

λ[1 + ((µ1

µ2
)2 − 1)φ2

a(h, λ)]
=

sin2(h
√
λ)

λ[1 + ((µ1

µ2
)2 − 1) sin2(h

√
λ)]

+R3,a(λ),

where

R3,a(λ) =
(1− (µ1

µ2
)2)φ2

a(h, λ)(φ
2
a(h, λ)− sin2(h

√
λ))

λ[1 + ((µ1

µ2
)2 − 1) sin2(h

√
λ)][1 + ((µ1

µ2
)2 − 1)φ2

a(h, λ)]

+
φ2
a(h, λ)− sin2(h

√
λ)

λ[1 + ((µ1

µ2
)2 − 1) sin2(h

√
λ)]

= O

(
1

λ3/2

)
as λ→ +∞.

(4.9)

Combining identities (4.8) and (4.9), we conclude that

√
λ− d2φ2

a(h, λ)

(µ1

µ2
)2(λ− d2)φa(h, λ)2 + ∂yφa(h, λ)2

e−α|X′−X|√λ−λa
l0
−Γ2√

λ− λal0 − Γ2

=
sin2(h

√
λ)

1 + ((µ1

µ2
)2 − 1) sin2(h

√
λ)

e−α|X′−X|√λ

λ
+Rα

a (λ,Γ, X
′ −X),



RESONANCES FOR MICROSTRIP TRANSMISSION LINES 613

where

Rα
a (λ,Γ, X

′ −X) = Rα
1,a(λ,Γ, X

′ −X)
sin2(h

√
λ)

λ[1 + ((µ1

µ2
)2 − 1) sin2(h

√
λ)]

+ (R2,a(λ) +R3,a(λ)) e
−α|X′−X|√λ +Rα

1,a(λ,Γ, X
′ −X) (R2,a(λ) +R3,a(λ)) .

Here the remainder Rα
1,a is given by

Rα
1,a(λ,Γ, X

′ −X) =
(λal0 + Γ2 − d2)e−α|X′−X|√λ−λa

l0
−Γ2√

λ− λal0 − Γ2
(√
λ− d2 +

√
λ− λal0 − Γ2

)

+ e−α|X′−X|√λ
(
e
α|X′−X| λa

l0
+Γ2√

λ−λa
l0

−Γ2+
√

λ − 1
)
.

(4.10)

Moreover, Rα
a (λ,Γ, X

′ − X) = O( 1
λ3/2 ) as λ → +∞, where O( 1

λ3/2 ) is uniform in
α ∈ Dα0(0), Γ ∈ Dδ0(0), and (X − X ′) ∈ [−2, 2]. On the other hand, we have
R0
a(λ,X

′ −X) = R0
a(λ,Γ) and R

α
a (λ,Γ, X

′ −X) − R0
a(λ,Γ) = O(

1
λ ). Consequently,

the following estimate holds:

∫ +∞

d2

√
λ− d2φa(h, λ)2

(µ1

µ2
)2(λ− d2)φa(h, λ)2 + ∂yφa(h, λ)2

e−α|X′−X|√λ−λa
l0
−Γ2√

λ− λal0 − Γ2
dλ(4.11)

=

∫ +∞

d2

sin2(h
√
λ)

1 + ((µ1

µ2
)2 − 1) sin2(h

√
λ)

e−α|X′−X|√λ

λ
dλ+

∫ +∞

d2

R0
a(λ,Γ)dλ+O(α lnα),

where the remainder O(α lnα) is holomorphic in the disc Dδ0(0) and uniform in
(X ′ −X) ∈ [−2, 2].

Remark 4.1. Following the lines of the work of Magnanini and Santosa [8] that
is based on the Levitan–Levinson method as described in [3], it is possible to derive
an expression for the Green function H(X,X ′, Y, Y ′) of the following transmission
problem: 



∆X,YH(X,X ′, Y, Y ′) = δ(X −X ′)δ(Y − Y ′) in O1 ∪O2,

[µH] = 0 on L,

[∂yH] = 0 on L,

H = 0 on G.

It is quite easy to see from the previous calculations that H(αX,αX ′, h−, h−) is in
fact given by

H(αX,αX ′, h−, h−) = − 1

2π

∫ +∞

0

sin2(h
√
λ)

1 + ((µ1

µ2
)2 − 1) sin2(h

√
λ)

e−α|X′−X|√λ

λ
dλ.

We should now rigorously derive an asymptotic expansion of H(αX,αX ′, h−, h−)
as α approaches 0. To do so, we introduce the parameter

η =
(µ1

µ2
)2 − 1

(µ1

µ2
)2 + 1
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to write

sin2(h
√
λ)

1 + ((µ1

µ2
)2 − 1) sin2(h

√
λ)

=
(1− η) sin2(h

√
λ)

1 + η cos(2h
√
λ)

and use the following result.
Lemma 4.3. Let the function Fη be defined by

Fη(X) =
1

2π

∫ +∞

0

sin2(h
√
λ)

cos2 h
√
λ+ 1+η

1−η sin
2(h
√
λ)

e−αX
√
λ

λ
dλ for X > 0.

Under the assumption that |η| < 1 we have

Fη(X) = − a0
2π

ln

(
X2

X2 + 4h2

)
+

1

π(1− η)
+∞∑
k=1

(
k∑

p=1

Cp
k(−2)p

p+1∑
q=1

wp+1
q ln

(
X2

h2
+ 4q2

))
ηk.

Furthermore, when X approaches 0+, we have

Fη(X) = −a0
π
lnX + a1 +

+∞∑
n=1

a2nX
2n,

where 


a0(η) = (1− η)
+∞∑
k=0

(
k∑

p=0

Cp
k(−2)pwp+1

0

)
ηk,

a1(η) =
lnh(1− η)

π

+∞∑
k=0

(
k∑

p=0

Cp
k(−2)pwp+1

0

)
ηk

+
1− η
π

+∞∑
k=0

(
k∑

p=0

Cp
k(−2)p

(
p+1∑
q=1

wp+1
q ln 4q2

)
− dp

)
ηk,

a2n(η) =
1− η
π

+∞∑
k=0

(
k∑

p=0

Cp
k(−2)p

p+1∑
q=1

wp+1
q

(2qh)2n

)
ηk, 1 ≤ n,

wk
0 =

Ck
2k

22k
, 1 ≤ k,

wk
p =

Ck+p
2k

22kp
, 1 ≤ p ≤ k.

Proof. Since |η| < 1, by using the trigonometric identity cos(2h
√
λ) = −2 sin2(h

√
λ)+

1, and after some easy manipulations, we obtain the expansion

Fη(X) =
1− η
π

+∞∑
k=0

(
k∑

p=0

Cp
k(−2)pDp(X)

)
ηk,

where

Dp(X) =
1

2

∫ +∞

0

sin2(p+1)(h
√
λ)e−X

√
λ dλ

λ
.
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By applying the substitution h2λ = ν2 we readily get

Dp(X) =

∫ +∞

0

sin2(p+1)(ν)e−ν X
h
dν

ν

for X > 0, and so

∂XDp(X) = − 1

h

∫ +∞

0

sin2(p+1)(ν)e−ν X
h dν ∀ X > 0.

Let us now introduce

Hp(X) =

∫ +∞

0

sin2p(ν)e−νXdν.

Straightforward integrations by parts yield

Hp(X) =
2p(2p− 1)

X2 + 4p2
Hp−1(X), p ≥ 1, H0(X) =

1

X
,

and consequently

Hp(X) =
2p!

X
∏p

q=1(X
2 + 4q2)

, p ≥ 1,

from which it immediately follows that

∂XDp(X) = − 1

h
Hp+1

(
X

h

)
, p ≥ 0.

Thus

Dp(X) = −wp+1
0 ln

(
X

h

)
+

p+1∑
q=1

wp+1
q ln

(
X2

h2
+ 4q2

)
+ dp, p ≥ 0,

where

dp =

∫ +∞

0

sin2(p+1)(ν)e−ν dν

ν
−

p+1∑
q=1

wp+1
q ln(1 + 4q2).

Based on the first identity stated at the beginning of the proof it is now quite
easy to obtain the desired result.

Remark 4.2. By Remark 4.1 and the latter lemma, we easily verify that in the
particular case µ1 = µ2 (i.e., η = 0) we have

H(X, 0, h−, h−) = − 1

2π

∫ +∞

0

sin2(h
√
λ)
e−X

√
λ

λ
dλ = −F0(X)

=
1

4π
ln

(
X2

X2 + 4h2

)
,

which is in accordance with the following well-known expression of H,

H(X,X ′, Y, Y ′) =
1

4π
ln

(
(X −X ′)2 + (Y − Y ′)2

(X −X ′)2 + (Y + Y ′)2

)
.
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We are now ready to proceed with the following proof.
Proof of Theorem 4.1. We start with deriving an asymptotic formula for aα(Γ;X,X

′)
when α approaches 0. With the definition of cal we rewrite

aα(Γ;X,X
′) =

2µ1c
a
l0

lnα

eiα|X
′−X|Γ

Γ
+

2µ1

lnα

ma∑
l=1,l �=l0

cal
eiα|X

′−X|√λa
l0
−λa

l +Γ2√
λal0 − λal + Γ2

− µ2

2π lnα

∫ +∞

d2

√
λ− d2φa(h, λ)2

(λ− d2)φa(h, λ)2 + (µ2

µ1
)2∂yφa(h, λ)2

e−α|X′−X|√λ−λa
l0
−Γ2√

λ− λal0 − Γ2
dλ.

Note that the first term in the expression of aα(Γ;X,X
′) is holomorphic in α ∈ Dα0(0).

Therefore, we only need to handle the last two terms. For the estimation of the second
term we use that

√
λ− d2√

λ− λal0 − Γ2
e−α|X′−X|√λ−λa

l0
−Γ2

= e−α|X′−X|√λ +Rα
1,a(λ,Γ, X

′ −X),

where Rα
1,a(λ,Γ, X

′ −X) is defined by (4.10) and satisfies the estimate

Rα
1,a(λ,Γ, X

′ −X) = O

(
1√
λ

)
(4.12)

as λ → +∞. The remainder O( 1√
λ
) is uniform in α ∈ Dα0

(0), Γ ∈ Dδ0(0), and

(X −X ′) ∈ [−2, 2]. The third term is now easy to estimate. From Lemmas 4.2 and
4.3 we know that

− µ2

2π lnα

∫ +∞

d2

√
λ− d2φa(h, λ)2

(µ1

µ2
)2(λ− d2)φa(h, λ)2 + ∂yφa(h, λ)2

e−α|X′−X|√λ−λa
l0
−Γ2√

λ− λal0 − Γ2
dλ

= − a0µ2

π lnα
ln(α|X ′ −X|)

+
1

lnα

(
−µ2a1 +

µ2

2π

∫ d2

0

sin2(h
√
λ)

1 + ((µ1

µ2
)2 − 1) sin2(h

√
λ)

dλ

λ
− µ2

2π

∫ +∞

d2

R0
a(λ,Γ)dλ

)

+ O(α),

(4.13)

where O(α) is holomorphic in Dδ0(0) and uniform in (X ′ − X) ∈ [−2, 2]. Upon
insertion of the last expansion into the expression of aα(Γ;X,X

′) we finally obtain
the asymptotic formula

aα(Γ;X,X
′) = − a0µ2

π lnα

(
µ1

µ2

)2

ln(α|X ′ −X|) + 1

lnα

(
2µ1c

a
l0

Γ
+ C(Γ)

)
+O(α),

where

C(Γ) =

(
µ1

µ2

)2
[
−µ2a1 +

µ2

2π

∫ d2

0

sin2(h
√
λ)

1 + ((µ1

µ2
)2 − 1) sin2(h

√
λ)

dλ

λ

− µ2

2π

∫ +∞

d2

R0
a(λ,Γ)dλ

]
+

ma∑
l=1,l �=l0

2µ1c
a
l√

λal0 − λal + Γ2
,
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and O(α) is holomorphic in Γ ∈ Dδ0(0) and uniform in (X ′ − X) ∈ [−2, 2]. This
completes the proof of the second part of Theorem 4.1.

By construction, we know that Γ → Aα(Γ) is a meromorphic operator-valued
function in Dδ0(0) and has 0 as a unique pole. Moreover, for every Γ ∈ Dδ0(0)/{0},
Aα(Γ) is an invertible operator. From the asymptotic expansion (4.1), it immediately
follows that Aα(Γ) is a finitely meromorphic operator that is of Fredholm type at
Γ = 0 for small values of α. Then, it is in all the domain Dδ0(0).

We now study the existence and the distribution of the characteristic values of
the operator-valued function Aα(Γ).

The following theorem asserts that there exits a unique resonance Γα lying in a
small neighborhood of 0.

Theorem 4.4. There exists a constant α0 > 0 such that for |α| < α0 we have

M(Aα(Γ), ∂Dδ0(0)) = 0.

Furthermore, there exists a unique characteristic value Γα of the operator-valued func-
tion Γ �→ Aα(Γ) in Dδ0(0).

Proof. We begin the proof by establishing an explicit formula for (Aα
0 )

−1. Let

φ ∈ (H1/2)′(]− 1, 1[) and ψ ∈ H̃1/2(]− 1, 1[) be such that Aα
0φ = ψ, or equivalently

(
1/φ

)
+

1

lnα
L0φ(X) = − π

µ2a0

(
µ2

µ1

)2

ψ(X),(4.14)

where

(
1/φ

)
=

∫ 1

−1

φ(x′)dX ′,

and

L0φ(X) =

∫ 1

−1

ln |X ′ −X|φ(X ′)dX ′.

Since the operator L0 : (H
1/2)′(]− 1, 1[)→ H̃1/2(]− 1, 1[) is invertible, we have

(
1/φ

)L−1
0 1(X) +

1

lnα
φ(X) =

π

µ1a0
L−1

0 ψ(X).

A simple integration over ]− 1, 1[ gives

(
1/φ

)
= − π

µ2a0

(
µ2

µ1

)2 (L−1
0 ψ(X)/1

)
(L−1

0 1(x)/1
)
+ 1

lnα

.

By inserting this into (4.14) we immediately obtain

φ(X) = (Aα
0 )

−1ψ(X) = −π lnα
µ2a0

(
µ2

µ1

)2
[
L−1

0 ψ(X)−
(L−1

0 ψ(X)/1
)

(L−1
0 1(x)/1

)
+ 1

lnα

L−1
0 1(X)

]
.

By the Hilbert inversion formula [9] we may calculate
(L−1

0 1(x)/1
)
= 2

ln 2 . We
remark that (Aα

0 )
−1A1(Γ) = O(1) and (Aα

0 )
−1A−1 = O(1). Thus, the following

estimate

(Aα
0 )

−1(Aα(Γ)−Aα
0 ) = O

(
1

lnα

)
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holds uniformly in Γ ∈ ∂Dδ0(0). From this we deduce that there exists a constant α0

such that for |α| ≤ α0 we have

|(Aα
0 )

−1(Aα(Γ)−Aα
0 )|L((H1/2)′(]−1,1[),(H1/2)′(]−1,1[)) < 1 ∀ Γ ∈ ∂Dδ0(0).

Due to the generalized Rouché theorem [2] (see Theorem B.2 in Appendix B) we now
obtain the following assertion for all |α| ≤ α0:

M(Aα(Γ), ∂Dδ0(0)) =M(Aα
0 , ∂Dδ0(0)) = 0.

Since 0 is the unique pole of Aα(Γ) in Dδ0(0), it immediately follows from the latter
assertion that there exists a unique characteristic value Γα in Dδ0(0).

We now want to derive an asymptotic expression for Γα. Let the operators Ãk

be defined by

A1(Γ)Γ +A−1 =

+∞∑
k=−1

ÃkΓ
k+1.

In the following theorems we summarize our main findings in this section.
Theorem 4.5. There exists a positive constant α0 such that for |α| ≤ α0 the

following holds:

Γα =

+∞∑
p=1

1

(− lnα)p
tr

[
(Aα

0 )
−p

+∞∑
j=1

∑
k1+···+kj=p−1−j

ks≥−1

Ãk1 . . . Ãkj

]
+O(α).(4.15)

Furthermore, the leading order term in the asymptotic expansion of Γα is given by

Γα =
2πcal0µ2

a0µ1
(lnα)−1 +O((lnα)−2),(4.16)

where cal0 and a0 are defined by (4.2) and (4.3), respectively.
Proof. From the generalized Rouché theorem [2] (see Theorem B.4 in Appendix

B) we immediately obtain the asymptotic expansion (4.15) for the resonance Γα. The
leading order term in this expression, given by (4.16), can be easily derived from the
asymptotic expansion of Aα(Γ) stated in Theorem 4.1.

The following theorem holds.
Theorem 4.6. There exists a constant α0 > 0 such that for |α| ≤ α0 we have

Γα =
1

2iπ

+∞∑
p=1

1

p
tr

[
(Aα

0 )
−p

∫
∂Dδ0

(Aα
0 −Aα(Γ))

pdΓ

]
.

Proof. Recalling that Aα(Γ) is a finitely meromorphic operator-valued function
that is of Fredholm type in Dδ0(0), 0 is the unique pole of Aα(Γ) in Dδ0(0), and Γα is
the unique characteristic value of Aα(Γ) in Dδ0(0), the generalized Rouché theorem
implies

Γα =
1

2iπ
tr

∫
∂Dδ0

Γ(Aα(Γ))
−1 ∂

∂Γ
Aα(Γ)dΓ.

Since, for |α| ≤ α0, we have

(Aα(Γ))
−1 =

+∞∑
p=0

(Aα
0 )

−p
[
(Aα

0 −Aα(Γ))(Aα
0 )

−1
]p
,
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the expression of Γα can alternatively be written as follows:

Γα =
1

2iπ

+∞∑
p=0

tr

[
(Aα

0 )
−(p+1)

∫
∂Dδ0

Γ(Aα
0 −Aα(Γ))

p ∂

∂Γ
Aα(Γ)dΓ

]
.

By noticing that

1

p+ 1

p∑
s=0

(Aα
0 −Aα(Γ))

s ∂

∂Γ
Aα(Γ)(Aα

0 −Aα(Γ))
p−s = − 1

p+ 1

∂

∂Γ
(Aα

0 −Aα(Γ))
p+1

and by integrating by parts, we arrive at the desired result.
It immediately follows from Theorem 4.5 that

1

2iπ
tr

[
(Aα

0 )
−(p+1)

∫
∂Dδ0

(Aα
0 −Aα(Γ))

pdΓ

]

=

( −1
lnα

)p

tr

[
(Aα

0 )
−p

+∞∑
j=1

∑
k1+···+kj=p−1−j

ks≥−1

Ãk1 . . . Ãkj

]
+O(α).

We now construct an asymptotic expansion for the characteristic function cor-
responding to the characteristic value Γα. Let φaα be the normalized characteristic
function corresponding to the characteristic value Γα in L2(]− 1, 1[):

φaα(X) =
[ 1µ∂yuα](αX)

|[ 1µ∂yuα](αX)|L2(]−1,1[)

.

Here we have used the extra-regularity of the characteristic function φaα. A combina-
tion of the fact that the integral operator with kernel ln |X − X ′| is invertible from
the Hölder space {

ϕ ∈ C0(]− 1, 1[),
√
1−X2ϕ(X) ∈ C0,δ([−1, 1])

}
onto the Hölder space{

ψ ∈ C0,δ([−1, 1]) ∩ C1(]− 1, 1[),
√
1−X2ψ′(X) ∈ C0,δ(]− 1, 1[) ∩ C0,ν([−1, 1]),√

1−X2ψ′(X)|X=±1 = 0
}
,

where C0,δ and C0,ν are the Hölder spaces with indices 0 < ν < δ < 1
2 (see [1] for

a proof), together with the classical Sobolev imbedding theorems, ensures that the
characteristic function φaα lies in fact in L2(]− 1, 1[).

Let P a
α denote the orthogonal projection on Ker(Aα(Γα)):

P a
α =

(
./φaα(X)

)
L2(]−1,1[)

φaα(X).

The following theorem holds.
Theorem 4.7. There exists a positive constant α0 such that for |α| ≤ α0,

P a
α = P a

0 +O(α),
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where P a
0 = 1

2

(
./1

)
L2(]−1,1[)

and the remainder O(α) is the operator norm.

Proof. The generalized Rouché theorem implies that

P a
α − P a

0 =
1

2iπ

∫
∂Dδ0

(Aα(Γ))
−1 ∂

∂Γ
Aα(Γ)dΓ.

On the other hand, we have for |α| ≤ α0

(Aα(Γ))
−1 =

+∞∑
p=0

(Aα
0 )

−p[(Aα
0 −Aα(Γ))(Aα

0 )
−1]p,

and therefore

P a
α − P a

0 =

+∞∑
p=0

(Aα
0 )

−1 1

2iπ

∫
∂Dδ0

(
(Aα

0 −Aα(Γ))(Aα
0 )

−1
)p ∂
∂Γ
Aα(Γ)dΓ.

Recalling from Theorem 4.5 that

Aα
0 −Aα(Γ) = − 1

lnα

(
A1(Γ) +

A−1

Γ

)
+O(α),

insertion of the above identity into the expression of P a
α immediately gives

P a
α − P a

0

=

+∞∑
p=0

(
1

lnα

)p+1

(Aα
0 )

−1 1

2iπ

×
∫
∂Dδ0

(
−

(
A1(Γ) +

A−1

Γ

)
(Aα

0 )
−1

)p
∂

∂Γ

(
A1(Γ) +

A−1

Γ

)
dΓ

+ O(α).

Note that Aα
0A1(Γ) = A1(Γ)Aα

0 and Aα
0A−1 = A−1Aα

0 . By writing now that

(
A1(Γ) +

A−1

Γ

)p
∂

∂Γ

(
A1(Γ) +

A−1

Γ

)
=

1

p+ 1

∂

∂Γ

(
A1(Γ) +

A−1

Γ

)p+1

,

and by integrating by parts, we finally obtain

1

2iπ

∫
∂Dδ0

(
A1(Γ) +

A−1

Γ

)p
∂

∂Γ

(
A1(Γ) +

A−1

Γ

)
dΓ = 0,

which is the desired result.
Direct application of Theorem 4.7 yields(

1/φaα(X)
)2

L2(]−1,1[)
= 2 +O(α).

Corollary 4.8. There exists a constant α0 such that for |α| ≤ α0 we have

φaα(X) =
1√
2
+O(α),

where the remainder O(α) is uniform in X ∈ [−1, 1].
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4.2. The operator-valued function Bα(Γ). Let ω be a fixed positive real,

0 ≤ l0 ≤ mb, and Γ =
√
ω2ε1(0)µ1 − λbl0 − γ2 a complex variable, where λbl0(ω) is a

root of (3.3) different from d2(ω). Then 0 is a resonance of the reference waveguide.
In this section, we prove that in a fixed complex neighborhood of 0 lying in the set

V0 =

{
Γ ∈ C, |Γ| < min

λ∈{(λb
l )0≤l≤mb,l �=l0

,d2}
|λbl0 − λ|

}
,

there exists a unique resonance of the microstrip transmission line for small values of α,
defined as the unique characteristic value of the function Bα(Γ) in that neighborhood.

Our main results in this section are summarized in the following theorem.

Theorem 4.9. Let Dδ0(0) = {Γ ∈ C, |Γ| < δ0}, δ0 > 0, a neighborhood of 0
lying in V0. There exists a positive constant α0 such that, for |α| ≤ α0, we have the
following:

(a) The operator-valued function Bα(Γ) is finitely meromorphic and of Fredolm
type at every point of the domain Dδ0(0).

(b) The following asymptotic formula holds:

Bα(Γ) = B0 +B1α
2 lnα+

(
B2(Γ) +

B−1

Γ

)
α2 +O(α3 lnα),

where the remainder O(α3 lnα) is uniform in {φ ∈ H̃1/2(−1, 1), |φ|
H̃1/2(−1,1)

≤
1} and in Γ ∈ ∂Dδ0(0) = {Γ ∈ C, |Γ| = δ0}. The operators Bα

0 , B1(Γ), and
B−1 are defined by

Bα
0 : H̃1/2(−1, 1) −→ H−1/2(−1, 1),

Bα
0 φ(X) = − a0ε2

πε21(h)

∫ 1

−1

1

(X ′ −X)2
φ(X ′)dX ′,

b1(Γ) : H̃
1/2(−1, 1) −→ H−1/2(−1, 1),

B1(Γ)φ(X) = b1

∫ 1

−1

φ(X ′)dX ′,

B2(Γ) : H̃
1/2(−1, 1) −→ H−1/2(−1, 1),

B2(Γ)φ(X) =

∫ 1

−1

b2(Γ;X
′, X)φ(X ′)dX ′,

B−1 : H̃
1/2(−1, 1) −→ H−1/2(−1, 1),

B−1φ(X) =
2cbl0
ε2

∫ 1

−1

φ(X ′)dX ′.

Here Γ → B2(Γ) is an holomorphic operator-valued function in the disc
Dδ0(0).

In order to prove this theorem we will need two technical results. By the same
arguments as we went through earlier in the proof of Lemma 4.2, the following result
that will prove useful later holds.
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Lemma 4.10. For every y ∈ [0, h] we have

φb(y, λ) = cos(
√
λy) +

∫ y

0
q(τ)dτ

2

sin(
√
λy)√
λ

+O

(
1

λ

)
,

∂yφb(y, λ) = −
√
λ sin(

√
λy) +

∫ y

0
q(τ)dτ

2
cos(

√
λy)

+

(
3q(y)− ∫ y

0
q(τ)

∫ τ

0
q(s)dsdτ

4

)
sin(
√
λy)√
λ

− q(y) sin
3(
√
λy)√
λ

+O

(
1

λ

)
.

Here O( 1
λ ) and O(

1√
λ
) are uniform in y ∈ [0, h].

Next, multiplying (3.10) by ∂yφb(y, λ) and integrating over ]0, h[ yields

∂yφ
2
b(h, λ) + φ

2
b(h, λ) = λ+ 2

∫ h

0

q(y)φb(y, λ)∂yφb(y, λ)dy.

Hence

(λ− d2)φ2
b(h, λ) +

(
ε2
ε1(h)

)2

∂yφ
2
b(h, λ) = λ

[
1 +

((
ε2
ε1(h)

)2

− 1

)
∂yφ

2
b(h, λ)

λ

]

+2

∫ h

0

q(y)φb(y, λ)∂yφb(y, λ)dy − d2φ2
b(h, λ).

Since y → (ε1(0)µ1 − ε1(y)µ1) is C1-piecewise, the λ-function

ω2

∫ h

0

(ε1(0)µ1 − ε1(y)µ1(y))φb(y, λ)∂yφb(y, λ)dy

is O(1) as λ→ +∞. Lemma 4.10 yields

∂yφ
2
b(h, λ)

(λ− d2)φ2
b(h, λ) + ( ε2

ε1(h) )
2∂yφ2

b(h, λ)
=

∂yφ
2
b(h, λ)

λ
[
1 + (( ε2

ε1(h) )
2 − 1)

∂yφ2
b(h,λ)
λ

] +R3,b(λ),

where

R3,b(λ)

= ∂yφ
2
b(h, λ)

2ω2
∫ h

0
(ε1(0)µ1 − ε1(y)µ1(y))φb(y, λ)∂yφb(y, λ)dy − d2φ2

b(h, λ)

λ
[
1 + (( ε2

ε1(h) )
2 − 1)

∂yφ2
b(h,λ)
λ

]
((λ− d2)φ2

b(h, λ) + ( ε2
ε1(h) )

2∂yφ2
b(h, λ))

,

and R3,b(λ) = O(
1
λ2 ) as λ→ +∞. We also have

∂yφ
2
b(h, λ)

λ
[
1 + (( ε2

ε1(h) )
2 − 1)

∂yφ2
b(h,λ)
λ

] =
sin2

√
λh

1 + (( ε2
ε1(h) )

2 − 1) sin2
√
λh

+β1
sin
√
λh cos

√
λh√

λ
[
1 + (( ε2

ε1(h) )
2 − 1) sin2

√
λh

] + β2
1

λ
[
1 + (( ε2

ε1(h) )
2 − 1) sin2

√
λh

]

+β3
sin2

√
λh

λ
[
1 + (( ε2

ε1(h) )
2 − 1) sin2

√
λh

] + β4
sin4

√
λh

λ
[
1 + (( ε2

ε1(h) )
2 − 1) sin2

√
λh

] +R4,b(λ),
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where 


β1 = −
∫ h

0

q(τ)dτ, β2 =

(∫ h

0
q(τ)dτ

2

)2

,

β3 =
1

2

∫ h

0

q(τ)

∫ τ

0

q(s)dsdτ −
(∫ h

0
q(τ)dτ

2

)2

− 3

2
q(h),

β4 = 2q(h),

and R4,b(λ) = O(
1

λ3/2 ) as λ→ +∞.
Finally, we may conclude that

√
λ− d2∂yφ2

b(h, λ)

(λ− d2)φ2
b(h, λ) + ( ε2

ε1(h) )
2∂yφ2

b(h, λ)

e
−α|X′−X|

√
λ−λb

l0
−Γ2√

λ− λbl0 − Γ2

=
sin2

√
λh

1 + (( ε2
ε1(h) )

2 − 1) sin2
√
λh
e−α|X′−X|√λ

+
e−α|X′−X|√λ

√
λ

[
β1

sin
√
λh cos

√
λh

1 + (( ε2
ε1(h) )

2 − 1) sin2
√
λh

+ α|X −X ′| (λ
b
l0
+ Γ2)

2

sin2
√
λh

1 + (( ε2
ε1(h) )

2 − 1) sin2
√
λh

]

+
e−α|X′−X|√λ

λ

[
β2

1

1 + (( ε2
ε1(h) )

2 − 1) sin2
√
λh

+ β3
sin2

√
λh

1 + (( ε2
ε1(h) )

2 − 1) sin2
√
λh

+ β4
sin4

√
λh

1 + (( ε2
ε1(h) )

2 − 1) sin2
√
λh

+ α|X −X ′|β1

(λbl0 + Γ2)

2

sin
√
λh cos

√
λh

1 + (( ε2
ε1(h) )

2 − 1) sin2
√
λh

]

+ α2Rα
1,b(λ,Γ, X

′ −X)
sin2

√
λh

1 + (( ε2
ε1(h) )

2 − 1) sin2
√
λh

+Rα
5,b(λ,Γ, X

′ −X),

where Rα
1,b(λ,Γ, X

′ −X) = O( 1
λ ), and R

α
5,b(λ,Γ, X

′ −X) is uniform in α ∈ Dα0(0),
Γ ∈ Dδ0(0), and (X −X ′) ∈ [−2, 2].

Let us now introduce the following functions. For X > 0 let

E0
η(X) =

∫ +∞

d2

sin2
√
λh

cos2
√
λh+ 1+η

1−η sin
2
√
λh
e−X

√
λdλ,

E1
η(X) =

∫ +∞

d2

sin
√
λh cos

√
λh

cos2
√
λh+ 1+η

1−η sin
2
√
λh

e−X
√
λ

√
λ
dλ,

E2
η(X) =

∫ +∞

d2

1

cos2
√
λh+ 1+η

1−η sin
2
√
λh

e−X
√
λ

λ
dλ,
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E3
η(X) =

∫ +∞

d2

sin2
√
λh

cos2
√
λh+ 1+η

1−η sin
2
√
λh

e−X
√
λ

λ
dλ,

E4
η(X) =

∫ +∞

d2

sin4
√
λh

cos2
√
λh+ 1+η

1−η sin
2
√
λh

e−X
√
λ

λ
dλ,

E5
η(X) =

∫ +∞

d2

sin2
√
λh

cos2
√
λh+ 1+η

1−η sin
2
√
λh

e−X
√
λ

√
λ
dλ,

E6
η(X) =

∫ +∞

d2

sin
√
λh cos

√
λh

cos2
√
λh+ 1+η

1−η sin
2
√
λh

e−X
√
λ

λ
dλ.

By the same arguments as we went through in the proof of Lemma 4.3 we may quite
easily show that the following holds.

Lemma 4.11. Suppose that |η| < 1. Then we have

E0
η(X) =

e0
X2

+ f0 +O(X),

E1
η(X) = f1 +O(X),

E2
η(X) = e1 lnX + f2 +O(X),

E3
η(X) = e2 lnX + f3 +O(X),

E4
η(X) = e3 lnX + f4 +O(X),

E5
η(X) =

e4
X

+ f5 +O(X),

E6
η(X) = O(1),

where

e0(η) = 2a0(η),

f0(η) = (1− η)
+∞∑
k=0

k∑
p=0

Cp
k(−2)p

p+1∑
q=1

wp+1
q

q2
ηk −

∫ d2

0

sin2
√
λh

cos2
√
λh+ 1+η

1−η sin
2
√
λh
dλ,

f1(η) = (1− η)
+∞∑
k=0

k∑
p=0

Cp
k(−2)p

wp+1
0 − sin2(p+1) hd

h(p+ 1)
ηk,
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e1(η) = (1− η)
(
2−

+∞∑
k=0

k∑
p=0

Cp
k(−2)p+1wp+1

0 ηk

)
,

f2(η) = (1− η)
(∫ +∞

d2

e−
√
λ

λ
dλ+ 2

+∞∑
n=1

(−d)n
n!n

+
+∞∑
k=0

k∑
p=0

Cp
k(−2)p+1

(∫ d

0

sin2p hν

ν
dν − wp

0 lnh−
p∑

q=1

wp
q ln 4q

2

)
ηk

)
,

e2(η) = −2a0(η),

f3(η) = 2a1(η)−
∫ d2

0

sin2
√
λh

cos2
√
λh+ 1+η

1−η sin
2
√
λh

dλ

λ
,

e3(η) = (1− η)
+∞∑
k=0

k∑
p=0

Cp+1
k (−2)p+2wp+2

0 ηk,

f4(η) = −(1− η)
+∞∑
k=0

k∑
p=0

Cp+1
k (−2)p+2wp+2

0 ηk lnh

−(1− η)
+∞∑
k=0

k∑
p=0

Cp+1
k (−2)p+2

(
p+2∑
q=1

wp+2
q ln 4q2 + dp+1

)
ηk

−
∫ +∞

d2

sin4
√
λh

cos2
√
λh+ 1+η

1−η sin
2
√
λh

dλ

λ
,

e4(η) = −h(1− η)
+∞∑
k=0

k∑
p=0

Cp
k(−2)p+1wp+1

0 ηk,

f5(η) = −
∫ +∞

d2

sin2
√
λh

cos2
√
λh+ 1+η

1−η sin
2
√
λh

dλ√
λ
.

Here the terms O(X) and O(1) are uniform in X ∈ [0, 2] and holomorphic with respect
to Γ ∈ Dδ0(0).

We are now ready to proceed with the following proof.
Proof of Theorem 4.9. We begin by deriving an asymptotic formula for bα(Γ;X,X

′)
when α approaches 0. Let us define

cbl =
1

2i

√
d2 − λbl∂yφ2

b(h, λ
b
l )

ε2
ε1(h)φ

2
b(h, λ

b
l ) +

√
d2 − λbl

∫ h

0
φ2(y, λbl )dy

, 1 ≤ l ≤ mb.
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With this definition we may rewrite the expression of the kernel bα(Γ;X
′, X) as fol-

lows:

bα(Γ;X,X
′) = α2 2

ε2
cbl0
eiα|X

′−X|Γ

Γ
+ α2 2

ε2

mb∑
l=1,l �=l0

cbl
e
iα|X′−X|

√
λb
l0
−λb

l+Γ2√
λbl0 − λbl + Γ2

− α2ε2
2πε21(h)

∫ +∞

d2

√
λ− d2∂yφ2

b(h, λ)

(λ− d2)φ2
b(h, λ) + ( ε2

ε1(h) )
2∂yφ2

b(h, λ)

e
−α|X′−X|

√
λ−λb

l0
−Γ2√

λ− λbl0 − Γ2
dλ.

We start with estimating the third term in the last expression. We have

√
λ− d2√

λ− λbl0 − Γ2
e
−α|X′−X|

√
λ−λb

l0
−Γ2

= e−α|X′−X|√λ

+α|X −X ′| (λ
b
l0
+ Γ2)

2

e−α|X′−X|√λ

√
λ

+
(λbl0 + Γ2 − d2)

2

e−α|X′−X|√λ

λ

+α2Rα
1,b(λ,Γ, X

′ −X) +Rα
2,a(λ,Γ, X

′ −X),

where Rα
1,b(λ,Γ, X

′ −X) = O( 1
λ ), and R

α
2,b(λ,Γ, X

′ −X) = O( 1
λ3/2 ) when λ→ +∞.

The remainders O( 1
λs ), for s = 1, 3/2, are uniform in α ∈ Dα0(0), Γ ∈ Dδ0(0), and

(X −X ′) ∈ [−2, 2]. A forward application of the last lemma yields

−α
2

2π

∫ +∞

d2

√
λ− d2∂yφ2

b(h, λ)

(λ− d2)φ2
b(h, λ) + ( ε2

ε1(h) )
2∂yφ2

b(h, λ)

e
−α|X′−X|

√
λ−λb

l0
−Γ2√

λ− λbl0 − Γ2
dλ

= −a0
π

1

(X ′ −X)2
− 1

2π
(β2e1 + β3e2 + β4e3)α

2 lnα

− 1

2π

(
f0 + β1f1 + β2f2 + β3f3 + β4f4 +

(λbl0 + Γ2)e4

2

+ (β2e1 + β3e2 + β4e3) ln |X ′ −X|
)
α2 +O(α3 lnα),

and, therefore, we finally have

bα(Γ;X,X
′) = − a0ε2

πε21(h)

1

(X ′ −X)2
+ b1α

2 lnα

+
(
b2(Γ;X,X

′)α2 +
2cbl0
ε1(h)

1

Γ

)
α2 +O(α3 lnα),

where


b1 = − ε2
2πε21(h)

(β2e1 + β3e2 + β4e3),

b2(Γ;X,X
′) = − ε2

2πε21(h)

(
f0 + β1f1 + β2f2 + β3f3 + β4f4

(λbl0 + Γ2)e4

2

+(β2e1 + β3e2 + β4e3) ln |X ′ −X|
)

+ 2
ε2

∑mb

l=1,l �=l0

cbl√
λa
l0
−λb

l+Γ2
.
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Here the term O(α3 lnα) is uniform in X ′ − X ∈ [−2, 2] and holomorphic in Γ ∈
Dδ0(0), and so the proof of the second part of Theorem 4.9 is now over. By construc-
tion, we know that Γ → Bα(Γ) is meromorphic operator-valued in Dδ0(0) and has
a unique pole that is 0. Moreover, for every Γ ∈ Dδ0(0)/{0}, Bα(Γ) is an invertible
operator. From the asymptotic expansion in Theorem 4.9, it immediately follows that
Bα(Γ) is a finitely meromorphic and of Fredholm type at Γ = 0 for small values of α.
Then, it is the case in all the domain Dδ0(0).

We now study the existence and the localization of the characteristic values of
the operator-valued function Bα(Γ).

Theorem 4.12. There exists a constant α0 > 0 such that for |α| < α0 we have

M(Bα(Γ), ∂Dδ0(0)) = 0,

and, therefore, there exists a unique characteristic value Γbα of Bα(Γ) in Dδ0(0) which
is the unique resonance in this domain.

Proof. Since B0 is an invertible operator it follows from Theorem 4.9 that
(B0)

−1(Bα(Γ) − B0) = O(α2 lnα) uniformly in Γ ∈ ∂Dδ0(0). Therefore, there ex-
ists a constant α0 such that for |α| ≤ α0 we have

|(B0)
−1(Bα(Γ)−B0)|L(H̃1/2(]−1,1[),H̃1/2(]−1,1[))

< 1 ∀ Γ ∈ ∂Dδ0(0).

By the generalized Rouché theorem (see Theorem B.2 in Appendix B), we immediately
obtain for all |α| ≤ α0 that

M(Bα(Γ), ∂Dδ0(0)) =M(B0, ∂Dδ0(0)) = 0.

Since 0 is the unique pole of Bα(Γ) in Dδ0(0) there exists a unique characteristic value
Γbα in Dδ0(0). Theorem 4.12 is then proved.

We now derive an asymptotic expansion for Γbα. Let us define

Lb = −πε
2
1(h)

a0ε2
B0.

Theorem 4.13. There exists a positive constant α0 such that, for |α| ≤ α0, we
have

Γbα =
1

2iπ

+∞∑
p=1

1

p
tr

[
(B0)

−p

∫
∂Dδ0

(B0 − Bα(Γ))pdΓ
]
,

which gives

Γbα = 2π
cbl0ε2

a0ε1(h)

(L−1
b 1/1

)
α2 +O(α4 lnα).

Proof. Recalling that Bα(Γ) is a finitely meromorphic operator-valued function
and of Fredholm type in Dδ0(0), 0 is the unique pole of Bα(Γ) in Dδ0(0), and Γα is
the unique characteristic value of Bα(Γ) in Dδ0(0), the generalized Rouché theorem
(see Theorem B.4 in Appendix B) immediately implies that

Γbα =
1

2iπ
tr

∫
∂Dδ0

Γ(Bα(Γ))−1 ∂

∂Γ
Bα(Γ)dΓ.
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Since, for |α| ≤ α0, we have

(Bα(Γ))−1 =

+∞∑
p=0

(B0)
−p[(B0 − Bα(Γ))(B0)

−1]p,

the expression of Γbα may be rewritten as follows:

Γbα =
1

2iπ

+∞∑
p=0

tr

[
(B0)

−(p+1)

∫
∂Dδ0

Γ(B0 − Bα(Γ))p ∂
∂Γ
Bα(Γ)dΓ

]
.

Now by writing

1

p+ 1

p∑
s=0

(B0 − Bα(Γ))s ∂
∂Γ
Bα(Γ)(B0 − Bα(Γ))p−s = − 1

p+ 1

∂

Γ
(B0 − Bα(Γ))p+1

and integrating by parts, we obtain the desired result.
Next, we give an expression for the characteristic function corresponding to the

value Γbα. We will calculate the leading order term in this asymptotic expression.
Let

φbα(X) =
[εvα](αX)

|[εvα](αX)|L2(]−1,1[)

and

P b
α =

(
./φbα(X)

)
L2(]−1,1[)

φbα(X)

denote the normalized characteristic function corresponding to the value Γbα in L2(]−
1, 1[) and the orthogonal projection on Ker(Bα(Γbα)), respectively.

Theorem 4.14. There exists a positive constant α0 such that for |α| ≤ α0

P b
α = P b

0 + 2π
cbl0ε

2
1(h)

a0ε22

(
./1

)
L2(]−1,1[)

L−1
b 1(X)α2 +O(α4 lnα),

where P b
0 = 1

2

(
./1

)
L2(]−1,1[)

.

Proof. The generalized Rouché theorem implies that

P b
α − P b

0 =
1

2iπ

∫
∂Dδ0

(Bα(Γ))−1∂ΓBα(Γ) dΓ.

On the other hand, we have for |α| ≤ α0

(Bα(Γ))−1 =

+∞∑
p=0

(B0)
−p[(B0 − Bα(Γ))(B0)

−1]p.

Therefore,

P b
α − P b

0 =

+∞∑
p=0

(B0)
−1 1

2iπ

∫
∂Dδ0

(
(B0 − Bα(Γ))(B0)

−1
)p
∂ΓBα(Γ) dΓ.
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Theorem 4.9 yields

B0 − Bα(Γ) = −B1α
2 lnα−

(
B2(Γ) +

B−1

Γ

)
α2 +O(α3 lnα).

Inserting the above identity into the expression of P a
α gives

P b
α − P b

0 = −B−1
0 B−1 +O(α

4 lnα).

Hence

P b
α − P b

0 = 2π
cbl0ε

2
1(h)

a0ε22

(
./1

)
L2(]−1,1[)

L−1
b 1(X)α2 +O(α4 lnα),

and the proof of the theorem is then complete.
Corollary 4.15. There exists a constant α0 such that for |α| ≤ α0

φaα(X) =
1√
2
+
√
2π
cbl0ε

2
1(h)

a0ε22

(
L−1
b 1(X)− 1

2

(L−1
b 1(X)/1

)
L2(]−1,1[)

)
α2 +O(α4 lnα),

where the remainder O(α4 lnα) is uniform in X ∈ [−1, 1].
Proof. Theorem 4.14 gives

(
1/φaα(X)

)
L2(]−1,1[)

=
√
2

(
1 + π

cbl0ε
2
1(h)

a0ε22

(L−1
b 1(X)/1

)
L2(]−1,1[)

)
α2 +O(α),

which is exactly the identity stated in the corollary.

Appendix A. Proof of Lemma 3.1. We only give the proof of Lemma 3.1.
The proof for Lemma 3.2 follows exactly the same lines. To simplify notations, we
will drop the subscript a.

Let t > 0 and λk,t, k = 1, 2, . . . , be the eigenvalues of the following Sturm–
Liouville problem in the interval ]0, t[ with homogeneous Dirichlet boundary condition
at y = t: 



∂yyg(y, λ; t) + (λ− q(y))g(y, λ; t) = 0 in ]0, h[ ∪ ]h, t[,
[g(., λ; t)] = 0 on y = h,[
1

µ
∂yg(., λ; t)

]
= 0 on y = h,

g(0, λ; t) = 0 and g(t, λ; t) = 0.

(A.1)

From the properties of the solution ga to (3.1), we have that λk,t are the roots of

g(t, λk,t; t) = 0,(A.2)

or equivalently

φ(h, λk,t)
√
λk,t − d2 + µ2

µ1
∂yφ(h, λk,t) tanh

(√
λk,t − d2(t− h)

)
= 0,(A.3)

where φ is defined by (3.2).
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We denote by ĝk,t, k = 1, 2, . . . , the corresponding eigenfunctions

ĝk,t(y) = g(y, λk,t), y ∈ ]0,+∞[,(A.4)

and introduce the weight

1

rk,t
=

∫ t

0

ĝ2k,t(y)
dy

µ(y)
.(A.5)

Let f(y) ∈ L2(0,+∞; dy
µ(y) ). Standard Sturm–Liouville theory allows us to write the

Parseval identity for f :∫ t

0

f2(y)
dy

µ(y)
=

+∞∑
k=1

1

rk,t

(∫ t

0

f(y)ĝk,t(y)
dy

µ(y)

)2

.(A.6)

Let

ρt(λ) =
∑

0≤λk,t≤λ

1

rk,t
, λ ∈ ]0,+∞[.(A.7)

Then (A.6) takes the form∫ t

0

f2(y)
dy

µ(y)
=

∫ +∞

0

F 2
t (λ)dρt(λ),(A.8)

where

Ft(λ) =

∫ t

0

f(y)g(λ, y)
dy

µ(y)
.

We proceed by calculating the limit of ρt(λ) as t→ +∞.
Lemma A.1. Let

ρ(λ) =




∑
0<λk≤λ

1

rk
, 0 < λ ≤ d2,

∑
0<λk≤d2

1

rk
+

∫ √
λ−d2

0

r(ν2 + d2)dν, d2 ≤ λ,

rk =
2µ1

√
d2 − λk

µ1

µ2
φ2(h, λ) + 2

√
d2 − λk

∫ h

0
φ2(h, λk)dy

, 1 ≤ k ≤ m,

r(λ) =
1

π

µ2(λ− d2)
(λ− d2)φ2(h, λ) + (µ2

µ1
)2∂yφ2(h, λ)

, d2 ≤ λ.

(A.9)

Then the function ρt(λ) converges to ρ(λ) uniformly with respect to λ in any finite
interval in ]0,+∞[.

Proof. Isolated eigenvalues. The eigenvalues t→ λk,t which belong to the interval
]0, d2[ satisfy (A.3). As t→ +∞, the left-hand side of (A.3) converges uniformly in λ;
hence the λk,t’s smaller than d

2 converge to the roots λk of (3.3) for k = 1, . . . ,ma.
Moreover, by (A.5) we have that

1

rk,t
=

1

µ1

∫ h

0

φ2(y, λk,t)dy

+
1

µ2

√
d2 − λk,t

∫ (t−h)
√

d2−λk,t

0

(
φ(h, λk,t) cosh τ − µ2

µ1

∂yφ(h, λk,t)√
d2 − λk,t

sinh τ

)2

dτ,
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so that the rk,t’s converge to the values rk’s defined in (A.9) as t→ +∞.
The continuous spectrum. For fixed k = 1, 2, . . . , any eigenvalue λk,t > d

2 con-
verges to d2 as t→ +∞. Let hk(t) = (t−h)√λk,t − d2. If ∂yφ(h, d2) �= 0, then (A.3)
implies that hk(t)→ kπ and so hk+1(t)− hk(t)→ π for t→ +∞. We can write

rk,t(λ) =
(√
λk+1,t − d2 −

√
λk,t − d2

)
r̂k,t(λ),

where

r̂k,t(λ) =
1

hk+1(t) − hk(t)
×

(λ− d2)

1
µ1

(λ−d2)
t−h

∫ h
0
φ2(y, λ) dy + 1

µ2

1√
λ−d2(t−h)

∫ (t−h)
√

d2−λk,t
0

(
φ(h, λk,t) cos τ − µ2

µ1

∂yφ(h,λk,t)√
d2−λk,t

sin τ
)2
dτ

.

We can easily verify that r̂k,t(λ) converges uniformly in compact subsets of ]0,+∞[
to r(λ) and

∑
d2≤λk,t≤λ

(r̂k,t(λk,t)− r(λk,t))
(√

λk+1,t − d2 −
√
λk,t − d2

)
→ 0,(A.10)

as t→ +∞. Let νk,t =
√
λk,t − d2. Then we have

∑
d2≤λk,t≤λ

rk,t =
∑

d2≤λk,t≤λ

(r̂k,t(λk,t)− r(λk,t))
(√

λk+1,t − d2 −
√
λk,t − d2

)

+
∑

0≤νk,t≤
√
d2−λ

r(ν2
k,t + d

2)(νk+1,t − νk,t).(A.11)

By (A.10) and the monotony of the sequence λk,t, we immediately obtain that

lim
t→+∞

∑
d2≤λk,t≤λ

rk,t =

∫ √
λ−d2

0

r(ν2 + d2)dν.(A.12)

If ∂yφ(h, d
2) = 0, then since ∂yφ(y, λ) is an analytic function of λ, by (A.3) we have

that either hk(t) → (k − 1/2)π or (k + 1/2)π as t → +∞. Repeating the previous
argument, we arrive at the same conclusion.

A direct consequence of the last lemma gives that for any ψ(λ) ∈ D(R+) we have

lim
t→+∞

(
dρt(λ)/ψ

)
=

(
dρ(λ)/ψ

)

=

m∑
k=1

rkψ(λk) +
1

π

∫ +∞

d2

µ2

√
λ− d2

(λ− d2)φ2(h, λ) + (µ2

µ1
)2∂yφ2(h, λ)

ψ(λ)dλ,

and so the inversion formula holds for any continuous function with compact support
on R+.

Let us now complete the proof of Lemma 3.1 by proving that it holds for any
f ∈ L2(R+,

dy
µ(y) ). This will be obtained by a limiting process from the corresponding

formula, derived for smooth functions with compact support.
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We know that there exists a sequence {fn(y)}n of functions of class C2(]0, h[ ∪
]h,+∞[), which satisfy the conditions fn(0) = 0, are equal to zero outside the interval
[0, n], µ1

µ2
f ′n(h

+) = f ′n(h
−), fn(h+) = fn(h

−), and

lim
t→+∞

∫ +∞

0

{fn(y)− f(y)}2 dy
µ(y)

= 0.(A.13)

Applying the Parseval identity to these functions, we obtain for any large value of t
(t ≥ n) that ∫ n

0

f2
n(y)

dy

µ(y)
=

∫ +∞

0

F̌ 2
n(λ)dρt(λ),(A.14)

where

F̌n(λ) =

∫ n

0

fn(y)g(y, λ)
dy

µ(y)
.(A.15)

Multiply (3.1) by fn(y) and integrate by parts twice to get

F̌n(λ) = − 1

λ

∫ t

0

(f ′′n (y)− q(y)fn(y))g(y, λ)
dy

µ(y)
.(A.16)

Therefore for a finite N > 0 we have∫
λ>N

F̌ 2
n(λ)dρt(λ)

≤ 1

N2

∫
λ>N

{∫ t

0

(f ′′n (y)− q(y)fn(y))g(y, λ)
dy

µ(y)

}2

dρt(λ)

<
1

N2

∫ +∞

0

{∫ t

0

(f ′′n (y)− q(y)fn(y))g(y, λ)
dy

µ(y)

}2

dρt(λ)

=
1

N2

∫ n

0

(f ′′n (y)− q(y)fn(y))2
dy

µ(y)
.

From this bound and (A.14) we obtain∣∣∣∣
∫ n

0

f2
n(y)

dy

µ(y)
−

∫ N

0

F̌ 2
n(λ)dρt(λ)

∣∣∣∣ ≤ 1

N2

∫ n

0

(f ′′n (y)− q(y)fn(y))2
dy

µ(y)
.(A.17)

Lemma A.1 leads to ∫ N

0

F̌ 2
n(λ)dρt(λ)→

∫ N

0

F̌ 2
n(λ)dρ(λ)(A.18)

as t→ +∞. Passing to the limit in (A.17) we find the inequality∣∣∣∣
∫ n

0

f2
n(y)

dy

µ(y)
−

∫ N

0

F̌ 2
n(λ)dρ(λ)

∣∣∣∣ ≤ 1

N2

∫ n

0

(f ′′n (y)− q(y)fn(y))2
dy

µ(y)
.

(A.19)

Finally, letting N → +∞ in this inequality, we obtain∫ +∞

0

f2
n(y)

dy

µ(y)
=

∫ +∞

0

F̌ 2
n(λ)dρ(λ).(A.20)
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Since ∫ +∞

0

{fn(y)− fm(y)}2 dy
µ(y)

→ 0(A.21)

as n,m→ +∞, it follows that

lim
n,m→+∞

∫ +∞

0

{F̌n(λ)− F̌m(λ)}2dρ(λ) = 0.(A.22)

We denote by Hρ the space of functions which are square integrable with respect
to ρ(λ). Now, we will show that Hρ is a complete space. Let ηp(λ) be a sequence of
functions in Hρ which satisfies

lim
p,q→+∞

∫ +∞

0

{ηp(λ)− ηq(λ)}2dρ(λ) = 0.(A.23)

The last identity implies

lim
p,q→+∞{ηp(λk)− ηq(λk)}

2 = 0, 1 ≤ k ≤ m,(A.24)

and

lim
p,q→+∞

1

π

∫ +∞

d2

µ2

√
λ− d2

(λ− d2)φ2(h, λ) +
µ2

1

µ2
2
∂yφ2(h, λ)

{ηp(λ)− ηq(λ)}2dλ = 0.(A.25)

The completeness of R+ and L2(R+) gives that there exists a unique function η(λ)
such that ηp(λ) → η(λ) in Hρ as p → +∞. Then, the relation (A.22) implies the
existence of a limit function F (λ) in Hρ satisfying the Parseval identity

∫ +∞

0

f2(y)
dy

µ(y)
=

∫ +∞

0

F 2(λ)dρ(λ).(A.26)

We will now show that Fn(λ) =
∫ n

0
f(y)g(y, λ) dy

µ(y) converges to F (λ) in Hρ. Let

gn(λ) = f(y) for 0 ≤ y ≤ n and gn(y) ≡ 0 for y > n. Since gn(y) ∈ L2(0,+∞; dy
µ(y) ),

there exists Gn(λ) in Hρ such that

∫ +∞

0

{f(y)− gn(y)}2(y) dy
µ(y)

=

∫ +∞

0

{F (λ)−Gn(λ)}2dρ(λ).(A.27)

But

Gn(λ) =

∫ n

0

f(y)g(y, λ)
dy

µ(y)
.

Hence we obtain∫ +∞

0

{F (λ)− Fn(λ)}2dρ(λ) =
∫ +∞

n

f2(y)
dy

µ(y)
→ 0(A.28)

as n→ +∞. The following results hold.
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Lemma A.2. Let f(y) ∈ L2(0,+∞; dy
µ(y) ). There exists a nondecreasing function

ρ(λ), which does not depend on f(x), and a function F (λ) (the generalized Fourier
transform of f(y)) such that

∫ +∞

0

f2(y)
dy

µ(y)
=

∫ +∞

0

F 2(λ)dρ(λ).(A.29)

The function F (λ) is the limit in quadratic mean relative to dρ(λ) of the sequence of
continuous functions Fn(λ) =

∫ n

0
f(y)g(y, λ) dy

µ(y) :

lim
t→+∞

∫ +∞

0

{F (λ)− Fn(λ)}2dρ(λ) = 0.(A.30)

Lemma A.3. Let f(y) be a continuous function, and suppose that the integral∫ +∞
0

F (λ)g(y, λ)dρ(λ) converges absolutely and uniformly with respect to y in any
finite interval. Then

f(y) =

∫ +∞

0

F (λ)g(y, λ)dρ(λ), y ∈ ]0,+∞[.(A.31)

Appendix B. The generalized Rouché theorem. For convenience we recall
the main results of Ghoberg and Sigal in [2].

B.1. Notations and definitions. Let H and H′ be two Banach spaces, and let
L(H,H′) be the algebra of all bounded-valued functions acting from H into H′.

Let λ0 be a fixed complex value in C. We denote by A(λ) an operator-valued
function acting from Dε(λ0) into L(H,H′), where Dε(λ0) is a disc of center λ0 and
radius ε > 0.

λ0 is called a characteristic value of A(λ) if
(i) A(λ) is holomorphic in some neighborhood of λ0, except possibly at this point

itself;
(ii) there exists a vector-valued function φ(λ): Dε(λ0) → H holomorphic at λ0

and that verifies φ(λ0) �= 0, such that A(λ)φ(λ) is a holomorphic at λ0 and
vanishes at this point. φ(λ) is called a root function of A(λ) associated with
λ0, and the vector φ0 = φ(λ0) is called an eigenvector. The closure of the
linear set of eigenvectors corresponding to λ0 is denoted by KerA(λ0).

Suppose that λ0 is a characteristic value of the function A(λ) and φ(λ) is a root
function satisfying (ii). Then there exists a number m(φ) ≥ 1 and a vector-valued
function ψ(λ) : Dε(λ0)→ H holomorphic such that

A(λ)φ(λ) = (λ− λ0)
m(φ)ψ(λ),

ψ(λ0) �= 0.

The number m(φ) is called the multiplicity of the root function φ(λ). Let φ0 be an
eigenvector corresponding to λ0 and let

R(φ0) = {m(φ);φ(λ) is a root function such φ(λ0) = φ0}.

Then by rank of φ0 we mean rank(φ0) = maxR(φ0). Suppose that n = dimKerA(λ0) <
+∞ and that the ranks of all vectors in KerA(λ0) are finite. A system of eigenvectors
φj0, j = 1, . . . , n, is called a canonical system of eigenvectors of A(λ) associated to λ0
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if the ranks possess the following property: rank(φj0) is the maximum of the ranks of
all eigenvectors in some direct complement in dimKerA(λ0) of the linear span of the
vectors φ1

0, . . . , φ
j−1
0 . Let rj = rank(φj0). Then (rj)j determines the function A(λ)

uniquely. We call

N(A(λ0)) =

n∑
j=1

rj

the null multiplicity of the characteristic value λ0 of A(λ). If λ0 is not a characteristic
value of A(λ), we put N(A(λ0)) = 0.

Suppose that A−1(λ) exists and is holomorphic in some neighborhood of λ0,
except possibly at this point itself. Then the number

M(A(λ0)) = N(A(λ0))−N(A−1(λ0))

is called the multiplicity of the characteristic value λ0 of A(λ). Suppose that λ1 is a
pole of the operator-valued function. The Laurent expansion of A(λ) in λ1 is given
by

A(λ) =
∑
j≥−s

(λ− λ1)
jAj .

If in the last expression the operators A−j , j = 1, . . . , s, are finite-dimensional, then
A(λ) is called finitely meromorphic at λ1.

The operator-valued function A(λ) is said to be of Fredholm type at the point λ1

if the operator A0 in the last expansion is a Fredholm operator. If A(λ) is holomorphic
at the point λ0 and the operator A(λ0) is invertible, then λ0 is called a regular point
of A(λ).
B.2. Main results. The point λ0 is called a normal point of A(λ) if there exists

a constant 0 < ε0 ≤ ε such that A(λ) is finitely meromorphic and of Fredholm type
at λ0 and all the points of Dε0(λ0) − {λ0} are regular for A(λ), where Dε0(λ0) is a
disc of center λ0 and radius ε0 > 0.

Lemma B.1. Every normal point λ0 of A(λ) is a normal point of A−1(λ).
Let ∂Dε0 be the contour bounding the domain Dε0(λ0). An operator-valued

function A(λ) which is finitely meromorphic and of Fredholm type in Dε0(λ0) and
continuous at ∂Dε0 is called normal with respect to ∂Dε0 if the operator A(λ) is
invertible in Dε0(λ0), except for a finite number of points of Dε0(λ0) which are normal
points of A(λ). Now, if A(λ) is normal with respect to the contour ∂Dε0 and λi,
i = 1, . . . , σ, are all its characteristic values and poles lying in Dε0(λ0), we put

M(A(λ); ∂Dε0) =

σ∑
i=1

M(A(λi)).

Theorem B.2. Suppose that the operator-valued A(λ) is normal with respect to
∂Dε0 ; then we have

M(A(λ); ∂Dε0) =
1

2iπ
tr

∫
∂Dε0

A−1(λ)
d

dλ
A(λ)dλ.

By tr we mean the trace of operator which is the sum of all its nonzero charac-
teristic values, see [2, p. 609] for an exact statement.
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The operator generalization of the Rouché theorem is stated below.
Theorem B.3. Let A(λ) be an operator-valued function which is normal with

respect to ∂Dε0 . If an operator-valued function S(λ) which is finitely meromorphic in
Dε0(λ0) and continuous at ∂Dε0 satisfies the condition

|A−1(λ)S(λ)|L(H,H) < 1, λ ∈ ∂Dε0 ,

then A(λ) + S(λ) is also normal with respect to ∂Dε0 , and

M(A(λ); ∂Dε0) =M(A(λ) + S(λ); ∂Dε0).

The generalization of the Steinberg theorem is given by the following.
Theorem B.4. Suppose that A(λ) is an operator-valued function which is finitely

meromorphic and of Fredholm type in the domain Dε0(λ0). If the operator A(λ) is
invertible at one point of Dε0 , then A(λ) has a bounded inverse for all λ ∈ Dε0 , except
possibly for certain isolated points.

Finally, the following result is central.
Theorem B.5. Suppose that A(λ) is an operator-valued function which is normal

with respect to ∂Dε0 . Let f(λ) be a scalar function which is analytic in Dε0(λ0) and
continuous in Dε0(λ0). Then

1

2iπ
tr

∫
∂Dε0

f(λ)A−1(λ)
d

dλ
A(λ)dλ =

σ∑
j=1

M(A(λj))f(λj),

where λj , j = 1, . . . , σ, are all the points in Dε0(λ0) which are either poles or char-
acteristic values of A(λ).

REFERENCES
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Abstract. We study a coupled system of the Navier–Stokes equation and the equation of
conservation of mass in a network. The system models the blood circulation in arterial networks.
A special feature of the system is that the equations are coupled through boundary conditions at
joints of the network. We use a fixed point method to prove the existence and uniqueness of the
classic solution to the initial-boundary value problem and discuss the continuity of dependence of
the solution and its derivatives on initial, boundary, and forcing functions and their derivatives. We
develop a numerical scheme that generates discretized solutions, and we also prove the convergence
of the scheme.

Key words. arterial network, blood flow, hyperbolic partial differential equations, initial-
boundary value problems, numerical scheme
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1. Introduction. In this paper, we study a system of one-spatial-dimensional
first-order quasi-linear hyperbolic partial differential equations defined on networks.
By network, we mean a finite collection of smooth curves joining a finite number of
vertices, and with a direction assigned to each curve (see Figure 1.1). The mathe-
matical system arises from a long-term study of fluid dynamical models that simulate
blood flow in arterial networks (cf. [1, 2, 9, 11, 13, 17, 18, 19, 20, 21, 22, 23, 24, 25] and

Fig. 1.1. A schematic diagram of an arterial network.
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references therein). Recently, these models have been used in technologies for medical
diagnostics [3, 6, 7, 8]. In particular, a technology called CANVAS (computer-assisted
noninvasive vascular analysis and simulation) has been developed to help stroke pa-
tients. CANVAS uses data from magnetic resonance imaging to determine volumetric
flow within vessels in the patient’s brain [26]. The vessel flows are used to determine
the boundary conditions of the model [8]. This approach is based on a model for-
mulated by Clark and Kufahl [9, 13]. The technology has displayed its capability in
helping doctors predict outcomes of major medical procedures. It is the extensive
applications of these models that motivate their mathematical study. Of particu-
lar importance are whether the mathematical system is well posed (solution exists, is
unique, and is stable), and whether the solutions generated by the computer algorithm
approximate the true solutions.

In this paper, we study a generalization of a model given by [20, 23, 24], prove
the existence and uniqueness of the solution, prove the continuous dependence of
the solution on the initial, boundary, and forcing functions, and develop a numerical
scheme that approximates the solution.

To explain our system, let us first describe the original model of [20, 23, 24].
Suppose that an arterial network consists of n vessels. We parameterize each vessel
with a spatial variable x ∈ (0, 1) in accordance with the assigned direction of blood
flow through the vessel. In the vessel, the flow of blood is governed by the one-
spatial-dimensional equation of conservation of mass and an approximation of the
Navier–Stokes momentum equation:

∂Qi

∂x
+

∂Ai

∂t
= 0,

∂Qi

∂t
+ αi

∂

∂x

(
Q2
i

Ai

)
= −Ai

ρi

∂Pi
∂x

− κiQi

Ai
,

x ∈ (0, 1) , t > 0,(1.1)

where Qi is the flow rate, Pi is the pressure, Ai is the cross-sectional area of the vessel,
and αi, ρi, κi are positive constants. The above equations are valid if we assume that
the radial component of the fluid velocity is far less than the axial component and
that the axial velocity profile is proportional to 1 − (r/R)

γ
(R being the radius of

the vessel) for some γ �= 0. The latter assumption is satisfied by the Poiseuille flow
profile considered in [9] and the plug flow profile considered in [17, 18]. (The reader is
referred to [18, 19, 25] for a derivation of the above equations from three-dimensional
mass balance and Navier–Stokes equations.)

The initial conditions are given by

Pi (0, x) = P I
i (x) , Qi (0, x) = QI

i (x) , i = 1, . . . , n.

At each end of the vessel, depending on whether it is a source, an internal junction,
or a terminal, a boundary condition is imposed. At a source end, either the pressure

Pi (0, t) = PB
i (t)(1.2)

or the flow

Qi (0, t) = QB
i (t)(1.3)

is specified. Various source ends may have different types of boundary conditions. At
an internal junction, suppose j1, . . . , jν are the incoming vessels to and jν+1, . . . , jµ
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Fig. 1.2. Windkessel model for a terminal boundary condition.

are the outgoing vessels from the junction. We have mass and pressure continuities
at junctions given by

ν∑
l=1

Qjl (1, t) =

µ∑
l′=ν+1

Qjl′ (0, t) ,

Pjl (1, t) = Pjl′ (0, t) , 1 ≤ l ≤ ν, ν + 1 ≤ l′ ≤ µ.

(1.4)

At a terminal end, we may either specify the pressure,

Pi (1, t) = PB
i (t) ,(1.5)

or the flow,

Qi (1, t) = QB
i (t) ,(1.6)

or use the windkessel model of peripheral beds [13, 20, 24] as the boundary condition,

∂Pi
∂t

− ηi
∂Qi

∂t
+ δiPi − εiQi = WB

i (t) , x = 1,(1.7)

where ηi, δi, and εi are positive constants and WB
i is a continuous function. This

equation models the peripheral beds by a circuit that consists of a resistance R1
i

in series with the parallel combination of a resistance R2
i and a capacitor Ci; see

Figure 1.2. The resulting equation is

Ci
∂

∂t

(
Pi − PV

i

)−R1
iCi

∂Qi

∂t
+

Pi − PV
i

R2
i

− R1
i

R2
i

Qi = 0,

where PV
i is the venous pressure. This can be rewritten into (1.7). Again, boundary

conditions for different terminals need not be the same.
Finally, the cross-sectional area Ai of the ith vessel is a function of x and Pi. A

particular example used in [9, 13] is

Ai (x, Pi) = A0
i (x) + β ln

Pi
P 0
i

,

where β is a positive constant and A0
i is a positive function which represents the

cross-sectional area at certain constant pressure P 0
i .

In this paper, we study a more general system, which consists of the equations

∂Pi
∂t

+ ai
∂Qi

∂x
= fi,

∂Qi

∂t
+ bi

∂Pi
∂x

+ 2ci
∂Qi

∂x
= gi,

x ∈ (0, 1) , t > 0,(1.8)
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and the initial and boundary conditions described above. For convenience, we also
use the vector form

(Ui)t + Bi (Ui)x = Fi,(1.9)

where Ui = (Pi, Qi), Fi = (fi, gi), and

Bi =

(
0 ai
bi 2ci

)
.

Equation (1.1) is a special case of this system, where

ai =
1

(Ai)Pi

, bi =
Ai

ρi
− αiQ

2
i (Ai)Pi

A2
i

, ci =
αiQi

Ai
, fi = 0, gi =

Q2
i (Ai)x
A2
i

− κiQi

Ai
.

We do not assume any particular form for these functions, only that they are gen-
eral differentiable functions of (x, t, Pi, Qi). A basic assumption is ai > 0. Other
assumptions will follow.

This problem is interesting not only in fluid mechanics but also in mathematics.
Navier–Stokes equations and conservation laws have been studied for over a century.
Initial-boundary value problems of such equations in a one-dimensional network have
been studied for decades [1, 9, 18, 20, 24, 25]. However, so far, most analyses on
the models have been performed numerically rather than mathematically. To give a
mathematical analysis is challenging. Unlike the problem of fluid flow in a rigid tube
network, the distensibility of vessels greatly increases the complexity of the problem
(cf. [19]). For example, as is well known, a first-order quasi-linear system of hyperbolic
equations on a finite one-dimensional spatial interval need not have a solution. Even
if it has a solution for an interval of time, the solution may not exist for all time.
A particular example is given by Čanić [4]. In a network, it is important to know
whether the coupling at junctions poses problems to solvability. The effect of the
Windkessel boundary condition (1.7) on the solvability also needs to be examined.

In this paper, we study the existence and uniqueness of the local solution, develop
a numerical scheme to approximate the solution, and prove the convergence of the
scheme. This is the first step towards an analysis of the system. We consider only
classic solutions (i.e., solutions whose derivatives are continuous and satisfy the differ-
ential equations) in this paper. The problems of existence and uniqueness of the weak
solution are interesting but also more difficult. In particular, it is more difficult to
establish the convergence of the scheme to the weak solution; this will be the subject
of our future study. (See [4] for an example of a numerical scheme that gives a good
approximation of the weak solution to a scaler initial-value problem.)

This paper is divided into two parts. The first part consists of sections 2 and 3,
which deal with the problem of solvability using a fixed point approach. Substituting
a pair of functions (pi, qi) for (Pi, Qi) in the coefficients ai, bi, ci and forcing functions
fi, gi, the system becomes linear. That is, all the functions ai, etc., are independent
of unknowns. If the linear system has a unique solution, then one can establish a
mapping from (pi, qi) to the linear problem solution (Pi, Qi). If one also shows that
this mapping has a unique fixed point, then the fixed point is necessarily the unique
solution of the quasilinear system. Hence, we shall first give a condition for the linear
system to have a unique solution, then examine under what conditions the mapping
has a unique fixed point. We investigate the first aspect of the problem in section 2
and the latter in section 3. We also prove a result on the continuity of dependence
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of solutions on the initial, boundary, and forcing functions for linear and quasi-linear
systems. Thus, we complete the analysis of the well-posedness of the problem. In
the second part of the paper, which consists of section 4 only, we give a numerical
scheme that approximates the solution and prove its convergence. Our scheme is a set
of finite-difference equations based on the normal form of the differential equations.
Although these approaches are standard in the analysis of quasi-linear equations, the
network feature of the system and the peculiarities of the boundary conditions make
the problem more complicated. In the final section, we give a short discussion.

2. The linear system. In this section, we analyze (1.8) as a linear system with
ai, bi, ci, fi, and gi independent of Pi and Qi. We give conditions for the system to
have a unique global solution. The conditions are most naturally given in terms of
the eigenvalues of the matrix Bi, which have the form

λRi = ci + ui, λLi = ci − ui,

where

ui =
√

c2i + aibi.

These eigenvalues are real if

c2i + aibi > 0, x ∈ (0, 1) , t > 0, i = 1, . . . , n.(2.1)

In this case,

λLi (x, t) < λRi (x, t)(2.2)

and the system is hyperbolic. Under this condition, we show that the linear system
has a unique solution if

λLi (x, t) < 0, λRi (x, t) > 0, x = 0, 1, i = 1, . . . , n.

This is clearly equivalent to

aibi > 0, t ≥ 0, i = 1, . . . , n,(2.3)

at x = 0, 1 only. It need not hold for x ∈ (0, 1).
Theorem 2.1. Assume that the functions ai, bi, ci, fi, and gi are independent of

(Pi, Qi). Suppose that these functions and the initial and boundary functions P I
i , Q

I
i ,

PB
i , QB

i , and WB
i all have bounded first-order derivatives. Suppose also that ai > 0

and that the conditions (2.1) and (2.3) hold. Then, for any T > 0 there is a unique
solution in a bounded subset of the space C

(
[0, 1]× [0, T ] ,R2n

)
to the linear system

(1.8) with the initial and boundary conditions given in section 1.
Proof. We first show that the system has a unique solution for 0 < t < δ for

some δ > 0. The proof is based on the method of characteristics and a fixed point
principle. For systems defined on only one branch, this is a standard approach. In our
case, special care is needed to handle the junction condition (1.4) and the Windkessel
boundary condition (1.7).

Consider the ith branch of the network. From any point (τ, ξ) on the left, right,
and lower boundary of the rectangle D =: [0, 1] × [0, T ], we construct the left-going
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Fig. 2.1. Three parts of Di.

and right-going characteristic curves x = xLi (t; ξ, τ) and x = xRi (t; ξ, τ) by

dxLi
dt

= λLi
(
xLi , t

)
, xLi (τ) = ξ,

dxRi
dt

= λRi
(
xRi , t

)
, xRi (τ) = ξ,

respectively, where λLi and λRi are the two eigenvalues of the matrix Bi. By the
uniqueness of solutions of these differential equations, a left-going characteristic curve
cannot intersect with another left-going characteristic curve, and the same is true for
right-going characteristic curves. Let XL

i and XR
i be the right-most left-going and

left-most right-going characteristic curves:

x = xLi (t; 1, 0) and x = xRi (t; 0, 0)

starting from the lower boundary of D, respectively. It can be shown from (2.2) that
the two curves can have at most one intersection. Let ti be the value of t at the
intersection. If the two curves do not intersect in D, we simply define ti = T . By
condition (2.3), XL

i cannot reach the right vertical line x = 1, and XR
i cannot reach

the vertical line x = 0 at any t > 0. Thus, the rectangle Di =: [0, 1] × [0, ti] can be
divided into three parts:

Di = DL
i ∪DC

i ∪DR
i ,

where DL
i is between the vertical line x = 0 and the characteristic curve XR

i , DC
i

is between the two characteristic curves, and DR
i is between XL

i and x = 1 (see
Figure 2.1). We show that there is a δi ≤ ti such that the solution (Pi, Qi) for the ith
branch exists in the restriction of Di to the strip {0 ≤ t ≤ δi}.

We first observe that the initial conditions alone determine the solution completely
in the central region DC

i . This follows from the theory of first-order linear hyperbolic
systems and the fact that from any point (x, t) ∈ DC

i the two characteristic curves,
followed backwards, must land on the horizontal line t = 0. This imperative is a
consequence of (2.2). To extend the solution to other parts of Di, we make a change of
unknowns and derive a set of integral equations. Note that lRi =: (−λLi , ai) and lLi =:
(−λRi , ai) are the left eigenvectors of Bi corresponding to λRi and λLi , respectively.
Introduce new unknowns

ri = lRi Ui ≡ −λLi Pi + aiQi, si = lLi Ui ≡ −λRi Pi + aiQi.(2.4)
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The system (1.8) can be written in terms of ri and si by multiplying the left eigen-
vectors by (1.9) and substituting in

Pi =
1

2ui
(ri − si) , Qi =

1

2uiai

(
λRi ri − λLi si

)
.(2.5)

This results in the equations

∂Ri ri = FR
i (x, t, ri, si) , ∂Li si = FL

i (x, t, ri, si) ,(2.6)

where

∂Ri =
∂

∂t
+ λRi

∂

∂x
, ∂Li =

∂

∂t
+ λLi

∂

∂x
,(2.7)

and

FR
i (x, t, ri, si) = lRi Fi +

(
∂Ri lRi

)
Ui, FL

i (x, t, ri, si) = lLi Fi +
(
∂Li l

L
i

)
Ui.(2.8)

(A differential operator acting on a vector means that it acts on each component of
the vector.)

Let (x, t) ∈ Di. We integrate the first equation of (2.6) along the right-going
characteristic curve xR (t; ξ, τ), which passes through (x, t) and reaches the left or
lower boundary of Di at (ξ, τ). It can be shown that for (x, t) ∈ DC

i ∪DR
i , τ = 0, and

for (x, t) ∈ DL
i , ξ = 0. In the former case, we obtain

ri (x, t) = rIi (ξ) +

∫ t

0

FR
i

(
xRi (t′; ξ, 0) , t′, ri, si

)
dt′.(2.9)

In the latter case, we have

ri (x, t) = ri (0, τ) +

∫ t

τ

FR
i

(
xRi (t′; 0, τ) , t′, ri, si

)
dt′.(2.10)

Similarly, by integrating the second equation of (2.6) along the left-going characteristic
curve xLi (t; ξ, τ) that passes through both (x, t) and (ξ, τ) (which is on either the right
or lower boundary of Di), the equations are

si (x, t) = sIi (ξ) +

∫ t

0

FL
i

(
xLi (t′; ξ, 0) , t′, ri, si

)
dt′ if (x, t) ∈ DL

i ∪DC
i(2.11)

and

si (x, t) = si (1, τ) +

∫ t

τ

FL
i

(
xLi (t′; 1, τ) , t′, ri, si

)
dt′ if (x, t) ∈ DR

i .(2.12)

These are the integral equations we need.
For any δi ≤ ti, we use DL

i,δi
, DC

i,δi
, and DR

i,δi
to denote the restrictions of DL

i ,

DC
i , and DR

i , respectively, to the strip {0 ≤ t ≤ δi}. We first extend the solution
to a left region DL

i,δi
where δi is to be determined. For this, we need the boundary

condition on the left end of the branch. The left end is either a source or a junction.
For a source with the pressure boundary condition (1.2), we define ŝi = si/ε,

where ε < 1 is any constant. Using the first equation of (2.5) in the integral equations
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(2.10) and (2.11),

(
ri (x, t)
ŝi (x, t)

)
=




2ui (0, τ)P
B
i (τ) + εŝi (0, τ) +

∫ t

τ

FR
i

(
xRi (t′; 0, τ) , t′, ri, εŝi

)
dt′

1

ε
sIi (ξ) +

1

ε

∫ t

0

FL
i

(
xLi (t′; ξ, 0) , t′, ri, εŝi

)
dt′


 .

(2.13)

This is a fixed point equation for (ri, ŝi) if we define the right-hand side as a mapping
of an operator K on (ri, ŝi) in a bounded subset of C(DL

i,δi
∪DC

i,δi
,R2). In a standard

approach, it can be shown that K is a contraction mapping if δi is sufficiently small.
Hence, the fixed point exists and is unique. Therefore, the solution (ri, si) can be
uniquely extended to DL

i,δi
∪DC

i,δi
.

For a source with the flow boundary condition (1.3), we define ŝi = si/ε, where
ε > 0 and is so small that

ε

∣∣∣∣λLi (0, τ)

λRi (0, τ)

∣∣∣∣ < 1, τ ∈ (0, ti) .

The fixed point equation is then

(2.14)(
ri (x, t)
ŝi (x, t)

)

=




2aiui (0, τ)

λRi (0, τ)
QB
i (τ) +

λLi (0, τ)

λRi (0, τ)
εŝi (0, τ) +

∫ t

τ

FR
i

(
xRi (t′; 0, τ) , t′, ri, εŝi

)
dt′

1

ε
sIi (ξ) +

1

ε

∫ t

0

FL
i

(
xLi (t′; ξ, 0) , t′, ri, εŝi

)
dt′


 .

By a similar argument, the solution can again be uniquely extended.
If the left end of the branch is a junction, we shall extend the solution simultane-

ously on all the branches that are connected to the same junction. Thus, also extend
the solution to DR

i,δi
on the branches incoming to the junction. Let j1, . . . , jν be the

incoming and jν+1, . . . , jµ the outgoing branches at the junction. Equations (1.4)
and (2.5) give rise to a 2µ × µ homogeneous system of linear equations for ri (1, τ),
si (1, τ), i = j1, . . . , jν , and ri (0, τ), si (0, τ), i = jν+1, . . . , jµ:

1

u1 (1, τ)
(r1 (1, τ)− s1 (1, τ))− 1

ui (1, τ)
(ri (1, τ)− si (1, τ)) = 0, i = j2, . . . , jν ,

1

u1 (1, τ)
(r1 (1, τ)− s1 (1, τ))− 1

ui (0, τ)
(ri (0, τ)− si (0, τ)) = 0, i = jν+1, , . . . , jµ,

ν∑
l=1

1

ujlajl

(
λRjlrjl − λLjlsjl

)
(1, τ)−

µ∑
l′=ν+1

1

ujl′ajl′

(
λRjl′ rjl′ − λLjl′ sjl′

)
(0, τ) = 0.

This system can be solved for sj1 (1, τ) , . . . , sjν (1, τ), rjν+1 (0, τ) , . . . , rjµ (0, τ) be-
cause the coefficient matrix



− 1
uj1 (1,τ)

1
uj2 (1,τ) · · · 0

...
...

. . .
...

− 1
uj1

(1,τ) 0 · · · − 1
ujµ (0,τ)

− λL
j1

(1,τ)

uj1
aj1

(1,τ) − λL
j2

(1,τ)

uj2
aj2

(1,τ) · · · − λR
jµ

(0,τ)

ujµajµ (0,τ)
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has the determinant

(−1)
ν+1∏ν

l=1 ujl (1, τ)
∏µ

l′=ν+1 ujl′ (0, τ)

(
−

ν∑
l=1

λLjl (1, τ)

ajl (1, τ)
+

µ∑
l′=ν+1

λRjl′ (0, τ)

ajl′ (0, τ)

)
.

Since λLi < 0 < λRi at the junction, the determinant is not zero. Hence, we can
express sj1 (1, τ) , . . . , sjν (1, τ), rjν+1

(0, τ) , . . . , rjµ (0, τ) in terms of other unknowns
as

si (1, τ) =

ν∑
l=1

mi
jl

(τ) rjl (1, τ) +

µ∑
l′=ν+1

mi
jl′ (τ) sjl′ (0, τ) , i = j1, . . . , jν ,

ri (0, τ) =

ν∑
l=1

nijl (τ) rjl (1, τ) +

µ∑
l′=ν+1

nijl′ (τ) sjl′ (0, τ) , i = jν+1, . . . , jµ,

for some functions mi
j , n

i
j . Choose an ε > 0 such that

εmax

{
µ∑
l=1

∣∣mi
jl

(τ)
∣∣ , µ∑

l=1

∣∣nijl (τ)∣∣
}

< 1, i = j1, . . . , jµ, τ ∈ [0, ti] ,

and introduce

r̂jl =
rjl
ε

, ŝjl′ =
sjl′
ε

, l = 1, . . . , ν, l′ = ν + 1, . . . , µ.

Then, in view of (2.9)–(2.12), the integral equations for the 2µ unknowns r̂jl , sjl , rjl′ ,
ŝjl′ , l = 1, . . . , ν, l′ = ν + 1, . . . , µ, constitute a fixed point equation, w = Kw, where

w =
(
r̂j1 , . . . , r̂jν , sj1 , . . . , sjν , rjν+1 , . . . , rjµ , ŝjν+1 , . . . , ŝjµ

)
(2.15)

and

Kw =

(
1

ε
rIj1 (ξj1) +

1

ε

∫ t

0

FR
j1

(
xRj1 , t

′, εr̂j1 , sj1
)
dt′, . . . ,

ε

(
ν∑

k=1

m1
jk
r̂jk (1, τ) +

µ∑
k′=ν+1

m1
jk′ ŝjk′ (0, τ)

)

+

∫ t

τ

FL
j1

(
xLj1 , t

′, εr̂j1 , sj1
)
dt′, . . . ,

ε

(
ν∑

k=1

n1
jk
r̂jk (1, τ) +

µ∑
k′=ν+1

n1
jk′ ŝjk′ (1, τ)

)

+

∫ t

τ

FR
jν+1

(
xRjν+1

, t′, rjν+1 , εŝjν+1

)
dt′, . . . ,

1

ε
sIjν+1

(
ξjν+1

)
+

1

ε

∫ t

0

FL
jν+1

(
xLjν+1

, t′, rjν+1
, εŝjν+1

)
dt′, . . .

)
.(2.16)

It can be shown by a standard argument that K is a contraction mapping in the space

Xj =:

ν∏
l=1

C
(
DC
jl,δj

∪DR
jl,δj

,R2
)
×

µ∏
l=ν+1

C
(
DL
jl,δj

∪DL
jl,δj

,R2
)
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if δj is sufficiently small. Hence, it has a unique fixed point in Xj . This extends the
solution (ri, si) for the neighboring branches of the junction.

We now extend the solution (ri, si) to a right region DR
i,δi

. This has already
been considered if the right end is a junction. Thus, only terminal ends need to be
discussed. For the boundary condition of either (1.5) or (1.6) type, the argument is
similar to the above discussion about source ends. We only sketch the steps in these
two cases. The boundary condition of (1.7) type, however, requires more effort.

If condition (1.5) is assumed, then, by (2.5),

si (1, t) = ri (1, t)− 2uiP
B
i (t) .

Let r̂i = ri/ε with 0 < ε < 1. Then, the fixed point equation for (r̂i, si) has the form

(
r̂i (x, t)
si (x, t)

)
=




1

ε
rIi (ξ) +

1

ε

∫ t

0

FR
i

(
t′, xRi (t′; ξ, 0) , εr̂i, si

)
dt′

εr̂i (1, τ)− 2ui (1, τ)P
B
i (τ) +

∫ t

τ

FL
i

(
t′, xLi (t′; 1, τ) , εr̂i, si

)
dt′


 .

(2.17)

As before, the mapping defined by the right-hand side is contractive if δi is small
enough. Hence, the solution is uniquely extended into DR

i,δi
. If condition (1.6) is

assumed, we find again from (2.5) that

λLi si (1, t) = λRi ri (1, t)− 2ui (1, t) ai (1, t)Q
B
i (t) .

Since λLi (1, t) < 0, the equation can be uniquely solved for si. Choose ε > 0 suffi-
ciently small such that

ε

∣∣∣∣λRi (1, τ)

λLi (1, τ)

∣∣∣∣ < 1 for τ ∈ [0, ti] ,

and let r̂i = ri/ε. The fixed point equation for (r̂i, si) has the form

(2.18)(
r̂i (x, t)
si (x, t)

)

=




1

ε
rIi (ξ) +

1

ε

∫ t

0

FR
i

(
xRi (t′; ξ, 0) , t′, εr̂i, si

)
dt′

λRi (1, τ)

λLi (1, τ)
εr̂i (1, τ)− 2aiui (1, τ)

λLi (1, τ)
QB
i (τ) +

∫ t

τ

FL
i

(
xLi (t′; 1, τ) , t′, εr̂i, si

)
dt′


 .

Again, the mapping is contractive in a bounded subset of C(DC
i,δi

∪DR
i,δi

,R2) if δi is

sufficiently small. Thus, the solution is uniquely extended to DR
i,δi

.
In the case where the boundary condition (1.7) is assumed, we integrate it with

respect to t to obtain

(Pi − ηiQi) (1, t) =
(
P I
i − ηiQ

I
i

)
(1) +

∫ t

0

(
WB

i (t′)− δiPi (1, t
′) + εiQi (1, t

′)
)
dt′.

Substituting (2.5) into this equation, we can write

mi (t) ri (1, t)− ni (t) si (1, t)

= mi (0) r
I
i (1)− ni (0) s

I
i (1) +

∫ t

0

Hi (t
′, ri (1, t′) , si (1, t′)) dt′,
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where

mi (t) =
ai (1, t)− ηiλ

R
i (1, t)

2aiui (1, t)
, ni (t) =

−ai (1, t) + ηiλ
L
i (1, t)

2aiui (1, t)

and

Hi (t, r, s) = WB
i (t) +

εiλ
R
i (1, t)− δiai (1, t)

2aiui (1, t)
r − εiλ

L
i (1, t)− δiai (1, t)

2aiui (1, t)
s.

Since ai > 0, ui > 0, ηi > 0, and λLi (1, t) < 0, it follows that ni (t) < 0. Hence, there
exists ε > 0 such that

ε

∣∣∣∣mi (τ)

ni (τ)

∣∣∣∣ < 1 for τ ∈ [0, ti] .

Let r̂i = ri/ε. The integral equations for r̂i and si then have the form

r̂i (x, t) =
1

ε
rIi (ξ) +

1

ε

∫ t

0

FR
i

(
xRi (t′; ξ, 0) , t′, εr̂i, si

)
dt′,

si (x, t) = ε
mi (τ)

ni (τ)
r̂i (1, τ)− 1

ni (τ)

(
Mi +

∫ t

0

Hi (t
′, εr̂i (1, t′) , si (1, t′)) dt′

)

+

∫ t

τ

FL
i

(
xLi (t′; 1, τ) , t′, εr̂i, si

)
dt′,

(2.19)

where Mi = mi (0) r
I
i (1)−ni (0) s

I
i (1) is a constant. The extension of the solution to

DR
i,δi

is thus guaranteed.
Finally, if we let δ be the minimum of all δi occurring above, we see that δ > 0,

and the solution exists and is unique in (x, t) ∈ Dδ =: [0, 1] × [0, δ]. Observe that δ
depends only on the bounds of the system functions (e.g., ai), the initial and boundary
functions (e.g., P I

i ), and their first-order derivatives in D = [0, 1] × [0, T ]. Hence, it
is independent of t, and we can extend the solution successively in the time intervals
[0, δ], [δ, 2δ], etc. In this way, the solution is obtained in D in a finite number of
steps.

It can be seen from the above proof that the linear system need not have a solution
if condition (2.3) fails at any end point of a branch. In the quasilinear case, since ai
and bi depend on the unknowns Pi and Qi, this condition may fail at some time.
Therefore the solution does not generally exist for all time.

We next derive an estimate of the deviation of the solution in term of the devi-
ations of the initial, boundary, and forcing functions. This estimate is needed in the
next section. For any vector function v = (v1, . . . , vk) defined in C(X;Rk) we use
|v|C(X) to denote the norm maxi{|vi|C(X)}, where X represents a closed subset of

either R or R
2 and |vi|C(X) is the maximum norm.

Lemma 2.2. Let U = (P,Q) and Ũ = (P̃ , Q̃) be two solutions of the linear
problem (1.9) with different initial, boundary, and forcing functions. Suppose the
conditions of Theorem 2.1 hold for both solutions. Then there exists a constant M > 0,
independent of initial, boundary, and forcing functions, such that∣∣∣U − Ũ

∣∣∣
C(Dδ)

≤ M

(∣∣∣P I − P̃ I
∣∣∣
C[0,1]

+
∣∣∣QI − Q̃I

∣∣∣
C[0,1]

+
∣∣∣PB − P̃B

∣∣∣
C[0,δ]

+
∣∣∣QB − Q̃B

∣∣∣
C[0,δ]

+ δ
∣∣∣f − f̃

∣∣∣
C(Dδ)

+ δ |g − g̃|C(Dδ)
+ δ

∣∣∣W − W̃
∣∣∣
C[0,δ]

)
(2.20)
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Proof. We need prove (2.20) only for a δ ≤ mini {δi}, where δi represents the
constants occurring in the proof of Theorem 2.1. This is because for larger δ we can
divide the interval [0, δ] into subintervals, each having a length less than mini {δi},
and apply (2.20) in each subinterval. We can then take the maximum on each side of
the inequalities to derive the inequality in [0, δ]. In what follows, DC

δ , DL
δ , and DR

δ

are the restrictions of DC
i , DL

i , and DR
i , respectively, to the strip {0 ≤ t ≤ δ}.

By linearity, U − Ũ is the solution of the system with the initial, boundary, and
forcing functions P I

i −P̃ I
i , Q

I
i −Q̃I

i , P
B
i −P̃B

i , QB
i −Q̃B

i , WB
i −W̃B

i , fi−f̃i, and gi−g̃i.
Let ri, r̂i, si, ŝi be defined as in the proof of Theorem 2.1, corresponding to U − Ũ .
We show that these quantities have upper bounds in the form of the right-hand side
of (2.20) in DC

δ , DL
δ , and DR

δ .
In DC

δ , (2.9) and (2.11) hold. Notice that the functions FR
i and FL

i are linear
in ri and si. Hence, there exists a constant M (we will use M generically for any
constant bounds that are independent of solutions) such that

RC
i (t) + SCi (t) ≤ ∣∣rIi ∣∣C[0,1]

+
∣∣sIi ∣∣C[0,1]

+ M

∫ t

0

(
RC
i (t′) + SCi (t′) + TC

i (t′)
)
dt′,

where

RC
i (t) = sup

{x:(x,t)∈DC
δ }

|ri (x, t)| , SCi (t) = sup
{x:(x,t)∈DC

δ }
|si (x, t)| ,(2.21)

and

TC
i (t) = sup

{x:(x,t)∈DC
δ }

(∣∣∣fi (x, t)− f̃i (x, t)
∣∣∣+ |gi (x, t)− g̃i (x, t)|

)
.(2.22)

Hence, by Gronwall’s inequality (see, e.g., [16, p. 327]),

RC
i (t) + SCi (t) ≤ M

(∣∣rIi ∣∣C[0,1]
+
∣∣sIi ∣∣C[0,1]

+ δ sup
t∈(0,δ)

TC
i (t)

)

for t ∈ [0, δ]. This proves that RC
i and SCi have upper bounds in the form of the

right-hand side of (2.20).
In DL

δ , if the left end is a source, we use either (2.13) or (2.14) according to the
type of the boundary condition. The resulting inequality has the form

RL
i (t) + ŜLi (t)

≤ σŜLi (t) + M

(∣∣sIi ∣∣C[0,1]
+
∣∣ξBi ∣∣C[0,δ]

+

∫ t

0

(
RL
i (τ) + ŜLi (τ) + TL

i (τ)
)
dτ

)
,

where ξBi is either PB
i or QB

i , depending on the boundary condition, and RL
i , ŜLi , and

TL
i are defined in the same way as in (2.21)–(2.22), with DC

δ substituted by DL
δ ∪DC

δ ,
and σ > 0 is a positive constant such that σ = ε if the boundary condition is (1.2)
and

σ = ε sup
t∈(0,δ)

∣∣∣∣λLi (0, t)

λRi (0, t)

∣∣∣∣ < 1

if the boundary condition is (1.3). Replacing M by (1− σ)M , we can write

RL
i (t) + ŜLi (t) ≤ M

(∣∣sIi ∣∣C[0,1]
+
∣∣ξBi ∣∣C[0,δ]

+

∫ t

0

(
RL
i (τ) + ŜLi (τ) + TL

i (τ)
)
dτ

)
.
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Hence, by Gronwall’s inequality,

RL
i (t) + ŜLi (t) ≤ M

(∣∣sIi ∣∣C[0,1]
+
∣∣ξBi ∣∣C[0,δ]

+ δ max
t∈(0,δ)

TL
i (t)

)
.

This proves that both RL
i (t) and SLi (t) have upper bounds in the form of the right-

hand side of (2.20).
If the left end is a junction, the solutions on the branches j1, . . . , jµ connecting to

the junction constitute fixed points of the operator K, which is defined in (2.16). Let

W (t) =

ν∑
l=1

(
R̂R
jl

(t) + SRjl (t)
)

+

µ∑
l′=ν+1

(
RL
jl′ (t) + ŜLjl′ (t)

)
,

where R̂R
i and SRi are defined as in (2.21) with DC

δ substituted by DC
δ ∪DR

δ . Then,
from w = Kw, we can deduce

W (t) ≤ σ

(
ν∑
l=1

R̂R
jl

(t) +

µ∑
l′=ν+1

ŜLjl′ (t)

)

+M

(
ν∑
l=1

∣∣rIjl ∣∣C[0,1]
+

µ∑
l′=ν

∣∣∣sIjl′
∣∣∣
C[0,1]

+

∫ t

0

(W (τ) + T (τ)) dτ

)
,

where

T (τ) =

ν∑
l=1

TR
jl

(τ) +

µ∑
l′=ν+1

TL
jl′ (τ)

and TR
i (t) is defined as in (2.22) with DC

δ substituted by DC
δ ∪DR

δ . Replacing M by
(1− σ)M , we obtain

W (t) ≤ M

(
ν∑
l=1

∣∣rIjl ∣∣C[0,1]
+

µ∑
l′=ν

∣∣∣sIjl′
∣∣∣
C[0,1]

+

∫ t

0

(W (τ) + T (τ)) dτ

)
.

Hence, by Gronwall’s inequality,

W (t) ≤ M

(
ν∑
l=1

∣∣rIjl ∣∣C[0,1]
+

µ∑
l′=ν

∣∣∣sIjl′
∣∣∣
C[0,1]

+ δ max
t∈(0,δ)

T (t)

)
.

This leads to an upper bound in the form of the right-hand side of (2.20) for RR
i (t),

SRi (t), i = j1, . . . , jν , and RL
i (t), SLi (t), i = jν+1, . . . , jµ.

The only remaining case is when the right end of the branch is a terminal. The
fixed point equation to be used is either (2.17), (2.18), or (2.19), depending on the
type of the boundary condition. In the former two cases, the treatment is similar to
that for sources. Hence, we consider only the third case. From (2.19), we obtain

R̂R
i (t) + SRi (t)

≤ σR̂R
i (t) + M

(∣∣rIi ∣∣C[0,1]
+

∫ t

0

(
R̂R
i (t′) + SRi (t′) +

∣∣WB
i (t′)

∣∣+ TR
i (t′)

)
dt′
)

,
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where

σ = ε max
t∈[0,δ]

∣∣∣∣mi (t)

ni (t)

∣∣∣∣ < 1.

Hence, by Gronwall’s inequality,

R̂R
i (t) + SRi (t) ≤ M

(∣∣rIi ∣∣C[0,1]
+ δ max

t∈(0,δ)
TR
i (t) + δ max

t∈(0,δ)

∣∣WB
i (t)

∣∣) ,

which gives the desired upper bounds of RR
i and SRi .

We have, thus, obtained an upper bound in the form of the right-hand side of
(2.20) for the quantities |ri − r̃i|C(Dδ)

and |si − si|C(Dδ)
. The conclusion of the lemma

follows now from (2.5).

3. The quasilinear system. In this section, we study the quasilinear system
where the coefficients ai, bi, ci, fi, and gi depend on both (x, t) and (Pi, Qi). Under
certain conditions, we show that the system has a unique local solution. We then
present a theorem on the continuity of dependence of the solution on initial, boundary,
and forcing functions.

The basic idea in the proof of the existence of a solution is to construct an iterative
sequence. Substituting any vector function (pi, qi) for (Pi, Qi) in ai, etc., the system
becomes linear. Thus, we can use Theorem 2.1 to get a solution (Pi, Qi). This defines
a mapping S from u =: (pi, qi) to U =: (Pi, Qi), and the solution for the quasilinear
system is a fixed point of S. If there is a subset of a Banach space that is invariant
under S, then we can construct a sequence

uk+1 = Suk, k = 0, 1, . . . .

In the case where the limit exists and is unique, it gives rise to fixed point of S. This
is our approach in this section.

In this approach, conditions (2.1) and (2.3) are repeatedly used. One might want
to impose them for all the values of the variables. This would give the existence and
uniqueness for the global solution, as in the case of the linear system. However, such
a requirement is so restrictive that even the original system (1.1) cannot meet it.
Therefore, we will impose them only for t = 0, and obtain the local solution for the
quasilinear system.

Theorem 3.1. Assume that the initial and boundary functions P I
i , QI

i , PB
i ,

QB
i , WB

i and the system functions ai, bi, ci, fi, gi all have continuous first-order
derivatives with respect to each variable. Suppose that ai > 0 for all the values of its
arguments, and that conditions (2.1) and (2.3) hold at t = 0. Suppose also that the
initial functions P I

i , Q
I
i satisfy any relevant boundary conditions at t = 0. Then, for

some δ > 0, there is a unique solution for 0 ≤ t < δ to the quasilinear system (1.8)
with the initial and boundary conditions described in section 1.

Proof. We first consider the simpler case where U I =: (P I , QI) = 0. Let v = {vi},
vi = (pi, qi) be a family of vector functions (not necessarily constituting a solution)
that satisfy the initial and boundary conditions. Substitute v for U in the functions ai,
bi, ci, fi, and gi. Then, the system becomes linear, and we can invoke Theorem 2.1 to
obtain a solution U to the linear system. This defines a mapping S : v → U . A solution
of the quasilinear system is then a fixed point of S. We will choose a subset Xδ,M0 of
a Banach space such that (1) SXδ,M0 ⊂ Xδ,M0 and (2) S is contracting in Xδ,M0 . For
any scalar or vector function f ∈ Ck (Dδ), let |f |k,δ denote the maximum norm of all
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the kth-order derivatives of f in Dδ. (If f is a vector function, |f |k,δ = maxi{|fi|k,δ}.)
Let CB(Dδ,R

2n) denote the subset of the vector-valued functions in C(Dδ,R
2n) that

satisfy the initial and boundary conditions. We seek Xδ,M0 in the form

Xδ,M0 =
{
v ∈ CB

(
Dδ,R

2n
)
: |v|0,δ ≤ M0, |v|1,δ ≤ M1

}
,(3.1)

where M0 is an arbitrary positive constant and M1 is a constant to be determined.
Note that, by the vanishing initial condition, for any M1, |U |1,δ ≤ M1 implies |U |0,δ ≤
M1δ. Hence, for any M0, we can ensure |U |0,δ ≤ M0 by reducing δ. It remains,
therefore, only to show that for M1 sufficiently large and δ sufficiently small, |v|1,δ ≤
M1 implies |Sv|1,δ ≤ M1. Throughout this proof, we use M to represent any positive
constant that may depend on M1 but is otherwise independent of v and δ, and use
M̃ for any constant that is independent of M1, v, and δ. The values of M or M̃ in
different occurrences need not be equal.

Let U = Sv, and let ri and si be defined by (2.4). On each branch, we show that

max {|(ri)x| , |(si)x|} ≤ M1(3.2)

and

max {|(ri)t| , |(si)t|} ≤ M1(3.3)

in DC
δ , DL

δ , and DR
δ if M1 is large and δ is small. (Recall that DC

δ , etc., are the
intersections DC

i ∩ Dδ, etc., respectively.) In fact, only (3.2) needs to be shown. To
see this, first observe that the vanishing initial condition and the compatibility of the
initial and boundary conditions gives

max
i

{∣∣PB
i

∣∣
C[0,δ]

,
∣∣QB

i

∣∣
C[0,δ]

}
≤ Mδ.

Hence, we obtain from Lemma 2.2 with Ũ = 0 that

|U |0,δ ≤ Mδ.(3.4)

From (2.6) and (2.8), there are constants M̃ and M such that∣∣∂Ri ri
∣∣ ≤ ∣∣lRi Fi

∣∣+ ∣∣∂Ri lRi
∣∣ |Ui| ≤ M̃ + Mδ,

∣∣∂Li si∣∣ ≤ ∣∣lLi Fi∣∣+ ∣∣∂Li lLi ∣∣ |Ui| ≤ M̃ + Mδ

(3.5)

for each i = 1, . . . , n. Hence, (3.3) follows from (3.2), (3.5), and the definition of ∂Li
and ∂Ri in (2.7). We also note that (2.5) and (3.5) imply∣∣∂Ri Ui

∣∣
0,δ

≤ M̃ + Mδ,
∣∣∂Ri Ui

∣∣
0,δ

≤ M̃ + Mδ(3.6)

for all i. This will be used later.
We first consider the middle region DC

δ , where the solution (ri, si) satisfies the
integral equations (2.9) and (2.11) with rIi = sIi = 0. Differentiating the equations
with respect to x, we have

(ri)x =
(
lRi
)
x
Ui (x, t) +

∫ t

0

[(
lRi Fi

)
x
+
(
∂Ri lRi

)
(Ui)x −

(
lRi
)
x

(
∂Ri Ui

)] (
xRi

)
x
dt,

(si)x =
(
lLi
)
x
Ui (x, t) +

∫ t

0

[(
lLi Fi

)
x
+
(
∂Li l

L
i

)
(Ui)x −

(
lLi
)
x

(
∂Li Ui

)] (
xLi

)
x
dt.

(3.7)
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Here, we used an identity from [10, p. 469]:

d

dξ

∫ b

a

f (x (t) , t)Dg (x (t) , t) dt

= f (x (b) , b) gx (x (b) , b)xξ (b)− f (x (a) , a) gx (x (a) , a)xξ (a)

+

∫ b

a

[fx (x (t) , t)Dg (x (t) , t)−Df (x (t) , t) gx (x (t) , t)]xξ (t) dt,(3.8)

where x (t) is a function such that x (b) = ξ and D = ∂
∂t +x′ (t) ∂

∂x . (Here and below,
x′ (t) = dx/dt.) Let

RC
i (t) = sup

{x:(x,t)∈DC
δ }

{|(ri)x (x, t)|} , SCi (t) = sup
{x:(x,t)∈DC

δ }
{|(si)x (x, t)|} .(3.9)

From (3.4), (3.6), and (3.7), we derive

RC
i (t) + SCi (t) ≤ Mδ + M

∫ t

0

(
1 + RC

i (t′) + SCi (t′)
)
dt′

for t ∈ [0, δ]. Hence, Gronwall’s inequality gives

|(ri)x| ≤ MδeMδ, |(si)x| ≤ MδeMδ

in DC
δ . This proves (3.2) in DC

δ if M1 is sufficiently large and δ is sufficiently small.
We next consider the left triangular region DL

δ in the case where the branch is
connected to a source. Let ŝi = si/ε for any ε > 0. Then, the pair (ri, ŝi) satisfies the
fixed point equations of either (2.13) or (2.14), depending on the type of the boundary
condition. Differentiating the equations with respect to x and using a slightly modified
version of (3.8), we have

(ri)x =
(
ζi − lRi Fi −

(
∂Ri lRi

)
Ui
)
(0, τ) τx +

(
lRi
)
x
Ui (x, t)−

(
lRi
)
x
Ui

(
xRi

)
x
(0, τ)

+

∫ t

τ

[(
lRi Fi

)
x
+
(
∂Ri lRi

)
(Ui)x −

(
lRi
)
x

(
∂Ri Ui

)] (
xRi

)
x
dt,

(ŝi)x =
1

ε

(
lLi
)
x
Ui (t, x) +

1

ε

∫ t

0

[(
lLi Fi

)
x
+
(
∂Li l

L
i

)
(Ui)x −

(
lLi
)
x

(
∂Li Ui

)] (
xLi

)
x
dt,

(3.10)

where

ζi = 2
(
uiP

B
i

)
t
+ ε (ŝi)t

if the boundary condition is given by (1.2), and

ζi = 2

(
aiui
λRi

QB
i

)
t

+ ε

(
λLi
λRi

)
t

ŝi + ε

(
λLi
λRi

)
(ŝi)t

if the boundary condition is given by (1.3). (Modification of (3.8) is caused by the
lower limit of the integral in the first equation of (3.10), which also depends on x.)
This equation is valid for any ε. Thus, we may choose ε so small that

σ =: ε
∣∣λLi τx (0, t)

∣∣max

{
1,

∣∣∣∣
(

λLi (0, t)

λRi (0, t)

)∣∣∣∣
}

< 1, t ∈ [0, δ] .
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To proceed further, we need an estimate of |τx (0, t)|. Observe that τ (x) satisfies the
equation

xRi (τ ;x, t) = 0,

where xRi (τ ;x, t) is the solution of the initial value problem

dxRi
ds

= λRi
(
xRi , s

)
, xRi (t;x, t) = x.

By differentiation,

λRi (0, τ (x)) τx +
∂xRi
∂x

∣∣∣∣
(τ(x);x,t)

= 0.(3.11)

Let wi = ∂xRi /∂x. Then wi is the solution of the linear equation

dwi

ds
=
(
λRi

)
x

(
xRi (s;x, t) , s

)
wi, wi (t) = 1.

Solving the equation,

wi (s) = exp

(∫ s

t

(
λRi

)
x

(
xRi (s′;x, t) , s′

)
ds′

)
.

Returning to (3.11), we find

τx =
−1

λRi (0, τ (x))
exp

(∫ τ(x)

t

(
λRi

)
x

(
xRi (s′;x, t) , s′

)
ds′

)
.

Observe that 0 < τ (x) < t ≤ δ and the integrand is bounded. Hence,

|τx| ≤ M̃eMδ.(3.12)

This is the estimate we need. By this estimate, for any M1, we can choose δ small
enough such that the constants σ and ε are independent of M1. Let RL

i (t) and ŜLi (t)
be defined as in (3.9) except that si is substituted by ŝi and DC

δ is substituted by
DL
δ ∪DC

δ . We derive from (3.10) and the identity

(ŝi)t = ∂Li ŝi − λLi (ŝi)x

that

RL
i (t) + ŜLi (t) ≤ σŜLi (t) + M̃ + Mδ + M

∫ t

0

(
1 + RL

i (t′) + ŜLi (t′)
)
dt′.

Replacing M and M̃ by M (1− σ) and M̃ (1− σ), respectively, and applying Gron-
wall’s inequality, we obtain

RL
i (t) + ŜLi (t) ≤

(
M̃ + Mδ

)
eMδ.

Since |si| ≤ |ŝi|, it follows that

max {|(ri)x| , |(si)x|} ≤
(
M̃ + Mδ

)
eMδ

in DL
δ ∪DC

δ . This proves (3.2) in DL
δ ∪DC

δ if M1 is large and δ is small.
We next consider the case where the left end of the branch is a junction. As

before, we shall simultaneously consider the branches that are connected to the same
junction.This also includes the right triangular regions DR

δ for the branches that are
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connected to the junction from the left. We consider the fixed point equation w = Kw,
where w and Kw are defined in (2.15) and (2.16), respectively. Differentiating the
equations, we obtain (3.10) in DL

δ ∪DC
δ for i = jν+1, . . . , jµ and

(r̂i)x =
1

ε

(
lRi
)
x
Ui (t, x) +

1

ε

∫ t

0

[(
lRi Fi

)
x
+
(
∂Ri lRi

)
(Ui)x −

(
lRi
)
x

(
∂Ri Ui

)] (
xRi

)
x
dt,

(si)x =
(
θi − lLi Fi −

(
∂Li l

L
i

)
Ui
)
(1, τ) τx +

(
lLi
)
x
Ui (x, t)−

(
lLi
)
x
Ui

(
xLi

)
x
(1, τ)

+

∫ t

τ

[(
lLi Fi

)
x
+
(
∂Li l

L
i

)
(Ui)x −

(
lLi
)
x

(
∂Li Ui

)] (
xLi

)
x
dt

(3.13)

in DC
δ ∪DR

δ for i = j1, . . . , jν , where

ζi = ε

ν∑
l=1

((
nijl

)
t
r̂jl (1, τ) + nijl (r̂jl)t

)

+ ε

µ∑
l′=ν+1

((
nijl′

)
t
ŝjl′ (0, τ) + nijl′

(
ŝjl′

)
t
(0, τ)

)
,

θi = ε

ν∑
l=1

((
mi
jl

)
t
r̂jl (1, τ) + mi

jl
(r̂jl)t

)

+ ε

µ∑
l′=ν+1

((
mi
jl′

)
t
ŝjl′ (0, τ) + mi

jl′

(
ŝjl′

)
t
(0, τ)

)
,

and mi
j , nij are defined in the proof of Theorem 2.1. Note that the estimate (3.12)

holds for τx in both (3.10) and (3.13), although in the latter case, τ is the t-coordinate
of the intersection of the left-going characteristic curve xLi with the vertical line x = 1.
The derivation is identical. Hence, there is a constant ε, independent of M1, such that
for t ∈ [0, δ],

ε |τx|
(

ν∑
k=1

∣∣mi
jk

(t)
∣∣+ µ∑

k′=ν+1

∣∣∣mi
jk′ (t)

∣∣∣
)

< 1,

ε |τx|
(

ν∑
k=1

∣∣nijk (t)
∣∣+ µ∑

k′=ν+1

∣∣∣nijk′ (t)
∣∣∣
)

< 1.

Let σ be the maximum of the quantities on the left-hand side of the above inequalities.
Define R̂R

i , SRi , RL
i , and ŜLi as in (3.9), with obvious modifications. We see that the

function

W (t) =

ν∑
l=1

(
R̂R
jl

(t) + SRjl (t)
)

+

µ∑
l′=ν+1

(
RL
jl′ (t) + ŜLjl′ (t)

)

satisfies the inequality

(1− σ)W (t) ≤
ν∑
l=1

(
(1− σ) R̂R

jl
(t) + SRjl (t)

)
+

µ∑
l′=ν+1

(
RL
jl′ (t) + (1− σ) ŜLjl′ (t)

)

≤ M̃ + Mδ + M

∫ t

0

(1 + W (t′)) dt′.
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Hence, by rescaling and using Gronwall’s inequality, we achieve

W (t) ≤
(
M̃ + Mδ

)
eMδ.

This proves that

max {|(ri)x| , |(si)x|} ≤ M1

in DR
δ for i = j1, . . . , jν and in DL

δ for i = jν+1, . . . , jµ if M1 is sufficiently large and
δ is sufficiently small. Thus, we have proved (3.2) in this case.

It remains to treat the branches that are connected to terminals. If the terminal
boundary condition is either (1.5) or (1.6), the argument is parallel to the one given
above for sources. Hence, we consider only the case where the boundary condition
is (1.7). The fixed point equation in this case is (2.19). Differentiating (2.19) with
respect to x gives (3.13) with

ζi = ε

(
mi

ni

)
t

τxr̂i (1, τ) + ε
mi

ni
τx (r̂i)t (1, τ)−

(
1

ni

)
t

∫ t

0

Hi (t
′, ri (1, t′) , si (1, t′)) dt′.

Let δ be sufficiently small such that |τx| is bounded by a constant independent of M1.
Choose ε > 0 such that

σ =: ε
∣∣λRi (1, t)

∣∣ ∣∣∣∣mi

ni
τx (1, t)

∣∣∣∣ < 1

for t ∈ [0, δ]. Note that (mi

ni
)t and ( 1

ni
)t are bounded (by a constant depending on

M1). Hence,

R̂R
i (t) + SRi (t) ≤ σR̂R

i (t) + M̃ + Mδ + M

∫ t

0

(
1 + R̂R

i (t′) + SRi (t′)
)
dt′.

This leads to

R̂R
i (t) + SRi (t) ≤

(
M̃ + Mδ

)
eMδ

in DR
δ upon rescaling of constants. Hence, (3.2) holds in DR

δ .
This completes the proof of (3.2) for all cases. By choosing appropriate values of

M1 and δ, we thus obtain a set Xδ,M0 in the form of (3.1), which is invariant under
the mapping S.

We now show that S is a contraction in Xδ,M0 . Let U = Sv, Ũ = Sṽ for some

v, ṽ ∈ Xδ, and let W = U−Ũ . W satisfies the vanishing initial and external boundary
conditions, and its differential equations take the form of (1.8) with the coefficients

ai = ai (x, t, v) , bi = bi (x, t, v) , ci = ci (x, t, v)

and the forcing functions fi and gi replaced by

f̂i =: fi (x, t, v)− fi (x, t, ṽ) + (ai (x, t, v)− ai (x, t, ṽ))
∂Q̃i

∂x
(3.14)

and

ĝi =: gi (x, t, v)− gi (x, t, ṽ) + (bi (x, t, v)− bi (x, t, ṽ))
∂P̃i
∂x

(3.15)

+ 2 (ci (x, t, v)− ci (x, t, ṽ))
∂Q̃i

∂x
,
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respectively. By the Lipschitz property and the boundedness |Ũ |1,δ ≤ M1, there is a
constant M such that

|f̂ |0,δ ≤ M |v − ṽ|0,δ , |ĝ|0,δ ≤ M |v − ṽ|0,δ .
Hence, by Theorem 2.2,

|Sv − Sṽ|0,δ ≤ Mδ |v − ṽ|0,δ .
Therefore, S is contracting in Xδ,M0 if δ is sufficiently small.

The rest is standard (cf., e.g., [10]). Starting with a v0 ∈ Xδ,M0
, we generate

an iterative sequence vk+1 = Svk. Clearly, each vk lies in Xδ,M0
, and the sequence

converges uniformly. The limit then satisfies the integral equations in the proof of
Theorem 2.1 and, hence, is differentiable. Therefore, it is the solution of the quasi-
linear differential equations. This proves the existence and uniqueness of the solution
when U I = 0.

If U I �= 0, we regard U I as a vector function of x and t and introduce Ũ = U−U I .
It follows that Ũ is a solution of the quasi-linear equations (1.8), with the forcing
functions f̃i and g̃i given by

f̃i = fi −
(
QI
i

)
x
ai, g̃i = gi −

(
P I
i

)
x
bi −

(
QI
i

)
x
2ci

and the boundary functions given by

P̃B
i = PB

i − P I
i , Q̃B

i = QB
i −QI

i , W̃B
i = WB

i − δiP
I
i + εiQ

I
i .

Since Ũ has vanishing initial values, it can be uniquely solved for an interval of
t ∈ [0, δ]. This gives rise to a solution U .

Remark. Examples can be constructed to show that if the condition (2.3) fails
at t = 0, then the local solution need not exist or may be not unique. In particular,
if (2.3) fails at a source end, then the system is underdetermined, and if it fails at a
terminal end, the system is overdetermined. See section 5 for further discussion.

We next give a result for the continuity of dependence of the solution and its
derivatives on the initial, boundary, and forcing functions and their derivatives. This
follows from an argument similar to the proofs of Lemma 2.2 and Theorem 3.1.

Corollary 3.2. Let U = (P,Q) and Ũ = (P̃ , Q̃) be two solutions of the quasi-
linear problem of Theorem 3.1. Suppose the conditions of that theorem hold for the
initial and boundary functions of both solutions. Then there exists a constant M > 0,
independent of initial, boundary, and forcing functions, such that∣∣∣U − Ũ

∣∣∣
k,δ

≤ M

(∣∣∣P I − P̃ I
∣∣∣
Ck[0,1]

+
∣∣∣QI − Q̃I

∣∣∣
Ck[0,1]

+
∣∣∣PB − P̃B

∣∣∣
Ck[0,δ]

+
∣∣∣QB − Q̃B

∣∣∣
Ck[0,δ]

+ δ
∣∣∣f − f̃

∣∣∣
Ck(Dδ)

+ δ |g − g̃|Ck(Dδ) + δ
∣∣∣W − W̃

∣∣∣
Ck[0,δ]

)
(3.16)

for k = 0, 1.
Proof. For k = 0, the result follows from substituting one of the solutions into the

coefficients, modifying the forcing functions by (3.14)–(3.15), and using Lemma 2.2.
For k = 1, we differentiate the equations and apply the lemma to the resulting equa-
tions for the derivatives of the solution. The process is standard and is omitted.
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4. A finite-difference scheme. In this section, we present a finite-difference
scheme that computes discretized solutions and also prove the convergence of the
scheme.

The scheme is based on the equations in (2.6). Substituting (2.4) and (2.8) into
(2.6), we obtain the normal form of the equations

−λLi Pi,t + aiQi,t + λRi
(−λLi Pi,x + aiQi,x

)
= dRi ,

−λRi Pi,t + aiQi,t + λLi
(−λRi Pi,x + aiQi,x

)
= dLi ,

where

dRi (x, t, Pi, Qi) = −λLi fi + aigi, dLi (x, t, Pi, Qi) = −λRi fi + aigi.

Let h and k be the spatial and temporal step sizes, respectively. Hence, hN = 1 for
some integer N . We impose the finite-difference equations as

1

k

[
−λL,mi,n

(
pm+1
i,n − pmi,n

)
+ ami,n

(
qm+1
i,n − qmi,n

)]
+

λR,m
i,n

h

[
−λL,mi,n

(
pmi,n − pmi,n−1

)
+ ami,n

(
qmi,n − qmi,n−1

)]
= dR,mi,n

(4.1)

for n = 1, . . . , N and

1

k

[
−λR,mi,n

(
pm+1
i,n − pmi,n

)
+ ami,n

(
qm+1
i,n − qmi,n

)]
+

λL,m
i,n

h

[
−λL,mi,n

(
pmi,n+1 − pmi,n

)
+ ami,n

(
qmi,n+1 − qmi,n

)]
= dL,mi,n

(4.2)

for n = 0, . . . , N − 1, where ami,n, etc., are the values of the respective functions ai,

etc., at the point
(
nh,mk, pmi,n, q

m
i,n

)
. (In this section, n is always the running index

for the spatial variable, not the number of branches.) The initial condition is simply

p0
i,n = P I

i (nh) , q0
i,n = QI

i (nh) .(4.3)

If for a fixed m the quantities pmi,n and qmi,n are constructed for n = 0, . . . , N , then (4.1)

and (4.2) determine pm+1
i,n and qm+1

i,n for n = 1, . . . , N − 1. The quantities for n = 0
and N are determined by boundary conditions. At a source end, if the boundary
condition is given by (1.2), we impose

pm+1
i,0 = PB

i ((m + 1) k)(4.4)

and solve qm+1
i,0 from (4.2) with n = 0. If the boundary condition is (1.3), we impose

qm+1
i,0 = QB

i ((m + 1) k)(4.5)

and solve pm+1
i,0 from (4.2). At a junction with j1, . . . , jν incoming branches and

jν+1, . . . , jµ outgoing branches, we prescribe

pm+1
j1,N

= pm+1
jl′ ,0

=: pm+1(4.6)

for l = 1, . . . , ν, l′ = ν + 1, . . . , µ, and

ν∑
l=1

qm+1
jl,N

=

µ∑
l′=ν+1

qm+1
jl′ ,0

.(4.7)
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These equations are solved jointly with (4.1) at n = N for i = j1, . . . , jν , and with (4.2)
at n = 0 for i = jν+1, . . . , jµ. The reason that the quantities pm+1, qm+1

jl,N
, and qm+1

jl′ ,0
can be uniquely solved is that the coefficient matrix


0 R1 R2

− 1
kS1

1
kA1 0

− 1
kS2 0 1

kA2




with

R1 = (1, . . . , 1) , R2 = (−1, . . . ,−1) ,

S1 =
(
λL,mj1,N

, . . . , λL,mjν ,N

)T
, S2 =

(
λR,mj1,0

, . . . , λR,mjν ,0

)T
,

A1 = diag
(
amj1,N , . . . , amjν ,N

)
, A2 = diag

(
amjν+1,0, . . . , a

m
jµ,0

)
has the determinant

1

kµ

(
−

ν∑
l=1

λL,mjl,N

amjl,N
+

µ∑
l′=ν+1

λR,mjl′ ,0

amjl′ ,0

)
ν∏
l=1

amjl,N

µ∏
l′=ν+1

amjl′ ,0 > 0.

(Here we used the fact λLi < 0, λRi > 0, and ai > 0.) At a terminal end with the
boundary condition (1.5) (resp., (1.6)), we impose

pm+1
i,N = PB

i ((m + 1) k)
(
resp., qm+1

i,N = QB
i ((m + 1) k)

)
(4.8)

and solve the other quantity from (4.1) with n = N . If the boundary condition is
(1.7), we impose

1

k

(
pm+1
i,N − pmi,N

)
− ηi

k

(
qm+1
i,N − qmi,N

)
+

δi
2

(
pm+1
i,N + pmi,N

)

− εi
2

(
qm+1
i,N + qmi,N

)
= WB

i

((
m +

1

2

)
k

)
.

(4.9)

Together with (4.1) for n = N , the values of pm+1
i,N and qm+1

i,N are uniquely determined.
This is because the coefficient matrix has the determinant

det

(
−λL,m

i,N

k

am
i,N

k
1
k + δi

2 −ηi
k − εi

2

)
< 0.

(One might suspect that the simpler condition

1

k

(
pm+1
i,N − pmi,N

)
− ηi

k

(
qm+1
i,N − qmi,N

)
+ δip

m
i,N − εiq

m
i,N = WB

i (mk)(4.10)

would also suffice. It indeed can determine unique values of pm+1
i,N and qm+1

i,N . However,
we are unable to prove the convergence of the scheme with this condition. The
difficulty will be clear from the proof of the next theorem.)

It is clear that for any step sizes h and k this scheme generates a discretized
solution as long as λLi remains negative at x = 0 and x = 1. We show that if the
ratio k/h is fixed and sufficiently small, then in a time interval the solutions for the
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finite-difference equations converge to the solution of the original system of differential
equations (1.8) as h → 0.

Theorem 4.1. Suppose that the conditions of Theorem 3.1 hold and that

ai (x, t, p, q) > 0, λLi (x, t, p, q) < 0

for all (x, t) ∈ [0, 1] × [0, δ] and (p, q) ∈ R
2, where δ > 0 appears in Theorem 3.1.

Suppose also that the initial and boundary functions P I
i , Q

I
i , P

B
i , Q

B
i , and WB

i have
continuous second derivatives. Let σ > 0 be a positive constant such that

σmax
{∣∣λLi ∣∣0,δ , ∣∣λRi ∣∣0,δ

}
< 1,(4.11)

and let the ratio k/h = σ be fixed. Then there is a constant δ0 > 0 such that, as
h → 0, the solutions of the finite-difference scheme described above converge to the
solution of the differential equation (1.8) in the strip 0 ≤ t ≤ δ0.

Remark. The condition of ai > 0, λLi < 0 for all (p, q) is stronger than needed.
One may require only that the inequalities hold in a certain range of (p, q) containing
the solution (Pi, Qi) in its interior. The theorem is stated as above to simplify the
argument.

Proof. By Theorem 3.1, the system of differential equations has a solution (Pi, Qi)
in Dδ for some δ > 0. Since the initial and boundary functions have continuous second
derivatives, it can be shown using standard arguments that the solution (Pi, Qi) has
continuous second-order derivatives in Dδ. (Reduce δ if necessary.) By Taylor’s
theorem and k = σh, we can write

1

k

[
−λ̃L,mi,n

(
Pm+1
i,n − Pm

i,n

)
+ ãmi,n

(
Qm+1
i,n −Qm

i,n

)]

+
λ̃R,mi,n

h

[
−λ̃L,mi,n

(
Pm
i,n − Pm

i,n−1

)
+ ãmi,n

(
Qm
i,n −Qm

i,n−1

)]
= d̃R,mi,n + O (h)

(4.12)

for n = 1, . . . , N , and

1

k

[
−λ̃R,mi,n

(
Pm+1
i,n − Pm

i,n

)
+ ãmi,n

(
Qm+1
i,n −Qm

i,n

)]

+
λ̃L,mi,n

h

[
−λ̃R,mi,n

(
Pm
i,n − Pm

i,n−1

)
+ ãmi,n

(
Qm
i,n −Qm

i,n−1

)]
= d̃L,mi,n + O (h)

(4.13)

for n = 0, . . . , N − 1, where Pm
i,n and Qm

i,n are the values of the corresponding func-

tions at the point (nh,mk), and λ̃L,mi,n , etc., represent the values of the corresponding

functions at the point
(
nh,mk, Pm

i,n, Q
m
i,n

)
. Let

umi,n = Pm
i,n − pmi,n, vmi,n = Qm

i,n − qmi,n.

Our task is to show

umi,n → 0, vmi,n → 0

as h → 0 and k = σh. We prove it by showing that there are positive constants δ0,
h0, and M , independent of m, such that∣∣umi,n∣∣ ≤ Mh,

∣∣vmi,n∣∣ ≤ Mh(4.14)
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if h ≤ h0, k = σh, and 0 ≤ mk ≤ δ0.
We first derive some recursive relations. Subtract (4.1) and (4.2) from (4.12)

and (4.13), respectively, and use the Lipschitz property and the boundedness of the
derivatives of Pi and Qi. In this way we obtain

1

k

[
−λL,mi,n

(
um+1
i,n − umi,n

)
+ ami,n

(
vm+1
i,n − vmi,n

)]

+
λR,mi,n

h

[
−λL,mi,n

(
umi,n − umi,n−1

)
+ ami,n

(
vmi,n − vmi,n−1

)]

= O (h) + d̃R,mi,n − dR,mi,n +
(
λ̃L,mi,n − λL,mi,n

) Pm+1
i,n − Pm

i,n

k
(4.15)

− (
ãmi,n − ami,n

) Qm+1
i,n −Qm

i,n

k
+
(
λ̃R,mi,n λ̃L,mi,n − λR,mi,n λL,mi,n

) Pm
i,n − Pm

i,n−1

h

−
(
λ̃R,mi,n ãmi,n − λR,mi,n ami,n

) Qm
i,n −Qm

i,n−1

h

= O (h) + O
(
umi,n

)
+ O

(
vmi,n

)
and, similarly,

1

k

[
−λR,mi,n

(
um+1
i,n − umi,n

)
+ ami,n

(
vm+1
i,n − vmi,n

)]

+
λL,mi,n

h

[
−λR,mi,n

(
umi,n+1 − umi,n

)
+ ami,n

(
vmi,n+1 − vmi,n

)]
(4.16)

= O (h) + O
(
umi,n

)
+ O

(
vmi,n

)
.

Introduce

rmi,n = −λL,m−1
i,n umi,n + am−1

i,n vmi,n, smi,n = −λR,m−1
i,n umi,n + am−1

i,n vmi,n.

One can show that (4.14) is equivalent to∣∣rmi,n∣∣ ≤ Mh,
∣∣smi,n∣∣ ≤ Mh.(4.17)

(Throughout the proof of this theorem, we use M to denote any positive constant
that is independent of m.) Using the identity

−λL,mi,n umi,l + ami,nv
m
i,l = rmi,l +

(
λL,m−1
i,l − λL,mi,n

)
umi,l +

(
am−1
i,l − ami,n

)
vmi,l,

together with

λL,m−1
i,l − λL,mi,n = O (k) + O

(
pm−1
i,l − pmi,n

)
+ O

(
qm−1
i,l − qmi,n

)
,

am−1
i,l − ami,n = O (k) + O

(
pm−1
i,l − pmi,n

)
+ O

(
qm−1
i,l − qmi,n

)
,

and

pm−1
i,l − pmi,n = −um−1

i,l + umi,n +
(
Pm−1
i,l − Pm

i,n

)
,

qm−1
i,l − qmi,n = −vm−1

i,l + vmi,n +
(
Qm−1
i,l −Qm

i,n

)
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for l = n− 1, n, n + 1, we can write

−λL,mi,n umi,l + ami,nv
m
i,l = rmi,l + umi,lO (k) + vmi,lO (k) + umi,lO

(
um−1
i,l , umi,n, v

m−1
i,l , vmi,n

)
+ vmi,lO

(
um−1
i,l , umi,n, v

m−1
i,l , vmi,n

)
,

−λR,mi,n umi,l + ami,nv
m
i,l = smi,l + umi,lO (k) + vmi,lO (k) + umi,lO

(
um−1
i,l , umi,n, v

m−1
i,l , vmi,n

)
+ vmi,lO

(
um−1
i,l , umi,n, v

m−1
i,l , vmi,n

)
,

where

O(um−1
i,l , umi,n, v

m−1
i,l , vmi,n) = O(um−1

i,l ) + O(umi,n) + O(vm−1
i,l ) + O(vmi,l).

Substituting these relations into (4.15) and (4.16), we obtain

rm+1
i,n = rmi,n − σλR,mi,n

(
rmi,n − rmi,n−1

)
+ Om

i,n,n−1, n = 1, . . . , N,

sm+1
i,n = smi,n − σλL,mi,n

(
smi,n+1 − smi,n

)
+ Om

i,n,n+1, n = 0, . . . , N − 1,

(4.18)

for m ≥ 1, where

Om
i,n,n−1 = O

(
h2
)
+ h

(
O
(
umi,n

)
+ O

(
vmi,n

))
+ umi,n−1O (h) + vmi,n−1O (h)

+umi,n−1O
(
um−1
i,n−1, u

m
i,n, v

m−1
i,n−1, v

m
i,n

)
+ vmi,n−1O

(
um−1
i,n−1, u

m
i,n, v

m−1
i,n−1, v

m
i,n

)
and Om

i,n,n+1 is defined similarly, with n − 1 substituted by n + 1. These are the
recursive relations we need.

We now prove (4.17). Assume δ0 < σ/2; then, mk ≤ δ0 implies m < N −m. The
proof will be divided into three cases: (1) m ≤ n ≤ N − m, (2) 0 ≤ n < m, and (3)
N − m < n ≤ N . It may be helpful to compare the argument below with the proof
of Theorem 2.1, in which the region Di is divided into DC

i , DL
i , and DR

i .
Case 1: m ≤ n ≤ N −m. Let

em = max
m≤n≤N−m

{∣∣rmi,n∣∣ , ∣∣smi,n∣∣} .

In view of (4.11), the coefficients of rmi,n, rmi,n−1, smi,n, and smi,n+1 in (4.18) are all
nonnegative. Hence, from (4.18),

em+1 ≤ em + C
(
h2 + hem + emem−1 + e2

m

)
, m ≥ 1,(4.19)

where C > 0 is a constant. By initial condition (4.3),

u0
i,n = v0

i,n = 0.

Thus, e0 = 0. Also, by (4.18) with m = 0,

r1
i,n = O(h2) for n = 1, . . . , N,

s1
i,n = O(h2) for n = 0, . . . , N − 1.

(4.20)

This implies e1 = O(h2). Consider the linear difference equation with initial condition

Em+1 = (1 + 3Ch)Em + Ch2, m ≥ 1, E1 = C0h
2,
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where C0 is so large that e1 ≤ C0h
2. It has the solution

Em+1 = C0h
2 (1 + 3Ch)

m
+

h

3
((1 + 3Ch)

m − 1)

≤ h

(
C0he

3Chm +
1

3
e3Chm − 1

)
.

Let δ0 be so small that e3Cδ0/σ < 4. Then there is an h0 > 0 such that Em ≤ h for
all h ≤ h0 and mk ≤ δ0. This implies that

Em+1 ≥ Em + C
(
h2 + hEm + EmEm−1 + E2

m

)
, E1 ≥ e1.

Hence,

em ≤ Em ≤ h,

which leads to (4.17) with M = 1 in Case 1.
Case 2: 0 ≤ n < m. The proof in this case depends on the type of boundary

condition at the left end of the branch. Suppose that the end is a source with the
boundary condition (4.4). Let

em = max
0≤n≤N−m

{∣∣rmi,n∣∣ , ∣∣smi,n∣∣} .

(As was the case in the proof of Theorem 2.1, it is more convenient to include the
central trapezoidal part m ≤ n ≤ N −m.) Hence, from (4.18),∣∣rm+1

i,n

∣∣ ≤ |em|+ C
(
h2 + hem + emem−1 + e2

m

)
for n = 1, . . . , N −m,

∣∣sm+1
i,n

∣∣ ≤ |em|+ C
(
h2 + hem + emem−1 + e2

m

)
for n = 0, . . . , N −m.

(4.21)

Since, by (4.4), umi,0 = 0, it follows that rmi,0 = smi,0 for all m. Therefore, em satisfies

the same difference inequality (4.19). We also have e1 = O(h2) by (4.20). Thus, the
above analysis gives em ≤ h.

Suppose that the boundary condition is given by (4.5); then vmi,0 = 0 and

rmi,0 =
λL,m−1
i,0

λR,m−1
i,0

smi,0

for all m ≥ 1. Let r̂mi,n = rmi,n/M , where M is sufficiently large such that

M > max
m

{∣∣∣∣∣λ
L,m
i,0

λR,mi,0

∣∣∣∣∣
}

.

Then (4.18) still holds, with r substituted by r̂. Let

em = max
0≤n≤N−m

{∣∣r̂mi,n∣∣ , ∣∣smi,n∣∣} .

We again have (4.21) and∣∣r̂m+1
i,0

∣∣ ≤ ∣∣sm+1
i,0

∣∣ ≤ |em|+ C
(
h2 + hem + emem−1 + e2

m

)
.
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Hence, em satisfies (4.19) again. Therefore,∣∣rmi,n∣∣ ≤ Mh,
∣∣smi,n∣∣ ≤ h.

Suppose that the left end is a junction. We shall simultaneously treat all the
branches connected to the same junction. Let j1, . . . , jν be the incoming branches
and jν+1, . . . , jµ the outgoing branches. It is easy to see that the boundary conditions
(4.6)–(4.7) are satisfied if p and q are substituted by u and v, respectively. Using the
identities

um+1
i,n =

rm+1
i,n − sm+1

i,n

λmi,n
, vm+1

i,n =
λR,mi,n rm+1

i,n − λL,mi,n sm+1
i,n

ami,nλ
m
i,n

,(4.22)

where

λmi,n = λR,mi,n − λL,mi,n > 0,

the equations for r and s have the form

1

λmj1,N

(
rm+1
j1,N

− sm+1
j1,N

)
− 1

λmi,N

(
rm+1
i,N − sm+1

i,N

)
= 0, i = j2, . . . , jν ,

1

λmj1,N

(
rm+1
j1,N

− sm+1
j1,N

)
− 1

λmi,0

(
rm+1
i,0 − sm+1

i,0

)
= 0, i = jν+1, . . . , jµ,

ν∑
l=1

1

amjl,Nλmjl,N

(
λR,mjl,N

rm+1
jl,N

− λL,mjl,N
sm+1
jl,N

)

−
µ∑

l′=ν+1

1

amjl′ ,0λ
m
jl′ ,0

(
λR,mjl′ ,0

rm+1
jl′ ,0

− λL,mjl′ ,0
sm+1
jl′ ,0

)
= 0.

The system can be solved for sm+1
j1,N

, . . . , sm+1
jν ,N

, rm+1
jν+1,0

, . . . , rm+1
jµ,0

because the coefficient
matrix 



− 1
λm
j1,N

1
λm
j2,N

· · · 0

...
...

. . .
...

− 1
λm
j1,N

0 · · · − 1
λm
jµ,0

− λL,m
j1,N

λm
j1,Na

m
j1,N

− λL,m
j2,N

λm
j2,Na

m
j2,N

· · · − λR,m
jµ,0

λm
jµ,0a

m
jµ,0




has the determinant

(−1)
ν+1∏ν

l=1 λmjl,N
∏µ

l′=ν+1 λmjl′ ,0

(
−

ν∑
l=1

λL,mjl,N

amjl,N
+

µ∑
l′=ν+1

λR,mjl′ ,0

amjl′ ,N

)
�= 0.

(Here we used λmi,n > 0, ami,n > 0, λR,mi,n > 0, and λL,mi,n < 0.) Let the solution be
written as

sm+1
i,N =

ν∑
l=1

mi
jl
rm+1
ji,N

+

µ∑
l′=ν+1

mi
jl′ s

m+1
jl′ ,0

, i = j1, . . . , jν ,

rm+1
i,0 =

ν∑
l=1

nijlr
m+1
ji,N

+

µ∑
l′=ν+1

nijl′ s
m+1
jl′ ,0

, i = jν+1, . . . , jµ.

(4.23)
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Choose a constant M such that

M > max
i=j1,...,jµ

{
µ∑
l=1

∣∣mi
jl

∣∣ , µ∑
l=1

∣∣nijl ∣∣
}

,

and introduce

ŝmjl,n = smjl,n/M, r̂mjl′ ,n = rmjl′ ,n/M

for l = 1, . . . , ν, l′ = ν + 1, . . . , µ. Equations in (4.18) still hold if ŝmjl,n and r̂mjl′ ,n
are substituted for smjl,n and rmjl′ ,n, respectively. Let em denote the maximum of the
quantities

max
m≤n≤N
1≤l≤ν

{∣∣rmjl,n∣∣ , ∣∣ŝmjl,n∣∣} , max
0≤n≤N−m
ν+1≤l′≤µ

{∣∣∣r̂mjl′ ,n
∣∣∣ , ∣∣∣smjl′ ,n

∣∣∣} .

(Notice again the inclusion of the middle part m ≤ n ≤ N −m.) Since the coefficients
of r and s are all positive, it is easy to see that∣∣rm+1

jl,n

∣∣ ≤ em + C
(
h2 + hem + emem−1 + e2

m

)
for l = 1, . . . , ν, n = m, . . . , N and∣∣∣sm+1

jl′ ,n

∣∣∣ ≤ em + C
(
h2 + hem + emem−1 + e2

m

)
for l = ν + 1, . . . , µ, n = 0, . . . ,m. Similar inequalities can be derived for |ŝm+1

jl,n
|,

l = 1, . . . , ν, n = m, . . . , N − 1, and for |r̂m+1
jl′ ,n

|, l′ = ν + 1, . . . , µ, n = 1, . . . ,m.

Furthermore, by (4.23),

∣∣∣ŝm+1
jl,N

∣∣∣ = 1

M

∣∣∣∣∣
ν∑
l=1

mi
jl
rm+1
ji,N

+

µ∑
l′=ν+1

mi
jl′ s

m+1
jl′ ,0

∣∣∣∣∣ ≤ max
1≤l≤ν

ν+1≤l′≤µ

{∣∣∣rm+1
jl,N

∣∣∣ , ∣∣∣sm+1
jl′ ,0

∣∣∣} ,

∣∣∣r̂m+1
jl,N

∣∣∣ = 1

M

∣∣∣∣∣
ν∑
l=1

nijlr
m+1
ji,N

+

µ∑
l′=ν+1

nijl′ s
m+1
jl′ ,0

∣∣∣∣∣ ≤ max
1≤l≤ν

ν+1≤l′≤µ

{∣∣∣rm+1
jl,N

∣∣∣ , ∣∣∣sm+1
jl′ ,0

∣∣∣} .

Therefore, we achieve again the difference inequality (4.19) for em. Hence, em ≤ h,
and consequently, ∣∣rmi,n∣∣ ≤ h,

∣∣smi,n∣∣ ≤ Mh.

This not only proves (4.17) for Case 2, but also for the part of Case 3 where the right
endpoint is a junction.

Case 3: N − m ≤ n ≤ N . It remains only to discuss the case where the right
end is a terminal. If the boundary condition is given by (4.8), the results follow from
arguments similar to those in Case 2, when the source end boundary condition is either
(4.4) or (4.5). Thus, we shall discuss only the case when the boundary condition is
given by (4.9), which corresponds to the Windkessel-type boundary condition (1.7)
for the differential equations.
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From (1.7), we derive

1

k

(
Pm+1
i,N − Pm

i,N

)
− ηi

k

(
Qm+1
i,N −Qm

i,N

)
+

δi
2

(
Pm+1
i,N + Pm

i,N

)

− εi
2

(
Qm+1
i,N + Qm

i,N

)
= WB

i

((
m +

1

2

)
k

)
+ O

(
k2
)
.

Subtracting (4.9) from above yields

1

k
(um+1

i,N − umi,N )− ηi
k

(vm+1
i,N − vmi,N ) +

δi
2
(um+1

i,N + umi,N )− εi
2
(vm+1
i,N + vmi,N ) = O(k2).

Let

fm =

(
1 +

δik

2

)
umi,N −

(
ηi +

εik

2

)
vmi,N , m = 0, 1, . . . .

The equation for fm has the form

fm+1 = fm + k
(
εiv

m
i,N − δiu

m
i,N

)
+ O

(
k3
)
.

Since f0 = 0, the difference equation has the solution

fm+1 = k

m∑
j=0

(
εiv

j
i,N − δiu

j
i,N

)
+ O

(
k2
)
.

From (4.22), we obtain

sm+1
i,N =

Mm
i

Nm
i

rm+1
i,N − k

Nm
i

m∑
j=0

(
εiv

j
i,N − δiu

j
i,N

)
+ O

(
k2
)
,(4.24)

where

Mm
i =

1

λmi,n

(
1 +

δik

2
−
(
ηi +

εik

2

)
λR,mi,n

ami,n

)
,

Nm
i =

1

λmi,n

(
1 +

δik

2
−
(
ηi +

εik

2

)
λL,mi,n

ami,n

)
.

(Notice that Nm
i > 0, and hence (4.24) is valid.) Let ŝmi,n = smi,n/M , where M is a

constant to be determined later. Also let

em = max
m≤n≤N
0≤j≤m

{∣∣∣rji,n∣∣∣ , ∣∣∣ŝji,n∣∣∣} .

Unlike previous cases where em depends on the mth level quantities, here it is more
convenient to let em be the maximum of all the lower level quantities. Then, by (4.18)
modified with ŝ substituted for s,∣∣rm+1

i,n

∣∣ ≤ em + C
(
h2 + hem + emem−1 + e2

m

)
(4.25)

for n = m, . . . , N and∣∣ŝm+1
i,n

∣∣ ≤ em + C
(
h2 + hem + emem−1 + e2

m

)
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for n = m, . . . , N − 1, where C is a positive constant. Also, by (4.24) and the relation
mk ≤ δ0, ∣∣∣ŝm+1

i,N

∣∣∣ ≤ 1

M

∣∣∣∣Mm
i

Nm
i

∣∣∣∣
∣∣∣rm+1
i,N

∣∣∣+ δ0C
′em + O

(
h2
)
,

where C ′ > 0 is constant. Hence, from (4.25) we see that if M is sufficiently large
and δ0 is sufficiently small, we can ensure∣∣∣ŝm+1

i,N

∣∣∣ ≤ em + C
(
h2 + hem + emem−1 + e2

m

)
.

(This is where the simpler boundary condition (4.10) fails. Instead of O
(
h2
)
, it can

provide only O (h), which is inconsistent with (4.19).) Thus, em satisfies the relation
(4.19), which leads to em ≤ h. We have, thus, shown that∣∣rmi,n∣∣ ≤ h,

∣∣smi,n∣∣ ≤ Mh.

This completes the proof of Case 3, and also of the entire theorem.

5. Discussion. We have given a rather thorough treatment to the initial-bound-
ary value problem of the first-order quasilinear system (1.8) with various source and
terminal boundary conditions. From our results, it can be seen that the junction
condition (1.4), which stems from the conservation of mass and Navier–Stokes mo-
mentum, is consistent with the differential equations. Also, the Windkessel-type ter-
minal boundary condition does not cause problems for the solvability. However, due
to the nature of the first-order hyperbolic equations, the existence of a global solu-
tion generally is not guaranteed (cf. [14, 15]). This problem may disappear if more
accurate models are used. For example, in (1.8) and its special case (1.1), only the
effect of viscosity on the wall of the vessels is taken into consideration. If we include
viscosity more comprehensively, a term of µ∇2Qi appears in the right-hand sides of
the second equations of (1.8) and (1.1). The system then becomes parabolic instead
of hyperbolic. It is well known that parabolic systems have better regularity proper-
ties than hyperbolic ones. Therefore, it may be possible to prove the existence of a
global solution. Another possible approach is to use the results of Čanić and Kim [5]
that shock waves can develop only in an unrealistically long vessel. With appropriate
a priori estimates, one might find a range of lengths of vessels within which global
solutions exist. We are currently investigating these issues.

We have developed a numerical scheme for the computation of solutions and
proved its convergence. Although our scheme uses a nonstaggered method similar
to the one developed by Raines, Jaffrin, and Shapiro [23, 24], they are substantially
different. (By nonstaggered, we mean that the values of Pi and Qi are approximated
at the same mesh points, unlike the staggered method developed in [9, 13].) This is
because ours is based on the normal form of the equations and takes into account the
characteristic directions. This might explain why our scheme converges even if the
network has loops, while the other can break down (cf. [13]).
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Abstract. A variational method for nonrigid registration of multimodal image data is presented.
A suitable deformation will be determined via the minimization of a morphological, i.e., contrast in-
variant, matching functional along with an appropriate regularization energy. The aim is to correlate
the morphologies of a template and a reference image under the deformation. Mathematically, the
morphology of images can be described by the entity of level sets of the image and hence by its Gauss
map. A class of morphological matching functionals is presented which measure the defect of the
template Gauss map in the deformed state with respect to the deformed Gauss map of the reference
image. The problem is regularized by considering a nonlinear elastic regularization energy. Existence
of homeomorphic, minimizing deformation is proved under assumptions on the class of admissible
deformations. With respect to actual medical applications, suitable generalizations of the matching
energies and the boundary conditions are presented. Concerning the robust implementation of the
approach, the problem is embedded in a multiscale context. A discretization based on multilinear
finite elements is discussed, and the first numerical results are presented.
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1. Introduction. Nowadays classical image acquisition machinery, such as com-
puter tomography and magnetic resonance tomography, and a variety of novel sources
for images, such as functional magnetic resonance imaging (MRI), three dimensional
ultrasound, or densiometric computer tomography (DXA), deliver various three di-
mensional images of the same human body. Due to different body positioning, tem-
poral differences of the image generation, and differences in the measurement process,
the images frequently cannot simply be overlaid. Indeed, corresponding structures are
situated at usually nonlinearly transformed positions. In case of intraindividual regis-
tration, the variability of the anatomy cannot be described by a rigid transformation,
since many structures like, e.g., the brain cortex, may evolve very differently in the
growing process. Frequently, if the image modality differs, there is also no correlation
of image intensities at corresponding positions. What still remains, at least partially,
is the local image structure or “morphology” of corresponding objects. Thus, the
matching of two dimensional and especially three dimensional images—also known as
image registration—with respect to their morphology is one of the fundamental tasks
in image processing.

One aims to correlate two images—a reference image R and a template image T—
via an energy relaxation over a set of, in general, nonrigid spatial deformations. Let us
denote the reference image by R : Ω→ R and the template image by T : Ω→ R. Here,
both images are supposed to be defined on a bounded domain Ω ∈ R

d for d = 1, 2,
or 3 with Lipschitz boundary and satisfy the cone condition (cf., e.g., [4]). We ask
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for a deformation φ : Ω → Ω such that T ◦ φ is optimally correlated to R. There
is a large and diverse body of literature on registration. In particular, Grenander,
Miller, and coworkers contributed different physically motivated and mathematically
profound approaches [12, 11, 24, 21, 32]. For an overview, in particular, on the
mathematical modeling, see the references therein. For unimodal images one defines
similarity measures, for instance, by the simple choice ‖T ◦ φ−R‖2L2 [15, 28, 33, 41].
In case T and R are images of different modality, we are left to define what is meant
by the correlation of local structures in the image.

Viola and Wells [45], Wells et al. [47], and Collignon et al. [16] presented an infor-
mation theoretic approach for registration of multimodal images. It is based on the
idea of maximizing the so-called mutual information of the deformed template image
and the reference image. The mutual information consists of the entropies of both
images and the negative joint entropy. It can be interpreted as a measure of variability
and uncertainty. Thus, the joint entropy of the images is low, where one image can
stochastically be well described by the other and vice versa. Since the entropies of
random variables are integrals containing the corresponding density functions, here
the intensities, the corresponding local structure analysis is rather implicitly encoded
in the global functionals. Viola and Wells performed the maximization process by
using a stochastic descent method in which the gradients are computed via a Parzen
windowing function, while Collignon et al. used Powell’s method for the optimization.
The method is currently restricted to an expression in global parametric form such
as rigid transformations or a lower dimensional space of smooth deformations. A
different approach of image registration via the matching of objects in images is due
to Monasse [35]. He classifies objects by moments, and a registration is achieved by
aligning these moments under scaling and rigid body motion.

Here, we introduce a different approach based on the definition of a matching
energy, which effectively measures the local morphological “defect” of the deformed
template and the reference image. The congruence of the shapes instead of the equality
of the intensities is the main object of the registration approach presented here. First,
let us define the morphology M [I] of an image I as the set of level sets of I:

M [I] := {MI
c | c ∈ R},(1.1)

whereMI
c := {x ∈ Ω | I(x) = c} is a single level set for the gray value c. (For a general

overview on image morphology, we refer to [40].) That is, M [γ ◦ I] = M [I] for any
reparametrization γ : R → R of the gray values. Obviously,M [I] is uniquely identified
by the set of tangent spaces TxMI

I(x) of all level setsMI
c or up to the orientation by

the normal field NI onMI
c . Hence, again up to the orientation, the morphologyM [I]

can be identified with the normal map (Gauss map)

NI : Ω→ R
d ; x �→ ∇I

‖∇I‖ .(1.2)

Two images I1 and I2 are called morphologically equivalent if M [I1] = M [I2]. Let
us emphasize that we deal here with classical level sets, which might not be defined
everywhere. The problem related to vanishing image gradients and thus undefined
normals will be addressed in section 4, where we allow for such singularities as long as
the measure of the corresponding set in appropriate terms is not too large. A weaker
definition of level sets has been introduced by Caselles, Coll, and Morel [10]. They
consider the so-called upper topographic map {{x |φ(x) ≥ λ} |λ ∈ R} to characterize
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the morphology of an image φ. This map uniquely describes the morphology, and
they prove stability with respect to discretization and quantization.

Morphological methods in image processing are characterized by an invariance
with respect to the morphology. Explicitly speaking, a method is called morphological
if, when it is applied to morphologically identical images, the resulting images are still
morphologically identical [1, 39, 43]. Hence, such methods only affect the morphology
of the image, which coincides with the geometry of the level sets. Now, aiming for a
morphological registration method, we will ask for a deformation φ : Ω→ Ω such that

M [T ◦ φ] =M [R] .

Thus, we try to align the normal fields (cf. Desolneux, Moisan, and Morel [19], where
tangent spaces are identified in rigorous statistical terms). We set up a matching
functional which locally measures the twist of the tangent spaces of the template
image at the deformed position and the deformed reference image or the defect of
the corresponding normal fields. See Figure 1 for an example of a registration on a
pair of images for which a smooth deformation φ exists such that T ◦ φ and R are
morphologically equivalent. Figure 2 shows the known exact deformation and the
deformation computed by the method we propose here.

As known from other approaches, the corresponding minimization, if settled over
an infinite dimensional space of deformations and not ab initio restricted to a small
finite dimensional function space, turns out to be ill posed [8, 44]. Hence, we have
to ask for a suitable regularization. Various regularization approaches have been
considered in the literature [11, 12, 18, 26]. On one hand, a regularization of the
energy is taken into account, typically adding a convex energy functional based on
gradients to the actual matching energy. The regularization energy is regarded as
a penalty for “elastic stresses” resulting from the deformation of the images. This
competitive approach is related to the well-known classical Tikhonov regularization of
the originally ill-posed problem. On the other hand, viscous flow techniques are taken
into account. They compute smooth paths from some initial deformation towards the
set of minimizers of the matching energy [15, 27].

The paper is organized as follows. In section 2 the morphological matching en-
ergies are discussed, and in section 3 the regularization via nonlinear elasticity func-
tionals will be introduced. Then, in section 4 we prove existence of homeomorphic,
minimizing deformations. With respect to the actual application to medical data, the
model is further generalized in sections 5 and 6, where an additional feature-based
matching functional is introduced and generalized boundary conditions are discussed.
Finally, in section 7 we describe the finite element discretization and the minimization
algorithm.

In the present paper, we will prove the existence of a minimizing deformation for
a variational approach, which is formulated for three dimensional images. It is left to
the reader to transfer the assumptions and the existence results to the simpler two
dimensional case. Here and in what follows we make use of the summation convention.
That is, we implicitly sum over every index which appears twice in an expression.

Let us emphasize that the focus of the paper is on the presentation of a new
concept in morphological image registration. Details on the implementation will be
discussed in a forthcoming publication. Hence, the computational results are currently
restricted to two dimensions.

2. A morphological registration energy. In this section we will construct a
suitable matching energy, which measures the defect of the morphology of the refer-
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Fig. 1. Test example. Top left: reference image R = β◦T ◦ψ, generated from the template image
by applying an artificial volume preserving distortion ψ and a nonmonotone contrast transformation
β. Top right: template image T . Bottom left: reference image T ◦ψ before contrast transformation.
Bottom right: registration result T ◦ φ, template image applied to the computed deformation φ. All
images have a resolution of 2572. Areas of special interest are marked by white circles. See Figure
2 for the corresponding deformation.

ence image R and the deformed template image T . Thus, with respect to the above
identification of morphologies and normal fields, we ask for a deformation φ such that

NT ◦ φ | | Nφ
R ,(2.1)
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Fig. 2. Exact deformation ψ (left) and computed deformation φ for the example in Figure 1.

where Nφ
R is the transformed normal of the reference image R on Tφ(x)φ(MR

R(x)) at

position φ(x). From the transformation rule for the exterior vector product Dφu ∧
Dφv = CofDφ(u ∧ v) for all v, w ∈ TxMR

R(x), one derives

Nφ
R =

CofDφNR

‖CofDφNR‖ ,

where Cof A = detA ·A−T for invertible A ∈ R
d,d. In a variational setting, optimality

can be expressed in terms of energy minimization. Hence, we consider a matching
energy

Em[φ] :=

∫
Ω

g(NT ◦ φ,NR,CofDφ) dµ

for some function g : Sd−1 × Sd−1 × R
d,d → R

+; (u, v,A) �→ g(u, v,A). Here Sd−1

denotes the unit sphere in R
d and µ the Lebesgue measure. This matching energy

depends on the deformation of normal fields, and we are going to relax the energy via
a minimizing deformation for fixed image morphologies and hence fixed normal fields.
Recently, in image restoration or inpainting, energies have been introduced which
depend on the normal fields of images represented by BV functions [5, 6, 7]. There,
the energy is minimized over an appropriate set of BV functions on a destroyed image
region.

As a boundary condition we require φ = 1l on ∂Ω, where 1l indicates the identity
mapping on Ω and simultaneously the identity matrix. So far, we have assumed that
the normal fields NT and NR are well defined on the whole domain Ω. To be not too
restrictive with respect to the space of images, we have to take into account the prob-
lem of degenerate Gauss maps. Hence, let us define the set DI := {x ∈ Ω | ∇I = 0}
for I = T or R, where no image normal can be defined. At first, we resolve this prob-
lem of undefined normals at least formally by introducing a 0-homogeneous extension
g0 : R

d × R
d × R

d,d → R
+ of g in the first and second argument:

g0(v, w,A) =

{
0, v = 0 or w = 0,
g( v

‖v‖ ,
w

‖w‖ , A), else.
(2.2)
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Based on g0 we can redefine the matching energy Em and obtain

Em[φ] :=

∫
Ω

g0(∇T ◦ φ,∇R,CofDφ) dµ.(2.3)

In the later analysis we have to take special care of the singularity of g0 for eliminating
the first or second argument. Indeed, we will assume that the measure of DT and
DR is in a suitable sense sufficiently small. Furthermore, in the existence theory we
will explicitly control the impact of these sets on the energy. As a first choice for the
energy density g, let us consider

g(v, w,A) :=

(
v − Aw

‖Aw‖
)2

(2.4)

for v, w ∈ Sd−1, which corresponds to the energy∫
Ω

‖NT ◦ φ−Nφ
R‖2 .

We observe that the energy Em vanishes if T ◦ φ = γ ◦ R for a monotone gray
value transformation γ : R → R. If we want Em to vanish also for nonmonotone
transformations γ, we are lead to the symmetry assumption:

g(v, w,A) = g(−v, w,A) = g(v,−w,A) .(2.5)

Example 2.1. A useful class of matching functionals Em is obtained choosing
functions g which depend on the scalar product v · u or alternatively on (1l− v ⊗ v)u
(where 1l − v ⊗ v = (δij − vi vj)ij denotes the projection of u onto the plane normal
to v) for u = Aw

‖Aw‖ and v, w ∈ Sd−1, i.e.,

g(v, w,A) = ĝ

(
(1l− v ⊗ v)

Aw

‖Aw‖
)

.(2.6)

Let us remark that ĝ((1l − v ⊗ v)u) is convex in u if ĝ is convex. With respect to
arbitrary gray value transformations mapping morphologically identical images onto
each other, we might consider ĝ(s) = ‖s‖γ for some γ ≥ 1.

3. Hyperelastic, polyconvex regularization. Suppose a minimizing defor-
mation φ of Em is given. Then, obviously for any deformation ψ which exchanges the
level setsMR

c of the image R, the concatenation ψ ◦φ still is a minimizer. But ψ can
be arbitrarily irregular. Hence, minimizing solely the matching energy is an ill-posed
problem. Thus, we consider a regularized energy

E[φ] = Em[φ] + Ereg[φ] .(3.1)

Due to the fact that the matching energy already includes first order derivatives of
the deformation φ, one might consider a regularization energy which involves higher
order derivatives of φ [34]. In particular, the existence of minimizers would basically
rely on usual compactness arguments. But on the background of elasticity theory, we
aim to model the image domain as an elastic body responding to forces induced by
the matching energy. Hence, we have to confine ourselves to energies as they appear
in the usual mechanical approach to elastic bodies. It will turn out in section 4 that
we have nice consistency of the type of nonlinearity in the matching energy with
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respect to the Jacobian of the deformation and the well-known structure of nonlinear
elastic functionals. We have to emphasize that we do not attempt to model the actual
material of the objects represented by the image.

At first, let us briefly recall some background from elasticity. For details we
refer to the comprehensive introductions in the books by Ciarlet [13] and Marsden
and Hughes [31]. We interpret Ω as an isotropic elastic body and suppose that the
regularization energy plays the role of an elastic energy while the matching energy
can be regarded as an external potential contributing to the energy. Furthermore
we suppose φ = 1l to represent the stress free deformation. Let us consider the
deformation of length, area, and volume under a deformation φ. It is well known that
the norm of the Jacobian of the deformation ‖Dφ‖2 controls the isotropically averaged
change of length under the deformation, where ‖A‖2 := tr (ATA) =

∑
i,j AijAij

for A ∈ R
d,d. Second, the local volume transformation under a deformation φ is

represented by detDφ. If detDφ changes sign, self-penetration may be observed.
Furthermore for d = 3, the norm of the matrix of the cofactors of the Jacobian of the
deformation ||CofDφ||2 = tr (CofDφTCofDφ) is the proper measure for the averaged
change of area.

Example 3.1. Based on these considerations, we can define a simple physically
reasonable isotropic elastic energy for d = 3, which separately cares about length,
area, and volume deformation and especially penalizes volume shrinkage:

Ereg[φ] :=

∫
Ω

a||Dφ||p2 + b||CofDφ||q2 + Γ(detDφ) dµ(3.2)

with Γ(D) → ∞ for D → 0,∞, e.g., Γ(D) = γD2 − δ lnD. In nonlinear elasticity
such material laws have been proposed by Ogden [38], and for p = q = 2 we obtain
the Mooney–Rivlin model [13].

More general than in the above example, we will consider a so-called polyconvex
energy functional (see [17])

Ereg[φ] :=

∫
Ω

W (Dφ,CofDφ,detDφ) dµ,(3.3)

where W : R
d,d × R

d,d × R → R is supposed to be convex. Besides suitable growth
conditions to be stated later, we furthermore assume that W and thereby Ereg[φ]

again penalizes volume shrinkage, i.e., W (A,C,D)
D→0−→ ∞. This will enable us to

successfully control singularity sets. Such energies have already been introduced to
the related optical flow problem by Hinterberger et al. [29]. However, their focus was
neither on morphological registration nor on the control of singularity sets.

4. An existence result. In this section we will discuss under which conditions
there exists a minimizing deformation of the total energy E[·]. Let us emphasize
that the problem stated here significantly differs from most other regularized image
registration problems, e.g., all intensity based approaches, where the matching energy
is defined solely in terms of the deformation φ and the regularization energy is of
higher order and considers the Jacobian Dφ of the deformation. In our case already
the matching energy incorporates the cofactor of the Jacobian. Thus, with respect to
the direct method in the calculus of variations, we cannot use standard compactness
arguments due to Rellich’s embedding theorem to deal with the matching energy on
a minimizing sequence [17]. Instead, we will need suitable convexity assumptions on
the function g.
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Fig. 3. Construction as of the proof in Remark 4.1.

Remark 4.1 (lack of lower semicontinuity for certain functionals Em). Recall-
ing Example 2.1, we might wish to choose a matching energy with an integrand
g0(v, w,A) := ĝ((1l − v

‖v‖ ⊗ v
‖v‖ )

Aw
‖Aw‖ ) for ĝ ∈ C0(Rd,R+

0 ). It is well known that the

essential condition to ensure weak sequential lower semicontinuity of functionals de-
pending on the Jacobian of a deformation is quasi-convexity [36, 37]. With our special
choice of the class of energies (2.3), this requires the convexity of g in the argument
A (cf. [17, sect. 5.1]).

We easily verify that a function

f : Rd,d → R;A �→ f(A)

that is 0-homogeneous on R
d,d and convex has to be constant, and thus an existence

result for our image matching problem via the direct calculus of variations can only be
expected for trivial matching energies, i.e., for ĝ ≡ const. Indeed, suppose A,B ∈ R

d,d

with f(A) − f(B) = δ > 0 and define Aα,r := r A + α (A − B) for r > 0 and α > 0;
then for s = α

r we obtain (cf. Figure 3)

f(Aα,r) = f(r A+ s r (A−B))

≥ f(r A) + s (f(r A)− f(r B))

= f(A) +
α

r
(f(A)− f(B)) = f(A) +

α δ

r
→∞

for r → 0. Finally, we deduce f(A−B) =∞, which contradicts our assumptions on f .
Thus, the definition of the matching energy via the above integrand ĝ((1l−v⊗w) Aw

‖Aw‖ )
and especially our first choice of a matching energy in (2.4) are not appropriate with
respect to a positive answer to the question of existence of minimizers via direct
methods.

So far, we have not discussed the singularities of the normal fields. Hence, let us
introduce assumptions which allow the normals to be undefined on a small set. In-
deed, we take into account the space of bounded functions I, which are differentiable
and whose gradients are unequal to zero on Ω \ DI . In particular, the set of degen-
erate points is defined as DI := {x ∈ Ω | ∇I = 0}. We suppose that for the Lebesgue
measure µ,

µ(Bε(DI))
ε→0−→ 0 ,

where Bε(DI) :=
⋃{Bε(x) |x ∈ DI}. Let us introduce a corresponding set of functions

I(Ω) :=
{
I : Ω→ R

∣∣∣ I ∈ C1(Ω̄),∃DI ⊂ Ω such that ∇I �= 0 on Ω \ DI ,

µ(Bε(DI))
ε→0−→ 0

}
.
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The existence proof for minimizers of nonlinear elastic energies via the calculus
of variations and direct methods dates back to the work of Ball [3]. In particular, the
incorporated control of the volume transformation in this theory turns out to be the
key to proving existence of minimizing, continuous, and injective deformations for the
image matching problem discussed here. We consider the following energy (cf. (2.3)
and (3.3)):

E[φ] := Em[φ] + Ereg[φ] ,(4.1)

with

Ereg[φ] :=

∫
Ω

W (Dφ,CofDφ,detDφ) dµ,

Em[φ] :=

∫
Ω

g0(∇T ◦ φ,∇R,CofDφ) dµ

for g0 defined in (2.2).
Let us denote by Lp for p ∈ [1,∞] the usual Lebesgue spaces of functions on Ω

into R, R
d, and R

d,d, respectively; by ‖·‖p, the corresponding norm; and by H1,p,
the Banach space of functions in Lp with weak first derivatives also in Lp. For ease
of presentation, we do not exploit the full generality of the corresponding existence
theory. Here the reader is, for instance, referred to [3, 4, 14, 22, 23, 46]. We confine
ourselves to a basic model and state the following theorem.

Theorem 4.2 (existence of minimizing deformations). Suppose d = 3 and T,R ∈
I(Ω) and consider the total energy defined in (4.1) for deformations φ in the set of
admissible deformations

A := {φ : Ω→ Ω
∣∣ φ ∈ H1,p(Ω),CofDφ ∈ Lq(Ω),

detDφ ∈ Lr(Ω),detDφ > 0 a.e. in Ω, φ = 1l on ∂Ω},
where p, q > 3 and r > 1. Suppose W : R

3,3 × R
3,3 × R

+ → R is convex and there
exist constants β, s ∈ R, β > 0, and s > 2q

q−3 such that

W (A,C,D) ≥ β (‖A‖p2 + ‖C‖q2 +Dr +D−s) ∀A,C ∈ R
3,3, D ∈ R

+.(4.2)

Furthermore, assume that g0(v, w,A) = g( v
‖v‖ ,

w
‖w‖ , A) for some function g : S2 ×

S2×R
3,3 → R

+
0 , which is continuous in v

‖v‖ ,
w

‖w‖ and convex in A, and for a constant

m < q the estimate

g(v, w,A)− g(u,w,A) ≤ Cg ‖v − u‖ (1 + ‖A‖m2 )
holds for all u, v, w ∈ S2 and A ∈ R

3,3. Then E[·] attains its minimum over all
deformations φ ∈ A and the minimizing deformation φ is a homeomorphism and, in
particular, detDφ > 0 a.e. in Ω.

Proof. The proof of this result is based on the well-known weak continuity results
for the principle invariants of the Jacobian of the deformation. We observe that the
total energy is polyconvex. Furthermore, the volume of the neighborhood sets Bε(DT )
and Bε(DR) of the singularity sets DT and DR, respectively, can be controlled. Hence,
we can basically confine ourselves to a set where the integrand fulfills Carathéodory’s
conditions. At first, let us recall some well-known, fundamental weak convergence
results: Given a sequence of deformations (φk)k in H1,p, with CofDφk ∈ Lq and
detDφk ∈ Lr, such that the sequence converges weakly in the sense φk ⇀ φ in
H1,p,CofDφk ⇀ C in Lq, and detDφk ⇀ D in Lr, then C = CofDφ and D = detDφ
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(weak continuity). For the proof we refer to Ball [3] or the book of Ciarlet [13, sect.
7.5, 7.6].

The proof of the theorem proceeds in four steps.
Step 1. Due to the assumption on the image set I(Ω), Em[φ] is well defined for

φ ∈ A. In particular, g0(∇T ◦ φ,∇R,CofDφ) is measurable. Obviously 1l ∈ A and
E[1l] < ∞; thus E := infφ∈A E[φ] < ∞, and due to the growth conditions and the
assumption of g we furthermore get E ≥ 0. Let us consider a minimizing sequence
(φk)k=0,1,... ⊂ A with E[φk] → infφ∈A E[φ]. We denote by E an upper bound of
the energy E on this sequence. Due to the growth condition on W we get that
{(Dφk,CofDφk,detDφk)}k=0,1,... is uniformly bounded in Lp(Ω) × Lq(Ω) × Lr(Ω).
By Poincaré’s inequality applied to (φk − 1l) we obtain that {φk}k=0,1,... is uniformly
bounded in H1,p(Ω). Because of the reflexivity of Lp×Lq×Lr for p, q, r > 1, we can
extract a weakly convergent subsequence, again denoted by an index k, such that

(Dφk,CofDφk,detDφk)⇀ (Dφ,C,D)

in Lp × Lq × Lr with C : Ω → R
3×3, D : Ω → R. Applying the above results on

weak convergence, we achieve C = CofDφ and D = detDφ. In addition, by Rel-
lich’s embedding theorem we know that φk → φ strongly in Lp(Ω), and by Sobolev’s
embedding theorem we obtain φ ∈ C0(Ω̄).

Step 2. Next, we control the set where the volume shrinks by a factor of more
than ε for the limit deformation. Let us define

Sε = {x ∈ Ω |detDφ ≤ ε}
for ε ≥ 0. Let as assume without loss of generality that the sequence of energy values
E[φk] is monotone decreasing and that for given ε > 0 we denote by k(ε) the smallest
index such that

E[φk] ≤ E[φk(ε)] ≤ E + ε ∀k ≥ k(ε) .

From Step 1 we know that Ψk := (Dφk,CofDφk,detDφk) converges weakly to Ψ :=
(Dφ,CofDφ,detDφ) in Lp × Lq × Lr. Hence, applying Mazur’s lemma, we obtain a
sequence of convex combinations of Ψk and φk which converges strongly to Ψ and φ
in Lp×Lq ×Lr ×Lp. Thus, there exists a family of weights ((λk

i )k(ε)≤i≤k)k≥k(ε) with

λk
i ≥ 0,

∑k
k(ε) λ

k
i = 1, such that

λk
iΨ

i → Ψ and λk
i φ

i → φ .

Now, taking into account the growth conditions, the convexity of W , and Fatou’s
lemma, we estimate

βε−sµ(Sε) ≤ β

∫
Sε

(detDφ)−s dµ ≤
∫
Sε

W (Ψ) dµ

=

∫
Sε

lim inf
k→∞

W (λk
iΨ

i) dµ ≤
∫
Sε

lim inf
k→∞

λk
i W (Ψi) dµ

≤ lim inf
k→∞

λk
i

∫
Sε

W (Ψi) dµ

≤ lim inf
k→∞

λk
i

∫
Ω

W (Ψi) + g0(∇T ◦ φi,∇R,CofDφi) dµ

≤ E

and claim µ(Sε) ≤ Ēεs

β . As one consequence, S0 is a null set and we know that
detDφ > 0 a.e. on Ω. Thus, taking this together with the results from Step 1, we de-
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duce that the limit deformation φ is in the set of admissible deformation A. Following
Ball [4], we furthermore obtain that φ is injective and φ is a homeomorphism.

Step 3. Now, we deal with the singularity set of the images T . By our assumption
on the image set I(Ω), we know that for given δ > 0 there exist εT > 0 such that
µ(BεT (DT )) ≤ δ. From this and the injectivity (cf. Theorem 1(ii) in [4]), we especially
deduce the estimate

µ
(
φ−1(BεT (DT )) \ Sε

) ≤ 1

ε

∫
φ−1(BεT

(DT ))

detDφdµ

=
1

ε

∫
BεT

(DT )

dµ ≤ δ

ε
.

Hence, we can control the preimage of Bε(DT ) with respect to φ but restricted to
Ω \ Sε. Due to the continuous differentiability of both images T and R, we can
assume that

‖∇T (x)‖ ≥ γ(ε) on Ω \Bε(DT ),(4.3)

where γ : R+
0 → R is a strictly monotone function with γ(0) = 0.

Step 4. Due to Egorov’s theorem and the strong convergence of φk in Lp(Ω), there
is a set Kε with µ(Kε) < ε such that a subsequence, again denoted by φk, converges
uniformly on Ω \Kε. Let us now define the set

Rε,δ := φ−1(BεT (DT )) ∪ Sε ∪Kε ,

whose measure can be estimated in terms of ε and δ, i.e.,

µ(Rε,δ) ≤ δ

ε
+

Ēεs

β
+ ε .

On Ω\Rε,δ the sequence (∇T ◦φk)k=0,1,... converges uniformly to ∇T ◦φ. Next, from
the assumption on g and the 0-homogeneous extension property of g0, we deduce that

|g0(u,w,A)− g0(v, w,A)| ≤ Cγ ‖u− v‖ (1 + ‖A‖m2 )(4.4)

for u, v, w ∈ R
3, A ∈ R

3,3, and ‖u‖ , ‖v‖ , ‖w‖ ≥ γ. To use this estimate for u = φk

and v = φ below, we assume that k(ε) is large enough such that φk(x) ∈ Ω\B εT
2
(DT )

for x ∈ Ω \Rε,δ and

Cγ(
εT
2 )

∥∥∇T ◦ φk −∇T ◦ φ∥∥∞,Ω\Kε
≤ ε

for all k ≥ k(ε). Now we are able to estimate E[φ] using especially the convexity of
W and g(v, w, ·), the estimate (4.4), and Fatou’s lemma:

E[φ] =

∫
Ω

W (Ψ) + g0(∇T ◦ φ,∇R,CofDφ) dµ

≤
∫

Ω

lim inf
k→∞

λk
i W (Ψi) dµ+ 2Cg

∫
Rε,δ

1 + ‖CofDφ‖m dµ

+

∫
Ω\Rε,δ

lim inf
k→∞

λk
i g0(∇T ◦ φ,∇R,CofDφi) dµ

≤ lim inf
k→∞

λk
i

∫
Ω

W (Ψi) dµ+ b(µ(Rε,δ))

+ lim inf
k→∞

λk
i

∫
Ω\Rε,δ

g0(∇T ◦ φ,∇R,CofDφi)− g0(∇T ◦ φi,∇R,CofDφi)

+ g0(∇T ◦ φi,∇R,CofDφi) dµ,
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where b(s) := 2Cg(s + (
Ē
β )

m
q s1−m

q ). Here we have, in particular, used the a priori

estimate ‖CofDφ‖q,Ω ≤ ( Ēβ )
1
q . We estimate further and obtain

E[φ] ≤ lim inf
k→∞

λk
i

∫
Ω

W (Ψi) + g0(∇T ◦ φi,∇R,CofDφi) dµ+ 2 b(µ(Rε,δ))

+ Cγ(
εT
2 ) lim sup

k→∞

∫
Ω\Rε,δ

∥∥∇T ◦ φ−∇T ◦ φk
∥∥(1 + ∥∥CofDφk

∥∥m
2

)
dµ

≤ lim inf
k→∞

λk
i E[φ

i] + 2 b(µ(Rε,δ)) + ε b(µ(Ω))

≤ E + ε+ 2 b(µ(Rε,δ)) + ε b(µ(Ω)) .

Finally, for given ε̄ we choose ε, then δ, the dependent εT small enough, and k(ε̄) large
enough to ensure that

ε+ 2 b(µ(Rε,δ)) + ε b(µ(Ω)) ≤ ε̄

and get E[φ] ≤ E + ε̄. This holds true for an arbitrary choice of ε̄. Thus we conclude

E[φ] ≤ E = inf
φ∈A

E[φ] ,

which is the desired result.
Remark 4.3. From the proof we have seen that the assumptions on the reference

image could be weakened considerably compared to the template image. With respect
to the applications, we do not detail this difference here.

Example 4.4. Let us consider

g(v, w,A) = ‖(1l− v ⊗ v) ·Aw‖γ(4.5)

for 1 ≤ γ < q. Hence, we obtain an admissible matching energy

Em[φ] =

∫
Ω

‖(1l− (NT ◦ φ)⊗ (NT ◦ φ)) · CofDφNR‖γ

(cf. Example 2.1). Applying Theorem 4.2, we can establish the existence of a min-
imizing deformation. Recalling Remark 4.1, we recognize that scaling the original
energy density by an additional factor ‖CofDφNR‖γ turns the minimization task
into a feasible problem. This corresponds to a modification of the area element on the
level sets MR

c . Indeed, ‖CofDφNR‖ is the change of the area element at a position
x onMR

R(x) under the deformation.

5. An additional feature-based registration energy. As the energy Em[φ]
depends on the directions of the image normals only, its minimization will lead to an
alignment of the level sets of the two images. However, the alignment of significant
level sets, which correspond to significant features, is not taken into account by the
energy. In medical applications, such features may be boundaries of organs, bones, or
tissue structures. Hence, we will incorporate an additional energy which measures the
quality of the match of certain clearly detectable features. Suppose FT and FR are
corresponding selected feature sets in the images T and R. These feature sets may be
computed in a previous segmentation step applying, for instance, an active contour
algorithm [9, 20] (cf. Figure 4 for an example of a pair of corresponding feature sets).
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Fig. 4. Feature sets FR and FT superimposed on darkened corresponding images for better
visibility (cf. Figure 6 for registration results).

We are aiming to penalize a nonproper match of these two sets by a suitable energy.
They would be ideally matched if

FT = φ(FR).

The following energy measures the matching quality for a general deformation φ:

Ef [φ] =

∫
Ω

|d(φ(·),FT )− d(·,FR)|2 dµ ,(5.1)

where d(x,A) := d̂ ◦ dist(x,A) is a function d̂ of the distance of a point x from a set

A ⊂ Ω. We suppose d̂ : R
+
0 → R

+
0 to be monotone and d̂(0) = 0. In particular, Ef

vanishes in case of a perfect match. A suitable choice is d̂(s) = αsδ with 0 < δ ≤ 1
and α > 0. We use this energy as a third term in the regularized problem (3.1).

Corollary 5.1 (existence of minimizers in the presence of a feature matching

energy). Suppose the assumptions of Theorem 4.2 hold. Furthermore, let d̂ : R
+
0 →

R
+
0 be continuous, and consider

E[φ] = Em[φ] + Ereg[φ] + Ef [φ] .(5.2)

Then E[·] attains its minimum over all deformations φ ∈ A, the minimizing defor-
mation φ is a homeomorphism, and, furthermore, detDφ > 0 a.e. in Ω.

Proof. Due to the Lipschitz continuity of dist(·, A) for arbitrary sets A ⊂ Ω with
A �= ∅ and the continuity of d̂, the integrand of Ef is uniformly continuous in φ.
Hence, the proof of Theorem 4.2 can easily be generalized.

The overall energy will therefore not only align the directions correctly but also
penalize displaced features. In this setting it is thus possible to incorporate some a
priori knowledge to improve the matching results. Let us emphasize that the morpho-
logical registration provides good results if the morphologies encoded by the normal
fields of the two images actually coincide up to a deformation. But in cases where
the images of different modalities reveal similar but different geometrical structures,
which are not strictly equivalent in terms of mathematical morphology, a weak form
of “landmarks” is recommendable to support the matching.

6. Generalized boundary conditions. So far we have imposed boundary con-
ditions of Dirichlet type on ∂Ω for the deformation. This might be a reasonable as-
sumption in the case of objects located in the center of the image at a considerable
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distance from the boundary (cf. Figure 1). If the objects cover the whole image do-
main, we cannot assume that the requested deformation obeys these artificial bound-
ary conditions. In fact, structures visible close to the boundary in the reference image
R will not be present in the template image T and vice versa. Hence, we ask for more
general boundary conditions. With these applications in mind, we have to tolerate
deformations φ(Ω) �⊂ Ω in the admissible set of deformations. But the integrand of
the matching energy is defined only on φ−1(Im (φ) ∩ Ω). Hence, we replace ∫

Ω
g0(·)

by
∫
Ωφ g0(·), where Ωφ := {x ∈ Ω |φ(x) ∈ Ω}, and obtain the new matching energy

Ẽm[φ] :=

∫
Ωφ

g0(∇T ◦ φ,∇R,CofDφ) dµ.(6.1)

Taking into account this reformulated matching energy, we are basically facing two
problems:

(i) Considering a total energy E[φ] = Ẽm[φ] + Ereg[φ], we are lead to irrele-
vant, trivial solutions. Indeed, taking into account a simple translation φtrans with
φtrans(Ω) ∩ Ω = ∅, one obtains Ẽm[φtrans] = 0. Hence, we no longer measure the
matching of relevant image features. We propose to avoid this problem by incorpo-
rating the above feature energy Ef [φ], which can be regarded as a weak boundary
condition. Indeed, if α →∞, we enforce an interior boundary condition on the feature
sets, i.e., φ(FR) = FT .

(ii) Injectivity can no longer be expected for a minimizing deformation. It might
happen that parts of the domain Ω fold over each other under a deformation φ,
although φ is locally injective, i.e., detDφ > 0 (cf. the exposition of this problem in
[13, sect. 7.9]). Following Ciarlet and Necas [14], we introduce an additional condition
on the set of admissible deformations:∫

Ω

detDφ ≤ µ(φ(Ω)) .

Then, we expect the minimizer of the energy E = Ẽm +Ereg +Ef to be injective on
Ω, whereas on ∂Ω we might observe self-contact. In the actual applications considered
so far we have not detected any lack of global injectivity due to overlapping parts of
the deformed domain. Hence, there was no need to incorporate this nonlinear contact
condition in the algorithm.

7. Multiscale minimization and discretization. The total energy is highly
nonlinear. Especially the matching energy Em with the nonlinearity ∇T ◦φ depending
on the complexity of image data will usually lead to multiple at-least-local minima.
Hence, in order to ensure a robust and efficient minimization, we have to consider
a global minimization strategy, which is capable of computing large deformations
which minimize the total registration energy. Here we propose a continuous annealing
method based on a scale of registration problems

Ẽσ[φ] := Ẽσ
m[φ] + Ereg[φ] + Ef [φ] ,

where σ > 0 is the scale parameter. This enables us to compute global instead of only
local deformations and usually avoid a tedious preregistration step. The definition of
the energy scales for the matching energy is based on a scale space approach for the
underlying images (cf. [2]). We choose

Eσ
m[φ] :=

∫
Ωφ

g0(∇T σ ◦ φ,∇Rσ,CofDφ) dµ ,
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Fig. 5. Image and the Gauss map and the corresponding grid for the brain slice at scales
σ = h, 2h, 8h.

where Iσ := Gσ[I] for I = T,R and Gσ denotes the convolution with a “Gaussian”
filter of width σ (cf. Figure 5 for a multiscale of images and the corresponding effect
on the Gauss maps Nσ

T and Nσ
R). In fact, we consider the heat equation semigroup

and set Iσ := u(σ2/2), where u is the solution of the initial boundary value problem

∂tu−∆u = 0 in R
+ × Ω ,

∂νu(t, ·) = 0 on R
+ × ∂Ω ,(7.1)

u(0, ·) = I in Ω ,

and ν denotes the outer normal on ∂Ω. Concerning the spatial discretization, we deal
with images as piecewise bilinear, continuous functions on a regular quadrilateral grid.
We use the same discrete function space to define discrete nonrigid deformations.
Energy functionals and their gradients are numerically evaluated using a midpoint
quadrature rule on the grid cells. We assume Ω = [0, 1]2 and start with an initial
coarse mesh M0 = {Ω}, which is iteratively refined by uniform subdivision, where
each element is divided into four squares. This refinement process generates sequences
of nested meshes Ml, with 0 ≤ l ≤ lmax, consisting of quadrilateral elements Ei

l

(0 ≤ i < 4l) of edge length hl = 2−l. The set of vertices of Ml is denoted by Nl.
Let Vl be the corresponding space of piecewise bilinear, continuous finite element
functions. Suppose {Ψi

l}i≤(2l+1)2 to be the nodal basis of Vl. The discrete gradient

gradVl
Ẽσ ∈ V 2

l of E on grid level l for a deformation Φ ∈ V 2
l is then defined by

(gradVl
Ẽσ[Φ],Ψj

l ek)h = 〈(Ẽσ)′[Φ],Ψj
l ek〉
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Table 7.1
To obtain a stable descent in the gradient descent algorithm of the global energy Eσ, the

derivative in the direction of the descent direction d, i.e., (d, gradEσ [φ])h, ought to be ≤ 0 in
the scalar product. We have shown the impact of the smoothing parameter α for different scales on
γ(−d, gradEσ [φ]), where γ(u, v) := u

‖u‖ · v
‖v‖ . These values have been determined considering the

first 50 steps of the gradient descent of the test example. We list the smallest value γmin and the
average value γaverage.

Scale α[hlmax ] 0.25 0.5 1.0 2.0 3.0 4.0 5.0
γmin 0.9954 0.9585 0.8265 0.6588 0.58481 0.5438 0.5171
γaverage 0.9951 0.9556 0.8177 0.6447 0.5586 0.5116 0.4825

for all j ≤ (2l + 1)2 and k = 1, 2. Here (·, ·)h denotes the usual lumped mass product
on Vl and ek the canonical basis in R

2. Then, on level l the necessary condition for
Φl ∈ V 2

l to be a minimizer of Ẽ
σ over Vl is given by

gradVl
Eσ[Φ] = 0 for Φ ∈ Vl.

Now, we introduce multiple discrete scales. Therefore, we replace the filter Gσ by
its discrete counterpart, replacing problem (7.1) by a single implicit Euler time step

with time step size σ2

2 for a usual finite element discretization with lumped masses
(cf. [42]). We denote the corresponding solution operator on the finite element space
Vl by Gσ

l : Vl → Vl. On each scale, we apply a gradient descent algorithm to minimize
the energy. Here we might consider a sequence of scales

σk = 2−kσ0

for k = 0, . . . , n. Obviously, solving a coarse scale minimization process on a fine
grid introduces a serious amount of redundancy. It is much more efficient to perform
such computations also on coarse grid levels. Thus, we introduce a function lk which
selects for each scale an appropriate grid level. In particular, we choose

lk := min{l = 0, . . . , lmax |h(l) ≤ γσk}

for a scalar γ > 0, e. g., γ = 1, which controls the ratio of the cell size h(l) with respect
to a filter width σk. On each scale we compute the minimum Φk of Eσk over V 2

lk
by

a gradient descent method and consider the standard prolongation of Φk−1 ∈ Vlk−1

onto Vlk as the initial value if lk �= lk−1. It turns out to be suitable to regularize
the contribution of the matching energy to the descent direction. Hence, a descent
direction d ∈ Vlk at a position Φ ∈ V 2

lk
is computed by

d := −Gα
lk
[gradVlk

Eσk
m [Φ]]− gradVlk

Ẽreg[Φ]− gradVlk
Ef [Φ],

where α > 0 controls the amount of smoothing of the gradient for the registration
energy. We have to ensure

(d, gradẼσk [Φ])h ≤ 0

in order to observe stable descent (cf. Table 7.1).
As step size control we consider Armijo’s rule [30]. Let us remark that the smooth-

ing by Gaussian convolution is solved efficiently and independently of the filter width σ
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Fig. 6. Sectional morphological registration on a pair of MR and CT images of a human spine.
Dotted lines mark certain features visible in the reference image. They are repeatedly drawn at the
same position in the other images. Top left: reference, CT; top right: template, MR, with clearly
visible misfit of structures marked by the dotted lines. Bottom left: deformed template after feature-
based registration T ◦ φf , where φf is the result of a feature-based preregistration (cf. Figure 4 for
the feature sets used in this example). Bottom right: deformed template T ◦φ after final registration,
where the dotted feature lines nicely coincide with the same features in the deformed template MR
image. All images have a resolution of 2572.

by a multigrid solver for the heat equation [25]. In the computation for the registration
of real magnetic resonance (MR) and computed tomography (CT) images of a human
spine (cf. Figures 6, 7, 8), we chose the parameter α to be 5hlmax . Furthermore, con-
cerning the elastic regularization that we so far held on to, the Mooney–Rivlin energy,
i.e., p = 2, q does not have to be specified since the second term of W is redundant
in two dimensions. The choices for the further parameters are a = 0.45, γ = 1

2 ,
δ = 1. To improve the method’s performance we first relax the feature-based energy
Ef [·] +Ereg[·] to identify an appropriate initial deformation. Then, we continue with
the minimization of the global energy E[·].



NONRIGID MORPHOLOGICAL REGISTRATION 685

Fig. 7. Comparison of superimposed template and reference before (left) and after (right)
registration.

Finally, the minimization algorithm can be written in pseudo code as follows.

Algorithm 7.1 (multiscale minimization algorithm).

Φ0 := 1l
foreach k = 0, . . . , n do
set level to lk and gridMlk

if k > 0 and lk > lk−1, then
1 prolongate Φk−1 on gridMlk−1

to Φk,0 on gridMlk

end
2 Tσk

:= Gσk

lk
[T ], Rσk

:= Gσk

lk
[R],

3 NTσk
:=

∇Tσk

‖∇Tσk
‖ , NRσk

:=
∇Rσk

‖∇Rσk
‖ ,

i = 0
repeat

4 dk,i := −Gα
lk
[gradVlk

Ẽσk
m [Φ

k,i]]− gradVlk
Ereg[Φ

k,i]− gradVlk
Ef [Φ

k,i]

5 line-search: choose step size δ by Armijo’s rule
6 Φk,i+1 := Φk,i + δ dk,i

i := i+ 1

until (‖dk,i‖ ≤ TOL or i > MAXITER);
Φk = Φk,i

end
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Fig. 8. Left: deformation after the preregistration solely based on the feature energy. Right:
final deformation after the registration including feature and morphological matching energy.
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[46] V. Šverák, Regularity properties of deformations with finite energy, Arch. Ration. Mech. Anal.,
100 (1988), pp. 105–127.

[47] W. Wells, P. Viola, H. Atsumi, S. Nakajima, and R. Kikinis, Multi-modal volume regis-
tration by maximization of mutual information, Med. Image Anal., 1(1996), pp. 35–51.



ANALYSIS OF TRANSIENT ELECTROMAGNETIC SCATTERING
FROM OVERFILLED CAVITIES∗

TRI VAN† AND AIHUA WOOD‡

SIAM J. APPL. MATH. c© 2004 Society for Industrial and Applied Mathematics
Vol. 64, No. 2, pp. 688–708

Abstract. In this paper, we consider the time-domain scattering problem of a two-dimensional
overfilled cavity embedded in the infinite ground plane. The problem is first discretized in time by
the β, γ Newmark time-marching scheme. At each time step, the variational formulation of the
semidiscrete problem is derived via a nonlocal boundary condition to truncate the infinite problem
domain. Existence and uniqueness of the variational solutions are established. Error analysis of the
fully discrete problem is performed. Stability criteria of the time-stepping scheme are also obtained.

Key words. transient scattering, overfilled cavities in the infinite ground plane, time-domain
finite element method, Newmark time-marching, error estimates, stability analysis
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1. Introduction. The development of mathematical and numerical methods to
accurately predict the radar signature of a target is an important area of research
in electromagnetics. Of particular interest is the study of electromagnetic scattering
from cavities and the calculation of their radar cross sections (RCS). This is because
cavity RCS often dominates a target’s overall RCS and is computationally challeng-
ing. One of the main difficulties in numerically approximating solutions involving
cavities is the appearance of spurious modes caused by interior resonances. A vari-
ety of techniques have been developed to simulate the scattering by cavities. They
include high and low frequency methods [9, 16, 6, 23, 20], the method of moments
[29, 19, 30], the time-domain finite difference method [7], the finite element method
[15, 22], and several hybrid methods [21, 14, 5]. These methods are limited to a certain
range of frequencies and/or small/simple cavities. Recently, the hybrid finite element–
boundary integral (FE-BI) methods have gained increasing popularity for their ability
to model large and complex cavities [12, 13, 11, 18, 17]. Most of the results reported
in the engineering literature appear experimental in nature. Mathematical treatment
of scattering problems involving cavities can be found in [2, 3, 4, 25, 28, 27]. It is a
common assumption that the cavity opening coincides with the aperture on an infinite
ground plane, hence simplifying the modelling of the exterior (to the cavity) domain.
This severely limits the application of these methods since many cavity openings are
not planar. This paper aims to develop a solid mathematical technique that is capable
of characterizing the scattering by overfilled cavities.

In particular, we seek to determine the fields scattered by the protruding cavity
upon a given incident wave. Our method decomposes the entire infinite solution do-
main to two subdomains: the infinite upper half plane over the perfect electrically

∗Received by the editors December 12, 2002; accepted for publication (in revised form) June 5,
2003; published electronically January 30, 2004. The views expressed in this article are those of the
authors and do not reflect the official policy or position of the United States Air Force, Department
of Defense, or the US Government.

http://www.siam.org/journals/siap/64-2/41925.html
†Mission Research Corporation, 3975 Research Blvd., Dayton, OH 45430 (tvan@mrcday.com).
‡Air Force Institute of Technology, 2950 Hobson Way, Wright-Patterson AFB, OH, 45433-7765

(aihua.wood@afit.af.mil, aihuawood@aol.com). The research of this author was supported in part by
Air Force Office of Scientific Research grant AFOSR-PO-2002005 and in part by a grant from the
Dayton Area Graduate Studies Institute.

688



SCATTERING FROM OVERFILLED CAVITIES 689

conducting (PEC) ground plane exterior to the hemisphere enclosing the cavity aper-
ture, and the cavity plus the hemisphere region. The problem is solved exactly in
the infinite subdomain, while the other is solved using finite elements. The two re-
gions are coupled over the hemisphere via the introduction of a boundary operator
exploiting the field continuity over material interfaces. Other FE-BI schemes, such as
those reported in [12] and [11], employ image theory to produce conformal boundaries
and hence limit the size of the finite element computational domain. The trade-off,
however, is the complexity of the integral equation, which can be very expensive in
order to achieve good accuracy. By using the semicircular boundary, exact series
solutions are possible which can be accurately computed and are error-controllable.
For protruding cavity problems, boundary conditions based on series representations
appear more desirable.

In section 1 we discretize the problem in time using the Newmark time-stepping
scheme. A similar scheme has been successfully implemented for the scattering by
cavities embedded in the infinite ground plane [26]. The key point in the proof of
the well-posedness of the resulting semidiscrete problem is the derivation and careful
examination of the properties of the boundary operator. The problem is fully dis-
cretized in section 4, where stability criteria and error estimates are obtained. We
believe this is the first thorough mathematical treatment of scattering problems in-
volving overfilled cavities. It provides a solid mathematical foundation for researchers
in both the applied mathematics and the engineering communities to develop accurate
and efficient numerical solvers for RCS predictions for targets of a cavity nature. The
paper is concluded in section 5.

2. Problem setting. Let Ω ⊂ R
2 be the cross section of a z-invariant cavity (or

trough) in the infinite ground plane such that its fillings of relative permittivity εr ≥ 1
protrude above the ground plane. Let (Ei,Hi) be an electromagnetic wave incident
on the cavity to generate the scattered field (Es,Hs). The scattering problem is to
find (Es,Hs).

In the rest of the paper, we denote S as the cavity wall, Γ as the cavity aperture
so that ∂Ω = S ∪ Γ. The infinite ground plane excluding the cavity opening is
denoted as Γext. Finally, the infinite homogeneous region above the cavity is denoted
as U = R

2
+ \ Ω.

Due to the uniformity in the z-axis, the scattering problem can be decomposed
into two fundamental polarizations: transverse magnetic (TM) and transverse electric
(TE). Its solution then can be expressed as a linear combination of the solutions to
TM and TE problems. In the TM polarization, the magnetic field H is transverse to
the z-axis so that E and H are of the form

E = (0, 0, Ez), H = (Hx, Hy, 0).

In this case, the nonzero component of the total field, also denoted as E, satisfies the
following equation:

(TM)




−∆Ez + εr ∂
2Ez
∂t2

= 0 in Ω ∪ U × (0,∞),

Ez = 0 on S ∪ Γext × (0,∞),

Ez|t=0 = E0,
∂Ez
∂t

∣∣∣∣
t=0

=Et,0,

where εr is the relative electric permittivity, E0 and Et,0 are given initial conditions.
The homogeneous region U above the protruding cavity is assumed to be air, and hence
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its permittivity is εr = 1. In U , the total field can be decomposed as Ez = E
i
z+E

r
z+E

s
z ,

where Eiz is the incident field, E
r
z the reflected field, and Esz the scattered field. The

reflected field exists due to the presence of the infinite ground plane. The incident
and reflected electric fields satisfy

Eiz + E
r
z = 0 on Γext ⊂ {(x, y) : y = 0}.

The scattered field Esz solves

(TMs)




−∆Esz +
∂2Esz
∂t2

= 0 in U × (0,∞),

Esz = Ez − Eiz − Erz on Γ× (0,∞),
Esz = 0 on Γext × (0,∞)

and satisfies the radiation condition at infinity, that is,

lim
r→∞

√
r

(
∂Esz
∂r

+
1

c

∂Esz
∂t

)
= 0, t > 0.(2.1)

The components of H can be obtained in terms of Ez and its partial derivatives by
using Maxwell’s equations.

Similarly, in the TE polarization, the electric field E is transverse to the z-axis
and hence

E = (Ex, Ey, 0), H = (0, 0, Hz).

The nonzero component of the total magnetic field, also denoted by H, satisfies the
following equation:

(TE)




−∇ ·
(

1
εr
∇Hz

)
+
∂2Hz
∂t2

= 0 in Ω ∪ U × (0,∞),

∂Hz
∂n

= 0 on S ∪ Γext × (0,∞),

Hz|t=0 = H0,
∂Hz
∂t

|t=0 = Ht,0,

where H0 and Ht,0 are given initial conditions. In UR, the total magnetic field can
be decomposed into Hz = H

i
z +H

r
z +H

s
z , where

∂Hiz
∂y

+
∂Hsz
∂y

= 0 on {(x, y) : y = 0}.

The scattered field solves

(TEs)




−∆Hsz +
∂2Hsz
∂t2

= 0 in U × (0,∞),

∂Hsz
∂n

= 0 on Γext,

∂Hsz
∂n

=
1

εr

∂Hz
∂n

− ∂H
i
z

∂n
− ∂H

r
z

∂n
on Γ× (0,∞),

where ∂
∂n is the normal derivative on Γ. The scattered magnetic field also satisfies

the same radiation condition defined in (2.1). The components of E can be obtained
in terms of Hz and its partial derivatives by using Maxwell’s equations.

In the next section, we apply the Newmark time-marching scheme to temporally
discretize (TM), (TMs), (TE), and (TEs). The resulting equations are called semi-
discrete equations since only the time variable t is discretized.
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BR

S

Γext
ΓΓext

y

x

(Einc,Hinc)

(εr,µ0)

(ε0,µ0)

Ω

(Es,Hs)

U

Fig. 1. Cavity setting.

3. Semidiscrete problems. First, let BR be a semicircle of radius R large
enough to completely enclose the overfilled portion of the cavity (see Figure 1). We
denote the region bounded by BR and the cavity wall S as ΩR. Hence, this region ΩR
consists of the cavity and the homogeneous part between BR and Γ. Let UR be the
homogeneous region outside of ΩR, that is, UR = {(r, θ) : r > R, 0 < θ < π}.

In this section, the TM and TE equations are discretized in time by using the
Newmark time-marching scheme. The Newmark algorithm is a two-step algorithm
and can be used in predictor-corrector form [31, 32]. At each time step, we construct
a nonlocal boundary condition on the semicircle BR to couple the solution in the
infinite domain exterior to BR and the solution in the bounded domain inside BR.
The boundary condition enables us to reduce the infinite problem domain into a
bounded one. The Newmark scheme is defined by the following.

Let N be a positive integer, ∆t = T/N be the temporal step size, and tn+1 = (n+
1)∆t for n = 0, 1, 2, . . . ,N − 1. Denote un+1, u̇n+1, and ün+1 as the approximations

of u, ∂u∂t , and
∂2u
∂t2 at t = tn+1, respectively. These approximations are related by

un+1 = un +∆tu̇n +
∆t2

2

[
2βün+1 + (1− 2β)ün

]
, 0 ≤ n ≤ N − 1,

u̇n+1 = u̇n +∆t
[
γün+1 + (1− γ)ün] , 0 ≤ n ≤ N − 1,

where γ and β are parameters to be determined to guarantee stability of the time-
marching scheme.

3.1. TM polarization. For convenience, we denote ui as the incident field Eiz,
ur the reflected field Erz , u the total field Ez, and u

s the scattered field Esz . The
semidiscrete problem is to find un+1, n = 0, 1, . . . ,N such that we have the following:

Prediction

ũn+1 = un +∆tu̇n +
(∆t)2

2
(1− 2β)ün,(3.1)

˜̇u
n+1

= u̇n +∆t(1− γ)ün,(3.2)
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Solution


−∆un+1 + α2εru
n+1 = α2εrũ

n+1 in ΩR,

un+1 = 0 on S,

un+1 = us,n+1 + ui,n+1 + ur,n+1 on BR,
(3.3)

Correction

ün+1 = α2(un+1 − ũn+1),(3.4)

u̇n+1 = ˜̇u
n+1

+∆tγün+1,(3.5)

where α2 = 1
∆t2β . The scattered field us,n+1 satisfies the following exterior problem:




−∆us,n+1 + α2us,n+1 = α2ũs,n+1 in UR,

us,n+1(R, θ) = g(R, θ) on BR,
us,n+1 = 0 on Γext,

(3.6)

where g
def
= un+1 − ui,n+1 − ur,n+1, and

lim
r→∞

√
r

(
∂us,n+1

∂r
+

1

c
u̇s,n+1

)
= 0.(3.7)

3.1.1. Exterior problem and transparent boundary condition. For brevity,
we omit the superscript n + 1 in un+1 in the remainder of the section. To solve the
exterior problem (3.6), we set, in the polar coordinates (r, θ),

us(r, θ) =

∞∑
m=1

Am(r) sin 2mθ, r ≥ R, θ ∈ [0, π],

where Am(r) is to be determined. We choose the sine series expansion because us

vanishes on Γext, i.e., θ = 0, π and r ≥ R. By substituting the sine series into (3.6),
we obtain the nonhomogeneous equation with a Dirichlet boundary condition


[
d2

dr2
+

1

r

d

dr
−
(
α2 +

4m2

r2

)]
Am(r) = α2f̃sm(r), r ∈ (R,∞),

Am(R) = gm(R),
(3.8)

where fsm and gm are the coefficients of the sine series expansions of ũs and g, respec-
tively. The solution to (3.8) can be expressed as

Am(r) = A
h
m(r) +A

p
m(r),(3.9)

where Ah
m(r) is the solution of the homogeneous counterpart of (3.8) and Ap

m(r) is
the solution of (3.8) with homogeneous boundary condition Ap

m(R) = 0. To be more
precise, Ah

m and Ap
m solve, respectively,


[
d2

dr2
+

1

r

d

dr
−
(
α2 +

4m2

r2

)]
Ah
m(r) = 0, r ∈ (R,∞),

Ah
m(R) = gm(R)

(3.10)
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and 

[
d2

dr2
+

1

r

d

dr
−
(
α2 +

4m2

r2

)]
Ap
m(r) = α2f̃sm(r), r ∈ (R,∞),

Ap
m(R) = 0.

(3.11)

Equation (3.10) is a modified Bessel’s equation of order 2m. By the boundary condi-
tion and noting that the solution is bounded near infinity by the radiation condition,
we have

Ah
m(r) =

gm(R)

K2m(αR)
K2m(αr), r ≥ R.(3.12)

The solution to (3.11) can be obtained by applying the Green’s function method as
discussed in [10]. The Green’s function associated to (3.11) is defined by

Gm(r, r
′) =



km(r

′)lm(r)
r′2Wm(r′)

, r ≥ r′,
lm(r

′)km(r)
r′2Wm(r′)

, r ≤ r′,
(3.13)

where

km(r
′) = K2m(αr

′),
lm(r

′) = I2m(αr′)K2m(αR)−K2m(αr
′)I2m(αR),

Wm(r
′) = lm(r′)k′m(r

′)− km(r′)l′m(r′).
Note that Gm(R, r

′) = 0 for all r′ ≤ R and Gm(r,R) = 0 for r ≤ R. Therefore, the
solution to (3.11) is of the form

Ap
m(r) = α

2

∫ ∞

R

Gm(r, r
′)f̃sm(r

′)dr′, r ≥ R.(3.14)

Consequently,

Am(r) =
gm(R)

K2m(αR)
K2m(αr) + α

2

∫ ∞

R

Gm(r, r
′)f̃sm(r

′)dr′.

Therefore, the scattered field us can be expressed explicitly by

us(r, θ) =

∞∑
m=1

[
gm(R)

K2m(αR)
K2m(αr) + α

2

∫ ∞

R

Gm(r, r
′)f̃sm(r

′)dr′
]
sinmθ,

where

gm(R) =
2

π

∫ π
0

(u− ui − ur)(R, θ′) sin 2mθ′dθ′,

fsm(r
′) =

2

π

∫ π
0

ũs(r′, θ′) sin 2mθ′dθ′.

By using

sin 2mθ sin 2mθ′ =
1

2
[cos 2m(θ − θ′)− cos 2m(θ + θ′)]

=:
1

2
C(θ, θ′),
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we can write

us(r, θ) =
2

π

∞∑
m=1

{
K2m(αr)

K2m(αR)

∫ π
0

C(θ, θ′)(u− ui − ur)(R, θ′)dθ′

+ α2

∫ ∞

R

dr′Gm(r, r′)
∫ π

0

dθ′C(θ, θ′)ũs(r′, θ′)
}
.

Taking the partial derivative ∂
∂r of u

s yields

∂us

∂r
= T (u− ui − ur) + Φ(ũs), r ≥ R, θ ∈ [0, π],(3.15)

where T is a linear operator defined by

T (v) =
1

π

∞∑
m=1

α
K ′

2m(αr)

K2m(αR)

∫ π
0

C(θ, θ′)v(θ′)dθ′ ∀v ∈ H1/2(BR)

and

Φ(ũs) =
α2

π

∞∑
m=1

∫ ∞

R

dr′
∂Gm(r, r

′)
∂r

∫ π
0

dθ′C(θ, θ′)ũs(r′, θ′).

We now construct the nonlocal boundary condition on BR using (3.15). Define the
Sobolev spaces H1/2(BR) and H−1/2(BR), respectively, as

H1/2(BR) =
{
φ :

∞∑
m=0

√
1 +m2|φm|2 <∞

}
,(3.16)

H−1/2(BR) =
{
φ :

∞∑
m=0

1√
1 +m2

|φm|2 <∞
}
,(3.17)

where

φm = φcm + iφsm =
2

π

∫ π
0

φ(θ)ei2mθdθ.

Let TR be the restriction of T to BR so that TR : H1/2(BR) → H−1/2(BR), and let it
be defined by

TRg(θ) = 1

π

∞∑
m=1

α
K ′

2m(αR)

K2m(αR)

∫ π
0

C(θ, θ′)g(θ′)dθ′,(3.18)

where θ ∈ [0, π].
Proposition 3.1. The operator TR is symmetric and bounded, that is,

〈TRg, φ〉 = 〈TRφ, g〉,
‖TRg‖H−1/2(BR) ≤ C‖g‖H1/2(BR) ∀g ∈ H1/2(BR),

where C is a constant.
Proof. By definition, we have

‖TRg‖H−1/2(BR) = sup
φ∈H1/2(BR)

|〈TRg, φ〉|
‖φ‖H1/2(BR)

,
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where

〈TRg, φ〉 = 1

π

∞∑
m=1

α
K ′

2m(αR)

K2m(αR)

∫ π
0

dθφ(θ)

∫ π
0

dθ′C(θ, θ′)g(θ′).

By writing cos 2m(θ ± θ′) = Re{ei2mθe±i2mθ′}, we have

〈TRg, φ〉 = 1

2

∞∑
m=1

α
K ′

2m(αR)

K2m(αR)
φsmg

s
m;

thus, TR is symmetric and

|〈TRg, φ〉| ≤ 1

2

√√√√ ∞∑
m=1

α

∣∣∣∣K ′
2m(αR)

K2m(αR)
(φsm)

2

∣∣∣∣
√√√√ ∞∑
m=1

α

∣∣∣∣K ′
2m(αR)

K2m(αR)
(gsm)

2

∣∣∣∣.
For sufficiently large m, α

K′
2m(αR)
K2m(αR) <

√
1 +m2 (see [1]). Hence there exists a constant

C independent of φ and g such that

|〈TRg, φ〉| ≤ C‖φ‖H1/2(BR)‖g‖H1/2(BR).

This proves the proposition.
Hence we can easily see that on BR the normal derivative of the total electric field

satisfies the following continuity condition:

∂u

∂r

∣∣∣∣
r=R

=
∂ui

∂r

∣∣∣∣
r=R

+
∂ur

∂r

∣∣∣∣
r=R

+
∂us

∂r

∣∣∣∣
r=R

=
∂

∂r
(ui + ur)|r=R + TR(u− ui − ur) + ΦR(ũ

s),(3.19)

where ΦR is the restriction of Φ to r = R. Equation (3.19) is the transparent boundary
condition on BR. It enables one to couple the total field in the infinite homogeneous
domain UR to the total field in the bounded domain ΩR through the operator TR.
We can rewrite the boundary value problem (3.3) as



−∆un+1 + α2εru
n+1 = α2εrũ

n+1 in ΩR,

un+1 = 0 on S,

∂un+1

∂r
− TRun+1 =

∂ui,n+1

∂r
+
∂ur,n+1

∂r
+ ΦR(ũ

s,n+1)− TR(ui,n+1 + ur,n+1) on BR.

(3.20)

Next, we solve (3.20) by a variational method.

3.1.2. Variational formulation. Define the subspace V of L2(ΩR) by

V = {v ∈ H1(ΩR) : v|S = 0}

equipped with the H1-norm, that is,

‖u‖V = ‖u‖H1(ΩR).
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The variational formulation of (3.3), or equivalently (3.20), is to find u ∈ V such that

bTM (u, v) = F (v) ∀v ∈ V,(3.21)

where

bTM (u, v) =

∫
Ω

(∇u · ∇v + α2εruv) dxdy −
∫
BR

TR(u)v dθ,(3.22)

F (v) = α2

∫
Ω

εrũv dxdy +

∫
BR

Hv dθ +

∫
BR

ΦR(ũ
s)vdθ,(3.23)

with

H =
∂ui

∂r

∣∣∣
r=R

+
∂ur

∂r

∣∣∣
r=R

− TR(ui|r=R + ur|r=R).

We note that F (v) in (3.23) contains the solution and its time derivatives in the
previous time step through the term ΦR(ũ

s).

Theorem 3.2. The variational problem (3.21) has a unique solution u ∈ V and

‖u‖V ≤ C (‖εrũ‖L2(ΩR) + ‖ui‖V + ‖ur‖V + ‖ũs‖V
)
.

Proof. Since 〈TRg, g〉 ≤ 0 and TR : H1/2(BR) → H−1/2(BR) is bounded, the
symmetric bilinear form is coercive and bounded. Thus, by the Lax–Milgram lemma,
(3.21) has a unique solution and

‖u‖V ≤ C‖F‖V ′ .

Standard trace theory then gives

‖F‖V ′ ≤ C (‖εrũ‖L2(ΩR) + ‖ui‖V + ‖ur‖V + ‖ũs‖V
)
.

This proves the theorem.

The Newmark time-marching algorithm for (3.20) can be described as follows:

1. Form the system matrix K from the bilinear forms bTM .
Time-loop: for n = 0, 1, 2 . . .

2. Compute the predicted values ũn+1, ˜̇u
n+1

in the interior ΩR.

3. Compute the predicted values ũn+1, ˜̇u
n+1

in the exterior region UR.
4. Form the right-hand side vector Fn+1.
5. Solve (3.21): Kun+1 = Fn+1 (in ΩR).
6. Compute the solution un+1 in the exterior UR.
7. Correct ün+1 and u̇n+1 in ΩR.
8. Correct ün+1 and u̇n+1 in UR.

The term ü0 can be approximated as

ü0 =
u̇0 − u̇−1

∆t
,

with u̇−1 = 0; that is, all fields are assumed to be zero for t < 0.
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3.2. TE polarization. As in the TM case, we denote ui as the incident field
Hiz, u

r reflected field Hrz , u total field Hz, and u
s scattered field Hsz . It is known that

∂ui

∂y
+
∂ur

∂y
= 0 on Γext.

The semidiscrete problem is to find un+1, n = 0, 1, 2, . . . ,N , such that we have the
following:

Prediction

ũn+1 = un +∆tu̇n +
(∆t)2

2
(1− 2β)ün,(3.24)

˜̇u
n+1

= u̇n +∆t(1− γ)ün,(3.25)

Solution


−∇ · (ε−1
r ∇un+1) + α2un+1 = α2ũn+1 in ΩR,

∂un+1

∂n
= 0 on S,

un+1 = us,n+1 + ui,n+1 + ur,n+1 on BR,
(3.26)

Correction

ün+1 = α2(un+1 − ũn+1),(3.27)

u̇n+1 = ˜̇u
n+1

+∆tγün+1,(3.28)

where α2 = 1
∆t2β .

The scattered field us,n+1 satisfies the exterior problem


−∆us,n+1 + α2us,n+1 = α2ũs,n+1 in UR,
∂us,n+1

∂r
= 0 on Γext,

∂us,n+1

∂r
= h(R, θ) on BR,

(3.29)

where

h =
∂un+1

∂r
− ∂u

i,n+1

∂r
− ∂u

r,n+1

∂r
,

and the radiation condition

lim
r→∞

√
r

(
∂us,n+1

∂r
+

1

c
u̇s,n+1

)
= 0.

In the next subsection, we construct the scattered field in UR and then use it to
construct the Dirichlet-to-Neumann mapping on BR. Again, the superscripts n + 1
are temporarily omitted for brevity.

3.2.1. Exterior problem and transparent boundary condition. We ex-
pand the scattered field in UR as

us(R, θ) =
∑
m=0

Bm(r) cos 2mθ, r ≥ R, θ ∈ [0, π],(3.30)
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where Bm(r) is to be determined. Here the cosine series expansion is chosen because
∂us

∂y vanishes for θ = 0, π and r ≥ R. By substituting (3.30) into (3.29), we obtain
the nonhomogeneous equation with a Neumann boundary condition


[
d2

dr2
+

1

r

d

dr
−
(
α2 +

4m2

r2

)]
Bm(r) = α2f̃cm(r), r ∈ (R,∞),

B′
m(R) = hm(R),

(3.31)

where fcm and hm are the coefficients of the cosine series expansions of ũs and h,
respectively. The solution to (3.31) can be written as

Bm(r) = B
h
m(r) +B

p
m(r),

where Bh
m(r) and B

p
m(r) solve, respectively,


[
d2

dr2
+

1

r

d

dr
−
(
α2 +

4m2

r2

)]
Bh
m(r) = 0, r ∈ (R,∞),

B′
m(R) = hm(R)

(3.32)

and 

[
d2

dr2
+

1

r

d

dr
−
(
α2 +

4m2

r2

)]
Bp
m(r) = α2f̃cm(r), r ∈ (R,∞),

B′
m(R) = 0.

(3.33)

Again, by applying the boundary and radiation conditions to the general solution of
the modified Bessel’s equation (3.32), we obtain

Bh
m(r) =

hm(R)

αK ′
2m(αR)

K2m(αr).(3.34)

Equation (3.33) can be solved by applying the Green’s function method. The Green’s
function associated to this equation is defined by

Gm(r, ξ) =



km(ξ)lm(r)

ξ2Wm(ξ)
, r ≥ ξ,

lm(ξ)km(r)

ξ2Wm(ξ)
, r ≤ ξ,

(3.35)

where

km(ξ) = K2m(αξ),

lm(ξ) = α[I2m(αξ)K
′
2m(αR)−K2m(αξ)I

′
2m(αR)],

Wm(ξ) = lm(ξ)k
′
m(ξ)− km(ξ)l′m(ξ).

Hence the particular solution is of the form

Bp
m(r) = α

2

∫ ∞

R

Gm(r, r
′)f̃cm(r

′)dr′, r ≥ R.

Consequently, the scattered field us can be expressed as

us(r, θ) =

∞∑
m=0

[
hm(R)

αK ′
2m(αR)

K2m(αr) + α
2

∫ ∞

R

Gm(r, r
′)f̃cm(r

′)dr′
]
cos 2mθ,
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where

hm(R) =
2

π

∫ π
0

(
∂u

∂r
− ∂u

i

∂r
− ∂u

r

∂r

)
(R, θ′) cos 2mθ′ dθ′,

f̃cm(r
′) =

2

π

∫ π
0

ũ(r′, θ′) cos 2mθ′ dθ′.

Using the identity cos 2mθ cos 2mθ′ = 1
2 [sin 2m(θ + θ′) − sin 2m(θ − θ′)] = 1

2S(θ, θ
′)

yields

us(r, θ) = S
(
∂u

∂r
− ∂u

i

∂r
− ∂u

r

∂r

)
+Ψ(ũs) in UR,

where S is the mapping defined by

Sg(θ) = 1

π

∞∑
m=0

[
K2m(αr)

αK ′
2m(αR)

∫ π
0

S(θ, θ′)g(θ′) dθ′
]
,

and

Ψ(ũs)(r, θ) = α2
∞∑
m=0

∫ ∞

R

dr′Gm(r, r′)
∫ π

0

dθ′S(θ, θ′)ũs(r′, θ′).

Denote SR as the restriction of S on BR such that

SRg = 1

π

∞∑
m=0

[
K2m(αR)

αK ′
2m(αR)

∫ π
0

S(θ, θ′)g(θ′) dθ′
]

for all g ∈ H−1/2(BR). We can show the following proposition.
Proposition 3.3. The operator SR : H−1/2(BR) → H1/2(BR) is symmetric and

bounded.
The proof of the proposition is similar to that of TR and is omitted for brevity.

Thus, the boundary condition on BR can be defined as

us(R, θ) = SR
(
∂u

∂r

)
− SR

(
∂ui

∂r

)
− SR

(
∂ur

∂r

)
+ΨR(ũ

s)(r, θ),

where ΨR is the restriction of Ψ on BR. Consequently, by the continuity condition on
BR we have

u|r=R− = u|r=R+ = ui|r=R + ur|r=R + us|r=R
= ui|r=R + ur|r=R + SR

(
∂u

∂r

)
− SR

(
∂ui

∂r

)
− SR

(
∂ur

∂r

)
+ΨR(ũ

s).
(3.36)

Thus, the boundary value problem for TE can be rewritten as


−∇ ·
(

1

εr
∇u
)
+ α2u = α2ũ in ΩR,

∂u

∂n
= 0 on S,

u− SR
(
∂u

∂r

)
= ui + ur +ΨR(ũ

s)− SR
(
∂ui

∂r
+
∂ur

∂r

)
on BR.

(3.37)

The next subsection is devoted to the variational formulation of (3.37).
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3.2.2. Variational formulation. For convenience, we set

v = u− (ui + ur + Ψ̂(ũs)) in ΩR,(3.38)

where Ψ̂(ũs) is the extension of Ψ(ũs) into ΩR. By direct computation, we can show
that

SR
(
∂ΨR
∂r

(ũs)

)
= 0 on BR.

Hence the boundary value problem (3.37) can be written in terms of v as


−∇ ·
(

1

εr
∇v
)
+ α2v = α2ũ+ φ in ΩR,

∂v

∂n
= −h on S,

[1.5ex]v − SR
(
∂v

∂r

)
= 0 on BR,

(3.39)

where

φ = ∇ ·
[
1

εr
∇(ui + ur + Ψ̂(ũs))

]
− α2(ui + ur + Ψ̂(ũs)),

and

h =
∂(ui + ur + Ψ̂(ũs))

∂n
on S.

Hence we can define the variational space

W =

{
w ∈ H1(ΩR) : w|BR

= SR
(
∂w

∂r

)
on BR

}
(3.40)

with H1-norm. The variational form of the boundary value equation (3.39) is to find
v ∈W such that

bTE(v, w) = F (w) ∀w ∈W,(3.41)

where

bTE(v, w) =

∫
ΩR

(
1

εr
∇v · ∇w + α2uw

)
dxdy −

∫
BR

∂v

∂r
SR
(
∂w

∂r

)
dθ,(3.42)

and

F (w) =

∫
ΩR

(α2ũ+ φ)w dxdy −
∫
S

hwdS.

Theorem 3.4. The variational problem (3.41) has a unique solution inW defined
by (3.40) and

‖u‖W ≤ C(‖ũ‖L2(ΩR) + ‖ui‖W + ‖ur‖W + ‖ũs‖W ).

Proof. Since 〈SRg, g〉 ≤ 0 and SR : H−1/2(BR) → H1/2(BR) is bounded, the
symmetric bilinear form a(u,w) in (3.41) is coercive and bounded. Hence the existence
and uniqueness follow from the Lax–Milgram theorem.

The time-marching procedure is the same as in the TM case.
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4. Fully discrete problem. In this section, we consider the variational prob-
lems (3.21) and (3.41) by using finite element methods. Finite element error estimates
and the stability of the Newmark scheme of the TM problem are presented. The ar-
guments for the TE case, which are similar, are omitted here.

4.1. Finite element error analysis. Assume that ΩR is covered by a family
of quasi-uniform triangular meshes τh, where h is the mesh size, that is,

h = max
K∈τh

hK ,

where hK is the diameter of the element K ∈ τh.
In the TM case, we consider the finite-dimensional subspace

Vh = {vh ∈ H1(ΩR) : vh|K is linear ,K ∈ τh}.
We note that Vh is closed in V and Vh → V as h → 0. The fully discrete problem is
to find unh ∈ Vh, n = 1, 2, . . . ,N , such that

b(unh, vh) = F
n(vh) ∀vh ∈ Vh,(4.1)

where b(unh, vh) and Fn(vh) are as defined in (3.22) and (3.23), respectively. Here,
the subscript TM in b(·, ·) is omitted for brevity. We recall that the bilinear form b
is coercive and continuous. Hence by Céa’s lemma [8, pp. 36–69], the fully discrete
problem (4.1) has a unique solution unh ∈ Vh and

‖un − unh‖V ≤ C inf
vh∈Vh

‖un − vh‖V .(4.2)

Since εr is discontinuous in ΩR, the solution u
n /∈ H2(ΩR), the inequality (4.2) does

not yield a convergence rate in terms of h. In fact, since Vh → V for any ε > 0, there
is an h0 = h0(ε, u

n) such that for 0 < h < h0 there exists vh ∈ Vh satisfying

‖un − vh‖V ≤ ε.
By (4.2), we have

‖un − unh‖V ≤ Cε ∀h < h0(ε, u
n).

Thus, the finite element solution unh converges to u
n in V but not uniformly. We have

the following.
Theorem 4.1. Let un ∈ V and unh ∈ Vh be the solutions to (3.21) and (4.1),

respectively, for Fn ∈ V ′. Then given ε > 0, there is an h0 = h0(ε) such that for all
0 < h < h0 we have

‖un − unh‖L2(ΩR) ≤ ε‖un − unh‖V .(4.3)

Furthermore, if εr ∈ L∞(ΩR), hence εrũ
n ∈ L2(ΩR), then there exists an h1 =

h1(ε) > 0 such that for all 0 < h < h1 we have

‖un − unh‖V ≤ Cε‖Fn‖L2(ΩR),(4.4)

where C is a positive constant independent of h. Consequently, we have

‖un − unh‖L2(Ω) ≤ Cε2‖Fn‖L2(ΩR).
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We first consider the following lemma.
Lemma 4.2. Let Λ be the set of solutions w ∈ V to

b(w, v) = (ψ, v) ∀v ∈ V,(4.5)

where ‖ψ‖L2(ΩR) = 1. Then Λ is compact in V .
Proof. Since w ∈ V is the solution to (4.5), it satisfies

‖w‖V ≤ C‖ψ‖L2(ΩR).

Thus, the solution mapping G : ψ → Gψ = w is continuous from the dual space V ′ to
V ⊂ H1(ΩR). Furthermore, the embedding, I : L2(ΩR) ⊂ V ′, is compact. It implies
that Λ ⊂ G ◦ I({ψ ∈ L2(ΩR) : ‖ψ‖L2(ΩR) = 1}) is compact in V .

We now prove the theorem.
Proof. By viewing un − unh as a linear functional in L2(ΩR), we have

‖un − unh‖L2(ΩR) = sup
‖ψ‖L2(ΩR)=1

(un − unh, ψ).

Let w ∈ V be the solution to

b(v, η) = (ψ, η) ∀η ∈ V.
Then

‖w‖V ≤ C‖ψ‖L2(ΩR).

Thus, for vh ∈ Vh, by the boundedness of the bilinear form b(·, ·), we have
|(un − unh, ψ)| = |b(un − unh, w)| = |b(un − unh, w − vh)|

≤ C‖un − unh‖V ‖w − vh‖V .
By the density property of Vh in V , we can choose vh such that ‖w− vh‖V ≤ ε‖w‖V .
We then obtain

|(un − unh, ψ)| ≤ Cε‖un − unh‖V ‖w‖V ≤ Cε‖un − unh‖V ‖ψ‖L2(ΩR).

Thus

‖un − unh‖L2(ΩR) ≤ Cε‖un − unh‖V .
This proves the estimate (4.3).

Next, we set

F̂n =
Fn

‖Fn‖L2(ΩR)
, ûn =

un

‖Fn‖L2(ΩR)
, ûnh =

unh
‖Fn‖L2(ΩR)

.

Then, we have

b(ûn, v) = F̂n(v) ∀v ∈ V,
b(ûnh, vh) = F̂

n(vh) ∀vh ∈ V.
By Céa’s lemma,

‖ûn − ûnh‖V ≤ C inf
vh∈Vh

‖ûn − vh‖V .
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Since the set Λ̂ = {ûn : b(ûn, φ) = F̂n(φ), ‖F̂n‖L2(ΩR) = 1} is compact in V , we have,
for 0 < h < h0(ε),

inf
vh∈Vh

‖ûn − vh‖V ≤ ε.

Thus

‖ûn − ûnh‖V ≤ Cε,

which implies that

‖un − unh‖V ≤ Cε‖Fn‖L2(ΩR).

This completes the proof.

4.2. Stability analysis. For stability analysis, we express the Newmark scheme
in a three-step formulation. We start with

−∆un+2 + α2εru
n+2 = α2εrũ

n+2

= α2εr

[
un+1 +∆tu̇n+1 +

∆t2

2
(1− 2β)ün+1

]
.

Using (3.5) to remove u̇n+1 and then (3.2) to remove ˜̇u
n+1

, we obtain

−∆un+2 + α2εru
n+2

= α2εr

[
un+1 +∆t(u̇n +∆t(1− γ)ün) + ∆t2γ +

∆t2

2
(1− 2β)ün+1

]
.

Using (3.1) to remove u̇n and then (3.4) to remove ün+1 and ün separately, and finally
applying (3.3) to remove ũn+1 and ũn separately, we obtain

−β∆un+2 − ( 1
2 − 2β + γ)∆un+1 − ( 1

2 + β − γ)∆un

+ βα2εr(u
n+2 − 2un+1 + un) = 0.

Adapting unh for u
n ∈ Vh, we have the following variational form of the above equation:

1
∆t2

(
εr(u

n+2
h − 2un+1

h + unh), vh

)
+ a

(
βun+2
h + ( 1

2 − 2β + γ)un+1
h + ( 1

2 + β − γ)unh, vh
)

= βGn+2(vh) + ( 1
2 − 2β + γ)Gn+1(vh) + ( 1

2 + β − γ)Gn(vh) ∀vh ∈ Vh,
(4.6)

where

a(unh, vh) =

∫
ΩR

∇unh · ∇vh dx−
∫
BR

TR(unh)vh dθ,

and

Gn(vh) =

∫
BR

Hnvhdθ −
∫
BR

ΦR(ũ
s,n
h ) vh dθ.
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It’s clear that the bilinear form a(unh, vh) is symmetric and coercive. Thus the eigen-
value problem

a(wh, vh) = λh(wh, vh) ∀vh ∈ Vh(4.7)

has positive eigenvalues and corresponding orthonormal eigenvectors:

0 < λh,1 ≤ λh,2 ≤ · · · ≤ λh,M <∞,
wh,1, wh,2, . . . , wh,M ,

where dim Vh =M .
Without confusion, we write wi = wh,i and λi = λh,i. Substituting wi for vh in

(4.6), noting that

a(unh, wi) = a(wi, u
n
h) = λi(wi, u

n
h) = λi(u

n
h, wi)

yields

1
∆t2 (εr(u

n+2 − 2un+1 + unh), wi)

+λi(βu
n+1
h + ( 1

2 − 2β + γ)un+1
h + ( 1

2 + β − γ)unh, wi)
= βGn+2(wi) + ( 1

2 − 2β + γ)Gn+1(wi) + ( 1
2 + β − γ)Gn(wi)

≡ Ψn.

(4.8)

We observe that εr can be considered a constant and hence, without loss of
generality, let εr = 1. Indeed, for 1 < εr ∈ L∞(ΩR), we may consider the weighted
space L2(ΩR, εr) with the inner product

(u, v)εr = (εru, v) = (u, εrv).

We then consider the following eigenvalue equation: find λh and uh ∈ Vh such that

a(uh, vh) = λh(uh, vh)εr ∀vh ∈ Vh.(4.9)

Since a(·, ·) is symmetric and coercive, (4.9) has positive eigenvalues λi and corre-
sponding orthonormal eigenvectors wi, i = 1, 2, . . . ,M , such that

(wi, wj)εr = δij .

Hence, by substituting unh =
∑M
i=1 u

n
i wh,i into (4.8), we obtain for i = 1, 2, . . . ,M ,

1
∆t2 (u

n+2
i − 2un+1

i + uni ) + λi
(
βun+2
i +

(
1
2 − 2β + γ

)
un+1
i +

(
1
2 + β − γ)uni ) = 0,

(4.10)

that is,

un+2
i =

2
∆t2 − λi( 1

2 − 2β + γ)
1

∆t2 + λiβ
un+1
i −

1
∆t2 + λi(

1
2 + β − γ)

1
∆t2 + λiβ

uni

≡ ηun+1
i − κuni .

Thus (4.10) can be written in a matrix form as(
un+2
i

un+1
i

)
=

(
η −κ
1 0

)(
un+1
i

uni

)
≡ B

(
un+1
i

uni

)
.
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By denoting

Xni =
(
un+1
i uni

)
for n = 1, 2, . . . , N , i = 1, 2, . . . ,M , we obtain the recursive relation

Xn+1
i = B(λi)X

n
i ,

or equivalently

Xn+1
i = BnX0

i .(4.11)

For stability analysis we wish to establish conditions on β, γ, and ∆t such that
|Xni | = (|un+1

i |2 + |uni |2)1/2 for all i, and hence |un| = (
∑M
i=1 |uni |2)1/2, is bounded

independent of n.
We observe that, if B is diagonalizable with the spectral radius ρ(B) ≤ 1, then

|Xn| = |BnX0| ≤ ‖G−1‖ρn(B)‖G‖|X0| ≤ C
for some matrix G. For simplicity, we seek conditions on β, γ, and ∆t such that B
has distinct eigenvalues (hence diagonalizable) of lengths less than 1.

We shall assume that β ≥ 0. We consider the characteristic equation of B:

det(µI −B) = µ2 − µη + κ = 0.

The solutions µ1, µ2 are

µ1,2 =
η ±

√
η2 − 4κ

2
.

We consider the following two cases.
Case 1. Suppose ∆ = η2 − 4κ < 0. Then µ1 = µ̄2 and |µ1| = |µ2| =

√
κ. Thus

we require κ ≤ 1, which implies that γ ≥ 1
2 . We have

∆ =

[
2− λi∆t2

(
1

2
− 2β + γ

)]2
− 4(1 + λi∆t

2β)

[
1 + λi∆t

2

(
1

2
+ β − γ

)]
< 0,

which is

−4λi∆t2 + (λi∆t
2)2[(1 + γ)2 − 4β] < 0,

or

λi∆t
2

[
1

4

(
1

2
+ γ

)2

− β
]
< 1,

or equivalently

1

4

(
1

2
+ γ

)2

− β < 1

λi∆t2
∀i = 1, 2, . . . ,M.

Case 2. Suppose ∆ > 0, that is,

1

4

(
1

2
+ γ

)2

− β > 1

λi∆t2
∀i = 1, 2, . . . ,M.(4.12)
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Without loss of generality, µ1 < µ2. Let

−1 ≤ µ1 =
η

2
−

√
∆

2
<
η

2
+

√
∆

2
= µ2 ≤ 1.

The inequality µ1 ≥ −1 implies 1 + η + κ ≥ 0, or

γ

2
− β ≤ 1

λi∆t2
.(4.13)

µ2 ≤ 1 implies 1− η + κ ≥ 0. So we require κ ≥ −1, which implies

1

2

(
γ − 1

2
− 2β

)
≤ 1

λi∆t2
.(4.14)

By combining (4.13) and (4.14), we have

γ

2
− β − 1

4
≤ 1

λi∆t2
.(4.15)

However, the inequalities (4.12) and (4.15) are inconsistent, so we ignore Case 2.
Thus, Xn = BnX0 is stable if

γ ≥ 1

2
and

1

4

(
1

2
+ γ

)2

− β < 1

λi∆t2
, i = 1, 2, . . . ,M.(4.16)

We summarize the above analysis in the following theorem.
Theorem 4.3. The Newmark scheme for the TM variational problem is stable if

γ ≥ 1
2 , β ≥ 0, and

1

4

(
1

2
+ γ

)2

− β < 1

λi∆t2
, i = 1, 2, . . . ,M,(4.17)

where λh,i are the eigenvalues of a(w, vh) = λh(w, vh) for all vh ∈ Vh.
Remark 4.4. By assuming the value γ = 1

2 , one achieves an O(∆t2) error rate, but
this is not always the best value to use. The finite element discretization of the problem
tends to create a stiff system of ordinary differential equations. Standard theory in
finite elements indicate that the modes corresponding to the higher frequencies become
more and more inaccurate as we move up the spectrum (see [24, pp. 244–256] and
[31, pp. 63–65]). In practice, a value of γ larger than 1

2 is often used in order to damp
out the higher frequencies while preserving the more accurate lower ones.

5. Conclusion. In this paper, the two-dimensional time-dependent TM and TE
scattering problems of an overfilled cavity in the infinite ground plane are considered.
In each case, the problem was first discretized in time by the Newmark time-marching
scheme. At each time step t = tn, the partial differential equations defined in an
infinite domain are solved. Transparent boundary conditions are constructed using
the pseudodifferential operators TR for TM and SR for TE to reduce the computational
domain to the bounded region ΩR. Variational formulations for both polarizations
are derived. Existence and uniqueness of both the semidiscrete and the fully discrete
solutions, un and unh, are obtained. Error estimates in both theH1-norm, ‖un−unh‖H1 ,
and L2-norm, ‖un − unh‖L2 , n = 0, 1, . . . ,N , are achieved. Stability criteria for
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the time-marching scheme are established. In particular, the scheme is shown to be
unconditionally stable if γ ≥ 1

2 and

β >
1

4

(
1

2
+ γ

)2

.
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Abstract. A variational method is given for determining the essential supremum of the surface
impedance of a partially coated perfect conductor from a knowledge of the far field pattern of the
time-harmonic electric field at fixed frequency. It is assumed that the shape of the scatterer has been
determined (e.g., by solving the far field equation and using the linear sampling method). Numerical
examples are given for the scalar case with constant surface impedance.

Key words. inverse scattering problem, impedance boundary condition, electromagnetic waves
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1. Introduction. In order to avoid detection by radar, hostile objects are often
partially coated by a material designed to reduce the radar cross section of the scat-
tered wave. From the point of view of target identification a key question to answer
is, given the shape of a scattering obstacle (which can be determined, for example,
by the linear sampling method [2], [3]), is the obstacle coated or not and if so what
are the electrical properties of the coating? The simplest example of such a problem
is the case of a perfect conductor that is partially coated by a dielectric. In this case
the direct scattering problem is a mixed boundary value problem for Maxwell’s equa-
tions where on the coated part of the boundary the electromagnetic field satisfies an
impedance boundary condition [9], [12] and on the remaining part of the boundary
the tangential component of the total electric field vanishes. The inverse problem of
determining whether or not the obstacle is coated, and, if so, what the values of the
surface impedance are, is complicated by the fact that the extent of the coating (if
indeed the object is coated at all!) is not known a priori.

In this paper we will provide a variational method for determining the essential
supremum of the surface impedance (which may be zero if the scatterer is not coated!)
from a knowledge of the far field pattern of the scattered electric field corresponding to
a time-harmonic incident plane wave at fixed frequency. In the special case where the
surface impedance is a constant, this of course yields this constant. However, in neither
case does our method provide information on how much of the scattering obstacle is
coated. (In particular, there could be no coating at all or the entire obstacle could be
coated!) Our analysis is based on our recent investigations of the inverse scattering
problem for partially coated obstacles where the aim was to determine the shape of
the scattering obstacle with unknown boundary condition from a knowledge of the
electric far field pattern [2], [3]. As we show in this paper, the far field equation that
was used in [2] and [3] to determine the shape can also be used in conjunction with a
variational method to determine the essential supremum of the surface impedance on
the coated portion of the boundary. Although for the sake of exposition we assume in
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this paper that we have full-aperture far field data, we point out at the end of section
3 how all of our results remain valid for the practical case of limited-aperture data.

Given the shape of the scattering obstacle, the problem of determining lower
bounds for the surface impedance in the scalar case when the obstacle is completely
coated has previously been considered by Colton and Kress [6] (full-aperture scattering
data) and Colton and Piana [8] (limited-aperture scattering data). In particular, the
paper of Colton and Piana has had a strong influence on the approach used in the
present paper. We also draw the reader’s attention to a recent paper of Akduman
and Kress [1], where a potential theoretic method is given for determining the surface
impedance in the case when the shape of the scatterer is known and the obstacle is
completely coated.

The plan of our paper is as follows. We first consider the scattering of time-
harmonic plane waves by a partially coated infinite cylinder (which in fact can be
totally coated, partially coated or not coated at all). This leads to the investigation
of a mixed boundary value problem for the two-dimensional Helmholtz equation in
the exterior of a bounded domain D with Lipschitz boundary Γ. Assuming the surface
impedance λ = λ(x) on the coated portion ΓI of Γ is in L∞(ΓI), we derive a variational
method for determining ess supλ(x) from a knowledge of the far field pattern of the
scattered wave. We then extend this result to the case of Maxwell’s equations in R

3.
In the final section of our paper we consider several numerical examples in the scalar
case when the surface impedance is a constant.

2. The scalar case. We consider the scattering of an electromagnetic time har-
monic plane wave by a perfectly conducting infinite cylinder that is (partially) coated
by an inhomogeneous dielectric material. This leads to a mixed boundary value prob-
lem for the Helmholtz equation [2]. In particular let D ⊂ R

2 be an open bounded
region with Lipschitz boundary Γ such that R

2 \ D is connected. We assume that
the boundary Γ has a Lipschitz dissection Γ = ΓD ∪ Π ∪ ΓI , where ΓD and ΓI are
disjoint, relatively open subsets of Γ, having Π as their common boundary in Γ (see
e.g., [10]). Furthermore, boundary conditions of Dirichlet and impedance type with
the surface impedance a bounded measurable function λ ∈ L∞(ΓI) are specified on
ΓD and ΓI , respectively. We assume that the surface impedance is positive and uni-
formly bounded, i.e., λ(x) ≥ λ0 > 0 for x ∈ ΓI . Let ν denote the unit outward normal
vector defined almost everywhere on ΓD ∪ΓI . The total field u = us+ eikx·d given as
the sum of the unknown scattered wave and incident plane wave satisfies

∆u+ k2u = 0 in R
2 \D,(2.1a)

u = 0 on ΓD,(2.1b)

∂u

∂ν
+ iλ(x)u = 0 on ΓI ,(2.1c)

where k > 0 is the wave number and d is a unit vector describing the incident direction.
Moreover, the scattered field us satisfies the Sommerfeld radiation condition

lim
r→∞

√
r

(
∂us

∂r
− ikus

)
= 0(2.2)

uniformly in x̂ = x/|x| with r = |x|.
The well-posedness of the exterior mixed boundary value problem is established in

[2] (in [2] λ was assumed to be constant, but all the results remain valid if λ = λ(x) ∈
L∞(ΓI)). In particular it is shown that the direct scattering problem (2.1a)–(2.2) has
a unique solution u ∈ Hloc(De).
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It is easy to see [5] that the scattered field has the asymptotic behavior

us(x) =
eikr√
r
u∞(x̂, d) +O(r−3/2),(2.3)

where u∞ is the far field pattern of the scattered wave. The far field pattern defines
the far field operator F : L2(Ω) → L2(Ω) by

(Fg)(x̂) :=

∫
Ω

u∞(x̂, d)g(d)ds(d), g ∈ L2(Ω).(2.4)

The corresponding interior mixed boundary value problem is also studied in [2].
In particular we consider the following problem: find uz ∈ H1(D) that satisfies

∆uz + k2uz = 0 in D,(2.5a)

uz = −Φ(·, z) on ΓD,(2.5b)

∂uz
∂ν

+ iλ(x)uz = −∂Φ(·, z)
∂ν

− iλ(x)Φ(·, z) on ΓI(2.5c)

for a fixed z ∈ D, where Φ is the fundamental solution to the Helmholtz equation
defined by

Φ(x, z) :=
i

4
H

(1)
0 (k|x− z|)(2.6)

with H
(1)
0 being a Hankel function of the first kind of order zero. Then in [2] it is

shown that (2.5a)–(2.5c) has a unique solution uz ∈ H1(D) provided ΓI �= ∅ and
λ �= 0.

Next we introduce the far field equation

(Fg)(x̂) = γe−ikx̂·z, g ∈ L2(Ω), z ∈ D,(2.7)

where γ = eiπ/4√
8πk

and γe−ikx̂·z is the far field pattern of Φ(x, z).

A Herglotz wave function with kernel g ∈ L2(Ω) is an entire solution of the
Helmholtz equation defined by

vg(x) =

∫
Ω

eikx·dg(d)ds(d), x ∈ R
2.

The following theorem is proved in [2].
Theorem 2.1. Let ε > 0, z ∈ D, and uz be the unique solution of (2.5a)–(2.5c).

Then there exists a Herglotz wave function vgzε with kernel gzε ∈ L2(Ω) such that

‖uz − vgzε ‖H1(D) ≤ ε.(2.8)

Moreover, there exists a positive constant c > 0 independent of ε such that

‖(Fgzε )(x̂)− γe−ikx̂·z‖L2(Ω) ≤ cε.(2.9)

Now let us define wz by

wz := uz +Φ(·, z).(2.10)
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In particular, since uz ∈ H1(D) and z ∈ D, we have that wz|Γ ∈ H
1
2 (Γ), ∂wz

∂ν |Γ ∈
H− 1

2 (Γ), and

wz|ΓD
= 0 and

(
∂wz
∂ν

+ iλwz

)
|ΓI

= 0(2.11)

interpreted in the sense of the trace theorem.
Lemma 2.2. For every two points z1 and z2 in D we have that

2

∫
ΓI

wz1λ(x)wz2 ds = −4kπ|γ|2J0(k|z1 − z2|) + i (uz1(z2)− uz2(z1)) ,(2.12)

where uz1 , wz1 and uz2 , wz2 are defined by (2.5a)–(2.5c) and (2.10), respectively, and
J0 is a Bessel function of order zero.

Proof. Let z1 and z2 be two points in D and uz1 , wz1 and uz2 , wz2 the corre-
sponding functions defined by (2.5a)–(2.5c) and (2.10). From (2.11) we have that

2i

∫
ΓI

wz1λ(x)wz2 ds =

∫
Γ

(
wz1

∂wz2
∂ν

− wz2
∂wz1
∂ν

)
ds

=

∫
Γ

(
Φ(·, z1)∂Φ(·, z2)

∂ν
− Φ(·, z2)∂Φ(·, z1)

∂ν

)
ds

+

∫
Γ

(
uz1

∂Φ(·, z2)
∂ν

− Φ(·, z2)∂uz1
∂ν

)
ds

+

∫
Γ

(
Φ(·, z1)∂uz2

∂ν
− uz2

∂Φ(·, z1)
∂ν

)
ds.

From Green’s theorem applied to the radiating solution Φ(·, z) of the Helmholtz equa-
tion in De and the uniformity of the asymptotic relation (2.3) we have (see [7])

∫
Γ

(
Φ(·, z1)∂Φ(·, z2)

∂ν
− Φ(·, z2)∂Φ(·, z1)

∂ν

)
ds = −2ik

∫
Ω

Φ∞(·, z1)Φ∞(·, z2)ds

= −2ik
∫

Ω

|γ|2e−ikx̂·z1eikx̂·z2 ds = −4ikπ|γ|2J0(k|z1 − z2|).

Now from the representation formula for uz1 and uz2 we obtain

2i

∫
ΓI

wz1λ(x)wz2 ds = −4ikπ|γ|2J0(k|z1 − z2|) + uz2(z1)− uz1(z2).

Finally, dividing both sides of the above relation by i yields the result.
In the following let us consider a ball Br ⊂ D of radius r contained in D and

denoted by

W :=

{
f ∈ L2(ΓI) :

f = wz|ΓI
with wz = uz +Φ(·, z),

z ∈ Br and uz the solution of (2.5a)–(2.5c)

}
.

Now we are ready to prove the main result of this section.
Theorem 2.3. Let λ ∈ L∞(ΓI) be the surface impedance of the scattering problem

(2.1a)–(2.2). Then
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‖λ‖L∞(ΓI) = sup
zi∈Br

αi∈C

∑
i,j

αiαj
[−4πk|γ|2J0(k|zi − zj |) + i

(
uzi(zj)− uzj (zi)

)]
2‖∑

i

αi (uzi +Φ(·; zi)) ‖2
L2(Γ)

,(2.13)

where uz is the solution to (2.5a)–(2.5c) and the sums are arbitrary finite sums.

Proof. First we show that W is complete in L2(ΓI). To this end let ϕ be a
function in L2(ΓI) such that for every z ∈ Br∫

ΓI

wzϕds = 0.

Construct v ∈ H1(D) as the unique solution of the interior mixed boundary value
problem [2]

∆v + k2v = 0 in D,

v = 0 on ΓD,

∂v

∂ν
+ iλ(x)v = ϕ on ΓI .

Then for every z ∈ Br, using the boundary conditions and the integral representation
formula, we have that

0 =

∫
ΓI

wzϕds =

∫
ΓI

wz

(
∂v

∂ν
+ iλv

)
ds =

∫
Γ

wz

(
∂v

∂ν
+ iλv

)
ds

=

∫
Γ

(
uz
∂v

∂ν
+ iλuzv +Φ(·, z)∂v

∂ν
+ iλΦ(·, z)v

)
ds

=

∫
Γ

[
uz
∂v

∂ν
+ v

(
−∂uz
∂ν

− ∂Φ(·, z)
∂ν

− iλΦ(·, z)
)]

ds

+

∫
Γ

(
Φ(·, z)∂v

∂ν
+ iλvΦ(·, z)

)
ds = v(z).

Now the unique continuation principle implies that v(z) = 0 for all z ∈ D, whence
from the trace theorem ϕ = 0.

We now show that

‖λ‖L∞(ΓI) := ess supλ = sup
f∈L2(ΓI)

1

‖f‖2
L2(ΓI)

∫
ΓI

λ(x)|f |2ds.

The theorem then follows from Lemma 2.2 and the denseness of W in L2(ΓI) by fixing
first z2 and then z1 and considering linear combinations of wz for different z ∈ Br

together with the fact that ‖wz‖L2(Γ) = ‖wz‖L2(ΓI). (Note that wz1 and wz2 are not
orthogonal with respect to λ(x) and hence two different points are needed.) To prove
the above identity, let C = ess supλ > 0. Obviously,

1

‖f‖2
L2(ΓI)

∫
ΓI

λ(x)|f |2ds ≤ C ∀f ∈ L2(ΓI).
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Now for every 0 < ε < C the set Mε = {x ∈ ΓI : |λ(x)| ≥ C − ε} has a positive
measure and for an fε ∈ L2(ΓI) supported in Mε we have

1

‖fε‖2
L2(ΓI)

∫
ΓI

λ(x)|fε|2ds ≥ (C − ε),

which ends the proof.
Given that D is known (for example, by using the far field equation and the linear

sampling method as discussed in [2]), uz in the right-hand side of (2.13) still cannot
be computed since it depends on the unknown function λ. However, from Theorem
2.1, we can use in (2.13) an approximation to uz given by the Herglotz wave function
vgz with kernel gz being the (regularized) solutions of the far field equation (2.7).

In the particular case where the surface impedance is a positive constant λ > 0 we
can further simplify the formula (2.13). In particular, fix an arbitrary point z0 ∈ Br

and consider z1 = z2 = z0. Then (2.12) simply becomes

λ =
−2kπ|γ|2 − Im (uz0(z0))

‖uz0 +Φ(·; z0)‖2
L2(Γ)

.(2.14)

Note that the expressions on the right-hand sides of (2.13) and (2.14) can be used as
a target signature to detect if an obstacle is coated or not. In particular an object is
coated if and only if the numerator is nonzero.

3. The vector case. We now turn our attention to the electromagnetic scatter-
ing problem for a (partially) coated perfect conductor in R

3. In particular let D ⊂ R
3

be a bounded region with boundary Γ such that De := R
3 \ D is connected. Each

simply connected piece of D is assumed to be a Lipschitz curvilinear polyhedron.
Moreover, we assume that the boundary Γ = ΓD ∪ Π ∪ ΓI is split into two disjoint
parts ΓD and ΓI having Π as their possible common boundary in Γ and that each
part ΓD and ΓI can be written as the union of a finite number of open smooth faces
(ΓjD)j=1,...,ND

and (ΓjI)j=1,...,NI
, respectively, where eij denotes the common edge of

two adjacent faces Γi and Γj . Let ν denote the unit outward normal defined almost
everywhere on Γ.

The direct scattering problem for the scattering of a time-harmonic electromag-
netic plane wave by a partially coated obstacle D is to find an electric field E and a
magnetic field H := 1

ik curlE such that

curl curlE − k2E = 0 in R
3 \D,(3.1a)

ν × E = 0 on ΓD,(3.1b)

ν × curlE − iλ(x)(ν × E)× ν = 0 on ΓI ,(3.1c)

where the surface impedance λ ∈ L∞(ΓI) satisfies λ(x) ≥ λ0 > 0. The total electric
field E is given by

E = Ei + Es,(3.2)

where Es is the scattered field satisfying the Silver–Müller radiation condition

lim
r→∞(curlEs × x− ikrEs) = 0(3.3)
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uniformly in x̂ = x/|x|, where r = |x| and the incident field Ei is given by

Ei(x) :=
i

k
curl curl peikx·d = ik(d× p)× deikx·d,(3.4)

where k > 0 is the wave number, d is a unit vector giving the direction of propagation,
and p is the polarization vector. The well-posedness of the direct problem is estab-
lished in [3] (in [3] λ was assumed to be constant, but all the results remain valid if
λ = λ(x) ∈ L∞(ΓI)). In particular it is shown that there exists a unique solution E,
and H = 1

ik curlE of (3.1a)–(3.4), and, moreover, E ∈ X(De ∩BR,ΓI) for every ball
of radius R containing D, where X(De ∩BR,ΓI) is the Sobolev space defined by

X(De ∩BR,ΓI) := {u ∈ H(curl, De ∩BR) : ν × u|ΓI
∈ L2

t (ΓI)}

with

H(curl, De ∩BR) := {u ∈ (L2(De ∩BR))
3 : curlu ∈ (L2(De ∩BR))

3},

L2
t (ΓI) := {u ∈ (L2(ΓI))

3 : ν · u = 0 on ΓI}.

The scattered electric field Es has the asymptotic behavior [5]

Es(x) =
eik|x|

|x|
{
E∞(x̂, d, p) +O

(
1

|x|
)}

as |x| → ∞, where E∞ is a tangential vector field defined on the unit sphere Ω and
known as the electric far field pattern. The electric far field operator F : L2

t (Ω) →
L2
t (Ω) is then defined by

(Fg)(x̂) :=

∫
Ω

E∞(x̂, d, g(d))ds(d), x̂ ∈ Ω,(3.5)

for g ∈ L2
t (Ω). Note that by superposition Fg is the electric far field pattern of the

exterior mixed boundary value problem corresponding to the electromagnetic Herglotz
pair with kernel ikg as incident field. An electromagnetic Herglotz pair is defined to
be a pair of vector fields of the form

Eg(x) =

∫
Ω

eikx·dg(d)ds(d), Hg(x) =
1

ik
curlEg(x),(3.6)

where g ∈ L2
t (Ω). It is easily seen that Eg, Hg is a solution of Maxwell’s equations

curlE − ikH = 0, curlH + ikE = 0 in R
3. Now let us consider the electric dipole

with polarization q defined by

Ee(x, z, q) :=
i

k
curlx curlx qΦ(x, z), He(x, z, q) := curlx qΦ(x, z),(3.7)

where Φ is the fundamental solution of the Helmholtz equation in R
3 defined by

Φ(x, z) :=
1

4π

eik|x−z|

|x− z| , x �= z and x, z ∈ R
3.
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If z ∈ D, then Ee(x, z, q) and He(x, z, q) satisfy Maxwell’s equations in R
3 \D, and

the corresponding electric far field pattern Ee,∞(x̂, z, q) is given by

Ee,∞(x̂, z, q) =
ik

4π
(x̂× q)× x̂ e−ikx̂·z.(3.8)

As in the scalar case, we also need the interior mixed boundary value problem
corresponding to the scattering problem which is studied in detail in [3]. (For the
case when either ΓI = ∅ or ΓD = ∅, see [11].) In particular, let Ez ∈ X(D,ΓI) be the
unique solution of

curl curlEz − k2Ez = 0 in D,(3.9a)

ν × [Ez + Ee(·, z, q)] = 0 on ΓD,(3.9b)

ν × curl (Ez + Ee(·, z, q)) − iλ[ν × (Ez + Ee(·, z, q))]× ν = 0 on ΓI(3.9c)

for a fixed but arbitrary z ∈ D. Define

Wz := Ez + Ee(·, z, q)(3.10)

and let uT := (ν × u)× ν be the tangential component of a function u ∈ H(curl, D).
Note that (Wz)T |ΓI

∈ L2
t (ΓI) and that Wz depends on the artificial polarization q as

well. We now look for a solution to the far field equation

Fg(x̂) = Ee,∞(x̂, z, q), z ∈ D,(3.11)

where F is given by (3.5). We have the following result (see [3, Thm. 3.2]).
Theorem 3.1. For every ε > 0 and z ∈ D there exists an electric Herglotz wave

function Egzε with kernel gzε ∈ L2
t (Ω) such that

‖Ez − ikEgzε ‖X(D,ΓI) ≤ ε,(3.12)

where Ez is the solution of (3.9a)–(3.9c). Moreover, there exists a positive constant
c > 0 independent of ε such that

‖(Fgzε )(x̂)− Ee,∞(x̂, z, q)‖L2
t (Ω) ≤ cε.(3.13)

Our next aim is to find a relation that connects the surface impedance λ with Ez.
Lemma 3.2. For every two points z1 and z2 in D and polarization q ∈ R

3 we
have that

2

∫
ΓI

(Wz1)T · λ(W z2)T ds = −‖q‖2A(z1, z2, k, q) + k
(
q · Ez1(z2) + q · Ez2(z1)

)
,

where Ez1 , Ez2 and Wz1 , Wz2 are defined by (3.9a)–(3.9c) and (3.10), respectively,
and A(z1, z2, k, q) is a computable number depending only on z1, z2, k, and q.

Proof. By applying the second vector Green’s formula and using the boundary
conditions for Ez1 and Ez2 on Γ we obtain

2i

∫
ΓI

(Wz1)T · λ(W z2)T ds =

∫
Γ

(
ν ×Wz1 · curlW z2 − ν ×W z2 · curlWz1

)
ds

=

∫
Γ

(
ν × Ee(·, z1, q) · curlEe(·, z2, q)− ν × Ee(·, z2, q) · curlEe(·, z1, q)

)
ds

+

∫
Γ

(
ν × Ez1 · curlEe(·, z2, q)− ν × Ee(·, z2, q) · curlEz1

)
ds

+

∫
Γ

(
ν × Ee(·, z1, q) · curlEz2 − ν × Ez2 · curlEe(·, z1, q)

)
ds.(3.14)
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One can easily see that if E ∈ H(curl, D) and H = 1
ik curlE is a solution of Maxwell’s

equations and z ∈ D, we have

ν × Ee(y, z, q) · curly E(y) = − i

k
(−ik)curlz curlz qΦ(y, z) · (ν ×H(y))

= −q · curlz curlz Φ(y, z)(ν ×H(y))

and

ν × E(y) · curly Ee(y, z, q) = ikν × E(y) ·He(y, z, q) = ikq · curlzΦ(y, z)(ν × E(y)),

and therefore from the Stratton–Chu formula∫
Γ

(
ν × Ee(y, z, q) · curly E(y)− ν × E(y) · curly Ee(y, z, q)

)
= ikq · E(z).(3.15)

Moreover (see [7]),∫
Γ

(
ν × Ee(·, z1, q) · curlEe(·, z2, q)− ν × Ee(·, z2, q) · curlEe(·, z1, q)

)
ds

= −2ik
∫

Ω

Ee,∞(·, z1, q) · Ee,∞(·, z2, q)ds

= − ik3

8π2

∫
Ω

((x̂× q)× x̂) · ((x̂× q)× x̂) e−ikx̂·(z1−z2)ds(3.16)

= − ik3

8π2

∫
Ω

(‖q‖2 − (x̂ · q)2) e−ikx̂·(z1−z2)ds := −i‖q‖2A(z1, z2, k, q),

where by straightforward calculations

A(z1, z2, k, q) =
k3

6π

[
2j0(k|z1 − z2|) + j2(k|z1 − z2|)(3 cos2 φ− 1)

]
(3.17)

with j0 and j2 being spherical Bessel functions of order 0 and 2, respectively, and φ
is the angle between (z1 − z2) and q. Hence using (3.15) and (3.16) in (3.14) and
dividing both sides of (3.14) by i yield the result.

Next we consider a subset E of L2
t (ΓI) defined by

E :=

{
f ∈ L2

t (ΓI) :
f = (Wz)T |ΓI

withWz = Ez + Ee(·, z, q),
z ∈ Br, Ez the solution of (3.9a)–(3.9c) and q ∈ R

3

}
,

where Br is a ball of radius r contained in D.
Lemma 3.3. E is complete in L2

t (ΓI).
Proof. Let ϕ ∈ L2

t (ΓI) such that for every z ∈ Br∫
ΓI

(Wz)T · ϕds = 0.

Let E ∈ X(D,ΓI) be the solution of the interior mixed boundary value problem [3]

curl curlE − k2E = 0 in D,

ν × E = 0 on ΓD,

ν × curlE − iλET = ϕ on ΓI .
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Then for z ∈ Br and q ∈ R
3, using the fact that (Wz)T = ET = 0 on ΓD, the second

vector Green’s formula, and (3.15), we have that

0 =

∫
ΓI

(Wz)T · ϕds =
∫

Γ

Wz · (ν × curlE − iλET ) ds

=

∫
Γ

[Ez · (ν × curlE)− iλEz · ET + Ee(·, z, q) · (ν × curlE)− iλEe(·, z, q) · ET ] ds

=

∫
Γ

[Ez · (ν × curlE)− E · (ν × curlEz)] ds

+

∫
Γ

[−E · (ν × curlEe(·, z, q)) + iλET · Ee(·, z, q)] ds

+

∫
Γ

[Ee(·, z, q) · (ν × curlE)− iλEe(·, z, q) · ET ] ds

=

∫
Γ

[Ee(·, z, q) · (ν × curlE)− E · (ν × curlEe(·, z, q))] ds

= −
∫

Γ

[(ν × Ee(·, z, q)) · curlE − (ν × E) · curlEe(·, z, q)] ds = ikq · E(z).

Thus q ·E(z) = 0 holds for all polarizations q ∈ R
3 and z ∈ Br, and hence E(z) = 0 for

z ∈ Br. By the unique continuation principle for the solution of Maxwell’s equations
in D we now see that E ≡ 0 in D, whence, by the trace theorem, ϕ ≡ 0, which proves
the lemma.

Combining Lemmas 3.2 and 3.3, we can prove in the same way as in the last part
of the proof of Theorem 2.3 the main result of this section.

Theorem 3.4. Let λ ∈ L∞(ΓI) be the surface impedance of the scattering problem
(3.1a)–(3.4). Then

‖λ‖L∞(ΓI)(3.18)

= sup
zi ∈ Br, q ∈ R

3

αi ∈ C

∑
i,j

αiαj
[−‖q‖2A(zi, zj , k, q) + k

(
q · Ezi(zj) + q · Ezj (zi)

)]
2‖∑

i

αi(Wzi)T ‖2
L2

t (Γ)

,

where Wz = Ez +Ee(·, z, q) with Ez being the solution to (3.9a)–(3.9c), A(zi, zj , k, q)
is given by (3.17), and the sums are arbitrary finite sums.

In the particular case where λ is a positive constant and setting z1 = z2 = z0 ∈ Br,
we obtain the following formula for constant surface impedance:

λ =
− k2

6π‖q‖2 + kRe (q · Ez0)
‖(Wz0)T ‖2

L2
t (Γ)

,(3.19)

where Wz0 = Ez0 + Ee(·, z0, q) with Ez0 being the solution of (3.9a)–(3.9c) corre-
sponding to z0 ∈ Br.

In both cases (3.18) and (3.19) Ez cannot be computed since λ appears in the
boundary conditions. However, from Theorem 3.1 we can approximate Ez by the
electric field ikEgz of the Herglotz electromagnetic pair with kernel ikgz, where gz

is a (regularized) solution of the far field equation (3.11) for z ∈ Br ⊂ D and E∞ is
the measured far field data (we again assume that D is known by using the far field
equation (3.11) and the linear sampling method as discussed in [3]). We note that, as
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in the scalar case, the numerator on the right-hand side of (3.18) and (3.19) can be
used as a target signature to detect whether or not a object is coated.

We conclude this section by remarking that, in both scalar and vector cases, it
suffices to know only the far field data for a limited-aperture Ω0 ⊂ Ω. In particu-
lar, in sections 2.3 and 3.2 of [4] it is proved that a Herglotz wave function and an
electromagnetic Herglotz pair and their first derivatives can be approximated uni-
formly on a compact subset of a disk BR of radius R by a Herglotz wave function
and an electromagnetic Herglotz pair, respectively, with kernel supported in a subset
Ω0 ⊂ Ω. The kernel of this new Herglotz wave function can now be used in place of
gzε in Theorems 2.1 and 3.1, and therefore the corresponding vgzε and Egzε can be used
as approximations of uz and Ez, respectively, in the above formulas.

4. Numerical examples. In this section we give some results of numerical
experiments performed in the scalar case when the surface impedance λ is a constant.
As shown in section 2, an approximation for λ is given by

−2kπ|γ|2 − Im (vgz (z))

‖vgz +Φ(·; z)‖2
L2(Γ)

, z = (x, y) ∈ D,(4.1)

where vgz =
∫ 2π

0
gz(d)eik(x cos θ+y sin θ)dθ, d = (cos θ, sin θ), and the kernel gz is the

solution of the far field equation∫ 2π

0

u∞(d, x̂)gz(d)dθ = γe−ikx̂·z, z ∈ Br ⊂ D.

The far field data is generated by the method of integral equations and is corrupted
by random noise. We fix k = 3, select a domain D, boundaries ΓD and ΓI (in most
of our examples ΓD = ∅), and a constant λ and then solve the corresponding forward
problem. We compute the far field pattern for 100 incident directions and observation
directions equally distributed on the unit circle and add random noise of 1% or 10%
to the Fourier coefficients of the far field pattern. Tikhonov regularization and the
Morozov discrepancy principle are then used to solve the ill-posed discrete far field
equation (see section 4 of [2] for details). We choose the sampling points z on a uniform
grid of 101× 101 points in the square region [−5, 5]2 and compute the corresponding
gz. To visualize the obstacle we plot the level curves of the inverse of the discrete
02 norm of g (note that by the linear sampling method the boundary of the obstacle
is characterized as the set of points where the L2-norm of g starts to become large;
see [2]). Then we compute (4.1) at the sampling points in the disk centered at the
origin with radius 0.5 (in our examples this circle is always inside D). Although (4.1)
is theoretically a constant, because of the ill-posed nature of the far field equation
we evaluated (4.1) at all the grid points z in the disk and exhibit the maximum, the
average, and the median of the computed values of (4.1). In all tested cases there
are some outliers for the minimum value but this is not the case for the maximum.
The average and median of the numbers obtained by evaluating (4.1) at the sampling
points show that these numbers accumulate near the maximum value and that the
average, median, and maximum each provides a reasonable approximation to the true
impedance.

For our examples we select two scatterers shown in Figure 4.1 (the kite and the
peanut).
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Fig. 4.1. The boundary of the scatterers used in this study: kite/peanut. When a mixed
condition is used for the peanut, the thicker portion of the boundary is ΓD.
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Fig. 4.2. These figures show the reconstruction of a kite with impedance boundary con-
dition with 1% noise: on the left with λ = 5 and on the right with λ = 9.

We have obviously left open a number of interesting numerical questions, e.g.,
what is observed when λ = 0, what is the dependence of the algorithm on the wave
number k, etc. In particular, the examples given here are preliminary in nature. Note
that only in the example of the peanut do we consider an object that is really partially
coated.

4.1. The kite. We consider the impedance boundary value problem for the kite
described by the equation (the left curve in Figure 4.1)

x(t) = (1.5 sin(t), cos(t) + 0.65 cos(2t)− 0.65) , 0 ≤ t ≤ 2π,

with impedance λ = 2, λ = 5, and λ = 9. In Figure 4.2 we show two examples of the
reconstructed kite (the reconstructions for the other tested cases look similar). Note
that the reconstruction of the boundary is quite accurate so one obtains a good guess
for the equation of the boundary Γ of the scatterer. In the numerical results for the
reconstructed λ shown in Tables 4.1 and 4.2 we use the exact boundary Γ when we
compute the L2(Γ)-norm that appears in the denominator of (4.1).

4.2. The peanut. Next we consider a peanut described by the equation (the
right curve in Figure 4.1)

x(t) =

(√
cos2(t) + 4 sin2(t) cos(t),

√
cos2(t) + 4 sin2(t) sin(t), 0 ≤ t ≤ 2π

)

rotated by π/9. Here we choose the surface impedance λ = 2 and λ = 5 and consider
the case of a totally coated peanut (i.e., impedance boundary value problem) as well as
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Table 4.1
The reconstruction of the surface impedance λ for the kite with 1% noise.

Maximum Average Median
λ=2 2.050 1.975 1.982
λ=5 4.976 4.679 4.787
λ=9 8.883 8.342 8.403

Table 4.2
The reconstruction of the surface impedance λ for the kite with 10% noise.

Maximum Average Median
λ=2 2.043 1.960 1.957
λ=5 4.858 4.513 4.524
λ=9 9.0328 8.013 7.992

of a partially coated peanut (i.e., mixed Dirichlet-impedance boundary value problem
with ΓI being the lower half of the peanut as shown in Figure 4.1). Two examples of
the reconstructed peanut are presented in Figure 4.3 where, as expected, one notices
that for the mixed case the Dirichlet portion of the boundary is more visible. In
practice the exact boundary is not available to compute the L2(Γ)-norm in (4.1). As
suggested by the reconstruction of the peanut, the natural guess for the boundary of
the scatterer is the ellipse shown by dashed line in Figure 4.4. So we also examine
the sensitivity of our formula on the approximation of the boundary by using this
ellipse for computing ‖vgz + Φ(·; z)‖L2(Γ) in (4.1). The recovered values of λ for our
experiments are shown in Tables 4.3 and 4.4.
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Fig. 4.3. The figure on the left shows the reconstruction of a peanut with impedance
boundary condition with λ = 5. The figure on the right shows the reconstruction of a peanut
with mixed condition with λ = 5 on the impedance part. Both examples are for k = 3 with
1% noise.

4.3. Conclusions. We have presented the results of some numerical experiments
for the scalar case with constant surface impedance. The only a priori information
we use is that the coating is homogeneous. Our results suggest that the maximum,
median, and average values obtained by evaluating (4.1) at a set of sampling points
in a disk closely approximate the true value of λ. We have further shown that even if
the boundary of the scatterer is not known exactly, reasonable approximations to the
impedance can still be obtained. Numerical experiments need to be done in R

3 and
for the nonhomogeneous coating where the scheme is a variational problem. This will
be the subject of a forthcoming work.
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Fig. 4.4. The dashed line is the approximated boundary we use for computing
‖vgz + Φ(·; z)‖L2(Γ) in (4.1) in the case of a peanut with impedance boundary condition.

Table 4.3
Reconstruction of λ for the peanut with 1% noise.

Maximum Average Median
λ=2 impedance 2.192 1.992 1.979

λ=2 imped., approx. bound. 2.395 1.823 1.886
λ=2 mixed conditions 2.595 2.207 2.257

λ=5 impedance 5.689 4.950 5.181
λ=5 imped., approx. bound. 5.534 4.412 4.501

λ=5 mixed conditions 5.689 4.950 5.180

Table 4.4
Reconstruction of λ for the peanut with 10% noise.

Maximum Average Median
λ=2 impedance 2.297 1.985 1.978

λ=2 imped., approx. bound. 2.301 1.828 1.853
λ=2 mixed conditions 2.681 2.335 2.374

λ=5 impedance 5.335 4.691 4.731
λ=5 imped., approx. bound. 5.806 4.231 4.313

λ=5 mixed conditions 5.893 4.649 4.951

Acknowledgment. We would like to thank Professor Michele Piana and Pro-
fessor Peter Monk for making their codes available to us so that we could construct
the examples in section 4.
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Abstract. In this paper we study the response matrix obtained from the interelement response
of an active array of transducers that can send out signals and record reflected signals. In particular
we analyze the eigenvalues and eigenvectors of the response matrix corresponding to the acoustic field
reflected by an extended target, the size of which is comparable to the wavelength. We show that the
eigenvalues are not well separated for a single extended target in general. However, when both the
size of the target and the size of the active array are small compared to the distance from the array
to the target, it is shown that the eigenvalues are well separated and that the leading eigenvalues and
eigenvectors can be characterized in terms of the location and dimension of the target. Numerical
experiments are presented to verify the analysis.

Key words. active array, response matrix, time reversal, Green’s function

AMS subject classifications. 74J20, 74J25, 41A60
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1. Introduction. Active arrays have been used and studied in many applica-
tions such as medical imaging, nondestructive testing, seismic imaging, and target
detection and recognition for sonar or radar systems. The types of signals (or wave
fields) and devices vary by application. For example, in medical imaging ultrasound
is mostly used, in sonar systems or underwater communications acoustic waves are
typically used, in radar systems or wireless communications electromagnetic waves
are used, and in other applications optics or lasers may be used. The typical setup of
an active array is illustrated in Figure 1.1. The most important function of the active
array is that each element in the array can both send out a signal and record the
reflected signal. Such an active array can be used to probe a medium by sending out
waves to illuminate reflective targets. Information about the targets can be extracted
from the reflected signal. One of the key observations, which is explained in the next
section, is that the reflected signal recorded at the array is related to the output signal
of the array by a matrix, the response matrix. In many applications the response ma-
trix can be obtained from the interelement response, i.e., the response received at one
transducer corresponding to an impulse sent out from another transducer. Moreover,
the product of the response matrix and its adjoint corresponds to the time reversal
operator that has been studied extensively in [15, 14, 13, 12, 16, 17, 4, 3, 6, 1]. Under-
standing the structure of the response matrix, such as its eigenvalues and eigenvectors,
is crucial for applications using active arrays.

In [15, 14, 13] an iterative time reversal procedure is proposed and analyzed for
detecting and selectively focusing on targets. After recording the reflected signal,
reversing it in time, and then sending it out to the medium for a few iterations, the
wave field will automatically focus on the “strongest” scatterer. The whole physical
procedure can be viewed as a power method for finding the leading eigenvector of the
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Fig. 1.1. The setup of an active array.

response matrix. For well-resolved point scatterers, whose sizes are small compared to
those of the wavelength, it can be shown that each eigenvector of the response matrix
corresponds to the wave field at the array due to a point source located at one of the
scatterers. Instead of a physical iterated time reversal procedure, which can generate a
physical wave field that focuses on a selective target, we can also analyze the response
matrix on a computer for the detection or imaging of targets. For example, singular
value decomposition (SVD) of the response matrix and subspace projection were used
in [6] for detecting the locations of targets. In all these methods and their analyses
the scatterers are considered as point-like scatterers so that the response matrix can
be cleanly decomposed as the tensor product of the Green’s function corresponding to
each scatterer. It should be pointed out that in many applications the eigenvalues and
eigenvectors of the response matrix may also depend on material properties. In [4, 3]
it was shown that the compressibility and density contrast causes different scattered
waves and generates more than one eigenstate even for a small spherical scatterer.
However, the geometry of a general extended scatterer was not taken into account in
an explicit way.

In this paper we will study the eigenvalues and eigenvectors of the response matrix
corresponding to a single extended target. We show that in some asymptotic regimes,
the leading eigenvalues and eigenvectors are well separated into groups and can be
characterized in terms of the location and geometry of the target. Numerical tests
match well with our analysis and show that our formulas can work well in more general
situations. In the future we will study multiple targets, different designs of the arrays,
imaging procedures for both locations and sizes of extended targets, and the effect of
random inhomogeneity in the medium and self-averaging in the time domain.

Here is the outline of this paper. First, the response matrix and its basic properties
for point scatterers are briefly reviewed in section 2. In section 3 the eigenvalues
and eigenvectors of the response matrix corresponding to an extended scatterer are
analyzed in some asymptotic regimes. In section 4 we study the effect of alignment
between the active array and the target. Finally we show numerical experiments to
verify our analysis in section 5.

2. The response matrix of an active array. Define the interelement response
pij(t) to be the reflected signal at the jth transducer corresponding to an impulse sent
out from the ith transducer. For an array consisting of N transducers, the matrix
P (t) = [pij(t)]N×N is called the response matrix. If the medium is static, we have
pij(t) = pji(t) due to spatial reciprocity. If we assume the medium and the array
response are linear, for an output signal �e(t) = [e1(t), e2(t), . . . , eN (t)]T , where ei(t)
is the output signal at the ith transducer and T means transpose, the reflected signal
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at the array is

�r(t) = [r1(t), r2(t), . . . , rN (t)]T = P (t) ∗ �e(t).
Here ∗ denotes convolution in time. The convolution in time domain becomes the
multiplication in frequency domain,

�r(ω) = P (ω)�e(ω),

where ω is the frequency and P (ω) is the Fourier transform of P (t). We follow the
derivations in [14, 6] to illustrate the basic structure of the response matrix P (ω) for
point scatterers in the medium. Denote G(ξ,x) to be Green’s function of the medium
for frequency ω, which represents the wave field at x for a point source located at ξ.
Due to the spatial reciprocity, G(x, ξ) = G(ξ,x). Here we suppress the dependence
of Green’s function on the frequency.

Assuming there are M point scatterers located at x1,x2, . . . ,xM in the medium
with reflectivity τ1, τ2, . . . , τM , if we neglect the multiple scattering among the scat-
terers, then for a signal �e(ω) = [e1(ω), e2(ω), . . . , eN (ω)]T sent out from the active
array, the reflected signal at the jth transducer is

rj(ω) =

M∑
k=1

N∑
i=1

G(ξj ,xk)τkG(ξi,xk)ei(ω),

where ξ1, ξ2, . . . , ξN are the locations of the transducers. If we define the illumination
vectors, �gk, k = 1, 2, . . . ,M , to be

�gk = [G(ξ1,xk), G(ξ2,xk), . . . , G(ξN ,xk)]
T ,

i.e., the wave field at the array of transducers corresponding to a point source at the
kth scatterer, we have

P (ω) =
M∑
k=1

τk�gk�g
T
k and �r(ω) = P (ω)�e(ω).(2.1)

Due to the spatial reciprocity, P (ω) is symmetric. If we do time reversal, which
is phase conjugation in frequency domain, for the reflected signal and send it back
to the medium, the new reflected signal is P (ω)P (ω)�e(ω), where ¯ denotes complex
conjugation. Another phase conjugation gives the second time reversed output signal
P (ω)P (ω)�e(ω) in terms of the original output signal �e(ω). So R(ω) = P (ω)P (ω) =
P ∗(ω)P (ω) is called the time reversal matrix (operator), where ∗ denotes the adjoint.
R(ω) is a Hermitian matrix and from (2.1) we have

R(ω) =
M∑
k=1

τk�gk�gTk

M∑
k′=1

τk′�gk′�g
T
k′ =

M∑
k′=1

M∑
k=1

Λk,k′�gk�g
T
k′ ,(2.2)

where

Λk,k′ = τkτk′〈�gk, �gk′〉 = τkτk′�g
T

k �gk′ .

All medium properties are embedded in Green’s function in the above formulations.
From representations (2.1) and (2.2), we can easily see that both the response ma-
trix P (ω) and the time reversal matrix R(ω) are of rank M , if M < N , and that
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any eigenvector corresponding to a nonzero eigenvalue is a linear combination of the
illumination vectors �gk, k = 1, 2, . . . ,M . We then define the point spread function

Γ(x′,x) =

N∑
i=1

G(ξi,x
′)G(ξi,x).(2.3)

Γ(x′,x) is exactly the wave field at point x after phase conjugation of the signal
received at the active array corresponding to a point source at point x′ and sending
it back to the medium. The scatterers are well resolved by the active array means

Γ(xk,xk′) = �gTk �gk′ ≈ 0 if k �= k′;

i.e., the wave field corresponding to the time reversal of a point source at one scatterer
is almost zero at all other scatterers. Then �gk (�gk) are the left (right) singular vectors
for P (ω) with singular values |τk|‖�gk‖2 since

P (w)�gk = τk‖�gk‖2�gk, P ∗(w)�gk = τk‖�gk‖2�gk.

Similarly it can be shown that �gk is the eigenvector for the Hermitian matrix R(ω)
with eigenvalue |τk|2‖�gk‖4. In a homogeneous medium, the focusing property of the
point spread function Γ(x′,x) is dictated by the diffraction limit, which is propor-
tional to wavelength and propagation distance and is inversely proportional to the
size (aperture) of the active array. However, if the medium is inhomogeneous and
random, the resolution of time reversal can beat the diffraction limit. The superres-
olution phenomenon is both observed in experiments [7, 5, 8, 9, 11] and theoretically
analyzed in [7, 2]. It is shown in [2] that the effective aperture can be much larger
than the physical size of the array due to multipathing in an inhomogeneous medium,
and that the superresolution for time reversal is statistically stable in the time domain
due to self-averaging of different frequencies in a broadband signal.

In [15, 14, 13], a physical iterative time reversal procedure (D.O.R.T.) was used
to focus selectively on reflective targets in a real medium. The procedure is equivalent
to the power method for finding the leading eigenvector of the time reversal matrix.
Since physical time reversal is used, we do not need to know the medium. However,
for selective focusing, the targets have to be well resolved by the active array. This
procedure is useful for automatic target detection/destruction in practice. In [6] an
algorithm for imaging point targets in the medium on computers using an active array
was developed. However all these formulations and analyses assume the targets are
point scatterers so that the response matrix and time reversal matrix have the simple
structure in (2.1) and (2.2), respectively. In this paper we will analyze the eigenvalues
and eigenvectors of the response matrix corresponding to an extended target.

3. The SVD of the response matrix for an extended target. In general
the response matrix for an extended target does not have a simple decomposition as
in the case for point targets. To simplify the analysis, we assume that each transducer
of the active array can be viewed as a point source and the target is a perfect reflector
with a normal reflectivity that is equal to 1. In this case the scattered field can be
represented as an integral over the illuminated surface. So the response matrix can
be written as

Pij(ω) =

∫
Ω

G(ξi,x)G(ξj ,x)τ(x; ξi, ξj)dx,(3.1)
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where Ω is the part of the surface that can be illuminated by the active array, and
τ(x; ξi, ξj) is a reflectivity kernel that depends on the incidence and outgoing angle,
i.e., the angle between the normal of the surface at x and the vectors ξi − x and
ξj − x, respectively.

In many applications, such as target detections using a sonar or radar system,
wireless or underwater communications, and geophysics imaging, the distance between
the target and the active array is much larger than the wavelength or sizes of the target
and array. Let L be the distance between the array and the target, s be the size of
the array, a be the size of the target, and k = ω

c be the wave number, where c is the
wave speed. In our study we consider the case where

• the wavelength is comparable to the size of the array and the size of the
extended target, i.e., ka ∼ O(1), ks ∼ O(1);

• the wavelength is small compared to the distance between the array and the
target, i.e., 1

kL ∼ s
L ∼ a

L ∼ o(1).
In this case the wave from a transducer is almost planar when it reaches the target.
Furthermore we assume the target is a planar target and lies in a plane that is parallel
to the plane of the array. Since the size of the array and the size of the target
are much smaller than the propagation distance, both the incidence and outgoing
angles are small. We first neglect the reflectivity kernel and approximate the response
matrix by

Pij(k) =

∫
Ω

G(ξi,x)G(ξj ,x)dx.(3.2)

We will put in a reflectivity kernel later.
For simplicity we start with a one-dimensional target and array in a homogeneous

medium as illustrated in Figure 3.1. We expand Green’s functionG(ξi,x) in free space
at a point x = (0, y) on the target in powers of 1

L . The expansion actually involves
powers of ka, ks, which are O(1), and powers of a

L ,
s
L , which are o(1).

G(ξi,x) =
eik|ξi−x|

4π|ξi − x|
=

eik
√
L2+(ηi−y)2

4π
√
L2 + (ηi − y)2

= G̃(ξi,o)
e

ik(−2ηiy+y2)

2L +O( 1
L3 )

1 − 2ηiy−y2

2L2+η2
i

+O( 1
L4 )

= G̃(ξi,o)
e

ik(−2ηiy+y2)

2L +O( 1
L3 )

1 − 2ηiy−y2

2L2 +O( 1
L4 )

,

(3.3)

where o = (0, 0) is the center of the target, ξi = (L, ηi) is the location of the ith trans-
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ducer, and G̃(ξi,o) = e
ikL(1+

η2
i

2L2
)

4πL(1+
η2
i

2L2 )
is the parabolic approximation of Green’s function

G(ξi,o). Here we can use the two-dimensional Green’s function, which is a Hankel
function of the first kind, but instead we use the three-dimensional Green’s function
for simplicity and consistency with later analysis. Further expanding in 1

L , we have

G(ξi,x)=G̃(ξi,o)

[
1+

ik(y2−2ηiy)

2L
− k2(y2−2ηiy)

2

8L2
− y2−2ηiy

2L2
+O(

1

L3
)

]
.(3.4)

Now the response matrix becomes

Pij(k) =

∫ a
2

− a
2

G(ξi,x)G(ξj ,x)dy

=G̃(ξi,o)G̃(ξj ,o)

∫ a
2

− a
2

[
1+

iky2

L
− k2(ηi+ηj−y)2y2

2L2
+

(ηi+ηj−y)y
L2

+O

(
1

L3

)]
dy

=G̃(ξi,o)G̃(ξj ,o)

∫ a
2

− a
2

(
1+

iky2

L
− k2y4

2L2
− y2

L2

)
dy

− k2

L2
G̃(ξi,o)G̃(ξj ,o)ηiηj

∫ a
2

− a
2

y2dy − k2

2L2
G̃(ξi,o)G̃(ξj ,o)(η

2
i + η2

j )

∫ a
2

− a
2

y2dy

+O

(
1

L3

)
.

(3.5)

Denote α(a, k, L) =
∫ a

2

− a
2
(1+ iky2

L − k2y4

2L2 − y2

L2 )dy ≈ a. So the response matrix can

be decomposed as

P (k) = α(a, k, L)�̃g�̃g
T − k2a3

12L2
�̃g1
�̃g
T

1 − k2a3

24L2

[
�̃g2
�̃g
T

+ �̃g�̃g
T

2

]
+O

(
1

L3

)
,(3.6)

where

�̃g = [G̃(ξ1,o), G̃(ξ2,o), . . . , G̃(ξN ,o)]
T ,

�̃g1 = [η1G̃(ξ1,o), η2G̃(ξ2,o), . . . , ηN G̃(ξN ,o)]
T ,

�̃g2 = [η2
1G̃(ξ1,o), η

2
2G̃(ξ2,o), . . . , η

2
N G̃(ξN ,o)]

T .

(3.7)

The leading term a�̃g�̃g
T

corresponds to a point scatterer at the center of the extended
target with a total reflectivity proportional to the size of the target. Moreover, if the
center of the array is aligned with the center of the target, �̃g and �̃g2 are even in η
while �̃g1 is odd in η, so we have

�̃g
T

1
�̃g = �̃g

T

1
�̃g2 = 0.

From the orthogonality condition we can separate the second term from the other
terms in the matrix decomposition formula (3.6). Moreover, since the size of array

s is small compared to the distance L, the parabolic factor η2

L2 is very flat, and �g2

is approximately aligned with �g. Most of the term k2a3

24L2 [�̃g2
�̃g
T

+ �̃g�̃g
T

2 ] is absorbed in
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the leading term as a small perturbation. In particular the contribution of this term
together with other high-order terms in α(a, k, L) tends to make the amplitude of the
first eigenvalue smaller. This will be verified by numerical experiments in section 5.

From the analysis, we see that

P�̄̃g ≈ a‖�̃g‖2�̃g, P ∗�̃g ≈ a‖�̃g‖2�̄̃g,

P�̄̃g1 ≈ − a3k2

12L2 ‖�̃g1‖2�̃g1, P ∗�̃g1 ≈ − a3k2

12L2 ‖�̃g1‖2�̄̃g1,

and
• the dominant singular value λ1 has a magnitude |λ1| ≈ a‖�̃g‖2, and the asso-

ciated left singular vector is the illumination vector �̃g;

• the second dominant singular value λ2 has a magnitude |λ2| ≈ a3k2

12L2 ‖�̃g1‖2,

and the associated left singular vector is �̃g1.
When we extend the above analysis to a two-dimensional planar target and array

as illustrated in Figure 3.2, the calculation is similar but messier. First pick a point
o on the target as the origin and choose two orthogonal directions in the plane of
the target as y and z axes. Let x = (0, y, z) denote a point on the target and
ξi = (L, ηi, ζi) denote the coordinates of the ith transducer. The situation becomes
more complicated due to the coupling of different directions. We have

G(ξi,x) =
eik

√
L2+(ηi−y)2+(ζi−z)2

4π
√
L2 + (ηi − y)2 + (ζi − z)2

= G̃(ξi,o)

×
[
1 +

ik(y2 − 2ηiy + z2 − 2ζiz)

2L
− k2(y2 − 2ηiy + z2 − 2ζiz)

2

8L2

−y
2 − 2ηiy + z2 − 2ζiz

2L2
+O

(
1

L3

)]
,

where G̃(ξi,o) = e
ikL(1+

η2
i
+ζ2

i
2L2

)

4πL(1+
η2
i
+ζ2

i
2L2 )

is again the parabolic approximation of Green’s func-

tion, and

G(ξi,x)G(ξj ,x) = G̃(ξi,o)G̃(ξj ,o) ×
{

1+
ik[y2−(ηi+ ηj)y+z2−(ζi + ζj)z]

L

−k
2[y2−(ηi+ ηj)y+z2−(ζi + ζj)z]

2

2L2
− y2−(ηi+ ηj)y+z2−(ζi + ζj)z

L2
+O

(
1

L3

)}
.
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So the response matrix is

Pij(k) =

∫
Ω

G(ξi,x)G(ξj ,x)dydz = G̃(ξi,o)G̃(ξj ,o)

×
[∫

Ω

(
1 +

ik(y2 + z2)

L
− k2(y2 + z2)2

2L2
− y2 + z2

L2

)
dydz

−ηiηj
∫

Ω

k2y2

L2
dydz − ζiζj

∫
Ω

k2z2

L2
dydz

−(η2
i + η2

j )

∫
Ω

k2y2

2L2
dydz − (ζ2

i + ζ2
j )

∫
Ω

k2z2

2L2
dydz

+(ηi + ηj)

∫
Ω

(
− iky
L

+
k2(y2 + z2)y

L2
+

y

L2

)
dydz

+(ζi + ζj)

∫
Ω

(
− ikz
L

+
k2(y2 + z2)z

L2
+

z

L2

)
dydz

−(ηiζi + ηiζj + ηjζi + ηjζj)

∫
Ω

k2yz

L2
dydz +O

(
1

L3

)]
.

Denote

�̃g = [G̃(ξ1,o), G̃(ξ2,o), . . . , G̃(ξN ,o)]
T ,

�̃g1y = [η1G̃(ξ1,o), η2G̃(ξ2,o), . . . , ηN G̃(ξN ,o)]
T ,

�̃g1z = [ζ1G̃(ξ1,o), ζ2G̃(ξ2,o), . . . , ζN G̃(ξN ,o)]
T ,

�̃g2y = [η2
1G̃(ξ1,o), η

2
2G̃(ξ2,o), . . . , η

2
N G̃(ξN ,o)]

T ,

�̃g2z = [ζ2
1 G̃(ξ1,o), ζ

2
2 G̃(ξ2,o), . . . , ζ

2
N G̃(ξN ,o)]

T ,

�̃g2yz = [η1ζ1G̃(ξ1,o), η2ζ2G̃(ξ2,o), . . . , ηNζN G̃(ξN ,o)]
T .

(3.8)

The response matrix can be decomposed as

P (k) = �̃g�̃g
T
∫

Ω

(
1 +

ik(y2 + z2)

L
− k2(y2 + z2)2

2L2
− y2 + z2

L2

)
dydz

−�̃g1y
�̃g
T

1y

∫
Ω

k2y2

L2
dydz − �̃g1z

�̃g
T

1z

∫
Ω

k2z2

L2
dydz

−
(
�̃g2y

�̃g
T

+ �̃g�̃g
T

2y

)∫
Ω

k2y2

2L2
dydz −

(
�̃g2z

�̃g
T

+ �̃g�̃g
T

2z

)∫
Ω

k2z2

2L2
dydz

+
(
�̃g1y

�̃g
T

+ �̃g�̃g
T

1y

)∫
Ω

(
− iky
L

+
k2(y2 + z2)y

L2
+

y

L2

)
dydz

+
(
�̃g1z

�̃g
T

+ �̃g�̃g
T

1z

)∫
Ω

(
− ikz
L

+
k2(y2 + z2)z

L2
+

z

L2

)
dydz

−
(
�̃g1y

�̃g
T

1z + �̃g1z
�̃g
T

1y + �̃g2yz
�̃g
T

+ �̃g�̃g
T

2yz

)∫
Ω

k2yz

L2
dydz +O

(
1

L3

)
.

(3.9)
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The above formula shows the decomposition of the response matrix in any coordinate
system. Again the leading term corresponds to a point scatterer. The decomposition
of the response matrix is not obvious from this general expression since the two di-
rections and the center are coupled together. However, if we choose o to be the mass
center of the target, we have∫

Ω

ydydz,

∫
Ω

zdydz = 0.

Now we have an extra freedom of rotation of the y and z axes around o. Denote the
integral R(θ) =

∫
Ω
yzdydz as a function of rotation angle θ. Since R(θ) = −R(θ±π/2),

we must have at least two θ such that
∫
Ω
yzdydz = 0. Due to this symmetry and

cancellations, the following terms are usually small:∫
Ω

ypzqdydz ≈ 0 for (p, q) ∈ {(1, 2), (2, 1), (0, 3), (3, 0)}.

Hence the decomposition of the response matrix can be simplified as

P (k) ≈ �̃g�̃g
T
∫

Ω

dydz − k2

L2
�̃g1y

�̃g
T

1y

∫
Ω

y2dydz

− k2

L2
�̃g1z

�̃g
T

1z

∫
Ω

z2dydz − k2

2L2

[
�̃g2y

�̃g
T

+ �̃g�̃g
T

2y

] ∫
Ω

y2dydz

− k2

2L2

[
�̃g2z

�̃g
T

+ �̃g�̃g
T

2z

] ∫
Ω

z2dydz +O

(
1

L3

)
.

(3.10)

Again, if the array of transducers is symmetric with respect to the y and z axes,
we have the following orthogonality properties defined in the sense of complex inner
product as in the one-dimensional case:

�̃g1y ⊥ �̃g, �̃g2y, �̃g2z, �̃g1z ⊥ �̃g, �̃g2y, �̃g2z, �̃g1y ⊥ �̃g1z.

In this case we have
• the dominant singular value λ1 has a magnitude |λ1| ≈ ‖�̃g‖2

∫
Ω
dydz with the

illumination �̃g as the singular vector;

• the next two dominant singular values have magnitudes |λ2|≈k2

L2 ‖�̃g1y‖2
∫
Ω
y2dydz

and |λ3|≈k2

L2 ‖�̃g1z‖2
∫
Ω
z2dydz, respectively, and the corresponding singular vec-

tors are �̃g1y and �̃g1z, respectively.
The two symmetric axes of the target are intrinsic and are independent of the

artificial y and z axes we choose. The directions of the two symmetric axes with
respect to the artificial y and z axes we choose are embedded in the response matrix
and can be extracted from the leading singular vectors, as will be shown later from
the numerical experiments in section 5. Essentially these formulas suggest that we
can find both the location and size of an extended target as well as the symmetric
axes and a few moments with respect to these axes using the leading singular values
and singular vectors of the response matrix. In practice, ratios of the singular values
are more robust and can be used to determine aspect ratios.

For a three-dimensional scatterer for which the Born approximation is valid, the
integration over the scatterer will be in three dimensions. Using similar analysis
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for the response matrix, we will get a third singular value and singular vector that
corresponds to the third dimension in the second group of leading singular values and
singular vectors. In practice, the depth information is often relatively weak due to
a small glancing aperture and is more difficult to capture from the response matrix.
Especially when the distance between the active array and the target is long, we would
see an effective planar shape of the target. In [17], careful numerical simulations are
done to analyze the eigenvalues and eigenvectors of the response matrix and illustrate
very similar behavior to our results here.

For a medium with weak random inhomogeneity, it is shown that for a long
propagation distance, Green’s function is a modification of the homogeneous Green’s
function with an attenuation factor due to multiple scattering [10]. So the behaviors
of the response matrix and its eigenvalues and eigenvectors should be similar. We will
analyze these situations in a future study.

Now we take into account the variation of reflectivity due to different incident
and outgoing angles. In particular we choose a special reflectivity kernel

τ(x; ξi, ξj) = cos θi(x) cos θj(x),

where θi(x) is the angle between x − ξi and the normal at x. At a point x on a
one-dimensional target,

cos θi(x) =
L√

L2 + (ηi − y)2
=

1

1 +
η2
i

2L2

(
1 − y2−2ηiy

2L2

)
+O

(
1

L4

)
.

If we plug this asymptotic expansion back into the response matrix expression (3.1)
and denote

Ğ(ξi,o) = G̃(ξi,o)
1

1 +
η2
i

2L2

,

we have

Pij(k) = Ğ(ξi,o)Ğ(ξj ,o)

∫ a
2

− a
2

[
1+

iky2

L
− k2(ηi+ηj−y)2y2

2L2
+

2(ηi+ηj−y)y
L2

+O

(
1

L3

)]
dy

= Ğ(ξi,o)Ğ(ξj ,o)

∫ a
2

− a
2

(
1+

iky2

L
− k2y4

2L2
− 2y2

L2

)
dy

− k2

L2
Ğ(ξi,o)Ğ(ξj ,o)ηiηj

∫ a
2

− a
2

y2dy − k2

2L2
Ğ(ξi,o)Ğ(ξj ,o)(η

2
i + η2

j )

∫ a
2

− a
2

y2dy

+ O

(
1

L3

)
,

which is almost exactly the same as (3.5). Now if we define the new illumination
vectors to be

�̆g = [Ğ(ξ1,o), Ğ(ξ2,o), . . . , Ğ(ξN ,o)]
T ,

�̆g1 = [η1Ğ(ξ1,o), η2Ğ(ξ2,o), . . . , ηN Ğ(ξN ,o)]
T ,

�̆g2 = [η2
1Ğ(ξ1,o), η

2
2Ğ(ξ2,o), . . . , η

2
N Ğ(ξN ,o)]

T ,

(3.11)
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and α(a, k, L) =
∫ a

2

− a
2
(1+ iky2

L − k2y4

2L2 − 2y2

L2 )dy, we have exactly the same decomposition

of the response matrix as in (3.6). For a more general reflectivity kernel,

τ(x; ξi, ξj) = f(θi(x), θj(x)) = f̃

⎛
⎜⎜⎝ 1√

1 +
(
ηi−y
L

)2
,

1√
1 +

(
ηj−y
L

)2

⎞
⎟⎟⎠ ,

we can use power expansion in 1
L to get the explicit formulas. The extension to a

two-dimensional target is exactly the same.

4. Alignment of the array and the target. In the above analysis, the geomet-
ric decomposition of the response matrix for an extended target utilizes the symmetry
and alignment of the active array with the target. In most applications, neither the
geometry nor the location of the target is known. Hence the alignment of the active
array with the target and how it affects the decomposition of the response matrix
are important questions in practice. For a general two-dimensional target there are
two alignments; one is the alignment of the center and the other is the alignment of
the lines of symmetry. The center and symmetry of the target are intrinsic while the
center and symmetry of the active array can be maneuvered. In fact, if the geometry
of the active array is designed properly, such as in the shape of a disc, the array is
symmetric with respect to any orthogonal coordinate system whose origin is at the
center of the array. We will see from numerical tests in section 5 that the two sym-
metric directions are automatically embedded in the singular vectors of the response
matrix and can be found easily. Now the only issue becomes the alignment of the
center of the array and the center of the target.

We study the simple case of a one-dimensional target illustrated in Figure 4.1.
Our previous decomposition of the response matrix (3.6) is not changed. Hence the
leading term in the decomposition is still approximately a�g�gT , where a is the size of
the target and �g is the corresponding illumination vector. Now we analyze how much
the orthogonality property is violated if the shift in the alignment of the center of the
array and the center of the target is small compared to the size of the active array.
We will also verify this using numerical experiments in section 5.

When the distance between the target and the active array L is large compared to
the size of the array s, i.e., when the aperture s

L is small, we have G(ξi,o) ≈ G(õ,o),

active array

target

δ

y

x

s

ds

Fig. 4.1.
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where õ is the center of the array and o is the center of the target. So

�̃g = [G(ξ1,o), G(ξ2,o), . . . , G(ξN ,o)]
T ≈ G(õ,o)[1, 1, . . . , 1]T ,

�̃g1 = [η1G(ξ1,o), η2G(ξ2,o), . . . , ηNG(ξN ,o)]
T ≈ G(õ,o)[η1, η2, . . . , ηN ]T ,

�̃g2 = [η2
1G(ξ1,o), η

2
2G(ξ2,o), . . . , η

2
NG(ξN ,o)]

T ≈ G(õ,o)[η2
1 , η

2
2 , . . . , η

2
N ]T .

Let ds be the separation space between two adjacent transducers and |G| = |G(õ,o)|;
then

‖�̃g‖ ≈
√∫ s/2−δ

−s/2−δ
|G|2dy/ds = |G|

√
s

ds
,

‖ �̃g1‖ ≈
√∫ s/2−δ

−s/2−δ
|G|2y2dy/ds = |G|

√
(s/2 − δ)3 + (s/2 + δ)3

3ds
,

‖ �̃g2‖ ≈
√∫ s/2−δ

−s/2−δ
|G|2y4dy/ds = |G|

√
(s/2 − δ)5 + (s/2 + δ)5

5ds
,

and∣∣∣∣∣
〈

�̃g

‖�̃g‖ ,
�̃g1

‖�̃g1‖

〉∣∣∣∣∣≈
| ∫ s/2−δ−s/2−δ |G|2ydy/ds|

‖�̃g‖‖�̃g1‖
=

[(s/2 + δ)2 − (s/2 − δ)2]/2√
[(s/2 − δ)3 + (s/2 + δ)3]s/3

≤2
√

3
δ

s
,

where

α3 + β3 = (α+ β)(α2 − αβ + β2),

α2 − αβ + β2 ≥ (α+ β)2/4

is used. Similarly we have∣∣∣∣∣
〈

�̃g1

‖�̃g1‖
,
�̃g2

‖�̃g2‖

〉∣∣∣∣∣≈ [(s/2 + δ)4 − (s/2 − δ)4]/4√
[(s/2−δ)3+(s/2+δ)3]/3

√
[(s/2−δ)5+(s/2+δ)5]/5

≤2
√

15
δ

s
,

where

α5 + β5 = (α+ β)(α4 − α3β + α2β2 − αβ3 + β4),

α4 − α3β + α2β2 − αβ3 + β4 ≥ (α2 + β2)2/4

is used. So the orthogonality condition deteriorates approximately linearly in δ
s .

The larger the size of the active array is, the more robust the decomposition of the
response matrix is. Also it appears from the numerical experiments that the even
part of �̃g1 is absorbed in the first singular vector as a perturbation and the odd part

of �̃g1 becomes the second singular vector. Since the first term, a�̃g�̃g
T
, in the response

matrix decomposition is dominant and more robust to the center shift, we can first
use the leading term to estimate the center of the target and then adjust the center
of the array toward the estimated center of the target to get a better estimation of
the size in imaging.
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5. Numerical experiments. In this section we use numerical examples to ver-
ify our analysis on the leading eigenvalues and eigenvectors of the response matrix
for an extended target. In particular we will demonstrate the relation between the
eigenvectors and the illumination vectors and verify the formulas for the leading eigen-
values. Some of the numerical examples also show that our analysis is quite accurate
even for more general setups. In our numerical examples, the response matrix of an
extended target was formed using the integral

Pij =

∫
Ω

G(ξi,x)G(ξj ,x)dx,

where ξi, ξj are the positions of the ith and jth transducers, respectively, and

G(ξ,x) =
eik|ξ−x|

4π|ξ − x|

is the three-dimensional Green’s function for a homogeneous medium. We use a
simple quadrature for the integral on the target, denoted by Ω, with a grid size h
that resolves both the wavelength and the target. In all of our numerical setups we
use fixed wavelength λ = 0.5m and wavenumber k = 2π

λ = 4π. We vary the size
of the active array s, the propagation distance L, and the size of the target relative
to the wavelength, i.e., ka, to verify our analysis and formulas. The SVD of the
response matrix is done by MATLAB. Note that the singular vectors computed by
SVD in MATLAB (1) are always normalized to have a unit L2 norm, and (2) have
an arbitrary phase shift. Also the phase plot is up to a 2π shift.

In the following, we present numerical examples of one-dimensional arrays and
targets in 5.1 as well as two-dimensional arrays and targets in 5.2.

5.1. One-dimensional arrays and targets. In this section we present numer-
ical results in one dimension. We show the spectrum of the response matrix and the
asymptotic formulas for the top two singular values as well as the top two singular
vectors and their relations to the illumination vectors.

Example 1. In this example we show the spectrum of the response matrix for
a single one-dimensional extended target. Figure 5.1 shows the loglog plot of the
magnitudes of all singular values of the response matrix corresponding to a different
target size a and propagation distance L. The size of the array is s = 10m and the
transducers are placed a half-wavelength apart; i.e., there are 2s

λ = 40 transducers.
We see that the top two singular values are well separated from each other and from
the other singular values in the asymptotic regime which we discussed earlier.

Example 2. In this example we demonstrate the relation between the top two
singular vectors of the response matrix and the corresponding illumination vectors.
We also verify the formulas for the top two singular values numerically. The basic
setup is illustrated in Figure 3.1 with L = 500m, k = 4π, ka = 16, s = 40m. The
transducers are a half-wavelength apart. In Figure 5.2, we plot the magnitude and
phase for each component of the top two singular vectors and compare them to the
illumination vectors. Figure 5.2(a) plots the magnitude and phase of the first singular

vector against the illumination vector �̃g defined in (3.7). Figure 5.2(b) plots the

magnitude and phase of the second singular vector against the illumination vector �̃g1

defined in (3.7). The correspondence and pattern similarities are striking.

Denoting �v1, �v2 to be the top two singular vectors with singular values λ1, λ2
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Fig. 5.1. Plots of the magnitudes of eigenvalues.

computed by MATLAB, we have numerically⎡
⎢⎢⎣
∣∣∣∣�vT1 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT1 �̃g1‖�̃g1‖

∣∣∣∣∣∣∣∣�vT2 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT2 �̃g1‖�̃g1‖

∣∣∣∣

⎤
⎥⎥⎦ =

[
1 6.2058 × 10−16

1.0124 × 10−15 1

]
,

|λ1| = 5.0848 × 10−6, a‖�̃g‖2 = 5.1575 × 10−6,

|λ2| = 5.9370 × 10−8, a3k2

12L2 ‖�̃g1‖2 = 5.9393 × 10−8.

We see an almost perfect orthogonality condition up to machine accuracy. Our asymp-
totic formulas for the leading singular values are also very accurate. Moreover, the
illumination vector �̃g2 defined in (3.7) has the following relation with the first three
singular vectors of the response matrix:∣∣∣∣∣�v

T

1
�̃g2

‖�̃g2‖

∣∣∣∣∣ = 0.7418,

∣∣∣∣∣�v
T

2
�̃g2

‖�̃g2‖

∣∣∣∣∣ = 6.6258 × 10−14,

∣∣∣∣∣�v
T

3
�̃g2

‖�̃g2‖

∣∣∣∣∣ = 0.6706;

i.e., �̃g2 is mostly absorbed in �v1 as a small perturbation. We also see that the asymp-
totic formula a‖�̃g‖2 overestimates |λ1| a little bit due to higher order perturbations,
as was explained in section 3. From the following examples we can see that the
overestimation tends to be more when ka becomes larger and less when L becomes
larger.
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Fig. 5.2. (a) The phase and magnitude of the first eigenvector and (b) the phase and magnitude
of the second eigenvector.

Now we vary the setup by changing one parameter at a time. First we increase
the size of the target ka = 50, and we have

⎡
⎢⎢⎣
∣∣∣∣�vT1 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT1 �̃g1‖�̃g1‖

∣∣∣∣∣∣∣∣�vT2 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT2 �̃g1‖�̃g1‖

∣∣∣∣

⎤
⎥⎥⎦ =

[
0.9988 1.1532 × 10−16

1.3101 × 10−16 0.9996

]
,

|λ1| = 1.4434 × 10−5, a‖�̃g‖2 = 1.6117 × 10−5,

|λ2| = 1.6083 × 10−6, a3k2

12L2 ‖�̃g1‖2 = 1.8125 × 10−6.

Next we increase the distance between the array and the target L to 10,000m,
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and we have⎡
⎢⎢⎣
∣∣∣∣�vT1 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT1 �̃g1‖�̃g1‖

∣∣∣∣∣∣∣∣�vT2 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT2 �̃g1‖�̃g1‖

∣∣∣∣

⎤
⎥⎥⎦ =

[
1 2.9737 × 10−17

9.8603 × 10−14 1

]
,

|λ1| = 1.2867 × 10−8, a‖�̃g‖2 = 1.2901 × 10−8,

|λ2| = 3.7649 × 10−13, a3k2

12L2 ‖�̃g1‖2 = 3.7157 × 10−13.

Finally, when we increase the separation distance between the transducers to
2λ = 1m, we have⎡

⎢⎢⎣
∣∣∣∣�vT1 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT1 �̃g1‖�̃g1‖

∣∣∣∣∣∣∣∣�vT2 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT2 �̃g1‖�̃g1‖

∣∣∣∣

⎤
⎥⎥⎦ =

[
1 1.3157 × 10−17

5.0919 × 10−16 1

]
,

|λ1| = 1.2706 × 10−6, a‖�̃g‖2 = 1.2893 × 10−6,

|λ2| = 1.5401 × 10−8, a3k2

12L2 ‖�̃g1‖2 = 1.5415 × 10−8.

In our numerical tests it seems that we can further increase the separation between
transducers.

Example 3. In this example we test how the alignment of the array and the target
affects our formula for the response matrix decomposition. Figure 5.3 shows plots
of the top two singular vectors when the center of the target is not aligned with the
center of the array with a shift of 3m. The setup is the same as the above example
with L = 500m, s = 40m. We see asymmetries in the plots. We have numerically⎡

⎢⎢⎣
∣∣∣∣�vT1 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT1 �̃g1‖�̃g1‖

∣∣∣∣∣∣∣∣�vT2 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT2 �̃g1‖�̃g1‖

∣∣∣∣

⎤
⎥⎥⎦ =

[
1 0.2440

0.0059 0.9698

]
,

|λ1| = 5.0770 × 10−6, a‖�̃g‖2 = 5.1573 × 10−6,

|λ2| = 5.9377 × 10−8, a3k2

12L2 ‖�̃g1‖2 = 6.3343 × 10−8.

When we increase the shift of the center to 6m, we have⎡
⎢⎢⎣
∣∣∣∣�vT1 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT1 �̃g1‖�̃g1‖

∣∣∣∣∣∣∣∣�vT2 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT2 �̃g1‖�̃g1‖

∣∣∣∣

⎤
⎥⎥⎦ =

[
0.9999 0.4479
0.0119 0.8940

]
,

|λ1| = 5.0536 × 10−6, a‖�̃g‖2 = 5.1567 × 10−6,

|λ2| = 5.9398 × 10−8, a3k2

12L2 ‖�̃g1‖2 = 7.5192 × 10−8.

As was analyzed in section 4, the orthogonality condition does not hold anymore.
The sensitivity depends linearly on the shift relative to the size of the array which
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Fig. 5.3. (a) The phase and magnitude of the first eigenvector and (b) the phase and magnitude
of the second eigenvector.

agrees with the numerical results very well. From the tests we can also see that the
first singular vector is quite robust and agrees with the illumination vector �̃g fairly
well. The second singular vector is more sensitive to the shift. It appears that the
second singular vector contains only the asymmetric part of �̃g1.

Example 4. In this example, we show that we can get subwavelength information
about the size of a target. The setup is: L = 10m, k = 4π, ka = 0.1, s = 2m. There
are only eight transducers in the array. Numerically we have⎡

⎢⎢⎣
∣∣∣∣�vT1 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT1 �̃g1‖�̃g1‖

∣∣∣∣∣∣∣∣�vT2 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT2 �̃g1‖�̃g1‖

∣∣∣∣

⎤
⎥⎥⎦ =

[
1 5.0849 × 10−17

4.2743 × 10−10 1

]
,

|λ1| = 3.7834 × 10−6, a‖�̃g‖2 = 4.0143 × 10−6,

|λ2| = 1.8716 × 10−11, a3k2

12L2 ‖�̃g1‖2 = 1.4290 × 10−11.

The actual size of the target is a = 0.008m. From our formula, the estimation

of the size is: |λ1|
|�̃g‖2

= 0.0075m, or, (12L2|λ2|
k2‖�̃g1‖2

)1/3 = 0.0087m. Clearly we achieve

subwavelength accuracy from the experiment.

5.2. Two-dimensional arrays and targets. In this section we present numer-
ical experiments for two-dimensional extended targets. The harmonic wave used is as
before with fixed wavelength λ = 0.5m and wavenumber k = 4π.

Example 1. In this example, we use a square array, each side of which is 10m
long. The transducers are placed on a rectangular grid whose grid size is one wave-
length; i.e., there are 20 rows and 20 columns of transducers and the total number
of transducers is 400. So the size of the response matrix is 400 × 400. The distance
between the array and the target is L = 500m, and the target is an ellipse with
two major axes which are 2a = 1.2732m(ka = 8) and 2b = 0.6366m(kb = 4) long,
respectively.

In the first test, the center and two sides of the square array are aligned with the
center and two major axes of the ellipse. We define the two sides of the array as y and



742 HONGKAI ZHAO

z axes, respectively, with the y axis parallel to the longer major axis of the ellipse.
Figure 5.4(a) is the plot of the magnitudes of the singular values of the response
matrix. We see the top three singular values are well separated from the other ones.
Figure 5.5 compares the amplitude and phase of the top two singular vectors with
the two illumination vectors defined in (3.8). We skip the plot of the third singular
vector and the corresponding illumination vector since it is similar to the plot of the
second singular vector. We see that for each row or column of the transducers, the
plot is very similar to the previous plots for one-dimensional arrays and targets.

Let �v1, �v2, �v3 be the top three eigenvectors with eigenvalues λ1, λ2, λ3, and �̃g, �̃g1y, �̃g1z

be the three illumination vectors defined in (3.8). We have numerically

⎡
⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣�vT1 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT1 �̃g1y‖�̃g1y‖

∣∣∣∣
∣∣∣∣�vT1 �̃g1z‖�̃g1z‖

∣∣∣∣∣∣∣∣�vT2 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT2 �̃g1y‖�̃g1y‖

∣∣∣∣
∣∣∣∣�vT2 �̃g1z‖�̃g1z‖

∣∣∣∣∣∣∣∣�vT3 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT3 �̃g1y‖�̃g1y‖

∣∣∣∣
∣∣∣∣�vT3 �̃g1z‖�̃g1z‖

∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎣ 1 3.9885 × 10−17 2.1706 × 10−17

7.1030 × 10−17 1 3.3406 × 10−15

2.4696 × 10−17 3.3394 × 10−15 1

⎤
⎦ ,

|λ1| = 6.0744 × 10−6, |Ω|‖�̃g‖2 = πab‖�̃g‖2 = 6.4498 × 10−6,

|λ2| = 3.5652 × 10−9, k2

L2 ‖�̃g1y‖2
∫
Ω
y2 = πa3bk2

4L2 ‖�̃g1y‖ = 3.8019 × 10−9,

|λ3| = 8.8290 × 10−10, k2

L2 ‖�̃g1z‖2
∫
Ω
z2 = πab3k2

4L2 ‖�̃g1z‖ = 9.5047 × 10−10.

Now we rotate the ellipse by π
6 so that the two sides of the square array, i.e., our

defined y and z axes, are no longer parallel to the two major axes of the ellipse. We
have numerically⎡
⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣�vT1 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT1 �̃g1y‖�̃g1y‖

∣∣∣∣
∣∣∣∣�vT1 �̃g1z‖�̃g1z‖

∣∣∣∣∣∣∣∣�vT2 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT2 �̃g1y‖�̃g1y‖

∣∣∣∣
∣∣∣∣�vT2 �̃g1z‖�̃g1z‖

∣∣∣∣∣∣∣∣�vT3 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT3 �̃g1y‖�̃g1y‖

∣∣∣∣
∣∣∣∣�vT3 �̃g1z‖�̃g1z‖

∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎣ 1 9.0735 × 10−17 2.3222 × 10−17

5.4091 × 10−17 0.8661 (≈
√

3
2 ) 0.4999 (≈ 1

2 )
3.6460 × 10−17 0.4999 0.8661

⎤
⎦ ,

|λ1| = 6.0744 × 10−6, |λ2| = 3.5648 × 10−9, |λ3| = 8.8302 × 10−10.

The reason that we do not have orthogonality correspondence between �v2, �v3 and
�̃g1y, �̃g1z is because the y and z axes that we choose artificially do not correspond to
those two major axes, which are the two intrinsic symmetry lines of the ellipse. The
angle (π6 ) between �v2 and �̃g1y is exactly the angle between the y axis and the longer
major axis. All the other numerical numbers in the above matrix become clear too.
The amplitudes of the three top singular values are not changed since the center of
the target is unchanged and so are the integrals on the target for the eigenvalues. The
numerical results verify our analysis perfectly. Both the dimension and the symmetry
of the target are embedded in the response matrix. The above orthogonality matrix
can be used to find the line of symmetry of the object in imaging.

Now we move the elliptic target further away from the array with L = 2000m.
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Fig. 5.5. Amplitude and phase plot of the top eigenvectors and the corresponding illumination
vectors.
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We have

|λ1| = 1.4469 × 10−6, |Ω|‖�̃g‖2 = πab‖�̃g‖2 = 1.6126 × 10−6,

|λ2| = 5.0757 × 10−11, k2

L2 ‖�̃g1y‖2
∫
Ω
y2 = πa3bk2

4L2 ‖�̃g1y‖ = 5.6509 × 10−11,

|λ3| = 1.2402 × 10−11, k2

L2 ‖�̃g1z‖2
∫
Ω
z2 = πab3k2

4L2 ‖�̃g1z‖ = 1.4127 × 10−11.

Example 2. In this example, we replace the elliptic target by a circular one with
radius a = b = 0.6366m(ka = kb = 8) and L = 500m. The eigenvalue of the response
matrix is plotted in Figure 5.4(b). We have⎡
⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣�vT1 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT1 �̃g1y‖�̃g1y‖

∣∣∣∣
∣∣∣∣�vT1 �̃g1z‖�̃g1z‖

∣∣∣∣∣∣∣∣�vT2 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT2 �̃g1y‖�̃g1y‖

∣∣∣∣
∣∣∣∣�vT2 �̃g1z‖�̃g1z‖

∣∣∣∣∣∣∣∣�vT3 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT3 �̃g1y‖�̃g1y‖

∣∣∣∣
∣∣∣∣�vT3 �̃g1z‖�̃g1z‖

∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎣ 1 2.8620 × 10−17 2.7358 × 10−17

3.9876 × 10−17 0.7071(≈
√

2
2 ) 0.7071

1.4545 × 10−16 0.7071 0.7071

⎤
⎦ ,

|λ1| = 1.2379 × 10−5, |Ω|‖�̃g‖2 = πab‖�̃g‖2 = 1.2900 × 10−5,

|λ2| = |λ3| = 7.2743 × 10−9, k2

L2 ‖�̃g1y‖2
∫
Ω
y2 = πa3bk2

4L2 ‖�̃g1y‖ = 7.6038 × 10−9.

In this case, the reason that we do not have orthogonality correspondence between
�v2, �v3 and �̃g1y, �̃g1z is due to grid orientation of our square array. Any two orthogonal
radial directions can be the symmetric axes for the circular disc; our square array
picks up those two diagonal ones. Or we can interpret it in the following way: since
the second and third singular values are equal, the associated singular vectors are not
unique and any linear combination of the singular vectors is also a singular vector.
MATLAB just chooses a particular combination.

Example 3. In this example, we use the same setup as in Example 1 except that
the center of the array is not aligned with the center of the target. The two major
axes of the ellipse are parallel to the two sides of the square array. But the center of
the ellipse is shifted by (2m, 2m) in the yz plane. The distance is still L = 500m. We
have numerically⎡
⎢⎢⎢⎢⎢⎢⎣

∣∣∣∣�vT1 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT1 �̃g1y‖�̃g1y‖

∣∣∣∣
∣∣∣∣�vT1 �̃g1z‖�̃g1z‖

∣∣∣∣∣∣∣∣�vT2 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT2 �̃g1y‖�̃g1y‖

∣∣∣∣
∣∣∣∣�vT2 �̃g1z‖�̃g1z‖

∣∣∣∣∣∣∣∣�vT3 �̃g‖�̃g‖

∣∣∣∣
∣∣∣∣�vT3 �̃g1y‖�̃g1y‖

∣∣∣∣
∣∣∣∣�vT3 �̃g1z‖�̃g1z‖

∣∣∣∣

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎣ 1 0.5496 0.5501

7.7302 × 10−4 0.8354 4.9318 × 10−4

1.9175 × 10−4 3.8425 × 10−5 0.8351

⎤
⎦ ,

|λ1| = 6.0703 × 10−6, |Ω|‖�̃g‖2 = πab‖�̃g‖2 = 6.4496 × 10−6,

|λ2| = 3.5646 × 10−9, k2

L2 ‖�̃g1y‖2
∫
Ω
y2 = πa3bk2

4L2 ‖�̃g1y‖ = 5.4526 × 10−9,

|λ3| = 8.8251 × 10−10, k2

L2 ‖�̃g1z‖2
∫
Ω
z2 = πab3k2

4L2 ‖�̃g1z‖ = 1.3632 × 10−9.

Again we see that the asymptotic formulas for the first singular vector and singular
value are more robust with respect to the center shift.
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6. Conclusion. The response matrix of an active array for an extended target is
studied. It is shown that the leading singular values and their corresponding singular
vectors of the response matrix are related to the location and geometry of the extended
target. Asymptotic formulas are derived for the leading singular values and singular
vectors. Here we consider only a homogeneous medium and a single target. In the
future we will study the effect of random inhomogeneities and multiple targets. We
will develop imaging procedures that can detect both locations and sizes of extended
targets using an active array.
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1. Introduction.

1.1. Review of the literature and general description of the system.
Long messages in Internet protocols that have to be transmitted are divided into
small packets. Upon transmission each packet is transformed by providing additional
information related to a given message. Because of the bit errors in transmission of the
packet, the message can be lost. The loss probability of a message plays a significant
role in the evaluation of network performance and design of network topology.

There are a number of papers in which the loss probability of a message has
been studied. Cidon, Khamisy, and Sidi [11] derived recurrence relations for the loss
probabilities of packets in a message giving the numerical results for the M/M/1/n
buffer model. The complexity of recurrence calculations of that paper are O(nm2),
where m is the size of a message and n is the buffer capacity. Considering the same
model, Gurewitz, Sidi, and Cidon [13] obtained another representation for the loss
probability by using the ballot theorem (e.g., Takács [17]). In the framework of
the same model Altman and Jean-Marie [7] give a comprehensive analysis for the
multidimensional generating function of the loss probabilities based on the recurrence
relations of the paper of Cidon, Khamisy, and Sidi [11] and analyze the effect of adding
redundant packets. Studying a slightly more general model with several sources, Ait-
Hellal et al. [6] obtained some asymptotic results and studied the effect of adding
redundancy to the loss probability. The aforementioned papers [6], [7], [11], [13] all
discuss the problem of complexity of calculations as well as the required memory to
store intermediate variables.

In real communication networks the capacity is large. Therefore, asymptotic
analysis of the number of lost messages is necessary. The present paper provides
asymptotic analysis with sequential application to redundancy of the following model.
Assume that each message is divided into a random number of packets each of which
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is forwarded to the buffer. For the ith message denote its random number of packets
by νi. We assume that the sequence νi ≥ 1, i ≥ 1, consists of independently and iden-
tically distributed integer random variables. The interarrival times between messages
have an exponential distribution with parameter λ. The buffer can contain only N
packets; that is, if immediately before the arrival of message of l packets there are
L packets in the buffer, then the message is accepted only if L + l ≤ N ; otherwise
the message of l packets is lost. The loss of a message can also occur if at least one
packet in a message is corrupted. In this case we assume that if there is enough space,
then the message does occupy the buffer, but it is hidden and therefore lost. The
probability that at least one packet in a message is corrupted is denoted by p.

In general loss communication networks, a transmission time typically depends on
the number of packets in a message. To be realistic we must study a general queueing
system with service time depending on batch size. The analysis of such a system
is a hard problem. On the other hand, the model with a fixed number of packets
in a message, leading to the standard M/GI/1/n queueing system, is not realistic.
Therefore, in the following we assume additionally that the random variables νi have
fixed upper and lower bounds νupper and νlower, i.e., P{νlower ≤ νi ≤ νupper} = 1.
This assumption can be considered as a compromise between these two cases. It
has a real application in some communication technologies, especially in optical local
networks, where a number of small messages following the same direction are combined
as one message (bus).1 Outgoing from the local network, the bus continues on its
way being processed by the Internet protocols. When the difference between νupper

and νlower for the messages is not large, then assuming that a transmission time is
independent of the message size seems appropriate.

1.2. Formulation of the model in terms of the queueing theory. In terms
of the queueing theory the model can be described as follows. We assume that mes-
sages arrive to the finite buffer M/GI/1 queue with random number of waiting places
ζ. The input rate is equal to λ, and the service time distribution is B(x) with the
expectation b. By a queueing system with random number of waiting places we mean
the following. We denote

ζ = inf

{
m :

m∑
i=1

νi ≤ N

}
,

and according to the assumption P{νlower ≤ νi ≤ νupper} = 1, there are two fixed
values ζupper and ζlower depending on N , and P{ζlower ≤ ζ ≤ ζupper} = 1.

Let ζ1, ζ2, . . . , be a strictly stationary and ergodic sequence of random variables,
P{ζi = j} = P{ζ = j}, ζlower ≤ j ≤ ζupper. If ξi is the number of messages in
the queue immediately before arrival of the ith message, then the message is lost if
ξi > ζi. Otherwise it joins the queue. We assume that ξ1 = 0.

The existence of the stationary queue-length distribution, i.e.,

P{q̄ = j} = lim
i→∞

P{ξi = j|ξ1 <∞}, j = 0, 1, . . . , ζupper,(1.1)

is shown in the following. The special case when P{νi = l} = 1 leads to the standard
M/GI/1/n queueing system, where n = �N/l� is the integer part of N/l.

1For example, one of such technologies was developed in Orika Optical Networks Limited, where
the author worked during 2000–2001.
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It is also assumed that each message is marked with probability p. We study the
asymptotic behavior of the loss probability under assumptions that Eζ increases to
infinity and p vanishes. The details of these assumptions are clarified in the following
consideration. The loss probability is the probability that the message is either marked
or lost because of overflowing the queue. We study the cases where the traffic (offered
load) � = λb is less than, equal to, and greater than 1.

1.3. Advantages of the approach and methodology. Our approach is based
on the asymptotic analysis of the loss queueing systems in the earlier paper of the
author (see Abramov [3]). The main method is an application of modern Tauberian
theorems with remainder. For the relevant works devoted to asymptotic analysis of
the loss and controlled systems with Poisson input, see Abramov [1], [2], Tomkó [18],
and other papers. The asymptotic analysis of the GI/M/1/n queueing system was
studied in [4], [9], [10]. The advantages of the approach of the present paper are the
following.

First, our model is more general than the model from the aforementioned papers:
This paper discusses the case of a non-Markovian buffer model where a message con-
tains a random batch of packets, while the aforementioned papers studied a Markovian
model with fixed batch size.

Second, the work in [6], [7], [11], [13] discusses a more difficult problem of consec-
utive losses, remaining in a framework of the standard M/M/1/n queueing system.
The present paper flexibly discusses the stationary losses for a nonstandard queueing
model with the random number of waiting places. That queueing system belongs to
the special class of queueing systems with losses that is exactly defined below.

Third, our asymptotic analysis is much simpler than that of the other papers; our
final results and their representation are simple and clear as well.

The traditional approach to asymptotic analysis, based on the final value theorem
for z transform, enables us to obtain the main term of asymptotic relation and, in
certain cases, a remainder. The modern Tauberian theorems enable us to obtain
stronger asymptotic relations using some additional assumptions. These additional
assumptions are realistic for the queueing systems considered here, and our asymptotic
results are stronger than the earlier asymptotic results obtained for the M/GI/1/n
queueing system with the aid of the final value theorem for z transform (see relation
(4.15) for its comparison with (4.14)). For some other results related to asymptotic
analysis of the M/GI/1/n and GI/M/1/n queueing systems with the aid of the final
value theorem, see the bibliography notes and references in Abramov [1].

1.4. What is the main result in this paper.? The paper contains a number
of theoretical results on the asymptotic behavior of characteristics of the busy period
of the system (section 4) and loss probability (section 5). These theoretical results
are then used to conclude the effect of adding redundant packets in order to decrease
the loss probability.

Although the theoretical results of the paper, related to the cases where the offered
load � < 1, are standard, the conclusion about adding redundancy is extremely simple
and interesting nevertheless. Namely, the stationary loss probability is expressed only
via the probability that there is a corrupted packet in the message. This enables us to
conclude that adding a number of redundant packets can decrease the loss probability
with the rate of geometric progression while � < 1.

Then the case when � is close to 1 is very important for the performance analysis.
For example, it can be a result of adding a number of redundant packets when initially
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� < 1. That is, to achieve a maximum decrease in the loss probability we allow an
increase in the offered load up to the critical value.

Therefore, the results on redundancy, related to the case where � = 1+ε (ε > 0) is
slightly greater than 1, are extremely important. The usefulness of the case � = 1+ε is
that it enables us to obtain more exact conclusions on redundancy based on asymptotic
results with remainder. Then, the usefulness of the purely theoretical case � > 1 is
that it is an intermediate result helping us to study the transient behavior, related to
the case � = 1 + ε for small ε > 0.

1.5. Conclusion on adding redundant packets. The results of the paper
enable us to make conclusions on the effect of adding redundant packets as follows.
Let � denote the offered load of the system before adding a redundant packet, and
let �̆ > � be the value of the offered load after adding a redundant packet. While �̆
remains not greater than 1, adding redundant packets is profitable. It decreases the
loss probability with the rate of a geometric progression. Adding a redundant packet
remains profitable if the value �̆ = 1 + ε, where ε is a small value of a higher order
than p. In some cases adding a redundant packet decreases the loss probability even
when the value ε has the same order as p. These cases are studied in section 6.

1.6. The organization of the paper. The paper is organized as follows. There
are six sections, with the first an introduction. In section 2 we introduce the class of
queueing systems with a random number of waiting places and study the characteris-
tics of the system busy period. The results on the expectations of random variables of
the busy period (the number of processed messages, the number of refused messages,
etc.) are given by Lemma 2.1. In section 3 we present a number of auxiliary results
and the Tauberian theorems with remainder. These results are then used to prove a
number of theorems on the asymptotic behavior of the characteristics of the system
given on a busy period which in turn are given in section 4. Section 5 presents the
results on asymptotic behavior of the loss probabilities under different assumptions.
In section 6 we discuss adding redundancy. The central question here is, How is the
loss probability decreased or increased if we add redundant packets into the message?

2. Characteristics of the system given on a busy period. The aim of this
section is to deduce the explicit representations for characteristics of the system dur-
ing a busy period such as the expected duration of a busy period, expected number
of served and lost customers during a busy period, and so on. The queueing system
described in section 1.2 is not standard, and the explicit representation for its char-
acteristics cannot be obtained traditionally. Therefore, below we introduce a special
class of queueing systems Σ containing the system studied in the paper and described
in section 1.2. It will be shown in this section that the above characteristics are
the same for all queueing systems of the class Σ. Hence, one can take any queueing
system, a representative of class Σ, having a more simple structure than the original
system, and study it instead of the original system.

For the sake of convenience, we denote by S1 the system described in section 1.2.
Let B(x) be the probability distribution function of a processing time (in the queueing
terminology, a service time), and let λ be the parameter of Poisson input. We also
set �j = λj

∫∞
0
xjdB(x), j = 1, 2, . . . , and �1 = �.

In order to study the characteristics of the system S1 we introduce a set of systems
Σ containing S1 as an element. The set Σ is a set of M/GI/1 queueing systems where
λ is the rate of Poisson input, B(x) is the probability distribution function of a service
time, and the family of sequences {ζi} is more general than in S1. Each sequence ζ1,
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ζ2, . . . is a family of identically distributed random variables, governing the rejection
process and having the same distribution as the random variable ζ. If this sequence
is as defined in section 1.2, then we have a description of our system S1. In order to
define the set Σ more exactly, we use the notation for the queueing system S1 and
also introduce the following.

Let ξi denote the number of messages in the system S1 immediately before arrival
of the ith message, ξ1 = 0, and let si denote the number of service completions between
the ith and i+ 1st arrivals. It is clear that

ξi+1 = ξi − si + I{ξi ≤ ζi},(2.1)

where the term I{ξi ≤ ζi} indicates that the ith message is accepted, and obviously
si is not greater than ξi + I{ξi ≤ ζi}.

Consider a new queueing system S as above with the Poisson input rate λ and the
probability distribution function of a service B(x), but with the sequence ζ̃1, ζ̃2, . . . .

Here we assume that the sequence {ζ̃i} is an arbitrary dependent sequence of random
variables consisting of identically distributed random variables as the random variable
ζ. Let ξ̃i denote the number of messages immediately before arrival of the ith message
(ξ̃1 = 0), and let s̃i denote the number of service completions between the ith and
i+1st arrivals. Thus, we assume that the initial conditions of both queueing systems
S1 and S are the same: ξ1 = ξ̃1.

Analogously to (2.1) we have

ξ̃i+1 = ξ̃i − s̃i + I{ξ̃i ≤ ζ̃i}.(2.2)

Definition. We say that the queueing system S belongs to the set Σ of queueing
systems if Eξ̃i = Eξi, Es̃i = Esi, and P{ξ̃i ≤ ζ̃i} = P{ξi ≤ ζi} for all i ≥ 1.

Consider an example of queueing systems belonging to the set Σ, where the se-
quence {ζ̃i} is strictly stationary but not ergodic. The example is a queueing system

with ζ̃1 = ζ̃2 = . . . , which we denote by S2. The example below is artificial rather
than realistic, however, its main goal is to help us to show the existence of necessary
stationary queue-length probabilities for the queueing system S1 and to obtain the
explicit representations for those probabilities as well.

For S2 we find by induction for all i ≥ 1 that

Es̃i = Esi,(2.3)

P{ξ̃i ≤ ζ̃i} = P{ξi ≤ ζi},(2.4)

and

Eξ̃i − Es̃i + P{ξ̃i ≤ ζ̃i} = Eξi − Esi + P{ξi ≤ ζi}.(2.5)

Relations (2.3)–(2.5) show that the queueing system S2 ∈ Σ. It follows from the
definition that if the stationary loss probability exists for at most one of the queueing
systems S ∈ Σ, then it exists for all queueing systems of Σ and it is the same. Then,
the properties of the queueing system S2 enable us to conclude similar properties of all
queueing systems belonging to the set Σ, including S1. For example, it is not difficult
to show that the expected busy period is the same for all queueing systems of the
class Σ. Indeed, let Ã, S̃, and R̃ denote the number of arrived, served, and refused
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customers (because of overflowing the buffer) during a busy cycle C̃, respectively. We
have the equations

EÃ = ES̃ + ER̃ = λEC̃,(2.6)

bES̃ = EC̃ − 1

λ
,(2.7)

where b is the expected service time. Since the loss probability is the same for all
queueing systems S ∈ Σ, then the fraction ER̃/EC̃ is the same for all S ∈ Σ as well.
Therefore, it follows from equations (2.6) and (2.7) that the expected duration of a

busy period, ET̃ = EC̃ − λ−1, is the same for all queueing systems S ∈ Σ.
Recall that for queueing system S2 we have ζ̃1=ζ̃2 = . . . , i.e., the random variable

ζ is modeled once at the initial time moment. Let T̃ζ denote a busy period of this
system. Then, the total expectation formula enables us to write

ET̃ζ =

ζupper∑
K=ζlower

ETKP{ζ = K},(2.8)

where ETK is the expected busy period of an M/GI/1/K queueing system with the
same sequence of interarrival and service times, and P{ζ = K} = P{ζj = K}. In
turn, the expectation ETK is determined from the following recurrence relation:

ETK =

K∑
j=0

πjETK−j+1, ET0 = b, πi =

∫ ∞

0

e−λx
(λx)i

i!
dB(x)(2.9)

(see Tomkó [18], Cooper and Tilt [12], and Abramov [1], [3]), where b is the expectation
of a service time.

Now, let Tζ denote a busy period for the queueing system S1. According to the

above conclusion that ETζ = ET̃ζ , and in view of (2.8), we have

ETζ =

ζupper∑
K=ζlower

ETKP{ζ = K},(2.10)

where ETK are determined from (2.9).
Along with the notation Tζ for the busy period of the system S1, we let Iζ be an

idle period and let Pζ , Mζ , Rζ be the characteristics of the system on a busy period:
the number of processed messages, the number of marked messages, the number of
refused messages, respectively. Here and later we use the following terminology. The
term refused message is used for the case of overflowing the buffer. Then the term
lost message is used for the case where a message is either refused or marked. The
number of lost messages during a busy period is denoted by Lζ . Analogously, by loss
probability we mean the probability when an arrival message is lost.

Lemma 2.1. For the expectations ETζ , EPζ , EMζ , ERζ we have the following
representations:

EPζ =
λ

�
ETζ ,(2.11)

EMζ = pEPζ ,(2.12)
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ERζ = (�− 1)EPζ + 1.(2.13)

Proof. Relations (2.11) and (2.12) follow immediately from Wald’s identity. In
order to prove (2.13) note that the number of arrivals during a busy cycle equals
the number of processed messages during a busy period plus the number of refused
messages during a busy period (see relation (2.6)). According to Wald’s identity the
expected number of arrivals during a busy cycle equals λ(ETζ + EIζ). Therefore
taking into account that EIζ = λ−1 from (2.11), we have

ERζ = (�− 1)EPζ + 1,

and the result is proved.
For the alternative proof of (2.13) see Abramov [3]. (See also the proof in [5].)

3. Auxiliary results. Tauberian theorems with remainder. It is seen
from relations (2.10) and (2.9) and Lemma 2.1 that the characteristics of the system
during a busy period can be studied in a framework of the recurrence relation

Qk =

k∑
i=0

riQk−i+1,(3.1)

where ri are nonnegative numbers, r0 + r1 + · · · = 1, r0 > 0, and Q0 �= 0 is an
arbitrary real number. Below we recall a number of results on asymptotic behavior
of that sequence (3.1).

The known results on representation (3.1) are asymptotic theorems by Takács
[17]. Lemma 3.1 below joins two results by Takács: Theorem 5 of [17, p. 22] and
relation (35) [17, p. 23]. The results of Takács [17] were then developed by Postnikov
[14, sect. 25], [15, sect. 25] (see Lemma 3.2 and Lemma 3.3 below).

Let r(z) =
∑∞
i=0 riz

i, |z| ≤ 1, γm = r(m)(1 − 0) = limz↑1 r(m)(z) (r(m)(z) is the
mth derivative of r(z)). Note that if we denote Q(z) =

∑∞
i=0Qiz

i, then it follows
from (3.1) that

Q(z) =
Q0r(z)

r(z) − z
.

Lemma 3.1 (Takács [17]). If γ1 < 1, then

lim
k→∞

Qk =
Q0

1 − γ1
.(3.2)

If γ1 = 1 and γ2 <∞, then

lim
k→∞

Qk
k

=
2Q0

γ2
.(3.3)

If γ1 > 1, then

lim
k→∞

(
Qk − Q0

δk[1 − r′(δ)]

)
=

Q0

1 − γ1
,(3.4)

where δ is the least (absolute) root of the equation z = r(z).
Lemma 3.2 (Postnikov [14], [15]). Let γ1 = 1, γ3 <∞. Then as k → ∞,

Qk =
2Q0

γ2
k +O(log k).(3.5)
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Lemma 3.3 (Postnikov [14], [15]). Let γ1 = 1, γ2 <∞ and r0 + r1 < 1. Then as
k → ∞,

Qk+1 −Qk =
2Q0

γ2
+ o(1).(3.6)

4. Asymptotic results for characteristics of the system during a busy
period. This section provides a number of results on asymptotic behavior of charac-
teristics of the system. The first three theorems are related to the case as N increases
to infinity, where the cases � < 1, � = 1, and � > 1 are considered. The next two
theorems discuss the case when the value � is close to the critical value 1, and as
N → ∞, it tends to 1. The last theorem of this section, Theorem 4.6, provides the
asymptotic result for the special case when the number of packets in a message is a
constant value.

Let us now study the asymptotic behavior of the expectations EPζ , EMζ , and
ERζ . We write ζ = ζ(N), pointing out the dependence on parameter N . As the buffer
size N increases to infinity, both ζlower and ζupper tend to infinity, and together with
them, ζ(N) a.s. tends to infinity. Then we have the following.

Theorem 4.1. If � < 1, then

lim
N→∞

EPζ(N) =
1

1 − �
.(4.1)

If � = 1 and �2 <∞, then

lim
N→∞

EPζ(N)

Eζ(N)
=

2

�2
.(4.2)

If � > 1, then

lim
N→∞

[
EPζ(N) − 1

Eϕζ(N)[1 + λβ′(λ− λϕ)]

]
=

1

1 − �
,(4.3)

where β(z) =
∫∞
0

e−zxdB(x) and ϕ is the least (absolute) root of functional equation
z − β(λ− λz) = 0.

Proof. From (2.9), (2.10), and (2.11) we have

EPζ =

ζupper∑
K=ζlower

EPKP{ζ = K},

where

EPK =

K∑
j=0

πjEPK−j+1, EP0 = 1,

πj =

∫ ∞

0

e−λx
(λx)j

j!
dB(x).

Then applying Lemma 3.1 we have the following. In the case � < 1, taking into
account that ζ(N)

a.s.→∞ as N → ∞, we obtain

lim
N→∞

EPζ(N) = lim
N→∞

EPN =
1

1 − �
.
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Relation (4.1) is proved.
In the case �2 <∞ and � = 1 we have

lim
N→∞

EPζ(N)

N
= lim
N→∞

1

N

ζupper∑
K=ζlower

P{ζ(N) = K}EPK

= lim
N→∞

1

N

ζupper∑
K=ζlower

KP{ζ(N) = K} 2

�2
=

2

�2
lim
N→∞

Eζ(N)

N
.

Therefore,

lim
N→∞

EPζ(N)

Eζ(N)
=

2

�2
,

and relation (4.2) is proved.
In the case � > 1 for large N we obtain

EPζ(N) =

ζupper∑
K=ζlower

P{ζ(N) = K}EPK

=

ζupper∑
K=ζlower

P{ζ(N) = K} 1

ϕK [1 + λβ′(λ− λϕ)]
+

1

1 − �
+ o(1)

=
1

Eϕζ(N)[1 + λβ′(λ− λϕ)]
+

1

1 − �
+ o(1).

Therefore,

lim
N→∞

[
EPζ(N) − 1

Eϕζ(N)[1 + λβ′(λ− λϕ)]

]
=

1

1 − �
,

and relation (4.3) is proved. Theorem 4.1 is completely proved.
Theorem 4.2. If � = 1 and �3 <∞, then

EPζ(N) =
2

�2
Eζ(N) +O(logN).(4.4)

Proof. Applying Lemma 3.2, for large N we have

EPζ(N) =

ζupper∑
K=ζlower

P{ζ(N) = K}EPK

=

ζupper∑
K=ζlower

KP{ζ(N) = K} 2

�2
+O{E[log ζ(N)]}
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=
2

�2
Eζ(N) +O{E[log ζ(N)]}

=
2

�2
Eζ(N) +O(logN).

and we obtain relation (4.4). Theorem 4.2 is proved.
In turn for ERζ we have the following theorem.
Theorem 4.3. If � < 1, then

lim
N→∞

ERζ(N) = 0.(4.5)

If � = 1, then for all N ≥ 0

ERζ(N) = 1.(4.6)

If � > 1, then

lim
N→∞

[
ERζ(N) − �− 1

Eϕζ(N)[1 + λβ′(λ− λϕ)]

]
= 0.(4.7)

Proof. The proof of this theorem is analogous to that of the proof of Theorem
4.1. It follows by application of Lemma 3.1 and relation (2.13) of Lemma 2.1.

Theorem 4.4. Let � = 1 + ε, ε > 0, and εζ(N) → C > 0 a.s. as ε → 0
and N → ∞. Assume also that �3 = �3(N) is a bounded sequence, and there exists
�̃2 = limN→∞ �2(N). Then

EPζ(N) =
e2C/�̃2 − 1

ε
+O(1),(4.8)

ERζ(N) = e2C/�̃2 + o(1).(4.9)

Proof. It was shown in Subhankulov [16, p. 326], that if � = 1 + ε, ε > 0, ε→ 0,
�3(N) is a bounded sequence, and there exists �̃2 = limN→∞ �2(N), then

ϕ = 1 − 2ε

�̃2
+O(ε2).(4.10)

Applying (4.10) after some algebra we have

1 + λβ′(λ− λϕ) = ε+O(ε2).(4.11)

Then the statements of the theorem follow by applying expansions (4.10) and
(4.11) to (4.3) and (4.7).

Theorem 4.5. Let � = 1 + ε, ε > 0, and εζ(N) → 0 as ε → 0 and N →
∞. Assume also that �3 = �3(N) is a bounded sequence, and there exists �̃2 =
limN→∞ �2(N). Then

EPζ(N) =
2

�̃2
Eζ(N) +O(1),(4.12)

ERζ(N) = 1 + o(1).(4.13)
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Proof. The results follow by expanding (4.8) and (4.9) for small C.
Special case. If each message contains the same number of packets, say l, then we

have the usual M/GI/1/n queueing system, where n = �N/l� is the integer part of
N/l. For that queueing system all the results in Theorems 4.1–4.5 hold, by replacing
ζ(N) (or Eζ(N)) by n.

For example, asymptotic relation (4.7) appears as

lim
n→∞

(
ERn − �− 1

ϕn[1 + λβ′(λ− λϕ)]

)
= 0.(4.14)

Notice that using the final value theorem for z transform, Azlarov and Tahirov
[8] obtain the estimation

ERn =
�− 1

ϕn[1 + λβ′(λ− λϕ)]

[
1 +O

( 2ϕ

1 + ϕ

)n]
,(4.15)

weaker than (4.14).
The theorem below is related to the case of the usual queueing systems only, when

the number of packets in a message is fixed. Namely, we have the following.
Theorem 4.6. If � = 1 and �2 <∞, then

EPn+1 − EPn =
2

�2
+ o(1), n→ ∞,(4.16)

where the index n + 1 says that Pn+1 is the number of processed messages during a
busy period of the M/GI/1/n+ 1 queueing system.

Proof. The result will follow from Lemma 3.3 if we show that β(λ)− λβ′(λ) < 1.
Taking into account that for each λ > 0,

∞∑
i=0

(−λ)i

i!
β(i)(λ) =

∞∑
i=0

∫ ∞

0

e−λx
(λx)i

i!
dB(x)(4.17)

=

∫ ∞

0

∞∑
i=0

e−λx
(λx)i

i!
dB(x) = 1,

and all terms

πi =
(−λ)i

i!
β(i)(λ)

are nonnegative, from (4.17) we find that

β(λ) − λβ′(λ) ≤ 1.(4.18)

Thus, the required statement will be proved if we show that for some λ0 > 0 the
equality

β(λ0) − λ0β
′(λ0) = 1(4.19)

is not a case. Indeed, since the function β(λ) − λβ′(λ) is an analytic function, then
according to the maximum absolute value principle for analytic functions, β(λ) −
λβ′(λ) = 1 holds for all λ > 0. Therefore identity (4.19) means that πi = 0 for all
i ≥ 2 and for all λ > 0. Therefore, (4.19) is valid if and only if β(λ) is a linear function,
i.e., β(λ) = c0 + c1λ, c0 and c1 are some constants. However, since |β(λ)| ≤ 1 we
obtain c0 = 1 and c1 = 0, and β(λ) ≡ 1. This is the trivial case where the probability
distribution function B(x) is concentrated in point 0. Therefore (4.19) is not a case,
and β(λ) − λβ′(λ) < 1. The theorem is proved.
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5. Asymptotic theorems for the loss probabilities. In this section we study
the asymptotic behavior of the loss probability by using renewal arguments. The
results of this section correspond to those of the previous section. We discuss the
behavior of the system for the same cases as N → ∞, as well as when the parameter
ρ is close to the critical value 1 and tends to 1 as N → ∞. The theorems of this
section are important for our conclusion on adding redundancy, which is given in the
next section.

According to renewal arguments the loss probability is determined as

Πζ =
ELζ

ERζ + EPζ
=

ERζ + EMζ

ERζ + EPζ
=

ERζ + pEPζ
ERζ + EPζ

.(5.1)

(Recall that Lζ is the number of lost messages during a busy period.)
Theorem 5.1. If � < 1

lim
N→∞

Πζ(N) = p.(5.2)

(Recall that p is the probability that a message is erroneous because one of its
packets is corrupted.)

Limiting relation 5.2 is also valid when � = 1 and �2 <∞.
If � > 1, then

Πζ(N) =
p+ �− 1

�

(�− 1) + p[1 + λβ′(λ− λϕ)]Eϕζ(N)

(�− 1) + [1 + λβ′(λ− λϕ)]Eϕζ(N)
+ o(Eϕζ(N)).(5.3)

Proof. The proof follows from Theorems 4.1 and 4.3.
Theorem 5.2. If � = 1 and �3 <∞, then as N → ∞

Πζ(N) = p+
(1 − p)�2

2Eζ(N)
+O

( logN

N2

)
.(5.4)

Proof. From (5.1) we have

Πζ(N) =
ERζ(N)

ERζ(N) + EPζ(N)
+

pEPζ(N)

ERζ(N) + EPζ(N)
(5.5)

=
1

1 + EPζ(N)
+

pEPζ(N)

1 + EPζ(N)
.

As N → ∞ from Theorem 4.2 we obtain

1

1 + EPζ(N)
=

�2

2Eζ(N)
+O

( logN

N2

)
,(5.6)

pEPζ(N)

1 + EPζ(N)
= p− p�2

2Eζ(N)
+O

( logN

N2

)
.(5.7)

Combining these two asymptotic relations (5.6) and (5.7) we obtain the statement of
Theorem 5.2. Theorem 5.2 is proved.
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Note. Under assumptions of Theorem 5.2 assume additionally that p → 0. If
pN → C > 0, then

Πζ(N) =
C

N
+

�2

2Eζ(N)
+O

( logN

N2

)
.

If pN → 0, then

Πζ(N) =
�2

2Eζ(N)
+O

(
p+

logN

N2

)
.

The theorem below also assumes that p→ 0. Our result here is the following.
Theorem 5.3. Let � = 1 + ε, ε > 0, and εζ(N) → C > 0 as ε→ 0 and N → ∞,

and p → 0. Assume also that �3 = �3(N) is a bounded sequence, and there exists
�̃2 = limn→∞ �2(N).

(i) If p/ε→ D ≥ 0, then we have

Πζ(N) =

(
D +

e2C/�̃2

e2C/�̃2 − 1

)
ε+ o(ε).(5.8)

(ii) If p/ε→ ∞, then we have

Πζ(N) = p+O(ε).(5.9)

Proof. In the case (i) we have

pEPζ(N) + ERζ(N) = (D + 1)e2C/�̃2 −D + o(1),(5.10)

and

EPζ(N) + ERζ(N) =
e2C/�̃2 − 1

ε
+O(1).(5.11)

Therefore from (5.10) and (5.11) we have

Πζ(N) =

(
D +

e2C/�̃2

e2C/�̃2 − 1

)
ε+ o(ε),

and relation (5.8) is proved.
In the case (ii) we have

pEPζ(N) + ERζ(N) =
pc

ε
+O(1),(5.12)

and

EPζ(N) + ERζ(N) =
c

ε
+O(1),(5.13)

where c = exp(2C/�̃2)/(exp(2C/�̃2) − 1). Relation (5.9) follows.
Theorem 5.4. Let � = 1 + ε, ε > 0, and εζ(N) → 0 as ε → 0 and N → ∞,

and p → 0. Assume also that �3 = �3(N) is a bounded sequence, and there exists
�̃2 = limn→∞ �2(N).
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(i) If p/ε→ D ≥ 0, then we have

Πζ(N) = p+
�̃2

2Eζ(N)
+ o
( 1

N

)
.(5.14)

(ii) If p/ε→ ∞, then we have (5.9).
Proof. The proof of (5.14) follows by expanding (5.8) for small C. The proof in

case (ii) trivially follows from (5.12) and (5.13).
Special case. In the case where each message contains exactly l packets, n =

�N/l�, we obtain the following:
Theorem 5.5. If � = 1 and �2 <∞, then as n→ ∞

Πn+1 − Πn =

1
n(n+1)

2
�2

(p− 1)(
2
�2

+ 1
n+1

)(
2
�2

+ 1
n

) + o
( 1

n2

)
.(5.15)

Proof. The proof follows by applying Theorem 4.5 and taking into account the
fact that ERn = 1 for all n ≥ 0 (see [3] or Lemma 2.1).

6. Adding redundant packets. We now investigate the effect of adding redun-
dant packets. We assume that adding a redundant packet to the message decreases
the probability p that a message is corrupted and increases the offered load and the
number of packets in a message. The new parameters of the system after adding a
redundant packet are denoted by adding the symbol ˘ above. For example, p̆ is a
probability that a message contains a corrupted packet and �̆ is the offered load. It
follows from Theorem 5.1 that if �̆ ≤ 1 the stationary loss probability coincides with
p̆. This means that if adding a redundant packet to the message decreases the prob-
ability p by γ times, then the same effect is achieved with the loss probability. Thus,
adding a number of redundant packets while � < 1 can decrease the loss probability
geometrically.

In the case where both � > 1 and �̆ > 1, adding a redundant packet to the message
changes the stationary loss probability to approximately

�(p̆+ �̆− 1)

�̆(p+ �− 1)
.

In practice the values p and p̆ are small, and even if adding redundant packets can
slightly decrease the stationary loss probability, the effect of that action is not con-
siderable.

The case where � < 1 and �̆ > 1 is especially interesting if �̆ = 1 + δ, and δ is a
small value. For example, if δ is so small that both δζ(N) and δ/p are also negligible,
then a redundant packet decreases the loss probability by approximately the same
amount as in the case when both � < 1 and �̆ < 1. However, if δ is of the same
order as p or 1/ζ(N), then the special analysis based on the corresponding cases of
Theorems 5.3 and 5.4 is necessary. Here we do not provide the details.

Let us consider the cases when both � > 1 and �̆ > 1, where � = 1 + ε and
�̆ = 1 + ε̆, and ε and ε̆ are small values as in Theorem 5.3, both satisfying (i). Then
the stationary loss probability is changed to approximately

e2C/�̃2 − 1

e2C̆/�̆2 − 1

(e2C̆/�̆2 − 1)p̆+ e2C̆/�̆2 ε̆

(e2C/�̃2 − 1)p+ e2C/�̃2ε
(6.1)

times.
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For the sake of simplicity let us assume that C̆/�̆2 = C/�̃2. Then (6.1) reduces to

(e2C/�̃2 − 1)p̆+ e2C/�̃2 ε̆

(e2C/�̃2 − 1)p+ e2C/�̃2ε
.(6.2)

If we assume that

p− p̆ =
e2C/�̃2

e2C/�̃2 − 1
(ε̆− ε),

then the stationary loss probability remains at approximately the same value, and if

p− p̆ >
e2C/�̃2

e2C/�̃2 − 1
(ε̆− ε),

then the stationary loss probability decreases, otherwise if

p− p̆ <
e2C/�̃2

e2C/�̃2 − 1
(ε̆− ε),

then the stationary loss probability increases.
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Abstract. The problem of creating eigenfunctions which are localized arises in the study of
photonic bandgap structures. A model problem, that of finding material inhomogeneity in a domain
so that one of its Dirichlet eigenfunctions is localized, is considered in this work. The most difficult
aspect, that of formulating the problem, is described, and well-posed variational problems are given.
A computational approach, based on gradient descent with projection and trajectory continuation,
is devised to solve the optimization problem. Numerical examples are provided which demonstrate
the capability of the computational method.
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1. Introduction. We study a problem arising in the design of optical devices
that exploit the photonic bandgap phenomenon. This phenomenon occurs in the
optical wavelength regime in certain nanostructures with periodic index of refrac-
tion. Such materials, called photonic bandgap (PBG) structures by John [8] and
Yablonovitch [12], are conceived to be optical analogues of electronic semiconductors.
By introducing patterned defects into a photonic bandgap structure, it is possible to
control the propagation of light within the structure. Photonic bandgap structures
are anticipated to play important roles in future generations of optical devices.

Photonic bandgap phenomenon refers to the existence of a certain frequency band
in which waves having frequency in that band cannot propagate in the medium. A
bandgap can be created in a medium with periodic structure [7]. If a bandgap exists,
it is possible to create a standing wave with frequency in the gap by introducing a
so-called “point defect.” In its simplest form, a point defect is a localized perturbation
to the underlying periodic index of refraction. It is known that such a standing wave
will be spatially localized [4]. Optimizing the properties of localized modes is the
subject of this work.

To be specific, let us consider the transverse electric-mode for electromagnetic
waves in two dimensions. The medium is characterized by the real dielectric property
εp(x), which is unit periodic. It is assumed that the medium εp(x) has a bandgap.
That is, the spectral problem

∆u+ ω2εp(x)u = 0, x ∈ R
2,

has a continuous spectrum with a gap.
A defect is modeled by a localized perturbation η(x) with compact support; thus

the governing equation now takes the form

∆u+ ω2(εp(x) + η(x))u = 0.(1.1)
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The stability theorem (see, e.g., [10]) states that the essential spectrum of the per-
turbed problem is equal to that of the periodic problem. One can interpret the result
as saying that the perturbation can only create an additional discrete spectrum.

Defect modes are solution pairs (ω, u(x)) to (1.1) which have the property that
ω is in the frequency gap of the periodic medium, and u(x) decays exponentially
away from the defect. The existence of these defect modes has been addressed in the
work of Figotin and Klein [6] (see also a review of mathematical results on photonic
bandgap structures in [10, 5]). It is known, for example, that if the perturbation η(x)
is sufficiently strong and the frequency bandgap is sufficiently large, then a defect
mode can be created.

In this work, we address a more practical question, that of finding η(x) so that
the defect mode produced has desired attributes. For example, we may wish to create
a defect mode that concentrates energy in the smallest spatial region, which is useful
in applications for enhancing nonlinear optical effects, or we may wish to create a
defect mode with a specific frequency.

We note that one possible way of creating defect modes that are highly localized
is to start with an underlying periodic medium that has a large gap. The theoretical
results of Figotin and Klein (see, e.g., [6]) state that localization length is minimized
by creating a defect mode whose frequency is as far away as possible from the band
edge. Maximization of bandgaps has been treated in the work of Cox and Dobson
[2, 3]. However, this previous work does not address the issue of how to create defect
modes with specified properties.

To simplify the analysis and computation even further, we pose a model prob-
lem on a bounded domain Ω. We will look at the Dirichlet eigenvalue problem in
the domain and attempt to find material properties that lead to eigenfunctions that
are “most localized.” This model problem avoids the difficulty of dealing with the
original unbounded domain and also lumps the discovery of ε(x) and η(x) in a single
formulation. It also avoids the issue of explicitly satisfying the conditions needed to
create defect modes in a photonic bandgap structure.

We believe that this simple model problem exhibits many of the challenges posed
by the original problem and feel that the more complex physics of light can be treated
by the approach we propose in this work. Moreover, the eigenfunctions, when highly
localized, can be interpreted in terms of unbounded photonic bandgap structures.
This is because defect modes in photonic bandgap structures are highly localized and
can be well approximated by functions which are zero outside of a bounded domain.

The paper is organized as follows. We first provide a statement of the optimal
design problem. In section 3 we investigate conditions under which mathematically
sound formulations of the design problem can be posed. We find two well-posed
formulations, each of which has some practical deficiencies. In section 4, we present
a numerical method for solving the optimal design problem which explicitly assumes
a finite-dimensional implementation. The method does not directly solve either of
the two optimization problems formulated in section 3 but could be adapted to do
so and is quite efficient at finding good designs. We show numerical examples of
designs created by our approach. We find the results quite startling in the sense that
the process often produces what appears to be a periodic structure with a defect.
The paper ends with a discussion section that outlines some open theoretical and
computational issues.

2. Problem description. We assume that the dielectric coefficient ε(x) of the
medium satisfies 0 < ε0 ≤ ε(x) ≤ ε1 < ∞. We are interested in modes u ∈ H1

0 (Ω)
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satisfying the Dirichlet eigenvalue problem

−∆u = λε u in Ω,(2.1a)

u = 0 on ∂Ω(2.1b)

for some eigenvalue λ. Here Ω is a simply connected bounded domain in R
2 with

Lipschitz continuous boundary. The quantity εu2 is proportional to energy density in
the medium. Normalizing the eigenfunctions to have unit energy in the domain, we
specify ∫

Ω

εu2 = 1.(2.2)

Associated with problem (2.1) is the following variational problem: find u ∈ H1
0 (Ω)

such that

a(u, v) = λb(ε;u, v) for all v ∈ H1
0 (Ω),(2.3)

where

a(u, v) =

∫
Ω

∇u · ∇v, b(ε;u, v) =

∫
Ω

ε uv.

The symmetric bilinear form a(u, v) defines an associated L2–self-adjoint operator
A through the formula a(u, v) = 〈Au, v〉. It is well known that A has a compact self-
adjoint inverse A−1 : L2(Ω) → L2(Ω), and the problem (2.3) is equivalent to

v = λA−1/2B(ε)A−1/2v,

where B(ε) is defined by b(ε;u, v) = 〈B(ε)u, v〉.
The admissible class of dielectric coefficient is defined

A = {ε ∈ L∞(Ω) : 0 < ε1 ≤ ε(x) ≤ ε2, a.e.}.

Since the operator A−1/2BA−1/2 is compact and self-adjoint, the spectral theorem
implies that for each given ε ∈ A, problem (2.3) admits an infinite sequence of non-
negative real eigenvalues

0 < λ0(ε) ≤ λ1(ε) ≤ λ2(ε) ≤ · · · ,(2.4)

listed according to multiplicity, and associated eigenfunctions uj(ε), j = 1, 2, . . . ,∞,
(assumed to be scaled so that

∫
εu2
j = 1). For each fixed ε, the set of eigenfunc-

tions {uj(ε)} forms an orthogonal basis for L2(Ω), although the sequence uj(ε) is not
uniquely defined, due to sign ambiguities and the possibility of multiple eigenvalues.

Our goal is to find material parameters ε ∈ A such that a particular corresponding
eigenfunction u(ε) is “most localized” at a particular point. We measure the degree
of localization by the moment

J(ε, u) =

∫
Ω

wεu2,

where w is some fixed prescribed weight function. In the numerical experiments to
follow, we will assume 0 ∈ Ω and take w(x) = |x|2.
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3. Optimization problems. The purpose of this section is to investigate con-
ditions under which a well-defined optimization problem can be formulated. In the
minimization method to be described in the following section, we will specifically make
use of the finite-dimensionality of the numerical implementation in order to justify the
algorithm. Before doing so, it is important to understand the difficulties associated
with the underlying problem before discretization.

Without some constraints, the problem of minimizing J(ε, u(ε)) over A is not well-
posed. By considering eigenfunctions corresponding to higher and higher frequencies,
a sequence εn could be constructed which drives J(εn) to zero, but for which εn does
not converge in A. For example, one could choose εn to be a sequence of truncated
photonic bandgap structures with point defects, with spatial frequency tending toward
infinity. To ensure existence of a solution, we must further constrain the problem. We
will consider two ways of imposing constraints, leading to a “global problem” and a
“local problem.”

3.1. Global problem. For each fixed ε ∈ A, the sequence of eigenvalues λk(ε),
k = 0, 1, 2, . . . , as in (2.4), is well defined. Choose some N <∞. Define

EN (ε) = {u ∈ H1
0 (Ω) : u is an eigenfunction associated

with some λj(ε), j ≤ N , satisfying
∫
εu2 = 1}.

Note that EN (ε) is finite-dimensional for each ε, but its dimension may change as ε
is varied due to multiple eigenvalues. The global problem we consider is

inf
ε∈A

min
u∈EN (ε)

J(ε, u) =

∫
Ω

wεu2.(3.1)

Proposition 3.1. Problem (3.1) admits a solution ε ∈ A.
Proof. By Proposition 4.3.i in Cox and McLaughlin [1], each eigenvalue λj(ε) is

weak∗ L∞ continuous over A. Also A is weak∗ compact, so

sup
ε∈A

λN (ε) = C <∞.

The variational problem (2.3) then immediately gives a uniform upper bound on
‖u‖H1(Ω) for all u ∈ EN (ε), independent of ε ∈ A. Considering then a minimizing
sequence εn with some subsequence (still denoted εn) converging weak∗ to some ε ∈ A,
any corresponding minimizing eigenfunctions un ∈ EN (εn) have a subsequence (again
indexed by n) such that un converges weakly in H1

0 (Ω) (hence strongly in L2(Ω)) to
some u in H1

0 (Ω). Since u2
n → u2 in L1, it follows that J(εn, un) → J(ε, u). Finally,

the fact that u ∈ EN (u) follows easily from (2.3).
The global problem (3.1) is interesting in that it seeks an absolute minimum

over all admissible designs with a prescribed upper bound on frequency. This is very
close to the problem that we would like to solve computationally. It does, however,
have some drawbacks. First, nothing in the problem formulation prevents solutions
from occurring at a multiple eigenvalue, in which one eigenfunction is localized while
others are not. Second, the problem is computationally awkward, since the objective
function is not everywhere differentiable.

Next we propose another problem which removes each of these drawbacks but
introduces a new objection in that it is “local.”
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3.2. Local problem. Choose some ε0 ∈ A which yields an associated eigenvalue
λk(ε0) such that

min
j

|λk(ε0) − λj(ε0)| ≥ 2δ > 0.

In other words, the kth eigenvalue is distinct and separated from the other eigenvalues
by 2δ. Then define a new admissible set

Aδ = {ε ∈ A : min
j

|λk(ε) − λj(ε)| ≥ δ},

where it is assumed that the eigenvalues are ordered according to multiplicity as in
(2.4). Thus Aδ contains a set of material parameters for which the kth eigenvalue
is always distinct and bounded away from all other eigenvalues. Note that Aδ is
not empty, since it at least contains ε0. Because of the weak∗ continuity of λ(ε),
it follows that Aδ is weak∗ compact. Unfortunately, however, it is not necessarily
convex. Nevertheless, we can formulate the “local problem”

inf
ε∈Aδ

J(ε) =

∫
Ω

wεu2
k,(3.2)

where ±uk is a basis eigenfunction which spans the one-dimensional eigenspace asso-
ciated with λk(ε), again normalized so that

∫
εu2
k = 1.

Proposition 3.2. Problem (3.2) admits a solution ε ∈ Aδ.
Proof. The proof follows essentially the same direct method argument as Propo-

sition 3.1. The key point is that the weak∗ continuity of λk(ε) establishes both the
compactness of Aδ and the fact that supε∈Aδ

λk(ε) < ∞. The latter fact yields the
uniform H1

0 upper bound on the eigenfunctions, and the argument follows that of
Proposition 3.1.

The advantage of this problem formulation is that it excludes multiple eigenvalues
and the associated changes in dimension of eigenspaces as ε moves through the design
space. The disadvantage is that due to the nonconvexity of the admissible set Aδ, any
derivative-based minimization method would be forced to search for solutions locally
near the known design ε0.

4. A minimization method. In this section, we introduce a computational
method which can be adapted for solving either problem (3.1) or problem (3.2).
However, as pointed out in the previous section, each problem has some practical
deficiencies. The method developed here is a somewhat more general algorithm which
starts with an eigenfunction of an initial design medium ε and iteratively decreases
the objective function associated with this particular eigenfunction as it updates the
medium. The algorithm handles the situation when the eigenvalue associated with the
eigenfunction becomes a repeated eigenvalue at some design and can be viewed as a
steepest descent approach with trajectory continuation. The continuation is needed to
track the same eigenfunction as the algorithm explores the admissible designs through
the iterations.

From now on, we tacitly assume that the eigenproblem (2.1) has been discretized,
for example, by finite differences, into a corresponding matrix eigenproblem

Au = λS(ε)u,(4.1)

where u and ε now represent finite-dimensional vectors, and S(ε) is a diagonal matrix
which multiplies the entries of u pointwise by the elements in ε. Most of the following
still carries through when A and S are infinite-dimensional operators. Assume that
the discretization makes A and S symmetric and positive definite.
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4.1. Derivative calculation. In preparing to compute derivatives of the objec-
tive function, it will be helpful to reformulate the eigenproblem in such a way that
ε does not appear explicitly in the normalization constraint (2.2). Let b be the vec-
tor with entries bj = 1/

√
εj , and let B be the diagonal matrix with b on the main

diagonal. Thus S(ε)−1/2 = B. It will simplify the following calculations to consider
the vector b as our design variable. Set v = B−1u. The eigenproblem (4.1) with
normalization of the eigenvector can then be equivalently stated as

BABv − λv = 0,

〈v, v〉 = 1.

Note that for any eigenpair (λ, v) satisfying this problem, we have λ = 〈v,BABv〉.
Given a design vector b, and any associated eigenvector v(b), we can then consider
the objective function

J(b) =
1

2
〈v(b),Wv(b)〉,(4.2)

where v(b) solves

BABv − 〈v,BABv〉v = 0,(4.3a)

〈v, v〉 = 1.(4.3b)

Here, W is a symmetric matrix which represents multiplication by the weight function
w on the discretized vector v.

Let δb be a small perturbation in b. The linearized response DJ(b)(δb) in the
objective J(b) is

DJ(b)(δb) = 〈δv,Wv〉,
where δv is the linearized response in v to δb. Differentiating (4.3), we find that δv
satisfies

BABδv − 〈v,BABv〉δv − 2〈BABv, δv〉v
= −(δB)ABv −BA(δB)v + 〈v, (δB)ABv〉v + 〈v,BA(δB)v〉v,(4.4)

where δB = DB(b)(δb) is simply the diagonal matrix with δb on the diagonal.
Now define an adjoint vector q as the solution to the equation

BABq − 〈v,BABv〉q − 2〈q, v〉BABv = Wv.(4.5)

Assuming that the unit eigenvector v is associated with a simple eigenvalue, the
operator BAB − 〈v,BABv〉I has a one-dimensional null space, spanned by v. Also
BABv = λv, so the third term is the rank-one projection −2λvvT . The sum of the
three operators acting on q thus has a trivial null space, and the adjoint equation has
a unique solution q.

By a straightforward calculation using (4.4) and (4.5) we then have

DJ(b)(δb) = 〈δv,Wv〉
= −〈δb, diag(q)ABv〉 − 〈δb, diag(v)ABq〉 + 2〈q, v〉〈δb, diag(v)ABv〉.

Setting

g = diag(q)ABv − diag(v)ABq + 2〈q, v〉diag(v)ABv,(4.6)

we have DJ(b)(δb) = 〈δb, g〉; hence we identify the vector g with the gradient of J .
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4.2. Gradient descent. As mentioned above, the gradient g (4.6) is not neces-
sarily well defined unless the eigenvector v used in the objective is associated with a
simple eigenvalue.

The (negative) gradient at a given point b gives a direction to move in the de-
sign space which will result in a particular eigenvector becoming more localized. It
is important to note that the same calculation above applies to any eigenvector v(b),
provided it is associated with a simple eigenvalue. This actually creates an algorith-
mic problem: suppose we implement a simple gradient descent algorithm in which
steps are iteratively taken in the direction of −g. One would expect that in moving
through the design space, eigenvalues will cross, and it may quickly become unclear
which eigenvector we are supposed to be localizing. If we jump back and forth be-
tween different eigenvectors during the course of the optimization, there should be
no expectation of convergence. In fact, this behavior was observed in preliminary
numerical experiments.

A solution to the problem of tracking eigenvectors is provided by the following
theorem.

Theorem 4.1 (Kato, [9]). Let T (τ) be a symmetric N ×N matrix whose entries
are analytic functions of τ . Then there exist N holomorphic vector-valued functions
{vj(τ)}Nj=1 which are orthonormal eigenvectors for T .

Notice that the matrix T (τ) = (B − τ diag(g))A(B − τ diag(g)), which results
from a step in the direction of −g, satisfies the hypothesis of Theorem 4.1. Thus as
we take a step along the direction −g, whatever eigenvector we are optimizing can be
continued as an analytic function of the step length, even if the associated eigenvalue
crosses with other eigenvalues. This observation leads to the following algorithm.

Basic Algorithm
1. Choose an initial design b0 and a distinct eigenvalue λk(b0),

with associated eigenvector v0. Set n = 0. Choose a step

parameter τ > 0.
2. Compute the gradient g of J(bn), associated with the distinct

eigenvector vn.
3. Let u = argmin{‖±u− vn‖ : u is an eigenvector of

diag(bn − τg)A diag(bn − τg), with 〈u, u〉 = 1}.
4. If J(u) < J(vn), then

vn+1 = u,
bn+1 = P (bn − τg),

else τ = τ/2.
5. Set n = n+1 and check for convergence. If no convergence and τ

is not too small, continue with step 2.

The idea in step 3 is to select, out of all eigenvectors at the next iterate, the one closest
to the current eigenvector (modulo sign). Since each eigenvector varies analytically
with respect to the step length, and the new eigenvectors are mutually orthogonal,
for small enough step length we are guaranteed that this will select the analytic
continuation of the current eigenvector.

The operator P in step 4 simply projects the step back into the admissible set,
i.e., P is defined by P (b) = max{min{b, b1}, b0}, where b0 = 1/

√
ε1 is the lower bound

for b, and b1 = 1/
√
ε0 is the upper bound.

This basic algorithm solves neither the global problem nor the local problem
described in section 3 but instead tracks along a single well-defined eigenvector, which
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thanks to Theorem 4.1, can be followed all over the design space. The algorithm could
be modified to find approximate local minima for either of the problems in section 3
but the basic implementation described here seems to be more versatile and of greater
practical use.

5. Numerical results. To implement the basic algorithm, problem (2.1) was
discretized by a simple 5-point finite difference scheme on a uniform square grid. Each
step in the basic algorithm is then a relatively straightforward linear algebra opera-
tion. Our implementation uses Matlab with sparse matrix data structures wherever
possible. For efficiency, eigenvalues and eigenvectors are found iteratively, using data
from the previous optimization step as starting points. The adjoint equation (4.5) is
also solved iteratively, using a biconjugate gradient algorithm. In the following we
illustrate the results of three numerical experiments.

In the first experiment, we start with a homogeneous initial design ε(x) ≡ 1.
After discretizing problem (2.1) on a 112× 112 grid, the first several eigenvalues and
eigenvectors were computed. The homogeneous medium admits numerous multiple
eigenvalues. A distinct eigenvalue λ11 was chosen whose associated eigenvector v0 has
the energy distribution pictured in Figure 5.1(b). The initial value of the objective
was J(v0) ≈ 6.44 × 10−1. The initial gradient g is shown in Figure 5.1(a). We set
the upper and lower bounds on ε(x) at ε1 = 8 and ε0 = 1. After approximately
2000 iterations of the algorithm, the design shown in Figure 5.2(a) was obtained,
with energy density as pictured in Figure 5.2(b). The algorithm produced a localized
eigenfunction despite the poorly localized initial guess. This was the case in all of our
experiments: the algorithm does not seem to require a “good” initial guess. The final
value of the objective was J(vf ) ≈ 9.71 × 10−2.

For the second experiment, we begin again with a homogeneous background on a
112 × 112 grid, but now with a single point material defect centered at the origin, as
shown in Figure 5.3(a). The inclusion separates some of the eigenvalues and provides
more variety for the choice of initial eigenvectors. An eigenvector v0 associated with
a distinct eigenvalue λ22, whose frequency is somewhat higher than in the previous

(a) Gradient at first step.
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(b) Energy density of initial eigenvector v0.

Fig. 5.1. Initial values for the first experiment. Initial design ε(x) was constant.
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(a) Final profile of ε(x).

−0.5

0

0.5

−0.5

0

0.5
0

0.5

1

1.5

2

2.5

3

x 10
−3

(b) Energy density of eigenvector.

Fig. 5.2. Final values for the first experiment.

(a) Initial ε(x) is constant except
for a small inclusion centered at
the origin.
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(b) Energy density of initial eigenvector.

Fig. 5.3. Initial values for the second experiment.

example, was chosen. The energy density of the initial eigenvector is pictured in
Figure 5.3(b). The initial value of the objective was J(v0) ≈ 6.59×10−1. The material
constraints were set at ε1 = 8 and ε0 = 1. After approximately 3000 iterations,
the design shown in Figure 5.4 was obtained. Perhaps the most interesting feature
of this example is the nearly periodic structure of the design away from the defect,
resembling a photonic bandgap structure. The final value of the objective was J(vf ) ≈
8.91 × 10−2. This example achieves higher energy density at the origin than the
previous example, due to the higher frequency of the mode.

For the final numerical experiment, we take as an initial guess a hexagonal
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(a) Profile of ε(x).

−0.5

0

0.5

−0.5

0

0.5
0

1

2

3

4

5

x 10
−3

(b) Energy density of eigenvector.

Fig. 5.4. Final values for the second experiment.

(a) Initial ε(x) is a hexagonal pho-
tonic bandgap structure with a
defect at the origin.
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(b) Energy density of the defect mode eigenvec-
tor, showing some localization.

Fig. 5.5. Initial values for the third experiment.

photonic bandgap structure with localized point defect as shown in Figure 5.5(a).
The white areas in the image represent dielectric coefficient ε1 = 9; the black areas
(holes) are ε0 = 1. The gray defect hole is filled with a material with ε = 5. This
structure, with periodic boundary conditions, exhibits a complete photonic bandgap
for E-parallel wave propagation in a narrow frequency range and admits a localized
mode with most of the energy concentrated within the defect. Such a localized mode,
calculated by a “supercell” method with periodic boundary conditions, is pictured
in Figure 5.5(b). The structure, discretized on a 96 × 96 grid, was taken as the ini-
tial design b0. We then changed to Dirichlet boundary conditions, recalculated the
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(a) Optimized profile of ε(x).
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(b) Energy density of optimized eigenvector.

Fig. 5.6. Final values for the third experiment.

modes, and identified that one (and only one) localized eigenvector v0 which had
energy density similar to Figure 5.5(b). This localized mode v0 was taken as the
eigenfunction to optimize. The initial value of the objective was J(v0) ≈ 3.97× 10−1.
After nearly 10000 iterations, the structure bf in Figure 5.6(a) was obtained, with
eigenfunction energy density vf shown in Figure 5.6(b). The final value of the objec-
tive was J(vf ) ≈ 4.57 × 10−2. The irregularities in the outer ring of the design may
be due to the influence of the Dirichlet boundary conditions; i.e., it is possible that
on a larger domain the optimal solution would be concentric annuli.

The large number of iterations exhibited by the algorithm in each of the previous
examples is partly due to obvious deficiencies in the algorithm and partly due to
inherent difficulties with the problem. The main weaknesses of the algorithm are poor
step size control and inefficient parameterization of the design space. The numerical
experiments presented here suggest that optimal designs are “bang-bang,” i.e., optimal
ε(x) designs take on only the values ε1 or ε0 (analysis to support this assertion will
be presented in another paper). For this reason, an approach based on a level-set
parameterization of the designs (see [11]) would probably be more efficient.

The large number of iterations required by the algorithm is also a symptom of
the inherent ill-conditioning of the problem. Near an optimal design, modal energy
decays very rapidly away from the origin. It follows from (4.6) that the magnitude
of the gradient also decays rapidly with increasing |x|. The objective J is thus in-
creasingly insensitive to changes in the design away from the origin. As the algorithm
iterates, rapid local “convergence” near the center of the picture is normally observed
(producing large decreases in J), followed by extremely slow changes further away
from the origin, and much smaller decreases in J .

In computing the examples above, eigenvalue crossings often occurred as the
iteration proceeded. The algorithm had no problems tracking the correct eigenvector
through the crossings. In the second example, a nearby eigenvalue asymptotically
approached the eigenvalue being optimized but never crossed. When the iteration
stopped, the distance between the two was less than 10−4, so that a small perturbation
of the design could result in the eigenspace associated with the optimized eigenvector
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becoming multidimensional.

6. Discussion. We studied a simplified version of a problem arising in the de-
sign of photonic bandgap devices. The problem solved involves finding a distribution
of the material properties in an inhomogeneous medium such that one of its Dirichlet
eigenfunctions is highly localized. We describe two versions of well-posed optimization
problems associated with the design problem. A numerical method, which essentially
is a descent algorithm with trajectory following, is devised to solve the problem nu-
merically. We demonstrate the behavior of the algorithm in several examples.

We find that the results are remarkable not only in that we find a highly localized
eigenfunction, but that the resulting medium resembles a photonic bandgap structure
consisting of a periodic background and a defect. It is important, however, to em-
phasize that the designs produced by this algorithm are not themselves necessarily
photonic bandgap structures. Each structure obviously supports modes other than
the highly localized state which is optimized. If the defect design is inserted in an
infinitely periodic photonic bandgap structure, the other modes may propagate, or
they may remain localized, depending on the bandgap frequencies of the surrounding
structure.

This demonstration project points to several research directions. First, as de-
scribed in the previous section, it would be desirable to develop a faster algorithm
for solving the optimization procedure. Second, the approach described in this work
should be applied to a more realistic model governed by the vector Maxwell equations.

Finally, as pointed out in the numerical examples, the basic computational ap-
proach does not control the separation between the frequency of the localized mode
and that of neighboring modes. As a practical consequence, particularly when losses
are included, the frequency response of the structure to broadband sources may be
somewhat spread out, without the narrow peak associated with high quality res-
onators. The quality factor “Q” of a resonator (or resonance) is usually defined to be
inversely proportional to the width of the peak. For some engineering applications,
it would be useful to modify this approach to produce designs for defect resonances
with a specified quality factor “Q.” This could be achieved by controlling the distance
between the optimized eigenvalue and its neighbors across a family of eigenproblems
associated with various propagation directions through the structure.
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1. Introduction. The phase field method is a powerful methodology to describe
phase transition phenomena. The method has been used to describe solidification
processes [7, 34] as well as microstructure evolution in solids [15] and liquid-liquid
interfaces [28]. There are phase field models for pure substances [7, 34] and binary
alloys [9, 21] for eutectic, peritectic, and monotectic systems [45, 31, 32, 33, 39].
Furthermore, the evolution of grain boundaries also can be modelled by phase field
models or order parameter models [12, 16]. For recent reviews of phase field methods
we refer to [13, 5, 14].

Traditionally the evolution of interfaces, such as the liquid-solid interface, has
been modelled as a moving boundary problem. This means that pure phases are
separated by a sharp interface. In the phases, partial differential equations, e.g., de-
scribing mass and heat diffusion, are solved. These equations are coupled by boundary
conditions on the interface, such as the Stefan condition demanding energy balance
and the Gibbs–Thomson equation. Across the sharp interface certain quantities (e.g.,
the heat flux, the concentration or the energy) may suffer jump discontinuities.

In phase field models the individual phases are distinguished by one or more so-
called phase fields. In different phases the phase fields attain different values and
interfaces are now modelled by a diffuse interface; i.e., the phase fields and all other
quantities do not jump across an interface, but they change smoothly on a very thin
transition layer (the diffuse interface). For example, for a solid-liquid phase transition
we choose a phase field taking the value one in the solid and zero in the liquid; across
an interface, the phase field varies smoothly from one to zero.

The use of diffuse interface models to describe interfacial phenomena dates back
to van der Waals [42], Landau and Ginzburg [26], and Cahn and Hilliard [10]. In
the theory of solidification this idea was introduced by Langer [27] and Caginalp [7].
Caginalp and Fife [8] used asymptotic expansions to relate the phase field models
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proposed by Langer to classical free boundary problems in the sharp interface limit.
This relation has also been rigorously established for some cases (see, for example,
[38, 41] and the references therein).

Since the original phase field model is not derived from thermodynamical prin-
ciples, a number of so-called thermodynamically consistent phase field models were
proposed in the 1990s (see Penrose and Fife [34], Alt and Pawlow [2], Wang et al.
[44]). All of these models guarantee a positive entropy production.

The classical asymptotics leads to restrictions on parameters which often makes
it difficult to perform practical computations of realistic solidification processes. This
is particularly true in the regime of small undercooling. In recent years Karma and
Rappel [23, 24] (see also [25, 1, 30]) used the so-called thin interface asymptotics to
realize numerical simulations in this regime. There, the Gibbs–Thomson equation is
approximated to a higher order and the temperature profile in the interfacial region is
recovered with a higher accuracy when compared to the classical asymptotics. Further
numerical simulations (see [35, 36, 37]) confirm the superiority of this approach in the
case of small undercooling.

So far, generalizing this approach to more general situations (see the discussion
in [25]) and, in particular, extending the approach to phase field systems handling
multiple phases are still an open problem. Therefore, as a first step, we apply classical
sharp interface asymptotics to handle general systems with multiple phases and com-
ponents. The task of making this approach more efficient by the use of thin interface
asymptotics is left to further research.

The aim of this paper is to derive a phase field model that

• is thermodynamically consistent,
• allows for an arbitrary number of phases and components,
• is defined solely via the bulk free energies of the individual phases, the surface

energy densities (surface entropy densities, respectively) of the interfaces, and
diffusion and mobility coefficients, and

• yields classical moving boundary problems in the sharp interface limit.

The third requirement enables us to define the full set of phase field evolution
equations by quantities which (in principal) can be measured. Since the bulk free
energies determine the phase diagrams (see, e.g., Chalmers [11], Haasen [22]) our
model can be used to model phase transitions for arbitrary phase diagrams. We
note that in a multi-phase field model computing the surface free energy densities
(or surface entropy densities) is difficult. Here one can make use of the studies by
Garcke, Nestler, and Stoth [18], in which free energies for phase field methods with
good calibration properties have been developed. This means that for given surface
free energies (also called surface tensions) one can calibrate the parameters in the free
energies of the phase field model in such a way that the sharp interface limit is defined
via the given surface tensions. In particular the sharp interface problem is defined
with the help of the surface free energies.

In the following section we introduce the phase field model in its full generality
and state the corresponding sharp interface model. In section 3 we give examples
and relate the model we propose to models already existing in the literature. Fur-
thermore, we discuss a variety of different applications for the new model. Due to its
general formulation, the model has the capability to describe phase transformation
processes in nonisothermal multicomponent alloys as well as in grain structure evo-
lution. Different phases and different crystal orientations can be distinguished at the
same time by an appropriate choice of the phase field variables. This allows us to treat
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effects occurring on different length scales such as eutectic grains and interdendritic
structures.

Finally, we show in section 4 via formally matched asymptotic expansions that
the phase field model yields the sharp interface model in the limit when the interfacial
thickness tends to zero.

2. The models. We consider a domain Ω ⊂ Rd, d ∈ {1, 2, 3}, and we assume
that the system has N components with M different phases possible.

2.1. The phase field model. The phase field model is based on an entropy
functional of the form

S(e, c, φ) =

∫
Ω

(
s(e, c, φ) − (

εa(φ,∇φ) +
1

ε
w(φ)

))
dx.(1)

We assume that the bulk entropy density s depends on the internal energy density e,
the concentrations of the N components ci, 1 ≤ i ≤ N , and the phase field variable
φ = (φα)Mα=1. The variable φα denotes the local fraction of phase α, and we require
that the concentrations of the components and the phase field variables fulfill the
constraints

N∑
i=1

ci = 1,

M∑
α=1

φα = 1.(2)

It will be convenient to use the free energy as a thermodynamical potential. We
therefore postulate the Gibbs relation

df = −sdT +
∑
i

µidci +
∑
α

rαdφα(3)

(see Alt and Pawlow [3], who show that the Gibbs relation is a consequence of the
entropy principle). Here, T is the temperature, µi = f,ci are the chemical potentials,
and rα = f,φα

are potentials due to the appearance of different phases.
We set

e = f + sT,(4)

and hence

de = Tds+
∑
i

µidci +
∑
α

rαdφα,(5a)

ds =
1

T
de−

∑
i

µi
T
dci −

∑
α

rα
T
dφα.(5b)

If we interpret s as a function of (e, c, φ), then we have

s,e =
1

T
, s,ci =

−µi
T

, s,φα =
−rα
T

.

Later it will be convenient to switch among the variables (T, c, φ), (e, c, φ), (T, µ, φ),
and (− 1

T ,
1
T µ, φ), and we therefore assume for the rest of this paper that

• c �→ f(T, c, φ) is strictly convex,
• T �→ f(T, c, φ) is strictly concave.
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This will make the above exchanges of variables possible.

We note that given the free energy densities of the pure phases, we obtain the
total free energy as a suitable interpolation of the free energies fα, i.e., such that
f(T, c, eα) = fα(T, c), with eα being the αth coordinate vector.

So far we have neglected interfacial effects. The thermodynamics of the interface
gives additional contributions to entropy and free energy. Let us first consider how
interfacial contributions are accounted for in a sharp interface model. Let Γαβ denote
an interface between phases α and β and let ναβ denote the unit normal at Γαβ
pointing into the β-phase. Then in sharp interface models an interfacial term

−
M∑

α<β
α,β=1

∫
Γαβ

γαβ(ναβ)dHd−1(6)

with a positive function γαβ on Sd−1 is added to the entropy (see [29], [43]). The
notation dHd−1 indicates integration with respect to the (d− 1)-dimensional surface
measure.

In diffuse interface models the surface entropy functional (6) is replaced by a
Ginzburg–Landau type functional of the form

−
∫

Ω

(
εa(φ,∇φ) +

1

ε
w(φ)

)
dx.(7)

Here, a is the gradient energy density which is assumed to be homogeneous of degree
two in the second variable; i.e.,

a(φ, ηX) = η2a(φ,X) ∀(φ,X) ∈ RM × Rd×M and ∀η ∈ R+,

and w is a nonconvex function with exactly M global minima at the points eβ =
(δα,β)

M
α=1, 1 ≤ β ≤ M , with w(eα) = 0. It has been shown under appropriate

assumptions on a that the functional (7) converges to the perimeter functional (6)
when ε converges to zero. We refer to [18], [19] and section 3 for appropriate choice of a
and w. We assume in this paper that a and w and, hence, the interfacial contributions
to the entropy, do not depend on (T, c), but these dependences can be included, leading
to a much more complicated model.

Our goal is to derive balance equations,

∂te = −∇ · J0 (energy balance),(8a)

∂tci = −∇ · Ji (mass balances, i = 1, . . . , N),(8b)

that are coupled to

∂tφα = right-hand side (RHS)(8c)

in such a way that the second law of thermodynamics is fulfilled in an appropriate local
version. Here, J0 is the energy flux and J1, . . . , JN are the fluxes of the components
c1, . . . , cN . In order to derive appropriate expressions for the fluxes J0, . . . , JN , we use
the generalized thermodynamic potentials (compare (5b)) δS

δe = 1
T and δS

δci
=
(−µi

T

)
,

which will drive the evolution. Now we appeal to nonequilibrium thermodynamics
and postulate that the fluxes are linear functions of the thermodynamic driving forces
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∇ δS
δe ,∇ δS

δc1
, . . . ,∇ δS

δcN
to obtain

J0 = L00(T, c, φ)∇δS

δe
+

N∑
j=1

L0j(T, c, φ)∇ δS

δcj

= L00(T, c, φ)∇ 1

T
+

N∑
j=1

L0j(T, c, φ)∇−µj
T

,(9a)

Ji = Li0(T, c, φ)∇δS

δe
+

N∑
j=1

Lij(T, c, φ)∇ δS

δcj

= Li0(T, c, φ)∇ 1

T
+

N∑
j=1

Lij(T, c, φ)∇−µj
T

(9b)

with mobility coefficients

(Lij)i,j=0,...,N .

To fulfill the constraint
∑N
i=1 ci = 1 during the evolution, we assume

N∑
i=1

Lij = 0, j = 0, . . . , N,(10)

which implies
∑N
i=1 Ji = 0, and, hence, ∂t(

∑N
i=1 ci) = ∇ · (∑N

i=1 Ji) = 0. We further
assume that L is symmetric (Onsager relations). In addition, L is assumed to be
positive semidefinite; i.e.,

N∑
i,j=0

Lijξiξj ≥ 0 ∀ξ = (ξ0, . . . , ξN ) ∈ RN+1.(11)

This condition will later ensure that an entropy inequality is satisfied. We note that
we include cross effects between mass and energy diffusion in the model. One can
neglect them by setting Li0 = 0 and L0j = 0 for all i, j ∈ {1, . . . , N}.

For the nonconserved phase field variables φ1, . . . , φM , we assume that the evolu-
tion is such that the system locally tends to maximize entropy conserving concentra-
tion and energy at the same time. Therefore we postulate

ωε∂tφα =
δS

δφα
− λ

= ε
(∇ · a,Xα

(φ,∇φ) − a,φα
(φ,∇φ)

)− 1

ε
w,φα

(φ) − f,φα

T
− λ,

(12)

where we denote with a,Xα the derivative with respect to the variables corresponding
to ∇φα. ω is (in this paper) a constant kinetic coefficient and λ is an appropriate

Lagrange multiplier such that the constraint
∑M
α=1 φα = 1 is satisfied; i.e.,

λ =
1

M

∑
α

[
ε (∇ · a,Xα

− a,φα
) − 1

ε
w,φα

− f,φα

T

]
.(13)

Relevant for the dynamics are the variational derivatives of S that take the con-
straints (2) into account. We can therefore reformulate (9b) and (12) in terms of
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the projection of ( δSδe ,
δS
δcj
, δSδφα

) onto the tangent space of the linear subspace whose

elements satisfy the constraints. Defining

ΣK = {d ∈ RK :

K∑
k=1

dk = 1},

and its tangent space

TΣK = {d ∈ RK :

K∑
k=1

dk = 0},

the constraints (2) read as c ∈ ΣN and φ ∈ ΣM . In the following, PK will denote the
projection onto TΣK . Then the relevant quantities for the definition of the fluxes are(

PN
(
− 1

T
µ
))

i

= − 1

T

⎛
⎝µi − 1

N

∑
j

µj

⎞
⎠ = − 1

T

1

N

∑
j

(µi − µj),

whereas there are no changes to δS
δe . We note that the quantities

µi =
1

N

∑
j

(µi − µj)

can be interpreted as generalized chemical potential differences. For two components
we obtain µ1 = (µ1 −µ2)/2, i.e., the usual chemical potential difference multiplied by
the factor 1/2.

With the above notation we can rewrite the fluxes as

J0 = L00(T, c, φ)∇ 1

T
+

N∑
j=1

L0j(T, c, φ)∇−µ̄j
T

,

Ji = Li0(T, c, φ)∇ 1

T
+

N∑
j=1

Lij(T, c, φ)∇−µ̄j
T

.

Similarly we can rewrite (12) as

ωε∂tφ = PM
[
ε
(∇ · a,X(φ,∇φ) − a,φ(φ,∇φ)

)− 1

ε
w,φ(φ) − f,φ

T

]
.

Altogether the total entropy density is given by

bulk entropy + surface entropy = s(e, c, φ) −
(
εa(φ,∇φ) +

1

ε
w(φ)

)
,

and a straightforward computation shows (setting µ0 = −1)

∂t(entropy) = ∂t

(
s(e, c, φ) − εa(φ,∇φ) − 1

ε
w(φ)

)

=
N∑

i,j=0

∇−µi
T

· Lij∇−µj
T

−∇ ·
⎛
⎝ N∑
i,j=0

−µi
T

Lij∇−µj
T

⎞
⎠

+ ωε
∑
α

(∂tφα)
2 − ε

∑
α

∇ · (a,Xα∂tφα)

≥ −∇ ·
(

N∑
i=0

−µi
T

Ji − ε

M∑
α=1

a,Xα∂tφα

)
.
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The above inequality shows that the local entropy production is positive where
the entropy flux Js is given by

Js =

N∑
i=0

(−µi
T

Ji

)
− ε

M∑
α=1

a,pα∂tφα.(14)

The first term represents the entropy flux due to mass and energy diffusion, and
the second one is due to moving phase boundaries (compare [2]). We refer to Alt and
Pawlow [3], who show that for conserved phase fields (they call them order parameters)
either the energy flux or the entropy flux has to depend on ∂tφ in order to describe
phase transitions.

2.2. The sharp interface model. In section 4 we use the method of asymptotic
expansions to relate the phase field model of the previous subsection to the sharp
interface model which we state in the following. We obtain that when the domain Ω
is separated in phase regions Ω1,. . . ,ΩM occupied by the pure phases 1, . . . ,M such
that in every phase Ωα, α = 1, . . . ,M , the following evolution equations hold:

∂te
α = −∇·

⎛
⎝Lα00(Tα, cα)∇ 1

Tα
−

N∑
j=1

Lα0j(T
α, cα)∇µαj

Tα

⎞
⎠ (energy balance),(15)

∂tc
α
i = −∇·

⎛
⎝Lαi0(Tα, cα)∇ 1

Tα
−

N∑
j=1

Lαij(T
α, cα)∇µαj

Tα

⎞
⎠∀i (mass balances).(16)

These equations can be formulated in the variables (T, µ) (in which case the inter-
nal energy eα and the concentrations cα are given as eα = eα(Tα, µα) and cα =
cα(Tα, µα)) or, more commonly, in the variables (T, c) (in which case the inter-
nal energy eα and the chemical potentials µα are given as eα = eα(Tα, cα) and
µα = cα(Tα, cα)).

On a (smooth) boundary Γαβ between two phases α and β we have (assuming an
isotropic surface energy)

Tα = T β =: T (continuity of temperature),(17)

µ̄αi = µ̄βi =: µ̄i ∀i (continuity of chemical potentials),(18)

[e]
β
α v = [J0]

β
α · ν (energy balance),(19)

[ci]
β
α v = [Ji]

β
α · ν ∀i (mass balances),(20)

mαβ v = γαβκ+
[f ]βα −∑

i µ̄i [ci]
β
α

T
(Gibbs–Thomson relation).(21)

Here, ν = ναβ is the unit normal pointing into β, v is the speed of Γ in this direction,
and κ is the mean curvature. The quantities

µ̄αi = µαi − 1

N

N∑
j=1

µαj =
1

N

N∑
j=1

(µαi − µαj ),(22)

where µαi = fα,ci(T, c) are the generalized chemical potential differences in phase α, and

[·]βα denotes the jump of the quantity in the brackets across the interface. The quantity
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γαβ is the surface entropy density and the relation between the surface entropy and
the entropy density in the phase field model is given by

γαβ = inf
p

{
2

∫ 1

−1

√
w(p)

√
a(p, p′ ⊗ ν)

}
,(23)

where the infimum is taken over all Lipschitz continuous functions p connecting the
minima of w corresponding to the phases adjacent to the interface, i.e., p(−1) = eα
and p(1) = eβ . The kinetic coefficient mαβ can also be expressed in terms of the
minimizer p (see [17]).

In general, a and w might depend on temperature and on the concentrations
leading to a temperature- and concentration-dependent surface entropy in the sharp
interface limit. In this case, the surface terms would also enter the internal energy.

For a thin interface analysis of a partially linearized model for pure substances
we refer to [30]. Performing a thin interface analysis for our model would require
studying higher order corrections of fields like s, f , T , and c in the interface region.
We do not pursue this issue further at this stage.

We note that the Gibbs–Thomson equation can be derived by locally maximizing
entropy, conserving concentration and energy at the same time. For a stationary flat
interface the equations (17), (18), and (21) yield the classical equilibrium for phase
boundaries. The equilibrium condition at a flat boundary at rest separating phases
α and β is

µ̄αi = µ̄βi for all i = 1, . . . , N.

In addition the temperature has to be the same and (see (21))

[f ]βα −
∑
i

µ̄i [ci]
β
α = 0.

For M phases to be in equilibrium we therefore have (N + 1)(M − 1) conditions. For
each phase we can choose N − 1 components and the temperature. All together there
are

MN − (N + 1)(M − 1) = N −M + 1

degrees of freedom. This is the Gibbs phase rule. We note that for two component sys-
tems the equilibrium conditions between two phases lead to the well-known common
tangent construction.

Finally, at triple junctions where three phases α, β, and δ meet, a force balance
of the form

γαβταβ + γβδτβδ + γδατδα = 0(24)

has to hold (compare [19]). Here, ταβ , τβδ, and τδα are the tangents to the interfaces
Γαβ ,Γβδ, and Γδα. All are assumed to either point in the direction of the triple
junction or point away from the triple junction at the same time. It can be easily
seen that this force balance is equivalent to certain angle conditions at the triple
junction.

In the appendix we will demonstrate that the entropy does not decrease for so-
lutions of the above problem. In particular, for a closed system we obtain, using
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appropriate transport theorems and assuming m ≥ 0 and L = (Lij)i,j=1,...,N is posi-
tive semidefinite, the following:

d

dt

(∫
Ω

s(e, c)dx−
∫

Γ

γdHd−1
)

=

∫
Ω

(
∇ 1

T
· J0 +

∑
i

∇−µ̄i
T

· Ji
)
dx,

+

∫
Γ

mv2dHd−1 ≥ 0,

where the integral over Γ is an integral over all possible interfaces.

3. Examples. In this section we will first demonstrate that the phase field
method is able to model systems with a very general class of phase diagrams. In the
way it is formulated, the model can describe systems with concave entropies sα(e, c)
in the pure phases. This corresponds to free energies fα(T, c) which are convex in
c and concave in T . In the case where f(T, c) is not convex in the variable c, the
free energy needs to contain gradients of the concentrations (as in the Cahn–Hilliard
model).

We will first give a rather general example, which already covers most exam-
ples in practice, and then discuss relations to existing models and possible partial
linearizations of the system.

3.1. Possible choices of the free energy. Choosing the phase field φ such
that φ = eM corresponds to the liquid phase, we define bulk free energies for the
individual phases by

fα(T, c) =

N∑
i=1

(
ciL

α
i

T − Tαi
Tαi

+
R

vm
Tci ln(ci)

)
− cvT (ln(T ) − 1)

with LMi = 0, and Lαi , i = 1, . . . , N , α = 1, . . . ,M − 1, being the latent heat per unit
volume of the phase transition from phase α to the liquid phase of the pure component
i. Furthermore, Tαi , i = 1, . . . , N , α = 1, . . . ,M − 1, is the melting temperature of
the ith component in the phase α, and cv is the specific heat, which is assumed to be
independent of c and φ; the molar volume vm is supposed to be a constant, and R is
the gas constant. Then we define the total free energy density as follows:

f(T, c, φ) :=

M∑
α=1

N∑
i=1

(
ciL

α
i

T − Tαi
Tαi

h(φα)

)
(25)

+

N∑
i=1

(
R

vm
Tci ln(ci)

)
− cvT (ln(T ) − 1),

where h is a monotone function on [0, 1] that satisfies h(0) = 0 and h(1) = 1. Examples
are h(φ) = φ and h(φ) = φ2(3− 2φ). The last one has the property h′(0) = h′(1) = 0
which is suitable for phase field models as we will see below. With this choice of h
the function f is an interpolation of the individual free energy densities fα.

We can calculate

s = −f,T = −
M∑
α=1

N∑
i=1

(
ci
Lαi
Tαi

h(φα)

)
−

N∑
i=1

(
R

vm
ci ln(ci)

)
+ cv ln(T ),(26)
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so that

e = f + Ts = −
M∑
α=1

N∑
i=1

(ciL
α
i h(φα)) + cvT.(27)

We note that if Lαi = Lα for all components i, then e does not depend on c. The
chemical potentials are given as

µi(T, c, φ) = f,ci(T, c, φ) =

M∑
α=1

(
Lαi

T − Tαi
Tαi

h(φα)

)
+

R

vm
T (ln(ci) + 1).(28)

Expressions for the quantities above in the pure phases are obtained by setting φα =
eα. For example, we have

µαi = ∂cifα = ∂cif(T, c, eα) = Lαi
T − Tαi
Tαi

+
R

vm
T (ln(ci) + 1)

for the chemical potential of the ith component in the phase α.
Now we give some examples for the terms modelling interfacial contributions to

the free energy. The simplest form of the gradient energy is

a(φ,∇φ) = |∇φ|2 =

M∑
α=1

|∇φα|2.

However, it has been shown [17, 19, 39] that gradient energies of the form

a(φ,∇φ) =
∑

α,β=1
α<β

Aαβ(φα∇φβ − φβ∇φα),

where Aαβ are convex functions that are homogeneous of degree two, are more con-
venient with respect to the calibration of parameters in the phase field model to the
surface terms in the sharp interface model. A choice that leads to isotropic surface
terms is

a(φ,∇φ) =
∑
α<β

γ̃αβ
m̃αβ

|φα∇φβ − φβ∇φα|2

with constants γ̃αβ and m̃αβ that can be related to γαβ and mαβ in (21) (cf. [17]).
For the bulk potential one may take the standard multiwell potential

wst(φ) = 9
∑
α<β

m̃αβ γ̃αβφ
2
αφ

2
β

or a higher order variant

w̃st(φ) = wst(φ) +
∑

α<β<δ

γαβδφ
2
αφ

2
βφ

2
δ .

For practical computations the multiobstacle potential yields good calibration prop-
erties. It is defined by

wob(φ) =
16

π2

∑
α<β

m̃αβ γ̃αβφαφβ
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with a higher order variant

w̃ob(φ) = wob(φ) +
∑

α<β<δ

γαβδφαφβφδ,

where wob and w̃ob are defined to be infinity whenever φ is not on the Gibbs simplex
G = {d ∈ ΣM : dα ≥ 0}. We refer to [18] and [19] for a further discussion of the
properties of the surface terms.

3.2. Possible choices of the mobility matrix. Here we give an example only
for the part of the mobility matrix (Lij)i,j=0,...,N that defines mass diffusion resulting
from chemical potential differences; i.e., we do not specify Li0 = L0i for 0 ≤ i ≤ N .
An example for those terms, which in particular define cross effects between mass and
energy diffusion, will be given in section 3.4.

If li(ci, T, φ) are the nonnegative bare mobilities of the pure components, we can
argue as in [4] to obtain

Lij(T, c, φ) = li(T, ci, φ)

(
δij −

( N∑
q=1

lq(T, cq, φ)
)−1

lj(T, cj , φ)

)
, 1 ≤ i, j ≤ N.

To give a simple example, we assume that all bare mobilities are the same constant
(e.g., li(T, ci, φ) = 1). Hence

(Lij)
N
i,j=1 = id− 1

N
1 ⊗ 1,

where 1 = (1, . . . , 1) and ⊗ is the tensor product. Often it is more reasonable to as-
sume that the bare mobilities li are linear in ci, and in the simplest case (li(T, ci, φ) =
ci) we obtain

(Lij)
N
i,j=1 = (ci(δij − cj))

N
i,j=1.

Choosing a free energy of the form (25) and taking (28) into account, we get the
following equations for the concentrations:

∂tci = −∇ ·
⎡
⎣Li0∇ 1

T
+

N∑
j=1

ci(δij − cj)∇
(
−

M∑
α=1

(
Lαj

(
1

Tαj
− 1

T

)
h(φα)

)

− R

vm
(ln(cj) + 1)

)⎤⎦

= ∇ ·
⎡
⎣Li0∇ 1

T
+

M∑
α=1

N∑
j=1

Lij∇
(
Lαj

(
1

Tαj
− 1

T

)
h(φα)

)⎤⎦+
R

vm
∆ci.

3.3. Relation to the Penrose–Fife model. In this subsection we will demon-
strate that our model includes the model of Penrose and Fife [34] as a special case.
In this case there is only one component, and we can neglect the variable c. There
are two phases, so we will write the equations in terms of the solid fraction ψ = φ1.
Then by (2), φ2 = 1 − ψ.



786 HARALD GARCKE, BRITTA NESTLER, AND BJÖRN STINNER

The first phase, the solid one, is characterized by φ = 1; hence ψ = 1. We assume
its free energy density to be

fs = L
T − Tm
Tm

− cvT (ln(T ) − 1),

where Tm is the melting temperature and L the latent heat of the solid-liquid phase
transition. The second phase, the liquid one, is characterized by φ = e2; therefore
ψ = 0, and we take the free energy density to be

f l = −cvT (ln(T ) − 1).

We have

f(T, ψ) = L
T − Tm
Tm

h(ψ) − cvT (ln(T ) − 1);

hence

s(T, ψ) = − L

Tm
h(ψ) + cv ln(T )

so that e(T, ψ) = −Lh(ψ)+cvT . The evolution equation for the energy density yields

cv∂tT − Lh′(ψ)∂tψ = −∇ ·
(
L00∇ 1

T

)
.

Now we choose L00 = cvK2T
2, λ(ψ) = Lh′(ψ)/cv, and

a(φ,∇φ) =
c

2
|∇φ|2 =

c

2
(|∇φ1|2 + |∇φ2|2),

where c = κ1cv/(2ε) for some constant κ1. Setting ω = 1, K1 = cv/(2ε) and

s0(ψ) = − 1

εcv
w(ψ, 1 − ψ) − L

cvTm
h(ψ).

We arrive at the system

∂tψ = K1

(
λ(ψ)

T
+ s′0(ψ) + κ1∆ψ

)
,

∂tT − λ(ψ)∂tψ = K2∆T

which is the model of Penrose and Fife [34, Chapter 6].

3.4. A linearized model. In this subsection we are going to partially linearize
our model. This is done in such a way that the evolution equations in the pure
phases are linear and they indeed reduce to standard linear diffusion equations. We
restrict ourselves to binary systems but a generalization to higher order systems is
straightforward.

We denote by c = c1 the concentration of the first component; therefore c2 = 1−c.
Using that L is symmetric and the algebraic constraints (10), we obtain

L01 = L10 = −L02 = −L20 and L11 = L22 = −L12 = −L21.
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Furthermore, we introduce the chemical potential difference

µ = f,c = f,c1 − f,c2 = µ1 − µ2.

Then the conservation laws for energy and concentration read (up to a factor 2 in the
last term of the right-hand sides)

∂te = −∇ · L00∇ 1

T
−∇ · L10∇−f,c

T
,(29)

∂tc = −∇ · L10∇ 1

T
−∇ · L11∇−f,c

T
.(30)

Choosing

L11 = D
T

f,cc
, L10 = L01 = e,cD

T

f,cc
, and L00 = e2,cD

T

f,cc
+KT 2,

the system (29)–(30) reduces to

∂te = ∇ ·
(
K∇T + e,cD∇c+ e,cD

f,cφ
f,cc

∇φ
)
,(31)

∂tc = ∇ ·
(
D∇c+D

f,cφ
f,cc

∇φ
)
.(32)

Here K and D are coefficients that may depend on φ. Equations (31) and (32) then
have to be coupled to the phase field system (12).

We assume as in (27) that the internal energy density is affine linear in the
variables (T, c). Then the system (31)–(32) reduces in regions where φ is constant,
i.e., in the pure phases, to (here K and D are constants)

cv∂tT = ∇ ·K∇T = K∆T, ∂tc = ∇ ·D∇c = D∆c.

Here cv is the specific heat. These are classical linear diffusion equations for temper-
ature (Fourier’s law) and concentration (Fick’s law).

3.5. Relation to the Caginalp model. If we further linearize the system it
can be seen that our model leads to a generalization of the original phase field model
[7] to the case of alloy solidification. We consider a three-phase system for a binary
alloy. We choose the free energy density

f(T, c, φ) =
(
κ
c

2
−

3∑
α=1

Lα1φα

)
cT − cvT (ln(T ) − 1) −

3∑
α=1

Lα2φα,

where Lα2 are latent heat coefficients and Lα1 and κ, respectively, are coefficients
entering the chemical potentials. Then we get

s = −f,T = −
(
κ
c

2
−

3∑
α=1

Lα1φα

)
c+ cv ln(T ),

e = f + Ts = cvT −
∑
α

Lα2φα,

µ

T
=
f,c
T

= κc−
∑
α

Lα1φα,

rα
T

=
f,φα

T
= −Lα1 c−

Lα2
T
.
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Choosing the mobility matrix as in the previous subsection we obtain

∂te = ∂t

(
cvT −

∑
α

Lα2φα

)
= ∇ · (K∇T ),

∂tc = ∇ ·D∇
(
κc−

∑
α

Lα1φα

)
.

For the gradient energy we take the isotropic function a(φ,∇φ) = 1
2

∑
α |∇φα|2.

Then the equations for the phase field variables are

ωε∂tφα = ε∆φα − 1

ε
w,φα

(φ) + Lα1 c+
Lα2
T

− λ,

where λ is the Lagrange multiplier (13). Now we linearize the term 1
T in the above

equation around a temperature Tm to obtain

ωε∂tφα = ε∆φα − 1

ε
w,φα

(φ) + Lα1 c+ Lα2

(
1

Tm
− 1

T 2
m

(T − Tm)

)
− λ.

The equations for (T, c) are linear and all terms in the equation for φ are linear
except for the term w,φα . A complete linearization cannot be expected because sys-
tems with moving interfaces can never be linear, as can be easily seen for the sharp
interface model.

Finally, we note that this simplification of the model leads to a linearized phase
diagram; in particular, the magnitude of the jump of the concentration in the sharp
interface model is constant for each of the phase boundaries.

3.6. Fields of application. In this paragraph, we comment on the generality
of the presented phase field model, on the new features, and on the various different
applications to solidification processes, microstructure formation, and polycrystalline
grain growth. With the phase field model set up for an arbitrary number of alloy com-
ponents and phases in a nonisothermal system, the set of governing equations is able
to describe the coupled heat and mass diffusion processes as well as the phase trans-
formations in multicomponent systems. Due to the flexibility to choose parameters
in the gradient and in the potential free energy, the model consists of enough degrees
of freedom to prescribe the physics of each phase boundary and interface separately
by defining values for appropriate surface energies γ̃αβ and for the mobilities m̃αβ .
The model allows for both kinetic and surface energy anisotropies. Different types of
anisotropy such as smooth and crystalline expressions corresponding to Wulff shapes
with a different number of vertices can be realized in three dimensions. Consider-
ing the application point of view, the effect of the type and strength of anisotropy
on the growth structure can be investigated. Examples of experimentally observed
anisotropic characteristics in eutectic systems are tilted or spiral phase formations
and the growth of neighboring eutectic grains.

The phase field variables φα can represent different phases and different grains of
orientational variants at the same time. Therefore, phenomena such as eutectic grain
formation involving different length scales (grains on the larger scale and a eutectic
structure on a smaller scale) and interpretations of the nonconserved order param-
eters can be described using the new model. A main focus of application in future
development is the two- and three-dimensional numerical simulation of solidification
in multicomponent alloy systems with arbitrary phase diagrams. By choosing the
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specific thermodynamical quantities—the latent heats of fusion Lαi and the melting
temperatures Tαi —and by inserting these data as input parameters for the numeri-
cal simulations, different types of phase transformations, such as peritectics, eutectics,
and monotectics, are modelled. In particular, the stability of ternary eutectic lamellae
with phase arrays of different period length and phase permutations will be investi-
gated by phase field simulations in a forthcoming paper. The results of computed
structures are compared with a generalization of the classical Jackson–Hunt theory
for ternary eutectics. The occurrence of a ternary phase impurity leads to the forma-
tion of eutectic colonies. The resulting complex structure is of multiscale type and
can also be modelled with the new approach.

4. Relating the models by asymptotic expansions. By matched asymp-
totic expansions we want to establish the relation between the phase field model and
the sharp interface model that were described in section 2. We are going to generalize
methods developed by Caginalp and Fife [8], Bronsard, Garcke, and Stoth [6], Garcke
and Novick-Cohen [20], and Garcke, Nestler, and Stoth [17]. We restrict ourselves to
two space dimensions, i.e., d = 2, but generalizations are possible.

Since the quantities (T, µ̄) are continuous across a phase boundary it will be
convenient to use them in the asymptotic expansions. More precisely we will use the
variables φ and u = (−1

T ,
µ̄1

T , . . . ,
µ̄N

T ). Since f(T, ·, φ) is strictly convex and f(·, c, φ)
is strictly concave, we obtain that the mappings

(T, c, φ) �→ (u, φ) and (e, c, φ) �→ (u, φ)

are both invertible and an exchange of variables between these quantities is possible.
We will use the variables (u, φ) in the asymptotics but the equations can always

be reinterpreted with respect to the variables (T, c, φ) or (e, c, φ). We write the con-
servation laws as

∂tci(u, φ) = ∇ ·
N∑
j=0

Lij(u, φ)∇uj , 0 ≤ i ≤ N,

where we have set c0 = e.
The phase field equations are

ωε∂tφ = PM
[
ε
(∇ · a,X(φ,∇φ) − a,φ(φ,∇φ)

)− 1

ε
w,φ(φ) + u0f,φ(T (u, φ), c(u, φ), φ)

]
.

We assume that the matrix L = (Lij)
N
i,j=0 is strictly positive definite for all

arguments on the space

HN :=
{
d = (di)

N
i=0 ∈ RN+1 :

N∑
i=1

di = 0
}

= R × TΣN .

In addition, we will frequently make use of the fact that a is homogeneous of degree
two in the variable X. In particular, we have (cf. [17])

a,X(φ, ηX) : X = 2ηa(φ,X),(33)

a,φ(φ, ηX) : X = η2a,φ(φ,X),(34)

a(φ, 0) = 0,(35)

a,X(φ, 0) = 0.(36)
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4.1. Outer expansion. We expect, based on experiences from numerical sim-
ulations, that several phases arise which are separated by diffuse interfaces whose
thickness is of order ε. We will see that these phases correspond to the M minima
of the potential w. In such a phase, away from an interface to another phase, we
consider an outer expansion in the bulk region. For a function b in (t, x) we present
the ansatz

bout(t, x) =

∞∑
K=0

εKbKout(t, x).(37)

In this way we expand the variables uj and φα, 0 ≤ j ≤ N , 1 ≤ α ≤ M . For the
constraints φ ∈ ΣM and u ∈ HN to be satisfied we assume

φ0
out ∈ ΣM , φKout ∈ TΣM , K ≥ 1,

uKout ∈ HN , K ≥ 0.

First we consider the equation for the phase field variables. We expand PMw,φ(φ) as

PMw,φ(φ) = PMw,φ(φ
0
out) + ε(PMw,φ),φ(φ

0
out) · φ1

out +O(ε2).

To leading order O(ε−1) the equation (12) becomes

0 = PMw,φ(φ
0
out) = w,φ(φ

0
out) −

1

M

(
M∑
α=1

w,φα
(φ0
out)

)
1.(38)

As we are searching for stable solutions for this equation, φ0
out is one of the base

vectors {eβ}1≤β≤M . We can conclude that to leading order the whole domain Ω is
partitioned into phases which are characterized by the M possible values of φ0

out.
The O(1)-equations for the conserved variables are (0 ≤ i ≤ N)

∂tci(u
0
out, φ

0
out) = ∇ ·

N∑
j=0

Lij(u
0
out, φ

0
out)∇u0

j,out.(39)

Boundary conditions for these equations will be obtained by matching with the inner
expansion. One should note that we have expanded the coefficients Lij in (u0

out, φ
0
out)

in the same way as PMw,φ in φ0
out. In phase α, i.e., at points where φ0

out = eα, we
write Lαij(u) = Lij(u, eα). Then the O(1)-equations become

∂tci(u
0
out, eα) = ∇ ·

N∑
j=0

Lαij(u
0
out)∇u0

j,out.

Since c0 = e, u0 = − 1
T , and uj =

µj

T we obtain (15) and (16). We note that an upper
index in (15) and (16) refers to the phase, whereas an upper index in this section
refers to the order in the expansion.

4.2. Inner expansion. Now we consider an interfacial region where two phases
meet. Without loss of generality we assume that φ0

out = e1 in one of the outer regions,
denoted by Ω1, and φ0

out = e2 in the other one, denoted by Ω2. We assume that these
two regions are separated by a family {Γt}t of evolving smooth curves. Let ψ be a
smooth function such that s �→ ψ(t, s) is an arc-length parametrization of Γt. The
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unit tangential vector τ(t, x) on Γt in x = ψ(t, s) is given by τ(t, x) = ∂sψ(t, s), and
the unit normal ν(t, x) on Γt in x = ψ(t, s) is such that (ν, τ) is positively oriented.
We choose the orientation in the parametrization ψ such that ν points into Ω1.

Since the parametrization is smooth, it is possible to introduce new space co-
ordinates (z(t, x), s(t, x)) in a strip S around Γt in the following way. We define
r(t, x) = d(x,Γt) to be the signed distance between a point x and Γt; i.e., r is positive
in Ω1 and negative in Ω2. Then the variable z is defined by z(t, x) = 1

εr(t, x). Let
Pt be the projection of S onto Γt. Then by the smoothness of Γt one can use the
strip S narrow enough such that there is exactly one s(t, x) for every x ∈ S such that
Pt(x) = ψt(s). The following holds:

∇xz(t, x) =
1

ε
ν(t, Pt(x)),

∇xs(t, x) = τ(t, Pt(x)) +O(ε).

In the new variables (t, z, s) we present for some real function b in (t, x) the ansatz

bin(t, x) =

∞∑
K=0

εKbKin(t, z(t, x), s(t, x)).(40)

Introducing the notation ν(Pt(x)) = ν(t, s(t, x)) and, similarly, τ(Pt(x)) = τ(t, s(t, x)),
we obtain

∇xbin(t, z(t, x), s(t, x)) =
1

ε
[∂zbin(t, z, s)]ν(t, s) + [∂sbin(t, z, s)]τ(t, s) +O(ε),

and for some vector field �b we have

∇x ·�b(t, z(t, x), s(t, x)) =
1

ε
(∂z�b(t, z, s)) · ν(t, s) + (∂s�b(t, z, s)) · τ(t, s) +O(ε).

Moreover, it follows that

∂tz(t, x) = ∂t
1

ε
d(x,Γt) = −1

ε
v(Pt(x)),

∂ts(t, x) = −vτ (Pt(x)) +O(ε),

where v is the normal velocity and vτ the tangential velocity. We note that vτ depends
on the parametrization, whereas v is an intrinsic quantity. This leads to

d

dt
bKin(t, z(t, x), s(t, x)) = ∂tb

K
in(t, z, s) −

1

ε
v∂zb

K
in(t, z, s) − vτ∂sb

K
in(t, z, s) +O(ε).

Now we expand φ and u in the variables (t, z, s) and we assume

φ0
in ∈ ΣM , φKin ∈ TΣM , K ≥ 1,

uKin ∈ HN , K ≥ 1,

to ensure that the constraints on φ and u are satisfied. Taking a Taylor expansion of
Lij around (u0

in, φ
0
in) and writing L0,in

ij = Lij(u
0
in, φ

0
in), we obtain from the conserva-

tion laws for mass and energy to lowest order, i.e., O(ε−2),

0 =
d

dz

⎛
⎝ N∑
j=0

L0,in
ij ∂zu

0
j,in

⎞
⎠ , 0 ≤ i ≤ N,(41)
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where we used that ∂zν = 0. Integrating yields

L∂zu
0
in = k(42)

for some vector k ∈ RN+1. Later, the matching with the outer solution will give
k = 0.

We have

∂zν = 0, ∂zτ = 0, ∂sτ = κν, ∂sν = −κτ,

where κ is the curvature of Γt. Concerning the sign of the curvature we note that
for a circle of radius r whose normal is outward oriented (with our orientation the
tangent is then running counterclockwise) the curvature is −1/r.

Hence the O(ε−1)-equations of the conserved quantities are

−v∂zci(u0
in, φ

0
in) = −κ

⎛
⎝ N∑
j=0

L0,in
ij ∂zu

0
j,in

⎞
⎠+

d

dz

⎛
⎝ N∑
j=0

L0,in
ij ∂zu

1
j,in

⎞
⎠(43)

+
d

dz

⎛
⎝ N∑
j=0

((Lij)
0,in
,u · u1

j,in + (Lij)
0,in
,φ · φ1

in)∂zu
0
j,in

⎞
⎠ .

These equations will further simplify when an expression for u0
in has been derived.

Now we consider the equations for the phase field variables. As done in [17] we
expand the a-terms in (φ0

in, ∂zφ
0
in⊗ν), the w-term in φ0

in, and the f -term in (u0
in, φ

0
in).

To leading order O(ε−1) we then obtain the equation

0 =
d

dz

(
PMa,X(φ0

in, ∂zφ
0
in ⊗ ν)

)
ν − PMa,φ(φ

0
in, ∂zφ

0
in ⊗ ν) − PMw,φ(φ

0
in).(44)

Multiplying this equation with ∂zφ
0
in ∈ TΣM gives

0 =
d

dz

(
a,X(φ0

in, ∂zφ
0
in ⊗ ν) : (∂zφ

0
in ⊗ ν) − a(φ0

in, ∂zφ
0
in ⊗ ν) − w(φ0

in)
)
.(45)

The equation of order O(1) is

−ωv∂zφ0
in =

d

dz

[
(PMa,X),φ · φ1

in(46)

+(PMa,X),X : (∂sφ
0
in ⊗ τ + ∂zφ

1
in ⊗ ν)

]
ν +

d

ds
(PMa,X)τ

−(PMa,φ),φ · φ1
in − (PMa,φ),X : (∂sφ

0
in ⊗ τ + ∂zφ

1
in ⊗ ν)

−(PMw,φ),φ · φ1
in + PMu0

0,inf,φ(T (u0
in, φ

0
in), c(u

0
in, φ

0
in), φ

0
in),

where w and all its derivatives are evaluated in φ0
in and a and its derivatives in

(φ0
in, ∂zφ

0
in ⊗ ν).

4.3. Matching and resulting jump conditions. For some quantity b(t, x) we
gave by (37) and (40) expansions in bulk regions, respectively, in a strip around an
interface between such regions. Now we want to match these expansions in an overlap
domain. We will need the matching conditions of order zero and one. For the outer
expansions in Ω1 and Ω2 we will use the subscripts bout1 and bout2.
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We observe that near Γt we can express the functions bKout(t, x) in the variables
(t, z, s). By expanding in a Taylor series at the point (0, s(t, x)) which corresponds to
the boundary point ψt(s(t, x)) ∈ Γt (remember that z(t, x) = 1

εr(t, x) and ∂r = ν ·∇x),
we obtain

bKout(t, x) = bKout(t, r(t, x), s(t, x))

= bKout(t, 0, s(t, x)) + r∂r(b
K
out)(t, 0, s(t, x)) +O(r2)

= bKout(t, 0, s(t, x)) + εz(∇xb
K
out(t, 0, s(t, x)) · ν(t, 0, s(t, x))) +O(ε2),

where bKout(t, 0, s) and ∇xb
K
out(t, 0, s) mean the evaluation in (t, Pt(x)). We get

bout(t, x) = b0out(t, 0, s) + ε
(
z(∇xb

0
out(t, 0, s) · ν(t, s)) + b1out(t, 0, s)

)
+O(ε2).

Now we consider an intermediate variable zε = η(ε)z for some z > 0, where η(ε)
is some function in ε in the overlap domain of validity of the two expansions (which we
suppose to exist); i.e., η = o(1) and ε = o(η). Because of z = r/ε we have zε → ±∞
as ε→ 0.

We substitute the variable z in our expansions by this intermediate variable zε
and consider their difference; the expansions of u match if, in the limit as ε→ 0, the
terms of every order εK vanish. For the O(1)-terms this means

0
!
= lim
ε↘0

(
b0out1(t, 0, s) − b0in(t, zε, s)

)
= lim
zε→∞

(
b0out1(t, 0, s) − b0in(t, zε, s)

)
,

0
!
= lim
ε↗0

(
b0out2(t, 0, s) − b0in(t, zε, s)

)
= lim
zε→−∞

(
b0out2(t, 0, s) − b0in(t, zε, s)

)
,

while for the O(ε1)-terms the matching condition is

0
!
= lim
zε→∞

(
zε∇xb

0
out1(t, 0, s) · ν(t, s) + b1out1(t, 0, s) − b1in(t, zε, s)

)
,

0
!
= lim
zε→−∞

(
zε∇xb

0
out2(t, 0, s) · ν(t, s) + b1out2(t, 0, s) − b1in(t, zε, s)

)
.

First we apply the matching conditions on the functions u0
j,in, 0 ≤ j ≤ N , solving

the differential equations (42). The assumption on L yields

∂zu
0
in = L−1k.

By the matching conditions of order zero, u0
in must be bounded if |z| → ∞. Then the

assumption on L necessarily gives k = 0 so that u0
in is constant.

Since u0
in is constant, we obtain that u0

out1(t, 0, s) = u0
out2(t, 0, s) and hence u,

and therefore the temperature and the chemical potential differences are in the sharp
interface limit continuous across an interface.

Now, due to ∂zu
0
j,in = 0, the O(ε−1)-equations (44) for the conserved variables

simplify to

−v∂zci(u0
in, φ

0
in) =

d

dz

⎛
⎝ N∑
j=0

Lij(u
0
in, φ

0
in)∂zu

1
j,in

⎞
⎠ .

Integrating with respect to z from −∞ to ∞ (or, more correctly, integrating from −R
to R and then considering the limit as R→ ∞) and using that v(t, s) is independent
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of z, we obtain

v
[
ci(u

0
in, φ

0
in)

]z↗∞
z↘−∞ = −

⎡
⎣ N∑
j=0

Lij(u
0
in, φ

0
in)∂zu

1
j,in

⎤
⎦
z↗∞

z↘−∞

.

As has been shown in [8, 6] the matching conditions of order one for the b1j,in yield

∂zb
1
j,in → ∇xb

0
j,out1 · ν for z → ∞(47)

and

∂zb
1
j,in → ∇xb

0
j,out2 · ν for z → −∞,(48)

where the right-hand sides are evaluated in (t, x) = (t, ψt(s)) or, in the other coordi-
nates, in (t, r, s) = (t, 0, s(t, x)). In fact, these are the boundary values of ∇xu

0
j,outβ ·ν,

β ∈ {1, 2}, on Γt. After matching for the phase field variables φ we obtain

v[ci]
1
2 = v

(
ci(u

0
out1, φ

0
out1) − ci(u

0
out2, φ

0
out2)

)
(t, x)

= v
[
ci(u

0
in, φ

0
in)

]z↗∞
z↘−∞

= −
( N∑
j=0

L0,out1
ij ∇xu

0
j,out1 − L0,out2

ij ∇xu
0
j,out2

)
(t, x) · ν(t, x)

=
(
Ji(u

0
out1, φ

0
out1) − Ji(u

0
out2, φ

0
out2)

)
(t, x) · ν(t, x)

= [Ji]
1
2 · ν.

We will refer to this fact as the jump condition for the inner energy density e = c0
and the concentrations ci, 1 ≤ i ≤ N .

4.4. Matching and the Gibbs–Thomson relation. In the bulk regions we
have φ0

outβ = eβ , β ∈ {1, 2}. Hence for each s, we have to solve equation (44) of
second order in z with respect to the boundary conditions e1 for z → ∞ and e2 for
z → −∞.

By integrating (45) and using (35), (36) and w(e1) = w(e2) = 0 we obtain

0 = a,X(φ0
in, ∂zφ

0
in ⊗ ν) : (∂zφ

0
in ⊗ ν) − a(φ0

in, ∂zφ
0
in ⊗ ν) − w(φ0

in).

Using (33) we deduce

a(φ0
in, ∂zφ

0
in ⊗ ν) = w(φ0

in),(49)

which is known as equipartition of energy. We set

(50)

C0,1
αβ ([−1, 1],ΣM ) ={
p : [−1, 1] → ΣM | p Lipschitz continuous, p(−1) = eα and p(1) = eβ

}
,

and define the surface entropy for some e ∈ Rn to be

γαβ(e) = inf

{
2

∫ 1

−1

√
w(p)

√
a(p, p′ ⊗ e)(y)dy | p ∈ C0,1

αβ

}
.(51)
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As shown in [40, 17], if a minimizer exists for e = ν(t, s), then a reparametrization of
the minimizer fulfills (44) and, in addition,

γ2,1(ν) =

∫ ∞

−∞

(
a(φ0

in, ∂zφ
0
in ⊗ ν) + w(φ0

in)
)
dz.(52)

Now we want to deduce the Gibbs–Thomson law. We multiply the equation (44) for
φ0
in by ∂zφ

1
in ∈ TΣM and the equation (47) for φ1

in by ∂zφ
0
in ∈ TΣM . Observe that

we can drop the projections PM . Then we sum up the two equations and integrate
from −∞ to ∞ with respect to z. Some straightforward calculations together with the
matching conditions for the boundary values yield the following solvability condition
for equation (47):

−ωv
∫ ∞

−∞
(∂zφ

0
in(z, s))

2 =
d

ds

(∫ ∞

−∞
a,X(φ0

in(z, s), ∂zφ
0
in(z, s) ⊗ ν(s)) · ∂zφ0

in(z, s)dz

)
τ(s)

+

∫ ∞

−∞
u0

0,inf,φ(T (u0
in, φ

0
in)c(u

0
in, φ

0
in), φ) · ∂zφ0

indz.(53)

Using that u0
0,in and ū0

in = (u0
1,in, . . . , u

0
N,in) are independent of z, the last term on

the RHS of (53) yields∫ ∞

−∞
u0

0,inf,φ(T
0
in, c

0
in, φ

0
in) · ∂zφ0

indz

=

∫ ∞

−∞

(
d

dz

(
u0

0,inf(T 0
in, c

0
in, φ

0
in)

)− u0
0,inf,c(T

0
in, c

0
in, φ

0
in) · ∂zc0in

)
dz

=

∫ ∞

−∞

(
d

dz

(
u0

0,inf(T 0
in, c

0
in, φ

0
in)

)
+ ū0

in · ∂zc0in
)
dz

=
[
u0

0,inf(T 0
in, c

0
in, φ

0
in) + ū0

in · c0in
]z↗∞
z↘−∞

=:
[
u0

0

(
f(T 0, c0, φ0) − f,c(T

0, c0, φ0) · c0) ]1
2
.

Here we use the abbreviation T 0
in = T (u0

in, φ
0
in), c

0
in = c(u0

in, φ
0
in), T

0 = T (u0, φ0),
and c0 = c(u0, φ0). Finally, as [c0] ∈ TΣN we obtain∫ ∞

−∞
u0

0,inf,φ(T
0
in, c

0
in, φ

0
in) · ∂zφ0

indz = −
(

[f0]12 − µ0 · [c0]12
T 0

)
(t, x).

Calculating the total derivative of γ2,1, which becomes with (52)

Dγ2,1(ν) =

∫ ∞

−∞
a,X · ∂zφ0

indz,

and setting

m(ν) = ω

∫ ∞

−∞
(∂zφ

0
in)

2dz,

we reduce the solvability condition to (writing ∇s · g = (∂sg) · τ for the surface
divergence of some vector field g on Γt)

m(ν)v = −∇s ·Dγ2,1(ν) +
[f0]12 − µ0 · [c0]12

T 0
.



796 HARALD GARCKE, BRITTA NESTLER, AND BJÖRN STINNER

Considering ν and γ as functions in an angle θ ∈ [0, 2π), i.e., setting ν(θ) = (cos(θ),
sin(θ)) and γ̂(θ) = γ(ν(θ)), one can derive (see [17])

∇s ·Dγ2,1(ν) = −(γ̂2,1(θ) + γ̂′′2,1(θ))κ

with the curvature κ = −∇s · ν which may be inserted into the solvability condition
to yield

m(ν)v = (γ̂2,1(θ) + γ̂′′2,1(θ))κ+
[f0]12 − µ0 · [c0]12

T 0
.

Finally, the force balance at triple junctions (24) can be derived as in [17]. Therefore,
all equations defining the sharp interface model have been derived by asymptotic
expansions.

5. Appendix. In this appendix we will show that for the sharp interface model
described in section 2 the entropy does not decrease in time. We consider a situation
where a bounded domain Ω is partitioned into M phases Ω1(t), . . . ,ΩM (t) which are
separated by smooth boundaries Γαβ(t) = Ωα ∩ Ωβ ∩ Ω. For simplicity we restrict
ourselves to two space dimensions, but the calculations can also be done in higher
dimensions.

Given some domain R(t) ⊂ Ω with smooth boundary ∂R(t) and a smooth evolving
curve Γ(t) ⊂ Ω with normal velocity v, we will make use of the following transport
identities:

d

dt

(∫
Γ(t)

γ dH1

)∣∣∣
t=t0

= −
∫

Γ(t0)

γκv dH1 +
∑

endpoints

ṗ · τ and

d

dt

(∫
R(t)

u dx

)∣∣∣
t=t0

=

∫
R(t0)

∂tu dx+

∫
∂R(t0)

uv dH1(x)

for some smooth function u = u(t, x) and some constant γ; κ is the curvature of the
interface Γ, and ν is the unit normal. By ṗ we denote the velocity of the endpoints
of Γ and by τ the exterior tangent vector to Γ(t) at the endpoints.

Let the evolution in each phase be given by

∂te
q = −∇ · Jq0 , ∂tc

q
i = −∇ · Jqi , 1 ≤ i ≤ N, 1 ≤ q ≤M,

with the fluxes given in (15) and (16). We assume that the functions are smooth in
their domain Ωq and that the fluxes vanish at the external boundary of Ω. Observe
that −∂tc = ∇ · J ∈ TΣN . Then

d

dt

(∫
Ω(t)

s(e, c) dx

)∣∣∣
t=t0

=
∑
α

∫
Ωα(t0)

∂ts(e, c) dx−
∑
α<β

∫
Γαβ(t0)

[s]βαv dH1

=
∑
α

∫
Ωα(t0)

(
s,e∂te+

∑
i

s,ci∂tci

)
dx−

∑
α<β

∫
Γαβ(t0)

[s]βαv dH1

= −
∑
α

∫
Ωα(t0)

(
1

T
∇ · J0 +

∑
i

−µ̄i
T

∇ · Ji
)
dx

−
∑
α<β

∫
Γαβ(t0)

[s]βαv dH1
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=
∑
α

∫
Ωα(t0)

∇ 1

T
· J0 +

∑
i

∇−µ̄i
T

· Ji dx

+
∑
α<β

∫
Γαβ(t0)

⎛
⎝
[

1

T
J0 +

∑
i

−µ̄i
T

Ji

]β
α

· ν − [s]βαv

⎞
⎠ dH1.

The fact that L is positive semidefinite leads to

∇ 1

T
· J0 +

∑
i

∇−µ̄i
T

· Ji ≥ 0.

In addition, we make use of the continuity conditions (17), (18) and the jump condi-
tions (19), (20) to obtain

d

dt

(∫
Ω(t)

s(e, c) dx

)∣∣∣
t=t0

≥
∑
α<β

∫
Γαβ(t0)

(
1

T
[e]βαv +

∑
i

−µ̄i
T

[ci]
β
αv −

[Ts]βα
T

v

)
dH1

=
∑
α<β

∫
Γαβ(t0)

[f ]βα −∑
i µi[ci]

β
α

T
v dH1.

Furthermore, we have

d

dt

(
−
∫

Γαβ(t)

γαβ dH1

)∣∣∣
t=t0

=

∫
Γαβ(t0)

γαβκv dH1 −
∑

endpoints

ṗ · ταβγαβ

so that we get

d

dt
S
∣∣∣
t=t0

=
d

dt

⎛
⎝∫

Ω(t)

s(e, c) dx−
∑
α<β

∫
Γαβ(t)

γαβ dH1

⎞
⎠∣∣∣

t=t0

≥
∑
α<β

∫
Γαβ(t0)

(
[f ]βα −∑

i µi[ci]
β
α

T
+ γαβκ

)
v dH1

=
∑
α<β

∫
Γαβ(t0)

m(ν)v2 dH1 ≥ 0.

In the last equality we used the Gibbs–Thomson relation (21), the fact that the
mobility coefficient m is supposed to be positive, the force balance at triple junctions
(24), and the fact that in a closed system the interfaces intersect the exterior boundary
by a 90◦ angle condition (compare [6] and the references therein).
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Abstract. The well-known effect of the linear damping on the moving nonlinear Schrödinger
soliton (even when there is a supply of energy via the spatially homogeneous driving) is to quench
its momentum to zero. Surprisingly, the zero momentum does not necessarily mean zero velocity.
We show that two or more parametrically driven damped solitons can form a complex traveling with
zero momentum at a nonzero constant speed.

All traveling complexes we have found so far have turned out to be unstable. Thus, the parametric
driving is capable of sustaining the uniform motion of damped solitons, but some additional agent
is required to stabilize it.

Key words. traveling waves, nonlinear Schrödinger equation, parametric driving, dissipative
solitons, bifurcations
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1. Introduction. The amplitude of a nearly harmonic wave propagating in a
nonlinear dispersive medium satisfies a nonlinear Schrödinger equation. Confining
ourselves to the generic, cubic nonlinearity of the “focusing” type, the resulting non-
linear Schrödinger equation is of the form

iΨt + Ψxx + 2|Ψ|2Ψ = −iγΨ, γ > 0.(1.1)

The −iγΨ term in the right-hand side accounts for dissipative losses (which were
assumed to be small in the derivation of (1.1)). In the underlying physical system the
dissipation is compensated for by pumping the energy into the system, in one way or
another. The pumping is modeled by adding a driving term to the right-hand side
of (1.1).

Like a simple pendulum, the distributed system can be driven externally or para-
metrically. The typical form of the corresponding amplitude equation is

iΨt + Ψxx + 2|Ψ|2Ψ = heiΩt − iγΨ,(1.2)

and

iΨt + Ψxx + 2|Ψ|2Ψ = hΨe2iΩt − iγΨ,(1.3)

respectively. (The overline in the right-hand side of (1.3) indicates complex conjuga-
tion.) Both the externally and parametrically driven nonlinear Schrödinger equations
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arise in a great variety of physical contexts. In particular, the parametric equa-
tion (1.3) describes the nonlinear Faraday resonance in a vertically oscillating water
tank [1, 2, 3, 4, 5, 6, 7, 8, 9, 10] and the effect of phase-sensitive amplifiers on soli-
tons in optical fibers [11, 12, 13, 14]. The same equation controls the magnetization
waves in an easy-plane ferromagnet placed in a combination of a static and microwave
field [15] and the amplitude of synchronized oscillations in vertically vibrated pendula
lattices [16, 17, 18, 19, 20].

Both equations (1.2) and (1.3) exhibit soliton solutions [21, 22, 23, 24, 1, 2, 15],
stable and unstable [15, 22], which can also form (stable and unstable) multisoliton
complexes [25, 26, 27, 28, 29]. All localized solutions that have been found so far were
nonpropagating. In fact, it is widely accepted that the nonlinear Schrödinger solitons
simply cannot travel in the presence of dissipation. This perception is based mainly
on the rate equation

Ṗ = −2γP,(1.4)

which is straightforward from (1.2) and (1.3). Here P is the total field momentum,

P =
i

2

∫ ∞

−∞
(ΨxΨ − ΨxΨ)dx.(1.5)

In the undamped case (γ = 0) the momentum is conserved; however, if γ > 0, P decays
to zero and this seems to suggest that a solitary wave, initially moving with a nonzero
velocity, will have to slow down and eventually stop [30].

Another indication that only quiescent solitons are possible in the damped-driven
Schrödinger equation comes ostensibly from the singular [2, 31] and inverse scattering-
based perturbation theory [21, 32, 33]. Here we should mention, however, that these
techniques are well developed only in the one-soliton sector and in the case of several
well-separated solitons. They either make use of the smallness of the perturbation
in the right-hand sides of (1.2) and (1.3) [2, 21, 32] or utilize an explicit form of
the perturbed soliton (to study its stability and bifurcation) [33]. In any case, the
resulting finite-dimensional system of equations for the parameters of the soliton and
radiation leads to the conclusion that the soliton’s velocity has to decay to zero as
t→ ∞.

Meanwhile, the moving solitary waves could play a significant role in a variety of
physical situations modeled by the damped-driven nonlinear Schrödinger equations.
Stable traveling waves could compete with nonpropagating localized attractors; unsta-
ble ones might arise as long-lived transients and intermediate states in spatiotemporal
chaotic regimes. Both types of moving solitary waves could mediate energy dissipation
in damped-driven systems. One more reason for not rejecting the unstable solutions
outright is their possible persistence within the (directly or parametrically driven)
Ginzburg–Landau equations of which the Schrödinger equations (1.2) and (1.3) are
special cases [35, 36, 37, 38, 39, 40, 41, 42, 43]. The diffusion and nonlinear damping
(the terms ic1Ψxx and −ic2|Ψ|2nΨ, to be added to the right-hand sides of (1.2) and
(1.3)) are known to have a stabilizing effect on the Ginzburg–Landau pulses; hence
the unstable Schrödinger solitons may gain stability as they are continued to nonzero
positive c1 and c2.

The purpose of this paper is to show that the damped-driven nonlinear Schrödinger
equations do support solitary waves traveling with nonzero velocities. For the demon-
stration of this fact we confine our study to the parametrically driven Schrödinger
only. The externally driven equation is left as an object of future research.



802 I. V. BARASHENKOV AND E. V. ZEMLYANAYA

Two complementary strategies will be pursued to achieve our goal. First, in
section 3, we consider the motionless damped solitons (V = 0, γ �= 0) and derive the
condition under which they can be continued to nonzero velocity. Having identified
values of γ for which this condition is satisfied, we perform the numerical continuation
obtaining a branch of solitary waves with nonzero V and γ. Our second approach
is presented in section 4; the idea is to continue undamped traveling waves (γ = 0,
V �= 0) to nonzero dampings. We show that this is possible only if the traveling wave
has zero momentum. For complexes with P = 0, we then carry out the numerical
continuation in γ. Finally, in section 5 we discuss the consistency of results obtained
within these two complementary approaches.

We examined, numerically, the stability of all solutions obtained within both
approaches. The general framework of the stability analysis is outlined in section 2.
Results of this analysis are presented along with results of the numerical continuation.
Section 6 summarizes the conclusions of our study.

2. Mathematical preliminaries. For purposes of this paper we transform
equation (1.3) to an autonomous form. First, we normalize the driving frequency
Ω to unity; after that, the substitution Ψ(x, t) = eitψ(x, t) takes (1.3) to

iψt + ψxx + 2|ψ|2ψ − ψ = hψ − iγψ.(2.1)

This is the representation of the parametrically driven damped nonlinear Schrödinger
equation that we are going to work with in this paper. We confine ourselves to
uniformly traveling solutions of the form

ψ(x, t) = ψ(x− V t) ≡ ψ(ξ),(2.2)

where ψ(ξ) → 0 as |ξ| → ∞. These satisfy an ordinary differential equation,

−iV ψξ + ψξξ + 2|ψ|2ψ − ψ = hψ − iγψ.(2.3)

The analytical part of this paper deals mainly with identifying those of the previ-
ously found solutions of (2.3) with V = 0 or γ = 0 which can be continued in V and
γ, respectively. The actual continuation will be carried out numerically. Our numeri-
cal method employs a predictor-corrector continuation algorithm with a fourth-order
accurate Newtonian solver. Typically, the infinite line was approximated by an in-
terval (−100, 100). The discretization step size was typically 0.005. The numerical
residual was set to be 10−10; that is, the grid solution would be deemed accurate if
the difference between the left- and right-hand sides in (2.3) were smaller than 10−10.

Along with the continuation of solutions in V and γ, we will be analyzing their
stability to small perturbations. To this end, we linearize (2.1) in the comoving frame
of reference. Letting ψ(x, t) = u(ξ) + iv(ξ) + δψ(ξ, t), where u and v are the real and
imaginary parts of the solution that we are linearizing about, and assuming that the
linear perturbation depends on time exponentially,

δψ(ξ, t) = eλt [δu(ξ) + iδv(ξ)] ,

we arrive at an eigenvalue problem

H0 �y = (λ+ γ)J �y,(2.4)

where the operator H0 is defined by

H0 =

( −∂2
ξ + 1 + h− 6u2 − 2v2 −V ∂ξ − 4uv

V ∂ξ − 4uv −∂2
ξ + 1 − h− 6v2 − 2u2

)
,(2.5)
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the skew-symmetric matrix J is

J =

(
0 −1
1 0

)
,

and the column vector �y(ξ) = (δu, δv)T . The eigenvalue problem (2.4) was solved by
expanding δu and δv over a Fourier basis, typically with 500 modes, on the interval
(−50, 50).

The last point that we need to touch upon in this preliminary section is the
integrals of motion of (1.3), or, more precisely, the quantities which are conserved in
the absence of dissipation. When γ = 0, (1.3) conserves the momentum (given by
(1.5) where one only needs to replace Ψ → ψ) and energy,

E =

∫ ∞

−∞
(|ψx|2 + |ψ|2 − |ψ|4 + h Reψ2) dx.(2.6)

In the damped case, the momentum decays according to the rate equation (1.4) while
the energy satisfies

Ė = 2γ

(∫ ∞

−∞
|ψ|4dx− E

)
.(2.7)

3. Continuation of damped solitons to nonzero velocities.

3.1. Continuability criterion. Our first strategy is to attempt to continue
stationary solutions with nonzero γ to nonzero V . Two basic soliton solutions, denoted
ψ+ and ψ−, are available explicitly:

ψ±(x) = e−iθ±A± sech (A±x) ,(3.1)

A± =

√
1 ±

√
h2 − γ2,

θ+ =
1

2
arcsin

γ

h
, θ− =

π

2
− θ+.

The two solitons can form a variety of stationary complexes. These are denoted,
symbolically, by ψ(++), ψ(−−), ψ(+−+), ψ(−+−), and so on [29]. Let ψ0(x) be a
particular complex; we want to find out whether it can be continued in V . Assuming
there is a solution ψ(ξ;V ) such that ψ(ξ; 0) ≡ ψ0(ξ) (= ψ0(x)), we expand ψ(ξ;V ) in
powers of V as

ψ(ξ;V ) = e−iθ
{
u0(ξ) + iv0(ξ) +V [u1(ξ) + iv1(ξ)] + V 2[u2(ξ) + iv2(ξ)] + · · ·} ,(3.2)

where the constant phase θ will be chosen at a later stage. We also expand h and γ:
h = h0 + h1V + · · · , γ = γ0 + γ1V + · · · . Substituting into (2.3), the order V 1 gives

L
(
u1

v1

)
=

(
v′0
−u′0

)
+ B

(
u0

v0

)
,(3.3)

where the operator L has the form

L =

( −∂2
x + 1 + h0 cos 2θ − 6u2

0 − 2v2
0 γ0 + h0 sin 2θ − 4u0v0

−γ0 + h0 sin 2θ − 4u0v0 −∂2
x + 1 − h0 cos 2θ − 2u2

0 − 6v2
0

)
,(3.4)
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the constant matrix B is given by

B =

( −h1 cos 2θ −γ1 − h1 sin 2θ
γ1 − h1 sin 2θ h1 cos 2θ

)
,

and the primes over u0 and v0 indicate derivatives with respect to x. (In (3.3) and
(3.4) we have replaced ξ with x as ξ coincides with x for V = 0.) According to
Fredholm’s alternative, (3.3) has a bounded solution u1(x), v1(x) if and only if the
vector in the right-hand side is orthogonal to the kernel of the Hermitian-conjugate
operator L†: ∫

(y, w)

(
v′0
−u′0

)
dx+

∫
(y, w)B

(
u0

v0

)
dx = 0.(3.5)

Here �y(x) = (y, w)T is the eigenvector of L† associated with the zero eigenvalue:
L†�y = 0. That the operator L† has a zero eigenvalue follows from the fact that
the operator L has one—namely, the translation eigenvalue corresponding to the
eigenvector (u′0, v

′
0)
T . Equation (3.5) gives a necessary continuability condition of

damped quiescent solitons to nonzero velocities.

3.2. Noncontinuability of the “building blocks.” It is quite easy to check
that when γ0 �= 0, the individual ψ+ and ψ− solitons (the basic “building blocks”
of which all complexes are constructed) are not continuable to nonzero V . Choosing
θ = θ+ for the ψ+ soliton and θ = θ− for the ψ− (where θ± are to be computed
from the bottom formula in (3.1) with γ = γ0 and h = h0), we get v0(x) = 0,
γ0 − h0 sin 2θ = 0 and so the 2 × 2 matrix L, (3.4), becomes upper triangular. The
zero mode of L† can now be readily found.

Consider, for instance, the ψ+ case. The zero mode satisfies( −∂2
x +A2

+ − 6u2
0 0

2γ0 −∂2
x +A2

− − 2u2
0

)(
y
w

)
= 0,

and hence y(x) = u′0(x), and w(x) is found from

(−∂2
x +A2

− − 2u2
0)w = −2γu′0(x).(3.6)

Using the explicit expression for u0(x), u0(x) = A+sech(A+x), the operator in the
left-hand side of (3.6) can be written as A2

+(L0−ε), where ε = 2h0 cos(2θ+)/A2
+, L0 is

given by

L0 = −∂2
X + 1 − 2sech2X,

and X = A+x. The operator L0 has familiar spectral properties; in particular it
has a single discrete eigenvalue E0 = 0 associated with an even eigenfunction z0 =
sechX, while its continuous spectrum occupies the semiaxis Ek ≥ 1. Consequently,
for 0 < ε < 1 (that is, for h0 <

√
1 + γ2

0), the operator L0 − ε is invertible and a
bounded solution w(x) of (3.6) exists and is unique. It can be found explicitly, but
this is not really necessary for our purposes. All we need to know is that, since L0 is
a parity-preserving operator, w(x) has the same parity as the right-hand side in (3.6),
i.e., it is an odd function. For that reason the second integral in (3.5) vanishes and
the necessary continuability condition reduces to

γ

∫
u′0(x)(L0 − ε)−1u′0(x)dx = 0.(3.7)



TRAVELING SOLITONS IN THE DAMPED-DRIVEN EQUATION 805

This quadratic form can be easily evaluated by expanding u′0(x) over eigenfunctions
of the operator L0:

u′0(x) =

∫ ∞

−∞
U(k)zk(X)dk,

where L0zk(X) = (1+k2)zk(X). (The “discrete” eigenfunction z0(X) does not appear
in the expansion as it has the opposite parity to u′0(x).) Utilizing the orthonormality
of the eigenfunctions, the continuability condition (3.7) is transformed into

γ

∫ |U(k)|2
k2 + 1 − ε

dk = 0.(3.8)

As ε < 1, this condition obviously cannot be satisfied (unless γ = 0).
In the case of the ψ− soliton, the analysis is similar. In this case, the continuability

condition (3.8) is replaced by

γ

∫ |U(k)|2
k2 + (1 − ε)−1

dk = 0,

and this cannot be met for the same reason as for (3.8).

3.3. Continuation of the complexes. Turning to the complexes of the solitons
ψ+ and ψ−, the phase of the complex varies with x and therefore the matrix L cannot
be made triangular no matter how we choose the constant θ in (3.2). For this reason,
aggravated by the fact that the multisoliton solutions are not available explicitly, the
continuability condition (3.5) cannot be verified analytically. Resorting to the help of
a computer, we evaluated the eigenfunction �y(x) associated with the zero eigenvalue
of the operator L† numerically. (Here we set θ = θ+.)

All dissipative soliton complexes found in [29] were symmetric; that is, the corre-
sponding u and v are even functions of x. Therefore, the operator L†, whose potential
part is made up of u(x) and v(x), is parity preserving and all its eigenfunctions pertain-
ing to nonrepeated eigenvalues are either even or odd. As we move along a continuous
branch of solutions, the parity of the eigenfunction has to change continuously. Since
the parity equals either +1 (for even functions) or −1 (for odd functions), the only
opportunity left to it by the continuity argument is to remain constant on the entire
branch. For that reason it is sufficient to determine the parity of the eigenfunction
for one specific value of h and then we will know it at all other points. Our numerical
calculation shows that the eigenfunction �y(x) is odd on all branches reported in [29].
Consequently, the second term in (3.5) is always zero and we only need to evaluate
the first term.

The vanishing of the term involving coefficients h1 and γ1 in (3.5) implies that
it was not really necessary to expand h and γ in powers of V . This fact has a
simple geometric interpretation. As we will see below, for the fixed γ the continuable
solutions occur only at isolated values of h and hence they exist only for h and γ lying
on continuous curves in the (h, γ)-plane. Each curve results from an intersection of
some surface in the three-dimensional (h, γ, V )-space with the (V = 0)-plane. The
fact that one does not have to alter h and γ when continuing the solution to nonzero
V indicates that these surfaces are orthogonal to the (V = 0)-plane along their curves
of intersection.

Having found the solution ψ(x) = u(x) + iv(x) at representative points along
each branch, we obtained the eigenfunction �y(x) at these points and evaluated what
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Fig. 3.1. A fragment of the bifurcation diagram for stationary multisoliton complexes (adapted
from [29].) Shown is the energy (2.6) of the complex as a function of h. The bottom branch pertains
to symmetric two-soliton complexes ψ(++) and ψ(−−) and a three-soliton solution ψ(−+−); the
top branch includes the three-soliton states ψ(+++) and ψ(−−−), as well as a five-soliton solution
ψ(−+−+−). The thick curve corresponds to stable and thin curves to unstable solutions, respectively.
The black dots indicate points where the integral (3.9) equals zero and therefore moving solitons are
allowed to bifurcate off.

remains of the integral (3.5): ∫
(yv′0 − wu′0) dx ≡ I(h).(3.9)

The integral I is a continuous function of h, and it was not difficult to find points on
the curve at which it changes from positive to negative values, or vice versa.

We examined two branches of multisoliton solutions obtained previously [29] (Fig-
ure 3.1). The integral I(h) was found to change its sign at three points, marked by
black dots in the figure. (Although it may seem from the figure that I equals zero
right at the turning points, in actual fact zeros of I do not exactly coincide with the
turning points.) We were indeed able to numerically continue our solutions in V from
each of these three points. Results are presented in Figure 3.2, (a)–(c).

The point “1” in Figure 3.1 corresponds to the stationary complex ψ(++) and lies
just above the turning point where the ψ(++) turns into ψ(−−). (The turning point
has h = 0.83504217 while I(h) = 0 for h = 0.8353.) This solution has four positive
real eigenvalues in the spectrum of the associated linearized operator and hence is
unstable. The γ(V ) curve which results from the continuation of this solution in V is
shown in Figure 3.2(a). As V grows from zero, the solution loses its even symmetry
(see the inset to Figure 3.2(a)) while the four positive eigenvalues collide, pairwise,
and become two complex conjugate pairs with positive real parts. After reaching
a maximum velocity of approximately 0.65, the curve turns back toward V = 0,
with γ first growing but then also turning toward γ = 0. The solution transforms
into a (strongly overlapped) ψ(+−) complex. As V and γ tend to their zero values,
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Fig. 3.2. Bifurcation curves branching off the points marked by black dots in Figure 3.1. The
curves illustrate the relation between the value of the damping γ and velocity V at which the wave
may travel for that γ. Each curve begins at the point γ = 0.565 on the vertical axis. The insets
show representative solutions at internal points of each branch. (Solid line: real part; dashed line:
imaginary part.) Note the logarithmic scale of V in (b). Here, and in all other diagrams, arrows
indicate our direction of continuation.

the separation between the ψ+ and ψ− constituent solitons in the complex grows to
infinity. The spectrum becomes the union of the eigenvalues of the individual ψ+ and
ψ− solitons; in particular, it includes a complex-conjugate pair with a positive real
part, and a positive real eigenvalue. Thus the entire branch shown in Figure 3.2(a) is
unstable.

One more comment that we need to make here concerns the validity of the
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continuation scenario presented in Figure 3.2(a) for other values of h. Note that
if we chose a smaller value of γ in Figure 3.1, the value of h corresponding to the
point “1” would also be smaller. (For example, for γ = 0.548 the integral I(h) van-
ishes at the point h = 0.82.) For this smaller h the final product of the continuation
turns out to be not a pair of infinitely separated stationary ψ+ and ψ− but a totally
different complex. This is discussed below in section 5; see also Figures 4.2(c) and 5.1.

Another branch bifurcates off at the point marked “2” in Figure 3.1. Here
h = 0.867. The corresponding γ(V ) diagram is displayed in Figure 3.2(b). As we
move along the branch departing from V = 0, the original stationary complex ψ(−−−)

transforms into a solution displaying three widely separated peaks in its real part:
one corresponding to a strongly overlapping complex ψ(−+−), the next one to the ψ+,
and the last one to the ψ− soliton. After passing a turning point, the curve is reap-
proaching, tangentially, the (V = 0)-axis. However, having reached V = 2.2×10−8, it
suddenly turns back and the velocity starts to grow again. The separation between the
solitons decreases and the solution can now be interpreted as a strongly overlapping
four-soliton complex ψ(+++−) (shown in the inset to Figure 3.2(b)). As we continue
further, the four constituent solitons regroup into two complexes, ψ(++) and ψ(+−).
The distance between the two complexes grows rapidly, and, for certain finite V and
γ (at the endpoint of the curve in Figure 3.2(b)), becomes infinite. At this point
we have two coexisting solutions, ψ(++) and ψ(+−), and so this point corresponds to
the point of self-intersection of the curve shown in Figure 3.2(a). Continuing the two
solutions separately, from the endpoint of the curve in Figure 3.2(b), we reproduce
the diagram of Figure 3.2(a) for a slightly different value of h (i.e., for h = 0.867).

The entire branch shown in Figure 3.2(b) is unstable. The start-off stationary so-
lution ψ(−−−) has three positive real eigenvalues in its spectrum; one of these persists
for all V and γ while the other two collide and form a complex-conjugate pair with a
positive real part.

The branch continuing from the point “3” in Figure 3.1, for which h = 0.863645,
leads to the least expected solutions. The resulting γ(V ) curve is shown in Fig-
ure 3.2(c). For points lying on the “spiral” part of the curve, the function ψ(x) is
equal to a constant in a relatively large but finite region, and is zero outside that
region. (See the inset to Figure 3.2(c).) The constant is ψ(0) = (A−/

√
2)e−iθ− ; it

defines a stationary spatially uniform solution to (2.1). (This flat background is un-
stable with respect to the continuous spectrum perturbations. Figuratively speaking,
our pulse solution ψ(x) represents a “droplet” of the unstable phase in the stable
one.) On one side (at the rear of the pulse) the zero background is connected to the
background ψ(0) by a kink-like interface. In the front of the pulse, the interface has
the character of a large-amplitude excitation, with the shape resembling the ψ(+−)

complex. As the curve γ(V ) spirals toward its “focus” in Figure 3.2(c), the length of
the region where ψ(x) = ψ(0) is growing. The entire branch is unstable; the start-off
ψ(−−) solution already has two real positive eigenvalues in its spectrum and more ap-
pear as we move along the branch. Those additional positive eigenvalues are remnants
of the “unstable” interval of the continuous spectrum of the flat nonzero solution ψ(0).

4. Continuation of traveling waves to nonzero dampings.

4.1. Continuability conditions. When γ = 0, equation (2.3) has a plethora of
localized solutions with nonzero V [34], and our second strategy will be to attempt to
continue these nondissipative traveling waves to nonzero γ. We start with establishing
the necessary and sufficient conditions for such a continuation.

A set of the necessary conditions can be derived easily using two integral charac-
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teristics of (2.1), the momentum,

P = (i/2)

∫
(ψxψ − ψxψ)dx,(4.1)

and energy (2.6). No matter whether γ equals zero or not, the uniformly traveling
solitary waves (i.e., solutions of the form (2.2)) satisfy Ṗ = Ė = 0. Using these
relations in (1.4) and (2.7) with γ �= 0, we get

P = 0(4.2)

and

E =

∫
|ψ|4dx.(4.3)

Equations (4.2) and (4.3) have to be satisfied by the undamped solutions continuable
to nonzero γ.

In fact, (4.2) and (4.3) are not independent. Indeed, multiplying (2.3) by ψ,
adding its complex conjugate, and integrating, gives an identity

E −
∫

|ψ|4dx = V P.(4.4)

Letting P = 0 in (4.4), equation (4.3) immediately follows. Thus we can keep P = 0
as the only necessary condition for the continuability to nonzero γ; (4.3) is satisfied
as soon as (4.2) is in place.

It turns out that P = 0 is also a sufficient condition. To show this, we expand
the field ψ = u+ iv in powers of γ:

u = u0 + γu1 + γ2u2 + · · · , v = v0 + γv1 + γ2v2 + · · · ,
substitute into (2.3), and equate coefficients of like powers. (We also could have
expanded h and V in γ, but, similarly to the continuation in V described in the
previous section, the terms with coefficients h1 and V1 cancel out of the resulting
continuability condition.) At the order O(γ1), we obtain

H0

(
u1

v1

)
=

( −v0
u0

)
.(4.5)

Here the Hermitian operator H0 is as in (2.5) where we only need to attach zero
subscripts to u and v:

H0 =

( −∂2
ξ + 1 + h− 6u2

0 − 2v2
0 −V ∂ξ − 4u0v0

V ∂ξ − 4u0v0 −∂2
ξ + 1 − h− 2u2

0 − 6v2
0

)
.(4.6)

Since the operator H0 has a zero eigenvalue, with the translation mode as an associ-
ated eigenvector, (4.5) is solvable only if its right-hand side is orthogonal to (u′0, v

′
0):∫

(u′0, v
′
0)

( −v0
u0

)
dξ = 0.(4.7)

(Here the prime indicates the derivative with respect to ξ.) The expression in the
left-hand side of (4.7) coincides with (4.1) written in terms of the real and imaginary
parts of ψ, and so the solvability condition (4.7) is simply P = 0.
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Now assume that P is equal to zero so that a bounded solution to (4.5) exists. All
traveling waves found in [34] have even real and odd imaginary parts: u0(−x) = u0(x),
v0(−x) = −v0(x). Noticing that the diagonal elements of the operator H0 are parity-
preserving while the off-diagonal elements change their sign under the ξ → −ξ reflec-
tion, we conclude that u1(x) is odd and v1(x) is even.

Proceeding to the order O(γ2), we have

H0

(
u2

v2

)
=

( −v1 + u0[6u
2
1 + 2v2

1 ] + 4v0u1v1
u1 + v0[2u

2
1 + 6v2

1 ] + 4u0u1v1

)
.(4.8)

The top entry in the right-hand side of (4.8) is even and the bottom one odd; hence
the right-hand side is orthogonal to the null vector (u′0, v

′
0) and a bounded solution

u2(ξ), v2(ξ) exists. This time the u-component is even and the v-component odd:
u2(−ξ) = u2(ξ), v2(−ξ) = −v2(ξ).

It is not difficult to verify that this parity alternation property guarantees the
boundedness of un(ξ) and vn(ξ) for all n. Therefore, (2.3) has a localized solution
(ψ(ξ) → 0 as |ξ| → ∞) for sufficiently small γ. Thus if we have an undamped soliton
traveling with zero momentum, it can be continued to nonzero values of γ.

4.2. Continuable solutions: The bifurcation diagram of the undamped
nonlinear Schrödinger. In this subsection we review the P (V ) law for the un-
damped solitons and solitonic complexes [34]. Of interest, of course, are points where
the graph crosses the V -axis, i.e., where P (V ) = 0.

The simplest solutions arising for V = 0 are, obviously, our stationary funda-
mental solitons ψ+ and ψ−. These are given by (3.1), where one only needs to set
γ = 0:

ψ+(x) = A+sech (A+x), ψ−(x) = iA−sech (A−x),

with A2
± = 1± h. Both ψ+ and ψ− have zero momenta and therefore are continuable

to nonzero γ. However, the continuation does not produce any traveling waves in this
case; all we get is our static damped solitons ψ±, equation (3.1).

Next, both ψ+ and ψ− admit continuation to nonzero V (for the fixed γ = 0) [34].
As V is increased to

c =

√
2 + 2

√
1 − h2,

the width of the soliton ψ− increases, its amplitude decreases, and the soliton gradu-
ally transforms into the trivial solution, ψ ≡ 0. On the resulting branch, the momen-
tum vanishes only for V = 0 and V = c and therefore, no dissipative branches can
bifurcate off the traveling ψ− soliton.

We now turn to the soliton ψ+. When h < 0.28, its fate is similar to that of
the ψ−: as V → c, the soliton spreads out and merges with the zero solution. The
momentum equals zero at only two points, V = 0 and V = c; for 0 < V < c, the
momentum is positive.

For h > 0.28, the transformation of the ψ+ is more promising from the present
viewpoint (see the dashed curve in Figure 4.1). As V is increased from zero, the
momentum grows, then the branch turns back toward the V = 0 axis. For some
V < 0 the momentum reaches its maximum and then decreases to zero. The point
V = V1 where P (V1) = 0 is of interest to us, as a branch of damped solitons can
bifurcate off at this point (and it really does; see subsection 4.4). Continuing beyond
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Fig. 4.1. The momentum of the undamped traveling wave as a function of its velocity (a
combined and advanced version of two diagrams from [34]). The dashed and dash-dotted curves
pertain to the case of large driving strengths (here exemplified by h = 0.7). The starting point
P = V = 0 of the dashed curve corresponds to the stationary undamped ψ+ soliton, which then
transforms to the twist, then to a bound state of two twists, and then to a complex of a twist and
two ψ− solitons. (This curve appeared in [34].) The dash-dotted offshoot is our new contribution
to the diagram; it corresponds to an asymmetric solution, ψ(−T ), detaching from the ψ(TT ) curve.
The solid curve pertains to the case of small driving amplitudes (here h = 0.05). (This curve
also appeared in [34].) The points of its intersection with the P -axis correspond to stationary twist
solitons; continuing each of these counterclockwise gives rise to a bound state of two ψ+’s, while
when continued clockwise each twist transforms into a complex of two ψ−’s. More solution curves
can be generated by the mapping V → −V , P → −P .

V1, the curve P (V ) turns toward V = 0 and then, after one more turning point, we
have another zero crossing: P (V2) = 0. This is how far we have managed to advance
in our previous work [34].

At this point we need to mention that the ψ+ and ψ− are not the only quiescent
solitons for γ = 0. The dashed P (V ) curve in Figure 4.1 is seen to have one more
intersection with the P -axis, apart from the one at the origin. The corresponding
solution represents a symmetric strongly overlapping complex of the ψ+ and ψ− soli-
tons and was coined “twist” (symbolically ψT ) in [34]. The twist soliton arises both
for h greater and smaller than 0.28. In the former region the twist obtains from the
V -continuation of the ψ+ soliton, while for h < 0.28, it is not connected to the ψ+.
(See the solid curve in Figure 4.1.) The continuation of the twist in V in the case
h < 0.28 gives rise to a new branch of the undamped solutions which has a point of
intersection with the (P = 0)-axis, at some V = V1. A dissipative traveling wave is
bifurcating off at this value of velocity; see the next subsection. We are using the same
notation, V1, in the small- and large-h cases in Figure 4.1 to emphasize the similarity
of the resulting γ(V ) curves in the two cases; see below.

Returning to the case of large h, the entire dashed curve in Figure 4.1 corresponds
to symmetric solutions, ψ(−ξ) = ψ(ξ). It turns out that there are also nonsymmetric
solutions; these were missed in [34]. The real part of a nonsymmetric solution is not



812 I. V. BARASHENKOV AND E. V. ZEMLYANAYA

even, and the imaginary part is not odd. In particular, a pair of asymmetric solutions
arise in a pitchfork bifurcation of the complex ψ(TT ); see the dash-dotted offshoot
from the dashed curve in Figure 4.1. (The two asymmetric solutions are related by
the transformation ψ(ξ) → ψ(−ξ); they obviously have equal momenta and hence
are represented by the same curve.) Continuing the asymmetric branch we have
the third zero crossing, at V = V3. When continued to positive P , the asymmetric
solution acquires the form of a complex of ψ− and ψT solitons, with the intersoliton
separation growing as P is increased. (Note that although the dashed and dash-dotted
curves end at nearby points, they are not connected.) Our numerical analysis shows
that branches of damped solitons do indeed detach at V1, V2, and V3; these will be
described in the next two subsections.

4.3. Numerical continuation: Small driving amplitudes. For small h,
h < 0.28, our continuation departs from the twist soliton moving with the velocity
V1 (the point of intersection of the solid curve with the horizontal axis in Figure 4.1).
The real part of this solution is even and the imaginary part odd: ψ(−x) = ψ(x).
As we continue to nonzero γ, this symmetry is lost; a typical profile at the internal
points looks like a nonsymmetric complex of the ψ− and ψ+ and is displayed in the
inset to Figure 4.2(a). The rest of Figure 4.2(a) shows the resulting γ(V ) relation.
As γ grows, the negative velocity of the traveling wave decreases in modulus. How-
ever, the damping cannot be increased beyond a certain limit value; as we reach it,
the γ(V )-curve turns down (Figure 4.2(a)). As V and γ tend to zero, the separation
between the ψ− and ψ+ solitons in the complex grows without bounds.

These transformations of the solution are reflected by the behavior of the lin-
earized eigenvalues in the eigenvalue problem (2.4). At the point V = V1, γ = 0 of
the γ(V ) curve, the twist solution has a quadruplet of complex eigenvalues ±λ,±λ
which dissociates into two pairs of complex-conjugate eigenvalues λ1, λ1 and λ2, λ2

(with Reλ1 < 0 and Reλ2 > 0) as γ deviates from zero. As we move toward the max-
imum of the curve, the imaginary parts of λ1 and λ2 decrease and the four complex
eigenvalues move onto the real axis. At the point of maximum, one of the resulting
two positive eigenvalues crosses to the negative real axis, but the other one persists all
the way to V = −0 and γ = +0. Therefore the spectrum of eigenvalues on the “down-
hill” portion of the curve is a union of eigenvalues of the ψ− and ψ+ solitons. The
conclusion of the eigenvalue analysis is that the traveling complex whose bifurcation
diagram is exhibited in Figure 4.2(a) is unstable for all V and γ.

4.4. Numerical continuation: Large driving amplitudes. For h > 0.28
we have three starting points with P = 0 corresponding to two intersections of the
dashed curve and one of the dash-dotted curve with the horizontal axis in Figure 4.1.

The γ(V ) curve emanating out of the point V1 is the top, arc-shaped, curve in
Figure 4.2(b). For V = V1 and γ = 0 the solution is symmetric and its shape resem-
bles two strongly overlapping twists. The linearized spectrum includes two complex
quadruplets. As γ deviates from zero, the symmetry is lost and the solution starts
looking like an asymmetric complex of two pulses. The two complex quadruplets
become four complex-conjugate pairs of eigenvalues, two with positive and two with
negative real parts. Two of these pairs (one with Reλ > 0 and one with Reλ < 0)
move on to the real axis. After that, one positive real eigenvalue crosses to the negative
semiaxis, while the complex pair with Reλ > 0 crosses into the Reλ < 0 half-plane
but then returns to Reλ > 0. As V, γ → 0, the separation between the ψ− and ψ+

solitons comprising this complex increases, and eventually the two constituents di-
verge to infinities. On the “downhill” portion of the curve, the spectrum is a union of



TRAVELING SOLITONS IN THE DAMPED-DRIVEN EQUATION 813

−0.2 −0.15 −0.1 −0.05   0  
    0

0.004

0.008

0.012

V

γ

0

γ=0.01108
V=−0.1403

h=0.05
(a)

V
1

ψ
(−+)

ψ
T

−0.8 −0.6 −0.4 −0.2   0 
 0 

0.1

0.2

0.3

0.4

V

γ
h=0.7

0

γ=0.3401
V=−0.1898

(b)

V
1

V
2

V
4

ψ
(−+)

ψ
(TT)

ψ
(−T−)

ψ
(−T−)

−0.8 −0.6 −0.4 −0.2   0 
 0 

0.1

0.2

0.3

0.4

V

γ

h=0.7

0

γ=0.22034
V=−0.0692

(c)

V
3

ψ
(++)

ψ
(−−+)

Fig. 4.2. Results of the numerical continuation of the undamped traveling solitons to nonzero
γ. (a): small h; (b),(c): large h. The inset displays a representative solution at one of the internal
points of the curve. (Solid line: real part; dashed line: imaginary part.) Each curve shown has a
positive-velocity counterpart which arises by the mirror reflection V → −V of the figure.

the spectra of the individual ψ− and ψ+ solitons; in particular, it includes a positive
real eigenvalue and a complex quadruplet. Since there are eigenvalues with Reλ > 0
for all V , the entire branch is unstable.

The second undamped traveling wave with zero momentum (point V2 on the
bifurcation diagram Figure 4.1) corresponds to a symmetric (ψ(−x) = ψ(x)) complex
of two ψ− and one twist soliton, symbolically ψ(−T−). The spectrum includes three
complex quadruplets. As we continue in γ and V , the symmetry is lost but the
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solution still looks like a complex of three solitons (see the inset to Figure 4.2(b)).
The bottom, spike-shaped, curve in Figure 4.2(b) depicts the corresponding γ(V )
relation. Unlike the branch starting at the value V = V1, this solution cannot be
continued to zero velocities. Instead, the γ(V ) curve turns back and, as γ approaches
zero from above, V tends to a negative value V4, with |V4| > |V2|. For sufficiently small
γ the corresponding solution consists of two ψ− solitons and a twist in between, with
the intersoliton separations growing to infinity as γ → 0, V → V4. The associated
eigenvalues perform rather complicated movements on the complex plane; skipping
the details, it suffices to mention that “unstable” eigenvalues (real positive or complex
with positive real parts) are present for all V . Hence the entire branch is unstable.

Finally, the point V3 on Figure 4.1 represents two nonequivalent asymmetric so-
lutions with zero momentum, ψ1(ξ) and ψ2(ξ), with ψ2(ξ) ≡ ψ1(−ξ). Consequently,
there are two distinct γ(V )-branches coming out of this point (Figure 4.2(c)). One of
these corresponds to a complex of two solitons; when continued to V = 0, it gives rise
to the symmetric complex ψ(++) with nonzero γ. (See the top curve in Figure 4.2(c).)
Continuing the other asymmetric solution to V = 0, the corresponding value of γ
reaches a maximum at |V | ∼ 0.3 and then tends to zero (the bottom curve in Fig-
ure 4.2(c)). For sufficiently small V and γ this solution represents a complex ψ(−−+)

(shown in the inset to Figure 4.2(c)). As V, γ → 0, the intersoliton separation tends
to infinity. Turning to the eigenvalues, the start-off solution at the point V3 has two
complex quadruplets and a real positive eigenvalue in its spectrum. When we continue
along the top curve in Figure 4.2(c), two complex eigenvalues move on to the positive
real axis, so we end up with three positive eigenvalues. When we continue along the
bottom curve, the movements of the eigenvalues are more involved but some of them
always remain in the “unstable” half-plane, Reλ > 0. The upshot of the eigenvalue
analysis is that both curves represent only unstable solutions.

5. Consistency of the two approaches. To complete our classification of
damped traveling solitons, we need to comment on what may seem to be an incon-
sistency between results obtained within the above two complementary approaches.
The solution representing the well-separated ψ+ and ψ− solitons reported in sections
3 and 4 can be reached by continuing both off the (γ = 0)- and (V = 0)-axes. (This
branch connecting to the origin on the (V, γ)-plane appears in both Figures 3.2(a)
and 4.2(b).) Although such a curve should obviously not depend on the starting
point of the continuation, one notices that the ψ(+−) branches “flowing into the ori-
gin” in Figures 3.2(a) and 4.2(b) behave differently when traced backward (i.e., away
from V = γ = 0). While the curve in Figure 3.2(a) intersects the γ-axis, its coun-
terpart in Figure 4.2(b) crosses the other, V -, axis. (Here the reader should not be
confused by the fact that the ψ(+−) branch in Figure 3.2(a) is shown for positive
values and its counterpart in Figure 4.2(b) for negative values of V . In view of the
ξ → −ξ, V → −V invariance of (2.3), to each γ there correspond two traveling waves,
one with positive and the other with negative values of V , respectively. Therefore,
one should mirror-reflect Figure 4.2(b) prior to comparing it to Figure 3.2(a). This
reflection maps the solution ψ(−+) of Figure 4.2(b) to the ψ(+−) of Figure 3.2(a).)

To resolve the paradox, one needs to note that the two figures correspond to
different values of h: Figure 3.2(a) to h = 0.8353 and Figure 4.2(b) to h = 0.7.
It turns out that a qualitative change of behavior occurs for h somewhere between
these values, more precisely between 0.82 and 0.8275. For h = 0.82 and smaller (in
particular, for h = 0.7) the γ(V ) curve has the form of an arc shown in Figure 4.2(b)
(i.e., it crosses the V -axis as |V | is increased), while for h = 0.8275 and greater, the
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Fig. 5.1. The comparison of the bifurcation diagrams for h = 0.82 and h = 0.8275. Solid curve:
h = 0.8275; dashed curve: h = 0.82. Although the points of intersection of the dashed and solid
curves with the V -axis do not coincide, i.e., V3(0.8275) �= V3(0.82) and V1(0.8275) �= V1(0.82), they
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The branches coming out of the point V2 on the V -axis are omitted for visual clarity. Note the
shape of the dashed and solid curves near V ∼ 0.7, γ ∼ 0.3, characteristic of phase portraits of
two-dimensional dynamical systems in the neighborhood of saddle points.

curve is already loop-shaped and does not reach to γ = 0. This change of behavior,
accounting for the above “inconsistency,” is illustrated by Figure 5.1 which compares
the γ(V ) relations for h = 0.82 and h = 0.8275. Figure 5.1 also serves to illustrate
the different outcomes of the continuation of the complex ψ(++) for h = 0.8353 and
smaller h. (We note that for h = 0.8353 the continuation of the motionless ψ(++)

produces a pair of infinitely separated solitons ψ+ and ψ− (Figure 3.2(a)) while for
h = 0.7, the curve departing from the same type of starting point (i.e., from ψ(++))
ends up at the undamped asymmetric solution traveling with nonzero velocity V3

(Figure 4.2(c)).)
The above differences in behavior result from the presence of a saddle point on

the (V, γ)-plane, in the gap between the two lobes of the solid curve in Figure 5.1.
Indeed, the dashed and solid curves can be seen as sections of the surface h = h(γ, V )
by the horizontal planes h = 0.82 and h = 0.8275, respectively. The gap in the upper
solid curve is then accounted for by letting h = h0 +x2−y2 in the vicinity of the gap.
Here the constant h0 lies somewhere between 0.82 and 0.8275, and (x, y) is a pair of
suitably chosen orthogonal coordinates on the (V, γ)-plane.

6. Conclusions. One of the conclusions of this work is that by clustering into
complexes, solitons (or, equivalently, solitary pulses) can adjust their total momen-
tum to zero. By doing so they can travel with nonzero speed in the presence of
damping—without violating the momentum decay law, Ṗ = −γP . Two identical
solitons traveling at the same speed in the same direction have equal momenta; there-
fore, in order to arrange for P = 0 the traveling complex inevitably has to include
solitons of different varieties (i.e., both ψ+’s and ψ−’s). Consequently, the real and
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imaginary parts of the traveling complex will always be represented by asymmetric
functions of ξ = x− V t.

Although the possibility of nondecelerated motion may be out of line with the
common perception of the soliton dynamics in weakly damped Hamiltonian equations,
moving pulses are not unknown in strongly dissipative systems. A suitable example
is given by the complex Ginzburg–Landau equation. Asymmetric Ginzburg–Landau
pulses, uniformly traveling with nonzero velocities, were reported in [44].

All moving solutions that we have found in this paper turned out to be unstable.
This instability admits a simple qualitative explanation—at least, for small dampings.
In the undamped situation, the ψ− solitons are unstable when traveling with small
velocities while the ψ+’s become unstable when moving sufficiently fast [34]. In the
presence of dissipation the traveling wave has to include solitons of both varieties;
on the other hand, the eigenvalues corresponding to small nonzero γ should remain
close to their (γ = 0)-counterparts. Therefore the spectrum of the traveling complex
will “inherit” unstable eigenvalues of either ψ− (for small velocities) or ψ+ (for large
velocities).

Thus, despite the fact that the parametric driver can sustain the uniform motion
of a damped soliton, an additional agent (such as, possibly, the diffusion and/or a
nonlinear damping term) is required to make this motion stable. Here it is appropriate
to refer, again, to the complex Ginzburg–Landau equation. Stable Ginzburg–Landau
pulses arise as a result of a delicate balance of the whole series of terms, including
dispersion, cubic and quintic conservative nonlinearity, diffusion, cubic gain, and lin-
ear and quintic nonlinear damping [44, 45, 46, 47]. In a similar way, the gain/loss
and spreading/steepening balances of the damped-driven traveling solitons could be
restored by adding one or several missing agents.
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1. Introduction. In [13], Isaacson and Temple introduced the 2 × 2 system

at = 0,

ut + f(a, u)x = a′g(a, u)(1.1)

as a general nonlinear balance law that models resonance between a nonlinear wave
field and a stationary source (cf. [5, 7, 8, 9, 10, 11, 14, 17, 19, 20, 21, 22, 23, 25, 26]).
Here a and u are assumed to be scalar valued, and resonance occurs at states U∗ =
(a∗, u∗), where the nonlinear wave speed λ = fu vanishes. Assume further that f and
g are smooth functions and that the following conditions are satisfied at the state U∗:

fu(U∗) = 0,(1.2)

g(U∗) − fa(U∗) �= 0 (w.l.o.g. assume g(U∗) − fa(U∗) > 0),(1.3)

fuu(U∗) �= 0 (w.l.o.g. assume fuu(U∗) < 0),(1.4)

and

gu(U∗) �= 0.(1.5)

It was shown in [13] that the generic conditions (1.2)–(1.5) imply that the structure
of elementary wave curves (shock waves, rarefaction waves, and standing waves) and
the solution of the Riemann problem (the initial value problem when the initial data
consists of constant states UL, UR, separated by a discontinuity) are canonical1 in a
neighborhood Ω of the state U∗; cf. [16, 13, 24]. (The cases gu > 0 and gu < 0 are
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required, except by (1.3) in the case g = 0; cf. the construction of the zero speed shock curve below.

819



820 JOHN HONG AND BLAKE TEMPLE

qualitatively different.) Here a′ ≡ ax ≡ da
dx , and a = a(x) is an inhomogeneous term

that is treated as a variable so that (1.1) takes the form of a system of two equations
that expresses the dependence of the solution on the source a.

In this paper we introduce a new potential interaction functional and use it to
construct a nonlinear Glimm functional that is positive decreasing on solutions of
(1.1) and bounds the total variation of the conserved quantity u in terms of the initial
data for all time t > 0. We show that the functional is always locally finite at time
t = 0+ of the random choice method, and so the limit solution will be of bounded
total variation for all time so long as this functional is bounded uniformly at t = 0+
as the mesh length ∆x → 0. This then gives a condition on the initial data that
guarantees the solution will be of bounded total variation in u for all time. Moreover,
the potential interaction estimate can be interpreted as the best possible estimate
for the increase in total variation in u that can occur due to the interaction of an
initial set of waves, taking no account of the initial distances between the waves or
the times at which pairs of waves will interact. As part of our proof, we show that the
only potential for increase of total variation is due to the interaction of rarefaction
waves and standing waves. An immediate consequence of this is a proof that the total
variation of u at any t > 0 will be uniformly bounded by a constant times the total
variation of u at t = 0+ in any weak solution of (1.1) generated by the generalized
Glimm method, which initially consists entirely of shock waves and standing waves.

The lack of a total variation estimate in the conserved quantities is the main
obstacle to extending the results in [25, 13] to systems of equations (that is, when u
is a vector instead of a scalar), and this is the primary motivation for our work. An
important example of a system of form (1.1) is given by the equations for compressible
Euler flow in a variable area duct:

at = 0,

ρt + (ρu)x = −a
′

a
ρu,(1.6)

(ρu)t + (ρu2 + p)x = −a
′

a
ρu2,

(ρE)t + (ρEu+ pu)x = −a
′

a
(ρEu+ pu),

where ρ is the density, p is the pressure, E is the energy density, and a(x) is the
diameter of the duct at position x [2]. It is a mathematical open problem to show
that wave strengths remain bounded in the time evolution of solutions of (1.6) in a
neighborhood of a point of resonance U∗ when the flow is transonic; cf. [1]. The main
thrust of this paper is thus to establish total variation estimates for (1.1) that can be
extended to a general class of systems of form (1.1), which includes (1.6). Now the
total variation in the conserved quantity u at time t > 0 in a solution of (1.1) is not
in general bounded by any uniform constant times the total variation of u at time
zero in the presence of resonance. In fact, solutions of the linearization of (1.1) about
U = U∗ grow unboundedly as t→ ∞ [13]. In [25, 13] a time independent bound on the
supnorm and global existence of weak solutions is demonstrated based on obtaining
a time independent total variation estimate for solutions in the coordinate system
of Riemann invariants,2 which is related to the conserved variables U = (a, u) by a
singular coordinate transformation. These estimates do not carry over naturally to

2The fact that solutions are bounded at all is thus a purely nonlinear effect.
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systems like (1.6), in which u is a vector. Indeed, Glimm’s method indicates that a
time independent bound on the total variation of the conserved quantities is needed
to extend the analysis to systems. To establish a bound on the total variation of
the conserved quantity U, we introduce a singular transformation of the coordinate
system of Riemann invariants and give essentially the best possible bound on the
total variation at time t > 0 in terms of the initial data in these coordinates, which
are regular with respect to the coordinates of conserved quantities. Our method of
analysis is then to adapt the linear functional introduced in [25, 13] over to these
new coordinates (which requires a correction term for the wave strengths of certain
standing waves in order to make the linear part of the functional continuous) and then
to add a potential interaction term for rarefaction wave-standing wave interactions to
account for the fact that the functional is not contractive (decreasing in time) in these
new coordinates. The total variation bounds on the solutions imply supnorm bounds,
and these bounds help explain why, as waves interact due to the nonlinearity of wave
speeds, solutions of the nonlinear problem (1.1) do not blow up like the resonant linear
equation but rather decay to time asymptotic wave patterns given by the solutions of
the Riemann problem.

We use the notation U = (a, u), F = (0, f), G = (0, a′g) so that the initial value
problem for (1.1) is a special case of the general initial value problem,

Ut + F(U)x = G(U),(1.7)

U(x, 0) = U0(x).

The advantage of treating systems in the form (1.1) instead of general systems of form
(1.7) is that for system (1.1) we can define a generalized Riemann problem and analyze
solutions by Glimm-type methods that can be applied, in principle, to systems of
equations. The point of incorporating the a′ term in front of g on the right-hand side of
(1.1) is that it ensures that standing waves can be rescaled into discontinuities [13, 6].
It was shown in [6] that in the strictly hyperbolic regime, general source terms can be
treated like contact discontinuities in such a way that the Riemann problem of Lax,
and the random choice method of Glimm, both extend virtually unchanged to systems
of the form (1.1)—that is, general systems with sources can be treated numerically just
as the source-free equations. Of course, since the right-hand side of (1.1) involves the
derivative a′, there is no classical weak formulation of (1.1) when a is discontinuous—
you cannot multiply a delta function by a discontinuous function in the classical theory
of distributions; cf. [3]. Thus, the generalized Riemann problems used to construct the
Glimm approximates are weaker than weak solutions of the equations; cf. [6]. To justify
the method, it is important to show that the limits of approximate solutions of the
generalized Glimm method are veritable weak solutions of (1.1) when system (1.1) has
a weak formulation, namely, when a(x) is Lipschitz continuous. This is accomplished
in [6].3 The interesting point to make here is that because the Riemann problems are
based on approximating a(x) by piecewise constant states, it follows that the Glimm
scheme approximates can give only a C0 and not a C1 approximation of a(x), and
thus a′ is not well approximated in L1. Even so, Hong showed in [6] that for any test
function φ, the residual and, in particular,

∫
t≥0

a′g(a, u)φ(x, t)dxdt converges not by

L1 convergence (as in Glimm’s original results) but weakly, by oscillation, when a is
Lipschitz continuous; cf. [21]. This argument, appropriately modified for the resonant

3Note also that every a of bounded variation can be approximated by a Lipschitz continuous
function.
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case considered here, is presented in section 6 below. Interestingly, three mollification
parameters are needed to conclude the proof of convergence of the residual in section
6.

In section 2 we review the results in [13]; we define the regular transformation
(a, u) → (a,w) and the linear functional Lw(J) and compare these to the singu-
lar transformation (a, u) → (a, z) and linear functional Lz(J) defined in [25, 13].4

We then review the solution of the Riemann problem and construct the admissible
solution [UL, UR] based on an Lw minimization principle that is finer than the Lz
minimization principle introduced in [13]. The Lw minimization is required for the
subsequent analysis. The nonuniqueness of solutions of the Riemann problem even
in the presence of the classical entropy condition for the nonlinear waves reflects an
interesting instability in the time asymptotics of solutions of (1.1).

In section 3 we construct the approximate solutions U∆x by the generalized Glimm
method. For a given approximate solution, the functionals Lw(J) and Lz(J) both
sum the strengths of waves that cross an I-curve J with weight factors according
to whether the wave is a nonlinear wave, a weak standing wave, or a strong standing
wave, respectively; cf. [25].5 The purpose of the weight factors is to make Lz([UL, UR])
and Lw([UL, UR]) continuous functions of UL and UR for the admissible solution of
the Riemann problem [UL, UR] (cf. [16, 24] and (2.1) below). Now it was shown in
[13] that the weight factors 1, 2, and 4 on nonlinear waves, weak standing waves, and
strong standing waves, respectively, suffice to make Lz continuous (these weights were
introduced in [25]). We show here that in the case g = 0, the weight factors 1, 2, 4
also suffice to make Lw([UL, UR]) continuous functions of UL and UR. However, when
gu �= 0, we must adjust the definition of strength for the standing waves in order
to preserve continuity when the standing wave curves diverge from the zero speed
shock curves; cf. [13]. It was shown in [13] that the functional Lz is positive and
nondecreasing across interaction diamonds ∆ that lie between successive I-curves
J1 and J2 in an approximate Glimm scheme solution, and Lz(J) bounds the total
variation in (a, z) of the solution along J [24, 4]. On the other hand, Lw(J) bounds
the total variation in (a,w) (and hence also the total variation in (a, u)) along an
I-curve J but does not decrease across interaction diamonds.

In section 4 we define the interaction potential d(γ0, γr) between a rarefaction
wave γr and a standing wave γ0, and in section 5 we define the nonlocal Glimm
functional, P (J) =

∑
(α,β)∈App(J) d(γ

α
0 , γ

β
r ), and prove that the functional F (J) =

Lw(J) + P (J) decreases across interaction diamonds ∆, where the sum is taken over
all approaching waves that cross J in a Glimm approximate solution. From this we
establish the total variation bound for the generalized Glimm approximates and thus
conclude the main total variation bound in the conserved variables (a, u) for solutions
of the resonant nonlinear system (1.1). It is fortunate that at the transitions between
regions where the structure of the admissible solution Riemann problem changes,
the Riemann problem never involves rarefaction waves. Moreover, rarefaction waves
are never created by interaction, and thus, since the potential interaction functional
P only requires the potential for rarefaction waves to interact with standing waves,
it follows that the continuity of both P and F is also maintained as states cross

4The functionals Lz were labeled “F” in [25] and [13], but we refer to these as Lz here because
they contain no potential interaction term and are therefore linear on sequences of elementary waves;
cf. [4].

5A standing wave is strong if the jump in u across the wave has the same sign as the jump in u
across a shock wave and weak if the jump has the same sign as the jump in u across a rarefaction
wave; cf. [13].
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transitional boundaries between different regions of the Riemann problem.
In section 6 we modify the argument in [6] and prove the convergence of the

residual when a is Lipschitz continuous.

2. Review of the Riemann problem. The Riemann problem is the initial
value problem with initial data given at t = 0 by the jump discontinuity

U0(x) =

{
UL = (aL, uL) if x < 0,
UR = (aL, uL) if x > 0.

(2.1)

The solution of the Riemann problem for (1.1), assuming (1.2)–(1.5), was first de-
scribed in [13]. The solutions that minimize Lz were constructed within the class
of shock waves, rarefaction waves, and standing waves, and the solution was thereby
shown to have a canonical structure for pairs of states UL and UR in a sufficiently
small neighborhood of U∗. In this section we review the solution of the Riemann
problem and define the functionals Lz and Lw.

To motivate this, we note that by [13], near a point of resonance U∗ of system
(1.1), solutions of (2.1) have an interesting multiplicity of solutions even when the
standard entropy condition for shocks is imposed on the nonlinear waves. An addi-
tional admissibility condition is required to fix a unique solution. For system (1.1) in
the case g = 0, uniqueness is implied by the Lax entropy condition for shocks, together
with the condition that the wave curves for the waves that solve the Riemann problem
should lie between the values of a on the left and right; cf. [13]. This is a natural
condition if one views the discretization of a as approximating a smooth duct—the
time asymptotic wave pattern will depend on the interior structure of the duct as well
as the left and right most diameters. However, when g �= 0, system (1.1) has a more
interesting and nontrivial multiplicity of solutions of the Riemann problem: in certain
cases, there is a multiplicity of three distinct solutions of the Riemann problem that
preserve the bounds in a from the left and right, and these reduce to two possible
solutions at boundary cases. The main purpose of this section is to define the func-
tional Lw and show that the following admissibility condition is sufficient to pick out
a unique solution of the Riemann problem (except of course for a dual ambiguity at
the boundary regions where the qualitative wave structure changes).

Definition 2.1. A solution of the Riemann problem (2.1) is called admissible if
it minimizes Lw among all other solutions of the Riemann problem that preserve the
bounds in a and contain only Lax entropy shocks.6

In contrast, the admissibility criterion in [13], which requires that Lz be mini-
mized, still leaves some ambiguity in cases where there are three solutions. We let
[UL, UR] denote the admissible solution of the Riemann problem, and we will show
that [UL, UR] always consists of three elementary waves: a negative speed nonlinear
wave followed by a single standing wave followed by a positive speed nonlinear wave.
However, in two cases diagrammed in Figures 15 and 17, the standing wave must be
taken to be what we call a triple composite standing wave, a wave that consists of
a standing wave followed by a zero speed shock wave followed by a second standing
wave.

To start, let γ denote an arbitrary elementary wave, and let subscripts q = 0, r, s
identify the wave as a standing wave, rarefaction wave, or shock wave, respectively.

6Unlike Lz , Lw is not minimized on solutions among all connected sequences of elementary waves
that take UL to UR, and if it were, F (J) = Lw(J) would decrease on solutions, and no potential
interaction term would be required in our analysis; cf. [13].
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A wave γ is determined by its left and right states, and we say that γa · · · γb is a
connected sequence of elementary waves that takes UL to UR if the right state of any
wave in the list is equal to the left state of its successor in the list, and UL, UR is the
left, right state of the first, last wave in the list, respectively. Thus the admissible
solution of the Riemann problem [UL, UR] is just a particular connected sequence of
elementary waves that takes UL to UR. Two connected sequences of elementary waves
γa · · · γb and γ̄a · · · γ̄b are said to be similar if they both take UL to UR, in which case
we write γa · · · γb ∼ γ̄a · · · γ̄b. For a nonlinear wave γ that takes UL to UR, we say that
γ ∼ γaγb is a partition of the wave γ if the state UM , the right state of γa and the
left state of γb, lies strictly between UL and UR in the (a, u)-plane. (We allow both
rarefaction waves and shock waves to be partitioned.)

To begin the review of the Riemann problem, we first remind the reader that
system (1.1) has standing wave solutions that can be rescaled into discontinuities so
that the standing waves can be treated like a family of contact discontinuities in the
theory of hyperbolic conservation laws [13, 6]. Indeed, let (a(x), u(x)) be a standing
wave (i.e., time independent) solution of (1.1). Then

d

dx
f = a′g,

which is equivalent to

fada+ fudu = gda.

We rewrite this as

(fa − g)da+ fudu = 0.(2.2)

The nondegeneracy assumption (1.3) implies that fa − g �= 0 in a neighborhood of
U∗, and therefore (2.2) is equivalent to the autonomous ODE

da

du
=

fu
g − fa

.(2.3)

This equation has a unique solution through each point in a neighborhood of U∗ in
the (a, u)-plane. Thus, for any solution a = as(u) of (2.3) and any smooth function
ϕ(x), the curve u = ϕ(x), a = as(ϕ(x)) is a standing wave solution of (1.1). Moreover,
if aL = as(uL) and aR = as(uR), then the standing wave discontinuity

U(x, t) =

{
(aL, uL) if x < 0,
(aR, uR) if x > 0

(2.4)

is obtained as a limit of smooth solutions; specifically, if ϕε(x) → ϕ0(x), where

ϕ0(x) =

⎧⎨
⎩

uL if x < 0,

uR if x > 0,

then Uε = (as(ϕε(x)), ϕε(x)) → U(x, t). Thus we can view the standing wave discon-
tinuities defined in (2.4) as a family of elementary waves for system (1.1), similar to
a family of contact discontinuities.

The standing wave curves define solutions of (2.2). Note that for a standing wave,

da

du
= 0 if and only if fu = 0.(2.5)
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Moreover, if da/du = 0, then

d2a

du2
=

fuu
g − fa

< 0.(2.6)

Thus, d2a/du2 < 0 in a neighborhood of U∗.
Definition 2.2. The transition curve T associated with system (1.1) is the set

T = {(a, u) : λ ≡ fu = 0}.(2.7)

Since fuu �= 0, the implicit function theorem implies that (in a neighborhood of
U∗) T is a smooth curve passing through U∗, which we denote by

u = uT (a).(2.8)

The curve T comprises the states near U∗ for which the nonlinear wave speed λ ≡ fu
is zero. By (2.5) and (2.6), the standing wave curves u �→ (as(u), u) are convex
down, cross T transversally, and maximize a on T in some neighborhood of U∗. (The
notation comes from [7]. See Figure 1.)

We now define the zero speed shock curve corresponding to a given standing wave
curve. By our choice of signs (fuu < 0 and g − fa > 0), the entropy shock waves (see
[24]) for the nonlinear scalar conservation law ut + f(a, u)x = 0 jump always from
left to right in the (x, t)-plane and (a, u)-plane simultaneously; thus, by the Rankine–
Hugoniot jump relation for shocks,

s[u] = [f ],

the zero speed shocks (s = 0) cross T from left to right at a constant value of f.
Now, for a given standing wave a = as(u) and a given state (a, u) on this standing

wave, define ū to be the value of u such that the state (a, ū) lies on the opposite side of
T at the same a-level and on the same standing wave curve as the given state (a, u).
If the state U = (a, u) lies on the left-hand side of T (we write U < T ), then define
ũ to be the value of u such that the state (a, ũ) lies on the right-hand side of T and
at the same level a, but on the same constant f curve as the given state (a, u). That
is, for U < T , ū satisfies

as(ū) = as(u),(2.9)

and ũ satisfies

f(a, ũ) = f(a, u)(2.10)
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(see Figure 1).
Definition 2.3. Let a = as(u) be a standing wave curve. Then, (assuming

fuu < 0) the zero speed shock curve corresponding to standing wave curve as is the
curve (lying to the right of T ) defined by

{ũ : f(a, ũ) = f(a, u) where u ≤ uT (a) and ũ ≥ uT (a)}.

(When fuu > 0, we change to u ≥ uT (a) and ũ ≤ uT (a).)
Lemma 2.4. If gu < 0, then for each standing wave curve a = as(u), the cor-

responding zero speed shock curve lies to the right of the standing wave curve in the
(a, u)-plane. That is, if (a, u) satisfies a = as(u) with u < uT (a), then

f(a, ū) < f(a, ũ) = f(a, u).(2.11)

If gu > 0, then the corresponding zero speed shock curve lies to the left of the standing
wave curve in the (a, u)-plane. That is,

f(a, ū) > f(a, ũ) = f(a, u).(2.12)

For example, in the case gu < 0, Lemma 2.4 implies that the zero speed shock
curve lies above and to the right of the standing wave curve as(u) (see Figure 2). (For
a proof of Lemma 2.4, see [13, Lemma 2.4, p. 13], and note that the condition fa �= 0
was not required.)

We now define the nonsingular coordinate w and functional Lw and formulate
the Lw minimization principle to select a unique admissible solution of the Riemann
problem. To construct Lw, we first construct w and a functional L∗

w that is analogous
to the construction of the singular coordinate z and functional Lz defined in [25, 13],
and then we obtain Lz by modifying L∗

w so that L∗
w[UL, UR] depends continuously on

UL and UR. To start, we first review the construction of z and Lz for system (1.1).
The coordinate z is based on the singular coordinate system of nonlinear hyper-

bolic wave curves (a =constant) and standing wave curves (a = as(u)) as observed in
the (a, u)-plane and is defined as follows. For each point (a, u), let (aT , uT ) denote
the unique point where the standing wave curve through (a, u) crosses T , and set

z(a, u) = sgn(u− uT )|a− aT |.

Using this, define the strength |γ|z of an elementary wave γ by

|γ|z =

⎧⎨
⎩

|z(UR) − z(UL)| if γ is a nonlinear wave,
2|z(UR) − z(UL)| if γ is a weak standing wave,
4|z(UR) − z(UL)| if γ is a strong standing wave.

(2.13)
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Here a standing wave is weak if the jump in u across the wave is in the direction of
a rarefaction wave (uR < uL since we assume fuu < 0) and is strong if the jump in
u across the wave is in the direction of a shock wave (uR > uL when fuu < 0); cf.
[25, 21]. For a sequence of elementary waves γ1, . . . , γn, define

Lz[γ1, . . . , γn] =

n∑
i=1

|γi|z.(2.14)

Analogously, define the nonsingular coordinate w by

w(a, u) =

{
u− uT if u < T ,
uT − ū if u > T

and the strength |γ|w of an elementary wave γ by

|γ|∗w =

⎧⎨
⎩

|w(UR) − w(UL)| if γ is a nonlinear wave,
2|w(UR) − w(UL)| if γ is a weak standing wave,
4|w(UR) − w(UL)| if γ is a strong standing wave.

(2.15)

For a sequence of elementary waves γ1, . . . , γn, define

L∗
w[γ1, . . . , γn] =

n∑
i=1

|γi|∗w.(2.16)

We next show that the change in w across an elementary wave bounds the change
in u across the wave in any neighborhood Ω of U∗ that is sufficiently small.7 This is
guaranteed by the simpler condition stated in the following lemma. (Since the change
in u across a nonlinear wave is equal to the change in w across the wave, the only
issue is with the standing waves.)

Lemma 2.5. Let γ0 denote a standing wave with left state UL and right state UR,
both states lying on one side of the transition curve. Then for Ω sufficiently small,
there exists a constant c > 1 such that the condition UL, UR ∈ Ω implies that the
absolute change in u across γ0 between aL and aR is always that constant times larger
than the absolute change in u along the transition curve T between aL and aR.

Proof. We verify the lemma in the case diagrammed in Figure 3 (other cases are
similar). Thus we show that for Ω sufficiently small, there exists c > 1 such that
if UL, UR ∈ Ω, then |DF | > c|GG′|. (We use the notation that |DF | denotes the
absolute change in u between states D and F.) But |DF | = |DC| is the change in u
across the wave γ0. Thus, by construction of the standing wave curves, we know that

du

da
=
g − fa
fu

along a standing wave curve, so by the mean value theorem

|DC| =
g − fa
fu

|aR − aL|,(2.17)

7We treat the local problem here because it demonstrates that the analysis is generic in a neigh-
borhood of any state U∗, but all of this can be globalized to apply to any neighborhood Ω where
the solution of the Riemann problem has the canonical structure described in section 2 such that
Lemma 2.5 applies.
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where it is understood that g−fa
fu

is evaluated at some point in Ω. Also |GG′| = |GH|
is the change in u along T between aL and aR. Since G and H lie on T , we have
fu(H) = fu(G) = 0, and so differentiating and using the mean value theorem we
obtain that

|GH| =
fua
fuu

|aR − aL|.(2.18)

Since fu can be taken arbitrarily small in a neighborhood of T , it follows from (2.17)
and (2.18) that there exists a constant c > 1 such that |DC| > c|GH| so long as
UL, UR ∈ Ω.

Corollary 2.6. Assume that Ω is sufficiently small so that Lemma 2.5 holds.
Then there exists a constant c > 0 such that, if UL, UR ∈ Ω, then

c−1|uL − uR| < |γ|∗ < c|uL − uR|.(2.19)

Proof. The second inequality in (2.19) is clear by construction. We verify the
first inequality in (2.19) in the case of a standing wave |γ0| diagrammed in Figure 3.
(Again, there is no issue for nonlinear waves, and the cases for other standing waves
are similar, because we always assume that standing waves do not cross T ). In the
case of Figure 3, |γ0| = 4 {|w(C) − w(D)|} . However,

1

4
|γ0| = |w(C) − w(D)| = ||CH| − |DG|| = ||FG′| − |DG|| = ||DF | − |GG′||

≥ ∣∣|DF | − c−1|DF |∣∣ = (1 − 1

c

)
|DF | =

(
1 − 1

c

)
|u(F ) − u(D)|

for the c > 1 of Lemma 2.5. It follows that

|uL − uR| ≤ 1

4

(
1 − 1

c

)−1

|γ0|,

which proves the corollary.
From here on out, we always assume that all states lie in a region Ω where lemma

2.5 and Corollary 2.6 apply.
In order to deduce the solution of the Riemann problem from a minimization

principle, we will use the following property of the functional L∗
w.

Lemma 2.7. Let points A,B,C,D denote the vertices of a region in U -space
bounded on either side by standing wave curves and above and below by nonlinear
wave curves such that the region lies entirely on one side of the transition curve.
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Assume that the vertices of the two possible such regions of this type are labeled with
the orientation shown in Figure 4. Then

L∗
w(A→ B → C) ≤ L∗

w(A→ D → C),(2.20)

L∗
w(D → A→ B) ≤ L∗

w(D → C → B).(2.21)

(Again, we use the convention that an elementary wave can be denoted by the
left and right states of the wave separated by an arrow.)

Proof. We verify (2.20) in the case diagrammed in Figure 5, which is similar to
Figure 3 of Lemma 2.5. (The other cases are similar.) Referring to Figure 5, we can
estimate

L∗
w(A→ D → C) − L∗

w(A→ B → C)(2.22)

= |AD| + 4|w(C) − w(D)| − |EF | − 4|w(B) − w(A)|
= |AE| − |DF | + 4||CH| − |DG|| − 4||BH| − |AG||.

But by Lemma 2.5,

||CH| − |DG|| = |DF | − |GG′|,
||BH| − |AG|| = |AE| − |GG′|.

Substituting these into (2.22) gives

L∗
w(A→ D → C) − L∗

w(A→ B → C)

= 3|DF | − 4|GG′| + |AE| − 4|AE| + 4|GG′|
= 3|DF | − 3|AE| ≥ 0,
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where we have used |AE| ≥ |GG′| by Lemma 2.5 to conclude the last line.
The following is a simple corollary of Lemma 2.7.
Corollary 2.8. If γa and γb are two standing waves on the same side of T that

pass between the same values of a, then L∗
w(γa) > L∗

w(γb) if γa is the wave closer to
the transition curve T .

The next lemma provides an important continuity property of the functional L∗
w

for waves that cross the transition curve.
Lemma 2.9. Consider the interaction γ̄0 + γ̄s → γs + γ0 diagrammed in Figure

7(a). Then, referring to the points referenced in that diagram, we have

L∗
w(UL → A→ UR) = L∗

w(UL → E → UR)(2.23)

and

d1 ≡ L∗
w(UL → B → C) − L∗

w(UL → A→ C)(2.24)

= L∗
w(D → C → UR) − L∗

w(D → E → UR) ≡ d2.

Moreover, statement (2.23) also holds for the analogous points diagrammed in Figure
7(b), together with

d1 ≡ L∗
w(UL → A→ C) − L∗

w(UL → B → C)(2.25)

= L∗
w(A→ D → UR) − L∗

w(A→ E → UR) ≡ d2.

Proof. We verify (2.23) and (2.25). For (2.23), let F and G denote the points such
that L∗

w(A→ UR) = L∗
w(F → G). Then by the 1, 2, 4 weightings on wave strengths, it
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follows that |γ̄0|∗ = L∗
w(UL → A) = L∗

w(UL → F )+L∗
w(G→ E)+L∗

w(E → UR). This
is enough to verify (2.23). For (2.25), note that L∗

w(UL → A→ UR) = d1 +L∗
w(UL →

B → C → UR) = d1 + L∗
w(UL → D → C → UR) = d1 − d2 + L∗

w(UL → E → UR), so
by (2.23), d1 = d2.

We now define Lw in terms of L∗
w. To this end, note that because of Lemma

2.7, the functional L∗
w([UL, UR]) will be a continuous function of UL and UR on the

admissible solution of the Riemann problem only in the case when gu ≡ 0, and in this
case, we can take Lw ≡ L∗

w. However, when gu �= 0, we show below that the functional
Lw([UL, UR]) will not be continuous everywhere (for any choice of admissible solution
of the Riemann problem) due to the divergence of the zero speed shock curve from
the standing wave curves when gu �= 0. Moreover, we must modify the definition
of wave strength for the triple composite standing waves, (described by the wave
UL → P → Q→ R in Figure 15 and Figure 17, when gu < 0 and gu > 0, respectively)
in order to insure that Lw is minimized on a triple composite standing wave. The idea
is to first modify the strength of a triple composite standing wave to be equal to the
strength of the two waves (a positive speed shock wave followed by a standing wave on
the right when gu < 0, and a standing wave on the left followed by a negative speed
shock wave when gu > 0) that would solve the same Riemann problem in the case
gu = 0. We call these two waves the projection of the triple composite wave γ0, and
label it P (γ0). By so changing the wave strength, we introduce a new discontinuity in
the functional L∗

w that must be corrected for. Thus, to modify L∗
w into a continuous

functional Lw, we must further add a compensating term δ(γ0) to each standing wave
γ0 on the right, left when gu < 0, gu > 0, respectively. (We label a triple composite
standing wave as being on the left, right of T according to the side of T on which the
standing wave in P (γ0) falls. Thus, triple composite standing waves lie on the right,
left of T when gu < 0, gu > 0, respectively.) Thus, the strategy for modifying L∗

w

into a continuous functional Lw at triple composite standing waves is to redefine the
strength of a triple composite standing wave |γ0| = |P (γ0)|∗ + δ(γ0), where P (γ0) and
δ(γ0) are appropriately defined below.

So assume first that gu < 0. We first show that L∗
w is discontinuous under per-

turbation of a zero speed shock wave followed by a strong standing wave on the right
of T ; cf. Figure 8. Indeed, referring to Figure 8, the elementary waves defined by
UL → UM → UR and UL → E → UR both must serve as admissible solutions of
the Riemann problem, but L∗

w(UL → UM → UR) �= L∗
w(UL → I → K → UR) =

L∗
w(UL → E → UR). We correct for this in the case gu < 0 by modifying the def-

inition of wave strength for strong standing waves (uL < uR) on the right of T by
exactly the amount required to make L∗

w continuous.
To make this precise, let UL and UR denote the left and right states of a strong

standing wave γ0 on the right of T . Let f(a, u) = f(aL, uR) define the unique zero
speed shock curve that passes through the state UL, and for our purposes here, let U∗
denote the unique point where this zero speed shock curve intersects the transition
curve T . The state U∗ = (a∗, u∗) is determined by the conditions f(a∗, u∗) = f(aL, uL)
and u∗ = uT (a∗); cf. Figure 9. Let as(u) denote the unique standing wave curve that
emanates from the point U∗. The curve as lies to the left of the standing shock curve
emanating from U∗ because gu < 0. Now define the points I and K that lie on the
standing wave curve as to the right of T , at levels aL and aR, respectively (again see
Figure 9). Since I and K are determined by γ0 alone, we can define

δ(γ0) = L∗
w(I → K → UR) − L∗

w(I → UL → UR)(2.26)

for any strong standing wave γ0 lying to the right of T in the case gu < 0. (Note
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that δ(γ0) depends only on UL and UR across the standing wave and is exactly the
deficit between L∗

w(UL → UM → UR) and L∗
w(UL → E → UR) encountered in Figure

8. Note also that δ(γ0) = 0 when UL ∈ T , because |γ0| reduces to |γ0|∗ in this limit.)
Thus, in the case gu < 0, we define the modified strength |γ0| of a strong standing
wave on the right of T by the rule

|γ0|w = |γ0|∗w + δ(γ0),(2.27)

where d(γ0) is defined in (2.26).
Consider next the triple composite standing waves in the case gu < 0. The main

examples are given by γ0 ≡ UL → P → Q → R in Figures 15 and 6, the general
case isolated in Figure 6. In both diagrams, R = UR denotes the right state of the
triple composite standing wave γ0. In these cases, the projection P (γ0) is given by
P (γ0) = UL → T → R. We now show that the value of L∗

w(P (γ0)) is discontinuous
as UL = R varies from R to I along the line segment SN in Figure 6. Indeed, as
P (γ0) varies from UL → T → R to UL → M → L, the solution of the Riemann
problem changes to UL → S → L and then to UL → K → I. Thus for continuity,
we require that Lw(UL → S → L) = Lw(UL → M → L). But L∗

w(UL → S → L) =
L∗
w(UL → K → I → L) = L∗

w(UL → M → L) + δ, where δ = δ(γ0) = L∗
w(K → I →

L) − L∗
w(K → M → L). Thus, for the general weak standing wave UL → UR on the

right of T when gu < 0, diagrammed in Figure 10, define

δ = δ(γ0) = L∗
w(K → I → UR) − L∗

w(K → UL → UR).(2.28)

We take this as defining δ(γ0) for any weak standing wave on the right of T that
takes UL to UR, where for triple composite waves, (2.28) is assumed to apply to the
weak standing wave on the right in P (γ0). (Note that the points K and I in Figure
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10 are determined by UL and UR alone.) To put this all together, let P (γ0) = γ0

for any standing wave that is not triple composite, and let δ(γ0) be defined in (2.26)
and (2.28) for strong and weak standing waves on the right of T . Then we define the
modified strength |γ| of an elementary wave γ in the case gu < 0 by

|γ|w =

{ |P (γ)|∗w + δ(γ) if γ is a standing wave on the right of T ,
|γ|∗w otherwise,

(2.29)

where d(γ) is defined in (2.26) and (2.28). For a sequence of elementary waves
γ1, . . . , γn, we define the modified linear functional

Lw[γ1, . . . , γn] =

n∑
i=1

|γi|w.(2.30)

This completes the definition of Lw in the case gu < 0. We now define the modified
linear functional Lw in the case gu > 0.

So assume now that gu > 0. We show first that L∗
w is discontinuous under per-

turbation of a strong standing wave on the left of T followed by a zero speed shock
wave; cf. Figure 11. Referring to Figure 11, we see that both UL → UM → UR
and UL → E → UR both solve the Riemann problem, but L∗

w(UL → UM → UR) =
L∗
w(UL → K → I → UR) �= L∗

w(UL → E → UR). To correct for this in the case
gu > 0, we modify the definition of wave strength for strong standing waves on the
left of T by exactly the amount required to make L∗

w continuous.
To make this precise, let UL and UR denote the left and right states of a strong

(uL < uR) standing wave γ0 on the left of T . In this case, let as(u) denote the unique
standing wave curve that passes through the states UL and UR, and let U∗ = (a∗, u∗)
denote the unique point at which this standing curve as intersects the transition
curve T . Let f(a, u) = f(a∗, u∗) define the unique zero speed shock curve that passes
through the state U∗, defined to the right of T , and let I = (a#, u#) denote the state
on this zero speed shock curve at level aR; cf. Figure 12. Thus, I is determined by
the condition that I > T , together with a# = aR, and f(a∗, u∗) = f(aR, u#). (Note
that the zero speed shock curve emanating from U∗ lies to the left of the standing
wave curve emanating from U∗ because gu > 0.) Now define the state K to be the
state at level aL on the standing wave curve through I lying on the right-hand side
of the transition curve T on the opposite side from UL (see Figure 12). Since I and
K are determined by γ0 alone, we can define

δ(γ0) = L∗
w(ŪL → K → I) − L∗

w(ŪL → ŪR → I),(2.31)

which is defined for any strong standing wave γ0 lying to the left of T in the case
gu > 0. (Note that this is exactly the deficit between L∗

w(UL → K → I) and L∗
w(UL →
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UR → I) in Figure 12. Note also that as before, δ(γ0) = 0 when UR ∈ T , |γ0| reduces
to |γ0|∗ in this limit.) Thus, in the case gu > 0, we define the modified strength |γ0|
of a strong standing wave on the left of T by the rule |γ0|w = |γ0|∗w + δ(γ0).

Consider finally the triple composite standing wave γ0 ≡ UL → P → Q → R
in Figure 17, isolated in Figure 13, for the case gu > 0. In both diagrams, R = UR
denotes the right state of the triple composite standing wave γ0. In this case, the
projection P (γ0) is given by P (γ0) = UL → T → R. We now show that the value
of L∗

w(P (γ0)) is discontinuous as UL = R varies from R to I along the line segment
SN in Figure 13. Indeed, as P (γ0) varies from UL → T → R to UL → M → L, the
solution of the Riemann problem changes to UL →M → L and then to UL → K → I.
Thus, for continuity, we require that Lw(UL → M → L) = Lw(UL → T → L). But
L∗
w(UL → M → L) + δ = L∗

w(UL → T → L), where δ = δ(γ0) = L∗
w(M → K →

I) − L∗
w(M → L → I). Thus, for the general weak standing wave UL → UR on the

left of T when gu > 0, diagrammed in Figure 14, define

δ = δ(γ0) = L∗
w(I → K → ŪR) − L∗

w(I → ŪL → ŪR).(2.32)

We take this as defining δ(γ0) for any weak standing wave on the left of T that takes
UL to UR, where for triple composite waves, (2.32) is assumed to apply to the weak
standing wave on the left in P (γ0). (Again, note that the points K and I in Figure
14 are determined by UL and UR alone.) To put this together, let P (γ0) = γ0 for
any standing wave that is not triple composite, and let δ(γ0) be defined in (2.31) and
(2.32) for strong and weak standing waves on the right of T . Then we define the
modified strength |γ| of an elementary wave γ in the case gu > 0 by

|γ|w =

{ |P (γ)|∗w + δ(γ) if γ is a standing wave on the left of T ,
|γ|∗w otherwise,

(2.33)

where d(γ) is defined in (2.31) and (2.32). For a sequence of elementary waves
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γ1, . . . , γn, again define the modified linear functional

Lw[γ1, . . . , γn] =

n∑
i=1

|γi|w.(2.34)

This completes the definition of Lw for the case gu > 0 and so completes the definition
of Lw in general.

We can now present in detail the admissible solution of the Riemann problem
based on the Lw minimization principle. The solutions [UL, UR] that are admissible
by Definition 2.1 are diagrammed in Figures 15–18 for the cases gu < 0, gu > 0 and
UL to the left of T , UL to the right of T . The solutions that minimize Lz are pointed
out for comparison.8 The cases gu < 0 and gu > 0 are qualitatively different because
of the location of the zero speed shock curve. To read the diagrams, start at UL and
follow the arrows to an arbitrary state UR. The wave curves traversed then give the
elementary waves in the solution of the Riemann problem going from left to right in
the (x, t)-plane. In the limit as g tends to zero, these diagrams reduce to those for
the resonant homogeneous system ut + f(a, u)x = 0 [10, 12].

In Figures 15–18, the solid convex down curves denote standing wave curves, and
the dotted curve to the right of T denotes the zero speed shock curve corresponding
to the standing wave curve through UL. In Figures 15 and 16, the dotted line falls to
the right of the standing wave curve through UL because gu < 0. Similarly, in Figures
17 and 18, it falls to the left because gu > 0. We discuss the multiplicity of solutions
in Figures 15–17 below. In Figure 18, solutions are unique.

In each of Figures 15–17, there is a region of right states UR for which there are
multiple solutions of the Riemann problem that minimize the total variation in a.

8In [13] it was shown that the solutions of the Riemann problem that minimize Lz actually
minimize Lz over all sequences of connected elementary waves that connect UL to UR. This essentially
implies that Lz is nonincreasing on solutions. On the other hand, this is not the case for the solutions
of the Riemann problem that minimize Lw, and this explains why a potential interaction term is
required to construct a decreasing functional that incorporates Lw.
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In the region of multiple solutions, there is always a multiplicity of three solution in
the interior of the region, but this reduces to a multiplicity of two on the boundary
of the region. The Lw minimization principle rules out every four wave solution,
except for the two special cases labeled by UL → P → Q → R in Figures 15 and 17.
However, in both cases, the zero speed wave in the solution of the Riemann problem
always consists of a standing wave followed by a zero speed shock wave followed by
another standing wave (all zero speed) and the monotonicity in a is preserved across
triple composite standing waves. From the point of view of wave interactions, such
composite waves interact like a single wave, and so in our discussion below, we will
treat triple composite standing waves as a single standing wave. With this convention,
(and allowing waves to have zero strength), the admissible solution of the Riemann
problem always consists of three elementary waves: a negative speed nonlinear wave
followed by a single standing wave, followed by a positive speed nonlinear wave.

Discussion of Figure 15 [gu < 0;UL to the left of T ]. A multiplicity of
solutions occurs when UR lies within the interior of the region ABC, e.g., UR = H.
The three solutions are: UL → F → H, UL → D → G → H, and UL → E → H.
(Here, e.g., UL → F denotes the elementary shock wave taking UL on the left to
F on the right. Since F lies to the right of the zero speed shock curve (the dotted
line), and since fuu < 0, UL → F is a shock wave of negative speed.) All of these
solutions have the same Lz-value, but only the solution UL → F → H minimizes
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Lw. Indeed, consider region UL, F,H,E of Figure 15, which is described in Figure
19. Lw(UL → F → H) − Lw(UL → E → H) = L∗

w(UL → F → H) + δ(F →
H) − L∗

w(UL → E → H) = L∗
w(UL → F → H) + δ(F → H) − L∗

w(UL → I →
K → H) = L∗

w(I → F → H) − L∗
w(I → K → H) + δ(F → H) = L∗

w(I → F →
H) − L∗

w(M → F → H) + L∗
w(M → N → H) − L∗

w(I → K → H) = L∗
w(I →

M → N) − L∗
w(I → K → N) < 0 by Lemma 2.7. Similarly we can show that

Lw(UL → F → H) − Lw(UL → D → G → H) < 0. It follows that UL → F → H is
the unique solution of the Riemann problem selected by the Lw minimization principle.

Discussion of Figure 16 [gu < 0;UL to the right of T ]. A multiplicity of
solutions that minimize the total variation in a (but do not necessarily minimize Lz)
occurs when UR lies within the interior of the region ABC, e.g., UR = H. The three
solutions are UL → F → H, UL → A → E → H, and UL → A → D → G → H.
The Lz-value is minimized only on the first of these, and thus in this case the Lz
minimization principle selects a unique admissible solution. The functional Lw is
also minimized on the solution UL → F → H. For example, referring to Figure
20, Lw(UL → F → H) − Lw(UL → A → E → H) = L∗

w(F → H) + δ(F →
H) − L∗

w(F → A → B → H). But δ(F → H) = L∗
w(I → K) + L∗

w(K → H) −
L∗
w(F → H) − L∗

w(F → I), L∗
w(K → H) − L∗

w(B → H) = −L∗
w(B → K), and

L∗
w(I → K) ≤ L∗

w(A → B) (by the Corollary to Lemma 2.7). Substituting these as
inequalities into the previous line gives Lw(UL → F → H) − Lw(UL → A → E →
H) ≤ − [L∗

w(F → I) + L∗
w(F → A) + L∗

w(B → K)] < 0. The case for Lw(UL → F →
H) − Lw(UL → A→ D → G→ H) < 0 is similar.

Discussion of Figure 17 [gu > 0;UL to the left of T ]. A multiplicity
of solutions that minimize the total variation in a occurs when UR lies within the



838 JOHN HONG AND BLAKE TEMPLE

T
U*

UL

E

I

K N

M F

H

Fig. 19.

T
U*

E

ULI F

K H

A

D

B

J
G

Fig. 20.

interior of the region CEADB, e.g., UR = H. The three solutions are UL → I → H,
UL → F → G → H, and UL → J → K → G → H. In this case the Lz and Lw
minimization principles both pick out the unique solution UL → I → H. Note that on
the boundary, say UR = M, where the wave structure changes, there is a multiplicity
of two distinct solutions, UL → I →M and UL → N →M, and at this boundary, the
Lz and Lw values of both solutions are equal, a requirement for the continuity of the
functionals with respect to UL and UR. (cf. the paragraph preceding (2.29)). As an
example, we verify that Lw(UL → I → H)−Lw(UL → F → G→ H) < 0, (see Figure
21). To this end, write Lw(UL → I → H) − Lw(UL → F → G → H) = L∗

w(UL →
I → H) + δ(UL → I) − L∗

w(UL → L → G → H) = L∗
w(UL → I) + L∗

w(I → H) +
[L∗
w(UL → P ) + L∗

w(P → Q) − L∗
w(UL → I) − L∗

w(I → Q)]−L∗
w(UL → L)−L∗

w(L→
G) − L∗

w(G → H) = L∗
w(P → Q → H) − L∗

w(P → L → G) − L∗
w(G → H) < 0 by

Lemma 2.7.
Discussion of Figure 18 [gu > 0;UL to the right of T ]. In this case the

solution that minimizes the total variation in a is unique.
We now summarize the main results regarding the solution of the Riemann prob-

lem.
Proposition 2.10. The admissible solution of the Riemann problem [UL, UR]

always consists of a sequence of three connected waves, a negative speed nonlinear
wave γ1 followed by a standing wave γ0 followed by a positive speed nonlinear wave
γ2, where we allow γi = 0, and we treat the composite zero speed waves of type UL →
P → Q→ R in Figure 15 as a single wave γ0. We write

[UL, UR] = γ1γ0γ2.(2.35)

Proposition 2.11. The functional Lw([UL, UR]) is a continuous function of UL
and UR throughout the domain Ω.

Proposition 2.12. The convex side, (i.e., lower side when fuu < 0), of each
standing wave curve is an invariant region for admissible solutions of the Riemann
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problem.
Proof. Proposition 2.10 is clear by construction. The proof of Propositions 2.11

has been indicated above and follows directly via a case by case inspection of the
Riemann problem. Note that the continuity of Lw follows upon verifying that the
only places where L∗

w([UL, UR]) is discontinuous were identified in the discussion fol-
lowing Corollary 2.8, and the deficit was accounted for by the correction term δ(γ).
Proposition 2.12 follows immediately from the fact that all intermediate states in the
admissible solution of the Riemann problem lie on the convex side of the outer of the
two standing wave curves through UL and UR.

Proposition 2.12 implies an L∞ bound on Glimm approximate solutions generated
by the admissible solution of the Riemann problem.

3. The generalized Glimm method. In this section we construct the approx-
imate Glimm scheme solutions U∆x(x, t) and prove the compactness of approximate
solutions under the assumption that the initial data is of bounded total variation in
(a, z) (which implies that the initial data is of bounded total variation in (a,w)). We
call this a generalized Glimm scheme because the standing waves are generalized weak
solutions of system (1.1) due to the presence of the a′ in the term a′g on the right-
hand side of (1.1). The proof of convergence of the residual must be modified because
a piecewise constant approximation of a(x) does not give an L∞ approximation of
a′g, and so the residual does not converge strongly, but rather weakly. This argument
was first given in the strictly hyperbolic case in [6], and for completeness, we include
the argument adapted to the problem here (in section 6).

To begin, assume that the initial data U0(x) takes values in a neighborhood Ω
which lies below a standing wave curve and above a curve a = const contained within
a neighborhood of U∗, where the unique solution of the Riemann problem exists as
constructed in the previous section, and small enough so that Lemmas 2.4–2.7 and
Propositions 2.10–2.12 hold throughout Ω. Since Ω is an invariant region for Riemann
problems, it follows that Ω is also an invariant region for the Glimm scheme, which
is therefore defined for all time for any mesh length. To construct the approximate
solutions, first discretize R× [0,∞) by spatial mesh length ∆x and time mesh length
∆t such that

∆x

∆t
= λ,(3.1)

where

λ ≡ 2 sup
(a,u)∈Ω

{∣∣∣∣∂f∂u
∣∣∣∣
}
.(3.2)

We let xi = i∆x, tj = j∆t so that (xi, tj) denote the mesh points of the approximate
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solution. Define

Sj = {(x, t) : tj ≤ t < tj+1}.

The approximate solution U∆x generated by the Glimm scheme is defined as follows.
First, fix a sample sequence θ = {θij} ∈ Θ, where Θ denotes the infinite product of
intervals (0, 1) indexed by mesh points (with Lebesgue measure) so that Θ = Π(0, 1)ij
and θij ∈ (0, 1), −∞ < i < ∞, j ≥ 0 [4, 24]. (We randomize in space and time to
facilitate the proof of convergence of the residual; cf. [25]). To initiate the scheme at
j = 0, approximate the initial data by piecewise constant states by setting

U0
i = U∆x(x, 0) = U0(xi + θi0∆x), xi < x < xi+1.(3.3)

Assuming that U∆x(x, t) has been constructed for (x, t) ∈ ⋃j−1
j=0 Sj , then define U∆x

in Sj as the solution of (1.1) with the initial values

U ji = U∆x(x, tj+) = U∆x(xi + θij∆x, tj−), xi < x < xi+1.(3.4)

In other words, at each time tj , a piecewise constant approximation U∆x(x, tj+) is
obtained by sampling the solution U∆x(x, tj−) in each interval of the mesh at time
level tj , so that the solution in Sj can be constructed by solving the Riemann problems

[U ji−1, U
j
i ] posed at each point of discontinuity (xi, tj), i ∈ Z. The Courant–Friedrichs–

Levy restriction (3.1) ensures that the Riemann problem solutions in each Sj do not
interact before time tj+1 [13].

We need to define the I-curves for the analysis of the nonlocal functional F defined
below; cf. [4]. An I-curve J is a continuous space-like piecewise linear curve in the
(x, t)-plane that connects adjacent mesh points of type (xi+ θj∆x, tj) to ones of type
(xi, tj+1/2), where (xi, tj+1/2) = (i∆x, (j+1/2)∆t). Given an I-curve J1 that extends
from i = −∞ to i = +∞, we obtain a successor J2 of J1 by lifting the point (xi, tj−1/2)
to the point (xi, tj+1/2) when the points (xi−1 + θj∆x, tj) and (xi + θj∆x, tj) both
lie on J1. We call the region (xi, tj−1/2), (xi, tj+1/2), (xi−1 + θj∆x, tj), (xi + θj∆x, tj)
between J1 and J2 the interaction diamond ∆. We let Jj denote the I-curve that
contains all of the sample points (xi + θj∆x, tj) at time level tj . The I-curve Jj

crosses all of the waves in the Riemann problems posed in U∆x at time level tj , and
the I-curve Jj can be obtained by a sequence of successive I-curves. (Note that lifting
the mesh point (xi + θj∆x, tj) to (xi + θj∆x, tj+1) when mesh points (xi−1, tj+1/2)
and (xi, tj+1/2) both lie on J, does not change the waves that J crosses, and so we can
consider these to be equivalent.) It follows that to show that a functional F satisfies
F (Jj) ≤ F (J0), it suffices only to prove that F (J2) ≤ F (J1) for any pair of successive
mesh curves J1 and J2 [4].

We have the following theorem; cf. [13].
Theorem 3.1. If the neighborhood Ω containing U∗ is chosen to be small enough,

then the Glimm approximate solutions U∆x(x, t) are defined for all time. Moreover,

Lz(J
j+1) ≤ Lz(J

j)(3.5)

for each j ≥ 0, where Jj identifies the sequence of elementary waves appearing in the
approximate solution U∆x in the strip Sj , and Lz is defined in (2.14).

Proof. The proof of (3.5) was given in [13]. The supnorm bound on solutions
follows from Proposition 2.11 which asserts the existence of convex invariant regions
for Riemann problems in a neighborhood of U∗. The main point in the proof of (3.5)
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is that the solutions of the Riemann problems used in the construction of the Glimm
approximate solutions are admissible solutions of the Riemann problem, and so were
selected to minimize the Lz-value of the elementary waves among all possible so-
lutions of the Riemann problem. But Lz has the further property of being min-
imized on the solution of the Riemann problem among all connected sequences of
elementary waves that take UL to UR. (This was proven in [13].) Using this, esti-
mate (3.5) follows because Lz decreases across any interaction diamond ∆ij lying
between the two successive I-curves J1 and J2 with interaction diamond centered
on (xi, tj). Indeed, the Glimm scheme replaces the sequence of waves that take U ji−1

to U ji at time level tj− by the waves that solve the Riemann problem [U ji−1, U
j
i ] at

t = tj + .
Theorem 3.1 leads directly to the following compactness result for approximate

solutions generated by the Glimm method.
Theorem 3.2. Assume that the initial data U0(x) ∈ Ω satisfies the condition

Varz{U0(·)} = Vz <∞ and Var{a(·)} = Va <∞. Then U∆x(x, t) ∈ Ω for all x, t ≥ 0,
Varz{U∆x(·, t)} < 4Vz for all t ≥ 0, and a subsequence of {U∆x} converges boundedly,
almost everywhere, to a bounded measurable function U(x, t) as ∆x tends to zero.

Proof. See Theorem 3.2 [18].
From here on out we assume that U∆x(x, t) is a sequence of Glimm approximate

solutions that converges boundedly, pointwise almost everywhere to a function U(x, t),
and satisfies the estimate

Varz{U∆x(·, t)} < 4Vz.(3.6)

In section 6 we conclude this argument by showing that the limit function U(x, t) is
a classical weak solution of (1.1) when a′ has no delta function singularities.

4. The interaction potential d(γ0, γr). Assume that U∆x(x, t) is an approx-
imate Glimm scheme solution starting from initial data U0(x) of bounded total varia-
tion in (a, u) and hence (a,w) as well. Then the total variation in (a, z) of U∆x(·, 0) is
uniformly bounded, and hence the existence theory of section 3 applies. Thus, with-
out loss of generality, we can assume that U∆x → U, where U(x, t) is a weak solution
of (1.1) of bounded total variation in z at each fixed time. (The convergence is in L1

loc

at each fixed time, uniformly on compact sets.) We now estimate the growth of the
total variation in w (and hence in u) in the approximate solutions U∆x(x, t).

Our idea is to use the functional Lw to estimate the total variation in w at each
time in an approximate solution U∆x(x, t). The problem of estimating Lw is more
difficult than the problem of estimating Lz because in the case of Lw, it is not true
that Lw(Jj+1) ≤ Lw(Jj) across interactions. The point is that Lw is minimized on
the admissible solution of the Riemann problem among all solutions of the Riemann
problem, but it is not minimized on the admissible solution of the Riemann problem
among all connected sequences of elementary waves that take UL to UR, even if there
is just a single standing wave within the sequence. Indeed, if a fast rarefaction wave
followed by a slow standing wave interacts to produce a slow standing wave followed
by a fast rarefaction wave, then Lw increases across this interaction. This is because
rarefaction wave-standing wave interactions, in which incoming and outgoing waves
all lie on one side of T , always have the effect of moving the standing wave closer to the
transition curve—this increases the Lw because it shifts the total variation in u from
the nonlinear waves to the standing waves, which are weighted by the larger factors
of 2 and 4 over the weight on the nonlinear waves. We verify this in two examples
below. The remarkable fact that the functional Lw increases only on rarefaction
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wave/standing wave interactions, and is nonincreasing on all other interactions, is
discussed after the examples. Our strategy is then to define a potential for the increase
in Lw due to the interaction of a standing wave and a rarefaction wave and to prove
that Lw plus the sum of all potential interaction terms define a nonlocal functional
F that bounds the total variation in w and decrease across interactions.

We begin by verifying that Lw increases on rarefaction wave/standing wave in-
teractions in two salient examples: the case when gu < 0 and the standing wave is a
strong standing wave on the right of T , and the case when gu > 0 and the standing
wave is a strong standing wave on the left of T . These two examples clarify the prob-
lem of bounding the increase in Lw on interactions. So consider first the interaction
diagrammed in Figure 22, the case when gu < 0, and a standing wave γIN0 starting to
the left of a negative speed rarefaction wave γINr interacts to produce a negative speed
rarefaction wave γOUTr followed by a standing wave γOUT0 . (For simplicity we assume in
this example that all waves lie to the right of T .) Then [UL, UR] = (γOUTr , γOUT0 ), but
Lw(γOUTr , γOUT0 )−Lw(γINr , γIN0 ) = L∗

w(γOUTr ) +L∗
w(γOUT0 ) + δ(γOUT0 )−L∗

w(γINr )−
L∗
w(γIN0 )−δ(γIN0 ) = L∗

w(UL → B → UR)+δ(γOUT0 )−L∗
w(UL → A→ UR)−δ(γIN0 ) =

L∗
w(U ′

L → B′ → U ′
R) − L∗

w(U ′
L → A′ → U ′

R) > 0 by Lemma 2.7.

Consider next the case of the interaction diagrammed in Figure 23, the case when
gu > 0, and a positive speed rarefaction wave γINr starts to the left of a standing
wave γIN0 and interacts to produce a standing wave γOUT0 followed by (that is, to the
left of) a positive speed rarefaction wave γOUTr . (Again, for simplicity, we assume in
this example that all waves lie to the left of T .) Then [UL, UR] = (γOUT0 , γOUTr ), but
Lw(γOUT0 , γOUTr )−Lw(γIN0 , γINr ) = L∗

w(γOUT0 ) + δ(γOUT0 ) +L∗
w(γOUTr )−L∗

w(γIN0 )−
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δ(γIN0 )−L∗
w(γINr ) = L∗

w(UL → B → UR)+δ(γOUT0 )−L∗
w(UL → A→ UR)−δ(γIN0 ) =

L∗
w(U ′

L → B′ → U ′
R) − L∗

w(U ′
L → A′ → U ′

R) > 0 by Lemma 2.7. One can verify that
Lw is nonincreasing on shock wave-standing wave interactions that lie on one side of
T by similar examples. This concludes the examples.

What is remarkable is that the increase in Lw due to rarefaction wave-standing
wave interactions that are not transonic (that is, all waves in the interaction lie en-
tirely on the same side of T ) accounts for all of the ways Lw can increase, even for
complicated transonic wave interactions that carry waves across the transition curve.
The proof that we need only a potential interaction term for nontransonic rarefac-
tion wave-standing wave interactions is a consequence of our proof below that the
nonlocal functional F is nonincreasing on all interactions, but in the proof it is diffi-
cult to see the reason for the decrease in the functional in the complicated case when
the interactions are transonic. To motivate the argument, consider a standing wave
γ0 that takes UL = (aL, uL) to UR = (aR, uR). Then this wave lies entirely on one
side of T , or else it is a composite wave of type UL → P → Q → R of Figure 15.
Let a∗ = max{aL, aR}, and let U∗ = (a∗, u∗) denote the point on T that lies at level
a = a∗. Consider now the region V (γ0) that lies below the standing wave curves on the
left and right of T that pass through the state U = U∗; cf. Figure 24. The claim then
is that any rarefaction wave that lies in the region V (γ0) in an approximate solution
that contains the wave γ0 cannot interact with γ0 in such a way as to produce an in-
crease in Lw. For example, one can verify that when the connected sequence of waves
γrγ0 or γ0γr interact to produce the waves in the Riemann problem [UL, UR], Lw will
be nonincreasing and the wave γr will be eliminated by the interaction when γr in
V (γ0). This helps explain why we needn’t include such portions of the rarefaction
wave in the definition of the interaction potential d(γ0, γr) below.

We now define d(γ0, γr), the potential for the increase in Lw due to the interaction
of a standing wave γ0 that approaches a rarefaction wave γr; cf. [4]. (Although there
is an ordering of the waves in the (x, t)-plane implied by the condition that two waves
approach, we assume no ordering in d, so that d(γ0, γr) ≡ d(γr, γ0).) So assume that
γ0 and γr are waves that cross the same I-curve J in an approximate Glimm scheme
solution U∆x. We say that γ0 and γr approach on J if the faster of the two waves
is positioned to the left of the slower wave on J in the (x, t)-plane. Any two such
waves will interact at a later time in the approximate solution U∆x. Note that standing
waves always have zero speed, and to make the definition of approaching unambiguous,
assume that all rarefaction waves have purely positive or negative speed by treating
any rarefaction wave that crosses T as two separate waves by partitioning such a
rarefaction wave into its positive and negative speed parts. (In this case, the wave
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will be partitioned at the point where the wave crosses T since this is the curve of
zero characteristic speed.) If α and β are indices that identify two waves that cross
J, then we write (α, β) ∈ App(J) if γα approaches γβ on J.

In order to define d(γ0, γr) for two approaching waves γ0 and γr, we first define
what we call the interaction region ∆(γ0, γr), the region in U -space where the inter-
action of γr and γ0 will take place (assuming the rarefaction wave is not canceled out
before the interaction occurs). To this end, we first define what we call the trajectory
of the waves γr and γ0. If the waves interact, then the interaction will occur within the
region determined by the intersection of the two trajectories. Since the standing wave
curves and nonlinear wave curves act like Riemann invariants for the system (1.1),
it follows that when a rarefaction wave interacts with a standing wave, the standing
wave is just translated along the nonlinear wave curves and the rarefaction wave is
translated along the standing wave curves. Thus let γ0 = [U0

L, U
0
R] and γr = [UrL, U

r
R]

denote a standing wave and a rarefaction wave, respectively. In the case when the
standing wave γ0 is a composite wave of type UL → P → Q → R of Figure 15, we
define

d(γ0, γr) = d(γ′0, γr),(4.1)

where γ′0 denotes the standing wave in the projection P (γ0) (e.g., γ′0 = T → R in
Figure 15). Thus to define d(γ0, γr), it suffices to assume that the standing wave γ0

lies entirely on one side of T (admissible, noncomposite standing waves do not cross
the transition curve), and we can assume that the rarefaction wave γr lies entirely on
one side of T because rarefaction waves are partitioned so as to have unambiguous
positive or negative speed. For the rarefaction wave γr let S(UrL),S(UrR) denote the
standing wave curves that pass through states UrL, U

r
R, respectively. We can now

define the trajectory of a rarefaction wave γr and a standing wave γ0; cf. Figure 25.
Definition 4.1. Let γr = [UrL, U

r
R] denote a rarefaction wave that lies entirely

one side of the transition curve, say γr ≤ T or γr ≥ T . Then the trajectory Traj(γr)
of γr is the region in U -space between the two standing wave curves S(UrL) and S(UrR),
intersected with u ≤ T or u ≥ T , according to whether γr ≤ T or γr ≥ T , respec-
tively.

Definition 4.2. The trajectory Traj(γ0) of a standing wave γ0 is the region
between the curves a = a0

L and a = a0
R, i.e., the region between the two nonlinear

wave curves through U0
L and U0

R, respectively.
We note that Traj(γr) includes only the region on the side of T that contains the

wave γr because a rarefaction wave cannot cross T without being canceled out by a
shock wave, but Traj(γ0) contains the region on both sides of T because a standing
wave can cross T as a result of interaction. It follows that the interaction of γ0 and
γr can only take place on the side of T that contains γr.
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We now define the interaction region ∆(γ0, γr). To this end, consider the region
equal to the intersection between Traj(γr) and Traj(γ0), which lies entirely on the
same side of T as the rarefaction wave γr. If there exists a full set of four intersection
points between the curves S(UrL),S(UrR) and a = a0

L, a = a0
R that all lie on the

same side of T as the wave γr (diagrammed A,B,C,D in Figure 26), then define the
interaction region ∆(γ0, γr) to be the region ABCD, which is exactly equal to the
intersection of the trajectory of γ0 and the trajectory of γr. If the curves S(UrL),S(UrR)
and a = a0

L, a = a0
R do not intersect in four distinct points on the same side of T as

γr, we must modify the definition of ∆(γ0, γr) to account for the fact that portions of
the rarefaction wave γr will be canceled out before γ0 can interact with the standing
wave γ0. To this end, let U∗ denote the highest point on T where the trajectory of
γ0 intersects T , i.e., let U∗ = (amax, uT (amax)), where amax = max{a0

L, a
0
R}; see

Figure 27. Consider then the standing wave S(U∗) that passes through the point
U∗, and ask whether S(U∗) lies within the trajectory of γr. If it does not (which
means the trajectory of γr lies below U∗), then we say that the interaction region
∆(γ0, γr) = φ, the empty set; that is, there is no potential for interaction of the waves
γr and γ0. If S(U∗) does lie within the trajectory of γr, then let ∆(γ0, γr) denote the
intersection of the trajectory of γ0 with the trajectory of γr and take away all points
U that lie below the standing wave curve S(U∗). In this case, ∆(γ0, γr) = ABU∗D,
as diagrammed in Figure 27. This completes the definition of ∆(γ0, γr). Note that
in every case, ∆(γ0, γr) consists of a region on the side of the transition curve that
contains γr, bounded on the right and left by standing wave curves and above and
below by nonlinear wave curves, determined by four vertices, which we label ABCD
as in Figure 28.

Now for any approaching waves γr and γ0 (assuming rarefaction waves are parti-
tioned at points where they cross T ), define d(γ0, γr) in terms of ∆(γ0, γr) as follows.
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The interaction potential d(γ0, γr) is equal to the change in Lw between the waves
that enter and the waves that leave the interaction region ∆(γ0, γr), as determined
by the orientation of the original waves γ0 and γr. That is, there is only one way to
project the waves γr and γ0 to incoming waves on the boundary of ∆(γ0, γr) so that
γr is projected to a rarefaction wave, γ0 is projected to a standing wave that pre-
serves the increasing/decreasing of a across the wave, and the projected waves define
a connected sequence of waves that preserve the left/right orientation of the original
waves γr and γ0. Thus, there are four cases in which γr and γ0 can approach, labeled
in Figure 29. These are determined by whether a increases or decreases across the
standing wave γ0 and whether the wave γr lies to the left or right of T . In the four
cases (1)–(4) labeled in Figure 29, d(γ0, γr) in each case is defined by

d(γ0, γr) = Lw(A→ B → C) − Lw(A→ D → C).(4.2)

Therefore, assuming that all rarefaction waves have been partitioned at points on T ,
equation (4.2) defines d(γ0, γr) for any pair of approaching waves γr and γ0, and we
set d(γ0, γr) = 0 for any pair of nonapproaching waves. For our arguments below, we
wish to index the waves in an approximate Glimm scheme solution as they are given
in the solution of the Riemann problems themselves, without further partitioning.
Thus for a rarefaction wave γr that crosses T and is partitioned into γr = γar γ

b
r

at the point where it crosses T , we say γr approaches a standing wave γ0 if γar
approaches γ0 or γbr approaches γ0, and we define d(γ0, γr) = d(γ0, γ

a
r ) + d(γ0, γ

b
r).

It follows that for any partitioning of a rarefaction wave γr = γar · · · γbr , we have that
d(γ0, γr) = d(γ0, γ

a
r ) + · · · + d(γ0, γ

b
r). This completes the definition of d(γ0, γr) for

any pair of waves γ0, γr that crosses an I-curve J in an approximate Glimm scheme
solution of (1.1).

We note that the potential d(γ0, γr) is symmetric, d(γ0, γr) = d(γr, γ0), and is con-
structed so that if a standing wave γ0 is displaced to γ̂0 by interaction with a nonlinear
wave and a rarefaction wave γr is displaced to γ̂r by interaction with a standing wave,
then (assuming no cancellation of shock and rarefaction waves) d(γ0, γr) = d(γ̂0, γ̂r).
Thus, d(γ0, γr) is invariant under such interactions even though |γ0|w �= |γ̂0|w and
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|γr|w �= |γ̂r|w. Remarkably, this statement holds even when γ0 is a composite wave of
form UL → P → Q→ R of Figure 15. Therefore, even though wave strengths change
as waves evolve in the solution, the potential interaction between waves is constructed
so as to be an invariant of interactions (assuming no cancellation of rarefaction waves
by shock waves).

The following proposition gives the main property that tells how rarefaction wave
trajectories change when waves interact. To state the proposition, note that the
rarefaction waves in any admissible solution of the Riemann problem [UL, UR] can
always be partitioned into a positive speed rarefaction wave γLr on the left of T and
a negative speed rarefaction wave γLr on the right of T . The fact that one can always
uniquely identify exactly two such waves for every choice of UL and UR (allowing
for one or both of the waves to be zero) can be verified directly in Figures 15–18.
(Recall that a rarefaction wave cannot cross T in any admissible solution of the
Riemann problem unless the standing wave is zero, in which case the solution is a
single rarefaction wave γr that can be partitioned into γr ∼ γRr γ

L
r ; cf. Figure 30.)

Proposition 4.3. Let γLr and γRr denote the left and right rarefaction waves
in the solution of the Riemann problem [UL, UR], and let γ̄1γ̄0γ̄2 be any connected
sequence of elementary waves that takes UL to UR such that γ̄1, γ̄2 are nonlinear waves
and γ̄0 is a standing wave. Then Traj(γLr ) ⊆ Traj(γ̄Lr ) and Traj(γRr ) ⊆ Traj(γ̄Rr ),
where γ̄Lr and γ̄Rr denote the union of all left and right rarefaction waves, respectively,
among γ̄i, i=1, 2.

Proof. The proof of Proposition 4.3, which can be verified case by case from the
admissible solution of the Riemann problem, is postponed until the appendix.

5. The nonlocal functional. In this section we define the nonlocal functional
F (J) that bounds the total variation in w for the waves that cross an I-curve J in
an approximate Glimm scheme solution. We then prove that F is nonincreasing on
approximate solutions. To start, let J denote a fixed I-curve, and for notational
convenience let Λ be an index set such that γαq , α ∈ Λ, q ∈ {0, r, s}, lists all of waves
that cross J. Here q = 0, r, s means that the wave is a standing wave, rarefaction
wave, or shock wave, respectively, so that, for example, {γα0 }α∈Λ denotes the set of all
standing waves that cross J, etc. (To achieve such an indexing just allow for arbitrarily
many zero waves.) Thus the local functional Lw(J) is defined by

Lw(J) =
∑

α∈Λ,q∈{0,r,s}
|γαq |w.(5.1)

Define the functional F (J) by

F (J) = Lw(J) + P (J),(5.2)
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where P (J) is the nonlocal potential interaction functional defined by

P (J) =
∑

(α,β)∈App(J)

d(γα0 , γ
β
r ),(5.3)

where we use the notation (α, β) ∈ App(J) if and only if γα0 approaches γβr on J.
Since F (J) is determined by the connected sequence of waves that cross J, we can
similarly define F (γa · · · γb) for any connected sequence of elementary waves. (Two
waves in the sequence approach if the left wave is faster than the right wave in the
sequence, etc.) Then, for example, F ([UL, UR]) = Lw([UL, UR]) because the solution
of the Riemann problem contains no pairs of approaching waves. We now prove the
following theorem.

Theorem 5.1. If J2 is a successor of J1 in an approximate Glimm scheme
solution of system (1.1), then

F (J2) − F (J1) ≤ 0.(5.4)

The proof of Theorem 5.1 is a consequence of the following lemma. (We think of
bar, tilde, and hat as identifying incoming waves and unbarred waves as representing
outgoing waves, and [UL, UR] denotes the admissible solution of the Riemann problem,
where the strength of each zero speed composite wave γ0 has a strength equal to the
strength of the waves in its projection P (γ0).)

Proposition 5.2. Let γ̄1γ̄0γ̄2 denote any connected sequence of three elementary
waves that takes UL to UR such that γ̄1, γ̄2 are nonlinear waves, and γ̄0 is a standing
wave.

F (γ1γ0γ2) ≤ F (γ̄1γ̄0γ̄2),(5.5)

where γ1γ0γ2 = [UL, UR].
The proofs of Propositions 4.3 and 5.2 involve a case by case study of the Riemann

problem and will be dealt with together in the appendix. Assuming Propositions 4.3
and 5.2, we now give the following proof.

Proof of Theorem 5.1. Assume that Propositions 4.3 and 5.2 hold, and assume
that J2 is an immediate successor of J1 in the approximate Glimm scheme solution
U∆x of system (1.1). We show that F (J2) ≤ F (J1). Let ∆ denote the interaction
diamond between J1 and J2, let J ′

1, J
′
2 denote the restriction of J1, J2 to the region

∆, respectively, and let J0 denote the restrictions of J1 and J2 to the region outside
∆; cf. [4, 24]. Thus we write J1 = J0 ∪ J ′

1 and J2 = J0 ∪ J ′
2. Note that since we use

an unstaggered grid, the states UL and UR that lie at the right and left vertices of ∆
are consecutive sample points at some time level tj in the approximate solution U∆x,
and thus there is at most one standing wave between UL and UR on both J ′

1 and
J ′

2. It follows that there are at most five incoming waves that cross J ′
1, i.e., at most

two nonlinear waves γ̄a1 and γ̄b1, followed by a standing wave γ̄0, followed by at most
two nonlinear waves γ̄a2 γ̄

b
2. (Subscripts 1, 2 denote nonlinear waves, and subscript 0

denotes a standing wave.) Thus let γ̄a1 γ̄
b
1γ̄0γ̄

a
2 γ̄

b
2 denote the connected sequence of

elementary waves that take UL to UR and cross the curve J ′
1, the incoming waves for

the interaction diamond ∆. The waves that leave the interaction diamond ∆ cross J ′
2

and hence solve the Riemann problem [UL, UR].
Now first let γ̄1 and γ̄2 denote the nonlinear waves such that γ̄1 ∼ γ̄a1 γ̄

b
1 and

γ̄2 ∼ γ̄a2 γ̄
b
2. Define J̄ ′

1 to be the I-curve obtained by replacing the waves on J ′
1 by the
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waves γ̄1γ̄0γ̄2, and set J̄1 = J0 ∪ J̄ ′
1. Then the proof of Theorem 5.1 is complete once

we prove the following claim.
Claim. The following inequalities hold:

F (J2) ≤ F (J̄1) ≤ F (J1).(5.6)

Proof of claim. The second inequality holds because in replacing the nonlin-
ear waves γ̄ai γ̄

b
i by γ̄i, i = 1, 2, there can be no increase in wave strength—only

a cancellation of wave strength can occur, this happening when one of γ̄ai , γ̄
b
i is a

shock wave and the other is a rarefaction wave. Thus Lw(J̄1) − Lw(J1) ≤ 0. More-
over, since the potential d(γ0, γr) is in general independent of the partitioning of the
nonlinear wave γr, it follows that d(γ0, γ̄i) ≤ d(γ0, γ̄

a
i ) + d(γ0, γ̄

b
i ) for any standing

wave γ0 on J0, i = 1, 2. From this it readily follows that P (J̄1)−P (J1) ≤ 0, and hence
F (J̄1) − F (J1) = Lw(J̄1) − Lw(J1) + P (J̄1) − P (J1) ≤ 0.

To verify that F (J2) ≤ F (J̄1), write

F (J2)−F (J̄1) = F (J ′
2)−F (J̄ ′

1)+P (J ′
2, J0)−P (J̄ ′

1, J0)+P (J ′
2, J

′
2)−P (J̄ ′

1, J̄
′
1).(5.7)

(Here we use the notation that if Ja, Jb ⊂ J, then P (Ja, Jb) =
∑
d(γα, γβ), where

the sum is taken over all approaching waves on J such that γα ∈ Ja, γ
β ∈ Jb.) But

P (J ′
2, J

′
2) = 0 because the solution of the Riemann problem contains no approaching

waves, and by Proposition 5.2, F (J ′
2) − F (J̄ ′

1) ≤ 0. Moreover, P (J ′
2, J0) ≤ P (J̄ ′

1, J0)
because, by Proposition 4.3, the trajectories of the rarefaction waves on J̄ ′

1 contains
the trajectories of the rarefactions waves on J ′

2; hence there will be an interaction
potential between rarefaction waves in J̄ ′

1 and standing waves in J0 that cancels any
interaction potential between rarefaction waves in J ′

2 and standing waves in J0. Thus
(5.7), F (J2) − F (J̄1) ≤ 0, and the proof of the claim is complete.

The final theorem follows directly from Theorem 5.1.
Theorem 5.3. If the initial I-curve Jt=0 satisfies F (Jt=0) < ∞ in a Glimm

approximate solution U∆x, then the total variation of U∆x(·, t) < const.F (Jt=0) for
all t > 0.

6. Convergence of the residual. In this section we give the proof of con-
vergence of the residual for the approximate Glimm scheme solution constructed in
section 3. The residual for system (1.1) is defined by

R(a, u, ϕ) =

∫ +∞

−∞

∫ +∞

−∞
{uϕt + fϕx + a′gϕ} dx dt+

∫ +∞

−∞
u0(x)ϕ(x, 0) dx.(6.1)

Then (a, u) is a weak solution of (1.1) if and only if R(a, u, ϕ) = 0 for all compactly
supported smooth test functions ϕ = ϕ(x, t). Assume that U∆x is a sequence of Glimm
approximate solutions that satisfy

VarzU∆x(·, t) < Vz(6.2)

for some constant Vz independent of ∆x (cf. (3.6)), and assume U∆x(x, t) =
(a∆x(x), u∆x(x, t)) → U(x, t) = (a(x), u(x, t)) piecewise a.e. and in L1

loc at each fixed
time, uniformly on compact sets (the conclusion of the Oleinik compactness argument;
cf. [25]). Note that for fixed initial data, U∆x is a function of both ∆x and the sample
sequence θ = {θij} ∈ Θ. Assume that a(x) is Lipschitz continuous, so that there exists
a constant M such that

|a(x) − a(y)| ≤M |x− y| for all x, y ∈ R,(6.3)

|a(x) − a∆x(x)| ≤M∆x for all x ∈ R.(6.4)
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For an approximate solution U∆x, define

R∆x(a∆x, u∆x, ϕ) ≡
∫ +∞

−∞

∫ +∞

−∞
{u∆xϕt + f(a∆x, u∆x)ϕx + a′g(a∆x, u∆x)ϕ} dx dt

+

∫ +∞

−∞
u∆x(x, 0)ϕ(x, 0) dx(6.5)

(obtained by replacing U by U∆x in (6.1) everywhere except at a′). We prove the
following theorem; cf. [4].

Theorem 6.1. There exists a set N of measure zero in Θ such that, if θ ∈ Θ/N ,
then

R(a, u, ϕ) = lim
∆x→0

R∆x(a∆x, u∆x, ϕ) = 0(6.6)

for all test functions ϕ of compact support in −∞ < x <∞, t ≥ 0. Thus, in particular,
passing the limit through the integral sign, we conclude that U(x, t) is a weak solution
of (1.7).

Proof of Theorem 6.1. To start, let γ1
ij and γ2

ij denote the negative and positive
speed waves positioned at mesh point (xi, tj) in the approximate solution U∆x. Let
Uij(x, t) denote the approximate solution U∆x restricted to the mesh rectangle Rij =
[xi, xi+1) × [tj , tj+1), and let VarzUij and VaruUij denote the total variation of Uij
in x at fixed time t ∈ (tj , tj+1), xi ≤ x < xi+1. For the proof of Theorem 6.1, we
introduce three regularization parameters ε, ε̂, and δ, whose values will be chosen at
the end: ε is a regularization parameter for the standing waves described below; ε̂
measures distance to the transition curve so that

S(ε̂) ≡ {U : |U − T | ≤ ε̂} ;

and δ is a mollification parameter for g∆x (so that we can integrate the source term
in (6.6) by parts),

(g · U∆x)δ = (g · U∆x) ∗ ψδ,

where ψδ=( 1
δ2 )ψ(xδ ,

t
δ ) denotes the standard convolution kernel supported on |(x, t)| ≤

δ.

For the mollification of the standing waves, let U ε∆x(x, t) ≡ (aε(x), u
ε
∆x(x, t))

denote the regularization of U∆x obtained by translating γ1
ij (respectively, γ2

ij) ε∆x
units to the left (respectively, right) at each mesh point (xi, tj) and then replacing
each standing wave discontinuity γ0

ij at (xi, tj) by the smoothed out standing wave on
the interval xi− ε∆x < x < xi+ ε∆x, as described in the discussion after (2.4). Thus,
states on the smoothed out standing wave γ0,ε

ij lie on the standing wave curve between

the same left and right states as γ0
ij so that VarzU

ε
ij = VarzUij and VaruU

ε
ij = VaruUij .

(Indeed, recall that in Section 2, standing wave discontinuities were constructed as
limits of smooth standing waves under rescaling into discontinuities; cf. [6].) Since U ε

satisfies the same total variation bounds as U∆x, by taking appropriate subsequences,
we can assume that at each ε > 0, lim∆x→0U

ε
∆x = U ε, where convergence is in the

same sense as U∆x → U. (We are forced to introduce U ε∆x because our approximate
solutions are constructed to (formally) meet (6.6) with a′∆x, not a′.)

We use the following lemmas.
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Lemma 6.2. There exists a constant C0 > 0 and a function K̂(ε̂) independent of
∆x such that

VaruU∆x(·, t) ≤ C0ε̂+ K̂(ε̂)VarzU∆x(·, t),(6.7) ∫
E

|U ε∆x − U∆x| dx dt ≤ C0|E|ε,(6.8) ∣∣∣∣ ∂∂x (g · U ε∆x)δ
∣∣∣∣ ≤ C0

δ
.(6.9)

By (6.8) we know that
∫
E
|U ε − U | dxdt < O(1)ε for each compact set E.9

Proof. Estimate (6.7) follows from the fact that the mapping (a, z) → (a, u) is
one-to-one and regular except at the transition curve T and any wave that lies entirely
within S(ε̂) has amplitude order ε̂; cf. [25]. For (6.8), observe that meas{(x, t) ∈ E :
U ε∆x �= U∆x} = O(1)|E|ε, where |E| denotes the measure of the set E. Estimate (6.9)
follows directly from the definition of convolution.

Lemma 6.3. For every compact set E in −∞ < x < ∞, t ≥ 0, there exists a
function K(ε) independent of δ such that∫

E

|(g · U ε∆x)δ − (g · U ε∆x)| dxdt =

∫
E

|(g · U ε)δ − (g · U ε)| dxdt+ o(∆x)K(ε),

(6.10)∫
E

|(g · U ε∆x)δ − (g · U∆x)| dxdt =

∫
E

|(g · U ε)δ − (g · U)| dxdt+ o(∆x)K(ε).

(6.11)

Here we mean that o(∆x) is independent of ε, ε̂, and δ, and lim∆x→0o(∆x) = 0.
Proof. Both (6.10) and (6.11) follow directly from the convergence of U ε∆x → U ε

and U∆x → U.
The next lemma is the main step in the proof of Theorem 6.1.
Lemma 6.4. Let

Rεφ ≡ R(aε, u
ε
∆x, ϕ) =

∫ ∫
t≥0

U ε∆xφt + f(U ε∆x)φx + a′εg(U
ε
∆x)φdxdt(6.12)

+

∫ +∞

−∞
U0(x)φ(x, 0)dx,

and write Rεφ ≡ Rεφ(θ) to express the dependence on θ ∈ Θ when ∆x and φ are fixed.
Then there exists a constant C1 such that∫

Θ

(
Rεφ
)2
dθ ≤ O(1)

{
ε̂+ K̂(ε̂)∆x+ ε(C0ε̂+ K̂(ε̂))2

}
.(6.13)

Proof of Lemma 6.4. Since U ε∆x is an exact solution in each strip tj < t < tj+1,
integrating (6.13) over each mesh rectangle Rij gives

Rεφ =
∑
i,j

Dε
ij(θ,∆x, φ),(6.14)

9We use the notation that C0, C1 denote constants that can depend on the equations and the
initial data but are independent of ε, ε̂, δ,∆x, and the test function φ, while O(1) denotes a constant
that is independent of ε, ε̂, δ, and ∆x, the convergence parameters.
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where for j > 0,

Dε
ij(θ,∆x, φ) =

∫ xi+1

xi

{
U εθ,∆x(x, tj+) − U εθ,∆x(x, tj−)

}
φ(x, tj−)dx

≡
∫ xi+1

xi

[U εij ]φ|dx(6.15)

and

Dε
i0(θ,∆x, φ) =

∫ xi+1

xi

{
U εθ,∆x(x, 0) − U0(x)

}
φ(x, 0)dx

≡
∫ xi+1

xi

[U εi0]φ|dx.(6.16)

(We take definitions (6.14)–(6.16) as applying also at ε = 0, U0
∆x = U∆x.) It follows

directly from (6.15) and (6.16) that∣∣Dε
ij(θ,∆x, φ)

∣∣ ≤ |Supp(φ)| ||φ||∞∆xVaruU
ε
ij .(6.17)

Now let O(1) denote a constant that is independent of ε, ε̂, δ, and ∆x.

Claim. The following estimate holds:∣∣∣∣
∫

Θ

Dε
ijD

ε
kldθ

∣∣∣∣ ≡ |〈Dε
ij , D

ε
kl〉| ≤ O(1)ε∆x2 · VaruU

ε
ij · VaruU

ε
kl.(6.18)

Proof of claim. First, neglecting higher order terms in ∆x, we can assume without
loss of generality that φ is constant on mesh rectangles, φ = φij = const on Rij .
Following the argument in [6], we first note that if j < l, then Uij is independent

of akl, and so we can pass dak through the integral to the factor
∫ 1

0

∫ xk+1

xk
Dkldxdak,

which is equal to zero as in Glimm’s original argument. Thus,∫
Θ

Dε
ijDkldθ = 0.(6.19)

Therefore, ∣∣〈Dε
ij , D

ε
kl〉
∣∣ = ∣∣〈Dε

ij , D
ε
kl〉 − 〈Dε

ij , Dkl〉
∣∣

=
∣∣〈Dε

ij , D
ε
kl −Dkl〉

∣∣ ≤ ||Dε
ij ||∞||Dε

kl −Dkl||∞
≤ O(1)VaruU

ε
ij ||Dε

kl −Dkl||∞∆x.(6.20)

But

||Dε
kl −Dkl||∞ ≤

∫ xk+1

xk

|[U εkl] − [Ukl]| |φ|dx ≤ O(1)ε∆xVaruUkl,(6.21)

and using this in (6.20) gives∣∣〈Dε
ij , D

ε
kl〉
∣∣ ≤ O(1)ε∆x2 · VaruUij · VaruUij(6.22)

as claimed.
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Thus we can estimate

∫
Θ

(
Rεφ
)2
dθ =

∫
Θ

⎛
⎝∑

ij

Dε
ij

⎞
⎠

2

dθ

=
∑
i

∫
Θ

(
Dε
ij

)2
dθ +

∑
ij,kl

∫
Θ

Dε
ijD

ε
kldθ(6.23)

= I + II,(6.24)

where

|I| ≤
∑
ij

(∫ xi+1

xi

[U εij ]φdx

)2

≤ O(1)
∑
ij

∆x2
(
VaruU

ε
ij

)2
≤ O(1)

{
C0ε̂+ K̂(ε̂)

}
∆x(6.25)

and

|II| ≤
∑
ij,kl

O(1)ε∆x2 · VaruUij · VaruUkl

≤
∑
ij,kl

O(1)ε∆x2 · (C0ε̂+ K̂(ε̂))2.(6.26)

Thus

|I| + |II| ≤ O(1)
{
ε̂+ K̂(ε̂)∆x+ ε(C0ε̂+ K̂(ε̂))2

}
,(6.27)

which verifies (6.13) of Lemma 6.4.
Now that we have an estimate for Rεφ in Lemma 6.4; we obtain an estimate for

Rφ ≡ R∆x(a∆x, u∆x, ϕ) by estimating the difference |Rεφ −Rφ|,
|Rφ| ≤

∣∣Rεφ −Rφ
∣∣+ ∣∣Rεφ∣∣ .(6.28)

Lemma 6.5. The following estimate holds:

∣∣Rεφ −Rφ
∣∣ ≤ O(1)

{
ε+ o(∆x)K(ε) +

∆x

δ
(6.29)

+

∫ ∫
E

|(g · U ε)δ − g(U ε)| dx dt

+

∫ ∫
E

|(g · U ε)δ − g(U)| dx dt
}
,

where E denotes the support of φ and O(1) denotes a constant independent of ε, ε̂, δ,
and ∆x.

Proof of Lemma 6.5. Starting with (6.5) and (6.12), we obtain∣∣Rεφ −Rφ
∣∣ ≤ ∫ ∫

t≥0

|U ε∆x − U∆x| |φt| dx dt

+

∫ ∫
t≥0

|f(U ε∆x) − f(U∆x)| |φx| dx dt

+

∣∣∣∣
∫ ∫

t≥0

{a′εg(U ε∆x) − a′g(U∆x)}φdx dt
∣∣∣∣

= I1 + I2 + I3.(6.30)
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It follows from (6.9) that

|I1| ≤ O(1)ε,(6.31)

|I2| ≤ O(1)ε,(6.32)

and it remains to estimate I3. But

|I3| ≤
∫ ∫

t≥0

|a′ε| |g(U ε∆x) − (g · U ε∆x)δ| |φ| dx dt

+

∫ ∫
t≥0

|a′ε| |(g · U ε∆x)δ − g(U∆x)| |φ| dx dt

+

∣∣∣∣
∫ ∫

t≥0

d

dx
(aε − a) (g · U ε∆x)δ φdx dt

∣∣∣∣
= I3a + I3b + I3c,

and using Lemma 6.3 we obtain

|I3a| ≤ O(1)

{
1

ε

∫ ∫
t≥0

|(g · U ε)δ − g(U ε)| dx dt+ o(∆x)K(ε)

}
(6.33)

and

|I3b| ≤ O(1)

{∫ ∫
t≥0

|(g · U ε)δ − g(U)| dx dt+ o(∆x)K(ε)

}
.

(6.34)

Finally, integrating I3c by parts and using (6.9) we obtain

|I3c| ≤ O(1)

∫ ∫
t≥0

|aε − a|
∣∣∣∣ ddx (g · U ε)δ

∣∣∣∣ dx dt ≤ O(1)
∆x

δ
.

(6.35)

Putting (6.31)–(6.35) into (6.30) yields (6.29) of Lemma 6.5.
We can now give the following proof.
Proof of Theorem 6.1. To establish (6.6) for R∆x(a∆x, u∆x, ϕ) ≡ Rφ, we show

that

lim∆x→0

∫
Θ

R2
φ dθ = 0.(6.36)

To this end, using (6.28) we can write∫
Θ

R2
φ dθ ≤ 2

∫
Θ

(
Rεφ
)2
dθ + 2

∫
Θ

∣∣Rεφ −Rφ
∣∣2 dθ

≤ O(1)
{
ε̂+

[
K̂(ε̂)∆x

]
1

+
[
ε(ε̂+ K̂(ε̂)

]
2

}
(6.37)

+O(1)

{[
ε+

∫ ∫
E

|(g · U ε)δ − g(U ε)| dx dt

+

∫ ∫
E

|(g · U ε)δ − g(U)| dx dt
]
3

+

[
o(∆x)K(ε) +

∆x

δ

]
4

}2

,
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where we have applied (6.13) and (6.29). Now let τ be any small positive number.
Then, to make

∫
Θ
R2
φ dθ < τ, choose ε̂, ε, δ and ∆x � 1 in order as follows (the

brackets and O(1) refer to quantities defined in (6.37)). First choose ε̂� 1 so that

O(1)ε̂ <
τ

4
;(6.38)

choose ε < ε0 � 1 so that

O(1) [·]2 <
τ

4
;(6.39)

choose ε� ε0 and δ � 1 so that

[·]3 <
1

2

√{
τ/4

O(1)

}
;(6.40)

finally, choose ∆x� 1 so that

[·]1 <
τ

4
and [·]4 <

1

2

√{
τ/4

O(1)

}
.(6.41)

Putting (6.38)–(6.41) into (6.37), we obtain∫
Θ

R2
φ dθ <

τ

4
+
τ

4
+
τ

4
+

1

2

(τ
4

+
τ

4

)
< τ.(6.42)

From (6.42) we conclude (6.36), from which we conclude that Rφ → 0 off a set of
measure zero in Θ. Theorem 6.1 now follows by taking a countable dense set of test
functions, extracting a set of measure for each one, and taking θ ∈ Θ/N , where N is
the union of the measure zero sets for each of the countable list of test functions; cf.
[4]. This completes the proof of Theorem 6.1.

7. Appendix. In this appendix, we verify Propositions 4.3 and 5.2.
Proof of Proposition 4.3. Let γ̄1γ̄0γ̄2 be any connected sequence of incoming

waves that take UL → UR, and let [UL, UR] = γ1γ0γ2. To verify the proposition, we
can list the sixteen possibilities for γ̄1γ̄0γ̄2 according to whether γi are shock waves
or rarefaction waves (i = 1, 2, four cases), whether γ0 lies to the left or right of T ,
and whether a increases or decreases across γ0. (Since the issue involves only the
location of the standing wave curves, it is not important whether gu > 0 or gu < 0.)
In each case it is easy to verify that the rarefaction waves in the solution of the
Riemann problem lie within the standing wave curves that bound the rarefaction
waves among the incoming waves γ̄1γ̄0γ̄2. It follows that Traj(γLr ) ⊆ Traj(γ̄Lr ) and
Traj(γRr ) ⊆ Traj(γ̄Rr ) in each case. The details are omitted.

Proof of Proposition 5.2. We show that F (γ1γ0γ2) ≤ F (γ̄1γ̄0γ̄2) for any connected
sequence of incoming waves γ̄1γ̄0γ̄2 that take UL to UR, where the outgoing waves
γ1γ0γ2 = [UL, UR]P . (Recall that [UL, UR]P is obtained from [UL, UR] by replacing
every triple composite wave by its projection. Note that no wave can precede or
follow, a triple composite wave in [UL, UR] when gu < 0 or gu > 0, respectively, so that
[UL, UR]P always consists of three waves γ1γ0γ2.) We verify F (γ1γ0γ2) ≤ F (γ̄1γ̄0γ̄2) in
four salient cases diagrammed in Figure 31. All other cases follow by a concatenation
of these cases.
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Fig. 31.

Cases (a) and (b) of Figure 31 deal with regular interactions in which the standing
waves lie on the same side of T before and after interaction (the case γ0, γ̄0 < T is
considered). The point here is that when γ̄0 interacts with a shock wave (Case (a))
F decreases because L∗

w decreases on standing wave–shock wave interactions, and
this decrease dominates the change in the corrective terms δ(γ̄0) and δ(γ0) which
were added to make Lw continuous. Cases (c) and (d) deal with the case when the
standing waves γ̄0 and γ0 lie on opposite sides of the transition curve, and the crossing
occurs by rarefaction wave and shock wave, respectively. We now discuss the cases
(a)–(d) of Figure 31 in detail.

Case (a). In this case, F ([UL, UR]P )−F (γ̄1γ̄0γ̄2) = Lw(UL → A→ C)−Lw(UL →
B → C). When gu < 0, δ(γ̄0) = 0 = δ(γ0) because these correction terms are added
to standing waves on the right of T in this case. So when gu < 0, Lw(UL → A →
C) − Lw(UL → B → C) = L∗

w(UL → A → C) − L∗
w(UL → B → C) < 0 by Lemma

2.7. On the other hand, when gu > 0, we have Lw(UL → A → C) − Lw(UL →
B → C) = L∗

w(UL → A → C) − L∗
w(UL → B → C) + δ(γ0) − δ(γ̄0) − δ < 0, because

δ+δ(γ0)−δ(γ̄0) < 0 by Lemma 2.7. (That is, the decrease −δ in L∗
w due to interaction

with the shock wave A→ C dominates the change δ(γ0) − δ(γ̄0).)
Case (b). In this case, F ([UL, UR]P ) − F (γ̄1γ̄0γ̄2) = Lw(UL → C) − Lw(UL →

A → B → C). (Here, dr(γ̄0, γ̄2) = 0 because the waves γ̄0 and γ̄2 do not approach.)
Now if gu < 0, then δ(γ0) = 0 = δ(γ̄0) (because these correction terms are added to
the waves on the right of T when gu < 0), so we have Lw(UL → C)−Lw(UL → A→
B → C) = L∗

w(UL → C) − L∗
w(UL → A→ B → C) ≤ 0 by Lemma 2.7. On the other

hand, when gu > 0 we have Lw(UL → C) = L∗
w(UL → C)+ δ(γ0) and Lw(UL → A→

B → C) = L∗
w(UL → A → B → C) + δ(γ̄0). But L∗

w(γ0) + L∗
w(C → B) − L∗

w(UL →
A → B) = −δ < 0, and so L∗

w(γ0) − L∗
w(UL → A → B → C) ≤ −δ − L∗

w(C → B).
Thus, Lw(UL → C)−Lw(UL → A→ B → C) = −δ−L∗

w(C → B)+δ(γ0)−δ(γ̄0) ≤ 0
as claimed.

Case (c). In this case, F ([UL, UR]P )− F (γ̄1γ̄0γ̄2) = Lw(A→ C)−Lw(A→ B →
UR) ≤ L∗

w(A → B → C) − L∗
w(A → B → UR) = −L∗

w(C → UR) < 0 by Lemma 2.7.
(Here, dr(γ̄0, γ̄2) = 0 because B → C lies below the standing wave curve through γ̄0,
and C → UR does not approach γ̄0.)

Case (d). In this case, choose D between C and UR and B between A and E
such that A,C,B,D lie on the same standing wave curve and Lw(A → C → D) =
Lw(A → B → D). Then F ([UL, UR]P ) − F (γ̄1γ̄0γ̄2) = Lw(A → E → UR) − Lw(A →
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C → UR) = Lw(A → E → UR) − Lw(A → B → D → UR) = Lw(B → E →
UR) − Lw(B → D → UR) ≤ 0 by the analysis of Case (a) (that is, we reduced the
problem to the case of regular interaction on the right of T ).
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A PARAMETER IDENTIFICATION PROBLEM OF MIXED TYPE
RELATED TO THE MANUFACTURE OF CAR WINDSHIELDS∗
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Abstract. We study the identification of a parameter in a fourth-order elliptic partial differential
equation that models the optimal design of car windshields to be manufactured by the sagging process.
Considered as a second-order equation for the unknown parameter, the problem is of mixed type,
i.e., changing between elliptic and hyperbolic. Numerical routines for directly solving this equation
are not available. In this paper we both theoretically and numerically show that the inverse problem
can instead be solved in a stable way by means of a (derivative free) iterative regularization method.
The course of the iteration nevertheless depends markedly on the mixed type of the second-order
equation.
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1. Introduction. Transforming automotive glass from a flat sheet into a curved
car windshield is a challenging subject for industrial and academic research. The
resulting change in the glass surface area leads to deformations that may cause optical
distortions of unacceptable refractive and reflective quality. A related problem that
the manufacturer faces is the limited formability of the glass. Hence, not every shape
designed at the manufacturer’s drawing table can be (immediately) realized in practice
and thus costly shape corrections may become necessary.

One industrial method favored for the manufacture of car windshields is the sag
bending process: A sheet of glass is put over a rigid frame with the desired edge
curvature and is heated from above. The glass becomes viscous and sags under its
own weight; the final shape of the glass depends on the viscosity distribution of the
glass obtained by varying the temperature. Hence, given a desired target shape, the
task is to find the appropriate temperature distribution in order to achieve that goal;
see, e.g., [11].

Although the sag bending process operates in the viscous regime, the viscous-
elastic analogy allows us to consider the Young’s modulus E, a spatially varying glass
material parameter, to be proportional to the viscosity; see [12]. Then, since the
latter is a function of the temperature (see [8]), the sag bending process can in a first
approximation also be controlled in terms of E, where the bending of the glass sheet
is described by means of the linear elastic plate theory. Hence, our inverse problem is
to identify the parameter E for a given target shape ŵ, where its solution can finally
be used in order to compute the appropriate temperature distribution.

In section 2, we discuss the fourth-order elliptic direct bending problem, for which
we shall consider two types of boundary conditions on the fastening of the glass
sheet. In section 3, we show that the inverse parameter identification problem can be
solved by a (recently developed derivative free) iterative regularization method, whose
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convergence can be established under rather natural assumptions. We also discuss the
so-called direct approach, which leads to a second-order partial differential equation
of mixed type for the unknown parameter E. Due to the changes between elliptic
and hyperbolic regions in dependence on the desired target shape ŵ, it is an open
problem how to directly solve this parameter PDE. However, both the convergence
rate analysis of the derivative free iterative method and the numerical tests in section 4
show that this mixed PDE type is reflected in the iterative algorithm. Taking care
of this special feature is of independent mathematical interest but also might help to
improve existing routines for the control of the sag bending process.

2. The direct problem of bending a plate. In a first model based on the
viscous-elastic analogy and the linearized elasticity theory (see, e.g., [12], [2], and
[8]), the sag bending process can be controlled in terms of the Young’s modulus E, a
spatially varying and positive glass material parameter. Then, the displacements w
of the glass sheet are described by the fourth-order elliptic PDE

t3

12(1 − ν2)
{(E(wxx + νwyy))xx + (E(wyy + νwxx))yy

+ 2(1 − ν)(Ewxy)xy} = f in Ω,(2.1)

where t denotes the thickness of the glass plate, Ω ⊂ R2 represents its midplane,
ν ∈ (0, 0.5) is the glass Poisson ratio, and f denotes gravity. As boundary conditions
on w we consider either

w|∂Ω = 0,
∂w

∂n
= 0(2.2)

for a clamped plate, or

w|∂Ω = 0, Mn = 0 on ∂Ω(2.3)

for a simply supported plate; i.e., the moment Mn vanishes such that the plate is
allowed to freely rotate around the tangent to ∂Ω. In the case of a rectangular frame,
the second condition in (2.3) simplifies to

wxx + νwyy = 0 along the edges with y = constant,(2.4)

wyy + νwxx = 0 along the edges with x = constant(2.5)

due to the positivity of E; see [9]. For our further discussion, a Hilbert space setup is
of advantage; hence we next turn to the weak formulation of (2.1). Denoting by Y0

a closed subspace of the Hilbert space Y = H2(Ω) and considering f as an element
of the dual space Y ∗

0 , the displacement w ∈ Y0 can be sought as the solution of the
operator equation

A(E)w = f in Y ∗
0 ,(2.6)

where A(E) : Y0 → Y ∗
0 is defined via the symmetric bilinear form

〈A(E)w, v〉 =

∫
Ω

Et3

12(1 − ν2)
[(wxx + wyy)(vxx + vyy)

− (1 − ν)(wxxvyy + wyyvxx − 2wxyvxy)] dxdy(2.7)
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on Y0 × Y0. The space Y0 is determined by the boundary conditions on w under
consideration, where

Y0 = {w ∈ Y |w|∂Ω = 0}(2.8)

corresponds to (2.3) and

Y0 =

{
w ∈ Y |w|∂Ω = 0 ∧ ∂w

∂n
= 0

}
(2.9)

represents (2.2). The next theorem shows that, given an appropriate parameter E,
problem (2.6) is uniquely solvable.

Theorem 2.1. For any Young’s modulus E belonging to the set

Q̃ =
{
E ∈ H1(Ω) | γ ≤ E ≤ γ̄

}
,(2.10)

where γ, γ̄ are positive constants, the direct problem (2.6) admits a unique solution in
Y0.

Proof. Simple manipulations of the bilinear form (2.7) yield that the operator
A(E) is continuous in the sense

|〈A(E)w, v〉| ≤ α2‖w‖‖v‖, w, v ∈ Y, E ∈ Q̃,(2.11)

with a positive constant α2 = α2(γ̄). Furthermore, since v ∈ Y0 (both for (2.8) and
(2.9)), with v a polynomial of degree one, implies v = 0, we can apply the theorem
on equivalent norms in order to obtain the ellipticity

〈A(E)w,w〉 ≥ α1‖w‖2, w, v ∈ Y0, E ∈ Q̃,(2.12)

with a positive constant α1 = α1(γ). For details we refer to [10]. Hence, by virtue
of the Lax–Milgram lemma (see, for instance, [17]) problem (2.6) admits a unique
solution in Y0 for any E ∈ Q̃.

In the following we denote the unique solution of (2.6) by wE in order to emphasize
its dependence on the parameter E.

3. The inverse problem. Having introduced the direct problem (2.1), (2.6)
as a first model for describing the bending of the glass sheet resulting from the sag
bending process, we now discuss the associated inverse windshield problem. Given a
target shape ŵ that satisfies either the boundary condition (2.2) or (2.3), we want
to find a positive Young‘s modulus E = E(x, y) such that the corresponding direct
problem admits ŵ as its solution.

In this section, we first introduce and analyze a derivative free iterative regulariza-
tion method, which then in fact allows us to numerically solve the inverse windshield
problem in a stable way. This strategy is based on minimizing the deviation between a
computed forward solution of the PDE and the desired target shape. We also focus on
the direct approach, where the idea is to consider the state equation as a second-order
(partial differential) equation for the unknown parameter. Since this equation then
is of mixed type, numerical concepts for its solution are unavailable. Nevertheless,
this approach demands special attention since the mixed type is also reflected in the
iterative method.
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3.1. The iterative approach. Introducing the set of admissible parameters

Q =
{
E ∈ X | γ ≤ E ≤ γ̄

}
,(3.1)

where X is a Hilbert space, and the parameter-to-output map

F : Q→ Y,E → wE ,

where wE denotes the solution of the direct problem (2.6), the inverse windshield
problem can be formulated as the nonlinear operator equation

F (E) = ŵ.(3.2)

In the following, we assume that the exact data ŵ ∈ Y0 are attainable by a parameter
E∗ ∈ Q, i.e., that the windshield is manufacturable. Note that this does not imply
that the solution E∗ of (3.2) has to be unique. Already translated to the underlying
real world problem, several solutions may even be of advantage since they give more
freedom in choosing the strategy for heating the glass. Target shapes that would
also be accepted as ŵ by the car producer are taken into account as perturbed data
wδ ∈ Y0, where δ in

‖ŵ − wδ‖ ≤ δ(3.3)

has to be understood as a level of tolerance for the outcome of the bending process.
Parameter identification problems such as (3.2) are typically ill-posed in the sense

that their solution does not depend continuously on the data. Hence, data but also
round-off errors may be amplified by an arbitrarily large error if one applies methods to
(3.2) that are only suited for well-posed problems; see [3]. In order to overcome these
instabilities one has to use regularization methods. Iterative techniques—especially
advantageous for nonlinear problems—are mostly based on a successive minimization
of the output least-squares functional

E → λ

2
‖F (E) − wδ‖2,(3.4)

where λ is a scaling parameter; see the survey given in [5]. Though the initial guess
E0 is always supposed to lie in a neighborhood of E∗, i.e.,

E∗ ∈ Bρ/2(E0),(3.5)

where ρ is chosen such that Bρ(E0) ⊂ Q is satisfied, stability can be enforced, i.e., a
reliable approximation to the solution of (3.2) can be obtained, only if the iteration is
stopped at the right time depending on δ. Denoting the iterates by Eδk, the discrepancy
principle (see, for instance, [3] or [7]) suggests determining the stopping index k∗(δ)
by

‖wδ − F (Eδk∗)‖ ≤ τδ < ‖wδ − F (Eδk)‖, 0 ≤ k < k∗,(3.6)

for some sufficiently large τ > 0. The (final) residual wδ−F (Eδk∗) then is of the order
of the tolerance level, which is the best we should ask for.

All the classical iterative regularization methods for solving (3.2), (3.3) in a stable
way, like the Landweber method,

Eδk+1 = Eδk + λF ′(Eδk)
∗(wδ − F (Eδk))(3.7)
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(see [7]), which allow a comprehensive analysis of their convergence behavior, require
the existence of the Fréchet derivative of F and further conditions on F ′; see [5], which
usually are hard to verify for parameter identification problems in higher dimensions.
Instead, we apply the derivative free Landweber method,

Eδk+1 = Eδk + λL(Eδk)
∗(wδ − wk),(3.8)

introduced in [9], where L(E)∗ denotes the Hilbert space adjoint of the linear operator

L(E) : X → Y0, h→ −JA(h)wE(3.9)

for E ∈ Q. Thereby, wk is used as an abbreviation for F (Eδk), A(h) is defined by
(2.7), and J : Y ∗

0 → Y0 represents the duality map. For the windshield problem
it is of interest to approximate the given target shape also in terms of its second
derivatives, since the related curvatures characterize the final optical quality of the
windshield. Hence, it is appropriate to use the full Y -topology in building the adjoint
operator of (3.9) (as well as in (3.3)).

In the following, we choose the Hilbert space X = Hs(Ω) with s > d/2 such
that X ⊂ L∞(Ω) is satisfied. Obviously, we have Q ⊂ Q̃ such that (2.11) and (2.12)
especially hold for Q and the forward operator F in fact is well defined. Furthermore,
definition (2.7) yields

A(·)u ∈ L(X,Y ∗
0 )(3.10)

because of

〈A(h)v, w〉 ≤ c‖h‖‖v‖‖w‖, h ∈ X, v,w ∈ Y,(3.11)

where c denotes the embedding constant. Together with (2.6) and (2.7), this also
implies that the iteration operator is locally bounded, i.e.,

‖L(E)‖ ≤ L̂, E ∈ Bρ(E0),(3.12)

with L̂ = c‖f‖/α1.
In establishing convergence of the iterates of (3.8), we follow the basic concept of

[7]. However, since we do not resort to strong conditions on the Fréchet derivative of
F , we still have to proceed in a different manner. The first result shows that the error
in the parameter is monotonically decreasing as long as the discrepancy principle is
obeyed.

Proposition 3.1. Assume that E∗ is a solution of (3.2) in Bρ/2(E0), and let λ
and τ be chosen such that

2
(
α1 − α2

τ

)
− λL̂2 ≥ D(3.13)

holds, where D is a fixed positive constant. In case of perturbed data wδ satisfying
(3.3), we denote by k∗ the stopping index of the iteration according to the discrepancy
principle (3.6) with τ satisfying (3.13). Then we have

‖E∗ − Eδk+1‖ ≤ ‖E∗ − Eδk‖, 0 ≤ k < k∗,(3.14)

and

k∗−1∑
k=0

‖wδ − wk‖2 ≤ ρ2

4λD
.(3.15)
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For δ = 0 (with τ = ∞ in (3.13)), we have

∞∑
k=0

‖ŵ − wk‖2 ≤ ρ2

4λD
.(3.16)

Proof. Given ‖E0 − E∗‖ ≤ ρ/2, we assume

‖Eδk − E∗‖ ≤ ρ/2

for k < k∗(δ) and argue by induction. Then, the iteration step (3.8) is well defined,
yielding

‖E∗ − Eδk+1‖2 − ‖E∗ − Eδk‖2

= −2λ(L(Eδk)(E∗ − Eδk), w
δ − wk) + λ2‖L(Eδk)

∗(wδ − wk)‖2.(3.17)

The following considerations play the decisive role in our analysis and are only possible
for the special iteration operator (3.9). Because of this operator’s definition, (3.10),
and

A(E∗)ŵ = A(Eδk)wk in Y ∗
0 ,

we get

−(wδ − wk, L(Eδk)(E∗ − Eδk))

= 〈wδ − wk, A(E∗ − Eδk)wk〉
= 〈wδ − wk, A(E∗)wk −A(E∗)ŵ〉
= −〈wδ − wk, A(E∗)wδ −A(E∗)wk〉 + 〈wδ − wk, A(E∗)wδ −A(E∗)ŵ〉
≤ −α1‖wδ − wk‖2 + α2‖wδ − wk‖‖wδ − ŵ‖,(3.18)

where the inequality holds because of (2.12) and (2.11). Using (3.18) in (3.17), we
obtain

‖E∗ − Eδk+1‖2 − ‖E∗ − Eδk‖2

≤ ‖wδ − wk‖λ
(
2α2δ − 2α1‖wδ − wk‖ + λL̂2‖wδ − wk‖

)
.

Following the discrepancy principle (3.6), we get from (3.13) that

‖E∗ − Eδk+1‖2 + λD‖wδ − wk‖2 ≤ ‖E∗ − Eδk‖2

for k < k∗ = k∗(δ). This implies assertion (3.14) and Eδk+1 ∈ Bρ/2(E∗) ⊂ Bρ(E0).
Furthermore, we can conclude that

λD

k∗−1∑
k=0

‖wδ − wk‖2 ≤
k∗−1∑
k=0

(‖Eδk − E∗‖2 − ‖Eδk+1 − E∗‖2
)

holds, which leads to the inequality

k∗τ2δ2 ≤
k∗−1∑
k=0

‖wδ − wk‖2 ≤ ρ2

4λD
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and finally to assertion (3.16).
Hence, the monotonicity of the iterates, which is the foundation for the forth-

coming convergence results, can be guaranteed under natural assumptions already
associated with the solvability of the direct problem. We see that condition (3.13)
can always be satisfied by choosing the λ sufficiently small and τ sufficiently large.
Note that, in case of perturbed data, the use of a “large” τ in the discrepancy princi-
ple (3.6) might cause a premature termination of the iteration, a problem that is also
present when using other iterative methods, e.g., (3.7). However, our choice of τ in
(3.13) no longer involves (in practical situations) unknown constants that are linked
to conditions on F ′; compare to [7].

The estimation (3.16) shows that, in the absence of data noise, the residual norms
of the iterates tend to zero for k → ∞; hence, if the iteration converges, the limit
certainly is a solution of the inverse windshield problem. In the case of perturbed data,
(3.15) yields the existence of a unique stopping index k∗ such that ‖wδ − wk‖ > τδ
holds for all k < k∗ but is violated at k = k∗.

The next theorem shows that, for precise data, the iterates Ek in fact converge
to a solution of the inverse windshield problem. Furthermore, in the presence of data
perturbations, the discrepancy principle (3.6) renders the derivative free Landweber
iteration (3.8) a regularization method; i.e., we have Eδk∗(δ) → E∗ as δ → 0.

Theorem 3.2 (convergence). Let δ = 0 in (3.3). If (3.2) is solvable in Bρ/2(E0),
then Ek converges to a solution E∗ ∈ Bρ/2(E0) of (3.2), i.e.,

Ek → E∗, k → ∞.(3.19)

In the case of perturbed data wδ satisfying (3.3), let the iteration (3.8) be stopped at
k∗(δ), according to the discrepancy principle (3.6), (3.13). Then

Eδk∗(δ) → E∗, δ → 0.(3.20)

Proof. Again we can follow [7], but once more we require only the properties
of the PDE-operator A(E). For exact data, the basic idea is to verify that Ek is a
Cauchy sequence. If Ẽ denotes any solution of (3.2) in Bρ/2(E0), i.e., wẼ = ŵ, the
crucial ingredient for the proof is

(ŵ − wr, L(Er)(Ẽ − El)) = −〈A(Ẽ − El)wr, ŵ − wr〉
= −〈A(Ẽ − Er)wr, ŵ − wr〉 − 〈A(Er − El)wr, ŵ − wr〉
= 〈A(Ẽ)ŵ −A(Ẽ)wr, ŵ − wr〉

− 〈A(El)wl −A(El)wr, ŵ − wr〉,(3.21)

which holds because of (3.9), (3.10), and

A(Er)wr = A(Ẽ)ŵ in Y ∗
0 ,

A(Er)wr = A(El)wl in Y ∗
0 .

Given (3.21), one can show as in [7] that Ek− Ẽ and hence Ek are Cauchy sequences.
Denoting the limit of Ek by E∗, we obtain that E∗ is a solution of (3.2) since the
residues ŵ − wk converge to zero for k → ∞; see Proposition 3.1.

In the case of perturbed data, the proof given in [7] is independent of the iteration
operator and therefore also applies to (3.8).

Hence, the derivative free iteration (3.8) in combination with (3.6) provides a
numerically stable algorithm for solving the inverse windshield problem. In order to
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make it more transparent, we build the inner product in X of both sides with a test
function h ∈ X. Using (3.9) and rearranging the terms then yields

(Eδk+1 − Eδk, h) = −λ t3

12(1 − ν2)

{∫
Ω

h(wkxx(w
δ − wk)xx + wkyy(w

δ − wk)yy)dxdy

+

∫
Ω

νh(wkxx(w
δ − wk)yy + wkyy(w

δ − wk)xx)dxdy

+

∫
Ω

2(1 − ν)hwkxy(w
δ − wk)xydxdy

}
.(3.22)

As opposed to (3.7), where F ′(Eδk)
∗ also requires us to solve (2.6) with f replaced by

the current residual wδ − F (Eδk), (3.8) calls only for the computation of wk. In that
sense, the total number of “direct problems” to be solved is cut in half by (3.8).

3.2. The direct approach. Given a target shape ŵ, one also might look for a
solution of the inverse problem by considering (2.1) as a PDE for E, i.e.,

((ŵxx + νŵyy)E)xx + 2(1 − ν)(ŵxyE)xy + ((ŵyy + νŵxx)E)yy =
12(1 − ν2)

t3
f in Ω.

(3.23)

Usually, parameter identification problems are, when regarded as equations for the
unknown parameter, of first order; i.e., the parameter appears at most up to its first
derivatives. However, we now face an inverse problem that is of second order in the
parameter. The type of (3.23) depends on the sign of

∆̄ = (ŵxx + νŵyy) · (ŵyy + νŵxx) − (1 − ν)2ŵ2
xy :(3.24)

(3.23) is elliptic where ∆̄ > 0 and hyperbolic where ∆̄ < 0. Note that the type
depends in fact on the given target shape ŵ. The discriminant ∆̄ can also be written
as

∆̄ = 4ν

(
ŵxx + ŵyy

2

)2

+ (1 − ν)2(ŵxxŵyy − ŵ2
xy),(3.25)

where

CG = ŵxxŵyy − ŵ2
xy

is the Gaussian curvature and

Cm =
1

2
(ŵxx + ŵyy)

is the mean curvature of the shape.
Concentrating on rectangular frames—experiences identified them as the most

problematic ones for the sag bending process—we next follow [16] in order to demon-
strate that the direct approach for the inverse windshield problem leads to PDEs that
are always of mixed type. Furthermore, we will see that there is a significant difference
in the type between shapes satisfying (2.2) and those fulfilling (2.3).

In the simply supported case, (2.3), (2.4), (2.5), and the positivity of E imply
that the product of (ŵxx + νŵyy) and (ŵyy + νŵxx) in (3.24) is zero on any simply
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Fig. 1. The simply supported case: an elliptic center area with adjacent hyperbolic corners.

supported edge. Hence, ∆̄ ≤ 0 holds on the edges and (3.23) gets hyperbolic or
parabolic there.

On the other hand, windshields usually have a positive Gaussian curvature CG
in their interior; i.e., choosing an interior point, its neighborhood lies on only one
side of the tangential plane. Then, (3.25) shows that ∆̄ > 0 such that the parameter
(3.23) is elliptic in these regions. As a consequence, the equation type changes from
hyperbolic near the edges to elliptic near the center of the region. Furthermore, it is
shown in [16] that there is only one parabolic curve, i.e., a line defined by the points
satisfying ∆̄ = 0, and that it intersects each of the four sides of the squared frame
at a single point. Hence, (3.23) is elliptic in the center and hyperbolic next to the
corners of the frame. This typical behavior is illustrated in Figure 1.

In the clamped case (2.2), the equation for E will be elliptic in the center region
according to the positive Gaussian curvature CG of the target shape. However, along
the edges of the frame, the situation is significantly different. For a rectangular
frame, the zero gradient condition on the boundary becomes wx = 0 and wy = 0 on
the edges x = const. and y = const., respectively. Concentrating on a single edge,
e.g., x = const., and differentiating wx = 0 as well as the zero deflection condition
w = 0 with respect to y, we obtain that wy, wyy, and wxy also vanish along that edge.
However, the discriminant ∆̄ (see (3.25)) there reduces to

∆̄x=const. = νw2
xx,

such that (3.23) cannot be hyperbolic along that edge. In fact, since wxx vanishes
only at the ends of the edge x = const., the equation is elliptic along the edge and
parabolic only at the very corners. Nevertheless, it is shown in [16] that the elliptic
regions near the frame and in the center are divided by a hyperbolic ring. In contrast
to the simply supported case, there now exist two distinct parabolic lines, where the
outer one does not touch the edges of the domain Ω at all. A typical formation of the
elliptic and hyperbolic regions is shown in Figure 2.

Facing a second-order PDE of mixed type, questions concerning existence, unique-
ness, and stability of a solution to (3.23) arise. Naturally, one would call for boundary
conditions for E on ∂Ω in case of a purely elliptic equation (∆̄ > 0 on Ω) and for
Cauchy data on a suitable (noncharacteristic) part Γ ⊂ ∂Ω in a purely hyperbolic
case (∆̄ < 0 on Ω). But for the present problem (3.23) with ŵ satisfying (2.2) or
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Fig. 2. The clamped case: a hyperbolic ring between two elliptic areas.

(2.3), it is not at all obvious how to proceed. The study in [16] of the characteristics
of (3.23), where the two characteristic directions are given by

dy

dx
=

(1 − ν)ŵxy ±
√

(1 − ν)2ŵ2
xy − (ŵxx + νŵyy) · (ŵyy + νŵxx)

ŵxx + νŵyy

(see [13]), gave some additional insight—for instance, although (3.23) is hyperbolic
near the corners of the frame in the simply supported case, one cannot prescribe
Cauchy data due to the fact that the edges are characteristics. However, it is not
even clear whether side conditions on E should be prescribed at all.

So far, results about existence, uniqueness, or stability with respect to the data ŵ
of a solution to problem (3.23) are available only for special symmetric cases; see [14].
Since, in particular, numerical techniques for solving the equation of mixed type are
unavailable, the direct approach (at the moment) is not suited to solving the inverse
windshield problem. Nevertheless, returning to our iterative approach (3.8), we shall
see that the features of the direct approach must not be neglected.

3.3. A first theoretical link. In general, the convergence in (3.19), (3.20) for
iterative regularization methods may be arbitrarily slow; see [15]. Rate estimates
can be obtained only under additional assumptions on the quality of the initial guess
E0 that are often difficult to comprehend; see [5]. Enhancing (3.8) by an additional
stabilizing term, i.e., considering

Eδk+1 = Eδk + L(Eδk)
∗(wδ − wk) − βk(E

δ
k − E0)

with a certain nonnegative sequence of decaying parameters βk, the convergence rates

‖Ek − E∗‖ = O(
√
βk) (for exact data) and

‖Eδk∗(δ) − E∗‖ = O(
√
βk∗(δ))

could be proven in [9] under the so-called weak source condition

∃u ∈ Y0, E∗ − E0 = L(E∗)∗u.(3.26)

In order to gain more insight into (3.26), we use the definition of L(E∗) and multi-
ply both sides by an arbitrary element h ∈ X. Then condition (3.26) assumes the
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existence of a source function u ∈ Y0 such that

12(1 − ν2)

t3
(E∗ − E0, h) = −

∫
Ω

h(ŵxxuxx + ŵyyuyy)dxdy

−
∫

Ω

νh(ŵxxuyy + ŵyyuxx)dxdy

− 2

∫
Ω

(1 − ν)hŵxyuxyd
x

holds. If E∗−E0 is sufficiently smooth and if the boundary values of the initial guess
E0 coincide with those of E∗, we obtain

(E∗ − E0, h) =

∫
Ω

N∗
XNX(E∗ − E0) · h dx,(3.27)

where NX denotes the linear operator that generates the norm in X, e.g., N∗
XNX =

(I − ∆ − ∆2) for X = H2(Ω). Hence, the weak source condition can be understood
as a solvability condition for the second-order differential equation

−12(1 − ν2)

t3
N∗
XNX(E∗ − E0) = (ŵxxuxx + ŵyyuyy)

+ ν(ŵxxuyy + ŵyyuxx)

+ 2(1 − ν)ŵxyuxy

for the unknown function u ∈ Y0. Rearranging the terms on the right-hand side, we
end up with

−12(1 − ν2)

t3
N∗
XNX(E∗ − E0) = (ŵxx + νŵyy)uxx + (ŵyy + νŵxx)uyy

+ 2(1 − ν)ŵxyuxy.(3.28)

Now, building the discriminant of (3.28) shows that the type of (3.28) is identical to
that of the second-order PDE (3.23) for E.

Although we assume the attainability of the target shape ŵ, which can in fact be
understood as a solvability assumption for the parameter equation (3.23), this does not
automatically imply the solvability of (3.28), since lower-order terms in the unknown
function are missing in the latter. We also mention that the boundary conditions for
a possible solution of (3.28) are already determined by the space Y0. Since both (2.2)
and (2.3) are natural boundary conditions for a fourth-order equation, they might be
inappropriate for (3.28).

Nevertheless, (3.28) gives a first theoretical coupling between the direct and the
iterative approaches to solving the inverse windshield problem. The next section
shows that the inverse problem can be practically solved by our iterative method
(3.8), but it also numerically confirms the influence of the mixed type of (3.23) on
the course of the iteration. We emphasize that the relation between the parameter
PDE and the iterative regularization method is specific neither to the windshield
problem nor to method (3.8). We refer to [4], where the classical Landweber iter-
ation (3.7) was applied to a second-order parameter identification problem with a
type ranging from purely hyperbolic to purely elliptic in dependence on the given
target.



A NONLINEAR INVERSE PROBLEM OF MIXED TYPE 869

4. Numerical experiments.

4.1. Preliminaries. Though the windshield problem yields only strictly mixed
type equations (3.23), still the significant difference between the simply supported and
the hyperbolic situation allows us both to test the iterative method and to numerically
investigate the influence of the equation type on its outcome. For that purpose, neither
the thickness t of the plate, the right-hand side f , the Poisson ratio ν, nor the scaling
of the parameter E are of relevance. With ν = 0.5, the direct problem (2.6) then
turns into∫

Ω

E

[
(wxx + wyy)(vxx + vyy)(4.1)

− 1

2
(wxxvyy + wyyvxx − 2wxyvxy)

]
dxdy =

∫
Ω

f̃v dxdy, v ∈ Y0,

with the solution space given by either (2.8) or (2.9). The use of a nonphysical
right-hand side f̃ , i.e., not including gravity force, facilitates the construction of test
examples for which the solution of the inverse problem is analytically known.

Although the convergence analysis of (3.8), and of the methods discussed in [5],
applied to the windshield problem would require a parameter space satisfying X ⊂
L∞(Ω) (see (3.1)), we choose X = H1(Ω) for the numerics. On the one hand, this
allows us to keep the numerical effort low (since the use of higher-order elements for
the parameter is avoided), and on the other hand, it responds to the natural wish to
keep regularity sufficient for the direct problem; compare to (2.10). All our tests have
shown that the iterates remain in the domain Q̃ of the parameter-to-output map F
without the use of a projection operator.

As a last small deviation from our theoretical foundations, we shall use a line
search algorithm (see [6]) in order to accelerate (3.8). This results in an iteration
index dependent “scaling” parameter λk. (Compared to a constant λ as required by
the theory, this has no other influence on the course of the iteration than speeding it
up; see [9].) In other words, the iteration finally reads as

Eδk+1 = Eδk + λkĒk,(4.2)

where the update Ēk satisfies

(Ēk, h) = −
∫

Ω

h

{
(wkxx(w

δ − wk)xx + wkyy(w
δ − wk)yy)(4.3)

+
1

2
(wkxx(w

δ − wk)yy + wkyy(w
δ − wk)xx)

+ wkxy(w
δ − wk)xy

}
dxdy;

compare to (3.22). Due to the choice X = H1(Ω), equation (4.3) can be considered
as the weak formulation of

Ēk − ∆Ēk = −
{

(wkxx(w
δ − wk)xx + wkyy(w

δ − wk)yy)(4.4)

+
1

2
(wkxx(w

δ − wk)yy + wkyy(w
δ − wk)xx)

+ wkxy(w
δ − wk)xy

}
in Ω,

∂Ēk
∂n

= 0 on ∂Ω.(4.5)
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Hence, one iteration step for solving the inverse windshield problem consists of the
following:

1. Given Eδk, calculate the solution wk of the direct problem.
2. Build the residual wδ −wk, and solve problem (4.4), (4.5) for the update Ēk.
3. Then, the new iterate Eδk+1 is given by (4.2).

We emphasize that the second-order PDE (4.4) for Ēk is purely elliptic, and hence
the iterative algorithm never requires us to solve the second-order equation (3.23) for
the parameter; thus there is no obvious connection to the mixed type resulting from
the direct approach. The boundary condition (4.5) shows that the boundary flux ∂E0

∂n
of the initial guess E0 is maintained during the whole iteration.

All computations to be presented in the following are based on the PDE Toolbox
of MATLAB, using the finite element method. For the parameter we chose the built-in
linear ansatz functions, while the solutions of the direct problem were represented by
means of the discrete Kirchhoff triangle; see [1]. Furthermore, a regular and uniform
triangular mesh with 665 nodes was used for Ω = [0, 1] × [0, 1].

4.2. Simply supported vs. clamped target shape. For the numerical test
we consider a clamped target shape

ŵC = −25(x2 − 2x3 + x4)(y2 − 2y3 + y4),(4.6)

a simply supported target shape

ŵS = −(x− 2x3 + x4)(y − 2y3 + y4),(4.7)

and a true parameter

E∗ = 1 + x+ 2y(4.8)

on the unit square. The right-hand side f̃ in (4.1) is chosen such that F (E∗) = ŵC
or F (E∗) = ŵS holds, respectively. Though in fact we treat two different direct
problems, one for the simply supported and one for the clamped plate, this is no
barrier for testing our algorithm and for comparing the respective inverse problems
with respect to the parameter PDE structure. The elliptic and hyperbolic regions of
(3.23) corresponding to ŵS and ŵC are those shown in Figures 1 and 2.

Ignoring data perturbations for the moment, we choose

E0 = 4(4.9)

as an initial guess, meaning a relative deviation from E∗ of approximately 80% mea-
sured with respect to the norm in X. The course of the iterations is documented in
Figures 3 and 4, where the relative error

‖E∗ − Ek‖
‖E∗‖(4.10)

in the parameter, but also the relative error in the output, i.e.,

‖ŵ − wk‖
‖ŵ‖ ,(4.11)
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Fig. 5. Computed output w450, simply sup-
ported.
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Fig. 6. Computed output w450, clamped.

is plotted against the iteration index. (The relative error in the L2(Ω)-norm is approx-
imately tenth part of that shown.) The simply supported case is represented by the
upper line, the clamped case by the lower one. Figure 4 shows that the simply sup-
ported and the clamped target shapes are approximated with nearly the same quality
by our method. The relative error is smaller than 2%, which is remarkable since
the deviation in (4.11) is measured with respect to H2(Ω). Regarding the relative
error in the parameter, we observe a first difference between the simply supported
and the clamped situation. Starting both computations from (4.9), it is an open
question why the “clamped” error is significantly lower than the “simply supported”
one.

Figures 5 and 6 confirm the quality of the computed outputs, while the corre-
sponding parameters E450 are shown in Figures 7 and 8. In fact, the total L2(Ω)-
deviations between E∗ and E450 are nearly identical, while the total deviations in
the gradient are higher in the simply supported case than in the clamped one. The
oscillations along the boundary ∂Ω in both cases are caused by the attempt to satisfy
the boundary condition

∂Ek
∂n

= 0

due to the initial guess (4.9); compare to (4.5).
Not knowing the boundary values of the solution E∗ (as in the previous example),

one might think of an iteration procedure that ignores them entirely. For that purpose
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Fig. 7. E450, simply supported example.
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Fig. 8. E450, clamped example.

0 10 20 30 40 50 60 70
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fig. 9. (4.13) vs. k, simply supported vs.
clamped.
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Fig. 10. (4.10) vs. k, simply supported vs.
clamped.

we could use the L2(Ω)-inner product in the left-hand side of (4.3), resulting in the
update rule

Ēk = −
{

(wkxx(w
δ − wk)xx + wkyy(w

δ − wk)yy)(4.12)

+
1

2
(wkxx(w

δ − wk)yy + wkyy(w
δ − wk)xx)

+ wkxy(w
δ − wk)xy

}
in Ω.

Algorithm (4.12) can be related to the abstract formulation (3.8) by building the
adjoint of the iteration operator L(Eδk) with respect to only the rougher space L2(Ω).
As opposed to (4.4), equation (4.12) does not describe a boundary value problem for
the update Ēk. Though the parameters are still considered as elements belonging to
H1(Ω), boundary traces of the initial guess are not maintained during the iteration (at
least not in an obvious way). Figures 9 and 10 show the performance of the iteration
when using only the update rule (4.12), where the relative error

‖E∗ − Ek‖L2(Ω)

‖E∗‖L2(Ω)
(4.13)

is plotted versus k in Figure 9, while the error (4.10) with respect to H1(Ω) is recorded
in Figure 10. The error behavior of the outputs wk is similar to that shown in
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Fig. 11. E69, simply supported example.
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Fig. 12. E69, clamped example.
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Fig. 13. E69, top view, simply supported.
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Fig. 14. E69, top view, clamped.

Figure 4; hence we concentrate on only the parameters Ek. The L2(Ω)-error in the
simply supported situation (lower line) now lies below its clamped counterpart (upper
line), a ranking opposed to that shown in Figure 3. Regarding the H1(Ω)-norm, the
iteration shows a divergent behavior; i.e., the error increases from the very beginning,
leading to highly oscillating parameters, as illustrated in Figures 11 and 12. In these
figures, dark shading means small errors, while light tone represents large deviations
from the true parameter. Views of the computed solutions from above are given in
Figures 13 and 14; a comparison to the elliptic and hyperbolic regions (see Figures
1 and 2) in the respective parameter PDE shows that its mixed type is reflected in
the error structure of the iterative solutions. The parabolic line in Figure 1 is clearly
observable in Figure 13, but the two parabolic lines bordering the hyperbolic ring in
Figure 2 are also reflected in Figure 14. In particular the parabolic points lying on
∂Ω are highlighted: While in the simply supported example the iterates stay with the
initial value of E0 at the parabolic midpoints of each side of the frame and exactly
reach the solution at the very corners, the parameters are left completely unchanged
at the parabolic corners in the clamped case.

From the discussion of the direct approach in section 3 we know that the second
derivatives of any solution of the direct problem, i.e., especially wkxx, wkyy, and
wkxy, vanish at the parabolic boundary points, both in the simply supported and
the clamped situation. Hence, the right-hand side in (4.12) is zero at these points
such that the initial guess E0 cannot change there, explaining the behavior shown in
Figures 11 and 12 along ∂Ω. For that reason, these results cannot be improved by
choosing a finer grid when staying with (4.12); on the contrary, the peaks would get
even sharper. Concerning the interior of Ω, the parabolic lines for wk are not fixed
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Fig. 15. (4.10) vs. k.
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Fig. 16. (4.11) vs. k.

but tend during the iteration towards those of the target ŵ, as shown in Figures 1
and 2. Hence, their influence on (4.12) is not as strong as that of the nonchanging
parabolic boundary points, at which the peaks in Figures 11 and 12 are highest.

We summarize our observations by

Ēk ≈ 0 ⇔ ∆̄ = 0,

where ∆̄ is the discriminant of the parameter PDE (3.23), finally suggesting that the
parameter cannot be identified along the parabolic lines determined by ∆̄ = 0. This
lack of identifiability also exists during the iteration based on update (4.4), (4.5) but
is then blurred out due to the smoothing effect of the PDE for Ēk.

Considering the direct approach for solving the inverse problem via the second-
order PDE (3.23), the question of whether or what kind of boundary conditions on E
should be prescribed is unanswered. This automatically translates into an uncertainty
about the “right inner product” for the left-hand side in (4.3). However, as opposed to
the direct approach, the iterative process at least allows us to test several choices. So
far, we have considered two possibilities, namely, the neglect of boundary conditions
via (4.12) and the prescription of Neumann data via (4.5). Aiming at a smooth
approximation of the parameter—motivated by the motivating sag bending process
and only then suitable for translation into a heating procedure—the latter variant is
certainly preferable. If the boundary values of the solution (or the desired) E∗ are
given, we could use this information by a further manipulation of the iterative process
(4.2). Restricting the test functions h in (4.3) from the space H1(Ω) to H1

0 (Ω), we
again can interpret (4.3) as the weak formulation of the elliptic PDE (4.4) for the
update Ēk but now with

Ēk = 0 on ∂Ω(4.14)

as its boundary condition. Then the Dirichlet traces of the initial guess E0 are main-
tained during the iteration. In terms of formulation (3.8), equation (4.4) in combina-
tion with (4.14) can be understood as building the adjoint of the iteration operator
with respect to H1

0 (Ω).
The course of the iteration using (4.14) with an initial guess

E0 = E∗ +
3

2
sin(πx) sin(πy)

is recorded in Figures 15 and 16. The relative errors in the parameter and the output
now are nearly identical in the simply supported (lower line) and the clamped situation
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Fig. 17. E∗ − E53, simply supported, top view.
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Fig. 18. E∗ − E53, clamped, top view.

Table 4.1

The data error.

δ
‖wδ−ŵ‖

‖ŵ‖
‖wδ−ŵ‖

H1(Ω)

‖ŵ‖
H1(Ω)

‖wδ−ŵ‖
L2(Ω)

‖ŵ‖
L2(Ω)

w = wS 0.292 0.293 0.012 0.001
w = wC 0.417 0.29 0.02 0.002

(upper line); furthermore, they are (of course) lower than their counterparts from
Figures 3 and 4. Nevertheless, the difference between the simply supported and the
clamped examples becomes apparent when viewing the absolute error between E∗ and
the respectively computed parameters E53 from the top, as illustrated in Figures 17
and 18. Once again, the structure of the mixed type parameter PDE (3.23) is reflected
in the results obtained by the iterative parameter identification method.

Finally, we briefly comment on the influence of data perturbations on the inverse
windshield problem. Staying with the update rule (4.14), which led to the best re-
sults in the noise free situation, we now consider random perturbations wδC and wδS
of the exact data (4.6) and (4.7). The respective relative data errors are given in
Table 4.1. Though the errors are about 29% when measured with respect to the
full H2(Ω)-norm, they are less than 0.5% if the perturbations are considered only in
L2(Ω). The numbers in the table also show that for approximating the given target
shield (whether exact or perturbed) the full H2(Ω)-norm is indeed the appropriate
one. Only then can errors in the second-order derivatives and the related curvature
terms be minimized, which is essential for the optical quality of the windshield. Fig-
ures 19 and 20 now show the behavior that is typical for any iterative parameter
identification method in the presence of data noise. While the relative error (4.11)
(with ŵ replaced by wδ) in the output is monotonically decreasing, the error in the
parameter shows a semiconvergent behavior (even though the true boundary values
were fixed). Hence, a reliable approximation of E∗ can be obtained only by stopping
the iteration at the right time, for instance, according to the discrepancy principle
(3.6). Furthermore, Figure 19 indicates that the iteration for the clamped case (upper
line) is more sensitive to data perturbations than for the simply supported one (lower
line).

The theoretical and numerical results presented in this paper clearly demonstrate
that the inverse windshield problem (3.2) can be solved in a stable way by the deriva-
tive free iteration method (3.8) under natural assumptions and with minimal effort.
Furthermore, we have seen that the direct approach, though methodologically differ-
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ent and (so far) not admitting a numerical implementation, is coupled to the iteration.
A better understanding of its mixed type structure is of mathematical interest in its
own right, but might also help to further improve the performance of the iterative
algorithm.
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[9] P. Kügler, A Derivative-Free Landweber Iteration for Parameter Identification in Elliptic
Partial Differential Equations with Application to the Manufacture of Car Windshields,
Ph.D. thesis, Johannes Kepler Universität Linz, Austria, 2002.

[10] W. Litvinov, Optimization in Elliptic Problems with Applications to Mechanics of Deformable
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Abstract. The quasi-one-dimensional Euler equations in a duct of variable cross section form
probably one of the simplest nonconservative systems. We consider the Riemann problem for it and
discuss its properties. In particular, for some initial conditions, the solution to the Riemann problem
appears to be nonunique. In order to rule out the nonphysical solutions, we provide two-dimensional
computations of the Euler equations in a duct of corresponding geometry and compare them with
the one-dimensional (1D) results. Then, the physically relevant 1D solutions satisfy a kind of entropy
rate admissibility criterion.
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1. Introduction. In recent decades, considerable attention has been paid to
both theoretical and numerical investigations of systems of conservation laws. This
interest is caused by a wide range of applications for conservation laws, like fluid
mechanics, astrophysics, meteorology, etc. However, there is an important class of
problems which is described by the nonconservative systems, i.e., systems which can-
not be written in divergence form. The example which we have in mind is two-phase
flows.

The theory of nonconservative systems is still under development. The same can
be said about the numerical methods for such systems. Here, we consider probably
one of the simplest nonconservative systems, the system of the Euler equations in a
duct of variable cross section. In [4] we have shown that this system can be formally
obtained from the Baer–Nunziato model of two-phase flows [5], which describes the
flame spread and the deflagration-to-detonation transition (DDT) in gas-permeable,
reactive granular materials. Therefore, the results of [4] to a certain extent will also
hold for the Euler equations in a duct of variable cross section. Conversely, a number
of results which we present here are also valid for the Baer–Nunziato model in [4].

One can distinguish two parts in the system of Euler equations in a duct. These
are a strictly hyperbolic system and an additional equation, which states that the cross
section does not change in time. The resulting system appears to be only nonstrictly
hyperbolic, with the resonant behavior when one of the nonlinear wave families has a
zero wave speed. Such resonant systems have been studied before; see Isaacson and
Temple [14, 15] and the references therein. We refer also to a recent work of Goatin
and LeFloch [12] for a study of the Riemann problem for nonconservative resonant
systems.

There are several difficulties concerning the solution of nonconservative systems.
Due to the presence of nonconservative terms, one cannot use the definition of a weak
solution from the theory of conservation laws. A general definition based on the theory
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of nonconservative products was given in Dal Maso, LeFloch, and Murat [10]. In the
particular case of the Riemann problem for the Euler equations in a duct, it appears
that the system of governing equations is locally equivalent to some conservative
system. This allows us to give a corresponding definition of the weak solution; see
section 3.

It appears that, for certain initial conditions, the solution to the Riemann problem
is not unique, despite the fact that all shocks locally satisfy a usual entropy criterion.
We discuss the conditions which lead to nonuniqueness. For the selection of a phys-
ically relevant solution we compare some examples with two-dimensional (2D) duct
flow computations. It appears that the 1D solutions picked out by 2D computations
satisfy a kind of entropy rate admissibility criterion in analogy to that of Dafermos [8].

The paper is organized as follows. In section 2 we carry out the characteristic
analysis of the system of governing equations. In section 3 we introduce the notion
of a weak solution for the Riemann problem. In section 4 we discuss the structure
of the Riemann solution and point out the conditions which lead to uniqueness and
nonuniqueness. Finally, in section 5 we propose a criterion in order to select the
physically relevant solution to the Riemann problem. We justify this criterion by
comparing the 1D exact solutions with the computations of the Euler equations in a
duct of corresponding geometry, averaged over the cross section.

2. Mathematical analysis. The system of Euler equations in a duct of variable
cross section can be written in the following form:

ut + f(u)x = h(u)Ax,(2.1)

where

u =

⎡
⎢⎢⎣

A
Aρ
Aρv
AρE

⎤
⎥⎥⎦ , f(u) =

⎡
⎢⎢⎣

0
Aρv

A(ρv2 + p)
Av(ρE + p)

⎤
⎥⎥⎦ , h(u) =

⎡
⎢⎢⎣

0
0
p
0

⎤
⎥⎥⎦ .(2.2)

In (2.1), A = A(x) is the variable cross section, ρ is the density, v the velocity, p the
pressure, and E = e + v2/2 the specific total energy. We assume that the gas obeys
the stiffened gas equation of state (EOS)

e =
p+ γπ

ρ(γ − 1)
,(2.3)

where γ and π are thermodynamic constants. When π = 0, we recover the usual ideal
gas EOS.

Usually, the cross section A = A(x) is assumed to be given a priori; see, e.g.,
Zucrow and Hoffman [18]. In (2.1), we consider it as an additional unknown, and we
add the trivial equation At = 0 to determine it. The advantages of this approach are
twofold. First, the system (2.1) belongs to the class of resonant systems; see Isaacson
and Temple [14, 15]. Thus, one can use the results of [14, 15] for the system (2.1).
Secondly, as we have noted in [4], system (2.1) can be formally obtained from the
governing equations for the Baer–Nunziato model of two-phase flows [5]. Since sys-
tem (2.1) is much simpler than the two-phase flow model [5], one can gain deeper
insight into the structure of the model [5] by studying (2.1).

A particular issue about system (2.1) is the presence of the nonconservative term
p ∂A/∂x. Due to this term, one cannot write (2.1) in divergence form. Consequently,
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one cannot define a weak solution and find the Rankine–Hugoniot conditions in the
usual way, as it is done for systems of conservation laws.

In what follows, we will consider the Riemann problem for (2.1), i.e., equip it
with piecewise constant initial data

u(x, 0) =

{
uL, x ≤ x0,

uR, x > x0.
(2.4)

As usual, we will assume that the Riemann problem (2.1), (2.4) admits self-similar
solutions, i.e.,

u(x, t) = u(ξ), ξ =
x− x0

t
.(2.5)

To carry out the characteristic analysis of (2.1), it is convenient to use the prim-
itive variables

v = (A, ρ, v, η)T ,(2.6)

where η = (p + π)/ργ is the isentrope. Then, for smooth solutions, the system (2.1)
is equivalent to

vt + A(v)vx = 0,(2.7)

where

A =

⎡
⎢⎢⎢⎣

0 0 0 0
ρv/A v ρ 0

0 c2/ρ v
1

ρ

∂p

∂η
0 0 0 v

⎤
⎥⎥⎥⎦ ,(2.8)

and c =
√
γ(p+ π)/ρ is the sound speed. The eigenvalues of A are

λ0 = 0, λ1 = v − c, λ2 = v, λ3 = v + c,(2.9)

and the corresponding eigenvectors are

r0 =

⎡
⎢⎢⎣
A(v2 − c2)/(vc2)

−vρ/c2
1
0

⎤
⎥⎥⎦ , r1 =

⎡
⎢⎢⎣

0
1

−c/ρ
0

⎤
⎥⎥⎦ , r2 =

⎡
⎢⎢⎢⎣

0

−∂p
∂η
0
c2

⎤
⎥⎥⎥⎦ , r3 =

⎡
⎢⎢⎣

0
1
c/ρ
0

⎤
⎥⎥⎦ .(2.10)

Note that situations are possible in which one of λ1, λ2, or λ3 coincides with λ0.
Moreover, when λ1 or λ3 coincide with λ0, the corresponding eigenvectors become
linearly dependent. In this case a parabolic degeneracy occurs. To summarize, the
system of governing equations (2.1) is hyperbolic away from the points where either
λ1 = λ0 or λ3 = λ0. Note that system (2.1) is nonstrictly hyperbolic when λ2 = λ0.

We can easily see that the 1-, 2-, and 3-characteristic fields are exactly the same as
for the usual one-dimensional Euler equations. The 1- and 3-characteristic fields are
genuinely nonlinear, and the 2-field is linearly degenerate. The Riemann invariants
for these fields coincide with those of the Euler equations.
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It is obvious that the 0-characteristic field is linearly degenerate. In the solution
to the Riemann problem (2.1), (2.4), this field corresponds to a stationary contact
discontinuity. The condition At = 0 in (2.1) implies that A can have a jump only
across the stationary 0-contact and is constant to the left and to the right of it.
Therefore, away from the 0-contact the term p ∂A/∂x disappears, and we are left
with a conservation law there. Then, for a shock wave with nonzero speed, we can
use the usual Rankine–Hugoniot conditions.

Using the expression for the eigenvector r0, we can find the following two 0-
Riemann invariants, which are constant across the 0-contact,

η = const,
(2.11)

v2

2
+

c2

γ − 1
= const .

In order to find the third one, we can, e.g., rewrite the system (2.1) in matrix form,

ut + B(u)ux = 0,

where u is given by (2.2), and calculate the eigenvectors of B. Then the third 0-
Riemann invariant is

Aρv = const .(2.12)

The three relations (2.11), (2.12) express the constancy of entropy, Bernoulli’s law,
and conservation of mass, respectively.

There exist at most two solutions to the system (2.11), (2.12); see [2]. We deter-
mine which solution will be admissible using the following criterion.

Definition 2.1 (evolutionarity criterion). Consider a discontinuity Σ in a phys-
ical flow, which is governed by a d× d hyperbolic system. Denote the number of char-
acteristics incoming to Σ by n and coinciding with Σ by c. Further, denote the number
of unknown variables on both sides of Σ together with the speed of Σ by N = 2d+ 1,
and the number of relations across Σ by m. Then Σ is called evolutionary if

N = n+ c+m.

For the evolutionary discontinuity Σ, all N variables on it can be found using n+c
relations along the incoming and coinciding characteristics, and m relations across Σ.
Therefore, Σ is well determined in the flow; i.e., it evolves in time.

The notion of evolutionarity goes back to at least Landau and Lipschitz [16,
paragraph 88], who studied the stability of shock waves in gas dynamics. Evolutionary
discontinuities are discussed in the context of magnetohydrodynamics [11] and two-
phase flow [4].

In order for a contact discontinuity to be evolutionary, the number of characteris-
tics impinging on it from the one side must be equal to the number of characteristics
leaving it from the other side. For a 0-contact in the solution to the Riemann prob-
lem (2.1), (2.4), this is equivalent to the fact that the eigenvalues (2.9) on both sides
of the 0-contact do not change their sign.

For a strictly hyperbolic system, the evolutionarity criterion is equivalent to the
Lax shock condition. For resonant hyperbolic systems, i.e., for systems of type (2.1),
it is equivalent to the criterion of Isaacson and Temple [14, 15]; see also Goatin and
LeFloch [12]. For proofs of the above statements, see [2].



882 NIKOLAI ANDRIANOV AND GERALD WARNECKE

1-rarefaction

0-contact 2-contact

3-shock

xx0

t ξ0 ξ1

Fig. 1. A typical Riemann problem for the 1D Euler equations in a duct.

3. Weak solution to the Riemann problem. As we have mentioned above,
for the Riemann problem (2.1), (2.4) the nonconservative term p ∂A/∂x plays a role
only across one wave in the solution, the stationary 0-contact. In the rest of domain,
A is constant and equal to its left or right value. Therefore, everywhere away from
the stationary contact the system (2.1) reduces to the usual 1D Euler equations

ut + f(u)x = 0,(3.1)

where

u =

⎡
⎣ ρ
ρv
ρE

⎤
⎦ , f(u) =

⎡
⎣ ρv
ρv2 + p
v(ρE + p)

⎤
⎦ .(3.2)

For the system (3.1), we can define a weak solution in the usual manner.
On the other hand, across the stationary contact, the relations (2.11), (2.12)

hold. Let us look for a conservative system of equations such that the Rankine–
Hugoniot conditions for this system are exactly (2.11), (2.12). Remember that across
the stationary contact the flow is isentropic; see (2.11). As long as some other waves
do not coincide with the stationary contact, we can choose a small sector around the
stationary contact where the flow is isentropic, too. Consider Figure 1 for a typical
Riemann problem. The solution in the sector, bounded by the rays ξ0 and ξ1 around
the stationary contact, is governed by the relations (2.11), (2.12). In the left and right
parts of this sector, system (2.1) is equivalent to the system

At = 0,

(Aρ)t + (Aρv)x = 0,
(3.3)

(AρE)t + (Av(ρE + p))x = 0,

ηt + vηx = 0.

Note that the last equation in (3.3) is trivially satisfied everywhere in the sector, since
the flow is isentropic there. Therefore, system (3.3) may be rewritten as

Ut + F(U)x = 0,(3.4)

where

U =

⎡
⎣ A
Aρ
AρE

⎤
⎦ , F(U) =

⎡
⎣ 0

Aρv
Av(ρE + p)

⎤
⎦ .(3.5)



RIEMANN PROBLEM FOR COMPRESSIBLE DUCT FLOW 883

The Rankine–Hugoniot conditions for this system across a zero-speed discontinuity,
augmented with the condition η = const, are exactly the relations (2.11), (2.12).
Since the system (3.4) is in divergence form, we can use the usual definition of a weak
solution for it. Note that the approach we have used here is exactly the same as that
of [4].

Consider a system of conservation laws

ut + f(u)x = 0,(3.6)

where the pair (u, f(u)) are either (u, f(u)) in (3.2) or (U,F(U)) in (3.5), and let us
restrict ourselves to self-similar solutions u(x, t) = u(ξ), ξ = (x−x0)/t of that system.
Then, for the smooth solutions, system (3.6) is equivalent to

−uξξ + f(u)ξ = 0.(3.7)

Consider the Riemann problem for (3.7); i.e., augment (3.7) with constant initial data

u(−∞) = uL, u(∞) = uR.(3.8)

If we multiply (3.7) by a test function φ ∈ C1
0 (]ξ0, ξ1[) and integrate over all ξ, we get

∫ ξ1

ξ0

(u(φ ξ)ξ − f(u)φξ) dξ = 0.(3.9)

Now u does not need to be differentiable anymore, and we can use it to define a
weak solution to the Riemann problem (3.7), (3.8). Remember, that locally the non-
conservative system (2.1) can be reduced to a conservative one, either (3.1) or (3.4).
Thus, we can give a definition of a global weak solution to the Riemann problem (2.1),
(2.4) as a composition of the weak solutions to the conservative systems (3.1) and (3.4).

Definition 3.1. Consider a sector, bounded by the rays ξ0 and ξ1, such that
the stationary contact lies in it, and assume that it is the only ray of discontinuity
there. Then, a function u = u(ξ) ∈ L∞

loc(R) is called a weak solution of the Riemann
problem (2.1), (2.4) if for any small ε > 0 the following hold:

1. To the left of ξ0, i.e., ξ ∈ ] −∞, ξ0],∫ ξ0

−∞
(u(φ ξ)ξ − f(u)φξ) dξ = 0 for all φ ∈ C1

0 (] −∞, ξ0 + ε[),

u(ξ) = u(x, t), f(u) = f(u), and u, f(u) are given by (3.2).
2. To the right of ξ1, i.e., ξ ∈ [ξ1,∞[,∫ ∞

ξ1

(u(φξ)ξ − f(u)φξ) dξ = 0 for all φ ∈ C1
0 (]ξ1 − ε,∞[),

u(ξ) = u(x, t), f(u) = f(u), and u, f(u) are given by (3.2).
3. Inside of the sector, bounded by ξ0 and ξ1, i.e., ξ ∈ [ξ0, ξ1],∫ ξ1

ξ0

(u(φ ξ)ξ − f(u)φξ) dξ = 0 for all φ ∈ C1
0 (]ξ0 − ε, ξ1 + ε[),

u(ξ) = U(x, t), f(u) = F(U), and U, F(U) are given by (3.5).
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Remark 1. Note that, in the sector bounded by ξ0 − ε and ξ0 + ε, statements 1
and 3 coincide, and in the sector bounded by ξ1−ε and ξ1 +ε, points 2 and 3 coincide.

Remark 2. In [10], Dal Maso, LeFloch, and Murat introduce a notion of the
nonconservative product and give a definition of a weak solution to a general noncon-
servative system on its basis. In particular, this applies also to the system (2.1). In
contrast to the definition of [10], we have used some physical observations in Defini-
tion 3.1, which are valid only for systems of a certain structure like (2.1) or for the
Baer–Nunziato model we considered in [4]. Therefore, Definition 3.1 might be helpful
in choosing a criterion for a physically admissible solution to the Riemann problem
for such systems.

4. Nonuniqueness of the Riemann solution. It appears that the solution to
the Riemann problem (2.1), (2.4) is in general nonunique; for the same left and right
states uL, uR, one can get completely different Riemann solutions. As was pointed
out by Isaacson and Temple [15], the reason for this behavior is that system (2.1)
is nonstrictly hyperbolic and nonconservative. For system (2.1) without the term
p ∂A/∂x, i.e., for a nonstrictly hyperbolic conservative system, they showed that the
Riemann solution is unique in a neighborhood of a state where one of the nonlinear
wave speeds vanishes. On the other hand, there are examples of nonstrictly hyperbolic
systems that are conservative but still have a nonunique Riemann solution; see, e.g.,
Dafermos [9, Chapter IX].

The solution to the Riemann problem (2.1), (2.4) becomes nonunique when the
mutual position of the waves, configuration of the Riemann problem, can change; see
Figure 2 for the four possible cases. The problem of nonuniqueness arises from the
fact that for certain sets of initial data more than one configuration is possible. In this
light it makes sense to consider the conditions that lead to the different configurations
of the Riemann problem.

uL

uLuL

uL uR

uRuR

uR

u0u0

u0

u1

u1u1

u∗
0

u∗
1

λ1

λ1

λ1

λ1 λ2

λ2

λ2

λ2
λ3

λ3

λ3

λ3

λ0

λ0λ0

λ0

Configuration A Configuration B

Configuration C Configuration D

Fig. 2. Possible configurations of the Riemann problem.
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In what follows, we will make extensive use of the wave curves for the Riemann
problem (2.1), (2.4). These are the curves in the (v, p)-plane which represent the
states which can be connected to uL, uR by the admissible waves. It can be shown
that the 1-curve, shock or rarefaction, is strictly increasing, and the 3-curve is strictly
decreasing; see, e.g., Godlewski and Raviart [13]. Further, the left and right states
of the 2-wave are projected to the same point in the (v, p)-plane. Therefore, the
Riemann problem for the usual Euler equations (2.1), (2.4) with AL = AR has a
unique solution; see, e.g., [13, Theorem 3.1, p. 134].

In the solution of the Riemann problem with AL �= AR, a jump appears across
the stationary contact λ0; i.e., there is a new wave in the solution of the Riemann
problem. In [4], we have shown that the flow inside this wave is analogous to the
stationary isentropic flow in the converging-diverging nozzle. For convenience, we
repeat the main consequences of this fact here as follows:

• the stationary contact can be viewed as a porous film of infinitesimal thick-
ness;

• each pore is a converging-diverging nozzle, and the cross sections on each side
of it are AL and AR, respectively;

• the velocity inside a pore does not change its sign; moreover, if the flow is
sub(super)sonic at the inlet, it is also sub(super)sonic at the outlet;

• in the direction of increasing cross section, the gas flow is accelerated and
expanded when it is supersonic, and decelerated and compressed when it is
subsonic.

For a given left state u0 of the stationary contact we can represent the 0-wave curve
parametrically by A as follows:

⎧⎪⎨
⎪⎩

ρ = ρ(A;u0),

v = v(A;u0),

p = p(A;u0),

(4.1)

where the states must satisfy (2.11). The 3D curve (4.1) will be regular if the corre-
sponding derivatives are continuous, therefore locally bounded, and nonzero simulta-
neously, i.e., if the tangent vector does not vanish,

(
∂ρ

∂A
,
∂v

∂A
,
∂p

∂A

)
�= 0.(4.2)

We will formulate the following lemma under these conditions; later on, we will
discuss situations when they are violated.

Lemma 4.1. Consider the Riemann problem (2.1), (2.4) with the stiffened gas
EOS (2.3), and denote the states connected by the 0-wave by u0 and u1. Assume
that the conditions (4.2) are fulfilled. The flow velocity v inside the 0-wave does not
change its sign, and is either subsonic or supersonic everywhere in the flow. Denote
its signed Mach number by M = v

c . Then for the 0-wave curve (4.1) the following
statements are true:

1. The 0-wave curve is strictly increasing (decreasing) in p if v < 0 (> 0).
2. The 0-wave curve is convex (concave) with respect to p if |M| > 1 (< 1).
3. For increasing (decreasing) velocities and pressures in u0, the velocities and

pressures in u1 also increase (decrease) and vice versa.
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4. For the states u0 and u1,⎧⎨
⎩

ρ0 → ρ̄,
v0 → 0,
p0 → p̄,

⇐⇒
⎧⎨
⎩

ρ1 → ρ̄,
v1 → 0,
p1 → p̄

for all ρ̄, p̄ > 0.
Proof. We take (4.1) and fix u0 so that ρ, v, and p depend only on A. Since the

flow inside the 0-wave is analogous to the converging-diverging flow (see [4]), we take
the following relations from Courant and Friedrichs [7, (145.05) and (145.08)]:

dA

A
+
dρ

ρ
+
dv

v
= 0,(4.3)

dA

A
=

(
v2

c2
− 1

)
dv

v
,(4.4)

where A is the variable cross section of a pore (see above) and ρ, c, and v are the
corresponding parameters of the flow in the pore. Then (4.4) leads to

dv

dA
=

vc2

A(v2 − c2)
.(4.5)

By the definition of the sound speed

dp

dρ

∣∣∣∣
η

= c2, i.e.,
dρ

ρ
=

dp

ρc2
.

Substituting this into (4.3), we obtain

dp

dA
= ρc2

(
− 1

A
− 1

v

dv

dA

)
= − ρv2c2

A(v2 − c2)
.(4.6)

Analogously,

dρ

dA
= − ρv2

A(v2 − c2)
.(4.7)

Now we see when the 0-wave curve will be regular, i.e., the conditions (4.2) will
be fulfilled. From (4.5), (4.6), and (4.7) it follows that this will happen when either

v �= 0 or |v| �= c.(4.8)

From now on, when discussing 0-wave curves, we will always assume that the condi-
tions (4.8) are fulfilled unless stated otherwise.

Consider the system of ordinary differential equations (4.5), (4.6), (4.7):

d

dA

⎛
⎝ρv
p

⎞
⎠ =

1

A(v2 − c2)

⎛
⎝ −ρv2

vc2

−ρv2c2

⎞
⎠(4.9)

with the initial data ⎧⎨
⎩

ρ(A0) = ρ0,
v(A0) = v0,
p(A0) = p0.
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p

v

Fig. 3. The 0-curves in the (v, p)-plane, parametrized with A, connect the states u0 and u.
Depending on v0 and M0, the curves exhibit different behavior.

A straightforward calculation shows that, under conditions (4.8), the functions on
the right-hand side of (4.9) are differentiable for A > 0. Then by the existence
and uniqueness theorem there exists a unique integral curve of (4.9) as long as the
right-hand side is Lipschitz continuous. This curve is nothing else but the 0-wave
curve, passing through the point u0. Note that all states with v = 0 are stationary
points of the system (4.9). Therefore, the solutions may approach such states only
asymptotically.

From (4.5) and (4.6) we obtain

dp

dv
= −ρv,

and thus the statement 1 is proved.

For the proof of the statement 2 we calculate, using (4.5) and (4.6),

d2p

dv2
= −dρ

dv
v − ρ = ρ

(
v2

c2
− 1

)
,

which gives the desired result. The possible 0-waves are presented in Figure 3.

Using η = p+π
ργ in the relations (2.11) across the 0-wave, we get

v1 = v0
A0

A1

(
p0

p1

)1/γ

,

p1 = p0

(
A0v0
A1v1

)γ
.

Note that v0 and v1 always have the same sign; cf. (2.11). Differentiating the above
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equations with respect to v0 and p0, respectively, we get

∂v1
∂v0

=
A0

A1

(
p0

p1

)1/γ

> 0,

∂p1

∂p0
=

(
A0v0
A1v1

)γ
> 0,

thus proving statement 3.
For statement 4, it is enough to prove only “=⇒”, since the statement is sym-

metric with respect to subscripts 0 and 1. Using η = p+π
ργ and c2 = γ(p+π)

ρ in the

relations (2.11), we obtain

A0(p0 + π)1/γv0 = A1(p1 + π)1/γv1,(4.10)
p0 + π

ργ0
=
p1 + π

ργ1
,(4.11)

v2
0

2
+
γη1/γ(p0 + π)1−1/γ

γ − 1
=
v2
1

2
+
γη1/γ(p1 + π)1−1/γ

γ − 1
.(4.12)

First, we wish to show that p1 remains bounded, i.e., p1 �→ ∞. We prove this by
contradiction, i.e., assuming that p1 is unbounded. Then by statement 1 the pressure
p1 must exceed p0, p1 > p0. Using that the left-hand side of (4.12) is bounded, the
estimate

v2
1

2
+
γη1/γ(p1 + π)1−1/γ

γ − 1
>
γη1/γ(p1 + π)1−1/γ

γ − 1

will give us the desired result that p1 < const, since γ, π > 0 are constants, and η is
constant along the 0-curve.

Now (4.10) implies that v1 → 0. Using this in (4.12), we get p1 → p̄. Finally,
by (4.11) we also have ρ1 → ρ̄, which proves statement 4.

Let us represent in the (v, p)-plane the possible scenarios of the solution of the
Riemann problem (2.1), (2.4) which can lead to a solution in the form of Configura-
tion B; see Figure 2. For this configuration, the 0-wave is next to the 1-wave. In the
(v, p)-plane this means that the possible 0-curves necessarily start from the 1-wave
curve. The correct 0-wave curve, i.e., the one which gives the solution to the Riemann
problem (2.1), (2.4), connects the 1- and 3-curves in the (v, p)-plane. Figures 4 and 5
represent the wave curves for Configuration B.

Denote the states connected by the 0-curve by u0 and u1, and let u0 lie on
the 1-curve. Observe that not all states u0 come into consideration. Indeed, by
the definition of Configuration B, the velocities in the states u0 and u1 must be
nonnegative. In Configuration B the 1-wave has a nonpositive velocity, and therefore
the right-hand velocity v0 − c0 of its characteristic family must also be nonpositive,
v0 − c0 ≤ 0. In terms of the Mach number, this means that M0 ≤ 1. Therefore,
the candidates for u0 have necessarily 0 ≤ M0 ≤ 1. This gives rise to the following
definition.

Definition 4.2. Consider the Riemann problem (2.1), (2.4). Let us call the 3-
curve crossing the 1-curve in the point with v = 0 the left-bounding 3-curve. Further,
the following hold:

1. If AL < AR, consider the state u0 on the 1-curve with M0 = 1, connected
with the state u1 with M1 < 1 by the 0-wave. Let us call the 3-curve passing through
u1 the right-bounding 3-curve; see Figure 4.
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u0 with M0 = 1

u1 with
M1 < 1

S1

vv∗ > 0

p

1-curve

3-curve

correct 0-curve

left-bounding
3-curve

right-bounding
3-curve

Fig. 4. The wave curves for Configuration B with AL < AR.

2. If AL > AR, consider the state u0 on the 1-curve with M0 < 1, connected
with the state u1 with M1 = 1 by the 0-wave. Let us call the 3-wave passing through
this state u1 the right-bounding 3-curve; see Figure 5.

Remark 3. We cannot use the results of Lemma 4.1 in Definition 4.2, since the
parametrization (4.1) of the 0-wave will be singular for M = 1; cf. (4.8). However, tak-
ing v as the 0-curve parameter in a neighborhood of sonic points, i.e., replacing (4.9)
by the system

d

dv

⎛
⎝Aρ
p

⎞
⎠ =

⎛
⎝A (v2 − c2)/(vc2)

−ρv/c2
−ρv

⎞
⎠ ,

one can show that the length of the 0-wave curve remains finite.
Now we are ready to establish when the solution to the Riemann problem (2.1),

(2.4) in form of Configuration B is possible.
Theorem 4.3. Consider the Riemann problem (2.1), (2.4) with the stiffened gas

EOS (2.3). If the 1- and 3-curves intersect in the point (v∗, p∗) with v∗ > 0, then the
following scenarios are possible:

1. If the point (v∗, p∗) lies between the left- and right-bounding 3-curves of Def-
inition 4.2, then Configuration B is realizable for all uL on the 1- and for all uR on
the 3-curve. Moreover, the solution of this kind is unique, and Configuration C for
the same Riemann problem is not realizable.
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left-bounding
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right-bounding
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Fig. 5. The wave curves for Configuration B with AL > AR.

2. If the point (v∗, p∗) lies to the right of the right-bounding 3-curve, then there
exists no solution to the Riemann problem (2.1), (2.4) in form of Configuration B.

3. If Configuration A is realizable, then ML > 1.
4. If Configuration D is realizable, then MR < −1.

Proof. 1. For Configuration B the states u0 must lie on the 1-curve. They are
connected to the states u1 by 0-curves, such that these states u1 lie between the left-
and right-bounding 3-curves; see Figures 4 and 5. Denote the projection of the set of
all u1 to the (v, p)-plane by

S1 = {(v1, p1) : u1 = (A1, ρ1, v1, p1)
T };

see Figures 4, 5. The set S1 is defined pointwise, with each point (v1, p1) belonging
to different integral curves of (4.9). Therefore, S1 lies on the differentiable integral
surface, obtained by taking all integral curves of (4.9) such that u1 are between the
left- and right-bounding 3-curves.

Let us show that S1 itself is a differentiable curve. All points u1 are given implic-
itly by the system (2.11), which can be rewritten as

F1 := A1ρ1v1 −A0ρ0v0 = 0,

F2 :=
p1 + π

ργ1
− p0 + π

ργ0
= 0,(4.13)

F3 :=
v2
1

2
+

c21
γ − 1

− v2
0

2
− c20
γ − 1

= 0.
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u1
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1-curve1-curve

3-curve3-curve

Fig. 6. Configuration C is impossible if the 1- and 3-wave curves intersect in a state with
v∗ > 0. Left: case AL < AR. Right: case AL > AR.

The functions F1, F2, F3 are differentiable with respect to all their arguments for
ρ > 0, and the points u0 lie on the smooth 1-wave curve. We can calculate the
Jacobian determinant of the system (4.13):

J =

∣∣∣∣∂(F1, F2, F3)

∂(ρ1, v1, p1)

∣∣∣∣ = A1

ργ1
(c21 − v2

1).

Note that J �= 0 unless u1 lies on the right-bounding 3-curve, which is excluded by
the assumptions of the theorem. Then, by the implicit function theorem, S1 will be
a differentiable curve locally at every point (v1, p1).

From Lemma 4.1 it follows that the mapping (v0, p0) �→ (v1, p1) is one-to-one.
Since the points u0 lie on the strictly decreasing 1-wave curve, S1 will also be strictly
decreasing; see statement 3 of Lemma 4.1. Also, S1 will approach the point on the
1-curve with v = 0 asymptotically; see statement 4 of Lemma 4.1. Since the 3-wave
is strictly increasing, there exists a unique intersection point with S1; see Figures 4
and 5. This gives the solution to the Riemann problem (2.1), (2.4) in the framework
of Configuration B.

Let us show that Configuration C for the same Riemann problem (2.1), (2.4) is
impossible. Consider first the case AL < AR; see Figure 6 (left). If Configuration C
were realizable, then the 0-wave would be next to the 3-wave; see Figure 2. In the
(v, p)-plane, this means that the possible states u1 must lie on the 3-curve, and the
velocities in u1 would be negative. This follows from the fact that the eigenvalue v0
for the 2-wave is negative and sign v0 = sign v1. The states u1 with M1 < −1 are
not admissible by the definition of Configuration C. Indeed, then we would have
v1 + c1 < 0, so that the 3-wave is either a sonic rarefaction (i.e., there is a sign change
in the characteristic speed v + c) or a shock with negative speed. Both these cases
are excluded; see Figure 2. Note that the 0-wave, starting from the u1 on the 3-wave,
can never intersect the 1-wave, since for the case AL < AR it points in the opposite
direction; see Figure 6 (left).

Now consider the case AL > AR; see Figure 6 (right). The only possibility for
Configuration C to be realizable would be if the state u1 on the 3-curve with v1 < 0,
|M1| < 1 were connected with the 1-curve via the 0-curve. Assume that this is true,
i.e., there exists a state u1 with v1 < 0, |M1| < 1, connected to u0 with v0 < 0 on
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Fig. 7. Configuration B is impossible if the 1- and 3-wave curves intersect in a state with
v∗ > 0. Left: case AL < AR. Right: case AL > AR.

the 1-curve. Now let us move this state u1 towards the p-axis, so that it will become
some state ū1, connected with ū0 by the 0-curve. As we move closer to the p-axis, the
length L of the 0-curve, connecting ū1 with ū0, will remain positive by statement 3
of Lemma 4.1, since we have assumed that the 1- and 3-curves intersect in the point
with v∗ > 0; see Figure 6 (right). This contradicts statement 4 of Lemma 4.1, which
states that L should shrink to zero. Thus, we have a unique way of connecting the
1- and 3-curves in the form of Configuration B, which is the intersection point of S1

with the 3-curve.
2. This statement becomes obvious when we consider Figure 7. The 3-curve must

lie to the right of the right-bounding 3-curve. For the case AL < AR, the state u0 on
the 1-curve can be connected to a 3-curve only if M0 > 1; see Figure 7 (left). This
is impossible by the definition of Configuration B. Indeed, in case ML < 1 we would
have a sonic rarefaction in the solution of the Riemann problem. However, this is
only possible if AL = AR; see [4]. In case ML > 1, we would have Configuration A.

For the case AL > AR, the 0-curve can connect the 1- and 3-curves if either
(i) the 0-curve crosses the right-bounding 3-curve or
(ii) the state uL is supersonic with positive velocity, ML > 1.

For the first case, the 0-curve would connect the subsonic state u0 with a supersonic
one, which is impossible; see the properties of the 0-wave above. For the second case
we would have Configuration A.

3. We prove this statement by giving several examples, obtained with CON-
STRUCT [3]. Consider the Riemann problem for (2.1) with the following initial data:

AL ρL vL pL AR ρR vR pR
0.8 0.2069 3.991 0.07 0.3 0.1354 −3.1666 0.0833

,(4.14)

closed with the EOS (2.3) with γ = 1.4 and π = 0. The wave curves for this Riemann
problem are presented in Figure 8 (top). Observe that for these initial data both
Configurations A and B are possible. Configuration A is realized when the left state uL
is connected first to the state ū1 with the 0-curve, and ū1 is then connected with ū∗

via the 1-shock with speed s = 0.948 > 0. Note that if this speed were negative, then
Configuration A with these initial data would be not realizable; cf. Figure 2. Since the
intersection point of 1- and 3-curves lies between the left- and right-bounding waves
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Fig. 8. Top: the wave curves for the Riemann problem (2.1), (4.14). Bottom: the corresponding
wave configurations B and A in the (x, t)-plane.

(not shown in Figure 8), Configuration B is also possible. For this configuration, the
left state uL is connected with u0, and the latter is connected with u1. Both wave
configurations in the (x, t)-plane are shown in Figure 8 (bottom).

However, if we slightly modify the initial data (4.14), we can easily obtain a
Riemann problem with a unique solution. For instance, for the Riemann problem (2.1)
with initial data

AL ρL vL pL AR ρR vR pR
0.8 0.2069 3.0 0.2 0.3 0.1354 −3.1666 0.0833

,(4.15)

also closed with the EOS (2.3) with γ = 1.4 and π = 0, only Configuration B is
possible. Indeed, consider the wave curves for this Riemann problem in Figure 9.
Again, the state uL is first connected to the state ū1 with the 0-curve; from ū1,
we draw the 1-curve until the intersection with the 3-curve, passing through uR.
However, the corresponding wave will be a shock with negative speed s = −0.198.
Therefore, Configuration A is now not possible. Configuration D is not possible for
similar reasons. Since the 1- and 3-curves intersect between the corresponding left-
and right-bounding 3-curves (not shown in Figure 9), Configuration B is possible for
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Fig. 9. The wave curves the for the Riemann problem (2.1), (4.15).

the Riemann problem (2.1), (4.15). The waves in the (x, t)-plane for this Riemann
problem are shown in Figure 9 (right).

4. Consider the following Riemann initial data:

AL ρL vL pL AR ρR vR pR
0.3 0.2 3.3 1 0.8 0.2 −4 0.07

.(4.16)

Reasoning as above, we can show that the Riemann problem (2.1), (4.16), closed with
the EOS (2.3) with γ = 1.4 and π = 0, has a nonunique solution in form of either
Configuration B or Configuration D. The wave curves and the wave configurations
are shown in Figure 10.

For Configuration C, the results are completely analogous. The wave curves are
presented in Figures 11 and 12. As for Configuration B, one can introduce the left-
and right-bounding curves.

Definition 4.4. Consider the Riemann problem (2.1), (2.4). Let us call the
1-curve crossing the 3-curve in the point with v = 0 the right-bounding 1-curve.
Further,

1. if AL < AR, consider the state u1 on the 3-curve with |M1| < 1, connected
with the state u0 with M0 = −1 by the 0-wave. Let us call the 1-curve passing through
this state u0 the left-bounding 1-curve; see Figure 11.

2. if AL > AR, consider the state u1 on the 3-curve with M1 = −1, connected
with the state u0 with |M0| < 1 by the 0-wave. Let us call the 1-curve passing through
u0 the left-bounding 1-curve; see Figure 12.

Analogously to Theorem 4.3 we have the following result.
Theorem 4.5. Consider the Riemann problem (2.1), (2.4) with the stiffened gas

EOS (2.3). If the 1- and 3-curves intersect in the point (v∗, p∗) with v∗ < 0, then the
following scenarios are possible:

1. If the point (v∗, p∗) lies between the left- and right-bounding 1-curves of Def-
inition 4.4, then Configuration C is realizable, for all uL on the 1- and all uR on the
3-curve. Moreover, the solution of this kind is unique, and Configuration B for the
same Riemann problem is not realizable.

2. If the point (v∗, p∗) lies to the left of the left-bounding 1-curve, then there
exists no solution to the Riemann problem (2.1), (2.4) in form of Configuration C.

3. If Configuration A can be realized, then ML > 1.
4. If Configuration D can be realized, then MR < −1.
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Fig. 10. Top: the wave curves for the Riemann problems (2.1), (4.16). Bottom: the corre-
sponding wave configurations B and D in the (x, t)-plane.

Proof. The proof is analogous to that of Theorem 4.3.
Theorem 4.3 states that the solution to the Riemann problem (2.1), (2.4) will be

nonunique if for some initial data both Configurations B and A, or B and D, are real-
izable. Analogously, Theorem 4.5 says that for some initial data both Configurations
C and A, or C and D, are possible. In all these cases the nonuniqueness appears when
the mutual position of 0- and k-waves, k = 1, 3, changes. According to the analysis
of Isaacson and Temple [15] (see also Goatin and LeFloch [12]), there can be a third
wave configuration. It includes a “triple discontinuity,” which consists of the 0-wave
followed by a k-shock with zero speed, followed by another 0-wave. However, it is not
obvious whether such a “triple discontinuity” will be evolutionary. It is not clear how
to determine the number of relations across this discontinuity, as well as the number
of characteristics impinging on it or leaving it. Therefore, we do not consider such
“triple discontinuity” in the present work.

5. Which solution to take? To understand the origin of the nonuniqueness
of the Riemann solution for the Euler equations in a duct of variable cross section,
it is advantageous to consider analogous situations for other models. An immediate
example is given by the usual Euler equations of gas dynamics. They are obtained
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Fig. 11. The wave curves for Configuration C with AL < AR. If the point (v∗, p∗) lies between
the left- and right-bounding 1-curves, there exists a unique solution in the form of Configuration C.

as the inviscid approximation to (in general viscous) fluid flows. It is well known
that this approximation leads to nonunique discontinuous solutions, and therefore to
nonunique solutions for Riemann problems. One needs to use an additional criterion,
an entropy condition, in order to select the physically relevant solution. In fact, one
possible way of obtaining an entropy condition is to add a viscous term to the Euler
equations, i.e., to model the original viscous flow. Then the limit of solutions for
vanishing viscosity will yield the physical entropy solution; see, e.g., Godlewski and
Raviart [13].

For the Euler equations in a duct of variable cross section, the situation is some-
what analogous. In addition to neglecting viscosity, we have also neglected the
multidimensional (2D or 3D) effects. In this light it is not surprising that we ob-
tained nonuniqueness of the solutions to the Riemann problem. Roughly speaking,
we have lost too much information on the truly multidimensional flow. However, one
might hope to get a criterion for choosing the physically relevant solution by con-
sidering multidimensional effects, similarly to the limiting procedure for the usual
Euler equations. One possible way would be to add to the system of governing equa-
tions some terms that would model these effects. For example, these terms might
be obtained using the statistical ensemble averaging techniques in the spirit of re-
cent work of Abgrall and Saurel [1]. This could be an interesting topic of future
research.



RIEMANN PROBLEM FOR COMPRESSIBLE DUCT FLOW 897

u1 with M1 = −1

u0 with |M0| < 1

S0

vv∗ < 0

p

1-curve

3-curve

left-bounding
1-curve

right-bounding
1-curve

Fig. 12. The wave curves for Configuration C with AL > AR.

Here, we follow a more straightforward approach: We compare the results of the
quasi-one-dimensional Euler equations in a duct of variable cross section with mul-
tidimensional computations of the usual Euler equations in a tube of corresponding
geometry, averaged over the tube cross section. To this end, we employ the pop-
ular software package clawpack provided by LeVeque [6, 17]. In the calculations
below we have used clawpack with a second order method and Roe’s Riemann
solver.

5.1. Diverse Riemann problems for the 1D model.
Nonuniqueness between Configurations A and B. Consider the 1D Riemann prob-

lem (2.1), (4.14), which has already been studied in section 4. This problem has a
nonunique solution in the form of either Configuration A or Configuration B; see Fig-
ure 8. With clawpack, we solve the 2D analogue of this 1D Riemann problem, i.e.,
the usual Euler equations in the corresponding 2D computational domain. The 2D
solution on the 200 × 100 grid and the comparison of the averaged 2D solution with
the exact solution to the 1D Riemann problem (2.1), (4.14) are shown in Figure 13
(top). We see that the 1D model slightly overestimates the 3-shock speed. Also, due
to rich 2D motion in the left section of the domain, the 1D prediction of the position
of 1-shock is quite approximate. The same can be said about the approximation of
the flow near the jump in the cross section. However, the numerical solution clearly
picks up Configuration B in the 1D solution of the Riemann problem (2.1), (4.14);
see Figure 13.
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Fig. 13. Top: the density contours of the 2D solution to the Riemann problem (2.1), (4.14).
Middle: comparison of the averaged 2D solution (dots) with the 1D exact solution in the form of
Configuration B (line). Bottom: comparison of the averaged 2D solution (dots) with the 1D exact
solution in form of Configuration A (line).

Unique solution in the form of Configuration B. As we established in section 4, the
Riemann problem (2.1), (4.15) has a unique solution in form of Configuration B. The
comparison of the averaged 2D solution on a 100 × 100 grid with the exact solution
to the 1D Riemann problem is shown in Figure 14. Again, we observe that the shock
speeds are slightly different; however, the main features of the 2D flow are correctly
represented by the 1D model.

Nonuniqueness between Configurations B and D. The solution to the 1D Riemann
problem (2.1), (4.16) is nonunique: It can be either Configuration B or Configura-
tion D. Again, we calculate the corresponding 2D problem on a 100 × 100 grid and
obtain the results shown in Figure 15. We see that the exact 1D solution for Configu-
ration B perfectly fits the averaged 2D solution. On the other hand, the 1D solution
for Configuration D has nothing in common with the averaged 2D solution.
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Fig. 14. Top: the density contours of the 2D solution to the Riemann problem (2.1), (4.15).
Bottom: the comparison of the averaged 2D solution (dots) with the 1D exact solution (line).

5.2. A criterion for realizable solutions. The preceding computations show
that for all configurations of Riemann problems the 1D solution can differ significantly
from the 2D one. However, if the 1D solution to a Riemann problem is not unique,
the 2D calculations clearly pick out one of the 1D solutions. In what follows, we will
call the corresponding 1D Riemann solutions physically relevant. Let us investigate
what distinguishes these solutions from the physically nonrelevant ones.

A classical way to exclude physically irrelevant solutions is to use a notion of
entropy. However, one cannot use the entropy inequality used in the theory of con-
servation laws for the nonconservative system (2.1). In the particular case of the
Riemann problem, one can use the approach of section 3 to define the entropy in-
equality. Note also that locally each discontinuity in the solution to the Riemann
problems is entropy-satisfying; i.e., the entropy increases across shocks. However, it
does not help to rule out the physically irrelevant solutions. This suggests an idea of
using a global entropy condition.

A global entropy condition was proposed by Dafermos [8, 9], who called it the
entropy rate admissibility criterion. It states that not only should the entropy increase
but also it should be increasing at the maximum rate. The rigorous definition of this
criterion can be applied only for the conservation laws. However, we can use the
general idea for the nonconservative system (2.1) as well.

As a measure of the entropy increase rate, we use the jump in the isentrope η =
p+π
ργ across shocks. These jumps are always positive. Then, our calculations show

that physically relevant solutions, i.e., the ones picked out by 2D calculations, indeed
have the maximal increase in entropy in comparison with the other solutions. This
may be seen as an analogy of the entropy rate admissibility criterion of Dafermos [8].

Since the Euler equations in a duct can be formally obtained from the governing
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Fig. 15. Top: the density contours of the 2D solution to the Riemann problem (2.1), (4.16).
Middle: the comparison of the averaged 2D solution (dots) with the 1D exact solution in the form
of Configuration B (line). Bottom: the comparison of the averaged 2D solution (dots) with the 1D
exact solution in the form of Configuration D (line).

equations for the Baer–Nunziato model of two-phase flows [5], the solution to the
Riemann problem for the Baer–Nunziato model will in general also not be unique.
Therefore, the analysis of the Euler equations for a duct of variable cross section,
and in particular the above criterion, can help in investigating the properties of the
governing equations for the Baer–Nunziato model.
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COMPLETE ELECTRODE MODEL OF ELECTRICAL IMPEDANCE
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Abstract. In electrical impedance tomography one tries to recover the spatial admittance
distribution inside a body from boundary measurements. In theoretical considerations it is usually
assumed that the boundary data consists of the Neumann-to-Dirichlet map; when conducting real-
world measurements, the obtainable data is a linear finite-dimensional operator mapping electrode
currents onto electrode potentials. In this paper it is shown that when using the complete electrode
model to handle electrode measurements, the corresponding current-to-voltage map can be seen as
a discrete approximation of the traditional Neumann-to-Dirichlet operator. This approximating link
is utilized further in the special case of constant background conductivity with inhomogeneities: It
is demonstrated how inclusions with strictly higher or lower conductivities can be characterized by
the limit behavior of the range of a boundary operator, determined through electrode measurements,
when the electrodes get infinitely small and cover all of the object boundary.

Key words. electrical impedance tomography, inverse boundary value problems, electrode
models, variational principles
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1. Introduction. The problem of electrical impedance tomography is as follows:
Gather information about the admittance tensor σ in the elliptic equation

∇ · σ∇u = 0 in Ω

using measurements of current and potential on the boundary ∂Ω. In mathematical
analysis of this problem it is usually assumed that the obtainable data are all possible
pairs of Neumann and Dirichlet boundary values, i.e., the linear Neumann-to-Dirichlet
map. In particular, all uniqueness and reconstruction results have been formulated
using this so-called continuum model (CM)—for more details we refer to the review
paper [1]. However, when conducting real-life measurements with electrodes, one can
control only the net currents through certain surface patches and measure the corre-
sponding potentials on the electrodes, and so the real-life data consists, essentially, of
a finite-dimensional linear electrode current-to-electrode voltage operator.

In this work we model the electrode measurements with the complete electrode
model (CEM) [9], which has been shown to predict experimental data reasonably
well [9] and also give fairly good numerical reconstructions for both experimental and
simulated data [12], [11]. Our first goal is to show that the CEM forward problem can,
actually, be seen as a Galerkin approximation of the CM forward problem, meaning
that the forward solutions for both of these models can be obtained from the very
same variational formulation using different function spaces. As a consequence, the
forward solution of CEM, with correctly chosen electrode currents, may be considered
an approximation for the forward solution of CM corresponding to a given current
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distribution—or the other way around—with the correspondence getting better as the
electrodes get smaller and cover a larger portion of the object boundary. Section 2
considers these matters.

The second objective is to use the approximating link between the different for-
ward models to modify the factorization method for characterizing inclusions, intro-
duced and justified in [3] for electrical impedance tomography and, earlier, in [7] for
inverse scattering, to the framework of the CEM. To be more precise, in section 3 the
special case of constant background conductivity with inclusions of strictly higher or
lower conductivities is considered. It is demonstrated how the inhomogeneities can be
characterized by comparing the boundary values of a dipole-like singular solution and
the range of a boundary operator, obtained through electrode measurements, as the
electrodes grow in number, get infinitely small, and cover all of the object boundary.

2. Approximation properties of the CEM. In this section we aim to show
that the CEM can be seen as a finite element approximation of the CM of impedance
tomography. In the first subsection, we will introduce the different forward models
and consider some of their basic properties. The second subsection will explain how
one can approximate the forward solution of CM by the forward solution of CEM with
correctly chosen input currents. In the final subsection, we will survey the resemblance
between the current-to-potential boundary maps of CM and CEM.

2.1. Forward models. When performing mathematical analysis of the electri-
cal impedance tomography problem, it is traditionally assumed that one is able to use
any input current distribution from Sobolev space H−1/2 resulting in boundary po-
tentials of class H1/2. On the other hand, when conducting real-world measurements,
one can control only the net currents fed through a finite number of electrodes and
measure the corresponding electrode potentials. In particular, one does not know the
exact distribution of the current penetrating the object boundary.

2.1.1. Continuum forward model. Let Ω ⊂ R
n, n = 2, 3, with a smooth

boundary be our open bounded region of interest and let σ : Ω → C
n×n be the

corresponding admittance tensor. The forward problem of impedance tomography

with continuous boundary measurements is as follows: For f ∈ H
−1/2
0 (∂Ω) find u ∈

H1(Ω)/C that satisfies weakly

∇ · σ∇u = 0 in Ω, ν · σ∇u = f on ∂Ω,(2.1)

where ν is the outer unit normal on ∂Ω and

H
−1/2
0 (∂Ω) = {v ∈ H−1/2(∂Ω) | 〈v,1〉L2(∂Ω) = 0},

where 〈φ, ψ〉L2(∂Ω) =
∫
∂Ω
φψdS denotes the dual pairing of the spaces H−1/2(∂Ω)

and H1/2(∂Ω). In what follows, we also shall use this same notation for the L2 inner
product.

If it is assumed that the admittance tensor σ ∈ C
n×n satisfies

Re(σx · x) ≥ c|x|2, |σx · x| ≤ C|x|2, c, C > 0,(2.2)

for all x ∈ C
n almost everywhere in Ω, then forward problem (2.1) has a unique

solution that depends continuously on the boundary data.

Theorem 2.1. Let f ∈ H
−1/2
0 (∂Ω) and assume that inequalities (2.2) hold. Then

forward problem (2.1) has a unique solution u ∈ H1(Ω)/C, for which

||u||H1(Ω)/C
≤ C ||f ||H−1/2(∂Ω) .
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Proof. For proof we refer to [10].
Before we can go any further with our analysis, we need to introduce the trace

spaces on subsets of the boundary ∂Ω. Below we will list only the basic definitions;
for more information the reader should consult [4] and the references cited therein.
For Γ ⊂ ∂Ω we define

H1/2(Γ) = {v|Γ | v ∈ H1/2(∂Ω)}.
We denote the dual space of H1/2(Γ) by H̃−1/2(Γ), and note that H̃−1/2(Γ) can be
identified with

H
−1/2

Γ
(∂Ω) = {v ∈ H−1/2(∂Ω) | supp v ∈ Γ}.

In what follows, 〈·, ·〉L2(Γ) will denote either the dual pairing between H̃−1/2(Γ) and

H1/2(Γ) or the L2(Γ) inner product. Finally, H̃
−1/2
0 (Γ) is defined to be the subspace

of H̃−1/2(Γ) over which the dual evaluation with 1 ∈ H1/2(Γ) vanishes.
Let us consider briefly the following question. If we are trying to use some given

input current pattern f ∈ H
−1/2
0 (∂Ω) but we are only able to conduct current through

a part of the boundary Γ ⊂ ∂Ω how much does this imperfection affect the forward
solution? To begin with, we must choose how to restrict the current f onto the subset
Γ; using f |Γ is not usually an option since all the current that goes into the object
Ω must come out. Thus, in order to obtain reasonable currents on Γ, we define a

L2-orthogonal projection operator P1 : H
−1/2
0 (∂Ω) → H̃

−1/2
0 (Γ) ⊂ H

−1/2
0 (∂Ω), where

the inclusion is achieved through zero continuation, by

P1f = f |Γ +
1

|Γ| 〈f,1〉L2(∂Ω\Γ).(2.3)

Theorem 2.2. Assume that σ ∈ C
n×n satisfies (2.2), and let u0 be the solution

of (2.1) corresponding to a given current pattern f ∈ H
−1/2
0 (∂Ω). Further, let u be

the solution of problem (2.1) associated with the approximating input current P1f ∈
H

−1/2
0 (∂Ω). Then we have the estimate

∣∣∣∣u0 − u
∣∣∣∣
H1(Ω)/C

≤ C

|Γ|1/2 ||f ||H̃−1/2(∂Ω\Γ) ,

where C > 0 can be chosen independently of the geometry of Γ as a subset of ∂Ω.

Proof. For f ∈ H
−1/2
0 (∂Ω) we have

||f − P1f ||H−1/2(∂Ω) ≤
1

|Γ|
∣∣∣〈f,1〉L2(∂Ω\Γ)

∣∣∣ ||1||H̃−1/2(Γ) + ||f ||H̃−1/2(∂Ω\Γ)

≤
( ||1||H1/2(∂Ω\Γ) ||1||H̃−1/2(Γ)

|Γ| + 1

)
||f ||H̃−1/2(∂Ω\Γ)

≤ C

|Γ|1/2 ||f ||H̃−1/2(∂Ω\Γ) ,

where C > 0 can, clearly, be chosen independently of the geometry of Γ. Thus, the
claim follows by applying Theorem 2.1 to the difference of the solutions u0−u.

In a sense the result of Theorem 2.2 is quite natural: The discrepancy in the
forward solution is bounded by the norm of the current that we were not able to use.
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2.1.2. Complete electrode forward model. Next, we will introduce the
CEM, which has been shown to model real-world electrode measurements reason-
ably well [9]. Assume that the boundary of the investigated object Ω is smooth and
partially covered with electrodes em ⊂ ∂Ω, 1 ≤ m ≤ M , which are identified by the
parts of the surface that they cover and assumed to be ideal conductors. The union
of the electrode patches is denoted by Γe = ∪mem ⊂ ∂Ω. All electrodes are used for
both current injection and voltage measurement, and the current and voltage patterns
are denoted by {Im}, {Um} ⊂ C, 1 ≤ m ≤ M , respectively. To make the model even
more flexible, we assume that on Γn ⊂ ∂Ω, Γn ∩ Γe = ∅, the current input is given in
the continuous sense; i.e., on Γn the data belongs to H̃−1/2(Γn). Note that this kind
of Neumann boundary is not usually included in the formulation of the CEM; here
we introduce it to lighten our work load in section 3.

When conducting measurements with electrodes, a thin highly resistive layer
is formed at the electrode-object interface [9]. It is characterized by the contact
impedance z : ∂Ω → C that in our framework is assumed to be an integrable function
satisfying

Rez ≥ z0 > 0, |z| ≤ z1 <∞,(2.4)

almost everywhere on ∂Ω. Note that the value of z between the electrodes indicates
the fictitious value of the contact impedance, i.e., the value of the contact impedance
if an electrode were present.

Traditionally, the electrode currents and potentials are handled as vectors of C
M

[9]. However, encouraged by the fact that in CM the boundary potentials and currents
are elements of L2-based Sobolev spaces, in this work we interpret the electrode
currents and potentials as elements of the subspace

T =

{
V ∈ L2(Γe) | V =

M∑
m=1

χemVm, Vm ∈ C, 1 ≤ m ≤M

}
⊂ L2(∂Ω).(2.5)

In what follows, we will also use the subspace

T0 =

{
V ∈ T

∣∣∣∣
∫
∂Ω

V dS = 0

}
⊂ L2

0(∂Ω),(2.6)

to which the electrode currents belong if there is no Neumann boundary Γn.
With this convention the forward problem corresponding to the CEM is as follows.

For input currents I ∈ T and g ∈ H̃−1/2(Γn), with I+g ∈ H
−1/2
0 (∂Ω), find (ue, Ue) ∈

(H1(Ω) ⊕ T )/C that satisfies weakly

∇ · σ∇ue = 0 in Ω, ν · σ∇ue = 0 on ∂Ω \ (Γe ∪ Γn), ν · σ∇ue = g on Γn,

ue + zν · σ∇ue = Ue on Γe,
1

|em|
∫
em

ν · σ∇uedS = Im, 1 ≤ m ≤M.
(2.7)

Note that the above formulation of the complete electrode forward problem differs
from the one in [9] by the scaling factor 1/|em| in the last equation of (2.7). However,
the underlying physical interpretation stays the same: In [9] the net currents through
electrodes were used; here we use the average currents. For more thorough physical
justification of (2.7), the reader should consult [9].

Theorem 2.3. Assume that (2.2) and (2.4) hold and let I ∈ T and g ∈
H̃−1/2(Γn), with I + g ∈ H

−1/2
0 (∂Ω), be given current patterns. Then problem (2.7)
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has a unique solution (ue, Ue) ∈ (H1(Ω) ⊕ T )/C. Further, this solution depends
continuously on the data; i.e.,

inf
c∈C

{||ue − c||2H1(Ω) + ||Ue − c||2L2(Γe)
}1/2 ≤ C{||I||L2(Γe)

+ ||g||H̃−1/2(Γn)},(2.8)

where C > 0 can be chosen independently of the geometry of Γe as a subset of ∂Ω.
By using material in [9], one could easily provide a proof for Theorem 2.3. How-

ever, since we have included the Neumann data on Γn in our model and, in addition,
we are trying to build a connection between the complete electrode forward problem
(2.7) and the continuum forward problem (2.1), we prefer a slightly different working
order and postpone the proof until subsection 2.2.

2.2. Approximating with the CEM. In this subsection we aim to show that
the CEM can be viewed as a real-world finite element approximation of the math-
ematically more tractable CM. To be more precise, with the help of the orthogonal
projection P2 : L2(Γe) → T given by

P2f =

M∑
m=1

χem
1

|em|
∫
em

fdS, f ∈ L2(Γe),(2.9)

we may write the main result of this subsection as follows in Theorem 2.4.
Theorem 2.4. Assume that σ and z satisfy (2.2) and (2.4), respectively. Let f ∈

H
−1/2
0 (∂Ω), with f |Γe ∈ L2(Γe), be a given input current and let u0 ∈ H1(Ω)/C be the

corresponding solution of (2.1). Further, let (ue, Ue) ∈ (H1(Ω) ⊕ T )/C be the unique
solution of (2.7) with the input currents P2(P1f)|Γe ∈ T and (P1f)|Γn ∈ H̃−1/2(Γn),
where P2 is given by (2.9) and P1 by (2.3) with Γ = Γe ∪ Γn. Then it holds that

∣∣∣∣u0 − ue
∣∣∣∣
H1(Ω)/C

≤ C

{
1

|Γ|1/2 ||f ||H̃−1/2(∂Ω\Γ) + inf
V ∈T

∣∣∣∣U0 − V
∣∣∣∣
L2(Γe)/C

}
,

where C > 0 can be chosen independently of the geometry of Γe as a subset of ∂Ω,
the subspace T ⊂ L2(Γe) is given in (2.5), and U0 = u0|Γe + zf |Γe .

Theorem 2.4 tells us, roughly speaking, that for a given current pattern the best
correspondence between the solutions of the forward problems (2.1) and (2.7) is ob-
tained when the electrodes are as small as possible and the gaps between the adjacent
electrodes are as narrow as possible.

In order to prove Theorem 2.4, we need, first of all, a suitable variational problem:

For f ∈ L2(Γe) and g ∈ H̃−1/2(Γn), with f + g ∈ H
−1/2
0 (∂Ω), find (u, U) ∈ H =

(H1(Ω) ⊕ L2(Γe))/C such that

B((u, U), (v, V )) = F (v, V ) for all (v, V ) ∈ H,(2.10)

where

B((u, U), (v, V )) =

∫
Ω

σ∇u · ∇vdx+

∫
Γe

1

z
(U − u)(V − v)dS,(2.11)

and

F (v, V ) =

∫
Γe

fV dS +

∫
Γn

gvdS,(2.12)
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where the latter term is to be interpreted in the sense of the dual pairing between
H̃−1/2(Γn) andH1/2(Γn). To keep the motivation high, note that variational equation
(2.10) is quite similar to the variational formulation of the complete electrode forward
problem in [9], the only clear difference being the space from which the solution is
sought. We claim that (2.10) has a unique solution with some interesting properties.

Before we can prove the unique solvability of (2.10), we still need to introduce an
inner product on H = (H1(Ω) ⊕ L2(Γe)/C, namely,

((u, U), (v, V ))∗H =

∫
Ω

∇u · ∇vdx+

∫
Γe

(U − u)(V − v)dS,(2.13)

with the corresponding norm

||(v, V )||2∗H = ((v, V ), (v, V ))∗H .(2.14)

The following lemma tells us that the above inner product and norm are well defined
and concordant with the conventional quotient norm of H given by

||(v, V )||H = inf
c∈C

{||v − c||2H1(Ω) + ||V − c||2L2(Γe)
}1/2.

Lemma 2.5. The sesquilinear map (·, ·)∗H : H×H → C given by (2.13) defines an
inner product which is concordant with the quotient topology of H = (H1(Ω)⊕L2(Γe))/
C. In consequence, H is a Hilbert space.

Proof. Clearly, (·, ·)∗H : H × H → C is well defined and satisfies all the inner
product axioms. Hence, the only thing we need to show, in order to prove the claim,
is that the usual quotient norm ||(·, ·)||H and the norm ||(·, ·)||∗H defined in (2.14) are
equivalent.

Let (v, V ) ∈ H be arbitrary. With the help of the trace theorem [5], we may
estimate

||(v, V )||∗H ≤ ||∇v||L2(Ω) + ||V − v||L2(Γe)

≤ ||v − c||H1(Ω) + ||v − c||L2(Γe)
+ ||V − c||L2(Γe)

≤ C
{
||v − c||2H1(Ω) + ||V − c||2L2(Γe)

}1/2

.

Since this holds for every c ∈ C, we actually have

||(v, V )||∗H ≤ C ||(v, V )||H .(2.15)

On the other hand, by using the trace theorem and Poincaré’s inequality [5], we get

||(v, V )||2H ≤ inf
c∈C

{
||v − c||2H1(Ω) + 2 ||v − c||2L2(Γe)

}
+ 2 ||V − v||2L2(Γe)

≤ C inf
c∈C

||v − c||2H1(Ω) + 2 ||V − v||2L2(Γe)

≤ C ||(v, V )||2∗H .
Combining this with (2.15) completes the proof.

Corollary 2.6. Assume that (2.2) and (2.4) hold. Then the sesquilinear form
B : H ×H → C given in (2.11) is continuous as follows:

|B((u, U), (v, V ))| ≤ C ||(u, U)||H ||(v, V )||H , (u, U), (v, V ) ∈ H,
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and coercive as follows:

|B((v, V ), (v, V ))| ≥ c ||(v, V )||2H , (v, V ) ∈ H,

where the positive constants c and C can be chosen independently of the geometry of
Γe as a subset of ∂Ω.

Proof. The claim is a straightforward consequence of Lemma 2.5 together with
inequalities (2.2) and (2.4).

Next we aim at showing that the functional F on the right-hand side of (2.10)
is continuous. To begin with, we extend the trace theorem for the quotient Sobolev
spaces as follows in Lemma 2.7.

Lemma 2.7. The quotient trace map

Tr : H1(Ω)/C → H1/2(∂Ω)/C, v �→ v|∂Ω,

is bounded.

Proof. The claim is a straightforward consequence of the traditional trace theorem
and Poincaré’s inequality.

Lemma 2.8. Let f ∈ L2(Γe) and g ∈ H̃−1/2(Γn) with f + g ∈ H
−1/2
0 (∂Ω). Then

the linear functional F : H → C given in (2.12) is well defined and continuous.

Proof. Let us first show that F : H → C is well defined. Consider two rep-
resentatives (v, V ) and (v + c, V + c) of the same equivalence class in H. Since

f + g ∈ H
−1/2
0 (∂Ω), we have

F (v + c, V + c) =

∫
Γe

fV dS +

∫
Γn

gvdS + c〈f + g,1〉L2(∂Ω) = F (v, V ).(2.16)

Further, by the use of (2.16) and Lemma 2.7, we may estimate, for an arbitrary
(v, V ) ∈ H,

|F (v, V )| = inf
c∈C

∣∣∣∣
∫

Γe

f(V + c)dS +

∫
Γn

g(v + c)dS

∣∣∣∣
≤ inf
c∈C

{||f ||L2(Γe)
||V + c||L2(Γe)

+ ||g||H̃−1/2(Γn) ||v + c||H1/2(Γn)}
≤ C{||f ||L2(Γe)

+ ||g||H̃−1/2(Γn)} ||(v, V )||H ,(2.17)

where C > 0 can be chosen independently of the geometry of Γe as a subset of ∂Ω.
This completes the proof.

Now we have introduced enough weaponry to consider the solvability of (2.10).

Lemma 2.9. Assume that (2.2) and (2.4) hold and let f ∈ L2(Γe) and g ∈
H̃−1/2(Γn), with f + g ∈ H

−1/2
0 (∂Ω), be given current patterns. Then variational

equation (2.10) has a unique solution (u, U) ∈ H = (H1(Ω)⊕L2(Γe))/C. Further, the
first component of this solution, u ∈ H1(Ω)/C, is the unique solution of the continuum
forward problem (2.1) with the input current f+g, and the second component satisfies
U = u|Γe + zf .

Proof. The existence of a unique solution for (2.10) is a straight consequence of
the Lax–Milgram lemma [13], Corollary 2.6, and Lemma 2.8.

Let u0 ∈ H1(Ω)/C be the unique solution of (2.1) corresponding to the input

current f + g ∈ H
−1/2
0 (∂Ω) and define (u0, U0) = (u0, u0|Γe + zf) ∈ H. For an
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arbitrary (v, V ) ∈ H, it holds that

B((u0, U0), (v, V )) =

∫
∂Ω

ν · σ∇u0vdS +

∫
Γe

f(V − v)dS

=

∫
Γe

(ν · σ∇u0 − f)vdS +

∫
Γe

fV dS +

∫
Γn

ν · σ∇u0vdS

=

∫
Γe

fV dS +

∫
Γn

gvdS = F (v, V ),

where we used Green’s formula. Thus, (u0, U0) ∈ H is a solution to (2.10), which
completes the proof.

Now, it is time to return to the complete electrode forward problem. Note that
H ′ = (H1(Ω) ⊕ T )/C, where T is defined by (2.5), is a subspace of H = (H1(Ω) ⊕
L2(Γe))/C. Thus, the variational problem: For f ∈ L2(Γe) and g ∈ H̃−1/2(Γn), with

f + g ∈ H
−1/2
0 (∂Ω), find (u, U) ∈ H ′ so that

B((u, U), (v, V )) = F (v, V ) for all (v, V ) ∈ H ′,(2.18)

where B and F are defined in (2.11) and (2.12), respectively, can be considered a
Galerkin approximation for variational problem (2.10). We claim that the unique
solution for this approximating variational problem is in fact the unique solution for
the complete electrode forward problem (2.7) with a suitable electrode current.

Lemma 2.10. Assume that (2.2) and (2.4) hold and let f ∈ L2(Γe) and g ∈
H̃−1/2(Γn), with f + g ∈ H

−1/2
0 (∂Ω), be given current patterns. Then variational

equation (2.18) has a unique solution (ue, Ue) ∈ H ′ = (H1(Ω) ⊕ T )/C which is also
the unique solution of the complete electrode forward problem (2.7) corresponding to
the input currents P2f ∈ T , where P2 is given by (2.9), and g ∈ H̃−1/2(Γn).

Proof. By Corollary 2.6 and Lemma 2.8, the sesquilinear form B : H ×H → C

is continuous and coercive, and the linear functional F : H → C is continuous. In
consequence, the restrictions B : H ′ × H ′ → C and F : H ′ → C have these same
properties. Further, since H ′ is a closed subspace of the Hilbert space H, it is also
a Hilbert space, and so the unique existence of a solution to (2.18) follows from the
Lax–Milgram lemma [13].

To prove that variational problem (2.18) is equivalent to the complete electrode
forward problem (2.7) with the electrode current P2f ∈ T , we write the left-hand side
of (2.18) componentwise; i.e., for (u, U), (v, V ) ∈ H ′ we have

B((u, U), (v, V )) =

∫
Ω

σ∇u · ∇vdS +

M∑
m=1

∫
em

1

z
(Um − u)(V m − v)dS.

With the same tactic, the right-hand side of (2.18) can be transformed into

F (v, V ) =

M∑
m=1

∫
em

fV mdS +

∫
Γn

gvdS =

M∑
m=1

|em|(P2f)mV m +

∫
Γn

gvdS.

With this convention, the claimed equivalence between problems (2.7) and (2.18)
follows by the same line of reasoning as in the proof of Proposition 3.1 in [9], with
only slight alterations caused by the excess Neumann term on the right-hand side of
(2.18).



910 NUUTTI HYVÖNEN

Now we have also the means to prove Theorem 2.3.
Proof of Theorem 2.3. For the given current patterns I ∈ T ⊂ L2(Γe) and g ∈

H̃−1/2(Γn), with I + g ∈ H
−1/2
0 (∂Ω), the unique existence of the solution (ue, Ue) ∈

H ′ = (H1(Ω) ⊕ T )/C for (2.7) follows from the equivalence between problems (2.18)
and (2.7), considered in the proof of Lemma 2.10, by choosing f = I in (2.18) and
noting that P2I = I. Further, by using Corollary 2.6 and equation (2.17), we may
estimate

||(ue, Ue)||2H ≤ C|B((ue, Ue), (ue, Ue))|
= C|F (ue, Ue)|
≤ C{||I||L2(Γe)

+ ||g||H̃−1/2(Γn)} ||(ue, Ue)||H ,
where the functional F , defined in (2.12), corresponds to currents f = I and g. This
completes the proof.

There are a few things worth noticing. First, the solution (ue, Ue) ∈ H ′ of (2.7)
satisfies

ν · σ∇ue|Γe
=

1

z
(Ue − ue|Γe

).

In particular, ν · σ∇ue|Γe
∈ L2(Γe). Second, the correspondence between problems

(2.7) and (2.18) gives the complete electrode forward problem a variational formula-

tion: For I ∈ T and g ∈ H̃−1/2(Γn), with I + g ∈ H
−1/2
0 (∂Ω), find (ue, Ue) ∈ H ′ so

that

B((ue, Ue), (v, V )) =

∫
Γe

IV dS +

∫
Γn

gvdS(2.19)

for all (v, V ) ∈ H ′.
Now we have derived the means to approximate the forward solution of the CM

(2.1) by the forward solution of the complete electrode problem (2.7) with a correctly
chosen electrode current pattern. First we will consider the case when no current is
conducted through ∂Ω \ (Γe ∪ Γn).

Theorem 2.11. Assume that σ and z satisfy (2.2) and (2.4), respectively. Let

f ∈ H
−1/2
0 (∂Ω), with f |Γe

∈ L2(Γe) and f |∂Ω\(Γe∪Γn) = 0, be a given input current

and let u ∈ H1(Ω)/C be the corresponding solution of (2.1). Further, let (ue, Ue) ∈
H ′ = (H1(Ω)⊕T )/C be the unique solution of (2.7) with the input currents P2(f |Γe) ∈
T and f |Γn ∈ H̃−1/2(Γn), where P2 is given in (2.9). Then it holds that

||(u− ue, U − Ue)||H ≤ C inf
V ∈T

||U − V ||L2(Γe)/C
,

where C > 0 can be chosen independently of the geometry of Γe as a subset of ∂Ω,
the subspace T ⊂ L2(Γe) is given in (2.5), and U = u|Γe

+ zf |Γe
.

Proof. To begin with, note that, according to Lemma 2.9, the pair (u, U) ∈ H =
(H1(Ω) ⊕ L2(Γe))/C satisfies the variational equation

B((u, U), (v, V )) =

∫
Γe

fV dS +

∫
Γn

fvdS for all (v, V ) ∈ H,

and, on the other hand, Lemma 2.10 tells us that (ue, Ue) satisfies the very same
equation with the space H replaced by the subspace H ′. Since the sesquilinear form
B : H ×H → C is continuous and coercive, it follows from Cea’s lemma [2] that

||(u− ue, U − Ue)||H ≤ C inf
(v,V )∈H′

||(u− v, U − V )||H .(2.20)
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Choosing v = u on the right-hand side of (2.20), we obtain

inf
(v,V )∈H′

||(u− v, U − V )||H ≤ inf
V ∈T

inf
c∈C

{
||c||2H1(Ω) + ||(U − V ) − c||2L2(Γe)

}1/2

= inf
V ∈T

||U − V ||L2(Γe)/C
.(2.21)

Hence, combining (2.20) and (2.21), the claim follows.
The following corollary also tells us that the normal derivative of the solution to

(2.1) can be approximated with the normal derivative of the solution to (2.7).
Corollary 2.12. Suppose that the assumptions of Theorem 2.11 are valid.

Then, using the same notation as in Theorem 2.11, we have the estimate

||f − ν · σ∇ue||L2(Γe)
= ||ν · σ∇u− ν · σ∇ue||L2(Γe)

≤ C inf
V ∈T

||U − V ||L2(Γe)/C
.

Proof. Due to the boundary conditions of (2.7) and the way we have defined U
in Theorem 2.11, we may estimate

||ν · σ(∇u−∇ue)||L2(Γe)
≤ C ||zν · σ(∇u−∇ue)||L2(Γe)

= C ||(U − Ue) − (u− ue)||L2(Γe)

≤ C inf
c∈C

{||(U − Ue) − c||L2(Γe)
+ ||c− (u− ue)||L2(Γe)

}
≤ C ||(u− ue, U − Ue)||H ,

where we took advantage of the trace theorem [5]. The claim follows by combining
this with Theorem 2.11.

Finally, it is time to provide a proof for Theorem 2.4 by combining Theorem 2.11
with Theorem 2.2.

Proof of Theorem 2.4. Let u ∈ H1(Ω)/C be the solution to the continuum forward

problem (2.1) corresponding to the input current P1f ∈ H̃
−1/2
0 (Γ), where P1 is defined

by (2.3), and define U = (u+ zP1f)|Γe . According to Theorems 2.2 and 2.11, we can
estimate∣∣∣∣u0 − ue

∣∣∣∣
H1(Ω)/C

≤ ∣∣∣∣u0 − u
∣∣∣∣
H1(Ω)/C

+ ||u− ue||H1(Ω)/C

≤ C

{
1

|Γ|1/2 ||f ||H̃−1/2(∂Ω\Γ) + inf
V ∈T

||U − V ||L2(Γe)/C

}
,(2.22)

where the latter term may be divided into two parts by using the triangle inequality

inf
V ∈T

||U − V ||L2(Γe)/C
≤ inf
V ∈T

∣∣∣∣U0− V
∣∣∣∣
L2(Γe)/C

+
∣∣∣∣U0− U

∣∣∣∣
L2(Γe)/C

.(2.23)

Further, by using (2.3), (2.4), Lemma 2.7, Theorem 2.2, and the way U0 and U are
defined, we deduce that∣∣∣∣U0 − U

∣∣∣∣
L2(Γe)/C

≤ ∣∣∣∣u0 − u
∣∣∣∣
L2(Γe)/C

+ ||z(f − P1f)||L2(Γe)/C

≤ C
∣∣∣∣u0 − u

∣∣∣∣
H1(Ω)/C

+
1

|Γ|
∣∣∣〈f,1〉L2(∂Ω\Γ)

∣∣∣ ||z||L2(Γe)/C

≤
{

C

|Γ|1/2 +
z1
|Γ| ||1||H1/2(∂Ω\Γ) ||1||L2(Γe)

}
||f ||H̃−1/2(∂Ω\Γ)

≤ C

|Γ|1/2 ||f ||H̃−1/2(∂Ω\Γ) .(2.24)

The claim follows by combining (2.22), (2.23), and (2.24).
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2.3. Comparing current-to-voltage maps. It is time to move on to consider
the current-to-potential maps corresponding to CM and CEM. In order to keep things
simple, in this subsection we assume that there is no Neumann boundary; the intro-
duction of Γn in (2.7) was just a technical detail that is useful for us in the next
section—usually, it does not play any part in real-world measurements. As a further
simplification, we assume that all used current patterns are square integrable.

When dealing with the inverse problem for the CM, it is usually assumed that
the known data is the linear Neumann-to-Dirichlet map, i.e., the operator that maps
the applied current pattern onto the boundary potential

Λσ : f �→ u0
σ|∂Ω,(2.25)

which is isomorphic from H
−1/2
0 (∂Ω) onto H1/2(∂Ω)/C ∼ H

1/2
0 (∂Ω) and depends

nonlinearly on σ. On the other hand, when conducting real-life measurements with
the CEM, the only information one is able to obtain is the linear relation between the
applied average currents Im ∈ C, 1 ≤ m ≤ M , and the electrode voltages Uem ∈ C,
1 ≤ m ≤M , given by

RσI = Ue,

where Rσ : T0 → T/C can be expressed in matrix form since T0, T/C ∼ C
M−1. The

next challenge is to build some kind of approximating link between the operators Λσ
and Rσ.

Assume that there is no Neumann boundary; i.e., Γn = ∅ in (2.7). By combining
Rσ with the projection

P = P2P1 : L2
0(∂Ω) → T0,(2.26)

where T0 is given by (2.6), and the projections P1, with Γ = Γe, and P2 are defined
in (2.3) and (2.9), respectively, we get the map

RσP : L2
0(∂Ω) → T/C, f �→ Ueσ = (ueσ + zν · σ∇ueσ)|Γe ,

where (ueσ, U
e
σ) ∈ (H1(Ω)⊕T )/C is the solution of (2.7) corresponding to the electrode

current Pf and the admittance σ.
The resemblance between the operators Λσ and RσP is quite apparent. However,

RσP is not a pure current-to-voltage map, which prevents us from using Theorem 2.4
to investigate the situation further. Luckily, in many of the reconstruction algorithms
for the CM, one does not use merely Λσ but the difference [1]

Λσ − Λ1 : f �→ (u0
σ − u0

1)|∂Ω,(2.27)

where Λ1 is the Neumann-to-Dirichlet map corresponding to the unit admittance
distribution, and u0

1 ∈ H1(Ω)/C is the associated forward solution for the input
current f ∈ L2

0(∂Ω). For the complete electrode counterpart, we get the formula

(Rσ −R1)P : f �→ (ueσ − ue1 + zν · (σ∇ueσ −∇ue1))|Γe ,(2.28)

which is, actually, quite close to (2.27).
Theorem 2.13. Assume that σ and z satisfy (2.2) and (2.4), respectively, and

let f ∈ L2
0(∂Ω) be a given current pattern. It holds that

||((Λσ − Λ1) − (Rσ −R1)P )f ||L2(Γe)/C ≤(2.29)

C

{
1

|Γe|1/2 ||f ||H̃−1/2(∂Ω\Γe)
+ inf
V ∈T

||U0
σ − V ||L2(Γe)/C + inf

V ∈T
||U0

1 − V ||L2(Γe)/C

}
,
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where the boundary operators are defined by (2.27) and (2.28), and U0
σ = u0

σ|Γe
+zf |Γe

,
U0

1 = u0
1|Γe + zf |Γe , where u0

σ and u0
1 are the solutions of the continuum forward

problem (2.1) corresponding to the input current f and the impedance tensors σ and
1, respectively.

Proof. With the help of (2.27) and (2.28), the left-hand side of (2.29) can be
divided into three parts as follows:

||((Λσ − Λ1) − (Rσ −R1)P )f ||L2(Γe)/C
≤ ∣∣∣∣u0

σ − ueσ
∣∣∣∣
L2(Γe)/C

+
∣∣∣∣u0

1 − ue1
∣∣∣∣
L2(Γe)/C

+ ||zν · (σ∇ueσ −∇ue1)||L2(Γe)/C
.(2.30)

For the first term on the right-hand side of (2.30), it follows from Lemma 2.7 and
Theorem 2.4 that

∣∣∣∣u0
σ − ueσ

∣∣∣∣
L2(Γe)/C

≤ C

{
1

|Γe|1/2 ||f ||H̃−1/2(∂Ω\Γe)
+ inf
V ∈T

∣∣∣∣U0
σ − V

∣∣∣∣
L2(Γe)/C

}
.

By the same means, we get an exactly similar estimate for the second term on the
right-hand side of (2.30).

In order to handle the third term on the right-hand side of (2.30), let uσ, u1 ∈
H1(Ω)/C be the solutions of (2.1) with the input current P1f ∈ L2

0(Γe), where P1 :
L2

0(∂Ω) → L2
0(Γe) is defined by (2.3) with Γ = Γe, for the admittances σ and 1,

respectively, and define Uσ = uσ|Γe
+ zP1f and U1 = u1|Γe

+ zP1f . We use Corollary
2.12 to estimate

||zν · (σ∇ueσ−∇ue1)||L2(Γe)/C≤||z(ν · σ∇ueσ−P1f)||L2(Γe)+||z(P1f−ν · ∇ue1)||L2(Γe)

≤C
{

inf
V ∈T

||Uσ − V ||L2(Γe)/C
+ inf
V ∈T

||U1 − V ||L2(Γe)/C

}

≤C
{

1

|Γe|1/2 ||f ||H̃−1/2(∂Ω\Γe)
+ inf
V ∈T

∣∣∣∣U0
σ − V

∣∣∣∣
L2(Γe)/C

+ inf
V ∈T

∣∣∣∣U0
1 − V

∣∣∣∣
L2(Γe)/C

}
,

where we also use assumption (2.4) and inequality (2.24) from the proof of Theorem
2.4. The claim follows by combining the estimates for the terms on the right-hand
side of (2.30).

Again it is advisable to note a couple of things. First, the above theorem could

also have been formulated for currents f ∈ H
−1/2
0 (∂Ω) with f |Γe

∈ L2(Γe); the
notation would have been even more cumbersome, however. Second, the images of
the boundary maps are compared only on Γe ⊂ ∂Ω since in a real-life measurement
situation one is not measuring anything outside the electrodes and, thus, there is
nothing to compare on ∂Ω\Γe. Third, the correspondence between the maps Λσ−Λ1

and Rσ −R1 gets better when the area covered by the electrodes gets larger and the
electrodes get smaller.

3. Characterizing inclusions. In this section we demonstrate how the bound-
ary map Rσ −R1, considered in the previous subsection, can be used to characterize
an inclusion D ⊂ Ω with conductivity significantly higher or lower than the constant
background conductivity. The section is organized as follows. We begin by introduc-
ing our framework and listing some basic properties of Rσ. Section 3.1 presents a
factorization of Rσ − R1 into three parts. In section 3.2 the operators needed in the
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factorization are investigated further and, finally, in section 3.3 we provide the char-
acterization for the inclusion. This work can be seen as a discrete version of article
[3]; also, the mathematical methods used here resemble to some extent those in [3].

Our object Ω ⊂ R
n, n = 2, 3, is assumed to be isotropic with a conductivity

0 < σ ≤ C and a smooth boundary, and the used input current is assumed to be
nonvariating in time. Further, we assume that the contact impedance z : ∂Ω → R

is strictly positive and bounded. Let the subspaces T ⊂ L2(∂Ω) and T0 ⊂ L2
0(∂Ω)

be defined by (2.5) and (2.6), respectively, with the multiplier field C replaced by R.
Then, according to Theorem 2.3, for every I ∈ T0 the complete electrode forward
problem

∇ · σ∇u = 0 in Ω, ν · σ∇u = 0 on ∂Ω \ Γe,

u+ zν · σ∇u = U on Γe,
1

|em|
∫
em

ν · σ∇udS = Im, 1 ≤ m ≤M,
(3.1)

has a unique solution (u, U) ∈ H1(Ω) ⊕ T0, where we have specified the ground level
of the potential in an obvious way. The corresponding boundary map Rσ : T0 → T0

is defined through RσI = U .
We emphasize the resemblance between Rσ and its continuous counterpart Λσ,

given in (2.25), by showing that Rσ inherits some basic characteristics of Λσ.
Lemma 3.1. The operator Rσ : T0 → T0 is self-adjoint and positive. Furthermore,

Rσ is monotonically decreasing; i.e.,

〈I,RσI〉L2(∂Ω) > 〈I,Rσ̃I〉L2(∂Ω),

for σ ≤ σ̃, σ �= σ̃ on a set of nonzero measure, and I �= 0.
Proof. The result follows by imitating the proof of Lemma 2.1 in [3] with the help

of the weak formulation of (3.1) given by (2.19).
Since T0 is a finite-dimensional subspace of L2

0(∂Ω), the monotonicity property of
Lemma 3.1 implies that Rσ −Rσ̃ : T0 → T0 has a bounded inverse if the assumptions
of Lemma 3.1 are valid.

Corollary 3.2. Let σ ≤ σ̃, and σ �= σ̃ on a set of nonzero measure. Then
Rσ − Rσ̃ : T0 → T0 is strictly positive. In particular, Rσ − Rσ̃ is bijective and has a
bounded inverse.

Proof. From the monotonicity property of Lemma 3.1 we straight away obtain

〈I, (Rσ −Rσ̃)I〉L2(∂Ω) > 0,

for every I ∈ T0, I �= 0. Since T0 is finite-dimensional and Rσ − Rσ̃ is linear, this
induces the estimate

〈I, (Rσ −Rσ̃)I〉L2(∂Ω) ≥ c ||I||2L2(∂Ω) , c > 0.(3.2)

The injectivity, or, equivalently, the bijectivity, of Rσ −Rσ̃ : T0 → T0 follows trivially
from (3.2), which completes the proof.

3.1. Factorization of Rσ −R1. From now on we assume that the conductivity
inside Ω is of the form

σ =

{
κ in D,
1 in Ω \D,(3.3)
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where κ �= 1 is a positive constant and D is an open connected subset of Ω with a
smooth connected boundary and ∂D ∩ ∂Ω = ∅. Our aim is to prove the following
theorem.

Theorem 3.3. Assume that the conductivity inside Ω is of the form given in
(3.3). Then the difference of the boundary maps Rσ, R1 : T0 → T0 can be factorized as

Rσ−R1 = LFL′, where L : H
−1/2
0 (∂D) → T0 is continuous and surjective, its adjoint

operator L′ : T0 → H
1/2
0 (∂D) is continuous and injective, and F : H

1/2
0 (∂D) →

H
−1/2
0 (∂D) is self-adjoint, bijective, and either positive or negative definite.

Before we can introduce the operators needed for the above factorization, we must
consider some notational details. On the inner boundary ∂D we define

v±(x) = lim
t→0+

v(x± tν) and
∂v

∂ν

±
(x) = lim

t→0+
ν · ∇v(x± tν),

for x ∈ ∂D with ν(x) the unit normal pointing out of D, and further,

[v]∂D = v+ − v− and

[
σ
∂v

∂ν

]
∂D

=
∂v

∂ν

+

− κ
∂v

∂ν

−
.

Let us now define L and L′. By replacing Ω with Ω \D and choosing Γn = ∂D

in (2.7) and Theorem 2.3, we note that for every φ ∈ H
−1/2
0 (∂D) the boundary value

problem

∆v = 0 in Ω \D, ∂v

∂ν
= 0 on ∂Ω \ Γe,

∂v

∂ν

+

= φ on ∂D,

v + z
∂v

∂ν
= V on Γe,

1

|em|
∫
em

∂v

∂ν
dS = 0, 1 ≤ m ≤M,

(3.4)

has a unique solution (v, V ) ∈ H1(Ω \D) ⊕ T0, where we have fixed the ground level
of the potential. Thus, we may define the operator L by

L : H
−1/2
0 (∂D) → T0, φ �→ V.(3.5)

With I ′ ∈ T0, let us next consider the boundary value problem

∆v′ = 0 in Ω \D, ∂v′

∂ν
= 0 on ∂Ω \ Γe,

∂v′

∂ν

+

= 0 on ∂D,

v′ + z
∂v′

∂ν
= V ′ on Γe,

1

|em|
∫
em

∂v′

∂ν
dS = −I ′m, 1 ≤ m ≤M,

(3.6)

which, according to Theorem 2.3, also has a unique solution (v′, V ′) ∈ H1
0,∂D(Ω\D)⊕

T , where

H1
0,∂D(Ω \D) =

{
u ∈ H1(Ω \D)

∣∣∣∣
∫
∂D

udS = 0

}
.(3.7)

We define L′ by

L′ : T0 → H
1/2
0 (∂D), I ′ �→ v′|∂D.(3.8)

The following lemma shows that L and L′ are bounded and adjoint, and have the
mapping properties advertised above.
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Lemma 3.4. The operators L : H
−1/2
0 (∂D) → T0 and L′ : T0 → H

1/2
0 (∂D)

defined by (3.5) and (3.8), respectively, are bounded (independently of the geometry of
Γe) and adjoint. Further, L is surjective and L′ is injective.

Proof. We begin with the boundedness of L. For φ ∈ H
−1/2
0 (∂D) let (v, V ) ∈

H1(Ω \D)⊕ T0 be the unique solution of (3.4), suggested by Theorem 2.3. From the
continuous dependence on the data (2.8) and since V ∈ T0 ⊂ L2

0(Γe), it follows that

||V ||L2(Γe)
= ||V ||L2(Γe)/R

≤ ||(v, V )||(H1(Ω\D)⊕L2(Γe))/R
≤ C ||φ||H−1/2(∂D) ,

which proves the continuity of L : H
−1/2
0 (∂D) → T0.

Next we shall prove that L′ : T0 → H
1/2
0 (∂D) is the adjoint of L. Let (v, V ) ∈

H1(Ω \D)⊕ T0 and (v′, V ′) ∈ H1
0,∂D(Ω \D)⊕ T be the unique solutions of (3.4) and

(3.6), respectively. Then it holds that

〈I ′, Lφ〉L2(∂Ω) =

∫
Γe

(
I ′ +

∂v′

∂ν

)
V dS −

∫
Γe

∂v′

∂ν
V dS

= −
∫

Γe

∂v′

∂ν
V dS = −

∫
Γe

∂v′

∂ν

(
v + z

∂v

∂ν

)
dS

= −
∫

Γe

∂v′

∂ν
vdS −

∫
Γe

(
z
∂v′

∂ν
− V ′

)
∂v

∂ν
dS

= −
∫

Γe

∂v′

∂ν
vdS +

∫
Γe

v′
∂v

∂ν
dS

= −
∫
∂D

∂v′

∂ν

+

vdS +

∫
∂D

v′
∂v

∂ν

+

dS = 〈L′I ′, φ〉L2(∂D),

where we used the boundary conditions that the pairs (v, V ) and (v′, V ′) satisfy
together with Green’s formula. Since L is bounded and L′ is its adjoint operator, L′

is also bounded.
The injectivity of L′ is easy to obtain: Let I ′ ∈ T0 be such that L′I ′ = v′|∂D = 0,

which means, according to (3.6), that the Cauchy data of v′ vanishes on ∂D. Since v′

is harmonic in Ω\D, this implies that v′ = 0 from which it also follows that I ′ = 0. In
addition, due to the finite-dimensionality of R(L), we have T0 = N (L′)⊥ = R(L) =
R(L), which proves the surjectivity of L. This completes the proof.

Last but not least, let us introduce F : H
1/2
0 (∂D) → H

−1/2
0 (∂D). Let ψ ∈

H
1/2
0 (∂D) and assume that (wσ,Wσ) ∈ (H1(Ω \ ∂D) ⊕ T )/R is the solution of the

diffraction problem

∆w = 0 in Ω \ ∂D, ∂w

∂ν
= 0 on ∂Ω \ Γe, w + z

∂w

∂ν
= W on Γe,

[w]∂D = ψ,

[
σ
∂w

∂ν

]
∂D

= 0,
1

|em|
∫
em

∂w

∂ν
dS = 0, 1 ≤ m ≤M.

(3.9)

We define F by the mapping rule ψ �→ ∂(wσ−w1)
∂ν

+|∂D, where w1 is the solution of
(3.9) with σ replaced by the unit conductivity 1.

Because the outer boundary condition of (3.9) is not of standard form, one must

convince oneself that wσ and w1, and thereby F : H
1/2
0 (∂D) → H

−1/2
0 (∂D), are

actually well defined. The following two technical lemmas and a corollary answer all
the necessary questions.
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Lemma 3.5. For ψ ∈ H
1/2
0 (∂D), diffraction problem (3.9) has a unique solution

(wσ,Wσ) ∈ (H1(Ω \ ∂D) ⊕ T )/R. Further,∣∣∣∣
∣∣∣∣∂wσ∂ν

+∣∣∣∣
∣∣∣∣
H−1/2(∂D)

≤ C ||ψ||H1/2(∂D) ,(3.10)

where C > 0 is independent of the geometry of Γe as a subset of ∂Ω.
Proof. To start with, note that the corresponding traditional diffraction problem

∆w = 0 in Ω \ ∂D, ∂w

∂ν
= 0 on ∂Ω,

[w]∂D = ψ,

[
σ
∂w

∂ν

]
∂D

= 0

has a unique solution w0 ∈ H1
0,∂Ω(Ω \ ∂D) (cf. [8]), where the space is defined in

equivalence with (3.7). Encouraged by this, we consider the following boundary value
problem:

∇ · σ∇w = 0 in Ω,
∂w

∂ν
= 0 on ∂Ω \ Γe,

w + z
∂w

∂ν
= W − w0 on Γe,

1

|em|
∫
em

∂w

∂ν
dS = 0, 1 ≤ m ≤M,

(3.11)

and try to show that it has a unique solution (we,We) ∈ (H1(Ω) ⊕ T )/R.
From considerations in section 2.2, it follows in a straightforward manner that

problem (3.11) is equivalent to the variational problem

B((w,W ), (v, V )) =

∫
Γe

1

z
w0(V − v)dS,(3.12)

for all (v, V ) ∈ (H1(Ω)⊕ T )/R, where the bilinear form B is defined in (2.11). Since,
according to Corollary 2.6, B : (H1(Ω)⊕T )/R×(H1(Ω)⊕T )/R → R is continuous and
coercive, and the right-hand side of (3.12) clearly defines a continuous linear functional
on (H1(Ω)⊕ T )/R, equation (3.12) has a unique solution (we,We) ∈ (H1(Ω)⊕ T )/R
due to the Lax–Milgram lemma [13]. Now, it is easy to see that (w0 + we,We) ∈
(H1(Ω \ ∂D)⊕ T )/R satisfies the electrode diffraction problem given in (3.9) because
of the continuity conditions that we and σ ∂we

∂ν must satisfy on ∂D [8]. In particular,
(3.9) has at least one solution.

Assume now that (wσ,Wσ) ∈ (H1(Ω \ ∂D) ⊕ T )/R is a solution of diffraction

problem (3.9) corresponding to ψ ∈ H
1/2
0 (∂D). Then, due to Green’s formula and

positivity of z, wσ satisfies

∣∣∣∣∣∣σ1/2∇wσ
∣∣∣∣∣∣2
L2(Ω)

=

∫
∂D

w−
σ κ

∂wσ
∂ν

−
dS −

∫
∂D

w+
σ

∂wσ
∂ν

+

dS +

∫
∂Ω

wσ
∂wσ
∂ν

dS

=

∫
∂D

(w−
σ − w+

σ )
∂wσ
∂ν

+

dS +

∫
Γe

(
Wσ − z

∂wσ
∂ν

)
∂wσ
∂ν

dS

= −
∫
∂D

ψ
∂wσ
∂ν

+

dS −
∫

Γe

z
∂wσ
∂ν

2

dS

≤ ||ψ||H1/2(∂D)

∣∣∣∣
∣∣∣∣∂wσ∂ν

+∣∣∣∣
∣∣∣∣
H−1/2(∂D)

,(3.13)
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where we used the jump and boundary conditions of (3.9). Due to the boundedness
of the mapping (see p. 381 in [5]),

H(div,Ω \D) → H−1/2(∂D), v �→ (ν · v)+|∂D,(3.14)

where H(div,Ω \D) = {v ∈ L2(Ω \D)n | ∇ · v ∈ L2(Ω \D)}, it is true that∣∣∣∣
∣∣∣∣∂wσ∂ν

+∣∣∣∣
∣∣∣∣
H−1/2(∂D)

≤ C ||∇wσ||L2(Ω) ,(3.15)

where C > 0 has nothing to do with Γe. Using this once in (3.13), we get

||∇wσ||L2(Ω) ≤ C ||ψ||H1/2(∂D) ,(3.16)

from which it follows that the only solution of (3.9) corresponding to ψ = 0 is the
zero element of (H1(Ω \ ∂D) ⊕ T )/R. Consequently, diffraction problem (3.9) has a
unique solution. Together with (3.15), (3.16) also proves (3.10), which completes the
proof.

Corollary 3.6. For ψ ∈ H
1/2
0 (∂D), the solution of diffraction problem (3.9),

(wσ,Wσ) ∈ (H1(Ω \ ∂D) ⊕ T )/R, is the unique minimizer of the energy functional

Eσ(w,W ) =

∫
Ω\D

|∇w|2dx+ κ

∫
D

|∇w|2dx+

∫
Γe

1

z
|W − w|2dS

over the subset

Hψ = {(w,W ) ∈ (H1(Ω \ ∂D) ⊕ T )/R | [w]∂D = ψ}.
Proof. Let (w,W ) ∈ Hψ be arbitrary and denote the difference (w−wσ,W −Wσ)

by (v, V ). In consequence, (v, V ) ∈ (H1(Ω \ ∂D) ⊕ T )/R with [v]∂D = 0 and we may
write

Eσ(w,W ) = Eσ(wσ,Wσ) + Eσ(v, V ) + 2

{∫
Ω\D

∇wσ · ∇vdx+ κ

∫
D

∇wσ · ∇vdx

+

∫
Γe

1

z
(Wσ − wσ)(V − v)dS

}
.(3.17)

We claim that the mixed terms on the right-hand side of (3.17) vanish.
Indeed, by Green’s formula∫

Ω\D
∇wσ · ∇vdx+ κ

∫
D

∇wσ · ∇vdx =

∫
∂Ω

∂wσ
∂ν

vdS +

∫
∂D

(
κ
∂wσ
∂ν

−
− ∂wσ

∂ν

+)
vdS

=

∫
Γe

∂wσ
∂ν

vdS,(3.18)

due to the jump condition of the normal derivative in (3.9). On the other hand,∫
Γe

1

z
(Wσ − wσ)(V − v)dS =

∫
Γe

∂wσ
∂ν

(V − v)dS = −
∫

Γe

∂wσ
∂ν

vdS,(3.19)

which, together with (3.17), (3.18), and the positivity of Eσ, implies that

Eσ(w,W ) ≥ Eσ(wσ,Wσ).(3.20)
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Since Eσ(v, V ) = 0 implicates that v, with [v]∂D = 0, is constant on Ω and that
V = v|Γe , the inequality in (3.20) is strict for (w,W ) �= (wσ,Wσ) in Hψ, which
completes the proof.

Lemma 3.7. The operator F : H
1/2
0 (∂D) → H

−1/2
0 (∂D) is well defined, continu-

ous, self-adjoint, and bijective, with a continuous inverse operator F−1 : H
−1/2
0 (∂D) →

H
1/2
0 (∂D). In addition, the operator sgn(1 − κ)F : H

1/2
0 (∂D) → H

−1/2
0 (∂D) is posi-

tive. Furthermore, there exist constants C+, C− > 0, independent of the geometry of
Γe as a subset of ∂Ω, such that

||F || ≤ C+,
∣∣∣∣F−1

∣∣∣∣ ≤ C−.(3.21)

Proof. For ψ ∈ H
1/2
0 (∂D), let (wσ,Wσ), (w1,W1) ∈ (H1(Ω \ ∂D) ⊕ T )/R be the

solutions of (3.9) corresponding to the conductivities σ and 1, respectively. First of
all, according to the divergence theorem,∫

∂D

∂(wσ − w1)

∂ν

+

dS =

∫
∂Ω

∂(wσ − w1)

∂ν
dS = 0,

from which it follows that ∂(wσ−w1)
∂ν

+|∂D ∈ H
−1/2
0 (∂D). Together with Lemma 3.5,

this proves that F is well defined and continuous and that the first part of (3.21)
holds.

Next we want to establish the self-adjointness. To this end, for ψ1, ψ2 ∈ H
1/2
0 (∂D)

let (w1,W1), (w2,W2) be the corresponding solutions of diffraction problem (3.9) with
the conductivity σ. By using Green’s formula and the boundary conditions of (3.9),
we may write∫
∂D

∂w1

∂ν

+

ψ2dS =

∫
∂D

∂w1

∂ν

+

w+
2 dS −

∫
∂D

κ
∂w1

∂ν

−
w−

2 dS

=

∫
∂Ω

(
∂w1

∂ν
w2 − w1

∂w2

∂ν

)
dS +

∫
∂D

(
w+

1

∂w2

∂ν

+

− κw−
1

∂w2

∂ν

−)
dS

=

∫
Γe

∂w1

∂ν

(
W2 − z

∂w2

∂ν

)
dS −

∫
Γe

∂w2

∂ν

(
W1 − z

∂w1

∂ν

)
dS

+

∫
∂D

(w+
1 − w−

1 )
∂w2

∂ν

+

dS =

∫
∂D

ψ1
∂w2

∂ν

+

dS.

Since this holds also for 1 as conductivity, we actually have

〈Fψ1, ψ2〉L2(∂D) = 〈Fψ2, ψ1〉L2(∂D);

i.e., F is self-adjoint.

Next we prove the positiveness of sgn(1−κ)F : H
1/2
0 (∂D) → H

−1/2
0 (∂D). For ψ ∈

H
1/2
0 (∂D), ψ �= 0, let (wσ,Wσ) and (w1,W1) be the solutions of (3.9) corresponding

to the conductivities σ and 1, respectively. By careful use of Green’s formula and the
jump conditions of (3.9), we deduce

−
∫
∂D

∂wσ
∂ν

+

ψdS = κ

∫
∂D

∂wσ
∂ν

−
w−
σ dS −

∫
∂D

∂wσ
∂ν

+

w+
σ dS

=

∫
Ω\D

|∇wσ|2dx+ κ

∫
D

|∇wσ|2dx−
∫

Γe

∂wσ
∂ν

wσdS

= Eσ(wσ,Wσ),
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where the last equality follows from a slight modification of (3.19) in the proof of
Corollary 3.6. Since similar reasoning also applies for (w1,W1), we have altogether

〈Fψ,ψ〉L2(∂D) = E1(w1,W1) − Eσ(wσ,Wσ).(3.22)

Assume first that κ > 1. Then, according to Corollary 3.6, it holds that

E1(w1,W1) < E1(wσ,Wσ) ≤ Eσ(wσ,Wσ).

Similarly, for κ < 1 we have

Eσ(wσ,Wσ) < Eσ(w1,W1) ≤ E1(w1,W1).

Together with (3.22), these estimates prove the claim.
Then it is time to concentrate on the invertibility of F , beginning with the injec-

tivity. Let ψ ∈ H
1/2
0 (∂D) be such that Fψ = 0, meaning that the restricted difference

((wσ − w1)|Ω\D,Wσ −W1) ∈ (H1(Ω \ D) ⊕ T )/R of the solutions to (3.9) satisfies

boundary value problem (3.4) with φ = 0. Thus, it follows from the unique solvability
of (3.4) (see Theorem 2.3) that wσ = w1 + c, c ∈ R, on Ω \D, and as a consequence
w−
σ = w+

σ − ψ = w+
1 − ψ + c = w−

1 + c on ∂D. Hence, from the unique solvability of
the Dirichlet problem

∆w = 0 in D, w = w−
1 on ∂D,

it follows that wσ = w1 + c also in D. Combining these with the jump conditions of
the normal derivatives in (3.9), on ∂D we have

∂wσ
∂ν

−
=
∂w1

∂ν

−
=
∂w1

∂ν

+

=
∂wσ
∂ν

+

= κ
∂wσ
∂ν

−
;

i.e, all these normal derivatives must vanish. In consequence, (wσ,Wσ) satisfies (3.4)
with φ = 0 in Ω \D and, in addition, wσ satisfies Neumann problem with zero input
current in D, meaning that wσ|Ω\D and wσ|D equal constants. Hence, ψ = w+

σ −w−
σ ∈

H
1/2
0 (∂D) equals a constant which must be zero due to the normalization condition.

Thus, F : H
1/2
0 (∂D) → H

−1/2
0 (∂D) is injective.

Next we move on to prove the surjectivity of F . For arbitrarily chosen φ ∈
H

−1/2
0 (∂D) we aim to construct ψ ∈ H

1/2
0 (∂D) such that Fψ = φ. First, we define

an auxiliary pair (v, V ) ∈ (H1(Ω \ D) ⊕ T )/R as the unique solution of (3.4) with
the input current φ on ∂D, and we continue v to D as the unique H1-solution of the
Dirichlet problem

∆v = 0 in D, v− = v+ on ∂D.(3.23)

Hence, (v, V ) ∈ (H1(Ω \ ∂D) ⊕ T )/R with [v]∂D = 0. Further, we define ϕ =

φ−κ ∂v∂ν
−|∂D and note that ϕ ∈ H

−1/2
0 (∂D) since

∫
∂D

∂v
∂ν

−
dS = 0 due to the divergence

theorem.
The next step is to define the diffraction solution corresponding to the unit con-

ductivity. In the exterior domain Ω \D we choose (w1,W1) ∈ (H1(Ω \D)⊕ T )/R to
be the unique solution of (3.4) with φ = 1

κ−1ϕ, whereas in the inner domain D we

define w1 to be the unique H1-solution of the Neumann problem

∆w1 = 0 in D,
∂w1

∂ν

−
=

1

κ− 1
ϕ on ∂D,

∫
∂D

w−
1 dS =

∫
∂D

w+
1 dS.(3.24)
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Clearly, (w1,W1) ∈ (H1(Ω \ ∂D) ⊕ T )/R. As mentioned above, (w1,W1) plays here
the role of the solution to diffraction problem (3.9) with conductivity 1 and, hence, we

set ψ = [w1]∂D, which belongs to H
1/2
0 (∂D) because of the normalization condition

in (3.24). It is a straightforward task to check that the pairs (w1,W1), (wσ,Wσ) =
(w1 + v,W1 + V ) ∈ (H1(Ω \ ∂D) ⊕ T )/R satisfy diffraction problem (3.9) for the
conductivities 1 and σ, respectively. Moreover, it holds that

Fψ =
∂(wσ − w1)

∂ν

+

|∂D =
∂v

∂ν

+

|∂D = φ,

which proves that F : H
1/2
0 (∂D) → H

−1/2
0 (∂D) is surjective.

It is a consequence of the open mapping theorem that the inverse of the bijective
bounded linear operator F is also bounded. Moreover, by walking the above con-
structional proof of the surjectivity in the opposite direction and using the continuous
dependence on the boundary data of (3.4), (3.23), and (3.24), one easily sees that

F−1 : H
−1/2
0 (∂D) → H

1/2
0 (∂D) is, actually, uniformly bounded with respect to the

choice of the electrode configuration, i.e., with respect to the geometry of Γe as a
subset of ∂Ω. This completes the proof.

Now we have gathered enough weaponry to prove the factorization of Rσ −R1.
Proof of Theorem 3.3. For a fixed electrode current I ∈ T0 denote by (uσ, Uσ),

(u1, U1) ∈ H1(Ω)⊕T0 the solutions of the complete electrode forward problem, given
in (3.1), with conductivities σ and 1, respectively. Since uσ−u1 is harmonic in Ω\D,
it follows easily by using the divergence theorem and the complete electrode boundary
conditions that ∫

∂D

∂(uσ − u1)

∂ν

+

dS =

∫
∂Ω

∂(uσ − u1)

∂ν
dS = 0.

Thus, ((uσ − u1)|Ω\D, Uσ − U1) solves (3.4) for φ = ∂(uσ−u1)
∂ν

+|∂D and, in particular,

L

(
∂(uσ − u1)

∂ν

+

|∂D
)

= Uσ − U1 = (Rσ −R1)I.

By introducing the operator Gσ : I �→ ∂uσ

∂ν

+|∂D and setting G = Gσ − G1, we have
so far derived the factorization

Rσ −R1 = LG.(3.25)

Note thatG is a well-defined bounded operator from T0 toH
−1/2
0 (∂D) due to Theorem

2.3 and (3.14).

The next task is to calculate the dual operator G′
σ : H

1/2
0 (∂D) → T0 of Gσ. To

this end, consider (wσ,Wσ) ∈ H1(Ω\∂D)⊕T0 the solution of diffraction problem (3.9),

with a fixed ground level of the potential, corresponding to ψ ∈ H
1/2
0 (∂D). With the

help of the jump conditions [uσ]∂D =
[
σ ∂uσ

∂ν

]
∂D

= 0 (cf. [8]),
[
σ ∂wσ

∂ν

]
∂D

= 0, Green’s
formula, and the boundary conditions on uσ and wσ, we deduce

〈GσI, ψ〉L2(∂D) =

∫
∂D

∂uσ
∂ν

+

w+
σ dS −

∫
∂D

κ
∂uσ
∂ν

−
w−
σ dS

=

∫
∂D

(
∂wσ
∂ν

+

u+
σ − κ

∂wσ
∂ν

−
u−σ

)
dS +

∫
∂Ω

(
∂uσ
∂ν

wσ − ∂wσ
∂ν

uσ

)
dS
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=

∫
Γe

∂uσ
∂ν

wσdS +

∫
Γe

∂wσ
∂ν

(Uσ − uσ)dS =

∫
Γe

∂uσ
∂ν

(
wσ + z

∂wσ
∂ν

)
dS

=

∫
Γe

(
∂uσ
∂ν

− I

)
WσdS +

∫
Γe

IWσdS = 〈I,Wσ〉L2(∂Ω),

which shows that G′
σψ = Wσ. Hence, with (w1,W1) ∈ H1(Ω \ ∂D) ⊕ T0 the solution

of diffraction problem (3.9) corresponding to ψ and the unit conductivity, we have

G′ψ = Wσ −W1.

The restriction ((wσ − w1)|Ω\D,Wσ − W1) ∈ H1(Ω \ D) ⊕ T0 solves (3.4) for

φ = ∂(wσ−w1)
∂ν

+|∂D ∈ H
−1/2
0 (∂D), which means that

L

(
∂(wσ − w1)

∂ν

+

|∂D
)

= Wσ −W1 = G′ψ.(3.26)

Due to the way F : H
1/2
0 (∂D) → H

−1/2
0 (∂D) is defined and since ψ ∈ H

1/2
0 (∂D) was

chosen arbitrarily, relation (3.26) is equivalent to LF = G′. Taking the transpose of
this and plugging it into (3.25), we thus obtain

Rσ −R1 = LF ′L′ = LFL′,

which is what we set out to prove.

3.2. Some further properties of F , L, and L′. We define a new boundary
operator by

|Rσ −R1| = sgn(1 − κ)(Rσ −R1).(3.27)

Due to the way we have defined our conductivity in (3.3), it follows trivially from
Lemma 3.1 and Corollary 3.2 that |Rσ − R1| : T0 → T0 is self-adjoint and strictly

positive. Denoting the operator sgn(1 − κ)F : H
1/2
0 (∂D) → H

−1/2
0 (∂D) by |F |,

it follows from Theorem 3.3 that this new boundary operator can be factorized as
|Rσ − R1| = L|F |L′. In the next subsection we will use the operator |Rσ − R1| to
characterize the inclusion D. However, to be successful in this task, we must devote
the ongoing subsection to further investigations of |F |, L, and L′.

Lemma 3.8. The operator |F | : H
1/2
0 (∂D) → H

−1/2
0 (∂D) can be given as |F | =

F 1/2(F 1/2)′, where F 1/2 : L2
0(∂D) → H

−1/2
0 (∂D) and (F 1/2)′ : H

1/2
0 (∂D) → L2

0(∂D)
are bounded, bijective, and dual to each other. Further, it holds that∣∣∣∣∣∣F 1/2

∣∣∣∣∣∣ ≤ C+
√
C−,

∣∣∣∣∣∣F−1/2
∣∣∣∣∣∣ ≤ √

C−,

where C+, C− > 0 are the constants introduced in Lemma 3.7.

Proof. Since H
1/2
0 (∂D) ↪→ L2

0(∂D) ↪→ H
−1/2
0 (∂D) is a Gelfand triple and since

|F |−1 : H
−1/2
0 (∂D) → H

1/2
0 (∂D) is isomorphic, self-adjoint, and positive, it follows

from material in [3] that there exists a factorization

|F |−1 = (F−1/2)′F−1/2,
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where F−1/2 : H
−1/2
0 (∂D) → L2

0(∂D) and (F−1/2)′ : L2
0(∂D) → H

1/2
0 (∂D) are

bounded, bijective, and dual to each other, with∣∣∣∣∣∣F−1/2
∣∣∣∣∣∣ = ∣∣∣∣∣∣(F−1/2)′

∣∣∣∣∣∣ ≤ ∣∣∣∣F−1
∣∣∣∣1/2 ≤

√
C−.(3.28)

Further, for η ∈ L2
0(∂D) we may estimate∣∣∣∣∣∣F 1/2η

∣∣∣∣∣∣
H−1/2(∂D)

=
∣∣∣∣∣∣|F |(F−1/2)′η

∣∣∣∣∣∣
H−1/2(∂Ω)

≤ C+
√
C− ||η||L2(∂D) ,

where we used Lemma 3.7 and (3.28).

In what follows we denote by N (L)⊥ ⊂ H
−1/2
0 (∂D) the orthogonal comple-

ment of N (L) ⊂ H
−1/2
0 (∂D) with respect to the inner product of the Hilbert space

H−1/2(∂D). Let Q : R(FL′) → N (L)⊥ be an orthogonal projection; i.e., for

φ ∈ R(FL′) ⊂ H
−1/2
0 (∂D),

Qφ = φ⊥ ∈ N (L)⊥ with Lφ⊥ = Lφ.(3.29)

Note that Q is well defined due to the projection theorem [6]. In addition, we claim
that Q is a bijection.

Corollary 3.9. The orthogonal projection Q : R(FL′) → N (L)⊥ defined by
(3.29) is bijective with the norm estimates

||Q|| ≤ 1,
∣∣∣∣Q−1

∣∣∣∣ ≤ (C+C−)2,(3.30)

where C+, C− > 0 are the constants introduced in Lemma 3.7.
Proof. To begin with, note that the left-hand inequality of (3.30) is obvious. In

order to obtain the right-hand inequality, let φ ∈ R(FL′) = R(|F |L′) and φ⊥ = Qφ ∈
N (L)⊥, and note that φ− φ⊥ ∈ N (L). In consequence, we may write

||φ⊥||H−1/2(∂D) ≥ sup
||ψ||

H1/2=1,ψ∈R(L′)
〈φ⊥, ψ〉L2(∂D)

= sup
||ψ||

H1/2=1,ψ∈R(L′)
〈φ, ψ〉L2(∂D).

Further, since |F |−1φ ∈ R(L′), we have

||φ⊥||H−1/2(∂D) ≥
1

|| |F |−1φ||H1/2(∂D)

〈φ, |F |−1φ〉L2(∂D) =

∣∣∣∣F−1/2φ
∣∣∣∣2
L2(∂D)

|| |F |−1φ||H1/2(∂D)

,

and so we finally obtain

||φ⊥||H−1/2(∂D) ≥
||φ||H−1/2(∂D)∣∣∣∣F 1/2

∣∣∣∣2 || |F |−1||
≥ 1

(C+C−)2
||φ||H−1/2(∂D)(3.31)

by Lemmas 3.7 and 3.8.

According to Lemmas 3.4 and 3.7, L : H
−1/2
0 (∂D) → T0 is surjective, L′ :

T0 → H
1/2
0 (∂D) is injective, and F : H

1/2
0 (∂D) → H

−1/2
0 (∂D) is bijective. Thus,

dim(N (L)⊥) = dim(R(FL′)) = dim(T0) <∞, and so the bijectivity of Q : R(FL′) →
N (L)⊥ follows from its injectivity that is guaranteed by (3.31), which provides also
the needed norm estimate for Q−1.



924 NUUTTI HYVÖNEN

To end this subsection, we make a few comments about the inverse operators

of L and L′ defined in (3.5) and (3.8), respectively. Since L : H
−1/2
0 (∂D) → T0

is noninjective and L′ : T0 → H
1/2
0 (∂D) is nonsurjective, they do not have inverse

operators as such. However, the restrictions L : R(FL′) → T0 and L′ : T0 → R(L′)
do have bounded inverses due to the bijectivity of Rσ − R1 = LFL′ : T0 → T0 and
finite-dimensionality of T0. In what follows, we will denote by L−1 and (L′)−1 the
inverses of these restrictions, i.e.,

L−1 : T0 → R(FL′), (L′)−1 : R(L′) → T0,(3.32)

with LL−1 = id, L−1L|R(FL′) = id and L′(L′)−1 = id, (L′)−1L′ = id. With this
notation, we can factorize |Rσ − R1|−1 : T0 → T0, which exists according to Lemma
3.2, as

|Rσ −R1|−1 = (L′)−1|F |−1L−1 = (L′)−1(F−1/2)′F−1/2L−1,

due to Theorem 3.3 and Lemma 3.8.

3.3. Characterizing the inclusion. Before we can formulate and prove the
main result of this section, we need to introduce some new concepts. Let {TM} be a
sequence of electrode configurations, meaning that

TM = {eM1 , . . . , eMM ⊂ ∂Ω | eMl ∩ eMm = ∅ if l �= m}, ΓM = ∪Mm=1e
M
m ,

for each 1 ≤ M < ∞, satisfying the following conditions: d(eMm ) ≤ βM for all 1 ≤
m ≤M ,

|∂Ω \ ΓM |, βM → 0 when M → ∞,(3.33)

where d(eMm ) is the diameter of eMm , i.e., d(eMm ) = supx,y∈eMm |x−y|. The subspaces TM

and TM0 , corresponding to the electrode configuration TM , are defined in accordance
with (2.5) and (2.6), respectively, and the associated orthogonal projections PM1 :
L2

0(∂Ω) → L2
0(ΓM ), PM2 : L2

0(ΓM ) → TM0 , and PM : L2
0(∂Ω) → TM0 are given by

obvious modifications of (2.3), (2.9), and (2.26). We also will use a similar index
notation for other operators depending on the used electrode configuration.

Let y ∈ Ω be a parameter and α̂ ∈ R
n a unit vector, and consider the solution

Φy of the following homogenous Neumann problem:

∆Φ(x) = α̂ · ∇δ(x− y) in Ω,
∂Φ

∂ν
= 0 on ∂Ω,

∫
∂Ω

ΦdS = 0,(3.34)

where δ is the delta functional. Physically Φy corresponds to the electromagnetic
potential created by a dipole point source at y pointing in the direction α̂. It is
a well-known fact that (3.34) is uniquely solvable with Φy ∈ C∞(Ω \ {y}) and Φy
singular at y.

Assume that (3.33) is valid and let {αM} ⊂ R+ be a sequence of regularization
parameters. Consider the minimizing sequence {IM} ⊂ L2

0(∂Ω), IM ∈ TM0 , of the
Tikhonov functionals∣∣∣∣∣∣|RMσ −RM1 |1/2I − Φy

∣∣∣∣∣∣2
L2(∂Ω)

+ αM ||I||2L2(∂Ω) , I ∈ TM0 , 1 ≤M <∞,(3.35)

where |RMσ −RM1 |1/2 : TM0 → TM0 is the unique, positive, self-adjoint, bijective square
root of |RMσ −RM1 | defined in (3.27). Since RMσ −RM1 can be obtained through bound-
ary measurements, so can |RMσ − RM1 |1/2 and, hence, the behavior of the sequence
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{IM} is something that can be observed by noninvasive methods. The following
theorem characterizes the inclusion D by the limit behavior of {IM}.

Theorem 3.10. Assume that (3.33) holds and the contact impedance z is smooth.
Let {IM} ⊂ L2

0(∂Ω), IM ∈ TM0 , be the minimizing sequence for the functionals (3.35)
and assume that {αM} ⊂ R+ converges to zero but is such that the sequence{

infV ∈TM ||Φy − V ||2L2(∂Ω)

αM

}

is bounded. Then y ∈ D if and only if the sequence {IM} is bounded in L2
0(∂Ω).

In real life one is, naturally, not able to construct a sequence of electrode configu-
rations with the properties given in (3.33). However, when conducting measurements
with a fixed setting of electrodes that are relatively small and cover a large portion
of the object boundary, Theorem 3.10 gives a reason to believe that the electrode
currents needed for minimizing functional (3.35), with a fixed small α > 0, are larger
when y ∈ Ω\D than when y ∈ D. This observation leads to a possibility of numerical
implementation that will be considered in forthcoming articles.

The following simple lemma shows that the conditions of Theorem 3.10 are rea-
sonable. One could also quite easily derive a quantitative estimate to suggest an a
priori choice of regularization parameters αM in Theorem (3.10) but for simplicity we
content ourselves with a mere convergence result.

Lemma 3.11. Let f ∈ C∞(∂Ω) and assume that {TM} satisfies (3.33). Then it
holds that

inf
V ∈TM

||f − V ||L2(∂Ω) → 0,

when M goes to infinity.
Proof. The claim is a straightforward consequence of the good behavior of {TM}

given by (3.33).
The rest of this section is devoted to the proof of Theorem 3.10. Let LM be the

operator defined in (3.5) corresponding to the electrode configuration TM . We define

the associated limit operator L̃ : H
−1/2
0 (∂D) → H

1/2
0 (∂Ω) by

L̃φ = v|∂Ω, φ ∈ H
−1/2
0 (∂D),

where v ∈ H1
0,∂Ω(Ω \D) is the unique solution of the boundary value problem

∆v = 0 in Ω \D, ∂v

∂ν

+

= φ on ∂D,
∂v

∂ν
= 0 on ∂Ω.(3.36)

The adjoint of L̃ is L̃′ : H
−1/2
0 (∂Ω) → H

1/2
0 (∂D) [3],

L̃′φ′ = v′|∂D, φ′ ∈ H
−1/2
0 (∂Ω),(3.37)

where v′ ∈ H1
0,∂D(Ω \D) is the unique solution of the boundary value problem

∆v′ = 0 in Ω \D, ∂v′

∂ν
= −φ′ on ∂Ω,

∂v

∂ν

+

= 0 on ∂D.

The first step of our proof is to characterize the inclusion D by the operator sequence
{LM} with the help of known mapping properties of L̃ and L̃′.
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Assume that {αM} is a sequence of positive regularization parameters that con-
verges to zero and consider the following Tikhonov functionals:∣∣∣∣LMφ− Φy

∣∣∣∣2
L2(∂Ω)

+ αM ||φ||2H−1/2(∂D) , 1 ≤M ≤ ∞.(3.38)

Since LM : H
−1/2
0 (∂D) → TM0 ⊂ L2

0(∂Ω) is continuous for every M ∈ N, it is well

known that each of these functionals has a unique minimizer φM ∈ H
−1/2
0 (∂D). We

intend to show that, for a correctly chosen sequence of regularization parameters
{αM}, the behavior of the minimizer sequence {φM} at infinity determines uniquely
whether y belongs to the inclusion D or not. We begin with the case when y ∈ Ω \D.

Lemma 3.12. Assume that y ∈ Ω \ D, the contact impedance z is smooth, and

{αM} ⊂ R+ converges to zero. Let {φM} ⊂ H
−1/2
0 (∂D) be the minimizing sequence

for the functionals (3.38). Then it holds that∣∣∣∣φM ∣∣∣∣
H−1/2(∂D)

→ ∞,

as M goes to infinity.
Proof. First, we will show that LMφM converges to Φy|∂Ω as M goes to infinity.

Let ε > 0 be given. Since L̃′ defined in (3.37) is clearly injective, we have R(L̃) =

N (L̃′)⊥ = H
1/2
0 (∂Ω), where the orthogonal complement is taken with respect to the

dual pairing between H
−1/2
0 (∂Ω) and H

1/2
0 (∂Ω). Hence, R(L̃) is dense in H

1/2
0 (∂Ω)

and, thus, also in L2
0(∂Ω). In consequence, we can choose φε ∈ H

−1/2
0 (∂D) such that

∣∣∣∣∣∣L̃φε − Φy

∣∣∣∣∣∣2
L2(∂Ω)

<
ε2

6
.(3.39)

Note also that L̃φε ∈ C∞(∂Ω) ∩ H
1/2
0 (∂Ω) due to the regularity theory of elliptic

partial differential equations [10].

Since L̃φε ∈ H
1/2
0 (∂Ω) and LMφε ∈ L2

0(ΓM ), by using the projection PM1 :
L2

0(∂Ω) → L2
0(ΓM ), defined by (2.3), we can estimate∣∣∣∣∣∣(L̃− LM )φε
∣∣∣∣∣∣
L2(ΓM )

≤
∣∣∣∣∣∣L̃φε − PM1 (L̃φε)

∣∣∣∣∣∣
L2(ΓM )

+
∣∣∣∣∣∣PM1 (L̃− LM )φε

∣∣∣∣∣∣
L2(ΓM )

≤C
{|∂Ω \ ΓM |1/2

|ΓM |1/2
∣∣∣∣∣∣L̃φε∣∣∣∣∣∣

L2(∂Ω\ΓM )
+
∣∣∣∣∣∣(L̃− LM )φε

∣∣∣∣∣∣
L2(ΓM )/R

}

≤C
{|∂Ω \ ΓM |1/2

|ΓM |1/2
∣∣∣∣∣∣L̃φε∣∣∣∣∣∣

L2(∂Ω\ΓM )
+ inf
V ∈TM

∣∣∣∣∣∣L̃φε−V ∣∣∣∣∣∣
L2(ΓM )

}
,

where the second-to-last inequality follows from (2.3), by using the Schwarz inequality,
and the fact that PM1 (L̃ − LM )φε ∈ L2

0(ΓM ), and the last inequality follows from
Lemma 2.7 and Theorem 2.11 applied on boundary value problems (3.36) and (3.4).
Thus, according to Lemma 3.11, we can choose M0 ∈ N in such a way that

∣∣∣∣∣∣(LM − L̃)φε
∣∣∣∣∣∣2
L2(∂Ω)

≤ C

|ΓM | inf
V ∈TM

∣∣∣∣∣∣L̃φε − V
∣∣∣∣∣∣2
L2(∂Ω)

<
ε2

6
,(3.40)

and, in addition,

αM ||φε||2H−1/2(∂D) <
ε2

3
(3.41)
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for all M ≥M0. Consequently, due to estimates (3.39), (3.40), (3.41), and the triangle
inequality, for every M ≥M0 it holds that∣∣∣∣LMφM − Φy

∣∣∣∣2
L2(∂Ω)

+ αM
∣∣∣∣φM ∣∣∣∣2

H−1/2(∂D)

≤ ∣∣∣∣LMφε − Φy
∣∣∣∣2
L2(∂Ω)

+ αM ||φε||2H−1/2(∂D) < ε2.

In particular, since ε > 0 was chosen arbitrarily, we have obtained∣∣∣∣LMφM − Φy
∣∣∣∣
L2(∂Ω)

→ 0,

when M goes to infinity.
Next, we will use contradiction: Assume that the minimizing sequence {φM}

is bounded in H
−1/2
0 (∂D). In consequence, it follows from fundamental functional

analysis [6] that {φM} has a subsequence {φMk}∞k=1 that converges weakly to some

distribution φ′ ∈ H
−1/2
0 (∂D). Our goal is to show that L̃φ′ = Φy|∂Ω, which is a

contradiction due to the singularity of Φy at y ∈ Ω \D [3].

Let g ∈ C∞(∂Ω) ∩ L2
0(∂Ω) be arbitrary and write it in two parts as g = PMk

1 g +
(I − PMk

1 )g, where PMk
1 is defined by (2.3). Then we have

〈LMkφMk , g〉L2(∂Ω) =〈LMkφMk , PMkg〉L2(∂Ω)+〈LMkφMk , (I−PMk
1 )g〉L2(ΓMk

),(3.42)

where we used the fact that LMkφMk is constant over each eMk
m and zero elsewhere,

and the way PMk is defined in (2.26). Due to the uniform boundedness of the

operators {LMk} ⊂ L(H
−1/2
0 (∂D), L2

0(∂Ω)) (see Lemma 3.4) and of the sequence

{φM} ⊂ H
−1/2
0 (∂D), the second term on the right-hand side of (3.42) can be esti-

mated by the Schwarz inequality as follows:

|〈LMkφMk , (I − PMk
1 )g〉L2(ΓMk

)| ≤ C

|ΓMk
|

⎧⎨
⎩
∫

ΓMk

∣∣∣∣∣
∫
∂Ω\ΓMk

gdS

∣∣∣∣∣
2

dS

⎫⎬
⎭

1/2

≤ C

|ΓMk
|1/2 |∂Ω \ ΓMk

| ||g||∞ → 0,

when k goes to infinity due to (3.33). On the other hand, for the first term on the
right-hand side of (3.42) we may write

〈LMkφMk , PMkg〉L2(∂Ω) = 〈φMk , (LMk)′PMkg〉L2(∂D)

= 〈φMk , ((LMk)′PMk − L̃′)g〉L2(∂D) + 〈φMk , L̃′g〉L2(∂D).(3.43)

Let (vMk , VMk) ∈ H1
0,∂D(Ω \ D) ⊕ TMk and v ∈ H1

0,∂D(Ω \ D) be the solutions

corresponding to the operator current pairs ((LMk)′, PMkg) and (L̃′, g), respectively;
i.e., by (3.8) and (3.37), (LMk)′PMkg = vMk |∂D and L̃′g = v|∂D. Since φMk ∈
H

−1/2
0 (∂D), by a slight variation of Lemma 2.7 and Theorem 2.4, we have

|〈φMk , ((LMk)′PMk − L̃′)g〉L2(∂D)| ≤
∣∣∣∣φMk

∣∣∣∣
H−1/2(∂D)

∣∣∣∣vMk − v
∣∣∣∣
H1/2(∂D)/R

≤ C
∣∣∣∣vMk − v

∣∣∣∣
H1(Ω\D)/R

≤ C

{
inf

V ∈TMk

||(v − zg) − V ||L2(ΓMk
)

+
1

|ΓMk
|1/2 ||g||H̃−1/2(∂Ω\ΓMk

)

}
→ 0,
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when k goes to infinity by Lemma 3.11 and (3.33) since v|∂Ω − zg ∈ C∞(∂Ω) due to
the assumptions on z and g, and the regularity theory of elliptic partial differential
equations [10]. Finally, due to the weak convergence of {φMk}, the second term on
the right-hand side of (3.43) satisfies

〈φMk , L̃′g〉L2(∂D) → 〈φ′, L̃′g〉L2(∂D) = 〈L̃φ′, g〉L2(∂Ω),

when k goes to infinity.
Putting the above estimates together, we have established that

〈LMkφMk , g〉L2(∂Ω) → 〈L̃φ′, g〉L2(∂Ω) = 〈Φy, g〉L2(∂Ω) when k → ∞,

for all g ∈ C∞(∂Ω) ∩ L2
0(∂Ω), by the first part of the proof. This means that L̃φ′ =

Φy|∂Ω almost everywhere on ∂Ω, which is the contradiction we were looking for.
Then it is the turn of y ∈ D.
Lemma 3.13. Assume that y ∈ D and let {αM} ⊂ R+ be such that the sequence{

infV ∈TM ||Φy − V ||2L2(∂Ω)

αM

}
(3.44)

is bounded. Then the sequence of the minimizers {φM} ⊂ H
−1/2
0 (∂D) for (3.38) also

is bounded.
Proof. To begin with, note that

∂Φy

∂ν

+|∂D ∈ H
−1/2
0 (∂D) due to the divergence

theorem. Since LM
∂Φy

∂ν

+ ∈ L2
0(ΓM ) and, clearly, L̃

∂Φy

∂ν

+
= Φy|∂Ω ∈ H

1/2
0 (∂Ω), as in

the proof of Lemma 3.12, we have the estimate∣∣∣∣
∣∣∣∣LM ∂Φy

∂ν

+

− Φy

∣∣∣∣
∣∣∣∣
2

L2(∂Ω)

=

∣∣∣∣
∣∣∣∣(LM − L̃)

∂Φy
∂ν

+∣∣∣∣
∣∣∣∣
2

L2(∂Ω)

≤ C

|ΓM | inf
V ∈TM

||Φy − V ||2L2(∂Ω) .

Thus, due to the minimizing property of the sequence {φM} ⊂ H
−1/2
0 (∂D), for every

M ∈ N, we have∣∣∣∣LMφM − Φy
∣∣∣∣2
L2(∂Ω)

+ αM
∣∣∣∣φM ∣∣∣∣2

H−1/2(∂D)

≤ C

|ΓM | inf
V ∈TM

||Φy − V ||2L2(∂Ω) + αM

∣∣∣∣
∣∣∣∣∂Φy
∂ν

+∣∣∣∣
∣∣∣∣
2

H−1/2(∂D)

.(3.45)

Forgetting the first term on the left-hand side of (3.45) and dividing by αM , we get

∣∣∣∣φM ∣∣∣∣2
H−1/2(∂D)

≤ C
infV ∈TM ||Φy − V ||2L2(∂Ω)

αM |ΓM | +

∣∣∣∣
∣∣∣∣∂Φy
∂ν

+∣∣∣∣
∣∣∣∣
2

H−1/2(∂D)

,

for every M ∈ N. Together with assumptions (3.44) and (3.33), this proves the
claim.

If the operator sequence {LM} is known, Lemmas 3.12 and 3.13 give us the means
to find the inclusion D. However, to know {LM} is to know the shape of the boundary
∂D. Luckily, the operators LM and |RMσ −RM1 |1/2 are closely related, and so Lemmas
3.12 and 3.13 give us the weaponry to write out the proof for Theorem 3.10.

Proof of Theorem 3.10. Let us define a new sequence {φ̃M} ⊂ H
−1/2
0 (∂D), φ̃M ∈

R(FM (LM )′), by

φ̃M = (LM )−1|RMσ −RM1 |1/2IM , 1 ≤M <∞,
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where (LM )−1 is given by (3.32). We get a simple relation between the norms of IM

and φ̃M :

∣∣∣∣IM ∣∣∣∣2
L2(∂Ω)

= 〈|RMσ −RM1 |−1/2LM φ̃M , |RMσ −RM1 |−1/2LM φ̃M 〉L2(∂Ω)

= 〈φ̃M , (LM )′|RMσ −RM1 |−1LM φ̃M 〉L2(∂D)

= 〈φ̃M , (LM )′((LM )′)−1|FM |−1(LM )−1LM φ̃M 〉L2(∂D)

= 〈φ̃M , |FM |−1φ̃M 〉L2(∂D) =
∣∣∣∣∣∣(FM )−1/2φ̃M

∣∣∣∣∣∣2
L2(∂D)

.

In consequence, since the sequence {IM} minimizes the functionals (3.35), the se-
quence {φ̃M} minimizes the functionals

∣∣∣∣LMφ− Φy
∣∣∣∣2
L2(∂Ω)

+ αM

∣∣∣∣∣∣(FM )−1/2φ
∣∣∣∣∣∣2
L2(∂D)

, 1 ≤M <∞,(3.46)

within the subspaces R(FM (LM )′), respectively. Indeed, if φ̂M ∈ R(FM (LM )′) gave

a smaller value for functional (3.46), then one easily sees that |RMσ −RM1 |−1/2LM φ̂M ∈
TM0 would give a smaller value than IM for functional (3.35), which is a contradiction.

We define yet a new sequence by {φM} = {QM φ̃M}, where QM : R(FM (LM )′) →
N (LM )⊥ ⊂ H

−1/2
0 (∂D) is defined by (3.29). Here and in the rest of this proof the or-

thogonal complement N (LM )⊥ is taken with respect to the H−1/2 inner product. By
similar reasoning as above, one sees that this new sequence minimizes the functionals

∣∣∣∣LMφ− Φy
∣∣∣∣2
L2(∂Ω)

+ αM

∣∣∣∣∣∣(FM )−1/2(QM )−1φ
∣∣∣∣∣∣2
L2(∂D)

, 1 ≤M <∞,

over the subspaces N (LM )⊥, respectively. Now, Lemma 3.8 and Corollary 3.9 tell us
that there exists a sequence of functionals {CM}, CM : N (LM )⊥ → R, such that∣∣∣∣∣∣(FM )−1/2(QM )−1φ

∣∣∣∣∣∣
L2(∂D)

= CM (φ) ||φ||H−1/2(∂D) , c ≤ CM ≤ C,

for all M ∈ N and φ ∈ N (LM )⊥, where c and C are positive constants independent
of M . Thus, the sequence {φM} also minimizes the functionals

∣∣∣∣LMφ− Φy
∣∣∣∣2
L2(∂Ω)

+ αMC
2
M (φ) ||φ||2H−1/2(∂D) , 1 ≤M <∞,(3.47)

over the subspaces N (LM )⊥ ⊂ H
−1/2
0 (∂D), respectively. In particular, if we define

CM (φ) = C for φ ∈ H
−1/2
0 (∂D)\N (LM )⊥, the sequence {φM} minimizes functionals

(3.47) over the whole space H
−1/2
0 (∂D). It is an easy consequence of the upper and

lower bounds for {CM} that {φM} is bounded in H
−1/2
0 (∂D) if and only if y ∈ D.

Let {φMc }, {φMC } ⊂ H
−1/2
0 (∂D) be the minimizing sequences for the functionals

∣∣∣∣LMφ− Φy
∣∣∣∣2
L2(∂Ω)

+
1

2
αMc

2 ||φ||2H−1/2(∂D) , 1 ≤M <∞,

and ∣∣∣∣LMφ− Φy
∣∣∣∣2
L2(∂Ω)

+ 2αMC
2 ||φ||2H−1/2(∂D) , 1 ≤M <∞,
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respectively. It follows from Lemmas 3.12 and 3.13 that each of these sequences is
bounded if and only if y ∈ D. Let us shorten our strenuous notations by ΨM (φ) =∣∣∣∣LMφ− Φy

∣∣∣∣
L2(∂Ω)

and note that due to the minimizing properties of the sequences

{φM} and {φMc }, for every M ∈ N, we have

Ψ2
M (φM ) +αMC

2
M (φM )

∣∣∣∣φM ∣∣∣∣2
H−1/2(∂D)

≤ Ψ2
M (φMc ) +αMC

2
M (φMc )

∣∣∣∣φMc ∣∣∣∣2H−1/2(∂D)
,

and

Ψ2
M (φM ) +

1

2
αMc

2
∣∣∣∣φM ∣∣∣∣2

H−1/2(∂D)
≥ Ψ2

M (φMc ) +
1

2
αMc

2
∣∣∣∣φMc ∣∣∣∣2H−1/2(∂D)

.

By subtracting the second of these inequalities from the first one and arranging terms,
we get

∣∣∣∣φM ∣∣∣∣2
H−1/2(∂D)

≤ C2
M (φMc ) − 1

2c
2

C2
M (φM ) − 1

2c
2

∣∣∣∣φMc ∣∣∣∣2H−1/2(∂D)
≤ 2C2 − c2

c2
∣∣∣∣φMc ∣∣∣∣2H−1/2(∂D)

.

On the other hand, by similar means we deduce that

∣∣∣∣φM ∣∣∣∣2
H−1/2(∂D)

≥ 2C2 − C2
M (φMC )

2C2 − C2
M (φM )

∣∣∣∣φMC ∣∣∣∣2H−1/2(∂D)
≥ C2

2C2 − c2
∣∣∣∣φMC ∣∣∣∣2H−1/2(∂D)

.

From the above estimates it follows that {φM} ⊂ H
−1/2
0 (∂D) is bounded if and only

if y ∈ D.
Finally, walking the above path of reasoning backwards, one sees that

∣∣∣∣IM ∣∣∣∣
L2(∂Ω)

=
∣∣∣∣∣∣(FM )−1/2(QM )−1φM

∣∣∣∣∣∣
L2(∂D)

,

and so the claim follows from the uniform boundedness of the operator sequences
{(FM )1/2}, {(FM )−1/2}, and {QM}, {(QM )−1} given in Lemma 3.8 and Corollary
3.9, respectively.

We end this section, and at the same time the whole work, by noting that one
could easily modify Theorem 3.10 for the case of multiple inclusions by using the
means described in [3].
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Abstract. Consider the ultrasonic imaging of a fetal head, a standard procedure for assessing
the growth and development of the fetus in utero. The size and shape of certain cross sections of
the skull are particularly important in such assessments. The technician/radiologist spatially moves
an ultrasonic transducer over the pregnant woman’s abdomen and acquires three-dimensional infor-
mation from the real-time two-dimensional video images. The ability to draw conclusions from such
images is built upon an acquired practical knowledge as to what is bone, what is tissue, and what is
sensor noise. Can one mechanize this intuitive understanding which allows the technician/radiologist
to delineate between inherent biological variation and variation due to sensor noise, and in so doing,
reconstruct the fetal head? The approach of the present paper is that of a probabilistic recovery of
the fetal head. The “space of realizable fetal heads” is viewed as the result of similarity (transla-
tion × scale × rotation) transformations being applied to a given fetal head prototype. A model of
the ultrasonic imaging of a fetal head is formulated and prior knowledge is incorporated, resulting
in an a posteriori probability measure on the “space of realizable fetal heads.” Sampling from this
probability measure is achieved and justified via a time-homogeneous diffusion on a Riemannian,
compact, simply connected, oriented manifold with boundary. The discretization of the diffusion is
implemented into code, and the algorithm is applied to actual ultrasound prenatal images.

Key words. medical image processing, stochastic differential equations, manifold with bound-
ary, stochastic optimization

AMS subject classifications. 92C50, 60M10, 92C30, 62M09, 93E03

DOI. 10.1137/S0036139902408904

1. Introduction. Within a medical imaging context, consider the prenatal ul-
trasound imaging of a fetal head. The transducer is moved, resulting in a spatial
sequence of two-dimensional ultrasound images. In Figure 1, a sequence of eight such
images (taken in roughly parallel planes, perpendicular to the spine of the fetus) is
displayed proceeding clockwise from the jawline (top left) upward to the top of the
head (bottom left). The technician/radiologist is able to observe the images in “real
time,” and they are stored on video at a rate of 33 frames per second. The objectives
of the ultrasonic exam are to detect any potential abnormalities and to monitor the
growth of the fetus via certain measurements of the fetal skull. Can one automate
this process by mechanizing the technician’s intuitive understanding of the inherent
biological variation as well as the variation due to sensor noise? We develop a be-
ginning formulation for such a methodology and apply it to the displayed ultrasound
images.

One measurement commonly taken is the diameter of the fetal skull in a specified
plane, located just above the ears. This measurement is called the biparietal diameter
(BPD), and the plane is referred to as the BPD plane (pictured in the top row of
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Fig. 1. Ultrasound images of a fetal head. Images proceed clockwise from the jawline (top left)
upward to the top of the head (bottom left).

Figure 1, second from the right). Ideally, in order to automate measurements such as
the BPD, the entire head would be reconstructed from the “ultrasound movie,” and
any measurements or other assessments would be made on the reconstructed head.
That way, for example, even if one does not actually observe the BPD cross section,
one would still be able to estimate the BPD measurement.

With the advent of telemedicine, where ultrasonic imaging may well be done
remotely by the radiologist, possibly even in a semiautomated manner, being able to
estimate the BPD under such conditions will be important. Another consideration is
whether, by the incorporation of knowledge which allows for the distinction between
what is bone, what is tissue, and what is sensor noise, it might be possible to perform
prenatal ultrasonic assessments earlier in the development of the fetus. Traditionally,
prenatal ultrasonic examinations of the fetal head are not performed until the bones
of the fetal skull have calcified sufficiently to allow for visual recognition.

In the present context, imagine the collection of “realizable variations in form” of
a fetal head. A basic strategy would then be to optimize over this collection, finding
that variation which most likely could have produced the acquired two-dimensional
ultrasound images. The difficulty is that it is computationally infeasible to store all
such potential fetal head representations and search through them by brute force.
The methodology presented in this paper is an attempt to do such a search in a
semi-intelligent manner.

We consider this collection, Θ(T ), to be the result of a family of transformations,
Θ, applied to a given fetal head template, T . The transformations are assumed to be
characterized by a compact manifold with boundary. In our particular application,
the transformations are those of location × scale × rotation, but the formulation and



934 DANIEL M. KEENAN AND PAULA A. SHORTER

justification are established in a broader context. The resulting manifold structure
is a consequence of the space of rotations SO(3), and the boundary arises from the
boundary of the space of allowable translations and/or from that of the space of
possible scalings. A probability measure incorporating prior knowledge about fetal
heads as well as the information provided by the acquired ultrasound images will be
constructed on Θ. The ability to sample from this measure (stochastic relaxation; see
[6], [7]) is the basis of the approach. The reconstruction will be obtained via such
sampling.

More and more today, the stochastic modeling of complex phenomena requires
formulations in terms of manifolds. The usual reason for this is that various nonlinear
constraints inherent to the structure cannot be excluded or linearized. In pattern
theory (see, e.g., [7], [8], [29]), a fundamental formulation of a parameter space is as a
product of low-dimensional Lie groups, and when one takes into account certain global
constraints, the resulting parameter space will be a submanifold (of the product) with
boundary.

Below, our parameter space will be a manifold, assumed to be Riemannian, finite-
dimensional, compact, connected, oriented, and with boundary. Having specified
such a space (call it Θ = Θ ∪ ∂Θ), one would then develop a likelihood function
which describes how the data came about (i.e., a model of the technology) and a
prior probability measure describing a priori knowledge of the parameter. Their joint
interaction results in a posterior probability measure π on Θ.

After developing the posterior probability measure π, we develop methods for
sampling from this posterior measure (with respect to a reference measure) via the
“objective function”

h(·) = − ln q(·),
where q is the posterior density function on Θ. The sampling will be achieved by
running a discretization of a time-homogeneous diffusion on Θ. In a linear space, the
diffusion would be defined by the Langevin equation

dXt = −1

2
∇h(Xt)dt + dWt,(1.1)

where {Wt, t ≥ 0} is a standard Wiener process. Heuristically thinking of h as a
potential energy, the above diffusion would be defined by a Fokker–Planck equation
for which q = e−h is the time-independent (i.e., steady-state) solution. To make this
precise, one needs to prove an ergodic theorem (see section 8).

On a Riemannian manifold with boundary, the above diffusion in linear space is
replaced by the diffusion {θt, t ≥ 0} generated by the operator

A =
1

2
(∆ −∇h)(1.2)

and the boundary operator

L =
∂

∂n
(derivative in the normal direction),

where ∇ and ∆ are the gradient and Laplacian on Θ, and there is reflection at the
boundary.

In section 6, we discuss a practical issue that can arise in settings where the
imaging is done in dimensions that are not specifically calculated (as can occur in
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ultrasound). Since the original space Θ is not completely determined in practice, in
order to actually implement a discretization of the time-homogeneous diffusion process
on Θ, we must run our algorithm on a normalized space, Θ0, via a transformation of
units. The consequence is that a scaling factor (from a change of variables) may be
needed in order to put the gradient and the Brownian motion on the same scale.

2. Overview of algorithm and related literature.

2.1. Procedure: Simulation from the posterior measure π. The time-
homogeneous diffusion {θt, t ≥ 0} on Θ will be shown to be ergodic with invariant
measure π (whose density is q). Hence θt, for large t, represents (in an asymptotic
sense) sampling from the desired posterior measure π, where π incorporates prior
knowledge about θ and information from the observed data (in the present case, the
ultrasound images).

2.2. Analysis: Automation of the BPD measurement. Recall that the
motivating objective of our work is to automate various processes involved in the
prenatal ultrasonic monitoring of fetal growth and development. In particular, the
problem considered is that of automatically determining the BPD measurement of a
fetus, given a sequence of two-dimensional ultrasound images of the fetal head. The
approach taken here is to probabilistically recover the three-dimensional fetal head
and then to acquire the BPD measurement from the recovered (estimated) head. An
estimate for the “true” fetal head is obtained by sampling from the posterior measure
on Θ as described above.

We implement and apply a discretization of the diffusion {θt, t ≥ 0} to actual
ultrasound images of a fetal head. Each run of the algorithm results in an estimated
“true” three-dimensional fetal head from which BPD measurements can be taken.

Note. To establish the theoretical basis for the present algorithm, an alternative
approach could be pursued. One could imbed (by Whitney’s theorem [34]) the d-dim
manifold in R

N for some N , extend the function on the imbedded surface to a function
on a larger N -dim rectangle without introducing any new global minima, and then
apply the result of Geman and Hwang [5] in R

N . (The present authors have, in fact,
established such results.) The difficulty with such an approach is that the geometry
of the imbedded surface could (and ordinarily would) be quite different from that of
the original manifold, and the value of N needs to potentially be much larger (2d or
2d+ 1). One could consider an isometric imbedding (Nash’s theorem [30]), but then
the required dimension is even larger (n(3n + 11)/2). The addition of a boundary
in the present case complicates things even further. From a practical perspective, if
one wants a theoretical structure for which the geometry is directly applicable to the
construction of the algorithm, then it is most natural to establish the results directly,
within the context of Riemannian geometry.

Our theoretical result can be viewed as a generalization to the time-homogeneous
case for a manifold of the results of Geman and Hwang [5], who considered a com-
pact rectangle in R

d, and Chiang, Hwang, and Sheu [4], who extended the previous
result to the case of all of R

d. The focus of those papers was primarily on the time-
inhomogeneous case, where dWt is replaced by c(t)dWt with c2(t) ∝ 1/(1 + �n t)
slowly decreasing to zero, as in simulated annealing. In Shorter [32] and Keenan and
Shorter [21], we consider stochastic relaxation and simulated annealing on a manifold
without boundary; the motivation of the latter is to perform maximum likelihood
estimation (MLE) and MAP estimation for such examples as described in the next
section. Holley, Kusuoka, and Stroock [14] consider continuous-time annealing on
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a compact manifold, but with different goals in mind. Grenander and Miller [12]
and Srivastava et al. [33] consider parameter spaces consisting of a countable union
of Lie groups, each of a different dimension, and construct jump-diffusion processes,
where the jumps are between the different Lie groups. There is no boundary to the
manifolds within their formulations.

3. Prenatal ultrasonic assessment.

3.1. Ultrasound imaging. The underlying principles of ultrasound imaging
are essentially the same as those in other echo ranging systems, where the range to
an object is determined by knowing the speed at which sound is traveling in the
given medium and measuring the amount of time required for a generated sound
pulse to travel to and echo back from the object. Specifically in medical ultrasound,
the transducer (the vibrating source that creates ultrasound waves) produces a short
pulse of ultrasound, typically three or four vibrations, at a frequency in the 2–10 MHz
range. The pulse propagates away from the transducer into the patient in the plane
of the transducer.

One of the primary reasons that ultrasound can be used to accurately image
structures within the human body is that the speed of sound (c) in different human
soft tissues is very similar. Thus, in medical ultrasound c can be taken to be constant
(usually 1540ms−1), since in most cases the ultrasound wave is propagating through
soft tissue of one kind or another. In prenatal ultrasonic examinations of the fetal
head, the constant c is still taken to be 1540ms−1, despite the significant presence of
bone. In this case, the accuracy of the approximation is spared by the fact that the
bones of the fetal skull are less calcified than in postnatal life.

As an ultrasound wave propagates through tissue, its direction and intensity
change due to several processes, reflection being the most informative. Under certain
circumstances, when an ultrasound wave encounters a boundary between different me-
dia (called an interface), it is redirected according to the laws characterizing optical
reflection (the process occurring when light strikes a reflecting surface). The redi-
rected wave, now referred to as an echo, reflects off of the interface at an angle equal
to the angle of incidence. The various factors affecting the process of reflection at a
particular interface include the size, roughness, and orientation of the interface. For
optimum reflection, the interface must be large and smooth relative to the wavelength
and oriented perpendicularly to the incident wave.

The intensity of the echo differs from that of the incident wave because not all of
the incoming energy is reflected at an interface. A portion of the energy is reflected,
but the rest is transmitted into the next medium, unaffected by the interface, where
it is available for reflection by deeper structures. The fraction of the energy which is
reflected depends upon the change in certain acoustic properties of the medium from
one side of the boundary to the other.

For example, an echo reflecting from a boundary between two different soft tis-
sues will have low intensity, while the transmitted wave will retain most of the original
energy. At soft tissue/bone and soft tissue/air interfaces, however, most of the en-
ergy is reflected, resulting in strong (high intensity) echoes and weak (low intensity)
transmitted waves. When the fraction of energy reflected is very large, “shadowing”
occurs, where no structures beyond the interface are imaged because almost no energy
is transmitted through the interface.

The same transducer that transmitted the original ultrasound pulse now acts as
the receiver of its echoes. Many echoes, however, will not be detected. If the angle
of reflection (equivalently, the angle of incidence) is very large at all, then the echo
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may well miss the transducer and not be detected. Even if the reflected direction of
the echo does point toward the transducer, the echo still may not be received if its
intensity upon reflection is too low to sustain a detectable signal all the way back to
the transducer. For those echoes that are received by the transducer, the imaging
system is able to detect both the travel time and intensity of the wave. Travel time
obviously gives the range to the object producing the echo, and intensity provides
information about the reflectivity of the object. The form in which these values are
displayed depends upon the particular type of ultrasound imaging system being used.

The imaging system considered here is called a B-scanner. The B-scanner pro-
duces recognizable two-dimensional images of anatomical sections. B-scan images are
referred to as “slices” since what is being viewed in such images is the intersection of
a plane (the plane of the transducer) with the three-dimensional object being imaged.

One ultrasound pulse creates one “scan line” of a B-scan image, extending from
the transducer outward in the original direction of the wave. Each reflected echo
from this pulse is plotted as a bright dot along the scan line at a distance equal to
the calculated range of the object from the transducer. The intensity information
is displayed using varying degrees of brightness (hence the name B (for brightness)-
mode); the greater the amplitude, the greater the brightness of the dot. Therefore, a
highly reflective interface will be imaged very brightly, while less reflective interfaces
will be displayed less brightly.

A common arrangement of the scan lines is to make all of the scan lines parallel,
creating a rectangular image. This format is produced by a “linear scanner” and
is the format usually chosen for use in prenatal ultrasound. The simplest electronic
arrangement that achieves the linear format consists of an array of small independent
transducers lined up side by side, forming a “linear array probe.” Each transducer in
the array fires and receives its own scan line, corresponding to a single column in the
image.

For the purposes of storage and display, the B-scan image is digitized and written
into a matrix of memory (typically of sizes near 256×256 or 512×512). A given pixel
corresponds to a single dot in the displayed image, and the integer gray scale value
corresponding to the brightness of that dot is the measurement stored at that pixel
location. The gray scale values are integers ranging from 0 to 255, where 0 denotes
black, 255 denotes white, and the values between correspond to varying levels of gray.
We henceforth can regard ultrasound images as M ×K matrices whose components
are integers ranging from 0 to 255.

The description given above of the process of ultrasonic imaging is, of course,
greatly simplified. For example, there are several additional processes, besides reflec-
tion, which affect the direction and intensity of an ultrasound wave as it propagates
through tissue. Two such processes are absorption (where a portion of the energy of
a wave is lost as it is converted into heat) and scattering. Unlike reflection, which
occurs at interfaces, scattering and absorption occur throughout the path of a wave.

Typically within regions of soft tissue there are many “targets” which are very
small and rough. When an ultrasound wave strikes these targets, reflection does not
occur since the process of reflection requires large flat targets. Scattering, however,
does occur at such targets, resulting in relatively weak echoes redirected (scattered) in
almost all directions. Most of the wave’s energy is transmitted through the scattering
point unchanged, but the intensity of the scattered echoes is often high enough to be
detected by the receiver, producing dim discontinuous images of various soft tissue
regions.

Regardless of the form of energy used by an imaging system, the digital images
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produced are not “true” sampled versions of what is really there. For our purposes,
the term “noise” will be used to describe all forms of degradation and distortion of the
image. These include errors occurring in the sensing mechanism, blurring as a result of
scattering, and artifacts such as shadowing, clutter (nonrandom scene structure other
than an object of interest), and randomness inherent in both the physical system as
well as the sensing and recording devices.

We can speak of a “true” or “ideal” image as the image we would obtain in an ideal
system without noise, but the actual digital images produced by an imaging system
will always contain some noise. We will call these actual images “noisy images.”
Specifically in ultrasound imaging systems, we notice that the images produced are
very noisy.

(References for the material presented in this section include [13] and [24].)

3.2. BPD measurements. Ultrasonic imaging is particularly well suited for use
in prenatal medicine because of its safety advantages and the membranous nature of
some fetal bones. Doctors perform prenatal ultrasonic examinations to estimate ges-
tational age as well as monitor the growth and development of the fetus in utero. Fetal
growth is characterized by numerous anatomic changes, but measuring the change in
size of various anatomic structures has become the primary means of assessing this
growth. Since ultrasonic images are two-dimensional, the most practical measures
of size are circumferences, diameters, and areas of anatomic planes. Of these three
parameters, diameters are the least difficult to actually measure.

The most extensively studied diameter in the fetus is the BPD. This is a specific
diameter of the fetal skull on the plane through the head located just above the
ears, which contains both frontal and occipital bones of the skull. Referring again to
Figure 1, the ultrasound image pictured in the top row, second from the right, was
taken at the BPD plane.

BPD measurements for an individual fetus are useful in the growth evaluation
or age estimation of that fetus only when compared to previous BPD measurements
of the same fetus and/or standard growth curves and standard BPD charts. It is
critical, therefore, that BPDs be consistently reproducible according to a standard
measurement technique. The most difficult aspect of achieving this is reproducibly
selecting the anatomical plane on which the measurement will be made.

An anatomic approach is commonly used as the standard method for selecting the
BPD plane. In this approach, several intracranial landmarks are identified and used
as guides in maneuvering the scan plane into the proper position. First, the relative
position of the fetal spine and head is determined. The orbits are then identified, and
the scan plane is guided into a lateral axial position at the base of the fetal skull.
Once this is done, the scan plane is moved up the head, remaining parallel to the
plane at the base of the skull. Various anatomical structures are noted and minor
adjustments are made to keep the scan plane parallel until the BPD plane is finally
reached, at approximately the level of the lateral ventricles.

A fundamental difficulty is the fact that BPD measurements are extremely sen-
sitive to variations in the selected plane. Inaccuracies as large as one cm have been
recorded for measurements taken on planes other than the ideal BPD plane. In or-
der to obtain global reproducibility of these measurements, therefore, one must look
toward automating the processes involved. The approach of this paper hopes to over-
come the difficulties inherent in the present process by presenting, implementing, and
justifying a procedure for automation.

(References for the material presented in this section include [3] and [23].)
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4. A probabilistic model for ultrasonic imaging of a fetal head. Our ap-
proach uses the general methodology of a deformable template (see [9], [10], [11], [12]),
which attempts to utilize high-level prior knowledge about an object being imaged
by assuming the existence of a known reference object, called a template (T ). A
space of possible transformations is defined in order to preserve certain characteristic
features of the template, and it is assumed that the “true” object being imaged can
be obtained by applying a transformation from this space to the template. Hence,
the space of “deformed” templates (objects resulting from applying transformations
to the template) constitutes the set of all possible “true” objects. An actual image
acquired with a sensing device is then a noisy degradation of a “true” image generated
from a particular deformed template via some model-specific mapping.

4.1. Construction of the template and space of transformations. The
simplest possible formulation of the probabilistic recovery of the fetal head is to imag-
ine the fetal head as being known, except for its location, orientation, and scale—that
is, known up to a similarity transformation. Thus, in the framework described above,
the template, T , is taken to be a three-dimensional approximation of an “average”
fetal head, and all possible locations, scales, and rotations of the fetal head make up
the space of transformations, Θ. Given a sequence of ultrasound images, an estimate
is made from this space of transformations, which, when applied to T , constitutes the
recovered fetal head.

4.1.1. The space of transformations, Θ. One can view the fetal skull as be-
ing contained in a known compact three-dimensional rectangle, say, B1 =

∏3
j=1 [0, Lj ].

If we assume that B2 = [L4, L5] is a known range of scale, then Θ and the image of
T under Θ (call it Θ(T )) are given as

Θ = B1 ×B2 × SO(3),

Θ(T ) = {θ(T ), θ ∈ Θ}.
Even this case is not as straightforward as it may seem. Methods can be devel-

oped which extract some crude information in the preprocessing stage concerning the
location and scale of an object. However, this is not true in the case of an object’s
orientation. It is the rotation part of the parameter which ordinarily is very difficult
to estimate. Systematic searches through the space of possible locations, scales, and
rotations, even when crude initial estimates are made concerning location and scale,
are extremely time-consuming. Additional difficulties arise due to the fact that bio-
logical and man-made objects often have many approximate symmetries which create
local maxima for the likelihood. It is necessary, therefore, to search the space of
transformations (Θ) in a semi-intelligent manner. Since SO(3) is not a linear space,
the search must also fully consider the geometry of the manifold SO(3).

4.1.2. The template, T . Two different fetal head templates were constructed.
The first is a polyhedral approximation of an “average” fetal head, (V, P ), where V
contains 162 vertices and P contains 320 index triplets representing the 320 triangu-
lar faces of this polyhedron. The edge and face structures are those resulting from
refinements of the icosahedral graph structure (see [10]). The fetal head template was
constructed from a mold of an authentic fetal skull borrowed from the University of
Virginia Medical Center Anatomy Laboratory. Using a Polhemus 3D Digitizer, the lo-
cations of 162 points on the surface of the skull model were recorded and taken as the
162 vertices of the polyhedron. The resulting polyhedron is displayed (from four differ-
ent views) in the first row of Figure 2. As a three-dimensional object, the polyhedral
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Fig. 2. Fetal head templates. The polyhedral template is viewed from four different angles in
the top row, and the ellipsoid template is viewed from four different angles in the bottom row.

template provides a surprisingly good approximation of a fetal head. When generat-
ing “true” images, however, such a template results in a model-specific mapping that
is computationally very complex, since it requires calculating the intersection of the
polyhedron with a plane.

The second fetal head template is simply an ellipsoid. Representing the template
as the solution to an implicit surface equation (e.g., as an ellipsoid) greatly reduces
the level of complexity, and, depending upon the three-dimensional object, may result
in a relatively small loss or even a gain in the accuracy of the approximation. The
authors plan to use both templates in further investigations; in the present paper,
only the ellipsoidal model is used.

The ellipsoid template, T , is defined by

T =

{
(x, y, z) ∈ R

3 :
x2

a2
+
y2

b2
+
z2

c2
= 1

}
,

where a, b, and c are positive constants which determine the dimensions of the el-
lipsoid along the x, y, and z axes, respectively. These constants are taken to be
a fixed part of the template and hence represent some prior knowledge about the
general shape of a fetal head. Their values were estimated beforehand so that the
dimensions of several ellipses, obtained by intersecting the ellipsoid with particu-
lar planes, most closely matched the corresponding dimensions of a fetal head in
several two-dimensional ultrasound slices acquired under controlled conditions. The
resulting ellipsoid (displayed from four different views in the second row of Figure 2)
is a surprisingly accurate model for at least the top half of a fetal head (the relevant
region for this problem). In addition, having an analytic expression for the template
allows for quick and easy determination of normals to the surface, as well as whether
a particular point lies on, inside, or outside the template, which greatly lowers the
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complexity of certain crucial calculations.

4.2. A model for ultrasonic imaging (construction of a likelihood func-
tion). Given the ultrasound data images, we wish to estimate the unknown true

parameter, θ∗ ∈ Θ (say, with estimate θ̂ ∈ Θ), and in so doing, indirectly recover the

associated deformed template, θ̂(T ), and hence a plausible “true” object. As men-
tioned in the introduction of this paper, our estimation procedure involves sampling
from the posterior measure, π, on Θ. In order to construct the posterior distribution,
we must first model the ultrasonic imaging technology by defining the “model-specific
mapping” which generates “true” images from a given deformed template, θ(T ). Once
this is done and a model for the degradation of an image is constructed, a family of
density functions can be introduced which are indexed over the space of transforma-
tions, Θ, and which describe the distribution on the space of images, given a particular
transformation, θ ∈ Θ. The density functions then give rise to a likelihood function
on Θ, given the data images. The details of the development described above are
provided in this section.

4.2.1. The data images. Eight frames from a complete real-time ultrasonic fe-
tal head examination are shown in Figure 1. These eight ultrasound images constitute
our collection of data images. They were taken in roughly parallel planes. Approxi-
mate distances between the planes were calculated from information available on the
video. Hence, it can be assumed that the ultrasound data images represent known
planes within the three-dimensional rectangle, B1.

Let D(k), k = 1, . . . , N , be the N data images. Recall that the images produced
are noisy degradations of “true” images, and they are stored as matrices (of size
M ×K, say) whose components are integer gray scale values ranging from 0 to 255.
Hence, for k = 1, . . . , N ,

D(k) = {d(k)
ij }M×K ,

where each d
(k)
ij is an integer value in [0, 255]. We can assume, without loss of gen-

erality, that the box B1 is oriented so that the data images, D(k), occur in parallel
xz-planes within the box, specifically located at “slice planes,” y = yk, k = 1, . . . , N .

4.2.2. A model for the degradation of an image. We will assume that
degradation of an image is modeled by additive Gaussian noise at each pixel location.
Given a particular θ ∈ Θ, one can think of creating a noisy image by adding Gaussian
noise (with mean zero) to each pixel value of the “true” image obtained from the
template deformed by the transformation θ.

In addition, assume the independence of individual pixel measurements given the
“true” image. This is not an unreasonable assumption, and since the “true” image
is obtained from a particular transformation via the model-specific mapping, it is
equivalent to assuming the independence of pixel measurements given a particular
θ ∈ Θ. Therefore, given the transformation θ ∈ Θ, for i = 1, . . . ,M , j = 1, . . . ,K,
k = 1, . . . , N ,

{X(k)
ij = integer gray level at pixel location (i, j) of image taken in plane y = yk}

are independent random variables with normal distributions given by

X
(k)
ij ∼ N(µ

(k)
ij (θ), σ),
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where the standard deviation, σ, is a fixed constant (estimated from the data images
prior to analysis). Keep in mind that the actual acquired ultrasound image D(k) =

{d(k)
ij } is one realization of the matrix of random variables {X(k)

ij }.
4.2.3. The model-specific mapping (modeling the technology). Clearly

for k = 1, . . . , N the matrix of integer values {µ(k)
ij (θ)} constitutes the “true” image

obtained from the template deformed by the transformation θ. In other words, it is
the “expected” or “mean” image created by the model-specific mapping, given the
transformation θ. Define

I(i, yk, j|θ) = µ
(k)
ij (θ)

for i = 1, . . . ,M , j = 1, . . . ,K, k = 1, . . . , N . Let us refer to {I(i, yk, j|θ)}M×K as
the “mean image” at the slice plane y = yk, given the transformation θ.

We will now consider the construction of the mean image, {I(i, yk, j|θ)}M×K .
Recall that T is simply an ellipsoid,

T =

{
(x, y, z) ∈ R

3 :
x2

a2
+
y2

b2
+
z2

c2
= 1

}
,

where a, b, and c are positive constants which determine the dimensions of the ellipsoid
along the x, y, and z axes, respectively. Let Ψ be defined as

Ψ(x, y, z) =
x2

a2
+
y2

b2
+
z2

c2
− 1.

For i = 1, . . . ,M , j = 1, . . . ,K, k = 1, . . . , N , and θ = (X̄, Y ) ∈ Θ (X̄ = (X1, X2, X3,
X4), where (X1, X2, X3) ∈ B1 is the location, X4 ∈ B2 is the scale, and Y ∈ SO(3)
is the rotation), define

I(i, yk, j|θ) = β · exp

{
−α · Ψ2

(
Y −1

(
1

X4
((xi, yk, zj) − (X1, X2, X3))

))}
,

where xi = i
M · L1, zj = j

K · L3 (which splits the xz-plane into a lattice of pixel
locations).

The function I, as it is defined above, assigns pixel values to points in the three-
dimensional space, B1. The brightest value, β (typically taken to be 255 = white),
is assigned to those points which lie directly on the ellipsoid θ(T ). The brightness
values then decrease continuously (as on the normal density curve) as one moves
away from θ(T ) in the normal and negative normal directions. This model creates
a two-dimensional mean image which is brightest at the intersection of the plane
y = yk with the ellipsoid θ(T ), and which has a slowly dimming band around this
intersection giving the template some “thickness.” Notice that the constant α controls
the bandwidth and the constant β controls the maximum gray level assigned.

Upon actual implementation of this model, it was discovered that having the pixel
values decrease all the way to zero (black) was creating images that, when compared
to real ultrasound images, were far too dark. Therefore, the model was adjusted so
that gray level values decrease down to a fixed value of β1 > 0 as one moves inward
in the normal direction away from the ellipsoid θ(T ), and down to a fixed value of
β2 > 0 as one moves outward in the normal direction away from the ellipsoid. The
particular values used for β1 and β2 are estimated from the actual images before the
algorithm is run. The adjusted definition for the function I is given below. Notice
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that the change increases the minimum gray level (to β1 or β2) while keeping the
maximum gray level fixed at β.

I(i, yk, j|θ) =

{
(β − β2) · exp{−α · Ψ2} + β2 if (xi, yk, zj) lies outside θ(T ),
(β − β1) · exp{−α · Ψ2} + β1 if (xi, yk, zj) lies inside/on θ(T ).

See Figures 3 and 4 for illustrations of the model-specific mapping and degra-
dation model described above. Notice in Figure 4 that neither the model-specific
mapping nor the image degradation model attempts to capture any of the artifacts
in the interior of the fetal head clearly present in the actual ultrasound images. Some
of these artifacts are reflections from intracranial anatomical structures. Those struc-
tures that are consistently present and prominent in the typical fetal head during
the appropriate age-range could be built into the model-specific mapping. We may
attempt to implement such additional structures in the model-specific mapping for
future refinements of our algorithm. In the current algorithm, however, we have found
that focusing the model on the roughly ellipsoidal and well-formed fetal skull captures
information that, because of its large continuous nature, provides strong direction to
the gradient-descent algorithm.

4.2.4. The likelihood function. Given the distribution of the family of ran-

dom variables {X(k)
ij }, we can write down the likelihood function L on the parameter

space Θ. For each θ ∈ Θ,

L(θ | D(1), D(2), . . . , D(N)) ∝ exp

⎧⎨
⎩− 1

2σ2

⎛
⎝ N∑
k=1

M∑
i=1

K∑
j=1

(
d
(k)
ij − I(i, yk, j|θ)

)2

⎞
⎠
⎫⎬
⎭

describes the likelihood L of the transformation θ, given the sequence of data images
D(1), D(2), . . . , D(N). Then the negative log likelihood is given by

− ln L(θ | D(1), D(2), . . . , D(N)) =
1

2σ2

⎛
⎝ N∑
k=1

M∑
i=1

K∑
j=1

(
d
(k)
ij − I(i, yk, j|θ)

)2

⎞
⎠+ const.

5. The algorithm.

5.1. Procedure: Generating realizations from the posterior distribu-
tion. A prior distribution on Θ may also be constructed, incorporating additional
prior knowledge about the fetal head. Given p(θ), a prior density on Θ, and the
likelihood function defined above, Bayes’ formula yields a posterior density function
q on Θ, given the sequence of data images D(1), D(2), . . . , D(N):

q(θ|D(1), D(2), . . . , D(N)) ∝ L(θ|D(1), D(2), . . . , D(N)) × p(θ).

We may then define the “objective function” h(·) via the following relationship:

e−h(θ) = q(θ) or h(θ) = − ln q(θ).

In practice, because of the immense amount of information in the likelihood, we have
used a uniform prior on Θ.

Recall that sampling from the posterior distribution will be achieved by running
the manifold version of “d θt = − 1

2 ∇h(θt)dt + dWt.” The resulting diffusion process

on the manifold Θ is generated by the operator

A =
1

2
( ∆ −∇h)
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Ellipsoid template, T .

T =

{
(x, y, z) ∈ R

3 : x2

a2 + y2

b2
+ z2

c2
= 1

}
,where a, b, and c are positive constants.

Slice plane y1: Slice plane y2: Slice plane y3: Slice plane y4:
y = .39 y = .50 y = .61 y = .77

Fig. 3. Ellipsoid template and the model-specific mapping. The constants a, b, and c in the
ellipsoid template model are taken to be a fixed part of the template and hence represent some prior
knowledge about the general shape of a fetal head. The actual values used in the algorithm, a = .73,
b = .68, c = .86, were estimated beforehand so that the resulting “mean images,” created by taking
y = yk slices of the template via a model-specific mapping, most closely matched the corresponding
true ultrasound images acquired under controlled conditions. The model-specific mapping creates
“mean images” by modeling the ultrasound imaging technology (these images are shown in row 1
of the above table). The corresponding actual ultrasound images are shown in row 2. The model-
specific mapping creates a mean image which is brightest at the intersection of the plane y = yk
with the deformed ellipsoid template and which has a slowly dimming band around the intersection
giving the template some “thickness.” There are parameters which control the width of this band
and the maximum gray level assigned. The gray level values decrease down to a fixed value of β1 > 0
as one moves inward in the normal direction, and down to a fixed value of β2 > 0 as one moves
outward in the normal direction away from the ellipsoid. The particular values used for β1 and β2

are estimated from the actual ultrasound images before the algorithm is run.
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Slice plane: Slice plane: Slice plane: Slice plane:
y1 = .39 y2 = .50 y3 = .61 y4 = .77

Mean
image

Noisy
mean
image
σ = 50.0

Noisy
mean
image
σ = 25.35

True
ultrasound

image

Fig. 4. A model for the degradation of an image. We model the degradation of an image by
additive Gaussian noise at each pixel location. Given a particular transformation, one can think
of creating a noisy image by adding Gaussian noise (with mean zero) to each pixel value of the
“mean image” obtained from the template deformed by the transformation. Such a process leads

to the following construction: Given a transformation θ, the family of random variables {X(k)
ij },

giving the gray level values for each pixel location (i, j) in slice plane y = yk, are independent and

normally distributed: X
(k)
ij ∼ N(µ

(k)
ij (θ), σ), where the matrix of integer values {µ(k)

ij (θ)} constitutes

the mean image obtained from the template deformed by θ, and σ is the image degradation standard
deviation.
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and boundary operator

L =
∂

∂n
(derivative in the normal direction).

The function h is a real-valued function on Θ = B1×B2×SO(3). At algorithmic
time t, denote the value of θ(∈ Θ) as θt. Let Xt ∈ B1 × B2 denote the location and
scale part of θt and Yt ∈ SO(3) the rotation part. Then θt = (Xt, Yt). Let hY (X)
represent the function h(θ) on B1 × B2 with Y ∈ SO(3) fixed and X varying over
B1×B2. Similarly, let hX(Y ) represent the function h(θ) on SO(3) with X ∈ B1×B2

fixed and Y varying over SO(3).
Let so(3) denote the Lie algebra of skew-symmetric matrices and J the canonical

isomorphism J : R
3 → so(3) given by

J(x1, x2, x3) =

⎛
⎝ 0 −x3 x2

x3 0 −x1

−x2 x1 0

⎞
⎠ .

For A ∈ so(3), let exp(A) be defined as

exp(A) =
∞∑
n=0

An

n!
.

Also, for Y ∈ SO(3), let LY denote left translation by Y . Then the function hX :
SO(3) → R

3 can locally (near Y ∈ SO(3)) be viewed as the following composition:

R
3 J−→ so(3)

exp−→ SO(3)
LY−→ SO(3)

hX−→ R.
Near Near Near Near

zero zero identity Y

The gradient of hX at a point Y ∈ SO(3) is obtained by analytically calculating
the (exact) gradient of the mapping diagrammed above, which then gets “pushed”
across by the differential maps of J and exp.

Let δti = ti − ti−1 be the time step size and Np(0, 1) be a realization from a
p-variate standard normal distribution. The algorithm on the manifold Θ = B1 ×
B2 × SO(3) is given by

θti+1 = (Xti+1 , Yti+1),(5.1)

Xti+1 = Xti −
1

2
(δti)∇hYti

(Xti) +
√
δtiN4(0, 1),(5.2)

Yti+1 = Yti × exp

[
J

{
−1

2
(δti)∇hXti

(Yti)

}
+ J{

√
δtiN3(0, 1)}

]
,(5.3)

with reflection at the boundary of Θ in the normal direction.
This algorithm is a discretization of the time-homogeneous diffusion process θt

on the manifold Θ = B1 ×B2 ×SO(3). The construction of a discrete approximation
to Brownian motion on SO(3) was considered by McKean [26]. Our algorithm is a
version of that one with − 1

2∇h added as drift. For the {Yt, t ≥ 0} part of θt, the
above algorithm is the product injection formula for a stochastic flow on SO(3) (see
[26], [27]), except that now we have as the drift term a vector field which is not
invariant, which makes a big difference.
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For large t, θt is taken as a realization from the posterior distribution, π, on Θ,
given the actual ultrasound images. This realization represents our estimate θ̂ of the
“true” location, scale, and rotation of the fetal head. Applying the estimated transfor-
mation θ̂ to the ellipsoid template T yields an estimated (recovered) fetal head, θ̂(T ).
In section 8, general theorems are proven which justify this methodology. Running
the algorithm to obtain a sample from the distribution, π, is justified by proving that
the time-homogeneous diffusion process converges weakly to the distribution π.

Figures 5 and 6 illustrate the time evolution of a single realization. The algorithm
is run for 2000 steps in this example. In Figure 5, four of these steps are shown. In
Figure 6, all 2000 steps of the same run are pictured via individual graphs of the
time evolution of location, scale, and rotation. The final value, θ2000, represents a
single realization from the distribution π on Θ. Loosely speaking, the fetal head
template will deform, trying to “best fit” the spatial sequence of ultrasound images
while adhering to those constraints which define what are allowable deformations (Θ).
Such a method can be expected to be broadly applicable to the general realm of object
recognition in image processing and computer vision.

Note that different estimation procedures can be applied using the generated
realizations from the posterior distribution π. It is clear from the graphs in Figure 6
that, even when the diffusion process converges quickly, choosing a specific large value
of t for which θ̂ = θt results in an estimated transformation that varies randomly
(approximately according to the measure π). These estimates may vary a little (if the
data is very strong) or they may vary a great deal. In either case, to account for the
random variation, an “average” may be calculated from a simulated sample consisting
of a finite number of generated realizations. However, how one calculates an average
in the case of the rotation parameter is not clear. In our particular application, it
would be possible (and appropriate) to recover an “average” fetal head by simply
applying the average scale value obtained from the simulated sample to the fetal head
template.

5.2. More general deformations. The above algorithm should move the tem-
plate skull into the right location, overall size (scale), and orientation; this is really
just the first stage. Local deformations would then be applied so that different re-
gions of the template would be allowed to deform differently but still with certain local
and/or global characteristics being preserved. For example, in the fetal skull context,
the detection of Spina Bifida, where the cross section is lemon shaped, would require
a deformation of the fetal skull template by means other than a similarity transfor-
mation. In [11] such local deformations, similar to elasticity theory, were proposed
and appear to be applicable to this problem.

Recently, the general idea of transitions between global and local deformations
has been made more rigorous and systematically implementable with the concept of
the “group cascade.” Its goal was not to speed up convergence, but rather to develop
a framework, broadly applicable in biomedical settings, in which one could obtain a
realistic representation of inherent biological variability [25].

6. Application of the algorithm: Reconstructing a fetal skull and cal-
culating the BPD.

6.1. Analysis. In the general methodology of deformable templates, if one’s aim
is to gain some kind of structural understanding of an acquired two-dimensional image,
then a “true” image can be generated from the (indirectly) estimated “true” object via
the model-specific mapping. This particular “true” image is then taken as the noiseless



948 DANIEL M. KEENAN AND PAULA A. SHORTER

Deformed Slice plane: Slice plane:
template, θ(T ) y2 = .50 y4 = .77

Step #: n = 0
(Initial Value)

location scale

(.300,.300,.700) .600

rotation( −.385 −.837 .389
.910 −.414 .011
.152 .359 .921

)

0 0.20.4 0.6 0.8 1

X

0
0.2

0.4
0.6

0.8
1Y

0

0.5

1

Z

0
0.2

0.4
0.6

0.8Y

Step #: n = 597

location scale

(.501,.563,.661) .485

rotation( −.317 −.295 .901
.811 .408 .419

−.492 .864 .110

)

0 0.20.4 0.6 0.8 1

X

0
0.2

0.4
0.6

0.8
1Y

0

0.5

1

Z

0
0.2

0.4
0.6

0.8Y

Step #: n = 995

location scale

(.546,.551,.650) .531

rotation( −.827 −.100 .553
.529 .198 .826

−.192 .975 −.110

)

0 0.20.4 0.6 0.8 1

X

0
0.2

0.4
0.6

0.8
1Y

0

0.5

1

Z

0
0.2

0.4
0.6

0.8Y

Step #:n = 2000
(Ending Value)

location scale

(.544,.582,.608) .516

rotation(
.503 .195 .842

−.702 −.476 .530
.504 −.858 −.102

)

0 0.20.4 0.6 0.8 1

X

0
0.2

0.4
0.6

0.8
1Y

0

0.5

1

Z

0
0.2

0.4
0.6

0.8Y

Fig. 5. Time evolution of one realization. The figures shown above illustrate the value of the
process at four distinct time steps within a single simulation. Column 1 shows the three-dimensional
ellipsoid template transformed by the appropriate value of θ. Columns 2 and 3 show the intersection
of the deformed template with the two slice planes, y2 and y4, thus creating “mean images,” which are
compared to the corresponding true ultrasound images in the algorithm. This particular simulation
consists of 2000 steps of size δt = 1.0 × 10−7.
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Fig. 6. Time evolution of one realization—a closer look. The figures shown above illustrate
in greater detail the time evolution of the same realization as that pictured in Figure 5. Each row
contains two graphs of the time evolution of a single coordinate of the parameter space. The second
column contains a full plot of each parameter coordinate as a function of the iteration step. The third
column contains just the first 200 steps of the process, providing a magnified view of the convergence.
Each of these graphs also displays, as a reference, a line indicating the true value of the parameter
coordinate. The three spatial location coordinates and the scale coordinate are displayed in the first
four rows. In the last row, the evolution of the rotation parameter is illustrated via a single function
giving the cosine of the angle between the major axes of the ellipsoids obtained by applying the true
rotation and by applying the current value of the rotation parameter.
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restored image. One distinct advantage of this type of methodology is that, since
the restored image is generated from a deformed template, it contains all structural
information contained in the template (see [1], [9], [28]). For example, landmarks
defined on the template are mapped (via the composition of a transformation and
the model-specific mapping) into corresponding landmarks in the restored image and
can therefore be automatically located, or associated geometric measurements can be
automatically made.

In the present case, however, it is the structure of the three-dimensional fetal
head itself which is of interest and not the structure of the two-dimensional image.
Recall that an eventual objective is to automatically measure the BPD of the fetal
head, which is a two-dimensional diameter measurement, but since the data images
are taken in predefined planes, the appropriate ultrasound slice for measuring the
BPD (at the level of the BPD plane) is not necessarily included among the acquired
data images. Therefore, restoring the data images is of no use in this problem since
these particular images do not necessarily contain the desired information.

The information must come from the structure of the recovered “true” fetal head.
As in the image restoration case described above, when using this methodology we
have access to structural information in the recovered fetal head because it is generated
from the original fetal head template. This would not necessarily be the case if we
were, for instance, “reconstructing” the fetal head from acquired two-dimensional
ultrasound slices by, in a sense, filling in the gaps. The BPD plane can be defined on
the fetal head template and can be mapped (via a transformation alone in this case)
to the corresponding BPD plane on any deformed template. Thus, we stop short of
generating a “true” image and instead take the BPD measurement on the indirectly
estimated deformed three-dimensional fetal head template.

Notice that the transformations in the current model include only locating, scal-
ing, and rotating. Of these, only scaling affects the structure of the template. Since
structure is what we are interested in, it might seem that estimation of location and
rotation is completely unnecessary. However, it becomes clear that the scale of the
template cannot be accurately recovered without also simultaneously recovering the
location and rotation.

6.2. Results.

6.2.1. A normalized parameter space. In practice, because ultrasound imag-
ing is typically done in dimensions that are not specifically calculated, a transforma-
tion of units, ξ, is necessary to take us from the original actual parameter space,
Θ = B1 × B2 × SO(3), to a normalized parameter space, Θ0 = B0

1 × B0
2 × SO(3),

where B0
1 = [0, 1]3 and B0

2 = [0, 1]. Since the original space Θ is not completely
determined in practice, in order to actually implement a discretization of the time-
homogeneous diffusion process on Θ, we must run our algorithm on the normalized
space, Θ0, via a transformation of units.

Consider the linear transformation, ξ : Θ → Θ0. Recall that q is the posterior
density function on the original space, Θ. The posterior density on the normalized
space is given by

q0(u) = q(ξ−1(u)) · |J(u)| for u ∈ Θ0,

where |J(u)| is the Jacobian of the transformation ξ.
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If we define h0(u) = − ln q0(u) = h(ξ−1(u)) + const for u ∈ Θ0, then

∇uh0(u) = ∇u(h(ξ
−1(u))) = ∇xh(ξ

−1(u)) · ∂ξ
−1

∂ui
(u) = τ · ∇xh(ξ

−1(u))

for a constant τ , assuming for computational reasons that ∂ξ−1

∂ui
(u) = τ · I, where I is

the identity matrix. This simplification involves assuming that the transformation of
units, ξ, scales identically in all parameters (including SO(3)).

We can now write the diffusion on Θ0 as

dZt = −1

2
∇h0(Zt)dt+ dWt,

where {Wt, t ≥ 0} is a standard Wiener process on Θ0. Equivalently,

dZt = −1

2
τ∇xh(ξ

−1(Zt))dt+ dWt.

We see that when our diffusion is run on the normalized parameter space, we must
multiply the gradient piece of the algorithm by the unknown constant τ .

6.2.2. Running the algorithm. To test the algorithm itself, independent of
our model for ultrasonic imaging, a sample location, scale, and rotation value (say,
θ∗ ∈ Θ) were chosen, and noisy simulated data images were created from the de-
formed template θ∗(T ) via our model-specific mapping and degradation model. The
algorithm was then run using these simulated images as data, rather than the actual
acquired ultrasound images. Various algorithm parameters were adjusted for each of
these test runs on simulated data, and the runs were repeated until the realizations
produced were fairly well concentrated around the chosen test value, θ∗.

One parameter of particular interest is the constant discussed above, τ . This
constant, a result of a transformation of units, is multiplied by the gradient piece of the
algorithm. Without this constant multiple, our Brownian motion and gradient terms
would be on different scales. The constant τ , therefore, has the effect of balancing
the deterministic and stochastic parts of the algorithm.

Since typically the constant τ cannot be calculated, it must be estimated via
the process discussed in the first paragraph above, in which partial test runs of the
algorithm are observed, and then the value of the constant is adjusted until the
realizations produced are fairly well concentrated around the chosen test value. Recall
that we made estimates for σ, the standard deviation of the image degradation model,
by analyzing the data images prior to running the algorithm. If those estimates are
inaccurate, there will be a correction factor, which will appear as a constant multiple
in front of the gradient. Therefore, our constant τ may also potentially incorporate
any correction necessary for our estimate of σ.

In Figure 7, some realizations run on simulated data are pictured which illustrate
the importance of the parameter τ . For example, if τ is too small, then the Brownian
motion is overemphasized in the process. The balancing effect of τ is evident when
one views runs of the algorithm at various values of the constant (Figure 7). In
Figure 8, the same runs are pictured via individual graphs of the time evolution of
location, scale, and rotation. This provides a more detailed look at the effects of τ
on convergence. Notice the varying effects among each coordinate of the parameter
space. For example, the time evolution of the convergence in the x-coordinate of the
location parameter may look quite different than that of the scale parameter. This
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Fig. 7. The effects of varying the parameter τ . The figures shown above illustrate four different
realizations running (on simulated data) at four different values of the parameter τ . Each column
shows the ellipsoid template, T , transformed by the nth value of θt in that realization (for three n
values), and compares the ending ellipsoid (shown in row 3) to the sample “true” ellipsoid, θ∗(T )
(shown in row 4). The realization pictured in column 1 has a very small τ value, overemphasizing
the Brownian motion, which causes the template to jump out of the viewing box. The realization
pictured in column 2 has a very large τ value. With the Brownian motion underemphasized, this
realization falls into a local minimum and is unable to escape. The τ values used in the realizations
pictured in columns 3 and 4 perform better. Column 3 illustrates a realization which jumps out of
a local minimum that it falls into early on but then continues to jump around the test value θ∗.
Column 4 illustrates a realization which converges nicely to a θ value which is very close to the test
value θ∗.
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Fig. 8. The effects of varying the parameter—a closer look. The figures shown above illustrate
in greater detail the time evolution of three of the four runs pictured in Figure 7. Each row contains
a plot of a single coordinate of the parameter space as a function of iteration step, and each column
corresponds to the different values of the constant τ used. The full run in each case pictured above
is 1000 steps. No further information was provided by these more detailed graphs in the case of
τ = .00005 from Figure 7, so it was not included in this figure. Note, however, the following details
illuminated by the graphs provided for the other three τ values: For τ = .01, one can clearly see
convergence into a local minimum in each component of the paramter space. Comparing the effects
of τ = .0005 and τ = .001, one can see (in each of the plots) slightly more scatter about the “true”
value for τ = .0005.
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is surely a result of using a single constant multiple for the constant τ rather than a
matrix of values, a simplifying assumption made in the previous subsection. A single
value cannot balance all dimensions of the parameter space equally well. However,
making this practical approximation does not seem to significantly affect the overall
success of the algorithm but merely alters the relative speed of convergence in the five
distinct dimensions of the parameter space.

To test our model for ultrasonic imaging, the algorithm was run using the ac-
tual acquired ultrasound images as data. After adjusting various parameters in the
test cases mentioned above, further refinement was necessary during the first runs
on real ultrasound data since the change in the data images (from simulated data
to real ultrasound data) caused changes in the shape of the likelihood function. Un-
like the runs on simulated data, it was difficult to determine the degree of success
for the runs on real ultrasound data because the true value of θ ∈ Θ is, of course,
unknown. Therefore, in order to assess a particular estimate θ̂ (a realization from
the posterior distribution π on Θ), noiseless “restored” images were generated from

the deformed template θ̂(T ) via the model-specific mapping and were compared with
the corresponding ultrasound images. If the slices generated from the estimated fetal
head (θ̂(T )) match the corresponding ultrasound images fairly well, then one would
assume that a slice at the BPD level would also well approximate the actual fetal
head at the two-dimensional BPD plane. This would, in turn, indicate that the BPD
measurement taken on the deformed template is a good estimate for the actual BPD.

Overall, the results of the algorithm appear quite promising. Again, this is merely
a first step in our stated goal (see the introduction)—that is, to automate the process
by which a technician, in a prenatal ultrasonic examination of the fetal skull, utilizes
his or her intuitive understanding of what is bone, what is tissue, and what is sensor
noise in assessing the developing fetal skull.

7. Summary. A general formulation was presented by which one could incorpo-
rate a priori information into modeling, where the parameterization of the models is
described by a compact manifold with boundary. The formulation was driven by the
specific problem of reconstructing a fetal head from a sequence of ultrasound frames
obtained during a prenatal exam. An important question is whether one can automate
the intuitive understanding of the technician/radiologist as to what is bone, what is
tissue, and what is sensor noise. In the present application, one issue is whether ul-
trasound imaging could be performed prior to the development of the skull. To do
this, one must use all available knowledge as to what is bone, what is tissue, and
what is sensor noise. Moreover, with the advent of medical imaging being performed
remotely (telemedicine), the issue of what can and cannot be reasonably and properly
automated in medical imaging is becoming more and more important.

The approach of the present paper is that of a probabilistic recovery of the fetal
head. The “space of all possible fetal heads” is viewed as the result of similarity (trans-
lation, scale, rotation) transformations being applied to a given fetal head template.
A model of the ultrasonic imaging of a fetal head is formulated and prior knowledge
is incorporated, resulting in an a posteriori probability measure. A method for sam-
pling from this measure is then constructed and justified. The complication is that
the measure is on a Riemannian, compact, simply connected, oriented manifold with
boundary. A discretization of a time-homogeneous diffusion process was implemented
into code in the particular case of interest, that of Θ = B1 ×B2 × SO(3). The algo-
rithm was then applied to simulated images, as well as to actual ultrasound prenatal
images.
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Two particular future applications concern robotics and protein structure. Con-
sider “active” robotics, where the movement of a robot arm is not preprogrammed but
acts dynamically within a changing environment. A representation of the arm is then
provided by the “product” of the location and orientation of each of the N links of
the robot arm. Moreover, each link of a robot arm is constrained not only by the fact
that the links are connected end-to-end but, more importantly, that one link cannot
pass through another. The result is a configuration space which is a submanifold with
boundary of a finite product of such Lie groups.

Second, consider the computational biological approach to protein structure de-
termination. For a variety of reasons, tertiary and quarternary structures have been
determined for only a relatively small number of proteins. An alternative approach
is to infer structural characteristics by comparison to potential evolutionary relatives
whose three-dimensional structures are known. Many monomer proteins are built up
from motifs (α-helices, β-strands) which are connected by links whose structure is
very flexible. Similarly, the subunits of multimer proteins are usually held together
by weak interactions, with flexibility in their realizable relative orientations. In the al-
ternative approach, a potential energy is defined and a distance is calculated between
the Cα − Cα backbone of the protein of interest and that of a candidate of known
three-dimensional structure from within a protein database. This distance is taken as
a measure of structural dissimilarity. One aspect of such programs as Dali and FSSP
[15], [16] is to find a candidate from the database and an approximate rigid motion of
the configuration which minimizes the distance between the two. Ideally, one would
like to have an algorithm which would allow for both rotations and scale differences
and which would treat each submotif or subunit separately, with the allowable com-
binations of transformations being somewhat constrained. The present methodology
may provide some basis for such an approach.

8. Stochastic relaxation on a manifold with boundary. We assume that Θ
is a compact regular domain (see [2]), in the sense that there exists an n-dimensional,
orientable manifold N of class C∞, with Θ being a d-dimensional domain in N , whose
closure Θ is compact and whose boundary ∂Θ = Θ − Θ consists of a finite number
of hypersurfaces, each of dimension d − 1 and of class C3. Let Θ be a compact,
connected, oriented, smooth, d-dimensional, Riemannian manifold with boundary and
with metric g.

Let C∞(Θ) denote the class of infinitely differentiable functions from Θ to R.
Let Ω be the natural volume element of the oriented Riemannian manifold Θ, and
let ν be the Borel measure associated with Ω. Integration of functions on Θ (which
is integration of d-forms on Θ) can be viewed as Lebesgue–Stieltjes integration on Θ
with respect to ν:∫

Θ

f =

∫
Θ

f Ω =

∫
Θ

f(θ) ν(dθ) for all f ∈ C(Θ).

Let π be a Borel probability measure on Θ which has a strictly positive density
function, q(x) ∈ C∞(Θ), with respect to ν, and define h(x) = − ln q(x). Let

A =
1

2
( ∆ −∇h)

with domain D(A) = C2(Θ) and where ∇h is the gradient of the function h. What
is to be shown is that the algorithm is sampling from the measure q = e−h. In the
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situation described in section 6.2.1, where the normalized parameter space Θ0 is used
and a change of variables is involved, all the above conditions are satisfied, where h
is replaced by h0 (properly balancing the gradient and stochastic terms).

Consider the Cauchy problem for the following parabolic equation: For a given
f ∈ C(Θ), find u such that

∂

∂t
u(t, x) = Au(t, x), t > 0, x ∈ Θ;(8.1)

boundary condition (reflecting barrier):

Lu(t, x) =
∂

∂n
u(t, x) = 0, t > 0, x ∈ ∂Θ;(8.2)

initial condition:

lim
t↓0

u(t, x) = f(x) (uniformly in) x ∈ Θ.(8.3)

Proposition 1 (see Ito [18], [19], [20]; Sato and Ueno [31]). The fundamental
solution for the above Cauchy problem, constructed by Ito,

p : (0,∞) × Θ × Θ → R,

satisfies the following properties:
1. For a fixed (t, x) ∈ (0,∞) × Θ, p(t, x, y) is continuous in y;
2. for any f ∈ C(Θ),

u(t, x) =

∫
Θ

p(t, x, y)f(y) dν(y)(8.4)

is continuous on (0,∞) × Θ and continuously differentiable in t ∈ (0,∞) and C2(Θ)
for a fixed t ∈ (0,∞);

3. p(t, x, y) is strictly positive (in our case of reflection at the boundary) and
satisfies

p(t+ s, x, y) =

∫
Θ

p(t, x, z)p(s, z, y) dν(y);

4. ∫
Θ

p(t, x, y)dν(y) = 1.(8.5)

Proof. For the proof, see Ito [18], [19], [20] and Sato and Ueno [31].
Note. Under boundary conditions other than reflection at the boundary, strict

positivity of the density is not ensured, in that the process can then spend “local
time” on the boundary (see [18, section 9]).

Let A denote the smallest closed extension in C(Θ) of A and denote its domain
by D(A). To apply the Hille–Yosida theory in the present case of (A, L), one needs to
construct the semigroup on C(Θ) whose Green’s operators {Gα} satisfy (α−A)Gαu =
u and LGαu(x) = 0 for x ∈ ∂Θ. In [31], Sato and Ueno present such a construction.
For f ∈ C(Θ) and α ≥ 0, from the equation (α − A)u = f and u = 0 on ∂Θ, one
obtains the minimal resolvent for this translated Poisson equation, {Gminα }. Similarly,
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for φ ∈ C(∂Θ) and α ≥ 0, from the equation (α − A)u = 0 and u = φ on ∂Θ, one
obtains the resolvent for this translated Dirichlet problem, {Hα}. Let the extensions of

LGminα and LHα be denoted by LGminα and LHα. Denote the domain of LHα, which
does not depend on α, by D̃. Let L̂ be the unique operator for which L̂ = L on C2,κ(Θ),

L̂Gminα f = LGminα f for f ∈ C(Θ), and L̂Hαφ = LHαφ for φ ∈ D̃. Let the domain
D(L̂) (which ⊃ C2,κ(Θ)) be given by all functions of the form

∑n
i=1G

min
αi

fi + Hβi
φi,

fi ∈ C(Θ), φi ∈ D̃, αi ≥ 0, βi ≥ 0, 1 ≤ i ≤ n. Finally, let AL̂ be the restriction

of A to the subset D(AL̂) = {u|u ∈ D(L̂) and Lu = 0} of D(A). In [31], Sato and

Ueno show that AL̂ is the infinitesimal generator for the semigroup on C(Θ) whose

Green’s operators {Gα} satisfy (α − A)Gαu = u and LGαu(x) = 0 for x ∈ ∂Θ. It
is further shown that it is the infinitesimal generator for our desired Markov process.
The collection of C∞ functions f on Θ such that Lf = 0 for x ∈ ∂Θ are dense in the
dom(AL̂).

Proposition 2 (see Sato and Ueno [31]). Under the conditions of Proposi-
tion 1 above, there is a time-homogeneous (Feller) Markov process X = (Xt,W,Bt,
{P (t, x, ·) : x ∈ Θ}, t ≥ 0} with infinitesimal generator AL̂, and the probability transi-
tion measures P (t, x, ·) of Xt have the fundamental solution p(t, x, y) as a probability
density with respect to the volume element measure ν: P (t, x, dy) = p(t, x, y)ν(dy) for
all t ≥ 0 and all x ∈ Θ.

Proof. For the proof, see Sato and Ueno [31].
The goal of this section is to show the weak convergence of the transition prob-

ability of Xt, {P (t, x, ·)} to the probability measure π. The following theorem gives
the desired result.

Theorem 3. Let the family of measures {P (t, x, ·) : x ∈ Θ, t ≥ 0} be the
transition probability of the diffusion process Xt, with generator A = 1

2 ( ∆−∇h) and

boundary operator L = ∂
∂n . Then for each x, {P (t, x, ·)} converges weakly to the

probability measure π as t → ∞, where q(x) ∈ C∞(Θ) is the strictly positive density
function of π with respect to ν and h(x) = − ln q(x). More precisely, for all x ∈ Θ,
and for any bounded measurable function f on Θ,

Ttf(x)
def
=

∫
Θ

f(y)P (t, x, dy) →
∫

Θ

f(y)π(dy) as t → ∞.

Proof. The manifold Θ is a compact, complete, separable metric space. Moreover,
by the above propositions, there exist a Borel measure ν on Θ and a strictly positive

function p(t, x, y) continuous in (t, x, y) ∈ (0,∞) × Θ
2

such that the transition prob-
ability P (t, x, dy) equals p(t, x, y) ν(dy). By Theorem 1.3.4 of [22], in the case of a
time-homogeneous Feller process (Xt) satisfying this condition on a locally compact,
complete, separable metric space, Xt is either transient or recurrent in the sense of
Harris. With Θ compact, Xt cannot be transient, since IΘ(Xt)

≡ 1, and the definition

of transient would require that for any compact K ⊂ Θ

sup
x∈K

Ex

[∫ ∞

0

IK(Xt)dt

]
<∞ (IK is the indicator function of K).

Therefore, Xt is recurrent in the sense of Harris, and by Theorem 1.3.5 of [22], Xt

has a (Tt)-invariant probability measure Λ, and in particular, it is unique. Finally,
since Xt is a Feller process satisfying the above stated condition, it has the following
property given by Theorem 1.3.10 of [22]. For any bounded measurable function
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f on Θ,

Ttf(x) →
∫

Θ

fdΛ as t → ∞

holds for every x ∈ Θ. Then it is clear that for every x ∈ Θ, {P (t, x, ·)} converges
weakly to the unique invariant probability measure Λ(·).

Therefore, it remains only to show that Λ = π. Recall that (A,L) and h are

A =
1

2
( ∆ −∇ h), L =

∂

∂n
, and h(x) = − ln q(x),

where q(x) ∈ C∞(M) is the strictly positive density function of π with respect to ν,
the Borel measure associated with the Riemannian volume element, Ω. The operator
AL̂ is the infinitesimal generator of the Feller semigroup {Tt, t ≥ 0} from Propositions

1 and 2. Recall that f ∈ dom(AL̂) satisfy Lf = 0.
A measure µ is an invariant measure of an (A,L)-diffusion if and only if∫
Θ

AL̂f(x)µ(dx) = 0 for all f ∈ dom(AL̂) (Ikeda and Watanabe [17]).

Because the collection of C∞(Θ) functions f on Θ such that Lf = 0 for x ∈ ∂Θ are
dense in the dom(AL̂), it suffices to verify for such f that∫

Θ

Af(x)µ(dx) = 0 for all f ∈ C∞(Θ), Lf = 0.

Notice that∫
Θ

AL̂f(x) π(dx) =

∫
Θ

(Af)q(x) ν(dx) =
1

2

∫
Θ

q(∆ −∇h)f(x) ν(dx)

=
1

2

∫
Θ

(q∆f − q(∇h) f) (x) ν(dx)

=
1

2

∫
Θ

(q∆f − q · g(∇f,∇h)) (x) ν(dx)

=
1

2

∫
Θ

(
q∆f − q · g

(
∇f,−1

q
(∇q)

))
(x) ν(dx)

=
1

2

∫
Θ

(q∆f + g(∇f,∇q)) (x) ν(dx)

=
1

2

∫
Θ

div (q(∇f)) (x) ν(dx)

=
1

2

∫
Θ

div (q(∇f)) Ω,

since h = − ln q and ∇(− ln q) = − 1
q (∇q). However, for a C∞ vector field X on Θ,

divX Ω = d(i(X)Ω), where i(X)Ω is the interior product of X with Ω. Hence,∫
Θ

(AL̂f) dπ =
1

2

∫
Θ

d(i(q∇f)Ω)

=
1

2

∫
∂Θ

i(q(∇f))Ω by Stokes’ theorem.
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Most importantly, since ∂f
∂n = 0, it follows that ∇f has a zero normal component

and hence, at each x ∈ ∂Θ, ∇f lies in the tangential component of the tangent
space Tx(Θ), which is Tx(∂Θ). Consequently, the interior product i(q∇f)Ω at each
x ∈ ∂Θ consists of n vectors in an (n− 1)-dimensional space, and thus i(q∇f)Ω = 0.
Consequently, ∫

Θ

(AL̂f) dπ =
1

2

∫
∂Θ

i(q(∇f))Ω = 0.

Therefore, sinceXt is the diffusion process generated by the operators (A,L), the mea-
sure π is an invariant probability measure of Xt. By the uniqueness of the invariant
probability measure Λ, we must have Λ = π.
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EXACT SIMILARITY SOLUTIONS OF COUPLED NONSTEADY
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Abstract. Exact similarity solutions are obtained for coupled Navier–Stokes and energy equa-
tions that govern the time-dependent motion of a gravitation-free viscous liquid with variable density
in one- and three-dimensional (1D and 3D) spaces. The 1D case deals with propagation and diffusion
of an initial algebraic density hump C/x that is subjected to a constant flow rate at the origin. We
demonstrate that the initial temperature distribution is convected without being diffused at very long
times. We also demonstrate that two different propagation velocities exist for short and long times.
The 3D case addresses the implosion of an insulated closed system with an initial radially symmetric
algebraic density hump C/r3. We demonstrate that if viscous dissipation and liquid compressibility
terms are neglected in the energy equation, very strong shock-like pressure distributions may occur
that may lead to a “black hole” within a finite time.

A comprehensive analysis is also carried out for density fields with an initial, rn, radially sym-
metric distribution in 1D, 2D, and 3D spaces. A first integral is obtained for all n’s in a 2D space.
A phase-space solution is utilized to depict the system evolution and stability for any value of n. It
also allows us to consider intriguing aphysical negative density fields, manifesting a peculiar periodic
solution for the 3D (n = 0) case that mimics a prey-predator problem.

Key words. general fluid mechanics, Navier–Stokes equations, liquids, similarity solutions
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1. Introduction. To date, very few exact analytical solutions are known for
the nonsteady motion of viscous liquids with variable densities, owing to the fact
that the governing Navier–Stokes equations are nonlinear and coupled with the en-
ergy equation. To circumvent this difficulty, numerical solvers have frequently been
used but have rarely been verified against exact analytical solutions of nontrivial flow
problems that encompass the interplay between viscosity, inertia, temperature, and
density fields. Analytical expressions have been obtained in the past using extremely
effective similarity methods; alas, in most previous cases, only an approximate set
of the Navier–Stokes equations has been employed. Similarity solutions were also
criticized due to the fact that, to quote Barenblatt (1979), “In nonlinear problems,
exact special solutions sometimes appear to be useless; since there is no principle
of superposition, one cannot immediately find a solution of the problem with arbi-
trary initial conditions.” Notwithstanding, Barenblatt emphasizes the importance of
similarity solutions, as they may “represent the asymptotics of a wide class of other
more general solutions.” Burger’s nonlinear equation (see Whitham (1974)) is a cel-
ebrated attempt to describe approximately the combined effects of nonlinear density
propagation and diffusion under the assumption of small amplitude disturbances. A
similarity solution was obtained for the case of an initial hump, a problem that is
also addressed in this paper, only here we employ the full Navier–Stokes equations.
Barenblatt (1979) addresses the problem of thermal flame propagation in gaseous
mixtures. An approximate equation is obtained for the propagating wave front (the
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inner flow approximation), and the analysis indicates how to obtain the long time
propagation velocity. It is interesting to note that, since the propagating velocity
is much smaller than the speed of sound, the author assumes that the gas density
depends only upon temperature, and the pressure field is treated as an independent
variable. In addition, the functional forms of the velocity and temperature fields are
generally obtained before employment of the momentum equation. The latter is used
to obtain the pressure field and the value of the long time propagation velocity. We
follow to some extent a similar approach, where the velocity and density (tempera-
ture) fields are addressed first and the pressure distribution is consequently obtained.
More recently, similarity methods were also employed by Canright and Morris (1993)
(addressing the buoyant instability of a viscous film over a passive fluid, an attempt to
describe the behavior of lava lakes and mantle convection), Romero and Yost (1996)
(who obtained a similarity solution for a capillary-driven flow in a V-shaped surface
groove), Woods and Fitzgerald (1997) (who described the temperature field as liquid
spreads from a line source into a porous rock with a time-dependent liquid injection),
Koehler et al. (1998) (who obtained a similarity solution for the drainage of liquid
foams under gravity), Witelski and Bernoff (1999) and Zhang and Lister (1999) (who
addressed the stability of van der Waals–driven thin film rupture), and Christopher
and Wang (2001) (who simulated the Marangoni convection around a vapor bubble
during nucleation and growth), to name a few.

The objective of this communication is to present an exact analytic solution for
liquid fields or incompressible gases such that their density is a function of temperature
only while the pressure field can be treated as an independent variable. The fields
are radially symmetric and are governed by the fully coupled nonlinear Navier–Stokes
and energy equations under a minimal set of assumptions. The solution illustrates the
interplay between the convective, diffusive, and temporal terms of the equations and
the effects of the phenomenological coefficients on the flow variables. To achieve this
goal, we assume that the flow and temperature fields satisfy a particular set of initial
and boundary conditions and that the density is inversely proportional to the temper-
ature field, a relation commonly satisfied by liquids and by ideal incompressible gases.
Despite these obvious limitations of the solution class, we shall demonstrate that the
results possess remarkable features (mentioned in the abstract) of general physical sig-
nificance. In particular, in cases where a moving sharp interface is assumed to divide
the flow field into two regions of distinct densities, the model elucidates the effect of a
diffused density front. (Obviously, far from the interface the model is no longer valid
and can no longer describe the flow field faithfully.) Thus, for instance, the exact 1D
solution shows a surprising resemblance to a certain region of the flow generated in a
shock tube despite the fact that the latter addresses compressible flow (see a broader
discussion in section 5). Moreover, one of the possible 3D radially symmetric solutions
elucidates a process that resembles the behavior of the flow field near the liquid inter-
face surrounding an expanding bubble, only here the adiabatic interface is considered
to be diffused. We also believe that the radially symmetric solutions are a necessary
first step if stability to small nonradially symmetric initial density disturbances, heat
sources, Coriolis accelerations, etc., is to be explored. Incorporation of the radial
gravity term in the momentum equation and the foregoing asymmetric disturbances
(not accounted for in this paper) can be employed to model diffused asymmetrical
interfacial phenomena in earth science (see Gerald (1971), Davies (1999)).

Finally, the exact solutions can probably be utilized as benchmarks to verify the
accuracy of numerical solvers since they encompass the combined effects of inertia, vis-
cosity, heat convection, and diffusion in an unsteady flow field. (This latter suggestion
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must, for the time being, be tested with care, since the solution’s stability has not
been addressed in this paper.)

The paper is divided into four main parts. Section 2 defines the governing equa-
tions and the simplifying assumptions used to derive them. Section 3 presents the
method we used to derive the particular exact similarity solutions of the coupled
Navier–Stokes and energy equations in 1D, 2D, and 3D spaces. Section 4 analyzes
a broader family of radially symmetric problems. Utilizing a phase map analysis
proves that these similarity solutions can never be chaotic. Section 5 discusses and
summarizes the main results.

2. Statement of problem. A common set of equations governing the motion
of Newtonian liquids includes the mass conservation equation,

∂ρ

∂t
+ ∇ · (ρv) = 0,(2.1)

the linear momentum equation,

ρ

(
∂v

∂t
+ v · ∇v

)
= −∇p+ µ∇2v +

(
κ+

µ

3

)
∇(∇ · v) + ρg,(2.2)

the energy conservation equation,

ρcp

(
∂T

∂t
+ v · ∇T

)
= k∇2T,(2.3)

and the equation describing the relation between temperature and density,

ρ =
ρ0

[1 + γρ0(T − T0)]
,(2.4)

where ρ, p, T , and v denote the density, pressure, temperature, and velocity fields; µ
and κ stand for the fixed fluid shear and bulk viscosities; and cp and k stand for the
fixed specific heat and thermal conductivity coefficients. Notice that in (2.3) we ne-
glected the viscous dissipation and the temperature increase with compression terms.
The exclusion of the energy dissipation term is justified in most cases, except for flow
fields that are subjected to very high shear rates (e.g., flows in journal bearings).
The omission of the compressibility term is suited to liquids that satisfy (2.4), and
consequently, the ratio of their specific heats, cp/cv, is unity.

For γ, ρ0, and T0 constants, (2.4) applies to many liquids and tacitly implies that
the liquid is incompressible in the sense that the density does not vary with pressure.
Accordingly, the pressure field must be regarded as an independent variable (Aris
(1962, p. 111)). Thus, (2.1)–(2.4) constitute a consistent set of four equations for the
four unknown fields ρ, p, T , and v.

3. Method of solution. We assume that the velocity field is irrotational and
guess that it possesses the following form:

v =
k

cp
∇1

ρ
.(3.1)

Substituting (3.1) into the mass conservation equation (2.1) results in a second order
nonlinear equation for the density field,

∂ρ

∂t
+

k

ρ2cp
∇ρ · ∇ρ =

k

ρcp
∇2ρ.(3.2)



964 SHIMON HABER

Remarkably, (3.2) is also recovered if we rewrite the energy equation (2.3) utilizing
(2.4) and (3.1) for the velocity field. Thus, the energy and mass conservation equations
collapse into a single equation (3.2). This result is the crux of the analysis. Notice
that Hopf (1950), Cole (1951), and Camacho and Brenner (1995) utilized a similar
idea to derive a solution for the diffusion equation, where they assumed that the
velocity field is proportional to ∇(ln ρ). If (3.1) and (3.2) are substituted into (2.2),
the following equation for the pressure is obtained:

(cp
k

)2

∇p = Pr∇[∇2ρ−1] − ρ∇[ρ−1∇2ρ−1 − 0.5∇ρ−1 · ∇ρ−1] +
(cp
k

)2

ρg,(3.3)

where the Prandtl number Pr = µ̃cp/k is based on the modified viscosity µ̃ = κ+4µ/3.
Equation (3.3) cannot always be solved for the pressure since an irrotational solution
for the velocity field would generally not satisfy the momentum equation. However, a
solution for the pressure may be found in 1D Cartesian problems, in radially symmetric
2D and 3D problems, and in case the gravity field is radially symmetric. The latter
is commonly encountered in earth sciences such as mantle convection under the earth
lithosphere (Davies (1999)). Henceforth, we shall focus on these simplified cases. We
also define the following dimensionless variables: ρ̂ = ρ/ρ0, r̂ = r/a, t̂ = kt/(ρ0cpa

2),
v̂ = (ρ0cpa/k)v, and p̂ = (c2pρ0a

2/k2)p, where a is a given length-scale. (The caret
symbol will be used to describe dimensionless quantities.)

3.1. A similarity solution for the propagation and diffusion of an nth
order polynomial hump in an m-dimensional space. From (3.2), the radially
symmetric mass/energy conservation equation in an m-dimensional space is

∂ρ̂

∂t̂
+

1

ρ̂2

(
∂ρ̂

∂r̂

)2

=
1

ρ̂
∇̂2ρ̂,(3.4)

where the dimensionless Laplace operator is

∇̂2 =
∂2

∂r̂2
+
m− 1

r̂

∂

∂r̂
.

From (2.2), the corresponding momentum equation is

∂p̂

∂r̂
= (Pr − 1)

∂

∂r̂
∇̂2 1

ρ̂
− ρ̂

m− 1

r̂

[
∂(1/ρ̂)

∂r̂

]2
+Bρ̂,(3.5)

where B = a3c2pρ
2
0gr/k

2 is the dimensionless gravity number based upon the radial
gravity acceleration gr (considered negative if pointing toward the origin). Generally,
gr will depend on the whole field distribution of ρ and thereby on the global geomet-
rical configuration of the flow field. Such an additional complication is avoided in this
paper (to be addressed in a subsequent paper), and henceforth we shall investigate
the microgravity case for which B is negligibly small (i.e., the flow is not buoyancy
driven). Notice that if the local distribution of the density field is known and B = 0,
the pressure field can readily be obtained. Indeed, for the 1D (m = 1) case, the ex-
plicit distribution of the density field is not required, and a straightforward integration
of (3.5) is possible.

To obtain a solution of the nonlinear partial differential equation (3.4) is a formi-
dable task. Indeed, it is well known that a general solution representation does not
exist for partial differential equations. At most, what we hope to obtain is a solution
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class that can be applied to a given domain and boundary conditions. Our task is made
easier if we tailor the boundary conditions a posteriori to make them fit the solution.
In what follows we focus on some similarity solutions of (3.4) and, in particular, on
the case in which the initial density field is a hump described by ρ̂ = C1r̂

n at t̂ = 0.
In this case a similarity solution exists that possesses the form

ρ̂ = r̂ng(η), η =
r̂

t̂1/(n+2)
,(3.6)

where η is the appropriate similarity variable. Introducing (3.6) into (3.4) results in
a second order, ordinary, nonlinear differential equation for g,

gg′′ − (g′)2 +
ηn+1g2g′

n+ 2
+
n(m− 2)g2

η2
+

(m− 1)g′g
η

= 0,(3.7)

where the prime symbol stands for differentiation with respect to η.
Equation (3.7) possesses a simple particular solution1 that contains no free con-

stants of integration,

g = (4 − 2m)η−n−2.(3.8)

A general solution of (3.7) for any n and m that includes two independent integration
constants is probably impossible. Notwithstanding, (3.7) can be solved analytically
for the parameter sets (m,n) = (1,−1) and (m,n) = (3,−3). The first set describes
the case of an initial density hump ρ(x̂, t = 0) = C1/x̂ propagating in 1D space. The
second case addresses the propagation of an initial density hump ρ̂(r̂, t = 0) = C1/r̂

3

in 3D space.

3.2. The exact 1D solution for the propagation of an initial hump.

ρ(x̂, t = 0) =
C1

x̂
or ρ(x̂, t = 0) =

C1

x̂+ α
.

In case n = −1 and m = 1, namely for an initial 1D density hump ρ̂(x̂, 0) = C1/x̂
(x̂ stands for the 1D spatial coordinate instead of r̂), a general analytical solution of
(3.7) can be obtained. A step-by-step derivation is as follows: Divide (3.7) by g2 and
define u = g′/g; consequently, rewrite (3.7) as u′+g′+1/η2 = 0. Thus, a first integral
u+ g − 1/η = C1 exists, where C1 is an arbitrary constant. In terms of the unknown
function g, the latter equation can be rewritten in the form g′ − (C1 + 1/η)g = −g2,
which is a nonlinear Bernoulli equation. Defining a new dependent variable h = 1/g,
the latter equation transforms into the simple linear equation, h′ + (C1 + 1/η)h = 1.
Its straightforward solution eventually yields

g =

[
C2e

−C1η

η
+

1

C1
− 1

(ηC2
1 )

]−1

,(3.9)

where C1 and C2 are arbitrary constants. Consequently, the solution for the density
field with n = −1 is

ρ̂ =

(
C2t̂e

−C1x̂/t̂ +
x̂

C1
− t̂

C2
1

)−1

.

1The solution is particular in the sense that it does not possess any free constants of integration
and cannot be obtained from the general solution by a particular choice of the constants.
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A more general expression can be obtained if x̂ is replaced with x̂+ α:

ρ̂ =

(
C2t̂e

−C1(x̂+α)/t̂ +
x̂+ α

C1
− t̂

C2
1

)−1

,(3.10)

where α > 0 is an arbitrary constant. Equation (3.10) satisfies a more general ini-
tial condition ρ̂(x̂, t̂ = 0) = C1/(x̂ + α) that is nonsingular for all x̂ > 0. (This
transformation is possible since, in case m = 1, (3.4) contains only differentials of x.)

Notice that the particular solution (3.8) is still valid here but cannot be obtained
from a specific choice of the constants, a common occurrence in nonlinear equations
(Bender and Orszag (1978, p. 4)).

From (3.1) and (3.5) the solutions for the velocity and pressure fields are

v̂x = −C1C2 exp

[−C1(x̂+ α)

t̂

]
+

1

C1
,(3.11)

∂p̂

∂x̂
= −(Pr − 1)C3

1C2t̂
−2e−C1(x̂+α)/t̂.(3.12)

A specific choice of the constants C1 and C2 defines a nontrivial solution for the
propagation and diffusion of an initial density hump ρ̂(x̂, 0) = C1/(x̂+α), with liquid
injected at x = 0 at a rate v̂x = −C1C2 exp(−C1α/t̂) + 1/C1 that readily reaches a
fixed value. Notice that if C2 = 1/C2

1 and α = 0, the solution describes the behavior
of an insulated closed system at x = 0 for all times.

Equation (3.10) is a remarkable solution of the Navier–Stokes and energy equa-
tions. It possesses short and long time behavior of a propagating wave. For short
times, the density distribution propagates with velocity ûP = 1/C1, while for long
times the propagation velocity changes into ûP = 1/C1 − C2C1. Figure 1 illustrates
the density distribution for various times and locations. It vividly demonstrates that
the maximum density value (normalized for position) propagates and reaches down-
stream locations as time evolves.

3.3. The exact 3D solution of a propagating initial hump ρ(r̂, t = 0) =
C1/r̂

3. For an initial density distribution ρ̂(r̂, 0) = C1/r̂
3, a general analytical solu-

tion of (3.7) in a 3D space exists,2

g(η) = η3eC1/η

{
C2 +

∫ η1

η

ηeC1/ηdη

}−1

,(3.13)

where η = r̂t̂ and C1 and C2 are two arbitrary constants of integration. Hence,

ρ̂ = t̂3eC1/η

{
C2 +

∫ η1

η

ηeC1/ηdη

}−1

.(3.14)

Substitution of (3.13) into (3.1) and (3.3) yields the expressions for the velocity
and the pressure fields:

v̂r =
r̂(C1/g − 1)

t̂
,(3.15)

∂p̂

∂r̂
= (Pr − 1)

[
C2

1 (C1 − 4η)

gη3
− C2

1

η3
+
C1

η2

]
− 2g

η2

(
C1

g
− 1

)2

.(3.16)

2The solution process is similar to that used for the 1D case (see section 3.2), only here define
u = η2g′/g and proceed accordingly.
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1

Fig. 1. The evolution of the density field for a 1D case in which the initial density is given by
ρ̂(x̂, t̂ = 0) = C1/x̂. The similarity parameter is η = x̂/t̂ (see (3.10)).

At the limit η → 0+ and C1 > 0 the inverse of g can asymptotically be expanded,
1/g = [1 + 3η/C1 + 12(η/C1)

2 + 60(η/C1)
3 + · · ·]/C1. Hence for t̂ → 0+ and r

held fixed, ρ̂ → C1r̂
−3, v̂r → 3r̂2/C1, and ∂p̂/∂r̂ → 6(2Pr − 5)/C1. Similarly, for

r̂ → 0 and t̂ held fixed, the radial velocity v̂r vanishes. Hence, (3.14) is a nontrivial
solution for the propagation and diffusion of an initial radially symmetric density
hump ρ̂(r̂, t̂ = 0) = C1/r̂

3 with no liquid sources or sinks at r = 0. The solution
may experience a blow-up at a finite time when the expression in curly brackets in
(3.14) vanishes. Before blow-up occurs, for long times η > η1, where η1 satisfies the
condition exp(C1/η1) = O(1), the solution no longer depends directly upon the initial
condition (the value of C1), and the density distribution possesses approximately the
following functional form:

ρ̂ = t̂3
{
C − 0.5η2

}−1
,(3.17)

which eventually becomes singular after a finite time. If, however, the time-space
domain is limited to 0 < η ≤ η1 and C2 > 0, the solution yields finite density and
velocity fields. An interesting case arises if we choose a solution domain 0 < η < η1
with g(η1) = C1. In this case vr(η1) and [∂T/∂r]η=η1 vanish at the domain boundaries,
and the solution describes a closed insulated system with an initial algebraic density
hump, C1/r̂

3, that implodes within a finite time at a rate proportional to 1/t̂2. In
Figures 2 and 3 we picked η1 = C1 = 1 and C2 = e, which results in g(η1 = 1) =
C1 = 1. Figure 2 describes the finite value of g obtained for all η in the space-time
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Fig. 2. The density field for a 3D case in which the initial density is given by ρ̂(r̂, t̂ = 0) =
C1/r̂3, where C1 = 1, η1 = 1, and C2 = e. The similarity parameter is η = r̂t̂.

domain 0 < r̂t̂ < 1 (the density distribution is equal to g/r̂3). Figure 3 illustrates
the resulting pressure gradient distribution. The figures exhibit steep gradients in
the density and pressure fields that resemble diffused shock waves. Initially, the space
extends to infinity, storing infinite mass. As time evolves, the system’s spatial domain
shrinks, a process that is accompanied by a strong flow respreading the density field,
while no flow is permitted through the boundaries.

These results raise an interesting question. Can “black holes” exist in liquid
systems obeying the Navier–Stokes equations? Obviously, this cannot be the case,
since, at the last stages of the implosion process, strong velocity gradients exist,
and it is no longer correct to assume that viscous dissipation and heating due to
compressibility effects are negligibly small. Thus, the energy equation (2.3) no longer
faithfully represents the energy balance in the system.

Equation (3.14) with negative t̂ values (−∞ < t̂ < 0) describes a whole new class
of solutions. Figure 4 illustrates the solution for a density field that resembles the
behavior of the fluid near the adiabatic interface of an expanding bubble in which
the interface is described by a diffused domain rather than by a distinct jump in the
density field.

4. Phase-space analysis. Equation (3.7) can be drastically simplified utilizing
the following transformations:

G =
ηn+2g

n+ 2
, U =

ηg′

g
, w = ln η.(4.1)
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Fig. 3. The pressure field for a 3D case in which the initial density is given by ρ̂(r̂, t̂ = 0) =
C1/r̂3, where C1 = 1, η1 = 1, and C2 = e. The similarity parameter is η = r̂t̂.

Substituting (4.1) into (3.7) yields an equivalent set of two first order nonlinear equa-
tions in G and U that is amenable to a simple analysis in the G-U phase-space:

dG

dw
= (n+ 2)G+ UG,

(4.2)
dU

dw
= (2 −m)U − UG+ n(2 −m).

System (4.2) possesses a close resemblance to the well-known equations governing
the prey-predator problem. For U positive and n > −2, the growth-rate of predator
G depends upon its natural birth-rate (n + 2) and upon the abundance of the prey
population U . For m < 2 the growth-rate of the prey population depends upon its
rate of birth (2 −m) and a fixed rate, n(2 −m), of influx or outflow of its members
for n > 0 or −2 < n < 0, respectively. Its decrease in population is directly related to
predator population. For U negative, the roles of the predator and prey are exchanged.
System (4.2) also manifests that chaotic solutions are impossible for any value of n
or m since the order of the system is exactly 2 (no explicit dependency on w exists).
System (4.2) possesses two equilibrium points A and B for which G and U have the
following values:

GA = 0, UA =−n,
GB =−2(m− 2)/(n+ 2), UB =−n− 2.

(4.3)
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Fig. 4. The density field for a 3D case for negative times −∞ < t̂ < 0; C1 = 1, η1 = −1, and
C2 = −1/e. The similarity parameter is η = r̂t̂.

A simple linear stability analysis of system (4.2) proves that A is an unstable node if
m < 2, and a saddle point if m > 2 (for any value of n). Point B demonstrates a much
richer behavior. If m < 2, B is a saddle point. If m > 2, point B could be a center,
a stable node or a stable spiral, an unstable node or an unstable spiral, depending
upon the values of n and m. If n < n2, B is a stable spiral. If n2 < n < −2, B
is a stable node. If −2 < n < n1, B is an unstable node. If n1 < n < 0, B is an
unstable spiral. If n = 0, B is a center, and if n > 0, B is a stable spiral. The
parameters n1 and n2 (n1 > n2 ) are n1,2 = (16 ± √

32m− 64)/(m − 10). Notice
that n = −2 is excluded from the analysis since it degenerates to the particular
solution. In case m = 2 (the 2D axisymmetric problem) linear stability analysis
is not feasible, and we treat it separately in section 4.2. Figure 5 summarizes the
above conclusions and depicts the type and stability of points A and B in the m× n
plane. Notice that we treated m as a continuous parameter despite the fact that it
may normally possess integral values only. In the following we explicitly explore the
similarity solutions for m = 1, 2, 3 that pertain to flow fields in 1D, 2D, and 3D spaces,
respectively.

4.1. Similarity solutions for 1D flows. A phase-plane analysis of (4.2) for
m = 1 yields trajectories for flows in a 1D space. The phase-maps are depicted
in Figure 6 for typical values of n. Notice that positive values of the density field
correspond to positive values of G if n > −2 and negative values of G if n < −2. It
is interesting to note that the two spaces of positive and negative densities do not
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Fig. 5. Type and stability of the fixed points A and B of system (4.2) in the m × n plane (m
defines the dimension of the flow space, whereas n stands for the polynomial order of the initial
density distribution).

interact, and a trajectory that started initially in one space will always remain in that
space (a comforting idea?).

In case n = 0 (depicted in Figure 6(c)) a simple separation of variables makes it
possible to obtain a first integral of (4.2),

Ge−G = CU2eU ,(4.4)

where C is a constant of integration. Further analytic integration of this transcendental
equation is a formidable task.

4.2. Similarity solutions for 2D axisymmetric flows. For 2D axisymmetric
flows (m = 2), a simple separation of variables of (4.2) yields a general first integral
for all n �= −2,

G = −(n+ 2) ln |U | − U + C,(4.5)

where C is an arbitrary constant of integration. Hence, from (4.2),

w =

∫
dU

U [(n+ 2) ln |U | + U − C]
+ w0.(4.6)

Figures 7(a,b) illustrate a single trajectory in phase space for n = −3 and n = 1,
respectively. A particular value of C is chosen so that the G = 0 coordinate is
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(a) (b)

(c) (d)

Fig. 6. Phase-maps of one-dimensional flow cases for various values of n. (a) n = −3, (b)
n = −1, (c) n = 0, and (d) n = 1. Positive density fields are obtained in the left-half plane in case
(a) and right-half plane in cases (b), (c), and (d). Case (b) was solved analytically (see (3.10)).

tangent to the trajectory. For n = −3 only the left-half plane, G < 0, corresponds to
positive density values. Hence, the shown trajectory is a separatrix that approaches a
degenerate saddle point (0, 1) and partitions the phase space into two regions: Points
above the separatrix reach a zero density within a finite time, while points below
it approach infinity. Similar conclusions can be drawn for the n = 1 case. Here,
however, the right-half plane, G > 0, corresponds to positive density values, and the
region below the separatrix, which approaches (0,−3), pertains to points that reach
zero density within a finite time. Varying C in (4.5) yields similar trajectories that
are shifted along the G-axis and may cross the G = 0 line. Namely, in 2D cases
trajectories may cross from positive to negative aphysical density spaces.

4.3. Similarity solutions for 3D radially symmetric flows. A general sim-
ilarity solution for radially symmetric problems in three dimensions can be derived
analogously. A phase-plane analysis of (4.2) for m = 3 yields the desired trajectories.
Phase-maps are depicted in Figure 8 for typical values of n that validate the classifi-
cation of point B (see Figure 5). Again, positive values of the density field correspond
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(a) (b)

Fig. 7. Phase maps of 2D flow cases for two values of n. (a) n = −3, (b) n = 1. Only one
trajectory is shown. Other trajectories are identical to the one shown and are a parallel shift along
the G-axis. For the particular chosen value C (4.5) the trajectory touches the G-axis.

to positive values of G for n > −2 and negative values of G for n < −2. Notice
that, similar to the 1D cases, no interaction between positive and negative density
spaces is possible. Very intriguing phase-maps are obtained for negative densities, an
obviously aphysical domain of the solution. A periodic solution is obtained for n = 0
(see Figure 8(e)); alas, it survives only if we allow negative densities.

5. Conclusions. Explicit nontrivial analytical solutions (3.10) and (3.14) are
obtained for 1D (n = −1) and 3D (n = −3) initial density humps in liquid flow
fields. The 1D solution shows that the initial density distribution C1/x is convected
without being diffused at very short times, then diffuses at intermediate times, and
then is recovered at long times; the last effect is remarkable behavior of a solution
for the nonlinear convection-diffusion equation. In case C2 = C−2

1 and α = 0 the
solution describes the propagation velocity of a density (temperature) disturbance in
the positive half space with zero back pressure at x̂→ ∞. The effect of infinite initial
density at x = 0 is short-lived and can be neglected, quite similar to analyses which
employ the Dirac delta function to describe particle concentrations at t = 0 in diffusion
problems, etc. A comparison with Barenblatt’s (1979) general analyses of similarity
solutions reveals that the long time propagation velocity should depend on n and can
be predicted quite simply by exploring the similarity parameter η. Namely, the density
distribution can be expressed as a function of ln(η) or ln(x̂) − (1/(n + 2)) ln(t̂) + c.
Thus, a propagation velocity in the ln(x̂), ln(t̂) space is equal to 1/(n+ 2). However,
in the x, t domain the constant c is paramount and is generally unknown. We show
that two essential propagation velocities exist for short and long times (ûP = 1/C1

and ûP = 1/C1 − C2C1, respectively) that cannot be predicted unless a full solution
is obtained.

It is also interesting to note that the flow region near the contact line in a shock
tube may asymptotically be compared with our simple 1D model despite the fact that
the former deals with compressible fluid. The initial density distribution in a shock
tube possesses two distinct regions, separated by a diaphragm. However, after the
diaphragm is broken, the known theory predicts that four main regions exist and a
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(a) (b)

(c) (d)

(e) (f)

Fig. 8. Phase maps for 3D flow cases for prototypical values of n. (a) n = −4, point B is a
stable spiral; (b) n = −3, point B is a stable node; (c) n = −1.5, point B is an unstable node; (d)
n = −1, point B is an unstable spiral; (e) n = 0, point B is a center; (f) n = 1, point B is a stable
spiral. Positive density fields are obtained at the left-half plane in cases (a), (b) and the right-half
plane in cases (c), (d), (e), and (f). Case (b) was solved analytically (see (3.14)).
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traveling distinct contact line (not to be confused with the pressure shock; see Shapiro
(1954, p. 1007)) separates the two inner regions between the rarefaction and the pres-
sure shock waves. In these two regions the pressure is constant, while the temperature
and density fields are discontinuous across the contact line, the latter moving with a
constant downstream velocity. Notice that, despite the fact that the fluid is compress-
ible, within the two foregoing regions and for ideal gases, the temperature is inversely
proportional to the density since the pressure is uniformly distributed. At the bound-
aries of these two regions (the rarefaction and the shock waves) a constant flow enters
and exits the system. All of the foregoing boundary conditions are nearly satisfied
by our 1D model if we assume that Pr = 1, keeping the pressure field uniform (see
(3.12)). The initial density distribution is obviously different. However, the contact
line is, in reality, a diffused region, and a sharp contact line that separates the two
density fields is an approximate theoretical description of the field. In our 1D example
we focus on the effect of an initially diffused density shock that may mimic the flow
field within the two regions adjacent to the contact line. The analytical results of the
1D example show that a flow that possesses an initially diffused density profile has
an additional feature; the traveling velocity of the density disturbance has different
values for short and long times, unlike the case of a distinct contact line that possesses
a unique constant traveling velocity.

The 3D solution exhibits extremely steep gradients in the density and pressure
fields that resemble diffused shock waves. A prototypical solution describes a closed
insulated system with an initial algebraic density hump, C1/r̂

3, that implodes within
a finite time at a rate proportional to 1/t̂ 2. Such an unexpected behavior may give
rise to a rather interesting question: Are “black holes” possible in liquid systems sat-
isfying the Navier–Stokes equations? In reality this unusual result is an artifact of
the assumptions that the terms describing the energy dissipation and fluid compress-
ibility can be omitted from the energy conservation equation. Similarly, a solution
was derived for negative times that may provide an insight about the flow field near
a diffused adiabatic interfacial region of an expanding bubble.

Similarity solutions for density fields that possess initially rn (n-arbitrary) humps
are also analyzed. The particular form of the governing set of two first order ordi-
nary differential equations (4.2) proves that these similarity solutions can never be
chaotic. Phase-maps illustrate the trajectories of such systems in 1D, 2D, and 3D
flow fields. A formal analytical solution is also obtained for 2D axisymmetric flows
(see (4.5), (4.6)). Of particular interest is the 3D (n = 0) periodic solution that is
obtained for negative densities and mimics the well-known prey-predator problem. It
is interesting to note that trajectories do not cross the G = 0 axis in 1D and 3D flow
problems. Hence, positive and negative density spaces do not interact and are com-
pletely separated worlds. Also note that there is no qualitative difference between the
different cases shown in Figure 8 for the half plane that pertains to positive (physical)
densities, despite the fact that the critical point changes type. In 2D flow problems,
trajectories may cross the G = 0 axis, and negative and positive density spaces may
interact.

Finally, we suggest that (3.10) and (3.14) may also be used to define benchmark
problems by which the accuracy of numerical solvers can be verified. One must,
however, be cautious in employing the latter, since the stability of solutions (3.10)
and (3.14) has not been investigated.
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Abstract. The O’Doherty–Anstey (ODA) approximation was originally formulated in the seis-
mological literature for acoustic pulse propagation through a disordered stratified medium [Geophys.
Prospecting, 19 (1971), pp. 430–458]. It explains the mechanism for amplitude attenuation (and pulse
shaping) promoted by the variable coefficient, conservative hyperbolic model. This work generalizes
the one-dimensional ODA theory for linear weakly dispersive water waves forced by a disordered
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system. This is achieved by applying the invariant imbedding method. As a result, dispersion alters
the medium’s correlation function which controls the apparent attenuation mechanism. On the other
hand, orography affects the dispersive mechanism for the Airy function–like formation. A nonlinear
Boussinesq solver was implemented, and theoretical results were validated for different values of the
parameters of interest. The theoretical results are in very good agreement with the small amplitude
simulations. In particular, the approximate theory was able to capture a good part of the forward
scattering radiation. Moreover, through numerical experiments the theory is pushed beyond its
expected regime and captures the attenuation of small amplitude solitons due to orographic forcing.
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1. Introduction. Wave-topography interaction has been the subject of consid-
erable mathematical research. The physical applications range from coastal surface
waves [18] to atmospheric flows over mountain ranges [2, 7]. In particular, the interac-
tion of waves with fine features of the topography is of great interest. As pointed out
in the introduction to [7], the “representation . . . of subgrid-scale orographic processes
is recognized as crucial to numerical weather prediction at all time ranges.” In the
atmospheric literature orography implies mountain ranges [2]. Our study is therefore
focused on the effect of small-scale orographic features, which we call the microstruc-
ture. A mathematical theory is described and its robustness validated numerically.
As surface gravity waves propagate from deep to shallow waters, they are transformed
due to shoaling, refraction, diffraction, and reflection. In order to concentrate on the
main scattering mechanism connected with the pulse shaping phenomenon to be de-
scribed, we consider the normal incidence of surface pulse shaped waves. These waves
propagate over topographies containing a smooth slowly varying profile together with
disordered small-scale features. Our goal is to capture the wave-microstructure inter-
action.

The main result is that the disordered medium fluctuations cause the propagating
pulse to broaden as it travels. Due to multiple scattered energy, the pulse appears to
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diffuse about a moving center. The amount of broadening and attenuation is propor-
tional to the traveling distance and depends on the disorder’s correlation function.
In what follows we refer to the transformation of the pulse due to the medium’s
microscale fluctuations as pulse shaping.

The theory for pulse shaping was originally derived in the context of acoustic wave
propagation in the earth’s crust [25]. It is known as the O’Doherty–Anstey (ODA)
approximation. In the acoustic wave applications several authors have analyzed the
spreading of a pulse due to microscale variations in the medium parameters (cf.,
for example, the work by Clouet and Fouque [9], Papanicolaou and Sølna [27], and
Lewicki, Burridge, and de Hoop [15]). The motivation for modeling in terms of a
random medium is that a detailed description of microscale medium fluctuations is
often not known. Using a stochastic model, uncertainties about a specific medium
are translated into uncertainties about a transmitted pulse shape in a systematic way
[1]. Stochastic modeling has been used by Nachbin for long weakly dispersive surface
wave problems [22, 24].

This work generalizes the one-dimensional ODA theory for linear weakly disper-
sive water waves when forced by a disordered orography. The analysis is performed
through the recently formulated terrain-following Boussinesq system [23]. This is
achieved by applying the invariant imbedding method. As a result, dispersion alters
the medium’s correlation function, which controls the apparent attenuation mecha-
nism. On the other hand, orography affects the dispersive mechanism for the Airy
function–like formation. A nonlinear Boussinesq solver was implemented, and theo-
retical results were validated for different values of the parameters of interest. Details
of the numerical method and a larger range of experiments will be presented elsewhere
[20]. The theoretical results presented here are in very good agreement with the small
amplitude simulations. This amounts to solving the nonlinear Boussinesq system with
data on a small amplitude-to-depth ratio. In particular, the approximate theory was
able to capture a good part of the forward scattering radiation.

This paper is organized as follows. In section 2 we present the terrain-following
Boussinesq system. In section 3 the pulse shaping ODA theory is formulated in
detail. Section 4 contains five sets of numerical experiments validating the theory and
generating further insight into it. The conclusions are given in section 5. A three-part
appendix is intended to provide further detail for the reader.

2. The linearized terrain-following Boussinesq model. We start by pre-
senting the potential theory formulation for Euler’s equations with a free surface and
an impermeable bottom topography. In the potential theory model the fluid is as-
sumed to be inviscid, incompressible, and irrotational. Let variables with physical
dimensions be denoted with a tilde. We introduce the length scales σ (a typical pulse
width or wavelength), h0 (a typical depth), a (a typical wave amplitude), � (the hor-
izontal length scale for bottom irregularities), and L (the total length of the rough
region or the total propagation distance). The acceleration due to gravity is denoted
by g, and the reference shallow water speed is c0 =

√
gh0. Dimensionless variables

are then defined in a standard fashion [23, 29]:

x̃ = σx, ỹ = h0 y, t̃ =

(
σ

c0

)
t, η̃ = a η, φ̃ =

(
gσa

c0

)
φ, h̃ = h0 H

(
x̃

�

)
.

The velocity potential φ(x, y, t) and wave elevation η(x, t) satisfy the dimensionless
equations (see [29])

β φxx + φyy = 0 for −H(x/γ) < y < αη(x, t),
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with the nonlinear free surface conditions

ηt + αφxηx −
1

β
φy = 0,

η + φt +
α

2

(
φ2
x +

1

β
φ2
y

)
= 0

at y = αη(x, t). The parameter α = a/h0 controls the strength of nonlinear effects,
and β = h2

0/σ
2 the level of dispersion. The length scale for the bottom inhomogeneities

� leads to the dimensionless parameter γ = �/σ. The Neumann condition at the
impermeable bottom is

φy +
β

γ
H ′(x/γ)φx = 0.

The bottom topography is described by y = −H(x/γ), where

H(x/γ) =

{
1 + n(x/γ) when 0 < x < L,
1 when x ≤ 0 or x ≥ L.

The bottom profile is described by the function −n(x/γ). The topography is rapidly
varying when γ � 1. The undisturbed depth is given by y = −1, and the topography
can be of large amplitude, provided that |n| < 1. We do not need to assume that the
fluctuations n are small, nor continuous, nor slowly varying.

In past years Boussinesq-type equations have been employed to model surface
wave propagation in shallow channels. Such models are weakly nonlinear, weakly
dispersive approximations to the full potential theory equations. Peregrine [26] in
1967 deduced a model valid for channels of slowly varying depth, whereas Hamilton
[14] in 1977 derived a set of equations valid for arbitrary orographies. The latter used
an appropriate curvilinear coordinate system and applied a perturbation approach to
the linear potential theory equations retaining the lowest-order effects of dispersion.
The change of variables uses a conformal mapping from a strip in the complex (ξ, ζ̃)-
plane to the complex z-plane (z = x+iỹ; ỹ ≡ β1/2y) (see [23]). Hamilton also outlines
the formulation of a weakly nonlinear model by considering a Lagragian functional.
In this direction, using dimensionless variables and Hamilton’s conformal mapping
strategy, the potential theory equations are first cast in a fixed orthogonal curvilinear
coordinates (ξ, ζ̃) as (see [23])

φξξ + φ
ζ̃ζ̃

= 0, −
√
β < ζ̃ < α

√
βN(ξ, t),(2.1)

with free surface conditions

|J |Nt + αφξNξ −
1√
β
φ
ζ̃

= 0(2.2)

and

φt + η +
α

2|J |
(
φ2
ξ + φ2

ζ̃

)
= 0(2.3)

at ζ̃ = α
√
βN(ξ, t). The bottom condition is

φ
ζ̃

= 0 at ζ̃ = −
√
β.(2.4)
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The Jacobian for the (ξ, ζ̃) → (x, ỹ) coordinate transformation is represented by |J |.
Details can be found in Nachbin [23], where the potential theory equations given
above are approximated as the (O(α), O(β): respectively, weakly nonlinear, weakly
dispersive) terrain-following Boussinesq system

M(ξ)ηt +

((
1 +

αη

M(ξ)

)
u

)
ξ

= 0,

ut + ηξ +
α

2

(
u2

M(ξ)2

)
ξ

− β

3
uξξt = 0.

The metric term M(ξ) is defined by

M(ξ) ≡ ỹζ̃(ξ, 0).

When α = 0 the system above reduces to

M(ξ)ηt + uξ = 0,(2.5)

ut + ηξ − β

3
uξξt = 0.

Here ξ and t are the space and time coordinates, respectively; η = η(ξ, t) is the wave
elevation; and u = u(ξ, t) is the weighted depth-averaged terrain-following velocity
[23]. The variable coefficient M(ξ) is a smooth orography-dependent function which
appears as a consequence of the changes of variables [23]. When the parameter β is
small, we are in the shallow channel/long wave regime. Equivalently, this is called the
weakly dispersive regime.

In the next section we will analyze the linear (α = 0) Boussinesq system for a large
range of dispersive effects, expressed through the parameter β. It is very important
to note that for β > 0.25 we are in the deep water regime. The particle-orbits decay
exponentially with depth as shown in Dean and Dalrymple [5, Chapter 4, on linear
potential theory]. Hence in this regime there is no wave-topography interaction. Thus
the fact that the Boussinesq system is an O(β) approximation to the potential theory
is not much of a limitation for dispersive wave-topography interaction. Moreover, for
large time intervals dispersive effects will be strongly displayed in the solutions even
for small values of β (cf. Appendix A). Even though the theory we have developed
is linear, in our numerical experiments we will consider nontrivial values of α, as will
be discussed in the corresponding subsections.

3. The linear pulse shaping theory. In this section we generalize the ODA
approximation from linear acoustic waves to the linear weakly dispersive system (2.5).
The weakly dispersive Boussinesq system is forced by a rapidly varying orography ex-
pressed through the variable coefficient M(ξ). We consider a technique analogous to
Berlyand and Burridge’s acoustic work [3], which we apply successfully to dispersive
waves for two reasons. First, system (2.5) can be written equivalently as two cou-
pled KdV-type equations for the transmitted and reflected fields. These linearized
KdV-type equations can be viewed as a dispersive perturbation to those obtained
by Berlyand and Burridge; namely, a propagating pulse will slowly disperse with a
given (known) rate (cf. Appendix A, (A.4)). Second, the pulse’s effective propagation
velocity is bounded, and all Fourier modes have positive phase speeds bounded by 1.
These two properties described allow us to apply the invariant imbedding approach
[19], taking the propagation distance as the imbedding parameter.
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In what follows, solutions u, η to (2.5) will be assumed to be smooth enough and
absolutely integrable. This requirement is necessary to justify the use of the Fourier
transform and the Fourier inversion formula.

We start by performing the change of variables

x =

∫ ξ

0

1

Co(s)
ds, t′ = t

in system (2.5). Here Co(s) =
√

1/M(s) is the local wave speed and x is the travel
time. Dropping the primes, system (2.5) becomes

C−1/2
o ηt + C1/2

o ux = 0,(3.1)

C1/2
o ut + C−1/2

o ηx − β

3C
1/2
o

(
uxxt

1

Co
+

(
1

Co

)
x

uxt

)
= 0.

We adopt the wave mode splitting

R = C1/2
o u+ C−1/2

o η,(3.2)

L = −C1/2
o u+ C−1/2

o η.(3.3)

Differentiating (3.2) and (3.3) with respect to x and t and using (3.1) and the fact

that u = (R− L)/(2C
1/2
o ) leads to the coupled wave mode system

Rt +Rx = p(x)

(
R− L

2C
1/2
o

)
xxt

+ q(x)

(
R− L

2C
1/2
o

)
xt

− r(x)L,(3.4)

Lx − Lt = p(x)

(
R− L

2C
1/2
o

)
xxt

+ q(x)

(
R− L

2C
1/2
o

)
xt

− r(x)R,

where the variable coefficients are

p(x) =
β

3C
3/2
o (x)

, q(x) = −βCo,x(x)
3C

5/2
o (x)

, and r(x) =
Co,x(x)

2Co(x)
.

The initial conditions for system (3.4) are

R(x, 0) = Ro(x), L(x, 0) = 0.

Note that when the bottom is flat (r ≡ 0) and β = 0 (no dispersion), equations
(3.4) identify R with a wave propagating to the right (transmitted wave) and L with
a wave propagating to the left (reflected wave). For variable depths we adopt the
same terminology. Moreover, this terminology is also consistent for system (3.4), in
the weakly dispersive regime (0 < β � 1) and r ≡ 0, since the left-propagating signal
L is negligible if the initial data corresponds to a right-going wave (see Appendix A).

Several decompositions of the Boussinesq equations into a pair of KdV equations
were introduced by Mattioli in [16] and [17]. We point out that system (3.4) has
some advantages with respect to those decompositions. First, unlike system (3.4), the
Boussinesq equations used by Mattioli are not valid as an asymptotic approximation
of the potential theory equations for arbitrary rapidly varying or nondifferentiable
orographies. Second, in contrast to system (3.4), the linear dispersion relation for
Mattioli’s model results in unstable short waves with amplitude tending to infinity.
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In order to set our forthcoming results in a wave propagating frame let us intro-
duce the change of variables

τ = t− x, x′ = x,

where τ is the time-delay variable. Again abandoning the primes, equations (3.4)
become

Rx = p

(
R− L

2C
1/2
o

)
τττ

− 2p

(
R− L

2C
1/2
o

)
xττ

+ p

(
R− L

2C
1/2
o

)
xxτ

− q

(
R− L

2C
1/2
o

)
ττ

+ q

(
R− L

2C
1/2
o

)
xτ

− rL,(3.5)

Lx − 2Lτ = p

(
R− L

2C
1/2
o

)
τττ

− 2p

(
R− L

2C
1/2
o

)
xττ

+ p

(
R− L

2C
1/2
o

)
xxτ

− q

(
R− L

2C
1/2
o

)
ττ

+ q

(
R− L

2C
1/2
o

)
xτ

− rR.

Let f̂(ω) denote the Fourier transform of f(τ) in the time-delay variable τ :

f̂(ω) =

∫ ∞

−∞
e−iωτf(τ) dτ.

Take the Fourier transform in τ of (3.5). Manipulate the resulting system in order to
obtain first-order equations for the travel time-evolution of the Fourier modes. This
goal is achieved by first subtracting the two equations giving

R̂x − L̂x = rR̂− 2iωL̂− rL̂.(3.6)

Moreover, by differentiating this equation with respect to x, we find

R̂xx − L̂xx = r′(x)R̂− r′(x)L̂− 2iwR̂x + 2iwr(x)R̂(3.7)

+ 4w2L̂− 4iwr(x)L̂+ r2(x)R̂− r2(x)L̂.

This expression can be used to eliminate the second order x-derivatives in the first
Fourier transformed equation arising from (3.5). This is a crucial step in order to apply
the invariant imbedding approach, which requires a first-order system of ordinary
differential equations (ODE). Using the fact that the time frequency range |ω| <
Co(x)

√
3/β (see Appendix A), we solve for R̂x to obtain

R̂x = ζ(x, ω)L̂+ γ(x, ω)R̂,(3.8)

where

ζ(x, ω) =
id(x)ω3 + e(x)ω2 − 2r(x)

2(1 − d(x) ω2)
, γ(x, ω) =

−iβω2

3C2
o(x) (ω − 4ir(x))

2
(
1 − βω2

3C2
o(x)

) ,

d(x) =
β

3C2
o (x)

and e(x) = − β

3C3
o (x)

Co,x(x).
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Putting (3.8) into (3.6) and solving for L̂x results in

L̂x = (2iω + γ̄(x, ω))L̂+ ζ̄(x, ω)R̂,(3.9)

where ζ̄(x,w) and γ̄(x,w) denote the complex conjugates of ζ(x,w) and γ(x,w),
respectively. As claimed above, (3.8) and (3.9) give the evolution in x (travel time)
of each Fourier mode, corresponding to the transmitted and reflected fields.

Next, suppose that we want to calculate L(xo, τ) = L(xo, τ ;T ) for 0 ≤ τ ≤ T . At
this step we apply the invariant imbedding approach [19] to system (3.8) and (3.9).
To do so we imbed the relevant inhomogeneous region inside a homogeneous medium
so that we can give appropriate boundary conditions at the border of the medium’s
slab [xo, xo +X], say

R̂(xo, ω;T ) = ĥ(ω),(3.10)

L̂(xo +X,ω;T ) = 0.(3.11)

Boundary condition (3.11) means that no reflection is expected at the downstream
travel time location xo+X when 0 < τ = t−xo < T . In other words, the signal did not
have enough time to arrive at this point and to produce a medium’s response. This is
true at least for some X > 0 large enough (depending on T ) due to the pulse’s finite
(effective) velocity mentioned earlier. Linearity of ODE system (3.8)–(3.9) and the
invariant imbedding technique [19] guarantees the existence of a function K(x, ω;T )
(called the reflection kernel) such that

L̂(x, ω;T ) = K̂(x, ω;T ) R̂(x, ω;T )(3.12)

and satisfying the Riccati-type equation

K̂x = ζ̄(x, ω) + 2iωΓ(x, ω)K̂ − ζ(x, ω)K̂2,(3.13)

with

Γ(x, ω) =
2 − d(x)ω2

2(1 − d(x)ω2)
.

From (3.11) we obtain an appropriate initial condition for (3.13):

K̂(xo +X,ω;T ) = 0.(3.14)

Notice that (3.12) allows us to solve for the reflected signal L(xo, τ ;T ) in terms of
the reflection kernel K(xo, τ ;T ) and the transmitted pulse R(xo, τ ;T ) for 0 ≤ τ ≤ T .
This function K contains all the information about medium’s reflection properties.
We also remark that the boundary value problem (3.8), (3.9), (3.10), (3.11) has been
reduced to solving the initial value problem (3.13)–(3.14) in reversed direction from
the travel time location xo +X up to the time of interest xo.

In general it is not possible to solve explicitly for K̂ from (3.13), so we adopt
an approximation. To this end we present the following generalization to the lemma
given by Berlyand and Burridge [3].

Lemma 3.1. Let y satisfy the Riccati equation

y′(s) = −A(s) − 2iωB(s)y(s) + Ā(s)y2(s), 0 ≤ s ≤ so,(3.15)
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subject to the initial condition y(0) = 0. Here Ā(s) denotes the complex conjugate of
A(s). Hence the solution can be expressed as

y(so) = −
∫ so

0

e
−2iω

∫ so

s′ B(ξ)dξ
A(s′)ds′ + E(so),(3.16)

where the error term is

E(so) =

∫ so

0

Ā(s′)e−2iω
∫ so

s′ B(ξ)dξ
y2(s′)ds′.

Set

v(so) = sup
0≤s≤so

∣∣∣∣
∫ s

0

e
2iw
∫ s′

0
B(ξ)dξ

A(s′)ds′
∣∣∣∣ and V (s) =

∫ s

0

|A(s′)| ds′.

If v(so)V (s) < 1, then

|E(s)| ≤ v2(so)V (s)

1 − v(so)V (s)
, 0 ≤ s ≤ so.(3.17)

Proof. Multiplying (3.15) by its integrating factor and integrating both sides from
0 to s yields∫ s

0

e
2iω
∫ s′

0
B(ξ)dξ

y′(s′)ds′ + 2iw

∫ s

0

B(s′)e2iω
∫ s′

0
B(ξ)dξ

y(s′)ds′

= −
∫ s

0

e
2iw
∫ s′

0
B(ξ)dξ

A(s′)ds′ +

∫ s

0

Ā(s′)e2iω
∫ s′

0
B(ξ)dξ

y2(s′)ds′.

Consequently,∫ s

0

d

ds′

(
e
2iω
∫ s′

0
B(ξ)dξ

y(s′)
)
ds′ = e

2iω
∫ s

0
B(ξ)dξ

y(s)

= −
∫ s

0

e
2iω
∫ s′

0
B(ξ)dξ

A(s′)ds′ +

∫ s

0

Ā(s′)e2iω
∫ s′

0
B(ξ)dξ

y2(s′)ds′.(3.18)

Now solving for y(s) and evaluating at s = so, in (3.18) we arrive at (3.16).
To achieve estimate (3.17) we start with

E(s) =

∫ s

0

Ā(s′)e−2iω
∫ s

s′ B(ξ)dξ
y2(s′)ds′

= e
−2iω

∫ s

0
B(ξ)dξ

∫ s

0

Ā(s′)e2iω
∫ s′

0
B(ξ)dξ

y2(s′)ds′.

Let

Y (s) =

∫ s

0

|A(s′)| |y(s′)|2 ds′.(3.19)

Hence

|E(s)| =

∣∣∣∣
∫ s

0

Ā(s′)e2iω
∫ s′

0
B(ξ)dξ

y2(s′)ds′
∣∣∣∣ ≤ Y (s).(3.20)
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Differentiating (3.19) with respect to s,

Y ′(s) = |A(s)| |y(s)|2 .(3.21)

Note that from (3.16) and (3.20)

|y(s)| ≤ v(so) + Y (s), 0 ≤ s ≤ so.(3.22)

Thus substituting (3.22) into (3.21) leads to

Y ′(s) ≤ |A(s)| (v(so) + Y (s))2.(3.23)

By integrating (3.23) from 0 to s, we obtain∫ s

0

Y ′(s)
(v(so) + Y (s′))2

ds′ ≤
∫ s

0

|A(s′)| ds′ = V (s).

Therefore,

1

v(so)
− 1

v(so) + Y (s)
≤ V (s).

Thus if v(so)V (s) < 1, equation (3.20) gives

|E(s)| ≤ Y (s) ≤ v2(so)V (s)

1 − v(so)V (s)
, 0 ≤ s ≤ so.

This concludes the lemma’s proof.
We now apply these results to our Riccati equation. For brevity the argument

T will be omitted in what follows. We apply the lemma above to the reflection
kernel’s problem (3.13)–(3.14) by letting y(s) = K̂(x(s), ω), A(s) = ζ̄(x(s), ω), B(s) =
Γ(x(s), ω), and s = xo +X − x, so = X. We deduce that

K̂(x, ω) = −
∫ x+X

x

e
2iω
∫ x

x′ Γ(s,ω) ds
ζ̄(x′, ω)dx′ + E(x, ω),(3.24)

with an error term given by

E(x, ω) =

∫ x+X

x

e
2iω
∫ x

x′ Γ(s,ω) ds
ζ(x′, ω)K̂2(x′, ω)dx′.

Also

v(xo, ω) = sup
xo≤x≤xo+X

∣∣∣∣∣
∫ xo+X

x

e
2iω
∫ xo+X

x′ Γ(s,ω) ds
ζ̄(x′, ω)dx′

∣∣∣∣∣
and

V (xo, ω) =

∫ xo+X

xo

|ζ(x′, ω)| dx′.

Then, in the cases where v(xo, ω)V (xo, ω) < 1, the error bound follows.
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Now we solve for R̂(xo, ω) at an arbitrary point xo by using (3.24) and (3.12) in
(3.8). It results that

R̂x(x, ω) =

(
ζ(x, ω)

(
−
∫ x+X

x

e
2iω
∫ x

x′ Γ(s,ω) ds
ζ̄(x′, ω)dx′ + E(x, ω)

)
+ γ

)
R̂(x, ω).

Solving this initial value problem with R̂(0, ω) = f̂(ω), then

R̂(xo, ω) = f̂(ω) exp

[
−
∫ xo

0

∫ x+X

x

ζ(x, ω)e
2iω

∫ x

x′ Γ(s,ω) ds
ζ̄(x′, ω)dx′ + γ(x, ω) dx

]

· exp

[∫ xo

0

ζ(x, ω) E(x, ω) dx

]
.(3.25)

For general rapidly varying orographies and β � 1 the error function E(x, ω) is
small (see Appendix C), even though the error estimate (3.17) is not useful in this
case. Estimate (3.17) is sharp, for instance, when the function describing the medium
properties (the metric coefficient M(x) in system (2.5)) is taken to be piecewise con-
stant on travel-time intervals with equal length (called a Goupillaud medium) [21].

Therefore, (3.25) leads to the generalized ODA approximation

R̂(xo, ω) ≈ f̂(ω)e−xo(aβ(xo,ω)+b(xo,ω)),(3.26)

where

aβ(xo, ω) =
1

xo

∫ xo

0

∫ x+X

x

ζ(x, ω)e
2iω
∫ x

x′ Γ(s,ω) ds
ζ̄(x′, ω)dx′ dx,(3.27)

b(xo, ω) = − 1

xo

∫ xo

0

γ(x, ω) dx.(3.28)

Using approximation (3.26), we can obtain an expression for R(xo, τ) (the trans-
mitted field in our applications) by using the Fourier inversion formula. Thus for
0 ≤ τ ≤ T

R(xo, τ) ≈ 1

2π

∫ ∞

−∞
f̂(ω)e−xo(aβ(xo,ω)+b(xo,ω))eiωτdω.(3.29)

Note that the exponential factor in (3.29) accounts for the wave attenuation
at travel time xo. As mentioned above, the error estimate given above is not al-
ways sharp. For this reason the error term E(xo, ω) is calculated numerically in
Appendix C. Furthermore, for dispersion parameter β small enough and constant
depth (r(x) ≡ 0) we have that aβ = O(β2) and b = O(β). Hence for variable depths
it is reasonable to approximate the medium’s dispersive correlation function aβ(xo, ω)
by the medium’s hyperbolic correlation function a0(xo, ω); that is,

aβ(xo, ω) ≈ 1

xo

∫ xo

0

∫ x+X

x

r(x)e2iω(x−x′)r(x′)dx′ dx ≡ a0(xo, ω).(3.30)

This approximation, valid for small values of β, is not a limitation of the theory but
enables numerical efficiency in the evaluation of the Fourier integrals. Note that this
hyperbolic version is easier to compute than the dispersive formula (3.27). In the
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latter the function ζ depends on the frequency ω. Therefore the Fourier-type integral
in aβ cannot be computed rapidly by using the FFT (fast Fourier transform). On
the other hand, the integral in (3.30) can be easily evaluated by the FFT algorithm
because in this case the coefficient r(x) is frequency-independent. In Appendix B we
detail the numerical computation of the Fourier-type integral in coefficient aβ(xo, ω).
The accuracy of approximation (3.30) will be verified in section 4 showing that the
leading-order dispersive effects are controlled by coefficient b(xo, ω).

The numerical experiments in section 4 will show that approximation (3.29) cap-
tures very well not only the wave front but also part of the forward scattering radia-
tion. The parameter X in (3.27) (or (3.30)) regulates to what extent the incoherent
signal is recovered.

If β = 0, then b(xo, ω) ≡ 0, and the approximation given by (3.26) reduces to

R̂(xo, ω) ≈ f̂(ω)e−xoa0(xo,ω),(3.31)

where

a0(xo, ω) =
1

xo

∫ xo

0

∫ x+X

x

r(x)e2iω(x−x′)r(x′)dx′ dx,

as in Berlyand and Burridge’s work [3]. We recall that when β �= 0, the hyperbolic
medium’s correlation function a0(xo, ω) (which controls the attenuation mechanism) is
altered and an extra attenuation term b(xo, ω) appears due to the model’s dispersion.

4. Numerical validation of the generalized ODA theory. Consider the
nonlinear terrain-following Boussinesq system deduced by Nachbin [23],

M(ξ)ηt +

((
1 +

αη

M(ξ)

)
u

)
ξ

= 0,(4.1)

ut + ηξ +
α

2

(
u2

M(ξ)2

)
ξ

− β

3
uξξt = 0.

We recall that when α = 0, system (4.1) reduces to (2.5). Nevertheless, for our
numerical validation experiments we will use the nonlinear Boussinesq system in a
small α regime. Two types of initial data are considered. We study the propagation
of Gaussian-shaped disturbances of the form

u(ξ, 0) = η(ξ, 0) = e−(ξ−ξo)2/ε,

where the parameter ξo controls the pulse’s initial position and ε > 0 its effective
width. Furthermore, we also consider solitary waves of the form

η(ξ, 0) = A1 sech2(B(ξ − ξo)) +A2 sech4(B(ξ − ξo)),

u(ξ, 0) = A sech2(B(ξ − ξo)),

with A1, A2, A, and B constants (to be defined in Experiment 2). These are approx-
imate solutions to system (4.1) with M ≡ 1 (see [28]).

Except in some special cases (for instance, when M ≡ 1, α = 0, or β = 0),
finding the solution of system (4.1) is a nontrivial problem. To solve system (4.1)
numerically we will use a finite difference solver introduced by Wei and Kirby [28].
This scheme will be used to perform numerical experiments in order to validate the
theory developed in the previous sections.
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First we rewrite system (4.1) in a more convenient way, as

ηt = E(u, η),(4.2)

Vt = F (u, η),

where

E(u, η) = − 1

M(ξ)

((
1 +

αη

M(ξ)

)
u

)
ξ

,(4.3)

F (u, η) = −ηξ − α

2

(
u2

M(ξ)2

)
ξ

,

and V is an intermediate variable defined by

V = u− β

3
uξξ.

To evaluate the boundary values we use the radiation conditions by Engquist and
Majda (see [8])

ut − uξ = 0 at ξ = ξmin,(4.4)

ut + uξ = 0 at ξ = ξmax,

where ξmin and ξmax denote the left and right ends, respectively, of the computational
domain.

The evolution system above is solved by using an efficient predictor-corrector
scheme. The V → u change of variables is done with an efficient (tridiagonal) ODE
numerical scheme. Details, numerical properties, and further numerical experiments
are presented elsewhere [20, 21].

We now describe several experiments validating the dispersive pulse-shaping ODA
theory.

Experiment 1 (Flat channel and effectively linear regime). In these experiments
the pulse is assumed to propagate over a flat bottom (M ≡ 1). In Appendix A (cf.
(A.6) and (A.7)) we show that if, in addition, α = 0, we can explicitly solve system
(4.1) by using the Fourier transform technique. Flat channel solutions are employed to
verify the numerical method’s accuracy regarding dispersive and stability properties.

In Figure 4.1 we see that the exact solution η (for α = 0, β = 0.03) and the
numerical solution (for α = 0.001, β = 0.03) are in very good agreement at t =
40. After 40 length-units into the flat channel, the right-propagating Gaussian has
developed an Airy-like oscillatory tail (cf. Appendix A). The dispersive properties of
the numerical scheme are very good.

For this experiment the numerical parameters are J = 4000 (spatial mesh points;
∆ξ = 0.0125) and N = 5000 (time mesh points; ∆t = 0.008). As mentioned above,
this test shows that the code is capturing the (effectively linear) dispersive regime
very well when α is small enough.

We repeat the experiment above for α = 0.001, β = 0.0005, and t = 40. Disper-
sion has been decreased substantially. Now the effective hyperbolic regime is clearly
observed in Figure 4.2.

Radiation conditions (4.4) also proved to absorb appropriately waves leaving the
computational domain. It was observed that reflected waves produced by the compu-
tational boundaries were negligible.
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Fig. 4.1. Dashed line: initial pulse, η(ξ, 0) = u(ξ, 0) = e−ξ2/0.3. Solid line: numerical solution
for α = 0.001, β = 0.03, and t = 40. Open circles: exact solution.
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Fig. 4.2. Dashed line: initial disturbance, η(ξ, 0) = u(ξ, 0) = e−ξ2/0.3. Solid line: numerical
solution for α = 0.001, β = 0.0005, and t = 40. Open circles: initial Gaussian pulse translated to
ξ = 40.

Experiment 2 (Flat channel and weakly nonlinear regime/solitary wave). We now
study system (4.1) in the case that M ≡ 1, 0 < α � 1 (weakly nonlinear regime),
and 0 < β � 1 (weakly dispersive regime). Under these hypotheses it is possible to
obtain an approximate solution of system (4.1) which has the analytical form

η(ξ, t) = A1 sech2(B(ξ − Ct− ξo)) +A2 sech4(B(ξ − Ct− ξo)),(4.5)

u(ξ, t) = A sech2(B(ξ − Ct− ξo)),

where

A1 =
C2 − 1

αC2
=

1

C2
, A2 =

(C2 − 1)2

αC2
=

α

C2
, C =

√
1 + α, A =

C2 − 1

αC
=

1

C
,

and

B =

{
C2 − 1

(4/3)βC2

}1/2

=

{
α

(4/3)βC2

}1/2

.

Note that A1 +A2 = 1. See Wei and Kirby [28] for details.
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Fig. 4.3. Solitary wave propagating over a flat bottom. Dashed line: initial disturbance η(ξ, 0) =
A1 sech2(Bξ) + A2 sech4(Bξ). Solid line: numerical solution for α = 0.03, β = 0.03, and t = 30.
Open circles: analytical solution (4.5).

In Figure 4.3 we show the analytical solution η given by (4.5) for α = β = 0.03
and t = 30. The initial soliton position is set to be ξo = 0. The numerical solution
is also included in this plot. The numerical parameters are J = 2000, N = 2500,
∆ξ = 0.025, ∆t = 0.012. Note that we have the same dispersion level as in the first
simulation presented in Experiment 1. Now weak nonlinearity prevents the formation
of an oscillatory tail.

Observe that the pulse’s propagation velocity is C ≈ 1.0149, in agreement with
solution (4.5). The code reproduces very well the weakly dispersive, weakly nonlinear
evolution of the soliton.

Experiment 3 (Disordered orography/hyperbolic regime). In Experiments 1 and
2, in which the channel’s bottom was assumed to be flat, the orography-dependent
coefficient M(ξ) was taken to be M ≡ 1. For variable depths the computation
of function M(ξ) involves the solution of a change-of-variables problem (conformal
mapping), which is not an easy task. For this reason, in next experiments, the
smooth orography coefficient M(ξ) will be synthesized directly as a piecewise lin-
ear function, ignoring (for the time being) its dependence on the original orogra-
phy. In [20] we describe in detail how a numerical conformal mapping tool [6]
is used in order to obtain a “nonsynthetic” M(ξ). Nevertheless, synthetic M(ξ)
proves to be useful (i.e., efficient) for observing the phenomena we are interested
in and for validating the theory. The synthesized orography coefficient is conceived
as

M(ξ) = 1 + δµ(ξ/�),

where µ is a mean-zero coefficient constructed using a random number generator.
The fluctuation level is indicated by δ and its correlation length by �. In the following
experiments we use δ = 0.5 and � = 0.1.

The numerical experiments are performed over a channel defined in the interval
[−15, 70]. The fluctuations of the synthetic coefficient M(ξ) cover the interval [5,
45]. The data for the right-propagating Gaussian is such that ξo = −5 and ε = 0.05.
The numerical solution is plotted as a function of the time-delay variable τ after
propagating over 20 units of length and is presented in Figure 4.4. Note the wave
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Fig. 4.4. Pulse propagating over a synthetic disordered rapidly varying topography. (a) Initial

disturbance R(0, τ) = 2e−τ2/0.05. (b) Solid line: ODA approximation (3.31) for X = 5; dashed line:
numerical solution for α = 0.001, β = 0 at ξ = 20. (c) Solid line: ODA approximation (3.31) for
X = 20; dashed line: numerical solution at ξ = 20 and α, β as in (b).

attenuation due to the orographic forcing. The transmitted signal has amplitude
1.5 (smaller than 2.0, the initial amplitude). The agreement between the numerical
solution of the full nonlinear equations (with small α) and the linear theory is very
good (Figure 4.4(b)). We also point out an outstanding feature of the theory, not
noticed in previous work [3]. The linear hyperbolic ODA approximation is able to
capture the forward scattering radiation, which is the incoherent coda behind the
transmitted Gaussian. Theory and numerical experiment agree over the delay time
interval up to approximately τ = 10.

To verify the robustness of the theory we increase the size of the disordered
medium’s slab used in the invariant imbedding theory (namely, the variable X). In
Figure 4.4(c) we plot the same numerical solution as above but compared with a
theoretical result using an increased slab size (up to X = 20). The approximate
theory captures an even larger segment of the forward scattering radiation beyond
τ = 15.

Experiment 4 (Disordered orography/dispersive regime). This set of experiments
is important for two reasons. (A) It shows that we are able to properly compute
the interaction of dispersive water waves with rapidly varying orographies. With pre-
viously known Boussinesq models (such as [26]) this was not possible. The classic
Boussinesq equation [26] is not valid for orographies with large slopes. Moreover,
its variable coefficient multiplies the highest derivative term, and this generates nu-
merical noise as the orography’s slope increases. This has been shown for a periodic
topography in [20]. The same experiment was performed for the terrain-following
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Fig. 4.5. (a) Dashed line: initial disturbance. Solid line: solution for M ≡ 1 (flat bottom) at
ξ = 40. (b) Pulse propagating over a synthetic disordered rapidly varying orography. Dashed line:
numerical solution at ξ = 40. Solid line: generalized ODA approximation (3.29) for X = 20. In all
experiments α = 0.001, β = 0.0005.

Boussinesq system where the metric term is positioned away from the third order
(dispersive) term. No numerical noise was observed. (B) We illustrate the theoretical
results in the regime for which they were deduced. Hence these linear experiments
validate the nonlinear numerical model for the terrain-following Boussinesq equation
in the presence of a random orography. This is important also since the code will
be used (as a scientific computing tool) beyond the regime of validity of the linear
theory.

In the first experiment we consider the dispersion to be very weak (β = 0.0005).
Figure 4.5(a) clearly shows that a very short oscillatory tail develops when the pulse
propagates in a flat channel. The final amplitude of the transmitted pulse is about
1.5. The amplitude decay in this case is entirely due to dispersion, as discussed in
Appendix A, through the Airy kernel. However, in the presence of orographic forcing
an additional attenuation is observed (Figure 4.5(b)). In this case the final amplitude
is about 1. Note that no Airy-like oscillatory tail develops. This was systematically
observed in several experiments and can be explained through the concept of local-
ization [24]. The localization length of a Fourier mode is a characteristic propagation
distance after which the transmission coefficient is negligible. The bulk of the energy is
in the reflected signal. Moreover, high frequency components have small localization
lengths. This means they are quickly filtered (back) by the disordered medium. In the
context of the ODA theory this was phrased in a slightly different way by Berlyand
and Burridge [3]. They called a layered random medium a stratigraphic Gaussian
filter. As presented here, the transmitted pulse can be written as the convolution of
its initial Fourier content with a Gaussian kernel. The Gaussian kernel is the leading-
order approximation to the kernel in (3.29) with β = 0 (see [20, 21]). Applying this
notion to our current problem, we have that disorder filters the higher part of the
Fourier content of the incoming pulse. Hence the oscillatory tail (which is of high
frequency content) has been converted into the incoherent part of the wave. Again
the agreement between the numerical solution and the ODA theory is very good.
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Fig. 4.6. (a) Dashed line: initial disturbance. Solid line: solution for M ≡ 1 (flat bottom) at
ξ = 40. (b) Pulse propagating over a synthetic disordered rapidly varying orography. Dashed line:
numerical solution at ξ = 40. Solid line: generalized ODA approximation (3.29) for X = 20. In all
experiments α = 0.001, β = 0.002.

In the next validation experiment the level of dispersion has been increased four
times (β = 0.002). In Figure 4.6(a) we have the initial pulse profile and the numer-
ical solution after propagation over 40 units of a flat channel. We observe a long
oscillatory tail due to the higher dispersion level. Note that dispersion is not as
small as the value of β might indicate at first sight. After large propagation dis-
tances the (small) phase lag (at higher frequencies) has accumulated in a nontrivial
fashion.

To compute the theoretical ODA approximation we need the incoming pulse in
time at the origin. Actually we need its Fourier content f̂(ω). To be consistent with
our mathematical theory we position the initial Gaussian profile (in space) to the left
of the origin at time to, allow it to propagate over a flat portion of the channel, and
record it in time at the origin. The starting time to is chosen so that the resulting
pulse f(τ) will be centered at τ = 0. This gives us the correct incoming pulse (in
time) for the theoretical formula to be used. Hence the incoming pulse displays a
mild oscillatory tail as displayed by Figure 4.6(a). In Figure 4.6(b) we compare the
numerical solution with the generalized ODA approximation. The dispersive wave
attenuation can again be observed, in particular if we examine the envelope of the
Airy-like solution.

Experiment 5 (Disordered orography/solitary wave). We are now in a position
to explore the (linear) generalized ODA theory beyond its regime of validity. We
consider a weakly nonlinear weakly dispersive wave, namely a soliton. Using (4.5), it
is easy to see that we have

f(τ) =

(
1

C2
+

1

C

)
sech2(Bτ) +

α

C2
sech4(Bτ)

in order to evaluate the ODA approximation (3.29).
In order to slowly push away from the regime of validity of our theory we choose

small values for the respective parameters α = β = 0.001. This amount of dispersion
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Fig. 4.7. Soliton propagating over a synthetic disordered rapidly varying orography. (a) Initial
soliton f(τ). (b) Dashed line: numerical solution for α = 0.001, β = 0.001 at ξ = 150. Solid line:
generalized ODA approximation (3.29) for X = 30.

is enough to produce an oscillatory coda, as was observed in previous experiments.
But now, for the particular data considered, this coda will not appear due to the per-
fect balance between the α and β terms. The oscillatory coda seen in Figure 4.7(b)
is due entirely to forward scattering of energy generated by the interaction of the
soliton with the disordered medium. Because the soliton is wider than the Gaussian
(used before) we adopt � = 0.6. This keeps the wave/inhomogeneities ratio equal to
approximately 10 (γ = 0.1) as in all other experiments. The orography coefficient
covers the [5, 245] interval, and the amplitude of fluctuations is δ = 0.5. In Fig-
ure 4.7(b) we present the excellent agreement between the theory and the numerical
solution.

It is worthwhile recalling that the solitary wave (4.5) is an approximate solution
to the Boussinesq equations as presented by Wei and Kirby [28] in their appendix.
In [28, p. 255] they discuss solitary-wave propagation over a flat bottom and analyze
the effects, under the corresponding approximation, of increasing the soliton’s am-
plitude (namely, the nonlinearity parameter α, denoted there by δ). They observed
that for α = 0.1 the initial profile specified by (4.5) undergoes a rapid adjustment
to a slightly higher solitary wave with a very small dispersive tail. This dispersive
tail is not noticeable in their experiment [28, Figure 2(a)] after the soliton has prop-
agated over 55 pulsewidths (450 length units). Nevertheless the amplitudes of the
tail and of the rapid deviation from the initial solitary wave height both increase
with increasing α. As explained in [28], this is partially because the fourth-order
ODE used to develop the analytical solution is only asymptotically equivalent to the
Boussinesq model used in the computations. In particular, for α = 0.3 Wei and
Kirby show that the corresponding evolution for (4.5) is far from a traveling wave
solution.

As pointed out before, the ODA theory developed is linear, while these exper-
iments are performed beyond the linear regime. Hence in our experiments we will
gradually increase the values of α, but we will be far from the “problematic regime”
indicated by Wei and Kirby [28]. In our second experiment with solitons, and to
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Fig. 4.8. Transmitted pulse stabilization observed at a fixed medium’s station (ξ = 150; 25
pulse widths). The same initial soliton (α = β = 0.002) propagated over ten different realizations of
the topography. The transmitted pulse shape is effectively deterministic, while the coda is random.

further move away from the linear regime, we double the nonlinearity and disper-
sive parameters accordingly. We will now investigate the effect of different realiza-
tions of the medium. In Figure 4.8 we present the results for ten different realiza-
tions of the disordered topography. We observe the stabilization of the transmit-
ted pulse: the pulse shaping of the front is independent of the specific realization.
This has been proved for the linear hyperbolic case [15]. Stabilization in the lin-
ear dispersive regime has been recently proved in [10]. The present framework has
been extended, through a stochastic analysis, to include stabilization [10] for the
time-reversed refocusing of dispersive waves. No stabilization theory is yet available
for solitons though.

As already mentioned, the solitary wave profile (4.5) is not an exact traveling wave
solution to the corresponding, constant coefficient, Boussinesq system. Nevertheless
the balance between weak nonlinearity and weak dispersion is maintained for large
time intervals. If dispersion were not present, a Burgers-type nonlinearity (ηt+αηηx =
0) would force the solitary wave profile (4.5) to eventually break. For an initial
profile denoted as η(x, 0) = f(x) the critical time tc is known to be tc = −1/(αf ′)
for the maximum value of the negative slope of f(x). For f(x) given by (4.5), with
α = β = ε, the maximum value of the negative slope is at x̃ such that tanh(Bx̃) = −z,
where

z =

(
1 + C + 2α

3 + 3C + 10α

)1/2

,

f ′(x̃) = −
(

3

(1 + ε)3

)1/2 [
1 − z2

z2

(
(1 + C)z + 2ε

(
1 − z2

z

))]
, with C =

√
1 + ε,

and tc ≈ 1/(4ε). Hence if dispersion were switched off, the solitary wave would break
after 50 length units (approximately 8.33 pulse widths), when ε = α = 0.005, as will
be used in the following experiment.

In our last experiment we further increase nonlinearity and dispersion to α =
β = 0.005. The result is presented in Figure 4.9. As observed in Experiment 4,
disorder attenuates the effect of dispersion in this weakly nonlinear experiment. Note
the soliton steepening at the wave front due to the attenuation of the dispersive
mechanism. The attenuated wave front predicted by the linear theory does not match
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Fig. 4.9. Soliton propagating over a synthetic disordered rapidly varying orography. (a) Initial
soliton f(τ). (b) Dashed line: numerical solution for α = 0.005, β = 0.005 at ξ = 150. Solid line:
generalized ODA approximation (3.29) for X = 30.

the nonlinear numerical front as before. Note also that dispersion has not been fully
switched off or else a shock would have formed in finite time according to the discussion
above. More experiments with solitary waves, including time-reversal and refocusing,
are presented in [20].

The study of solitary waves moving over disordered topography is of great inter-
est. In this work we have presented only scientific computing results. A complete
theoretical understanding is of interest and will be considered in the future. Recently
progress has been made in this direction [10, 11]. Theoretical results for nonlinear
localization and soliton propagation in random media are recent and more focused on
the nonlinear Schrödinger (NLS) equation. A very good source of references can be
found through the work of Garnier [12, 13]. We are not aware of any results regarding
solitons for the Boussinesq system (or equation).

5. Conclusion. We have formulated a generalization of the ODA theory for
linear weakly dispersive waves. The theory has been validated numerically and pushed
beyond its linear regime of validity. In particular, both the theoretical expressions
and the numerical experiments have been able to capture the apparent diffusion of
small amplitude solitary waves. This is a theme of great interest: soliton propagation
in disordered media. Further mathematical analysis is needed to fully understand this
problem.

Nevertheless this work has stimulated new theoretical results in the stochastic for-
mulation for time-reversed dispersive wave refocusing [10] and also for the ODA and
time-reversed refocusing [11] of weakly nonlinear hyperbolic waves. The authors [11]
have shown that, to leading order, the transmitted pulse is governed by a viscous Burg-
ers equation. The “apparent viscosity” depends on statistics of the random medium.
This important result reports on a weakly nonlinear ODA theory for nondispersive
waves. Therefore the regularizing effect is entirely due to the “apparent viscosity”
promoted by the disordered orography. But it still does not apply to solitons. Details
of the “apparently viscous” theory, including additional nonlinear experiments, are
presented in [11].
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Appendix A. Solutions for the linear KdV equation and the linear
Boussinesq model.

The linear KdV equation. Consider the initial value problem

ut + ux + γuxxx = 0,(A.1)

u(x, 0) = f(x),(A.2)

where γ is a nonzero constant. Using a Fourier transform in x, the solution for (A.1)
and (A.2) is given by

u(x, t) =
1

2π

∫ ∞

−∞

(∫ ∞

−∞
ei(k(x−t−y)+γk

3t)dk

)
f(y)dy.(A.3)

Making a convenient change of variables, the inner integral in (A.3) can be expressed
in terms of the Airy function to give

u(x, t) =
1

(3tγ)1/3

∫ ∞

−∞
Ai

(
x− t− y

(3tγ)1/3

)
f(y)dy.(A.4)

The Airy kernel gives the rate in time at which a pulse f(x) will spread due to
dispersion. This is useful information for the invariant imbedding technique used in
the ODA theory.

The linear Boussinesq model. Now we study the linearization of system (4.1) for
constant depth:

ηt + uξ = 0,(A.5)

ut + ηξ − β

3
uξξt = 0,

with the initial conditions

η(ξ, 0) = u(ξ, 0) = f(ξ).

Analogously to the KdV equation, we can apply the Fourier transform technique to
obtain the Fourier coefficients

η̂(k, t) =
f̂(k)

2

[(
1 −

√
1 + (β/3)k2

)
e

ikt√
1+β/3k2(A.6)

+
(
1 +

√
1 + (β/3)k2

)
e

−ikt√
1+β/3k2

]
,

û(k, t) =
f̂(k)

2
√

1 + (β/3)k2

[(
1 +

√
1 + (β/3)k2

)
e

−ikt√
1+β/3k2(A.7)

−
(
1 −

√
1 + (β/3)k2

)
e

ikt√
1+β/3k2

]
.

We point out that in the hyperbolic case (β = 0) the above initial data gives rise to
(only) a right-propagating mode. In the dispersive case a negligible left-propagating
mode is always present in this type of data. Notice that, because of (A.6), (A.7), and

1√
1 + (β/3)k2

= 1 − (k2/6)β +O(β2),
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we have that

L̂(t, k) = η̂(t, k) − û(t, k) = O(β) ≈ 0,

provided that β is small enough. For the hyperbolic case the left-propagating mode
is identically zero.

The dispersion relation for system (A.5) is

ω± = ω±(k) = ± k√
1 + β

3 k
2

,(A.8)

where ω+ and ω− represent Fourier modes propagating to the right and left, respec-
tively. In contrast to the KdV equation, the phase velocity is

C±
k =

ω±
k

= ± 1√
1 + β

3 k
2

,

which does not switch signs and is bounded by one. Furthermore, ω+ = ω+(k)
coincides up to O(k3) with the dispersion relation for the KdV equation above with
γ = β/6. Note also that, for waves generated in space, the range of possible time
frequencies is bounded by (3/β)1/2 for all k. As a consequence, solutions u, η of
system (A.5) are band-limited functions in t. This fact justifies why frequencies ω
higher than

√
3/β are not considered in the analysis presented in section 3.

Appendix B. Numerical computation of coefficients aβ(xo, ω) and
b(xo, ω). As mentioned in section 3, the numerical computation of the dispersive
coefficient aβ(xo, ω) is expensive. To override this difficulty, and use the FFT, we
approximated aβ(xo, ω) by the hyperbolic medium’s correlation function a0(xo, ω),
which corresponds to the leading-order term of a Taylor series expansion of aβ around
β = 0. The numerical experiments in section 4 showed the high accuracy of this ap-
proximation.

To compute coefficient a0(xo, ω) as in (3.30) we rewrite it as

a0(xo, ω) =

∫ X

0

Φ(η)e−2iωηdη,(B.1)

where

Φ(η) =
1

xo

∫ xo

0

r(x)r(x+ η)dx.

We know by the correlation theorem that∫ ∞

−∞
r(x)r(x+ η)dx = F−1[r̂r̂](η),

where the hat denotes the Fourier transform, F−1 the inverse Fourier transform, and
the bar indicates complex conjugation. Therefore function Φ defined above can be
computed by using the FFT algorithm, letting the coefficient r(x) be zero outside the
interval [0, xo]. This is consistent with the invariant imbedding approach. We must
append enough zeros to the tail of the sampled coefficient r(x) (zero padding) in order
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to eliminate the overlapping phenomenon that appears due to the fact that r(x) is
not a periodic function. The FFT assumes periodicity in both physical and frequency
domains (see Brigham [4]). The cost of computing the discrete correlation function
results in only three FFT evaluations, which is faster than an ordinary computation
of the integral defining Φ for each value of η. The numerical code to perform the
discrete correlation can be found in [4].

Once the function Φ is known, the windowed Fourier transform in (B.1) is eval-
uated by using only one FFT. Analogously to the discrete correlation, zero padding
outside the interval [0, X] is required on the sampling of function Φ.

To evaluate the generalized ODA approximation presented in section 3 we also
need the dispersive coefficient b(xo, ω). To make its computation faster we rewrite it
in the more compact form

b(xo, ω) = − β

6xo

∫ ξ(xo)

0

−iω3M3/2(ξ) +M ′(ξ)ω2

1 − (β/3)M(ξ)ω2
dξ,(B.2)

where the upper limit ξ(xo) denotes the spatial position in the medium correspond-
ing to the travel time xo. Thus we need compute only once the coefficients M(ξ),
M3/2(ξ), and M ′(ξ), which can be stored at the beginning. The integral in (B.2)
is approximated by the trapezoidal method for roughly 214 frequencies in the range
|ω| < Co(xo)

√
3/β. Since b(xo,−ω) = b(xo, ω), only positive frequencies need to be

evaluated.

Appendix C. Error estimation of the pulse shaping theory. In section 3
the reflection kernel K was decomposed according to the result of Lemma 3.1. In the
derivation of the generalized ODA approximation (under the hypotheses of rapidly
varying orography and weakly dispersive regime 0 < β � 1) we retained only the first
term on the right-hand side of the decomposition, leading to the approximation

K̂(x, ω) ≈ −
∫ x+X

x

e
2iω
∫ x

x′ Γ(s,ω) ds
ζ̄(x′, ω)dx′.(C.1)

We wish to give numerical evidence showing the accuracy of this approximation.
First, observe that the reflection kernel K can be computed by solving numerically
the Riccati equation

K̂x = ζ̄(x, ω) + 2iωΓ(x, ω)K̂ − ζ(x, ω)K̂2,

subject to

K̂(xo +X,ω;T ) = 0.

(See the definitions of coefficients Γ and ζ in section 3.) Consequently, we can eval-
uate the error function E(xo, ω) at any time xo and frequency ω. The results are
presented in Figure C.1, where we compare the norm of function E(xo, ω) to that of
approximation (C.1) at point ξ = 40, with X = 20 and β = 0.005. We see that the
error function is negligible over all frequencies. The parameters used for the orogra-
phy considered here are L = 240 (total length of the rough bottom), � = 0.6 (scale of
variation of the orography), and δ = 0.5 (amplitude of orography’s fluctuations).
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Fig. C.1. Solid line: error norm for β = 0.005, X = 20 at ξ = 40. Dashed line: norm of
approximation (C.1) for the same parameters.
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Abstract. Our study is motivated by an attempt to develop a rigorous mathematical model of
a suspension highly filled with a large number of small solid particles, which interact due to surface
forces. We use asymptotic analysis in the small parameter ε and consider irregular (nonperiodic)
geometries for which the sizes of particles and the distances between them are of order ε. We present
conditions under which the homogenization of a Newtonian fluid with interacting particles leads to
a single medium which is an anisotropic, non-Newtonian viscoelastic fluid with memory described
by a relaxation term. We derive formulas for the calculation of the effective viscosity tensor and the
relaxation integral kernel. For periodic arrays of particles we show how this tensor can be explicitly
computed and compute the distribution of the relaxation times, which is the main quantity of interest
in the rheological studies. We also show how the particles’ shapes affect this distribution.

Key words. homogenization, non-Newtonian fluids, suspensions, relaxation time, viscoelastic-
ity, interaction, surface forces
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1. Introduction. In this work we propose a rigorous mathematical model of
polymer compounds highly filled with a large number of small particles, which interact
due to the surface forces (e.g., Van der Waals or London forces). Such polymer
compounds (e.g., carbon black or silica particles in a polymer matrix) are widely
used in industry, and their properties have been the subject of studies in polymer
science and engineering literature (see, for example, comprehensive review articles [4],
[19]).

Similar questions arise in the study of colloidal suspensions of a large number of
small interacting particles in a fluid. Such suspensions are ubiquitous, and control of
their rheology is vital to the commercial success of many products (see, e.g., [5], [17]
and references therein). Here we are interested in the suspensions of solid particles in
fluid when particles do not clump together (do not gel).

The key common feature in both the polymer compounds and the suspensions is
the interaction between particles due to surface forces. Our main focus is to develop a
rigorous mathematical model which shows how the interaction affects the homogenized
medium. We also provide an approximation for the effective (overall) viscoelastic
properties of the mixture and compute, in particular, the relaxation times for several
specific arrays of particles.

We start from a mathematical model of the suspension. It consists of the time de-
pendent Stokes equations for an incompressible viscous fluid, the boundary conditions
on the fluid/particle interfaces, and the balance of linear and angular momentums for

∗Received by the editors March 11, 2002; accepted for publication (in revised form) October 1,
2003; published electronically April 14, 2004.

http://www.siam.org/journals/siap/64-3/40391.html
†Department of Mathematics and Materials Research Institute, Penn State University, University

Park, PA 16802 (berlyand@math.psu.edu). The work of this author was supported by NSF grants
DMS-9971999 and DMS-0204637.

‡Institute of Low Temperature and Engineering, Ukrainian Academy of Science, Lenin Ave 47,
Kharkov 310164 (KHRUSLOV@ilt.kharkov.ua). The work of this author was partially supported by
NSF grant DMS-9971999.

1002



HOMOGENIZED NON-NEWTONIAN RHEOLOGY 1003

each particle. The latter two balance equations incorporate the interaction forces.
The key ingredient is the introduction of an appropriate potential energy functional
which describes particle-particle interaction. Roughly speaking, this functional takes
into account the fact that for sufficiently close pairs of particles there is an attrac-
tive/repulsive force between each point on the surfaces of both particles.

This system of equations is completed by appropriate initial conditions and the
boundary conditions on the external boundary, which correspond to the relaxation
measurements.

Note that, while for colloidal suspensions the Stokes equations provide a natu-
ral description of the fluid phase, for polymer compounds it is natural to consider
viscoelastic (non-Newtonian) equations for the fluid phase. However, under special
circumstances, when the relaxation times in the fluid phase are very small (short fad-
ing memory) in comparison with other characteristic times in the system (e.g., for
external forces), one can still use Stokes equations to characterize the fluid phase.

We use asymptotic analysis in the small parameter ε and consider the geometries
for which the sizes of particles and the distances between them are of order ε. We
show that if the strength of the interaction forces is of order of ε, then homogenization
of a Newtonian fluid with interacting particles leads to a single medium, which is an
anisotropic, non-Newtonian viscoelastic fluid with memory described by a relaxation
term. We derive formulas for calculation of the effective viscosity tensor and the
relaxation integral kernel. For periodic arrays of particles we show how this tensor
can be explicitly computed and compute the distribution of the relaxation times,
which is the main quantity of interest in the rheological studies. We also show how
particles’ shapes affect this distribution.

It follows from our analysis that for a weaker interaction the anisotropic effect
vanishes in the homogenization limit. The case of stronger interaction is somewhat
trivial; that is, it can be shown that the homogenized limit is zero, since the effective
medium becomes stiff. Therefore our main focus is on the order ε interaction case when
homogenization results in a drastic change in the constitutive equations. We restrict
our attention to the case of a Newtonian fluid phase because our main focus is on
showing how the interaction between the particles gives rise to viscoelastic relaxation
in the effective medium. However, our approach is applicable for the non-Newtonian
viscoelastic fluid filled by solid particles.

We remark here that the fact that homogenization of elastic and fluid phases
can lead to effective viscoelastic behavior (with or without memory) was observed by
many authors in various problems. For example, in [3] it was rigorously proved that
incompressible viscous fluid in an elastic porous medium has an overall viscoelastic
behavior. This work justified the formal asymptotic result obtained earlier in [2]. Also
for dynamic problems of oscillations of a mixture of an elastic solid phase and viscous
fluid phase the effective viscoelastic equations were rigorously derived in a series of
works (see [16], [15] and references therein). A comprehensive mathematical study
of elastic/viscoelastic composites that leads to a several types of effective viscoelastic
behavior, including a threshold phenomenon, is presented in [14]. In all these works
the viscoelastic overall behavior is obtained due to the presence of an elastic phase as
well as a viscous fluid phase or viscoelastic phase.

In our work the solid phase consists of absolutely rigid particles, and the overall
viscoelastic behavior is due to the interaction between particles and viscosity of the
fluid phase. While this phenomenon was studied both theoretically and experimen-
tally in the physics literature (see [4], [19], [17] and references therein), it was not
obtained as the result of a mathematical homogenization procedure. In this paper we
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present a model of interacting solid particles in a viscous fluid and derive the effective
viscoelastic model as a homogenization limit. Our approach rigorously justifies this
asymptotic limit for very generic nonperiodic geometries and provides new computa-
tional formulas for the viscoelastic kernel and the relaxation times. Furthermore, we
analyzed this formula analytically and arrived at an interesting qualitative conclusion
that the symmetry of particles affects the number of relaxation times. The issue of
relaxation times is of importance for the rheological community [5] and was brought
to our attention in the context of this work by R. Lakes. Thus our work provides
(a) mathematical justification for qualitative observations previously made in physics
literature and (b) formulas for effective properties which can be used as a tool for
their numerical evaluation.

2. Formulation of the problem. Let Ω be a bounded domain in R
3 with

piecewise smooth boundary ∂Ω. This domain is occupied by a composite medium,
which is a suspension of a large number of small rigid particles Qiε (i = 1, . . . Nε) in
a viscous incompressible fluid. The boundary Siε = ∂Qiε of each particle is smooth.
The small parameter ε > 0 characterizes the array of particles so that diε = O(ε)
and N ε = O

(
1
ε3

)
, where diε are diameters of the particles Qiε. Thus the average

distances between neighboring particles are of order of ε. The location of a particle
Qiε is characterized by the position of its center of mass xi and the vector of its three
Euler angles αi = (αi1, α

i
2, α

i
3).

When the fluid is at rest the system of particles Qiε is in equilibrium, which is
described by the system of vectors xiε and αiε (i = 1, . . . , Nε). The equilibrium is
determined by the minimum of the potential energy Hε(x

i, αi), which describes the
pairwise interaction between the particles and between the particles and the boundary
∂Ω:

Hε(x
i
ε, α

i
ε) = minHε(x

i, αi).

The interaction between particles is determined by the surface forces such as Van
der Waals forces and London forces; see [5]. The total interaction energy Hε is the
sum of the interactions between pairs of points x ∈ Siε and y ∈ Sjε . Since the particles

are rigid, the displacement (translation and rotation) δx of each point x ∈ Siε is
determined by the following equality:

δx = ui + θi × (x− xiε) ,

where ui = xi−xiε is the displacement of the center of mass of the particle Qiε and θi

is the vector, which determines the rotation of the particle about some axis oriented
along the vector θi. For small displacements the vector θi is related to the increments
of the Euler’s angles δαi = αi − αiε by the standard kinematic relations θi = R δαi,

where matrix R depends on αiε; see [6].
Thus near the equilibrium we write the potential energy due to the interaction

between the particles in the following form (a quadratic approximation):

Hvε(x
i, αi) = Hvε(x

i
ε, α

i
ε) +

1

2

∑
i,j

j �=i

∫
Si
ε

∫
Sj
ε

〈Cij
ε

(x, y)
[
ui + θi × (x− xiε)

−uj − θj × (y − xjε)
]
,
[
ui + θi × (x− xiε) − uj − θj × (y − xjε)

]〉dSx dSy + h.o.t.

(2.1)

Here ui = xi − xiε, θ
i = R[αi − αiε], 〈 , 〉 stands for the dot product in R

3, Cij
ε

(x, y)
are symmetric nonnegative 3 × 3 matrices, and h.o.t. stands for higher order terms.
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It is natural to assume that if two points x and y move as end points of a rigid
rod, that is, their displacements are given by

u(x) = a+ b× x and u(y) = a+ b× y,(2.2)

where a and b are constant vectors, then their interaction energy is zero, that is, the
matrix Cij

ε
(x, y) satisfies the following condition:

〈Cij
ε

(x, y)[b× (x− y)], [b× (x− y)]〉 = 0.(2.3)

In this work we assume that up to a scalar factor aijε (x, y) > 0 the matrix Cij
ε

(x, y)

corresponds to the operator of projection on the unit vector �(x, y) = (x− y)/|x− y|;
that is, for any unit vector v

Cij
ε
v = aijε (x, y) Pxyv := aijε (x, y)〈�(x, y), v〉�(x, y),(2.3′)

where Pxy is the projection operator and aijε (x, y) is a nonnegative bounded function

aijε (x, y) ∈ L∞(Siε × Sjε). Clearly (2.3′) implies (2.3). We consider the short-range

interactions (see condition (a3) below) and assume that the matrices Cij
ε

satisfy the
following conditions:

Cij
ε

(x, y) = Cji
ε

(y, x).(2.4)

Observe that the interaction energy (2.1) is invariant under translations and ro-
tations of the system of particles as a whole. In other words, the system of particles
connected by “virtual springs” which represent the interaction has a continuum of
nonlocalized equilibriums if not clamped to some external boundary.

In order to obtain a localized equilibrium {xiε, θiε, i = 1, . . . Nε} we take into ac-
count interaction between some particles and the external boundary ∂Ω (e.g., particles
in a boundary layer of thickness ε and “fully visible” from the boundary). Figure 2.1
illustrates the interaction between a particle Qiε and a piece of the boundary ∂Ωiε
(a quasiparticle), which “sees” this particle.

Then, in addition to the (volume) energy (2.1), we need to take into account the
energy due to the interaction with ∂Ω, for which in the quadratic approximation can
be written in the following form:

Hbε(u
i, θi, u) =

∑
i,j

i �=j

∫
Si
ε

∫
∂Ωj

ε

< Cij(x, y)[uiε + θiε × (x− xiε) − u(y)],

[uiε + θiε × (x− xiε) − u(y)] > dSxdSy,(2.5)

where ∂Ωiε are “pieces” of the external boundary ∂Ω (size of ∂Ωiε ∼ ε), u(y, t) =∫ t
0
v(y, t)dt is the displacement vector, v(y, t) is the velocity vector on ∂Ω, and sum-

mation in i is taken over particles close to the boundary ∂Ω (see Figure 2.1).
Thus the total interaction energy Hε = Hε(u

i, θi, u) is the sum of the volume and
the boundary parts:

Hε(u
i, θi, u) = Hvε(u

i, θi) +Hbε(u
i, θi, u).(2.6)

Note that the pieces ∂Ωiε can be viewed as “flat, nonrigid particles” (quasiparti-
cles) which are glued to the boundary ∂Ω. The total number of quasiparticles and
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∂Ω

Qi
ε

Fig. 2.1. Domain Ω and its boundary.

the particles which interact with them is of order O(ε−2) � Nε ∼ O(ε−3). Unless
otherwise is specified, we will use the same notation Qjε and Sjε = ∂Qjε for both parti-
cles and quasiparticles. Note that the energy (2.1) in the variables ui, θi can also be
rewritten in the following form, which is convenient for further considerations:

Hvε(u
i, θi) = Hvε(0, 0) +

1

2

∑
i,j

i �=j

〈Cij
1ε

[ui − uj ], [ui − uj ]〉

+
∑
i,j

i �=j

〈Cij
2ε

[ui − uj ], θi〉 +
∑
i,j

i �=j

〈Cij
3ε
θi, θi〉 +

∑
i,j

i �=j

〈Cij
4ε
θi, θj〉,(2.7)

where ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Cij
1ε

=

∫
Si
ε

∫
Sj
ε

Cij
ε

(x, y)dSxdSy,

Cij
2ε

=

∫
Si
ε

∫
Sj
ε

AT (x− xiε)C
ij

ε
(x, y)dSxdSy,

Cij
3ε

=

∫
Si
ε

∫
Sj
ε

AT (x− xiε)C
ij(x, y)A(x− xiε)dSxdSy,

Cij
4ε

= −
∫
Si
ε

∫
Sj
ε

AT (y − xj)Cij(x, y)A(x− xi)dSxdSy.

(2.8)
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Here we introduced a skew symmetric matrix A(x) defined by

θ × x = A(x)θ(2.9)

and pulled the constant translation and rotation vectors outside the integral.
We introduce the following notation: Ωε = Ω

∖∪Nε
i=1Q

i
ε is the domain occupied

by the fluid; ρs, ρf are the specific mass density of the solid particles and the fluid,
respectively; µ is the dynamic viscosity of the fluid; mi

ε = ρs|Qiε| is the mass of a
particle Qiε; and I

ε
is the tensor of inertia of a particle Qiε.

Then we write a linearized system of equations that describes the dynamics of
the suspension (viscous fluid filled by the interacting particles):

ρf
∂vε
∂t

− µ∆vε = ∇pε in Ωε,(2.10)

div vε = 0 in Ωε,(2.11)

vε = u̇iε + θ̇
i

ε × (x− xiε), x ∈ Qiε, i = 1, . . . Nε,(2.12)

mi
εü
i
ε = −

∫
Si
ε

σ[vε]ν dS −∇uiHε,(2.13)

Ii
ε
θ̈
i

ε = −
∫
Si
ε

(x− xiε) × σ[vε]ν dSx −∇θiHε.(2.14)

Conditions (2.13)–(2.14) hold for all particles Qiε located inside the domain Ω but
not for the quasiparticles ∂Ωiε (see Figure 2.1). Here vε = vε(x, t) is the velocity of
the fluid, pε = pε(x, t) is the pressure, uiε is the displacement of the center of mass of
a particle Qiε, and θiε is the rotation vector of Qiε. We also use the following notation:
u̇iε = duiε/dt and üiε = d2uiε/dt

2 for the velocity and the acceleration, respectively, of
the center of mass of Qiε; θ̇

i
ε for the instant angular velocity of Qiε; and ν for the unit

inner normal vector to the surface Siε = ∂Qiε. The stress tensor in the fluid σ[vε] is a
symmetric second rank tensor defined as follows (see [7]):

σik = µ

[
∂vεi
∂xk

+
∂vεk
∂xi

]
− pεδik (i, k = 1, 2, 3).(2.15)

The equations (2.12) represent the nonslip condition at the fluid-particle interfaces
Siε = ∂Qiε, i = 1, . . . Nε. Using this condition, one can naturally extend the velocity
field vε into the particles Qiε. Equations (2.13) and (2.14) represent the balance of
linear and angular momentums. In (2.14) we assume that the tensor of inertia Ii

ε
is

constant, since we consider linearization for small displacements. The first (integral)
terms in the right-hand side (RHS) of (2.13)–(2.14) are due to the forces exerted on
the particles by the fluid, and the second terms are due to the interaction between
the particles (surface or Van der Waals forces).

The system (2.10)–(2.14) is supplemented by the initial conditions

{
vε(x, 0) = vε0(x), x ∈ Ωε,

uiε(0) = 0, u̇iε(0) = uiε1, θ
i
ε(0) = 0, θ̇

i

ε(0) = θε1, x ∈ Qiε (on the particles),

(2.16)
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and the boundary conditions on the external boundary

vε(x, t) = f(x, t), x ∈ ∂Ω, t ≥ 0.(2.17)

We consider the boundary function f(x, t), which is sufficiently smooth (e.g., f(x, t) ∈
C2(∂Ω)) and decays sufficiently fast as t → ∞. Since the fluid is incompressible, we
have ∫

∂Ω

〈f(x, t), ν(x)〉 dSx = 0,(2.18)

where ν(x) is the unit normal to ∂Ω at a point x ∈ ∂Ω.
The boundary condition (2.17) corresponds to experimental measurements in

which the macroscopic rheological properties of the compound are determined when
the rate of change of the displacement at the external boundary is prescribed. Then
one measures the normal stresses (the response) on the boundary (relaxation mea-
surements).

Another type of experiment, when the load forces (stresses) are prescribed at
the external boundary and the displacements are measured (creep measurements [7]),
corresponds to the boundary conditions

σ[vε] · ν(x) = f
ε
(x), x ∈ ∂Ω,(2.19)

for the system (2.10)–(2.16).
The main goal of our work is to obtain the homogenized problem for the initial

boundary value problem (2.10)–(2.18) in the limit as ε → 0 and to establish the
convergence of its solutions uε to the solution u of the homogenized problem, which
is a single macroscopic medium with new effective (rheological) properties. We also
show how to compute these properties for particular geometries if the interaction
matrix Cij(x, y) is known.

Both initial boundary value problems (2.10)–(2.18) and (2.10)–(2.16), (2.19) can
be studied using the homogenization approach developed in this work for the boundary
condition (2.17).

3. Mesocharacteristic and formulation of the main result. In order to for-
mulate the main result we first formulate two conditions, which describe the geometry
of the particles.

(a1) Each particle Qiε is obtained by ε-rescaling of a body from a collection M,
where M = {Q(m),m = 1, 2, . . .M} is a finite collection of convex bodies in R

3, with
smooth boundaries S(m) = ∂Q(m); that is, Qiε = RiT i

ε
Q(mi), Q(mi) ∈ M, and Ri and

T iε are the rotation and the translation operators, respectively. Thus, the diameters
of the particles diε = ε diam (Q(mi)), 1 ≤ mi ≤M , and the area |Siε| of a particle Qiε
can be bounded as follows: |Siε| < Cε2, C > 0, is independent on ε.

(a2) Let B(Qiε) be a ball of minimal radius such that Qiε ⊆ B(Qiε), and let
riε be the distance from B(Qiε) to other minimal balls and the boundary ∂Ω, riε =
dist {B(Qiε),

⋃
j �=iB(Qjε)

⋃
∂Ω}.

We assume that the following inequalities hold,

C1ε ≤ riε ≤ C2ε ,(3.1)

where the constants C1 and C2 do not depend on ε (0 < C1 < C2 < ∞), and that
as ε → 0 the particles densely fill the domain Ω (get into any finite subdomain for
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sufficiently small ε). The condition (3.1) means that the particles do not form clusters
and do not come too close to the boundary ∂Ω.

We next present two more conditions which describe the nature and the mag-
nitude of the interaction between the particles. First, we consider only short-range
interactions so that the matrix-functions Cij

ε
(x, y) (see (2.1)) satisfy the following

condition:
(a3)

Cij
ε

(x, y) ≡ 0 if dist (Qiε, Q
j
ε) ≥ Cε,(3.2)

where 0 < C < ∞ does not depend on ε. Here the constant C is chosen in such a
way that each particle interacts with its nearest neighbors only, for an appropriate
definition of the nearest neighbor.

Second, we consider the case when the entries of the matrix-functions Cij
ε

(x, y)

are of order O(ε−3). More precisely, the scalar function aijε (x, y) in the condition
(2.3′) can be written as follows:

(a4)

aijε (x, y) = ε−3aij0 (x, y),(3.3)

where aij0 (x, y) is a bounded nonnegative function.

We remark here that our proof applies also for the weaker interactions aijε =
o(ε−3)aij0 ; however, the interactions of order ε−3 lead to the most interesting rheolog-
ical properties of the effective medium (viscoelasticity and memory), whereas weaker
interactions lead to the effective viscosity with no memory.

We introduce a mesoscopic characteristic of the suspension (the fluid-particle
compound). This mesocharacteristic plays the key role in our consideration. Roughly
speaking, it allows us to compute the energy of the compound in some mesoscopic
cube of size h : ε � h � 1, which is a so-called representative volume element. In
other words, the size h is much larger than the microscale ε and much smaller than
the macroscopic size of the system so that effective properties in this volume element
provide correct rheological properties of the compound locally. The mesocharacteristic
is motivated by experimental techniques in which one cuts out a certain piece of a
compound and measures its properties in order to evaluate the overall properties of
the compound.

We now define the mesocharacteristic rigorously using the variational formulation
presented below in (4.8) (parameter λ is introduced in (4.1)–(4.6)).

Let Kξ
h = K(ξ, h) be a cube of side length h > 0 such that ε� h� 1 centered at

a point ξ ∈ Ω. The orientation of the cube is arbitrary but independent of ξ and h.
For the sake of definiteness we assume that the edges of this cube are parallel to the
coordinate axis.

Introduce the following class of functions

Jε[Kξ

h] = {wε ∈ H1(K
ξ

h), wε = aiε + biε × (x− xiε) on Qiε ∩K
ξ

h},(3.4)

where aiε and biε are arbitrary constant vectors, and consider a minimization problem

in the class Jε(Kξ

h) for the following functional:

Aεh[uε, T , ξ, λ, τ ]

= EKξ
h
[uε, uε] + h−2−τ

∫
Kh

ξ

∣∣∣∣∣uε −
3∑

p,q=1

ψpq(x− ξ)Tpq

∣∣∣∣∣
2

dx+
1

λ
Iε
Kξ

h

[uε, uε],(3.5)
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where ek�[u] = 1
2 [∂uk

∂x�
+ ∂u�

∂xk
] is the deformation rate of the fluid moving with velocity

u, T = {Tpq} is an arbitrary symmetric second rank tensor with constant components

Tpq, λ and τ are arbitrary positive numbers, and the matrix-functions Cij
ε

(x, y) are
defined in (2.1).

Hereafter we use the following notation:

EG[uε, vε] = 2µ

∫
G

∫ 3∑
k,l=1

ekl[uε]ekl[vε]dx,(3.6)

IεG[uε, vε] =
1

2

∑
ij

∫
Si
ε

∫
Sj
ε

〈Cij
ε

(u(x) − u(y)), v(x) − v(y)〉dSixdSjy,(3.7)

ψpq(x) =
1

2
(xpe

q + xq e
p) − δpq

3

3∑
n=1

xne
n ,(3.8)

where p, q = 1, 2, 3; eq are the basis vectors so that x =
∑3
q=1 xqe

q; and δpq stands

for the Kronecker delta symbol. It is easy to check that divψpq = 0. The sum
∑
ij in

(3.7) is taken over all particles located inside the domain G.
Lemma 3.1. For any constant tensor T there exists the unique minimizer u(x) =

u(x, T ) (dependence on the parameters ε, h, ξ, λ, and τ is suppressed) of the functional

(3.5) in the class Jε[Kξ

h]. The minimum value of this functional is a quadratic function
of the tensor T = {Tpq}, and the following representation holds:

min
uε∈Jε[K

ξ
h]
Aεh[uε, T , ξ, λ, τ ] =

3∑
npqr=1

anpqr(ξ, λ, ε, h, τ)Tnp Tqr ,(3.9)

where anpqr(ξ, λ, ε, h, τ) are the components of a 4th rank tensor, defined as

anpqr(ξ, λ; ε, h, τ) = E
K

ξ

h

[unp, uqr]

+

∫
K

ξ

h

h−2−τ 〈unp(x) − ψnp(x− ξ), uqr(ξ) − ψqr(x− ξ)〉dx+
1

λ
I
K

ξ

h

[unp, uqr].(3.10)

Here unp(x) is the minimizer of the functional Aεh[u, T , λ, ξ, τ ] when T = 1
2 (en⊗ep+

ep ⊗ en).
This lemma is proved in [1]. We now briefly outline the proof. First we show that

the class Jε[Kξ

h] is not empty by an explicit construction of a function ψnp
ε

(x) from

this class. This is done by an appropriate modification of the function ψnp(x − ξ).

Next we generalize this construction to obtain a dense in Jε[Kξ

h] set of functions

starting from an arbitrary function w(x) ∈ C1(K
ξ

h). Using the function ψnp
ε

(x), we

construct a comparison function ûε(x, T ) =
∑
np ψ

np

ε
(x)Tnp ∈ Jε[Kξ

h] for an arbitrary
constant tensor T = {Tnp}. Substitution of this function into the functional (3.9)
provides a uniform in ε ≤ ε̂(h) upper bound:

0 < Aεh[ûε, T , ξ, λ, τ ] < Ch3.(3.11)
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Now we can use standard techniques to establish existence and compactness of a
minimizing sequence, which implies existence of a minimizer uε of the problem (3.9);
the lemma follows.

From (3.10) we obtain that the tensor {anpqr(x, λ; ε, h, τ)} is invariant with re-
spect to the permutation of pairs of indexes as well as permutation of indexes in each
pair; that is,

anpqr = aqrnp = apnqr = · · · .
This tensor describes macroscopic rheological properties of the suspension (com-
pound). It depends on the space variable x ∈ Ω if the suspension is inhomogeneous on
the macroscale (e.g., for periodic structures there is no dependence on x; see section 7),
and on the spectral parameter λ.

We provide a heuristic basis for the introduction of the mesocharacteristic (3.5).
First, as we have mentioned earlier, if a compound can be described within the

effective single medium approach, then the rheological properties of the compound
can be determined by calculation or measurements in some representative volume

element of an intermediate mesoscale h, which is why we choose cube K
ξ

h.
Next, observe that the sum of the first and the third term in (3.5) represents

the energy of the compound (suspension). The minimizer uε of (3.5) is “close,” up
to an additive constant, to the true global minimizer vε of the variational problem,
which corresponds to (2.10)–(2.18) if the tensor T is chosen appropriately. Now one
should choose T . If the single medium homogenized description is possible, then
vε(x) is “close” to some smooth (homogenized) function v(x), which depends only on
macroscopic variable x and does not depend on ε, so that it does not vary on the
microscale ε. We then minimize the energy of the compound, adding the constraint
that the minimizer uε is “close” to the linear part L(x) (the differential) of the global
minimizer v(x), so that |uε − v(x)| = ◦(h) ∼ h1+τ/2, h → 0 for some τ > 0. This
condition is imposed by introducing the penalty term (the second term in (3.5)).

We consider arrays of the particles Qiε such that for all x ∈ Ω, each λ > 0, and
some real number τ > 0 the following limits exist:

(b1) lim
h→0

lim
ε→0

anpqr(x, λ; ε, h, τ)

h3
= lim
h→0

lim
ε→0

anpqr(x, λ; ε, h, τ)

h3
= anpqr(x, λ),

where anpqr(x, λ) is a continuous function of x ∈ Ω and λ > 0 is a parameter.
Lemma 3.2. If the condition (b1) holds for some τ > 0, then it also holds for any

τ > 0 and the limit (b1) does not depend on τ . The functions anpqr(x, λ) are defined
for λ > 0 and can be analytically extended into the complex plane with a cut along the
negative semiaxis λ ≤ 0. The extended functions can be represented in the form

anpqr(x, λ) = a0
npqr(x) + a1

npqr(x, λ)

so that in the domain Φδ = {λ ∈ C : |argλ− π| ≥ δ > 0} for any δ > 0 the following
bound holds:

|a1
npqr(x, λ)| < C

(
1

|λ|1/2
)

as λ→ ∞,(3.12)

where C > 0 does not depend on λ.
This lemma is proved in [1]. The key idea of the proof is to present the Euler–

Lagrange boundary value problem, which corresponds to the minimization problem
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(3.9), in abstract operator form (a Friedrichs extension) in the appropriate Hilbert

space J̃ε[Kξ

h]. Roughly speaking, the space J̃ε[Kξ

h] consists of functions from W 2
2 (K

ξ

h)
which satisfy the boundary conditions of the Euler–Lagrange problem and the diver-
gence-free conditions. Due to the presence of the factor 1/λ in (3.5), the obtained

operator equation in the Hilbert space J̃ε[Kξ

h] is an operator pencil. Then analyticity
and estimate (3.12) follow from known results for operator pencils in an abstract
Hilbert space [9, Chapter 7].

It follows from Lemma 3.2 that the functions anpqr(x, λ) are inverse Laplace
transforms

anpqr(x, λ) =

∫ ∞

0

e−λtânpqr(x, t)dt(3.13)

of the functions

ânpqr(x, t) = a0
npqr(x)δ(t) + â1

npqr(x, t),(3.14)

where δ(t) is the Dirac delta-function and â1
npqr(x, t) are locally summable in t for

t ≥ 0.
We introduce one more characteristic which describes the distribution of the

masses in the suspension.
Denote by χε(x) the characteristic function of the domain Ωε, occupied by the

fluid, and by χiε(x)-the characteristic function of a particle Qiε, and introduce

ρε(x) = ρfχε(x) + ρs

Nε∑
i=1

χiε(x).(3.15)

We consider the arrays of particles such that for any x ∈ Ω the following limit exists:

(b2) lim
h→∞

lim
ε→0

1

h3

∫
K

x
h

ρε(ξ)dξ = ρ(x),

where ρ(x) > 0 is a continuous function which describes the limiting density of the
suspension. Note that the condition (b2) holds for very generic geometries. In par-
ticular, for periodic structures (section 7) ρ(x) = const. and is easy to compute.

We are now in a position to formulate the main mathematical result of this paper
and discuss its physical consequences. We construct the vector function

ṽε(x, t) = χε(x)vε(x, t) +
∑
i

χiε(x)
[
u̇iε + θ̇

i

ε(t) × (x− xiε)
]

(3.16)

using the solutions {vε(x, t), uiε(t), θiε(t), i = 1, . . . Nε} of the problem (3.1)–(3.9).
Theorem 3.3. Let the conditions (a1)–(a4) and (b1)–(b2) hold. Suppose that the

initial functions in the problem (2.10)–(2.17) converge as ε → 0 to a vector function
v0(x) ∈ L2(Ω),

ṽε(x, 0) → v0(x) in L2(Ω) as ε→ 0,(3.17)

where ṽε(x, 0) = ṽε(x, t)|t=0 and ṽε(x, t) is defined by (3.16).
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Then the functions vε(x, t) converge in L2(Ω) for all t < ∞ to a vector function
v(x, t), which is a solution of the following homogenized problem:

ρ(x)
∂v

∂t
−
{ ∑
n,p,q,r

∂

∂xp
[a0
npqr(x)eqr[v]]

+

∫ t

0

â1
npqr(x, t− τ)eqr[v(x, τ)]dτ

}
en = ∇p, x ∈ Ω, t > 0,(3.18)

div v = 0, x ∈ Ω, t > 0,(3.19)

v(x, t) = f(x, t), x ∈ ∂Ω, t > 0,(3.20)

v(x, 0) = v0(x), x ∈ Ω,(3.21)

where the components of the tensors {a0
npqr(x)} and {â1

npqr(x, t)} are defined by (3.9)–
(3.14) and the condition (b1).

In order to explain the physical meaning of the homogenized problem it is con-
venient to rewrite (3.18)–(3.19) in terms of the displacements u(x, t) =

∫ t
0
v(x, t)dτ .

Then

ρ(x)
∂2u

∂t2
−
{

3∑
n,p,q,r=1

∂

∂xp
[a0
npqr(x)ėqr[u]]

+

∫ t

0

ânpqr(x, t− τ)ėqr[u]dτ

}
en = ∇p,(3.18′)

div u = 0,(3.19′)

where ėqr[u] = ∂
∂teqr.

Recall (see [8]) that the strain-stress relation in linear viscoelasticity has the form

σ(t) =

∫ t

−∞
C(t− τ)ė(τ)dτ,(3.22)

where C(t) is the fourth rank relaxation tensor. If C(t) is a delta-function kδ(t),
then σ = kė and we obtain the constitutive relation for a Newtonian fluid. If C(t)
does not depend on t, then (3.22) reduces to Hooke’s law for an elastic solid. Thus
the second term (the sum) in (3.18′) or (3.18) describes the effective Newtonian fluid
with the effective viscosity tensor a0

npqr, while the third term (the integral) describes
the effective viscoelastic behavior with the effective relaxation tensor â1

npqr. Now we
see that the homogenized equations (3.18′) or (3.18) suggest the following qualitative
picture for the effective single phase medium. On a short time scale the integral terms
in (3.18′) or (3.18) are small, and therefore the homogenized problem describes an
incompressible fluid with anisotropic viscosity tensor a0

npqr. On a longer time scale
(intermediate scale) both the viscosity term and the relaxation term become signif-
icant, and the homogenized medium is an isotropic viscoelastic fluid with memory
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(relaxation). Finally, on a very large time scale, provided that f(x, t) has finite sup-
port in time, u(x, t) and v(x, t) become time independent, and therefore the ėqr(u)
term is negligible. In addition, the kernel ânpqr(x, t− τ) also becomes time indepen-
dent, and integration in (3.18′) or (3.18) yields to the equations for an incompressible
elastic medium.

The tensors {a0
npqr(x)} and {â1

npqr(x, t)} are called the effective viscosity and the
effective relaxation tensors, respectively [7]. Both tensors incorporate the information
about the geometric array of the particles, the strength of the interparticle interac-
tions, and the viscosity of the fluid phase.

We now provide a heuristic explanation of the choice of scaling in the condition
(a4). If the entries of the pairwise interaction matrices are such that the pairwise inter-
action energy is sup‖u‖=1〈Cij1εu, u〉 ∼ ε, then both tensors {a0

npqr(x)} and {â1
npqr(x, t)}

are positive and finite, which implies that the “fluid-particle” suspension in the ho-
mogenization limit behaves as a viscoelastic incompressible medium.

If these matrices have large entries sup‖u‖=1〈Cij1 u, u〉ε−1 → ∞ as ε→ 0, then the
homogenized medium becomes absolutely rigid, so that if the velocity at the external
boundary ∂Ω is zero, then the displacements and velocities of all points in Ω are
zero (in the homogenized limit ε → 0). Finally, if sup‖u‖=1〈Cij1εu, u〉 � ε, then the
interaction does not affect the homogenized medium.

In sections 4–5 we prove Theorem 3.3. To this end we use the Laplace transform
to obtain a time independent analogue of the problem (2.10)–(2.17) (with the spectral
parameter λ > 0) and then analyze a variational formulation of this problem. Next
we study the asymptotic behavior of the variational problem as ε → 0, obtain the
limiting (homogenized) functional, and write down the corresponding Euler–Lagrange
equations. In this presentation we formulate techinical lemmas and estimates, whose
detailed proofs can be found in [1].

In section 6 we discuss analytical dependence of the solutions of these equations
in the parameter λ, and, by taking the inverse Laplace transform, we obtain the
homogenized time dependent problem.

In section 7 we consider a periodic structure, prove existence of the limits in (b2),
and show that the computation of the viscosity and the relaxation tensors amounts
to solving a cell problem. The cell problem can be solved using standard numerical
techniques. We also analyze this problem analytically and obtain the distribution of
the relaxation times, which is the main quantity of interest in rheological studies of
filled polymers and suspensions.

4. Variational formulation of the homogenization problem. Take the
Laplace transform t → λ in the problem (2.10)–(2.17). For simplicity we keep the
same notation: vε(x, t) → vε(x, λ), pε(x, t) → pε(x, λ), uiε(t) → uiε(λ), θiε(t) → θiε(λ),
f(x, t) → f(x, λ). Then, taking into account (2.8), (2.1), (2.5), (2.7), and (2.16), we
obtain the following problem:

−µ∆vε + λρfvε −∇pε = ρfvε0(x), x ∈ Ωε,(4.1)

div vε = 0, x ∈ Ω,(4.2)

vε = λ[uiε + θiε × (x− xiε)], x ∈ Qiε,(4.3)
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λ2mi
εu
i
ε = −

∫
Si
ε

σ[vε] · νdS

− 1

λ

∑
j,j �=i

∫
Si
ε

∫
Sj
ε

Cij
ε

(x, y)[vε(x) − vε(y)]dSxdSy

+mi
εu
i
ε1, i = 1, 2, . . . Nε,(4.4)

λ2Iiεθ
i
ε = −

∫
Si
ε

(x− xiε) × σ[vε] · νdS

− 1

λ

∑
j,j �=i

∫
Si
ε

∫
Si
ε

Cij
ε

(x, y)[vε(x) − vε(y)]dSxdSy

+Iiεθ
i
ε, i = 1, 2, . . . Nε,(4.5)

vε = f(x, λ) on ∂Ω.(4.6)

We extend the velocity function vε(x, λ) onto the particles according to (4.3) and
keep the same notation vε = vε(x, λ) for the extended functions. Then vε ∈ H1(Ω)
and div vε = 0 in Ω. Denote by J f

ε (Ω) the class of divergence-free vector functions
from H1(Ω), which satisfy the rigid displacement conditions (2.2) on the particles Qiε
and take the prescribed values f(x, λ) on ∂Ω.

Consider the minimization problem

Φε[vε] = min
v′ε∈J f

ε (Ω)
Φε[v

′
ε](4.7)

for the following functional:

Φε[vε] = EΩ[vε, vε] +

∫
Ω

[λ〈ρεvε, vε〉 − 2〈ρεvε0, vε〉]dx+
1

λ
IεΩ[vε, vε],(4.8)

where λ > 0, ṽε0 = ṽε(x, 0), ρε(x), and vε(x, t) are defined in (3.16), (3.17).
Lemma 4.1. There exists a unique minimizer vε = vε(x, λ) of the functional (4.8)

in the class J f
ε (Ω). This minimizer provides the solution {vε(x, λ)χε(x), vε(x, λ)χiε(x)}

of the boundary value problem (4.1)–(4.6).
This lemma can be proved by standard techniques of calculus of variations [10],

[18].
Introduce the homogenized functional

Φ0[v] =

∫
Ω

⎧⎨
⎩

3∑
k,�=1

anpqr(x, λ)enp[v]eqr[v] + λ〈ρv, v〉 − 2〈ρv0, v〉
⎫⎬
⎭ dx,(4.9)

where the tensor anpqr(x, λ) and the function ρ = ρ(x) are defined by the conditions
(b1)–(b2), and the vector-function v0(x) is defined by the condition (3.17).

Denote by J f (Ω) a class of the divergence-free functions from W 1
2 (Ω) that are

equal to f(x, λ) on ∂Ω, and introduce the variational problem for the functional (4.9)
in this class:

Φ0[v] = min
v′ε∈J f (Ω)

Φ[v′].(4.10)
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Theorem 4.2. Suppose that the conditions (a1)–(a4), (b1)–(b2), and (3.17) hold.
Then the minimizers vε(x, λ) of the problem (4.7) converge weakly in H1(Ω) (strongly
in L2(Ω)) as ε→ 0 to the minimizer v(x, λ) of the homogenized problem (4.10).

This theorem is the key result of this paper, and its proof is outlined in sec-
tion 5. It follows from standard techniques of calculus of variations that if the
functions anpqr(x, λ) are sufficiently smooth (e.g., in C1(Ω)), then the minimizer
v(x, λ) of the problem (4.10) is the solution of the following boundary value prob-
lem:

−
∑
n,p,q,r

∂

∂xr
[anpqr(x, λ)enp[v]] e

n

+λρv −∇p = ρv0 , x ∈ Ω,(4.11)

div v = 0,(4.12)

v(x, λ) = f(x, λ), x ∈ ∂Ω.(4.13)

Remark 4.1. If anpqr(x, λ) is not sufficiently smooth in x, then v(x, λ) is a gen-
eralized (weak) solution of the problem (4.11)–(4.13).

Applying the inverse Laplace transform, one can see that the main homogenization
Theorem 3.3 for the time-dependent problem is obtained from this theorem. The key
step here is to establish necessary analytical properties in λ of the functions anpqr(x, λ)
and v(x, λ) for complex λ, which is done in [1] and briefly outlined in section 6 below.

5. Convergence theorem for stationary problems.

5.1. Compactness of the solutions {vε, ε > 0} of the problem (4.7)
in H1(Ω). We use the following lemma to obtain the boundedness of the solutions
{vε, ε > 0}.

Lemma 5.1. Suppose that the domain Ωε = Ω\ ∪i Qiε satisfies the conditions
(a1)–(a2). Then for any function f(x) ∈ C2(∂Ω) satisfying the condition (2.18) there

exists a function f
ε
(x) ∈ H1(Ω) such that div f

ε
(x) = 0 in Ω, f

ε
(x) = f(x) on ∂Ω,

f
ε
(x) = f i

ε
on the minimal balls B(Qiε), and

‖f
ε
‖H1(Ω) < C, IεΩ[f

ε
, f
ε
] < C,(5.1)

where C > 0 does not depend on ε.
We apply this lemma to the function f(x, λ), which is Laplace transform of the

boundary function f(x, t) (from (2.17)) in time. Then, we find a function f
ε
(x) ∈

J f
ε (Ω) (admissible for the problem (4.7)) and satisfying (5.1).

Let vε = vε(x, λ) be a solution of the problem (4.7); i.e., the functional Φε in the
class J f

ε (Ω) attains its minimum on vε. Since f
ε
∈ J f

ε (Ω), the following inequality
holds:

Φε[vε] ≤ Φε[fε].

With this inequality, taking into account (4.8) and the nonnegativity of the ma-
trices Cij

ε
(x), we obtain

EΩ[vε, vε] + 2µ

∫
Ω

λ〈ρεvε, vε〉dx ≤|Φε[fε]| + 2‖ρεṽε0‖L2(Ω)‖vε‖L2(Ω).(5.2)
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Next we use the second Korn inequality (see [13])

‖vε‖2
H1(Ω) ≤ C (EΩ[vε, vε] + ‖vε‖L2(Ω)

)
,(5.3)

where C depends on domain Ω only. Then, since µ > 0, λ > 0, ρε(x) ≥ min{ρf , ρs} >
0, we find from (5.2)

‖vε‖2
H1(Ω) ≤ C1

(
|Φε[fε]| + ‖ρεṽε0‖L2(Ω)‖vε‖H1(Ω)

)
,

from which it follows that

‖vε‖H1(Ω) ≤ C2

(
|Φε(fε)|

1
2 + ‖ρεṽε0‖L2(Ω)

)
,(5.4)

where the constants C1 and C2 do not depend on ε, ṽε0 = ṽε(x, 0) and we have used
the notation (3.6).

Now we use the second inequality in (5.1), the convergence (3.17) of ṽε0, and
the uniform boundedness of ρε(x) in ε to obtain Φε[fε] < C. Combing the latter
inequality with (5.4), we get

‖vε‖H1(Ω) < C.

Therefore the set of the functions {vε(x), ε > 0} is weakly compact in H1(Ω).
Let us select a sequence {vεk(x), εk → 0} weakly convergent in H1(Ω) to the

function v(x) ∈ H1(Ω).
Due to embedding theorem, v(x) = f(x) at x ∈ ∂Ω and vεk(x) converges to

v(x) strongly in L2(Ω). In subsections 5.2–5.3 we show that v(x) is a solution of the
minimization problem (4.10). Since this problem, due to nonnegativity of the tensor
{anpqr(x)} and the condition λ > 0, has the unique solution; then, using the weak
compactness of {vε(x, λ), ε > 0}, we conclude that vε → v weakly in H1(Ω) and
strongly in L2(Ω) as ε→ 0.

5.2. The upper bound. Denote by J f
ε (Ω) and J f (Ω) the spaces of admissible

functions for the original and the homogenized variational problems (4.8)–(4.7) and
(4.9)–(4.10), respectively. The goal of this subsection is to show that for any w ∈
J f (Ω) ∩ C2

lim
ε→0

Φε[vε] ≤ Φ0[w] ∀ w ∈ J t(Ω).(5.5)

This is done by constructing a quasiminimizer wεh ∈ J f
ε (Ω), wεh → w in L2(Ω)

as ε� h→ 0 so that

Φε[vε] ≤ Φε[wεh].(5.6)

Due to explicit construction of the quasiminimizer wεh, it is possible to obtain
the limiting inequality

lim
h→0

lim
ε→0

Φε[wεh] ≤ Φ0[w].(5.7)

In particular, we will choose w = v, where v is the minimizer of the limiting functional
Φ0 and vεk ⇀ v. Note that (5.6) and (5.7) imply (5.5).

The key point in this step is the construction of the quasiminimizer wεh. We
now describe main ideas behind this construction. Choose a mesoscale parameter h
such that ε � h � 1 and cover the domain Ω by a family of cubes Kα

h centered
at the points xα of a cubic lattice with period h − δ, δ = o(h), h → 0, so that
the cubes overlap. In each cube consider the mesocharacteristic (3.5). Minimizer
uαεh of the mesocharacteristic functional (see (3.9) with ξ = xα) is “close” (up to an
additive constant) to the true minimizer vε (restricted to the cube Kα

h ) if the tensor
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T in (3.5) is chosen so that uαεh is “close” to the linear symmetric part of the global
homogenized minimizer v(x). In other words, we minimize the energy of the original
problem in the perforated domain with an additional condition that the minimizer
is smooth, i.e., close up to quadratic terms in h, to the linear function mentioned
above. This condition is enforced by the penalty in term (3.5), and thus we obtain
the quasiminimizer in each cube Kα

h . Now we need to “glue” them together, in
order to obtain a globally smooth quasiminimizer. For this purpose we use a nested
partition Kα

h′ ⊂ Kα
h , h′ = h − 2δ, so that the cubes Kα

h′ do not intersect each other.
We retain the functions uαεh inside the cubes Kα

h′ and modify them in the “thin”
layers Kα

n\Kα
h′ so that the obtained function zεh(x) is globally smooth (from H1(Ω)

and satisfies the rigid conditions on the particles Qiε). However, div zεh is no longer
zero in the layers Kα

h \Kα
h′ , where the minimizers have been modified. To fix this,

we introduce an additional function ζεh(x) so that div ζεh = div zεh in the layers
Kα
h \Kα

h′ , div ζεh = 0 in ∪αKα
h′ , and ‖ζεh‖H1(Ω) is small so that its contribution to

the energy of the global quasiminimizer is negligible, since vol(∪αKα
h \Kα

h′) → 0 as
h → 0. Thus we obtain a quasiminimizer wεh = zεh + ζ

εh
∈ J f

ε (Ω), and (5.6) holds.
Here we use a special partition of unity, which preserves the rigid body conditions on
the particles.

We now derive the inequality (5.6). Consider a cover of the domain Ω by cubes
Kα = K(xα, h) centered at the points xα and with the side length h, oriented along
the coordinate axes. The centers xα form cubic lattice of the period h − δ (0 < ε ≤
δ ≤ h). Let K ′

α(xα, h′) be a concentric with Kα cube of side length h′ = h− 2δ; then
K ′
α = Kα\∪β �=αKβ .

We will need three technical lemmas for constructing the function wεh(x)∈J f
ε (x).

Lemma 5.2 (special partition of unity). Suppose the condition (a2) holds. Then
it is possible to construct the special partition of unity which corresponds to the cover
∪αK(xα, h), i.e., to construct the set of functions {ϕαεh(x), α = 1, 2, . . . } which sat-
isfies the following conditions:

1. ϕαεh(x) ∈ C2(R3),
2. 0 ≤ ϕαεh(x) ≤ 1 everywhere and

ϕαεh(x) =

{
1 inside K ′

α,

0 outside Kα,

3.
∑
α ϕ

α
εh(x) = 1 in R

3,
4. |∇ϕαεh(x)| < C

δ in R
3,

5. ϕαεh(x) = Ciε when x ∈ B(Qiε),
where Ciε are constants (0 ≤ Ciε ≤ 1) and C does not depend on ε, δ, or h.

Lemma 5.3. Let the domain Ωε = Ω\∪iQiε satisfy conditions (a1)–(a2). Then
for any function F ε(x) ∈ L2(Ω) which satisfies the conditions

1. F ε(x) = 0 at x ∈ ∪iB(Qiε),
2.

∫
Ω
F ε(x)dx = 0,

there exists a function ζ
ε
(x) ∈ H1

0 (Ω) such that div ζ
ε
(x) = F ε, x ∈ Ω, ζ

ε
(x) = ζi

ε

for x ∈ B(Qiε), and ‖ζ
ε
‖H1(Ω) ≤ C‖F ε‖L2(Ω), where ζi

ε
are constant vectors and C

does not depend on ε.
Lemma 5.4. Let the domain Ωε = Ω\∪iQiε satisfy conditions (a1), (a2). Then for

any divergence-free function w(x) ∈ C2(Ω) there exists such a function wε(x) ∈ H2(Ω)
that divwε = 0 in Ω, wε(x) = w(x) on ∂Ω, and wε(x) is equal to the constant vectors
wiε on the balls B(Qiε) (wiε is equal the mean value of w(x) on B(Qiε)). In addition,
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the following inequalities are valid:

‖wε − w‖L2(Ω) < Cε and ‖wε‖H1(G) ≤ C‖w‖H1(G),(5.8)

where the constants C do not depend on ε and G ⊂ Ω is any subdomain in Ω.
We now construct the function wεh(x). For any divergence-free in Ω function

w(x) ∈ C2(Ω), which is equal to f(x) on ∂Ω, we wish to construct a function wεh(x) ∈
J f
ε (Ω), which is close to w(x) ∈ J f (x) (in metric L2(Ω)) when ε and h are small

enough (ε� h� 1).
A straightforward calculation shows that any function w(x) ∈ C2(Kα) can be

represented in the form

w(x) = w(xα) +
∑
p,q=1

epq[w(xα)]ψpq(x− xα)

+
∑
p,q

ωpq[w(xα)]ϕpq(x− xα) + σα,(5.9)

where σα = O(|x − xα|2), and we introduce the notations for the symmetric and
antisymmetric parts of ∇w(x), respectively:

epq[w(xα)] =
1

2

[
∂wp
∂xq

(xα) +
∂wq
∂xp

(xα)

]
,(5.10)

ωpq[w(xα)] =
1

2

[
∂wp
∂xq

(xα) − ∂wq
∂xp

(xα)

]
.(5.11)

Linear function ψpq(x) is defined by the equalities (3.8) and

ϕpq(x) =
1

2
[xpe

q − xqe
p],(5.12)

and they both are divergence-free.
The first and the second sums in (5.9) are usually called the deformational and

the rotational parts, respectively, of the velocity field w(x).
We need to construct a divergence-free function wεh(x), which satisfies the con-

dition (2.12) on Qiε and approximates w(x) as ε� h→ 0. Note that the second sum
in the RHS of (5.9) satisfies (2.12), but the first sum does not, because the functions
ψpq(x − xα) do not satisfy (2.12). However, the function uα,pqεh (x), which minimizes

functional (3.5) in the class Jε(K(xα, h)) when T = 1
2 (ep⊗eq+eq⊗ep), and according

to Lemma 5.4 (see below) is “close” to ψpq(x−xα) when ε� h� 1, does not satisfy
(2.12). That is why, when constructing wεh(x) in cubes Kα = K(xα, h) � Ω, we
replace ψpq(x− xα) by uα,pqεh (x) in the formula (5.9).

Further, we glue together the functions wεh(x) defined in each cube Kα by a
special partition of unity {ϕαεh(x)} constructed in Lemma 5.2 which guaranties the
rigid displacement conditions on Qεi .

However, this construction does not ensure that wεh(x) = w(x) = f(x) on ∂Ω.
Also, since we used the partition of unity, the divergence-free condition is not guar-
anteed. Therefore, we use a simpler construction on the cubes Kα that intersect
∂Ω. To ensure that the construction is divergence-free (without violation of all
other requirements), we add the function ζ

εh
(x), whose existence is established in

Lemma 5.3.
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Thus, we construct the quasiminimizer wεh(x) as follows:

wεh(x) =
∑′

{
w(xα) +

3∑
n,p=1

(enp[w(xα)]uα,npεh (x) + ωnp[w(xα)]ϕpq(x− xα))

}
ϕαεh(x)

+
∑ ′′

wε(x)ϕ
α
εh(x) + ζ

εh
(x) ≡ zεh(x) + ζ

εh
(x),(5.13)

where the sum
∑′
α is taken over the interior cubes (which lie inside the domain Ω),

sum
∑′′
α is taken over the cubes,which intersect the boundary ∂Ω, and in the partition

of unity ϕαεh(x) we choose δ = h1+τ/2, 0 < τ < 2. The function wε(x) ∈ H1(Ω) is
constructed according to Lemma 5.4.

We now construct the function ζ
εh

(x). Due to (5.13), the function zεh(x) ∈ H1(Ω)

is equal w(x) on the boundary ∂Ω, and since
∫
Ω
〈w, ν〉dS = 0, we have

∫
Ω

div zεhdx= 0.
Moreover, using the properties of the functions uα,npεh (x), ωnp[w(xα)]ϕpq(x− xα),

wε(x), and the functions ϕαεh(x), we obtain

div zε(x) = 0 if x ∈ B(Qiε).

Therefore, applying Lemma 5.3 to the function F ε(x) = −div zεh, we construct the
divergence-free function ζ

εh
(x), which is equal to the constant vectors ζi

εh
on the balls

B(Qiε) and zero on ∂Ω. Thus the construction (5.13) guarantees that wεh(x) ∈ J f
ε (Ω).

Let us calculate the functional (4.8) on the function wεh(x) ∈ J f
ε (Ω) (ε � δ =

h1+ τ
2 � h� 1 ).
The next lemma shows that the contribution from the function ζ

εh
(x) is negligible.

Lemma 5.5. The following equalities hold:

lim
h→0

lim ε→0‖ζεh‖H1(Ω) = IΩ[ζ
εh
, ζ
εh

] = 0.

To calculate ek�[wεh] were rewrite (5.13) as follows:

wεh(x) = w(x) +
∑′

α

{
3∑

np=1

enp[w(xα)](uα,npεh (x) − ψα,np(x)) − σα(x)

}
ϕαεh(x)

+
∑′′

α

(wε(x) − w(x))ϕαεh(x) + ζ
εh

(x).(5.14)

Using Lemma 5.5, we distinguish the leading term in ek�[wεh(x)],

ek�[wεh(x)] =
∑′

α

3∑
n,p=1

enp[w(xα)]ek�[u
α,np
εh ]ϕαεh(x) + L(ε, h),(5.15)

where limh→0 lim ε→0‖L(ε, h)‖L2(Ω) = 0, and compute the bulk and the interaction
energies:

EΩ[wεh, wεh] =
∑′

α

3∑
n,p,q,r=1

enp[w(xα)]eqr[w(xα)]EK′
α
[uα,pnεh , uα,qrεh ] + L1(ε, h),

(5.16)

IεΩ[wεh, wεh] ≤
∑′

α

∑
n,p,q,r

enp[w(xα)]eqr[w(xα)] · IεK′
α
[uα,npεh , uα,qrεh ] + L2(ε, h).(5.17)

Here limh→0 lim ε→0Li(ε, h) = 0, i = 1, 2, and we have used the notation (3.6).
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Combining (5.16) and (5.17), we estimate the bulk and the interaction energy in
Φε[wεh]:

EΩ[wεh, wεh] +
1

λ
IεΩ[wεh, wεh]

≤
∑′

α

∑
n,p,q,r

enp[w(xα)]eqr[w(xα)]

{
2µ

∫
Kα

∑
k,�

ek�[(u
α,np
εh (x)]en�[u

α,qr
εh (x)]dx

+
1

λ
IεKα

[uα,npεh , uα,qrεh ]

}

≤
∑′

α

∑
n,p,q,r

enp[w(xα)]eqr[w(xα)]

{
2µ

∫
Kα

[∑
k,�

ek�[u
α,np
εh (x)]ek�[u

α,qr
εh (x)]

+h−2−τ 〈uα,npεh (x) − ψα,np(x), uαqrεh (x) − ψα,qr(x)〉
]
dx+

1

λ
IεKα

[uαnpεh , uαqrεh ]

}
+ o(1)

=
∑′

α

∑
n,p,q,r

anpqr(x
α, λ, ε, h)enp[w(xα)]eqr[w(xα)] + o(1) (ε� h� 1).

(5.18)

Here we use the definition of anpqr(x, λ, ε, h) (see Lemma 3.1) and add to the RHS of
the first inequality in (5.18) a positive term which corresponds to the penalty term in
the mesocharacteristic.

Finally we use (5.18) to estimate the functional (4.8):

Φε[wεh] ≤
∑′

α

h3
∑
n,p,q,r

anpqr(x
α, λ, ε, h)

h3
enp[w(xα)]eqr[w(xα)]

+λ

∫
Ω

〈ρεwεh, wεh〉dx− 2

∫
Ω

〈ρεvε0, wεh〉dx+ ∆(ε, h),(5.19)

where the remainder ∆(ε, h) satisfies the equality

lim
h→0

lim ε→0∆(ε, h) = 0.

We now pass to the limit in (5.19) first as ε → 0 and then as h → 0. Taking
into account that w(x) ∈ C2(Ω) and using the conditions (b1), (b2), (3.17), and
limh→0 lim ε→0‖wεh(x) − w(x)‖2

L2(Ω) = 0 (verified by a direct calculation), we obtain

lim
h→0

lim ε→0Φε[wεh] ≤ Φ0[w] ,

where the functional Φ0[w] is defined by the equality (4.9). Since wεh ∈ J f
ε (Ω) and

vε(x) is the solution of the minimization problem (4.7), inequality (5.6) is established
for any function w(x) ∈ J f (Ω) ∩ C2(Ω). Since the class J f (Ω) ∩ C2(Ω) is dense in
J f (Ω) in the metric H1(Ω), this inequality holds for any function w ∈ J f (Ω).

5.3. The lower bound. We begin with a short overview and then present actual
technical constructions which are quite lengthy. The goal of this step is to establish
the following lower bound:

lim ε=εk→0Φε[vε] ≥ Φ0[v],(5.20)
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where v is the weak limit of vε as ε = εk → 0. To this end we partition the domain Ω
into cubes Kα

h (as opposed to the covering by intersecting cubes in subsection 5.2).
Then the energy of the global minimizer vε in each cube Kα

h is bounded below by
the mesocharacteristic (3.5) with the proper choice of the tensor T (from the linear
symmetric part of the limiting function v(x)).

More precisely, we modify the function vε(x) in Kα
h so that the modified func-

tion uαε satisfies the following conditions:
(i) uαε ∈ J f

ε (Kα
h ) (uαε is an admissible function for the variational problem

(3.5)).
(ii)

∣∣Aεh[uαε , T , xα, τ ] − (total energy of vαε in Kα
h )
∣∣ = o(h3), h→ 0.

(iii) uαε is closed to the symmetric part (5.9) of ∇v defined by (5.9) when w = v.
Then (i) and (3.5)–(3.10) imply

Aεh[u
α
ε , T , x

α, τ ] ≥
∑
npqr

anpqr(x
α, λ, ε, h, τ)Tnp Tqn.(5.21)

We now describe the modification of uαε and the corresponding choice of the
tensor T in the penalty term of (3.5).

Represent the limiting function v(x) in the form (x ∈ Kα
h )

v(x) = v(xα) +
∑
k�

ek�[v(x
α)]ψk�

+
∑
k�

ωk�(v(x
α))ϕk� +O(h2) := v(xα) + S +A+O(h2),(5.22)

where the linear part in (5.22) in decomposed into symmetric and antisymmetric parts
and both are divergence-free (see the definitions of ψk� in (3.8) and φk� in Lemma 5.2).

Note that in the standard decomposition ∇u = 1
2 (∇u + ∇uT ) + 1

2 (∇u − ∇uT ) the
symmetric part is not necessarily divergence-free but div v = 0 in (5.22) (weakly). We
now describe the main idea of the construction of uαε . Choose uαε in the form

uαε = vε(x) − v(xα) −A ,(5.23)

where A is defined in (5.22). Then the RHS of (5.23) is close to the symmetric part S of
the ∇v(x). This is sufficient to make the penalty term in (3.5) small. Indeed, only the
symmetric part S of the deformation enters the penalty term in the mesocharacteristic
(3.5) since the antisymmetric part A (the rotational part) does not contribute to the
energy. Due to (5.23), ek�[u

α
ε ] = ek�[vε] in Kα and IεKα [vε, vε] = IεKα [uαε , u

α
ε ]. We

choose Tnp = enp[v(x
α)]. Then the penalty term in the LHS of (5.21) becomes small,

the interaction term in the LHS of (5.21) is simplified due to the condition (2.3), and
the inequality (5.21) follows. Summing up over all cubes in the partition and passing
to the limit ε� h→ 0 yields (5.20).

We now present the detailed derivation of the lower bound (5.20). We prove (5.20)
when the function v(x) is the weak limit in H1(Ω) of solutions vε(x) of the problem
(4.7) in some subsequence {εk → 0, k = 1, 2, . . . }. First, we assume for simplicity
that the limiting function v(x) is smooth enough, namely, v(x) ∈ C2(Ω) ∩ J f (Ω).

Then we partition the domain Ω by the nonintersecting cubes Kα = K(xα, h)
centered at the points xα aligned along the coordinate axes. In each internal with
respect to the Ω cube (which does not intersect ∂Ω) consider a function

uαε (x) = vε(x) −
{
v(xα) +

∑
p,q

ωpq[w(xα)]ϕpq(x− xα)

}
,(5.24)
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where we have used the notation (5.11) for the rigid rotation part.
Clearly uε(x) ∈ Jε(Kα) (admissible for the functional (3.9)). Therefore, (3.10)

implies (5.21) for any tensor T = {Tnp}3
n,p=1. Set Tnp = enp[v(x

α)]. Then, taking into
account the form (3.5) of the functional Aεh, the form (5.24) of the function uαε (x),
and the condition (2.3), we obtain

∫
Kα

⎧⎨
⎩2µ

∑
k,�

e2k�[vε] + h−2−τ
∣∣∣∣∣uαε (x) −

3∑
n,p=1

enp[v(x
α)]ψα,np(x)

∣∣∣∣∣
2
⎫⎬
⎭ dx

+
1

2λ
IεKε

α
[vε, vε] ≥

∑
n,p,q,r

anpqr(x
α, λ; ε, h, τ)enp[v(x

α)]eqr[v(x
α)] .(5.25)

Next we note that the penalty term is small, namely (5.24), and the convergence
of vεk → v implies

lim
ε=εk→0

∫
Kα

∣∣∣∣∣uαε (x) −
3∑

n,p=1

enp[v(x
α)]ψα,np(x)

∣∣∣∣∣
2

dx = O(h7) .(5.26)

Now we sum over all cubes and take into account (4.8), (5.25)–(5.26) to conclude
that if εk ≤ ε̂(h), then

Φε[vε] ≥
∑′

α

3∑
n,p,q,r=1

anpqr(x
α, λ; ε, h, τ)enp[v(x

α)]eqr[v(x
α)]

+

∫
Ω

{λ〈vε, vε〉 − 2〈ρεvε0, vε〉} dx+O(h2−τ ) .(5.27)

Note that, according to our assumption, τ < 2. Then we pass to the limit in (5.27)
first in εk → 0 and then in h → 0. Taking into account that v(x) ∈ C2(Ω) and
using the conditions (b1), (b2), (3.17), and the convergence vε(x) → v(x) in L2(Ω) as
ε = εk → 0, we obtain

lim
ε=εk→0

Φε[vε] ≥
∫

Ω

{ ∑
n,p,q,r

anpqr(x, λ)enp[v(x)]eqr[v(x)]

+λ〈v(x), v(x)〉 − 2〈ρ(x)v0(x), v(x)〉
}
dx = Φ0[v].(5.28)

Thus, we have obtained the required inequality (5.20) under the assumption that
v ∈ C1(Ω). The proof for a nonsmooth case v ∈ H1 is more technical, although its
scheme is the same: it is necessary to construct smooth approximations v ≈ vσ and
vε ≈ vσε for some small σ > 0. The above scheme is applied to the approximations
when passing to the limit first as ε � h → 0 and then as σ → 0. The details of this
construction are presented in [1].

6. Analyticity in the spectral parameter of the mesocharacteristic and
the solutions. In Theorem 4.2 we established the convergence of the solutions
vε(x, λ) to the homogenized solution v(x, λ) as ε → ∞ for real λ > 0. To prove
the main Theorem 3.3 we need to apply the inverse Laplace transform to get the con-
vergence of vε(x, t) to v(x, λ). Thus we need to show that vε(x, λ) can be analytically
extended into the complex plane (more precisely, into C \ R−).
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The extension procedure is quite technical, and here we only outline it. The details
are presented in [1]. First we formulate the problem (2.10)–(2.14) in an abstract
operator form in an appropriate Hilbert space. For a cell problem, the analogous
abstract form is obtained below in Lemmas 7.5 and 7.6. The operator formulation of
the problem (2.10)–(2.14) leads to an operator bundle of the form (I+λA1ε+

1
λA2εvε =

fε), where I is the unity operator and A1ε and A2ε are compact operators. Using well-
known results from the operator bundle theory [9, Chapter 7], we show that vε(x, λ)
is analytic in C \ R− and

‖vε‖2
L2(Ω) <

C

|λ| .(6.1)

Using analogous abstract operator theory considerations and the Vitaly theorem
[11], we prove Lemma 3.2. Furthermore, we establish a bound analogous to (6.1)
and show analyticity in λ of the homogenized solution v(x, λ) in C \ R−. The Vitaly
theorem yields that the convergence results from Theorem 4.2 hold for complex λ
in C \ R−. Finally, we apply the inverse Laplace transform (with an appropriate
choice of the integration contour specified in [1]) to show that Theorem 4.2 implies
Theorem 3.3.

7. Periodic structures. We now present a case when all the conditions (a1)–
(a4), (b1), (b2) in Theorem 3.3 are satisfied and the Laplace transform {anpqr(x, λ)}
of the effective tensor {anpqr(x, t)} does not depend on x and can be computed by
solving the so-called cell problems.

We consider a periodic array when particles Qiε are obtained by a homothetic
compression by the factor ε of a fixed body Q with diameter d ≤ 1/2 and center of
mass at the origin. All particles are identically oriented in space, and their centers of
mass xiε form a cubic lattice Lε with period ε.

We are interested in the case of short-range interactions when each particle in-
teracts only with neighboring 3n − 1, n = 2, 3, particles (a schematic image for
n = 2 is given in Figure 7.1) and the corresponding interaction matrix Cij

kε
does not

change under translations of the lattice Lε, i.e., Cij
kε

= Ci+l,j+l
kε

. We also assume that

Cij
1ε

= εCij
1

, Cij
2ε

= ε2Cij
2

, Cij
3ε

= ε3Cij
3

, and Cij
4ε

= ε3Cij
4

. Thus both the geometry
and the interactions are ε-periodic.

Consider a particle Qiε placed inside a cube Ki
ε of side length ε so that both the

particle and the cube are centered at the point xiε. Then Di
ε = Ki

ε\Qiε (see Figure 7.1)
is a periodicity cell filled with the fluid. To obtain the standard unit cell we rescale Di

ε

by the factor ε−1 and shift its center to the origin. Then the domain D = K \Q is a
unit periodicity cell, where K is the cube of side length 1 centered at the origin and
Q is a domain in K with diameter d < 1/2 and boundary ∂Q ∈ C2.

Let us consider the boundary value problem in D = K \ Q, the so-called cell
problem:

−µ∆uqr + ∇pqr = 0, x ∈ K \Q,(7.1)

divuqr = 0, x ∈ K \Q,(7.2)

uqr = −ψqr(x) + bqr × x, x ∈ ∂Q,(7.3) ∫
∂Q

x× (σ[uqr] · ν)dS = − 1

λ
C bqr,(7.4)

uqr(x)
∣∣
Γ−
i

= uqr(x)
∣∣
Γ+
i

, σ[uqr(x)]
∣∣
Γ−
i

= σ[uqr(x)]
∣∣
Γ+
i

.(7.5)
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Fig. 7.1. Two-dimensional periodic structure.

Here σ[u] is the stress tensor defined by (2.15), ψqr(x) are functions defined by
(3.8), ν is the unit outward normal to ∂D, bqr are arbitrary constant vectors, and C
is the following matrix:

C =
∑′

j

Cij
3ε

− Cij
4ε

ε3
=

∑′

j

Cij
3
− Cij

4
,(7.4′)

where Cij3ε, C
ij
4ε are interaction matrices defined in (2.8), the sum

∑′
j is taken over

all neighbors of Qiε, and due to periodicity C does not depend on i. Γ−
i and Γ+

i are
opposite faces of the cube K (i = 1, 2, 3).

Lemma 7.1. The problem (7.1)–(7.5) for any λ > 0 has the unique solution (up
to an additive constant in the pressure pqr) {uqr(x), bqr, pqr(x)}, such that uqr(x) ∈
C2+α(K \Q), pqr ∈ C1+α(K \Q), α > 0, and it admits a periodic extension on R

3.
The proof of this lemma uses standard variational techniques and is presented

in [1].
The following theorem allows us to compute the effective properties of the sus-

pension.
Theorem 7.2. For the periodic structure described above there exist the limits

in the condition (b1), the components of limiting tensor {anpqr(x, λ)} are constants
with respect to x, and they can be calculated as follows:

anpqr(λ) = µInpqr +
1

λ

∑′

j

〈Cij
1
ψnp(xj), ψqr(xj)〉

+ 2µ

∫
K

3∑
k,l=1

ekl[u
np(x, λ)]ekl[u

qr(x, λ)]dx+
1

λ
〈Cbnp, bqr〉.(7.6)
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Here Inpqr are components of the fourth rank tensor defined by

Inpqr =
1

2
(δnqδpr + δnrδpq) − 1

3
δnpδqr.(7.7)

The constant matrices Cij
1

= 1
2εC

ij

1ε
and C (see (7.4′) and (2.8)) do not depend on

ε; xj are the centers of mass of the neighbors to Qi particles, i.e., xj =
∑3
k=1 n

j
ke
k,

njk = 0,±1; and unp(x, λ) is the solution of the cell problem (7.1)–(7.5) extended onto
Q by (7.3).

Remark 7.1. Clearly in the periodic case the limits in condition (b2) exist, and
the limiting density ρ is the following constant:

ρ = ρs|Q| + ρf (1 − |Q|),
where |Q| is the volume of the particle Q.

Outline of the proof of Theorem 7.2. Let K
ξ

h be a cube of the side length h � ε

centered at the point ξ ∈ Ω. Consider a function in K
ξ

h

Uqrε (x) = ψqr(x− ξ
ε
) + εũqr

(
x− ξ

ε

ε
, λ

)
,(7.8)

where ũqr (x, λ) is a periodic extension of the solution uqr (x, λ) of the cell problem
(7.1)–(7.5) (see Lemma 7.1); ξ

ε
= xiε is the nearest to ξ center of mass of particles

Qiε. Using the properties of the functions ψqr(x) and uqr(x, λ), we have

div ũqrε (x, λ) = 0

in Kξ
hε = Kξ

h \ ∪iQiε. On the boundaries of the particles Qjε,

Uqrε (x, λ) = ψqr(xjε − ξ
ε
) + b(λ)qr × (x− xjε), x ∈ Sjε ,(7.9)

where b(λ)qr is a constant vector from (7.3). We extend Uqrε (x, λ) on the particles
Qjε, using (7.9). Then we have

divUqrε (x) = 0 in Kξ
h.(7.10)

We seek a function ûqrε (x, λ) that minimizes the functional (3.5) for T = 1
2 (eq ⊗

er + er ⊗ eq) in the form

ûqrε (x, λ) = Uqrε (x, λ) + vqrε (x, λ),(7.8′)

where Uqrε (x, λ) is defined by (7.8). Next we obtain a variational problem for the
corrector vqrε (x, λ). Analysis of this problem shows that EKξ

h
[vqrε (x, λ), vqrε (x, λ)] and

IKξ
h
[vqrε (x, λ), vqrε (x, λ)] vanish in the limit ε→ 0 and h→ 0 (ε� h), and therefore the

first term on the RHS of (7.8′) is the leading one and the second is a small corrector.
Substituting (7.8′) into (3.10), we obtain

1

h3
anpqr(ξ, λ, ε, h) = EKξ

h
[Unpε , Uqrε ] +

1

λ
IKξ

h
[Unpε , Uqrε ]

+H[Unpε − ψnp, Uqrε − ψqr] + EKξ
h
[Unpε , vqrε ] + EKξ

h
[Uqrε , v

np
ε ]

+
1

λ
IKξ

h
[Unpε , vqrε ] +

1

λ
IKξ

h
[Uqrε , v

np
ε ] +H[Unpε − ψnp, vqr]

+H[Uqrε − ψqr, vnp] + EKξ
h
[vnpε , vqrε ] +

1

λ
IKξ

h
[vnpε , vqrε ] +H[vnpε , vqrε ].(7.11)
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Here we have used the notation of (3.6)–(3.7) and introduced the notationH[u, v] =
h−2−τ ∫

Kξ
h
〈u, v〉dx.

On the RHS of (7.11) only the first two terms provide a nonzero contribution in
the limit ε → 0 and h → 0 (ε � h). The remaining terms vanish in this limit, which
can be shown by a direct calculation. We now calculate these nonvanishing terms.
Using (7.8), we can write

EKξ
h
[Unpε , Uqrε ] = EKξ

h
[ψnp
ε
, ψqr

ε
] + EKξ

h
[ũnpε , ũqrε ]

+ EKξ
h
[ψnp
ε
, ũqrε ] + EKξ

h
[ψqr
ε
, ũnpε ],(7.12)

where ψnp
ε

= ψnp(x− ξ
ε
), ũnpε = εũ(

x−ξ
ε

ε , λ).
Integration by parts shows that the third and fourth terms on the RHS of (7.12)

are equal to zero, and we calculate the first two terms.
To simplify the calculation we assume that the cube Kξ

h can be partitioned into
an integer number of elementary cubes (cells) Kj

ε . Then, taking into account the
linearity of ψnp(x) and periodicity of ũnp(x), we obtain

EKξ
h
[ψnp
ε
, ψqr

ε
] =

µ

h3

∑
j

2ε2
∫
Kj

ε

3∑
k,l=1

ekl

[
ψnp

(
x− xiε
ε

)]
ekl

[
ψqr

(
x− xiε
ε

)]
dx

= 2µ

∫
K

3∑
k,l=1

ekl[ψ
np]ekl[ψ

qr(x)]dx = µInpqr,(7.13)

EKξ
h
[ũnpε , ũqrε ] =

µ

h3

∑
j

2ε2
∫
Kj

ε

3∑
k,l=1

ekl

[
unp

(
x− xiε
ε

)]
ekl

[
uqr

(
x− xiε
ε

)]
dx

= 2µ

∫
K

3∑
k,l=1

ekl[u
np(x, λ)]ekl[u

qr(x, λ)]dx.(7.14)

Here we take into account that the number of summands in
∑
j is equal to h3

ε3

and ũnp(x) are extended on Q by (7.3), and also we use the notation (7.7).
Using (7.9), (2.8), and the linearity of ψnp(x), we obtain

I[Unpε , Uqrε ] =
1

2h3

∑
ij

〈
Cij

1ε
ψnp(xiε − xjε), ψ

qr(xiε − xjε)
〉

+
1

2h3

∑
ij

〈(
Cij

3ε
− Cij

4ε

)
bnp, bqr

〉
=

∑′

j

〈
Cij

1
ψnp(xj), ψqr(xj)

〉
+ 〈Cbnp, bqr〉,

(7.15)

where the matrices Cij1 , C and the points xj are defined in the formulation of Theo-
rem 7.2. (see also Figure 7.1).

Combining (7.13)–(7.15), we obtain (7.6). The detailed proof is presented in [1].
Theorem 7.3. Tensor {anpqr(λ)} obtained in Theorem 7.2 can be represented in
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the form

anpqr(λ) = µInpqr + 2µ

∫
K

3∑
k,l=1

ekl[u
np
0 ]ekl[u

qr
0 ]dx

+
1

λ

⎧⎨
⎩
∑′

j

〈Cij
1
ψnp(xj)ψqr(xj)〉 + 〈Cbnp0 , bqr0 〉

⎫⎬
⎭+ a1

npqr(λ).(7.16)

Here

a1
npqr(λ) = 2µ

⎧⎨
⎩
∫
K

3∑
k,l=1

ekl[u
np
0 (x)]ekl[v

qr(x, λ)]dx

+

∫
K

3∑
k,l=1

ekl[v
np(x, λ)]ekl[u

qr
0 (x)]dx+

∫
K

3∑
k,l=1

ekl[v
np(x, λ)]ekl[v

qr(x, λ)]dx

⎫⎬
⎭

+
1

λ

[〈Cbnp0 , dqr(λ)〉 + 〈Cdnp(λ), bqr0 〉 + 〈Cdnp(λ), bqr0 〉] ,(7.17)

where the function unp0 (x) and the constant vector bqr0 solve the cell problem

−µ∆unp0 + ∇pnp0 = 0, x ∈ K \Q,
div unp0 = 0, x ∈ K,

unp0 = −ψnp(x) + bnp0 × x, x ∈ Q, b0 ∈ ker C,

σ
0

:=

∫
∂Q

x× (σ[unp0 ] · ν)dS ⊥ ker C,(7.18)

function vnp(x, λ) and vector dnp(λ) are the solution of the problem

−µ∆vnp + ∇pnp0 = 0, x ∈ K \Q,
div vnp = 0, x ∈ K,

vnp = d(λ) × x, x ∈ Q, d(λ) ⊥ ker C,∫
∂Q

x× (σ[vnp] · ν)dS +
1

λ
Cd = −σ

0
⊥ ker C,(7.19)

vnp(x, λ) and σ[vnp] as well as u0 and σ[u0] are periodic in the cube K, and ν is the
inner normal vector to ∂Q.

Proof of Theorem 7.3. Comparison of (7.18)–(7.19) and (7.1)–(7.5) shows that
due to linearity the solution of problem (7.1)–(7.5) can be represented in the form

unp(x, λ) = unp0 (x) + vnp(x, λ),(7.20)

bnp(λ) = bnp0 (λ) + dnp(λ),(7.21)

where {unp0 (x), bnp0 } is the solution of problem (7.18), which does not depend on λ,
and {vnp(x, λ), dnp(λ)} is the solution of problem (7.19). Each of these problems has
a unique solution. Indeed {unp0 , bnp} minimizes the functional

I0 = 2µ

∫
K

3∑
k,l=1

e2kl[u
np]dx
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in the class of divergence-free in K and periodic functions which are equal to
−ψnp(x) + b × x on Q, with b ∈ kerC (C =

∑
(Cij

3ε
− Cij

4ε
)/(2ε3)), and {vnp(x, λ),

dnp(x, λ)} minimizes the functional

I = 2µ

∫
K

3∑
k,l=1

e2kl[v
np] +

1

λ
〈Cd, d〉 + 2〈σ

0
, d〉

in the class of divergence-free in K and periodic functions equal to d × x on Q, d ⊥
ker C. Note that the pressure does not appear in the above variational formulations
and can be computed from the Stokes equation. To obtain (7.16) we substitute (7.20)–
(7.21) into (7.6). Theorem 7.3 follows.

We now obtain a detailed characterization of the tensor {a1
npqr(λ)}. The following

Theorem 7.4 and Proposition 7.7 show how this characterization allows us to get
explicit formulas for the effective viscoelastic properties. Indeed, taking the inverse
Laplace transform of the representation (7.16), we observe that the first two terms
do not depend on λ and together represent the homogenized tensor of the effective
viscosity a0

npqr (see (3.18)); the term with the factor λ−1 (the sum in brackets in (7.16))
is the effective elasticity tensor. Tensor a1

npqr(λ) represents the memory term, and the
numbers −λk are inverse relaxation times of the effective viscoelastic medium. These
numbers are the eigenvalues of the spectral problem which is obtained from (7.19) by
setting σ

0
= 0 in the last equation in (7.19).

Theorem 7.4. The functions a1
npqr(λ) obtained in Theorem 7.3 are meromorphic

in C \ 0 with poles at the points λk < 0 (λk → −0, k → ∞). The numbers λk < 0 are
the eigenvalues of the spectral problem which corresponds to the cell problem (7.19)
when σ

0
= 0.

Proof of Theorem 7.4. In short, the proof of this theorem consists of the introduc-
tion of an operator and a functional space which correspond to the problem (7.19),
followed by the standard spectral analysis.

Let us denote by JC(K) the closure in Lper2 (K) of the set of divergence-free
functions from H1

per(K) equal to d × x in subdomains Q, where d ⊥ ker C. The

spaces Lper2 (K) and H1
per(K) of periodic on K functions is defined in [12]. Next we

introduce the space G(K) as a set of functions of the form gradϕ(x) + χQ(x)ψ(x),

where the function ϕ(x) ∈ H1
per(K) and ψ(x) is a function orthogonal in L2(Q) to

functions of the form d× x, d ⊥ ker C.
The next lemma is a straightforward generalization of the standard Weyl decom-

position [12] and can be proved analogously. It reduces to the Weyl decomposition in
the absence of the rigid inclusion Q.

Lemma 7.5. The following orthogonal decomposition holds:

Lper2 (K) = JC(K) ⊕G(K).

Let us introduce the operator Â acting from JC(K) ∩H2(K \Q) into L2(K):

Âu =

{
−µδu, x ∈ K \Q,
B0[u] × x, x ∈ Q.

Here vector B0[u] is defined by the equation

B0[u] = (I)−1

∫
∂Q

x× (σ[u] · ν)dS,
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where I is the tensor of inertia of the body Q with the density ρs = 1 (σ0
ik = µeik(v)).

Let PC be the operator of orthogonal projection on the subspace JC(K). Let us
define an operator

Ã = PCÂ.

Direct calculations show that

Ãu =

{
−µ∆u+ ∇p, x ∈ K \Q,
B0[u] × x+ (I)−1

∫
∂Q

(x× ν) pdS × x, x ∈ Q.

Introduce an operator A as the Friedrichs extension of the operator Ã.
Lemma 7.6. Operator A is self-adjoint in JC(K), invertible, and has a compact

inverse operator.
We now introduce an operator

A1 = PCÂ1,(7.22)

where Â1 is a bounded operator acting from JC(K) into Lper2 (K) by the formula

Â1u = χQ(x)
[
I−1Cd× x

]
,

where u is defined on Q by the equation u = d×x, d ⊥ kerC. Taking into account the

symmetry of the matrices Cij
3ε

, Cij
4ε

(which follows from (2.8)), CT = C, (Cij
3ε

)T = Cji
3ε

,

(Cij
4ε

)T = Cji
4ε

, the periodicity property Ci+k,j+k
ε

(x, y) = Cij
ε

(x, y), a k-arbitrary

integer vector, and (7.4′), we obtain

〈Cb, d〉 = 〈b, Cd〉,(7.23)

〈Cb, b〉 ≥ 0(7.24)

for any b, d ∈ R3.
Then since b ⊥ ker C, we get from (7.24)

〈Cb, b〉 > 0, b �= 0.(7.25)

Using the definitions of the operator Â1 and the tensor of inertia I, we show that
the operator A1 defined by (7.22) is a self-adjoint and positive operator in JC(K).
Indeed,

(Â1u, v) =

∫
K

χQ(x)〈ICb× x, d× x〉dx

=

∫
Q

〈I−1Cb× x, d× x〉dx = 〈Cb, d〉 = 〈b, Cd〉 = (u, Â1v)(7.26)

and

(Â1u, u) > 0

for any u, v ∈ JC(K) (u(x) = b× x, v = d× x, x ∈ Q, and b, d ⊥ ker C); (Â1u, v) is
the dot product in L2(K).
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Similarly we can represent the projection of function −(σ
0
× x)χQ(x) on the

subspace JC(K):

f
0

= −PC [(σ
0
× x)χQ(x)] =

{
grad p,

−σ
0
× x+ I−1

∫
∂Q

(x× ν)pds× x.

Then the problem (7.19) can be written in the operator form in the space JC(K):

Av +
1

λ
A1v = f

0
(7.27)

or equivalently as

(B − λI)v = λg
0
, g

0
= A−1f0,(7.27′)

where B = −A−1A1 is a compact operator in JC(K) whose spectrum consists of the
eigenvalues λk �= 0 with the only accumulation point at 0.

Operator B in bounded and self-adjoint in the energy space HA of the operator
A, that is,

(Bu, v)A = (u,Bv)A,

and due to the positivity of the operator A1,

(Bu, u)A = −(A1u, u)L2(K) < 0.

Thus eigenvalues λk are negative and the corresponding eigenfunctions are or-
thogonal in energy space HA. Eigenfunctions corresponding to multiple eigenvalues
can be chosen to be orthogonal in HA. Due to the Gilbert–Schmidt theorem, the
system of eigenfunctions {ϕk} is complete in JC(K). Taking into account this fact,
we can easily find the solution v of (7.27′):

v(x, λ) = −λ
∞∑
k=1

Ck
λ− λk

ϕk(x), Ck = (Aϕk, g0
).(7.28)

Thus, the solution of problem (7.19) is a meromorphic function in the complex
plane λ.

Substituting (7.28) into (7.17), we obtain an explicit representation for a1
npqr,

a1
npqr(λ) =

∞∑
i=1

λAnpqri + Cnpqri

λ− λi
+

∞∑
i,j=1

λ2Anpqrij + λCnpqrij

(λ− λi)(λ− λj)
,

where the first sum and the second sum correspond to the linear and quadratic terms
in (7.17), respectively, and

Anpqri = 2µ

∫
K

∑
k,l

(ekl[u
np
0 ]Cqri + ekl[u

qr
0 ]Cnpi ) ekl[ϕi]dx,

Anpqrij = 2µ

∫
K

∑
kl

e2kl[ϕi]C
np
i Cqrj dx,

Cnpqri = 2µ
{〈Cbnp0 , di〉Cqri + 〈Cdi, bqr0 〉Cnpi

}
,

Cnpqrij = 2µ〈Cdi, dj〉Cnpi Cqrj .(7.29)
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Finally, we distinguish the λ independent part in a1
npqr(λ),

a1
npqr(λ) = a10

npqr + a11
npqr(λ),

where ⎧⎪⎪⎨
⎪⎪⎩
a10
npqr =

∑
iA

npqr
i +

∑
i,j A

npqr
ij ,

a11
npqr(λ) =

∑
i
λiA

npqr
i +Cnpqr

i

λ−λi

+ 2
∑
ij

(λ(λi+λj)−λiλj)A
npqr
ij +λCnpqr

ij

(λ−λi)(λ−λj)
.

(7.30)

Then

a11
npqr(λ) = O

(
1

λ

)
as |λ| → ∞.

Taking the inverse Laplace transform of a1
npqr(λ), we obtain

a1
npqr(t) = a10

npqrδ(t) +

∞∑
i=1

Bnpqri eλit,(7.31)

where, according to (7.30),

Bnpqri = λi(A
npqr
i +Anpqrii ) + Cnpqri + Cnpqrii + 2

∑
j>i

λ2
iA

npqr
ij + λiC

npqr
ij

λi − λj
(7.32)

and Theorem 7.4 is proved.
We now use Theorems 7.3 and 7.4 to obtain an explicit representation for the

relaxation tensor.
Proposition 7.7. The following representation for the effective tensor (3.14)

holds:

ânpqr(t) = a0
npqrδ(t) + a1

npqrχ(t) +

∞∑
i=1

Bnpqri eλit (λi < 0, λi → −0, as i → ∞),

(7.33)

where

a0
npqr = µInpqr + 2µ

∫
K

∑
kl

ekl[u
np
0 ]ekl[u

qr
0 ]dx+ a10

npqr,

a1
npqr =

∑′

j

〈Cij1 ψnp(xj)ψqr(xj)〉 + 〈Cbnp0 , bqr0 〉.

Constant tensors a10
npqr and Bnpqri are defined in (7.30), (7.32), and (7.29).

The representation (7.33) follows from (7.16) and (7.31).
An important question for the effective rheology of a composite medium is whether

there are infinitely many relaxation times present. We now show that the presence
of finite relaxations times −λ−1

i is caused by the asymmetry of the particles Qiε.
Roughly speaking, our calculations show that the finite relaxation times arise due to
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the rotation of particles in a symmetric flow, and the effect of this rotation is negligible
(to the leading term in the homogenization limit) if particles are symmetric.

Proposition 7.8. Suppose that the periodicity cell K is invariant with respect
to reflections about all three coordinate planes (e.g., a spherical particle Q in a cubic
periodicity cell K). Then the effective tensor anpqr(t) defined in (4.8) can be computed
as follows:

anpqr(t) = a0
npqrδ(t) + a1

npqrχ(t),(7.34)

where δ(t) is the Dirac delta-function and χ(t) is the Heaviside function.

a0
npqr = µInpqr + 2µ

∫
K

∑
ekl[u

np
0 ]ekl[u

qr
0 ]dx,

a1
npqr =

∑
j

〈Cij1 ψnp(xj)ψqr(xj)〉,

and unp0 (x) is the solution of the problem (7.18) for C ≡ 0 and bnp0 = 0.
We now outline the proof of this proposition. (The details are presented in [1].)

Assume that particles Qiε are spherical balls. Then in the problem (7.18), Q is a ball,
and taking into account the invariance of this problem under xi → −xi, i = 1, 2, 3,
transformations and the uniqueness of its solution, we conclude that b0 = 0 and
σ

0
= 0. Then it follows from the uniqueness of the solution of the problem (7.19)

that v(x, λ) ≡ 0 and d(λ) = 0. Next (7.17) implies that a1
npqr(λ) = 0, and according

to (7.31), a10
npqr = 0 and Bnpqri = 0. Thus, in the case of the balls, the effective tensor

anpqr(t) has the form (7.34). Note that the equality (7.34) means that in the case of
symmetric particles the effective medium is viscoelastic with no memory.
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SEMI-INFINITE ARRAYS OF ISOTROPIC POINT SCATTERERS.
A UNIFIED APPROACH∗
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Abstract. We solve the two-dimensional problem of acoustic scattering by a semi-infinite pe-
riodic array of identical isotropic point scatterers, i.e., objects whose size is negligible compared to
the incident wavelength and which are assumed to scatter incident waves uniformly in all directions.
This model is appropriate for scatterers on which Dirichlet boundary conditions are applied in the
limit as the ratio of wavelength to body size tends to infinity. The problem is also relevant to the
scattering of an E-polarized electromagnetic wave by an array of highly conducting wires. The actual
geometry of each scatterer is characterized by a single parameter in the equations, related to the
single-body scattering problem and determined from a harmonic boundary-value problem. Using a
mixture of analytical and numerical techniques, we confirm that a number of phenomena reported for
specific geometries are in fact present in the general case (such as the presence of shadow boundaries
in the far field and the vanishing of the circular wave scattered by the end of the array in certain
specific directions). We show that the semi-infinite array problem is equivalent to that of inverting
an infinite Toeplitz matrix, which in turn can be formulated as a discrete Wiener–Hopf problem.
Numerical results are presented which compare the amplitude of the wave diffracted by the end of
the array for scatterers having different shapes.

Key words. scattering, semi-infinite array, Foldy’s method, discrete Wiener–Hopf

AMS subject classifications. 74J20, 78A45

DOI. 10.1137/S0036139903427891

1. Introduction. Many methods exist for studying wave interactions with finite
arrays of scatterers. For some simple geometries, methods based on separation of
variables can be used. For example, the scattering of a plane wave by an arbitrary
finite array of circular cylinders can be reduced to the solution of a rapidly convergent
infinite system of linear equations.

For more complicated geometries a different method is needed. One possibility is
to express the solution to the multiple scattering problem in terms of the individual
scattering characteristics of the elements that make up the array. This leads to the
so-called T -matrix approach, which has been used extensively in acoustics and in
other fields. Another technique is to formulate the problem as an integral equation
by, for example, representing the solution as a distribution of dipoles over all the
scatterers. This leads to an integral equation of the second kind for the unknown
dipole strength. Discretization of the integral equations typically leads to large, full
systems of algebraic equations.

As the size of an array increases, solutions to scattering problems rapidly become
computationally expensive. In contrast, the case of an infinite periodic array excited
by a plane wave is usually a much simpler proposition. This is because the periodicity
allows us to formulate the problem on a single “cell” of the array, with periodic
boundary conditions. In terms of integral equations this necessitates the use of a
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more complicated Green’s function, the efficient computation of which may be an
issue; see [16].

Methods by which solutions to infinite array scattering problems can be applied
to shed light on associated large finite array problems have been applied previously in
the design of large phased array antennas, early examples using a Fourier windowing
approach [13, 24], in which some fairly crude assumptions are made about the field
near each scatterer. Recently, methods based on integral equations have been devised
in which the basic idea is to formulate an integral equation for the difference between
the infinite array and finite array solutions; see [26, 21], for example. For large
finite one-dimensional arrays this leads to problems formulated on semi-infinite arrays.
Associated with these so-called fringe integral equation methods is the analysis of
Green’s functions for semi-infinite arrays; see [5, 6, 17].

Scattering by a semi-infinite array is thus a problem of considerable interest from
both a practical and a theoretical point of view, and very few results are available.
Perhaps the only attempt at a general theory is that of Millar [18, 19] based on the
analysis of a nonlinear integral equation. Some results have been derived previously
for the case of small, widely spaced circular cylinders [12, 11] and for the strip grating
at low frequencies [22, 23]. In this paper we consider the general case of a semi-
infinite array of identical scatterers which are each small with respect to the incident
wavelength and under the assumption of Dirichlet boundary conditions on the scat-
terers. This problem was considered in [20], where a number of asymptotic results
were derived. Our approach is based on Foldy’s method [8], which since 1945 has
found wide application in multiple scattering problems; for a recent application, see
[2], for example. We show that the problems considered in [12, 11] and [22, 23] are
special cases, and we construct a general system of equations in which the geometry
of the scatterer is characterized by a single parameter. The system of equations can
be inverted numerically or, since it is of Toeplitz type, it can be solved explicitly via
the discrete Wiener–Hopf technique.

The semi-infinite array problem is closely related to the fully infinite array (i.e.,
diffraction grating) problem and, following a description of Foldy’s method in section
2, we next solve this for the same class of scatterers in section 3. The semi-infinite
grating problem is formulated in section 4, including a detailed description of the form
of the far field and of the behavior at resonance frequencies. Finally, in section 5 we
show how the integral equation approach used in [22, 23] reduces to exactly the same
equations as those found in section 4. Many of the technical details are relegated to
the appendices.

2. Foldy’s method. The classic work on acoustic scattering by semi-infinite
gratings is that of Hills and Karp [12, 11], who consider small sound-soft circular
cylinders. Their formulation is based on a technique due to Foldy [8]. Foldy considers
isotropic point scatterers, meaning that “in the neighborhood of the jth scatterer,”
the scattered field “will behave like” AjG(r− rj), where the jth scatterer is centered
at rj , Aj is an unknown amplitude, and G is the free-space Green’s function; in two

dimensions G(r) = H0(kr), where r = |r| and H0 ≡ H
(1)
0 is a Hankel function. Foldy

represents the total field as

u(r) = uinc(r) +
∑
j

AjG(r − rj),(2.1)
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where the sum is over all the scatterers. The so-called external field is

un(r) ≡ u(r) −AnG(r − rn) = uinc(r) +
∑
j

j �=n

AjG(r − rj),(2.2)

which can be regarded as the “incident field” for the nth scatterer.
Now, characterize the scattering properties of the scatterers by

An = fnun(rn),(2.3)

where fn is “the scattering coefficient for the nth scatterer.” Thus, the scattered
field is determined by the value of the external field at the center of the scatterer, rn,
together with the quantity fn (which we will come back to later). Then, (2.2) gives

un(r) = uinc(r) +
∑
j

j �=n

fjuj(rj)G(r − rj).

Evaluating this equation at rn gives, after using (2.3),

f−1
n An = uinc(rn) +

∑
j

j �=n

AjG(rn − rj),(2.4)

which is a linear system of algebraic equations for the amplitudes Aj . The total field
is then given by (2.1). When the scatterers are identical fn = f0, say. This quantity
depends on the geometry of the scatterers and is discussed next.

The parameter f0. The problem of scattering by a small sound-soft cylinder is
a problem of low-frequency asymptotics. Using the general theory of Kleinman and
Vainberg [14], we find that

usc(r) ≈ f0uinc(0)H0(kr),(2.5)

where the origin is inside the cylinder’s cross section S and

− 1

f0
=

2i

π
(ln k�− δ).(2.6)

The complex constant δ occurs in the asymptotic approximation

H0(w) =
2i

π
(lnw − δ) +O(w2 logw) as w → 0;

thus, δ = ln 2 − C + iπ/2, where C ≈ 0.5772 is Euler’s constant. The length � in
(2.6) depends on the geometry of S. It is determined by solving the following two-
dimensional exterior Dirichlet problem for Laplace’s equation: ∇2v = 0 outside S,
v = 0 on S, and

v = ln (r/�) + o(1) as r → ∞.

Thus, for an ellipse with semimajor axis a and semiminor axis b, we obtain

� =
1

2
(a+ b).
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In particular, for circles of radius a, we have � = a, and then (2.6) is consistent with
−f−1

0 = H0(ka), which is the approximation used by Hills and Karp [12]. Note that
our formula for f0, (2.6), does not depend on the orientation of S.

Let us make a few remarks. First, the approximation (2.5) is a rigorous, asymp-
totic approximation, valid for small sound-soft cylinders of any cross section. It is not
merely a far-field result, but is valid in the near field too. It states that soft cylinders
scatter isotropically—the scattered field does not depend on the direction of observa-
tion. None of these results is true for sound-hard cylinders (Neumann problem) or for
penetrable cylinders (transmission problem), and thus Foldy’s original method should
be modified for nonsoft cylinders.

3. Infinite grating. We begin with the grating problem and consider the scat-
tering of a plane wave

uinc = ei(βx+αy),(3.1)

where α = k sinψ and β = k cosψ, by an infinite row of identical scatterers, located
at (x, y) = (ms, 0), m = 0,±1,±2, . . . , where s is the spacing. We will use polar
coordinates (rm, θm) centered on the mth scatterer and defined by

x−ms = rm cos θm, y = rm sin θm,

and we will write (r, θ) for (r0, θ0). In terms of (rm, θm) the incident wave is

uinc = Imeikrm cos(θm−ψ),(3.2)

where

Im = eiβms.

For future convenience we define the scattering angles ψm, m = 0,±1,±2, . . . ,
by

ψm = arccos

(
βm
k

)
, βm = β +

2mπ

s
.

If |βm| < k, i.e., if

−1 < cosψ +
2mπ

ks
< 1,

we say that m ∈ M and then 0 < ψm < π. These correspond to the angles at which
plane waves are scattered from an infinite grating; see (3.9) below. If |βm| > k, then
ψm is no longer real and the appropriate branch of the arccos function is given by

arccos t =

{
i arccosh t, t > 1,

π − i arccosh(−t), t < −1,
(3.3)

with arccosh t = ln(t+
√
t2 − 1) for t > 1.

Let us apply Foldy’s method to the problem of the scattering of a plane wave by
an infinite row of identical (small) sound-soft scatterers. The system (2.4) becomes
(with Bn as the unknowns)

f−1
0 Bn = uinc(ns, 0) +

∞∑
m=−∞
m�=n

BmH0(ks|m− n|), n = 0,±1,±2, . . . .(3.4)
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We have uinc(ms, 0) = eiβsm = Im, and quasi-periodicity (see (3.2)) gives Bm = ImB0,
and then (3.4) gives

−f−1
0 B0 +B0

∞∑
m=−∞
m�=n

H0(ks|m− n|)Im−n = −1, n = 0,±1,±2, . . . .(3.5)

Hence, B0 = (f−1
0 − σ(ψ))−1, where

σ(ψ) =
∞∑

m=−∞
m�=n

H0(ks|m− n|)Im−n =

∞∑
j=1

(Ij + I−j)H0(kjs).(3.6)

It will be convenient to define a quantity K by

K = −1/B0 = σ(ψ) − f−1
0 ,(3.7)

so that Bn = −In/K.

The far field. From (2.1)

u = uinc − 1

K
∞∑

m=−∞
ImH0(krm).

If we insert the integral representation (A.1), we get

u = uinc − 1

K
∞∑

m=−∞
eiβms

∫ ∞

−∞

e−kγ(t)|y|

γ(t)
eik(x−ms)t dt.

Now use the Poisson summation formula (B.1) to get

u = uinc − 2

∞∑
m=−∞

eikr cos(θ−sgn(y)ψm)

ksK sinψm
,(3.8)

where we have used γ(βm/k) = −i sinψm. Note that −iψm is real and positive if
|βm/k| > 1, and so the terms in the sum for these values of m decay as |y| → ∞. The
far field involves only those m for which m ∈ M and thus, as y → ±∞,

u ∼ uinc − 2
∑
m∈M

eikr cos(θ∓ψm)

ksK sinψm
.(3.9)

The scattered field, which is symmetric about the x-axis, thus consists of a number
of plane waves, that number increasing as ks increases. In y > 0, these waves make
angles ψm with the positive x-axis. For sufficiently small ks there is just one plane
wave corresponding to m = 0.

Resonance. For large j we have

(Ij + I−j)H0(kjs) ∼ (eijβs + e−ijβs)

√
2

πjks
ei(kjs− 1

4π),

and so the sum in (3.6) fails to converge if (k ± β)s = 2nπ for some integer n. This
condition corresponds to βn = ±k for some integer n, which implies that ψn = 0 or
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ψn = π. An alternative expression for σ(ψ) is given in (C.1), which shows that as ψn
approaches 0 or π,

K ∼ σ(ψ) ∼ 2(ks sinψn)
−1.

Such a situation is termed resonance, and all the coefficients Bm tend to zero in this
limit. The field is not zero, though. Indeed, from (3.8) we have

u = uinc − eikx cosψn

in this limit, so that the scattered field reduces to a wave propagating along the
grating, either towards x = ∞ (ψn = 0) or towards x = −∞ (ψn = π). For simplicity,
we will exclude the possibility that ks is an integer multiple of π so that we cannot
satisfy cosψn = −1 and cosψm = 1 simultaneously.

4. Semi-infinite grating. Suppose now that we have a semi-infinite grating of
scatterers located along the positive x-axis at (x, y) = (ms, 0), m = 0, 1, 2, . . . . Again,
as the scatterers are identical, we have fm ≡ f0. Then, the scattered field is given
from (2.1) by

usc =

∞∑
n=0

AnH0(krn),(4.1)

where the coefficients An are found to satisfy

An − f0

∞∑
m=0
m�=n

AmH0(ks|m− n|) = f0In, n = 0, 1, 2, . . . ,(4.2)

which is equivalent to [12, (3.1-1)] (apart from a missing An) and [20, (41)]. If we
write An = InB0 +Cn, where B0 = −K−1 is the solution to the corresponding infinite
grating problem, then we find that, for n = 0, 1, 2, . . . ,

Cn − f0

∞∑
m=0
m�=n

CmH0(ks|m− n|) =
f0
K

∞∑
j=n+1

In−jH0(kjs).(4.3)

Both (4.2) and (4.3) can be written in terms of Toeplitz matrices, which can be
inverted either directly using numerical truncation or via the discrete Wiener–Hopf
technique as described in Appendix E. Note that in order to compute the slowly
convergent sum on the right-hand side of (4.3) we use (C.2).

For large n, the sum over j on the right-hand side of (4.3) satisfies

∞∑
j=n+1

In−jH0(kjs) ∼ −
√

2

πkns

e−
1
4 iπeiksn

[1 − (−1)qe−i(k−β)s/2]
,

where we have used the asymptotic form for the Hankel function with large argument
and (D.1), and q is such that 2qπ < (k − β)s < 2(q + 1)π (i.e., βq < k < βq+1).
One might expect, therefore, that Cn = O(n−1/2) as n → ∞. In fact, calculations
show that Cn = O(n−3/2) as n → ∞. The same decay rate is observed in [22]
and is consistent with behavior in the equivalent half-plane problem. The reason for
this faster-than-expected decay is the presence of the phase exp(iksn) in the large n
behavior of the right-hand side; see (E.8), (E.10), and (E.12).
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The far field. The approximation Cm = 0 leads to what is known as the Kirch-
hoff solution. In this case, (4.1) becomes, after the substitution of the integral repre-
sentation for the Hankel function given by (A.1) and use of (B.2),

uK
sc =

i

πK
∫ ∞

−∞



e−kγ(t)|y|

γ(t)

eikxt

1 − eis(β−kt) dt.

The total field is given by

usc = uK
sc −

i

π

∫ ∞

−∞

e−kγ(t)|y|

γ(t)
eikxt

∞∑
n=0

Cne
−iknst dt.

From (F.1), for −π < θ < π,

uK
sc(r, θ) ∼

ei(kr− 1
4π)

K(eiks(cosψ−cos θ) − 1)

√
2

πkr
−

∑
m∈M
ψm>|θ|

2eikr cos(|θ|−ψm)

ksK sinψm
as kr → ∞,

(4.4)

with the addition of the correction term Ĩ given by (F.2) when |θ| is close to ψp, and

usc ∼ uK
sc +

√
2

πkr
ei(kr− 1

4π)
∞∑
n=0

Cne
−ikns cos θ.(4.5)

Just as in the infinite grating problem, the scattered field is symmetric about the
x-axis. To simplify the discussion of the far field we will assume that y > 0 (i.e.,
0 < θ < π). If we define

H̃(kr) =

√
2

πkr
ei(kr− 1

4π)

and

g(θ, ψ) =
1

K(eiks(cosψ−cos θ) − 1)
+

∞∑
n=0

Cne
−ikns cos θ,(4.6)

then we have

usc ∼ g(θ, ψ)H̃(kr) −
∑
m∈M
ψm>θ

2eikr cos(θ−ψm)

ksK sinψm
.(4.7)

The far field thus consists of a circular wave of “amplitude” g(θ, ψ) and a set of plane
waves. These plane waves propagate in the same directions as for the infinite grating
but do not exist everywhere. The plane wave making an angle ψm with the positive
x-axis is found only in the sector θ < ψm. It is apparent that the coefficients Cn
affect only the circular wave, but that the plane wave field is determined solely by the
Kirchhoff solution. In the numerical results presented below we will thus focus only
on the circular wave.

The lines θ = ψm are known as shadow boundaries, and the circular wave becomes
infinite as the shadow boundaries are approached. In fact near these lines we should
add a term to g(θ, ψ) given from (F.2) by

g̃(r, θ, ψ) =
i(1 + 2iζpe

−iζ2pF (ζp))

2ksK sin 1
2 (θ − ψp) sinψp

,
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Fig. 4.1. The amplitude of the circular wave, |g(θ, ψ) + g̃(r, θ, ψ)|, for three different scatterers
when ka = 0.05, ks = 2, kr = 20, and ψ = π/4. The solid line corresponds to an array of circles of
radius a, the dashed line corresponds to ellipses with a/b = 2, and the dash-dot line corresponds to
plates of length 2a.

where ζp =
√

2kr sin 1
2 |θ − ψp| and F is the Fresnel integral defined in (F.3). The

combination g+ g̃ is bounded as θ → ψp for any r, but the limit is different from each
side. Since F (0) = 1

2

√
π exp(iπ/4), the discontinuity in g + g̃ as θ passes through ψp

exactly cancels the extra residue contribution that appears in the sum in (4.7) as the
shadow boundary is crossed.

Hills and Karp [12] introduced the characteristic angles ψm(0). These are the real
scattering angles when the incident wave angle is zero, i.e.,

ψm(0) = arccos

(
1 +

2mπ

ks

)
, m = −[ks/π], . . . ,−1, 0.

It follows from (4.6) and (E.13) that in the full solution the circular wave vanishes in
these directions, i.e., g(ψm(0), ψ) = 0. Hills and Karp state this result only for large
ks, but it is true for any value of ks, provided that the Wiener–Hopf factorization
described in Appendix E exists. Calculations in [22] suggest that this result is true
for moderate values of ks (about 3.5) but perhaps not for small ks (about 0.7). Our
calculations based on (4.3) indicate that g(0, ψ) = 0 for all ks. (For ks < π there is
only one characteristic angle, namely, θ = 0.)

In Figures 4.1–4.3 we show as polar plots the amplitude of the circular wave,
|g(θ, ψ) + g̃(r, θ, ψ)|, for three different scatterers when ka = 0.05, ψ = π/4, and
kr = 20. In Figure 4.1, ks = 2 and the scatterers are fairly close together, whereas
in Figure 4.3, ks = 10 and the scatterers are well separated. Figure 4.2 represents an
intermediate case with ks = 5. In each case the three different (discontinuous) curves
correspond to an array of circles of radius a (solid lines), ellipses with semimajor axis
a and semiminor axis 1

2a (dashed lines), and plates of length 2a (dash-dot lines). The
quantity f0 is calculated from (2.6) in each case with � = a, 3

4a, and 1
2a, respectively.

It can be seen that the general form of each of the curves is the same but that cir-
cles produce the diffracted wave with the largest amplitude, while the plates produce
the smallest effect. The scales on the three figures are not the same, and it is clear
that the amplitude of the diffracted wave generally diminishes as ks increases (though
not necessarily for a given observation angle). The numerical results were obtained by
direct truncation of (4.3) and checked against (E.10). In order to represent the zeros
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Fig. 4.2. The amplitude of the circular wave, |g(θ, ψ) + g̃(r, θ, ψ)|, for three different scatterers
when ka = 0.05, ks = 5, kr = 20, and ψ = π/4. The solid line corresponds to an array of circles of
radius a, the dashed line corresponds to ellipses with a/b = 2, and the dash-dot line corresponds to
plates of length 2a.

-0.4 -0.2 0.2 0.4

0.1

0.2

0.3

0.4

0.5

Fig. 4.3. The amplitude of the circular wave, |g(θ, ψ) + g̃(r, θ, ψ)|, for three different scatterers
when ka = 0.05, ks = 10, kr = 20, and ψ = π/4. The solid line corresponds to an array of circles
of radius a, the dashed line corresponds to ellipses with a/b = 2, and the dash-dot line corresponds
to plates of length 2a.

in the directions ψm(0) with reasonable accuracy, a 200×200 system of equations was
used, though the main features of the solution are accurately represented if a much
smaller truncation is used.

In Figure 4.1 there is just one predominant scattering direction corresponding to
the direction of the incident wave, and the amplitude of the wave is zero for θ =
ψ0(0) = 0. In Figure 4.2 there are two predominant scattering directions correspond-
ing to ψ0 = π/4 and ψ−1 = arccos(1/

√
2−2π/5) ≈ 0.685π. The amplitude of the wave

is zero in the directions ψ0(0) = 0 and ψ−1(0) = arccos(1 − 2π/5) ≈ 0.583π. In Fig-
ure 4.3 there are three predominant scattering directions corresponding to ψ0 = π/4,
ψ−1 = arccos(1/

√
2− π/5) ≈ 0.475π, and ψ−2 = arccos(1/

√
2− 2π/5) ≈ 0.685π. The

amplitude of the wave is zero in the directions ψ0(0) = 0, ψ−1(0) = arccos(1−π/5) ≈
0.379π, ψ−2(0) = arccos(1−2π/5) ≈ 0.583π, and ψ−3(0) = arccos(1−3π/5) ≈ 0.846π.
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Inward and outward resonance. For fixed n the sum on the right-hand side
of (4.3) converges unless (k − β)s = 2mπ for some integer m (in other words, unless
ψm = 0 for some integer m). Following Hills and Karp [12], we call this inward
resonance. We also use the term outward resonance for the case when ψm = π for
some integer m. In either situation 1/K = 0. Provided we do not have inward
resonance, Cn → 0 as n→ ∞.

For outward resonance, we get simply Cn = 0 and

usc = uK
sc = − 1

K
∞∑
m=0

ImH0(krm) =
i

πK
∫ ∞

−∞



e−kγ(t)|y|

γ(t)

eikxt

1 − eis(β−kt) dt.

As ψn → π we have K ∼ 2/(ks sinψn), and in order to find the singular behavior
of the integral in this limit (which corresponds to one of the poles of the integrand
coinciding with the branch point of γ at t = −1; the branch cut extending to −i∞)
we deform the contour so that it passes above the pole at βn/k and thus pick up
a contribution 2πie−ikx/(ks sinψn), the remaining integral being finite. Thus, for
outward resonance, we obtain

usc = −e−ikx

in agreement with [12, (3.6-1)].
In the inward resonance case ψn → 0, the same arguments show that the Kirchhoff

solution uK
sc approaches −eikx, but the region of existence shrinks to the line θ = 0,

and this no longer represents the total scattered field; see [11]. We have not considered
the case where inward and outward resonance occur together (which can only happen
if ks is an integer multiple of π). Some results for this case can be found in [20].

5. Semi-infinite strip grating. Here we will demonstrate that the analysis
given in [22, 23] for a semi-infinite strip grating can be reduced to the general form
given in section 4. Consider first an infinite set of strips Sn = (ns − a, ns + a),
n = 0,±1,±2, . . . (s > 2a), on which we have u = 0 and write S =

⋃∞
n=−∞ Sn. We

wish to solve the Helmholtz equation in y > 0 with

∂usc

∂y
= 0 on y = 0, x 	∈ S,

usc = −eiβx on y = 0, x ∈ S.

Define vsc(x) ≡ ∂usc/∂y|y=0. Then we have the integral equation∫
S

vsc(ξ)G(x− ξ, 0) dξ = −eiβx, x ∈ S,

where G(X,Y ) = − 1
2 iH0(k

√
X2 + Y 2) is the free-space Green’s function. Equiva-

lently, since vsc(ξ +ms) = Imvsc(ξ),

∞∑
m=−∞

Im

∫ a

−a
vsc(ξ)G(x− ξ −ms, 0) dξ = −eiβx, |x| < a,

which can be written∫ a

−a
vsc(ξ)Gβ(x− ξ, 0) dξ = −eiβx, |x| < a,(5.1)
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where we have defined

Gβ(X,Y ) =

∞∑
m=−∞

ImG(X −ms, Y ) = − i

ks

∞∑
m=−∞

eik|Y | sinψmeiβmX

sinψm

using (B.1). The scattered field is then represented by

usc(x, y) =

∫
S

vsc(ξ)G(x− ξ, y) dξ =

∫ a

−a
vsc(ξ)Gβ(x− ξ, y) dξ.

Now consider a semi-infinite set of strips Sn = (ns − a, ns + a), n = 0, 1, 2, . . .
(s > 2a), and write S+ =

⋃∞
n=−∞ Sn. We have∫

S+

v+
sc(ξ)G(x− ξ, 0) dξ = −eiβx, x ∈ S+,

and

u+
sc(x, y) =

∫
S+

v+
sc(ξ)G(x− ξ, y) dξ.(5.2)

Write u+
sc = φ+ usc and ν(x) ≡ ∂φ/∂y|y=0. Then the integral equation becomes

∞∑
m=0

∫ a

−a
ν(ξ +ms)G(x− ξ −ms, 0) dξ +

∫ a

−a
vsc(ξ)G

+
β (x− ξ, 0) dξ = −eiβx, x ∈ S+,

(5.3)

where we have defined

G+
β (X,Y ) =

∞∑
m=0

ImG(X −ms, Y ) = − 1

2π

∫ ∞

−∞



e−kγ(t)|Y |

γ(t)

eikXt

1 − eis(β−kt) dt,(5.4)

using (B.2). Equation (5.3) is the starting point for the numerical calculations given
in [22, 23]. Alternatively, using (5.1),

∞∑
m=0

∫ a

−a
ν(ξ +ms)G(x− ξ −ms, 0) dξ =

∫ a

−a
vsc(ξ)G

−
β (x− ξ, 0) dξ, x ∈ S+,

(5.5)

where G−
β = Gβ −G+

β .
Under the assumption that ka
 1, we make the approximations (as in [22, 23])

vsc(x) =
2iB

π
√
a2 − x2

, ν(x+ms) =
2iCm

π
√
a2 − x2

, m = 0, 1, 2, . . . ,

with |x| < a in all cases. To determine B we average (5.1) so that

2iB

π

∫ a

−a

∫ a

−a

Gβ(x− ξ, 0)√
a2 − ξ2

dξ dx = −
∫ a

−a
eiβx dx = − 2

β
sinβa ≈ −2a

or

B = −
( ∞∑
m=−∞

ImGm
)−1

,(5.6)
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where we have defined

Gn =
i

πa

∫ a

−a

∫ a

−a

G(x− ξ − ns, 0)√
a2 − ξ2

dξ dx,(5.7)

for which approximate values, valid for ka
 1, can be derived; see (G.1) and (G.2).
To determine Cm we average (5.5) so that for each n = 0, 1, 2, . . .

∞∑
m=0

Cm

∫ ns+a

ns−a

∫ a

−a

G(x− ξ −ms, 0)√
a2 − ξ2

dξ dx = B

∫ ns+a

ns−a

∫ a

−a

G−
β (x− ξ, 0)√
a2 − ξ2

dξ dx

or

∞∑
m=0

CmGm−n = B

−1∑
m=−∞

ImGm−n,

which, once B is determined from (5.6), is an infinite system of algebraic equations
for the unknowns.

If we substitute the approximate values for Gn (n > 0) from (G.2), we get B =
−1/(G0 + σ(ψ)), and then

Cn +
1

G0

∞∑
m=0�=n

CmH0(k|n−m|s) = − 1/G0

G0 + σ(ψ)

∞∑
j=n+1

In−jH0(kjs),(5.8)

which is of exactly the same form as (4.3), since G0 = −1/f0 (compare (G.1) and (2.6)
with � = a/2).

The field is then given, from (5.2), by

u+
sc(x, y) =

∫
S+

(ν(ξ) + vsc(ξ))G(x− ξ, y) dξ

=
2i

π

∞∑
m=0

Cm

∫ a

−a

G(x− ξ −ms, y)√
a2 − ξ2

dξ +
2iB

π

∫ a

−a

G+
β (x− ξ, y)√
a2 − ξ2

dξ.

The last integral is, using (5.4),

− 1

2π

∫ ∞

−∞



∫ a

−a

e−ikξt dξ√
a2 − ξ2

eikxt−kγ(t)|y|

γ(t)(1 − eis(β−kt))
dt = −1

2

∫ ∞

−∞



J0(kat)e
ikxt−kγ(t)|y|

γ(t)(1 − eis(β−kt))
dt

and similarly for the first integral so that

u+
sc(x, y) = − i

π

∞∑
m=0

Cm

∫ ∞

−∞

e−kγ(t)|y|

γ(t)
J0(kat)e

ik(x−ms)t dt

− iB

π

∫ ∞

−∞



e−kγ(t)|y|

γ(t)

J0(kat)e
ikxt

1 − eis(β−kt) dt,

which, via the results in Appendix F and utilizing the fact that ka 
 1, leads to
precisely the same far-field asymptotics as that given in (4.5).

Note that exactly the same far-field is generated for a semi-infinite array of angled
plates, since f0 is independent of the plate orientation. Indeed, the plates in the array
may all be oriented in different directions.
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6. Conclusion. Using a mixture of analysis (discrete Wiener–Hopf) and compu-
tation, we have studied the problem of acoustic scattering by a semi-infinite periodic
array of identical isotropic point scatterers, i.e., scatterers which are small compared
to the incident wavelength and on which Dirichlet boundary conditions are applied.
The actual geometry is characterized by a single parameter in the equations, related
to the single-body scattering problem. Numerical results have been presented which
show the effect of the shape of the scatterer on the form of the circular wave diffracted
by the end of the array.

Computations for semi-infinite arrays under less restrictive assumptions than that
of isotropic point scatterers do not appear to be available in the literature, and we
are currently extending the techniques developed in this paper to study problems in
which the size of the individual scatterers is not necessarily small, and to include
boundary conditions other than those of Dirichlet type.

Appendix A. Integral representations for Hankel functions. We start
from the integral representation, valid for 0 < θ < π (i.e., y > 0),

H0(kr) = − i

π

∫ ∞+iπ

−∞
eikx coshαeky sinhα dα.

This integral can be converted into a single integral along the real axis. We first split
the integral into three parts, namely (−∞, 0), (0, iπ), and (iπ,∞+ iπ), and make the
substitutions α = − arccosh t, α = i arccos t, and α = iπ + arccosh(−t), respectively.
This leads, noting that H0(kr) is symmetric in y, to

H0(kr) = − i

π

∫ ∞

−∞

e−kγ(t)|y|

γ(t)
eikxt dt,(A.1)

valid for all y, where

γ(t) =

{
−i
√

1 − t2, |t| ≤ 1,√
t2 − 1, |t| > 1.

(A.2)

Appendix B. Summation formulas. We can define two generalized functions
by

∞∑
m=1

cosmu = −1

2
+ π

∞∑
m=−∞

δ(u− 2mπ),

∞∑
m=1

sinmu =
1

2
cot

1

2
u

(see [9, section 2.4] for more details), from which we can construct the generalized
functions

∞∑
m=−∞

e±imu = 2π

∞∑
m=−∞

δ(u− 2mπ)

and

∞∑
m=0

e±imu =
1

1 − e±iu
+ π

∞∑
m=−∞

δ(u− 2mπ).



1048 C. M. LINTON AND P. A. MARTIN

Hence

∞∑
m=−∞

∫ ∞

−∞
f(u)e−imu du = 2π

∞∑
m=−∞

f(2mπ),(B.1)

which is the Poisson summation formula, and

∞∑
m=0

∫ ∞

−∞
f(u)e−imu du =

∫ ∞

−∞
− f(u)

1 − e−iu
du+ π

∞∑
m=−∞

f(2mπ) =

∫ ∞

−∞



f(u)

1 − e−iu
du,

(B.2)

where the notation means that the contour passes below the poles of the integrand.

Appendix C. Schlömilch series. The quantity σ(ψ) is defined by (3.6). An
alternative representation is

σ(ψ) = −1 − 2i

π

(
C + ln

ks

4π

)
+

2

ks sinψ0
+

∞∑
m=−∞
m�=0

(
2

ks sinψm
+

i

π|m|
)
,(C.1)

where C ≈ 0·5772 is Euler’s constant. The efficient computation of this series is
discussed in [16].

Another important series is

S =
∞∑
m=1

e−imβsH0(kms).

To derive an alternative representation more convenient for computation we write

2S − σ =

∞∑
m=1

(e−imβs − eimβs)H0(kms)

=

∞∑
m=−∞

(e−i|m|βs − e−imβs)H0(k|m|s) =

∞∑
m=−∞

f(2mπ),

where

f(u) = (e−i|u|βs/2π − e−iuβs/2π)H0(k|u|s/2π).

The Poisson summation formula (B.1) then gives

2S − σ =
1

2π

∞∑
m=−∞

∫ ∞

−∞
(e−i|u|βs/2π − e−iuβs/2π)H0(k|u|s/2π)e−imu du

=
1

s

∞∑
m=−∞

∫ ∞

−∞
(e−i|v|β − e−ivβ)H0(k|v|)e−im2πv/s dv

(C.2)

=
1

s

∞∑
m=−∞

∫ ∞

0

(e−ivβ−m − eivβm)H0(kv) dv

=
4

πks

(
1
2π − ψ

sinψ
+

∞∑
m=1

[ 1
2π − ψm

sinψm
+

1
2π − ψ−m
sinψ−m

])
,
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where we have used [10, equations 6.671(7), (11)]. Note that

1
2π − ψm

sinψm
+

1
2π − ψ−m
sinψ−m

∼ βks2

4m2π2

(
πi − 2 − 2 ln

(
4mπ

ks

))
+O(m−3) as m→ ∞.

As ψp → 0 for some integer p,

S ∼ 2(ks sinψp)
−1,(C.3)

but as ψp → π, S is bounded since the singularity in the sum in (C.2) exactly cancels
that in σ.

Appendix D. Asymptotics of a sum. Consider the sum

Sp =

∞∑
j=p+1

eijθ

j1/2
.

Denote by Γp the contour which runs from i(p+ 1
2 )−∞ to i(p+ 1

2 ) +∞ and is closed
in the upper half-plane. Then, provided 0 < θ < 2π,

Sp =
1

2πi

{
−2πi

1
2

∫
Γp

eθt dt

t
1
2 (1 − e2πt)

}
= − 1

i
1
2

∫ i(p+ 1
2 )+∞

i(p+ 1
2 )−∞

eθt dt

t
1
2 (1 − e2πt)

= −eiθ(p+ 1
2 )

i
1
2

∫ ∞

−∞

eθu du

[u+ i(p+ 1
2 )]

1
2 (1 + e2πu)

∼ ieiθ(p+ 1
2 )

p
1
2

∫ ∞

−∞

eθu du

1 + e2πu
=

ieiθ(p+ 1
2 )

2p
1
2 sin 1

2θ
=

−p− 1
2 eiθp

1 − e−
iθ
2

as p→ ∞.

If 2mπ < θ < 2(m+ 1)π,

∞∑
j=p+1

eijθ

j
1
2

=

∞∑
j=p+1

eij(θ−2mπ)

j
1
2

∼ −p− 1
2 eiθp

1 − (−1)me−
iθ
2

as p→ ∞.(D.1)

Appendix E. Inversion of symmetric Toeplitz matrices. Each of (4.2),
(4.3), and (5.8) is of the form

∞∑
m=0

TnmXm = Rn, n = 0, 1, 2, . . . ,(E.1)

i.e., TX = R, where T is a Toeplitz matrix whose elements are given by Tnm =
Tmn = tn−m with

tm =

{
1, m = 0,

−f0H0(k|m|s), otherwise.

The matrix T can be inverted using the discrete Wiener–Hopf technique; the sym-
metry of T is not required for this approach but it simplifies the analysis. Here we
follow the method as described in [27]. No fully rigorous theory appears to exist which
includes the particular matrix T that occurs in our problem. If the elements of the
matrix satisfied

∑ |tm| <∞, or the function
∑
tm exp(imθ) <∞ for all θ ∈ (−π, π),
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then we could appeal to the general theory given in [4], [15, section 13]. It is assumed
throughout this appendix that we are dealing with a nonresonant case.

First we rewrite (E.1) as

∞∑
m=−∞

tn−mX+
m = R+

n +R−
n , n = 0,±1,±2, . . . ,

where X+
n and R+

n are equal to Xn and Rn, respectively, when n ≥ 0, and are zero
if n < 0 and R−

n = 0 for n ≥ 0, but are otherwise unknown. If we multiply the nth
equation by zn and then sum over n, we get, after writing n = m+ν on the left-hand
side,

∞∑
ν=−∞

∞∑
m=−∞

tνX
+
mz

m+ν =

∞∑
n=−∞

R+
n z

n +

∞∑
n=−∞

R−
n z

n,

which can be written

K(z)X+(z) = R+(z) +R−(z),(E.2)

where X+(z) =
∑∞
n=−∞X+

n z
n =

∑∞
n=0Xnz

n, R+(z) =
∑∞
n=0Rnz

n, R−(z) =∑−1
n=−∞R−

n z
n, and

K(z) =

∞∑
ν=−∞

tνz
ν = 1 − f0

∞∑
ν=−∞
ν �=0

H0(ks|ν|)zν .

Note that

K(e±iks cos θ) = 1 − f0σ(θ),(E.3)

where σ(θ) is given by either (3.6) or (C.1), and, in particular, K(e±iβs) = −f0K,
where K is defined by (3.7). Here X+(z) is analytic in some disk centered on the
origin, and it is reasonable to assume that the radius of convergence is greater than or
equal to one. Similar remarks pertain to R+(z). On the other hand, we can assume
that R−(z) is analytic in the region exterior to the unit disk. One device that can be
used in scattering problems is to let the wavenumber k have a small positive imaginary
part, which is equivalent to allowing for a small amount of dissipation in the acoustic
medium. This will ensure that the plus functions are analytic for |z| < ρ2 and the
minus functions are analytic for |z| > ρ1, with ρ1 < 1 < ρ2. The solution is then
obtained by letting the imaginary part of k tend to zero at the end of the calculation.
This also takes care of the fact that in our case K(z) actually has singularities on the
unit circle, namely inverse square-root branch points at z = exp(±iks).

The solution method is based on a factorization K(z) = K+(z)K−(z), where
K+(z) (resp., K−(z)) is analytic and nonzero inside (resp., outside) and on |z| = 1.
Given such a factorization we have lnK(z) = lnK+(z) + lnK−(z) = q+(z) + q−(z),
say, where q+(z) (resp., q−(z)) is analytic inside (resp., outside) and on |z| = 1. From
Cauchy’s integral formula, writing q = q+ + q−,

q−(z) = q−(∞) − 1

2πi

∮
|ζ|=1

q(ζ)

ζ − z
dζ, |z| > 1.
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Here we must assume that it is possible to choose a single-valued branch of lnK(z) in
some neighborhood of the unit circle. Note that K(z) = K(1/z), so we can normalize
the factorization by requiring that K+(z) = K−(1/z), in which case q+(z) = q−(1/z).
It follows that

q+(z) = q+(0) − 1

2πi

∮
|ζ|=1

zq(ζ)

zζ − 1
dζ, |z| < 1.

The required factorization of K(z) (which is unique) is thus given by

K+(z) =
1

λ0
exp

(
1

2πi

∮
|ζ|=1

z lnK(ζ)

1 − zζ
dζ

)
, |z| < 1,

(E.4)

K−(z) =
1

λ0
exp

(
1

2πi

∮
|ζ|=1

lnK(ζ)

z − ζ
dζ

)
, |z| > 1,

where λ0 = e−q+(0). However, from Cauchy’s integral formula

q+(0) =
1

2πi

∮
|z|=1

q+(z)

z
dz =

1

4πi

∮
|z|=1

q+(z) + q−(z)

z
dz,

and thus we have

λ0 = exp

(
− 1

4πi

∮
|z|=1

lnK(z)

z
dz

)
.

With this factorization we can rearrange (E.2) as follows:

K+X+ −
(
R+

K−

)
+

=

(
R+

K−

)
−

+
R−
K−

,(E.5)

in which we have further separated the function R+(z)/K−(z) into the sum of a
function analytic inside |z| = 1 and one analytic outside this circle. Liouville’s theorem
then implies that both sides must equal a constant. The sum-split of R+/K− is
performed so that (R+/K−)− tends to zero as z → ∞. We also have R−/K− → 0
since K−(z) tends to a nonzero constant in this limit, and so both sides of (E.5) must
in fact be zero.

We have thus established that X+ = (R+/K−)+/K+ and hence that

X+
m =

1

2πi

∮
|z|=1

(R+/K−)+(z)

K+(z)
z−m−1 dz.

Now (R+/K−)+(z) =
∑∞
n=0Rn(z

n/K−)+(z) and(
zn

K−

)
+

(z) =

∞∑
j=0

a
(n)
j zj with a

(n)
j =

1

2πi

∮
|z|=1

zn−j−1

K−(z)
dz,

the final integral being zero if j > n, since then the integrand is regular and nonzero
for |z| > 1 and decays at infinity faster than 1/z. Thus we have

X+
m =

1

2πi

∞∑
n=0

Rn

∮
|z|=1

n∑
j=0

a
(n)
j

zj−m−1

K+(z)
dz.(E.6)
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Now if we define λµ = a
(n)
n−µ (with λµ = 0 if µ < 0), then

λµ =
1

2πi

∮
|z|=1

zµ−1

K−(z)
dz,

and so λµ, µ = 0, 1, 2, . . . , are the coefficients in the Laurent series for 1/K−(z), i.e.,
[K−(z)]−1 =

∑∞
µ=0 λµz

−µ, from which

1

K+(z)
=

1

K−(1/z)
=

∞∑
µ=0

λµz
µ.(E.7)

Note that λ0 = 1/K+(0), in agreement with (E.4). The coefficients λµ can be calcu-
lated without knowledge of the functions K± since

λµ =
1

µ!

dµ

dzµ

[
1

K+(z)

]
z=0

,

and the right-hand side can be evaluated from (E.4) in terms of the weakly singular
integrals ∫ π

−π
e−imθ ln[K(eiθ)] dθ, m = 0, 1, . . . .

In order to compute K on the unit circle we use (E.3) and (C.1).
The presence of square-root singularities in K(z) at z = exp(±iks) implies, after

letting the imaginary part of k tend to zero, a singularity in K+(z) at z = exp(−iks),
i.e.,

[K+(e−iks)]−1 =

∞∑
µ=0

λµe
−iµks = 0.(E.8)

The function [K+(z)]−1 is smooth everywhere on the unit circle except at the point
z = exp(−iks), where its derivative has a square-root singularity. We thus expect (see
[25, p. 441]) that

λµ = O(µ−3/2) as µ→ ∞.

If (E.7) is substituted into (E.6), we get

X+
m =

1

2πi

∞∑
n=0

Rn

∮
|z|=1

n∑
j=0

λn−jzj−m−1
∞∑
µ=0

λµz
µ dz =

∞∑
n=0

Rn

min(n,m)∑
j=0

λn−jλm−j .

(E.9)

We have thus shown that the elements of the (symmetric) inverse matrix T−1 (written
T−1
mn, m ≥ 0, n ≥ 0) are given by

T−1
mn =

min(m,n)∑
j=0

λn−jλm−j .

The final expression in (E.9) can be rearranged to give

Xm =

∞∑
p=0

m∑
q=0

λpλqRm+p−q.(E.10)
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The method of Hills and Karp [12]. For the particular case of (4.2), we have
Rn = f0In and so

R+(z) =

∞∑
n=0

Rnz
n =

f0
1 − zeiβs

.

This is the analytic continuation of the series into the entire complex plane except the
point z = exp(−iβs). Note that, assuming k to have a positive imaginary part, the
singularity at z = exp(−iβs) is exterior to the unit circle. With A+(z) =

∑∞
n=0Anz

n

we then have

K(z)A+(z) =
f0

1 − zeiβs
+R−(z).(E.11)

Equation (E.11) is [12, (3.1-3)]. It is a single equation for two unknown functions,
namely A+(z) and R−(z).

The split into plus and minus functions can now be carried out more simply than
in the general case. We have

K+(z)A+(z)− f0
K−(e−iβs)(1 − zeiβs)

=
f0

(1 − zeiβs)

(
1

K−(z)
− 1

K−(e−iβs)

)
+
R−(z)

K−(z)
,

and Liouville’s theorem shows that both sides are zero so that

A+(z) =
f0

K+(z)K−(e−iβs)(1 − zeiβs)
.

It follows that

Am =
f0Im

K−(e−iβs)

m∑
q=0

λqI−q = f0Im

∞∑
p=0

λpIp

m∑
q=0

λqI−q

in agreement with (E.10).
Now, since An = InB0 + Cn and B0 = −1/K = f0/K(exp(±iβs)),

∞∑
n=0

Cnz
n ≡ C+(z) =

f0
K−(e−iβs)(1 − zeiβs)

(
1

K+(z)
− 1

K+(e−iβs)

)
.

The coefficients Cn decay at the same rate as λn, i.e.,

Cn = O(n−
3
2 ) as n→ ∞,(E.12)

and for exactly the same reasons. This decay rate for the edge effects was noted in
[20, equation 76]. From (E.8), we have

C+(e−iks) = − f0
K(e−iβs)(1 − ei(β−k)s)

,

or equivalently,

∞∑
n=0

Cne
−inks =

1

K(1 − eiks(cosψ−1))
.(E.13)
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C11
−1

t = cos θ

C2

Fig. F.1. Contours C1 and C2. The dashed lines are branch cuts for the function γ(t), and
the solid circles are zeros of 1 − eis(β−kt) (i.e., t = βm/k).

Appendix F. Asymptotics of an integral. Consider the integral

I(kr) =

∫ ∞

−∞



e−kγ(t)yeikxtf(t)

γ(t)(1 − eis(β−kt))
dt =

∫
C1

f(t)ekrg(t)

γ(t)(1 − eis(β−kt))
dt,

where y = r sin θ > 0,

g(t) = −γ(t) sin θ + it cos θ,

and C1 is the contour shown in Figure F.1. Here the branch of γ(t) (defined for real
t by (A.2)) is indicated by the branch cuts shown in the figure, and f is assumed
regular throughout the complex t-plane. We will assume that |βm/k| 	= 1 holds for
all m so that none of the poles of the integrand coincide with the branch points of γ.
The function g has one simple saddle point in the complex t-plane at t = cos θ and

g(cos θ) = i, g′′(cos θ) = −i/ sin2 θ.

In order to derive the asymptotics of I for large kr we need to deform the contour
C1 into the path of steepest descent. This is the curve on which Imag g = 1, which
passes through the saddle point, making an angle −π/4 with the positive real t-axis.
This curve crosses the real axis again at t = 1/ cos θ. In deforming the contour, we
pick up contributions from the poles on the real axis over which we pass. Only those
poles between −1 and 1 give any contribution in the limit as kr → ∞, the others
leading to exponentially small terms. Hence we can deform the contour back down
to the real axis to produce C2 without affecting the asymptotics.

Hence, as kr → ∞,

I(kr) ∼
∫
C2

f(t)ekrg(t)

γ(t)(1 − eis(β−kt))
dt+ 2πi

∑
m∈M

βm<k cos θ

f(βm/k)e
ikr cos(θ−ψm)

ks sinψm

∼ f(cos θ)ekrg(cos θ)−
1
4πi

−i sin θ(1 − eis(β−k cos θ))

√
2π

kr|g′′(cos θ)|
(F.1)

+ 2πi
∑
m∈M

cosψm<cos θ

f(βm/k)e
ikr cos(θ−ψm)

ks sinψm

=
if(cos θ)ei(kr− 1

4π)

1 − eiks(cosψ−cos θ)

√
2π

kr
+ 2πi

∑
m∈M
ψm>θ

f(βm/k)e
ikr cos(θ−ψm)

ks sinψm
,
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where we have used γ(cos θ) = −i sin θ and the asymptotics of the integral along the
steepest descent contour are given, for example, by [7, equation 4.2.1b]. To obtain
the asymptotics valid for y < 0 we simply replace θ by −θ in (F.1). It is implicit
in the above that the saddle point of g does not coincide with any of the zeros of
1 − eis(β−kt). In other words, we have assumed that |θ| 	= ψm for any integer m.

Uniform asymptotics valid as ψp → |θ| can be obtained; see [7, section 4.4], for
example. A lengthy calculation shows that we must add a term

Ĩ =

√
πei(kr− 1

4π)

ksζp sinψp
sgn(|θ| − ψp)f(βp/k)

(
1 + 2iζpe

−iζ2pF (ζp)
)

(F.2)

to the right-hand side of (F.1). Here ζp =
√

2kr sin( 1
2 ||θ| − ψp|), and

F (v) =

∫ ∞

v

eiu2

du

(
0 < arg u <

1

2
π as u→ ∞

)
(F.3)

is a Fresnel integral. Since (see [3, p. 67])

F (v) ∼ i

2v
eiv2

(
1 +

∞∑
n=1

(2n− 1)!!

(2iv2)n

)
as v → ∞, −1

2
π < arg v < π,

we have

Ĩ ∼ −
√
πei(kr− 1

4π)

2iksζ3
p sinψp

sgn(|θ| − ψp)f(βp/k) as ζp → ∞.

Appendix G. The quantities Gn. From (5.7), we have

Gn =
1

2πa

∫ a

−a

∫ a

−a

H0(k|x− ξ − ns|)√
a2 − ξ2

dξ dx.

For n = 0, with ka
 1, we can approximate this by

G0 ≈ 1

2π2a

∫ a

−a

∫ a

−a

π + 2i(C + ln 1
2k|x− ξ|)√

a2 − ξ2
dξ dx

(G.1)

= 1 +
2iC

π
+

i

π2a

∫ a

−a

∫ a

−a

ln 1
2k|x− ξ|√
a2 − ξ2

dξ dx = 1 +
2i

π

(
C + ln

1

4
ka

)
.

In [22] the O((ka)2) terms in G0 are also evaluated, but this seems to be inconsistent
with the level of approximation being used. For n 	= 0 we use Neumann’s addition
theorem [1, equation 9.1.75], which shows that

H0(k|n|s± k(x− ξ)) =

∞∑
m=−∞

H±m(k|n|s)Jm(k(x− ξ)) ≈ H0(k|n|s)

since ka
 1. Hence

Gn ≈ H0(k|n|s).(G.2)
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Abstract. A mathematical study of the focusing properties of acoustic fields obtained by a
time-reversal process is presented. The case of time-harmonic waves propagating in a nondissipative
medium containing sound-soft obstacles is considered. In this context, the so-called D.O.R.T. method
(decomposition of the time-reversal operator in French) was recently proposed to achieve selective
focusing by computing the eigenelements of the time-reversal operator. The present paper describes
a justification of this technique in the framework of the far field model, i.e., for an ideal time-reversal
mirror able to reverse the far field of a scattered wave. Both cases of closed and open mirrors, that
is, surrounding completely or partially the scatterers, are dealt with. Selective focusing properties
are established by an asymptotic analysis for small and distant obstacles.
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1. Introduction. Acoustic time-reversal has known in the last few years a sig-
nificant growth of interest, covering a large number of applications (medical imaging,
nondestructive testing, etc.). The main idea of this phenomenon is to take advantage
of the reversibility of the wave equation in a nondissipative unknown medium to back-
propagate signals to the sources that emitted them. Today, the physical literature (cf.
[9] for more details) on this topic is quite rich. Meanwhile, some mathematical works
started to deal with different aspects of time-reversal phenomena: see, for instance,
[2, 4] for time-reversal in the time domain, [14] for time-reversal in the frequency
domain, and [15] for time-reversal in random media.

In this work, we present a mathematical analysis of the so-called D.O.R.T. method
(decomposition of the time-reversal operator in French), detailed in [16] to achieve
selective focusing on diffracting obstacles using time-reversal mirrors (TRM) which
are able to emit and receive acoustic waves. In the frequency domain, this method
can be described as follows: the TRM first emits an acoustic wave in a homogeneous
and nondissipative medium containing some unknown obstacles, and then measures
the diffracted field. The measured field is then conjugated (reversing time amounts
to a conjugation when the time dependence is of the form eiωt), and re-emitted. The
time-reversal operator T is the operator obtained by iterating this procedure twice.
The experimental results obtained in [16] show that the number of nonzero (or signifi-
cant) eigenvalues of T is exactly the number of obstacles contained in the propagation
medium. Furthermore, the corresponding eigenvectors generate incident waves that
focus selectively on the obstacles. Our aim here is to present a mathematical justi-
fication of these results related to selective focusing using TRMs; we will show that
these results are not true in general, but do hold for small and distant obstacles with
distinct reflectivities.
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Let us point out that the inverse problem which consists of recovering the location
of the obstacles from the scattering data is not dealt with in this paper. We are
mainly concerned with qualitative properties of the eigenvectors of the time-reversal
operator. The eigenvectors corresponding to significant eigenvalues span some kind
of relevant subspace in the sense that they contain nearly all the information about
the obstacles which can be extracted from the time-reversal operator. The others
span the so-called noise subspace, which represents some kind of quasi-null space.
This point of view meets the basics of the so-called MUSIC algorithm used in signal
processing and imaging, and its generalization, the linear sampling method (LSM),
used in inverse scattering (for a short presentation of these methods, see, for instance,
[3], and for more details, cf. [12]). These methods answer the inverse problem by using
a convenient characterization of the relevant subspace. In the context of scattering,
the link between the scattering data and the unknown locations of the obstacles is
made by means of point sources: if the radiated field produced by a given point
source has a nonzero component in the relevant subspace, the point belongs to one
scatterer, otherwise it is outside. But as mentioned in [3], both MUSIC and LSM
use the noise subspace: the question of recovering the geometric information directly
from the relevant subspace remains open.

The paper is organized as follows. We first deal with a TRM which entirely
surrounds the obstacles. In section 2, we describe the mathematical model used to
analyze time-reversal phenomena in the framework of time harmonic waves in the far
field model, i.e., for an ideal TRM able to reverse the asymptotic behavior at large
distance of a scattered wave. This will in particular lead us to express the time-
reversal operator by means of the far field operator, well known in scattering theory.
Section 3 recalls some results obtained in [14], concerning the global focusing proper-
ties of the eigenvectors of the time-reversal operator. The main result of the paper,
which concerns selective focusing, is given in section 4. It provides a mathematical
justification of the D.O.R.T. method for the problem of scattering by several small
and distant obstacles. In section 5, we generalize the results obtained in the previous
sections to the case of open mirrors (i.e., mirrors which do not completely surround
the scatterers). The main ingredient for the proof of our main result is formula (4.2),
which provides the asymptotic behavior of the scattering amplitude for the diffraction
by many small obstacles. This formula, which is of independent interest, is proved in
the appendix.

2. Mathematical setting of the problem and definition of the time-
reversal operator. Consider a TRM completely surrounding a collection of sound-
soft obstacles, located in a homogeneous medium of celerity c. During the emission
step, the TRM illuminates the obstacles with an incident wave uI which is supposed to
be a Herglotz wave. Such waves are superpositions of planes waves uαI (x) = exp(ikα·x)
of direction α ∈ S2 (S2 denotes the unit sphere in R

3, k = ω/c is the wavenumber,
and ω is the frequency). More precisely, given a directional distribution f ∈ L2(S2),
we suppose that the incident field emitted by the TRM has the form

uI(x) =

∫
S2

f(α)uαI (x) dα =

∫
S2

f(α) eikα·x dα.(2.1)

We assume that the TRM is located far enough from the obstacles, so that its influence
on the diffracted field can be neglected. Moreover, the TRM is supposed to measure
the far field corresponding to the diffracted field.



SELECTIVE ACOUSTIC FOCUSING 1059

Let Ω denote the propagation domain located outside the obstacles and let ν be
the outgoing normal to Ω on its boundary Γ = ∂Ω. When illuminated by the incident
plane wave uαI (x) = eikα·x of direction α ∈ S2, the obstacles generate the diffracted
field uαD that solves the classical Dirichlet exterior problem:⎧⎪⎪⎨

⎪⎪⎩
∆uαD + k2uαD = 0, (Ω)

uαD = −uαI , (Γ)

lim
R−→+∞

∫
SR

∣∣∣∣∂uαD∂ν − ikuαD

∣∣∣∣
2

dx = 0,

where SR is the sphere {x ∈ R
3; ‖x‖ = R} and where ∂uαD/∂ν denotes the radial

derivative of uαD on SR.
It is well known (cf. [7]) that the far field asymptotics of the diffracted field in a

given direction β ∈ S2 is given by the formula

uαD(β‖x‖) =
eik‖x‖

‖x‖ A(α, β) +O(‖x‖−2),

where the bound O(‖x‖−2) is uniform for all β ∈ S2, and where A(α, β) is known as
the scattering amplitude. This function satisfies some remarkable properties (cf. [7]),
which are summarized in the following.

Proposition 2.1. The scattering amplitude A(·, ·) is given by the formula

A(α, β) =
1

4π

∫
Γ

∂uαT
∂ν

(y)uβI (y) dΓy,(2.2)

where uαT = uαI + uαD denotes the total field associated with the incident field uαI .
Furthermore, A(·, ·) defines an analytic function on S2×S2 and satisfies the reciprocity
relation

A(α, β) = A(−β,−α).(2.3)

Remark 1. This reciprocity relation simply states that the behavior of the
diffracted field observed in the direction β when the scatterers are illuminated by
a plane wave of direction α, is identical to its behavior in the direction −α under an
incident plane wave with direction −β. This property is a direct consequence of the
symmetry of the Green function of the diffraction problem (which follows itself from
the self-adjointness of the Dirichlet Laplacian).

Note that in (2.2), the integral actually represents the duality product between
H1/2(Γ) and H−1/2(Γ) since ∂uαT /∂ν belongs to the latter in general. We keep this
simplified notation in what follows.

By linearity, it follows from the results above that when illuminated by the Her-
glotz wave (2.1) associated with a given directional distribution f ∈ L2(S2), the
scattering obstacles generate the diffracted field uD

uD(x) =

∫
S2

f(α)uαD(x) dα.

Furthermore, the asymptotic behavior of uD is given by the formula

uD(β‖x‖) =
eik‖x‖

‖x‖ Ff(β) +O(‖x‖−2),
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where the far field Ff(β) in the direction β ∈ S2 is simply given by the relation

Ff(β) =

∫
S2

A(α, β) f(α) dα.(2.4)

The integral operator F : L2(S2) −→ L2(S2) with kernel A(·, ·) is known in the
literature as the far field operator. Its properties are given in the following.

Proposition 2.2. The far field operator F : L2(S2) −→ L2(S2) defined by
equation (2.4) is a compact and normal operator. Its adjoint is the operator F ∗ :
L2(S2) −→ L2(S2) defined by

F ∗f = RFRf ∀f ∈ L2(S2),(2.5)

where R is the symmetry operator defined by Rf(α) = f(−α) ∀α ∈ S2.
Proof. The compactness of the integral operator F follows immediately from the

analyticity of its kernel A(·, ·). The fact that F is a normal operator is a well-known
result, which is proved, for instance, in [5] (see Corollary 2.5). The adjoint F ∗ of F
is the integral operator with kernel

A∗(α, β) = A(β, α) = A(−α,−β),

where we have used the reciprocity relation (2.3). Formula (2.5) follows.
Remark 2. In fact, in [5], it is proved more precisely that

FF ∗ = F ∗F =
2π

ik
(F − F ∗).(2.6)

Since the far field operator F is related to the scattering matrix by the relation
S = I + (ik/2π)F , formula (2.6) can be seen as an equivalent formulation of the
fact that the scattering operator S is unitary, which is a classical result in scattering
theory (cf. [13]).

We are now able to give a rigorous definition of the time-reversal operator. During
the time-reversal process, when a Herglotz wave associated with a density f ∈ L2(S2)
is emitted by the TRM, the far field corresponding to the diffracted field is measured,
conjugated, and then re-emitted by the TRM. The new emission is characterized by
the Herglotz wave associated with the density g ∈ L2(S2) defined by

g = RFf.

In this relation, the presence of the symmetry operator R is due to the fact that
during the time-reversal process, the far field measured in a given direction β ∈ S2

is used to define the new incident plane wave in the direction −β. The time-reversal
operator T is then obtained by iterating this scheme once again, and thus, we have

Tf = RFg = RFRFf.

Thanks to (2.5) and using the fact that F is a normal operator, we finally get the
following.

Proposition 2.3. The time-reversal operator T : L2(S2) −→ L2(S2) is given by

T = F ∗F = FF ∗.(2.7)
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It is the integral operator with kernel

t(α, β) =
1

4π

∫
Γ×Γ

j0(k‖y − z‖) ∂u
α
T

∂ν
(y)

∂uβT
∂ν

(z) dΓy dΓz,(2.8)

where uαT = uαI + uαD denotes the total field associated with the incident field uαI , and
j0(ξ) = sin(ξ)/ξ is the spherical Bessel function of order 0.

Proof. Since (2.7) has been already proved, we only have to show the second part
of the proposition. From (2.7), it follows that T is the integral operator with kernel

t(α, β) =

∫
S2

A(α, γ)A(β, γ) dγ.(2.9)

Substituting expression (2.2) of the scattering amplitude in the above relations and
inverting the integrals over S2 with the integrals over Γ, we find that

t(α, β) =
1

(4π)2

∫
Γ×Γ

(∫
S2

uγI (y)u
γ
I (z) dγ

)
∂uαT
∂ν

(y)
∂uβT
∂ν

(z) dΓy dΓz.

Equation (2.8) follows then from the identity (cf. [1, p. 155])∫
S2

uγI (y)u
γ
I (z) dγ =

∫
S2

eikγ·(z−y) dγ = 4πj0(k‖y − z‖).(2.10)

3. Global focusing. The time-reversal operator T = F ∗F : L2(S2) −→ L2(S2)
is clearly a positive and self-adjoint operator. Moreover, by Proposition 2.2, it is
also a compact operator. Besides the value 0, its spectrum is thus constituted of a
finite or countable sequence of positive eigenvalues admitting 0 as the only possible
accumulation point. In this section, we see how these eigenvectors can be used to
generate incident waves that focus acoustic on the diffracting obstacles. These global
focusing results (namely Propositions 3.2 and 3.3) actually are a reformulation of
results obtained in [14]. First, we recall a classical result from linear operators theory
(see, for instance, [20, p. 442]).

Proposition 3.1. Let N be a compact and normal on a Hilbert space H. If
λ1, λ2, . . . is the sequence of all nonzero eigenvalues of N , arranged such that |λ1| ≥
|λ2| ≥ · · · , and if ϕ1, ϕ2, . . . is a corresponding orthonormal sequence of eigenvectors,
then |λ1|2 ≥ |λ2|2 ≥ · · · is the sequence of all nonzero eigenvalues of N∗N = NN∗,
and ϕ1, ϕ2, . . . is a corresponding orthonormal sequence of eigenvectors.

This proposition shows that the nonzero eigenvalues of the time reversal operator
T = F ∗F = FF ∗ are exactly the positive numbers |λ1|2 ≥ |λ2|2 ≥ · · · , where
the complex numbers (λp)p≥1 denote the nonzero eigenvalues of the normal compact
far field operator F . Furthermore, the corresponding eigenvectors (fp)p≥1 of F are
exactly the eigenvectors of T = F ∗F . Consequently, it suffices to analyze the focusing
properties of the eigenvectors of the far field F to obtain the same results for the time
reversal operator T .

Let us first deal with the largest eigenvalue of the far field operator. Then, we
have the following.

Proposition 3.2. Let λ1 be the largest eigenvalue (in modulus) of F , and let
f1 ∈ L2(S2) be an eigenvector of F associated with λ1. Then,

sup
f∈L2(S2) , f �=0

‖Ff‖2
L2(S2)

‖f‖2
L2(S2)

=
‖Ff1‖2

L2(S2)

‖f1‖2
L2(S2)

= |λ1|2.
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In other words, the incident Herglotz wave u1
I(x) =

∫
S2 f1(α) eikα·x dα is, among

all the possible Herglotz waves, the one that maximizes the energy scattered by the
obstacles.

Proof. The proposition is a straightforward consequence of the Min-Max principle.
Indeed, applying this principle to the positive self-adjoint and bounded operator T =
F ∗F , we can write that the largest eigenvalue |λ1|2 of T satisfies

|λ1|2 = sup
f∈L2(S2) , f �=0

(Tf, f)L2(S2)

‖f‖2
L2(S2)

= sup
f∈L2(S2) , f �=0

‖Ff‖2
L2(S2)

‖f‖2
L2(S2)

.

Roughly speaking, this result says that the “best” way to illuminate a family
of obstacles with Herglotz waves is to use a Herglotz wave u1

I corresponding to an
eigenvector f1 of F (or T ) associated with its largest eigenvalue λ1. The physical
reason explaining this property is that the incident field generated by an eigenvector
fp associated with any eigenvalue λp �= 0 of F , focuses on the obstacles. More
precisely, the following result holds true (see [14]).

Proposition 3.3. Let λp �= 0 be an eigenvalue of F and fp ∈ L2(S2), fp �= 0, an
eigenvector of F associated with λp. Then, the Herglotz wave uI,p associated with fp
and defined by uI,p(x) =

∫
S2 fp(α)uαI (x) dα =

∫
S2 fp(α) eikα·x dα, has the following

form:

uI,p(x) =
1

λp

∫
Γ

j0(k‖x− y‖) ∂uT,p
∂ν

(y) dΓy,(3.1)

where uT,p = uI,p+uD,p denotes the total field associated with the incident field uI,p.
Proof. Since fp(β) = λ−1

p Ffp(β) = λ−1
p

∫
S2 A(α, β) fp(α) dα, we obtain by using

expression (2.2) of A(α, β) that

fp(β) = (4πλp)
−1

∫
S2

∫
Γ

∂uαT
∂ν

uβI dΓ fp(α) dα

= (4πλp)
−1

∫
Γ

∫
S2

∂uαT
∂ν

fp(α) dα uβI dΓ.

But by superposition, the integral
∫
S2 ∂u

α
T /∂ν fp(α) dα is nothing but the normal

derivative of the total field uT,p associated with the incident field uI,p, and thus

fp(β) = (4πλp)
−1

∫
Γ

∂uT,p
∂ν

uβI dΓ.(3.2)

We can now obtain the expression of the incident field generated by the eigenvector
fp. From (3.2), we have

uI,p(x) =

∫
S2

fp(β)uβI (x) dβ

= (4πλp)
−1

∫
S2

∫
Γ

∂uT,p
∂ν

uβI dΓ uβI (x) dβ

= (4πλp)
−1

∫
Γ

(∫
S2

uβI (x)u
β
I (y) dβ

)
∂uT,p
∂ν

(y) dΓy.

Formula (3.1) follows then from identity (2.10).
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Since j0(ξ) = sin(ξ)/ξ, formula (3.1) shows that, as expected, the incident field
uI,p(x) generated by an eigenvector fp of F (or T ) decreases like r(x)−1 if r(x) denotes
the distance of x to the obstacles. In this sense, one can say that uI,p focuses on
the obstacles located in the propagation medium. Furthermore, the quality of this
focusing (given by the amplitude of the far field) is exactly given by the magnitude
of the eigenvalue λp, since

|λp| =
‖Ffp‖L2(S2)

‖fp‖L2(S2)
.

4. Selective focusing. The aim of this section is to propose a mathematical
justification of the so-called D.O.R.T. method presented in [16] and briefly described
in the introduction of this paper. Roughly speaking, we answer the two following
questions.

(i) Is the number of obstacles contained in a homogeneous medium equal to
the number of “significant” eigenvalues of the far field operator F (or, equivalently,
to those of the time-reversal operator T = F ∗F = FF ∗)?

(ii) If so, do the associated eigenvectors selectively focus on the obstacles?
As can be seen from the numerical experiments presented in [6], the answer to the
first question is, in general, negative (there can be several “significant” eigenvalues
even when there is just one scatterer). We will confirm this result by studying in
subsection 4.1 the special case of a single spherical obstacle. Nevertheless, we will
show that the answer becomes positive provided the obstacles considered are small
enough. Under this assumption, we show in subsection 4.2 that selective focusing can
be achieved using the eigenvectors of the far field operator.

4.1. Diffraction by a single spherical obstacle. In this subsection, we deal
with the case where the scatterer is a sphere of radius a > 0. For this particular
geometry, an explicit formula can be obtained for the eigenvalues of the far field map-
ping and thus for those of the time-reversal operator. The results of this subsection
are classical and can be found, for instance, in [7]. In particular, formula (3.30) in [7]
shows that for any given density

f =
+∞∑
n=0

n∑
m=−n

amn Y
m
n ∈ L2(S2),

we have

Ff(β) =

+∞∑
n=0

n∑
m=−n

4iπ

k

jn(ka)

h1
n(ka)

amn Y
m
n (β).

Here Y mn denotes the usual spherical harmonics, jn and h1
n are, respectively, the

spherical Bessel and Hankel functions of order n.
Since the spherical harmonics constitute an orthonormal basis of L2(S2), this

formula shows that the following result holds.
Proposition 4.1. The eigenvalues of the far field operator F in the case of a

single sound-soft spherical scatterer of radius a are given by

λn =
4iπ

k

jn(ka)

h1
n(ka)

∀n ≥ 1.(4.1)
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Fig. 4.1.

The eigenspace associated with the eigenvalue λn is the vector space of dimension
2n+ 1 with basis Y mn , for |m| ≤ n.

Remark 3. Equation (4.1) shows that the eigenvalues λn of the far field operator
F satisfy |λn| ≤ 4π/k (recall that h1

n = jn + iyn). This property can also be obtained
from the fact that the scattering operator S = I + (ik/2π)F is unitary. Indeed, this
property implies that the eigenvalues λn lie on the circle of radius 4π/k centered at
(0, 2π/k).

Proposition 4.1 shows in particular that the number of nonzero eigenvalues is not
necessarily equal to the number of obstacles. However, in the case of a point scatterer
or in the case of the low-frequency scattering (both cases which correspond to the
asymptotic limit ka −→ 0), this result becomes true. Indeed, using the asymptotic
behavior of Bessel and Hankel functions, we easily see that the eigenvalues λn given
by (4.1) satisfy

λn ∼ −4π2

k

(ka/2)2n+1

Γ(n+ 1/2)Γ(n+ 3/2)

when ka goes to zero (and n is fixed). Thus, λn+1/λn decreases like (ka)2, and hence,
one can consider that the only significant eigenvalue in the limit case ka −→ 0 is
the largest one λ1. This observation suggests that the number of nonzero eigenvalues
can be related to the number of obstacles when the obstacles are small. The next
subsection provides a justification of this statement.

4.2. Diffraction by several small obstacles. Consider a family of obstacles
{Oε

p; p = 1, N} depending on a small parameter ε, where each Oε
p is the image of a

reference open set Op (which is assumed to contain the origin) by a dilation of ratio
ε centered at a given point sp ∈ R

3 (see Figure 4.1):

Oε
p =

{
x ∈ R

3; ξ =
x− sp
ε

∈ Op

}
.

Of course the “centers” sp are chosen different so that for small enough ε, the obstacles
do not intersect.

The main ingredient to show that selective focusing can be achieved using the
eigenvectors of the far field operator when ε is small enough is given by the following
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result, which provides the asymptotic behavior of the scattering amplitude Aε(α, β)
associated with the family of obstacles {Oε

p}.
Proposition 4.2. There exist N positive constants C1, . . . , CN depending only

on the geometry of the reference obstacles O1, . . . ,ON (called the “capacities” of these
obstacles) such that

Aε(α, β)

ε
= A(1)(α, β) +O(ε) with A(1)(α, β) =

−1

4π

∑
p=1,N

Cp u
α
I (sp)u

β
I (sp),(4.2)

where the bound O(ε) is uniform for all α, β ∈ S2.
For the sake of clarity, the—rather technical—proof of this proposition is given

in the appendix.
Remark 4. The capacity of a spherical soft obstacle of radius a is C = 4πa (since

the solution to (A.7) is simply given in this case by V (x) = a/‖x‖).
Thanks to Proposition 4.2, we know that the far field operator F ε of the family

of obstacles {Oε
p; p = 1, N} satisfies

∥∥∥ε−1F ε − F (1)
∥∥∥
L(L2(S2))

= sup
f∈L2(S2)\{0}

‖(ε−1F ε − F (1))f‖L2(S2)

‖f‖L2(S2)
= O(ε),

where F (1) is the integral operator on L2(S2) with kernel A(1):

F (1)f (β) =

∫
S2

A(1)(α, β) f(α) dα.

Since F ε is compact and normal, perturbation theory [11] ascertains the continuity of
any finite system of eigenvalues as well as of the associated total eigenprojection. More
precisely, assume that λ(1) is an isolated eigenvalue of F (1) with finite multiplicity m,
which implies that λ(1) �= 0.

(i) Then for small enough ε, the spectrum of ε−1F ε can be separated into two
parts. On one hand, the so-called λ(1)-group consists of m′ ≤ m eigenvalues λεj , with
j = 1 to m′, having a constant multiplicity mj for ε �= 0, and which are continuous
near ε = 0, namely

|λεj − λ(1)| = O(ε).

Moreover, the total multiplicity
∑
j=1,m′ mj of the λ(1)-group coincide with the mul-

tiplicity m of λ(1). On the other hand, the complementary of the λ(1)-group in the
spectrum of ε−1F ε lies outside a vicinity of λ(1).

(ii) The total projection P ε for the λ(1)-group, i.e., the sum of the orthogonal
projections on the eigenspaces associated with the λεj , is continuous at ε = 0, and∥∥∥P ε − P (1)

∥∥∥
L(L2(S2))

= O(ε),

where P (1) is the eigenprojection associated with λ(1).
Notice that in general, one cannot assert the existence of a continuous family of

eigenvectors associated respectively with the λεj . However, for our particular choice
of geometric perturbation (ε-dilation), such a result holds, since the perturbation
actually is analytic with respect to ε (which is easily deduced from the appendix).
But this result is of poor practical interest.
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An eigenvalue of ε−1F ε either belongs to some λ(1)-group for a nonzero eigen-
value λ(1) of F (1), or vanishes as ε tends to 0. In the latter case, the above result does
not apply; perturbation theory only provides the continuity of nonstationary eigenele-
ments. So it remains to study the spectral properties of F (1), whose degenerate kernel
will be rewritten in the form

A(1)(α, β) = −
∑
p=1,N

Cp ep(α) ep(β), where ep(α) =
e−ikα·sp

2
√
π

(p = 1, N).(4.3)

Remark 5. Each ep appears as a normalized function of L2(S2) corresponding to
an incident Herglotz wave uI,p which focuses on the pth obstacle, for

uI,p(x) =

∫
S2

ep(α)uαI (x) dα = 2
√
π j0(k‖x− sp‖),

by virtue of (2.10).
The above expression of A(1) then yields

F (1)f = −
∑
p=1,N

Cp (f, ep)L2(S2) ep.(4.4)

Proposition 4.3. The limit far field operator (4.4) is a negative self-adjoint
operator with finite rank N (the number of obstacles) and whose spectral radius cannot
be smaller than the greatest capacity Cp of the obstacles.

In the case where the wavelength � = 2π/k is small compared with the minimum
distance d = min1≤p�=q≤N ‖sp − sq‖ between the obstacles, the family {ep; p = 1, N}
defined in (4.3) provides an approximate basis of eigenvectors associated with the ap-
proximate eigenvalues {−Cp; p = 1, N} :

F (1)ep = −Cp ep +O

(
�

d

)
.(4.5)

Proof. The bilinear form associated with F (1),

(F (1)f, f ′)L2(S2) = −
∑
p=1,N

Cp (f, ep)L2(S2) (f ′, ep)L2(S2),

is clearly negative and self-adjoint, and so is F (1). The range of F (1) is spanned by
{ep; p = 1, N}. To see that this family is linearly independent, suppose that∑

p=1,N

zp ep = 0 with zp ∈ C.

It is clear that the function ep ∈ L2(S2) is nothing but the far field corresponding to
a point source located at the point sp. Consequently, the above relation simply states
that we have chosen a superposition of point sources located at the points (sp)p=1,N

whose far field vanishes. Thus, by Rellich’s lemma, the field is identically zero. Hence,
all the coefficients (zp)p=1,N of the linear combination must also vanish. The linear
independence of the family {ep; p = 1, N} is thus established.

The lower bound for the spectral radius follows from the fact that∣∣∣(F (1)eq, eq)L2(S2)

∣∣∣ = ∑
p=1,N

Cp
∣∣ (ep, eq)L2(S2)

∣∣2 ≥ Cq for q = 1, N,
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since the ep are normalized in L2(S2). On the other hand, nothing can be said in
general about the gap between 0 and the other eigenvalues, which may be arbitrarily
close to the former. This actually depends on the constructive or destructive inter-
actions between the different obstacles, which are measured by the following scalar
products (see (2.10)):

(ep, eq)L2(S2) = j0(k‖sp − sq‖) =
sin(k‖sp − sq‖)
k‖sp − sq‖ .

These relations show in particular that

(ep, eq)L2(S2) =

⎧⎨
⎩

1 for q = p,

O

(
�

d

)
for q �= p,

which means that {ep; p = 1, N} is close to an orthogonal basis of the range of F (1)

when �
 d. The estimate (4.5) follows: each ep is an approximate eigenvector.
What are the practical consequences of the above results as regards selective

focusing? Mainly that the eigenvectors of the time-reversal operator (or the far field
operator) will produce selective focusing acoustic waves if

(i) the obstacles are small enough, compared to the wavelength,
(ii) the smallest distance between them is large, compared again to the wave-

length,
(iii) their capacities are all distinct.

Indeed in this case all the nonzero eigenvalues of F (1) will be simple: the diagonal-
ization of the time-reversal operator will then yield approximations of the focusing
densities ep.

But if one of these assumptions is missing, the nice focusing properties will dis-
appear, at least for some groups of eigenvectors.

On one hand, if the interactions between the obstacles become significant, i.e.,
when d/� = O(1), these properties may reduce to the purely global focusing presented
in section 3. In particular, for very low frequencies, the situation ε 
 d 
 � may
occur. In this case we have

ep = ẽ+O

(
d

�

)
with ẽ(α) =

e−ik α·s̃

2
√
π

,

where s̃ may be chosen as a convex combination of the sp. As a consequence

F (1)f = −
⎛
⎝ ∑
p=1,N

Cp

⎞
⎠ (f, ẽ)L2(S2) ẽ+O

(
d

�

)
,

which shows that the cluster of obstacles behaves like a unique obstacle which accumu-
lates their respective capacities; only one significant eigenvalue of the time-reversal
operator may be observed. Of course, for several distant clusters, we shall recover
selective focusing on each cluster.

On the other hand, if some of the obstacles have neighboring capacities, the
time-reversal operator may admit nonsimple eigenvalues. In this situation, the diago-
nalization of the latter cannot choose the selective focusing densities among all their
linear combinations which compose the corresponding eigenspace.
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5. Open time-reversal mirrors. In this section, we consider the case of a TRM
that does not entirely surround the obstacle. Given a subset Ŝ of S2, we assume that
the TRM can emit plane waves of directions α ∈ Ŝ, and measures the far field in the
opposite directions β ∈ (−Ŝ). One emission-diffraction-reception cycle is described
by the directional far field operator

F̂ = P̂− F P̂ ∗
+ : L2(+Ŝ) −→ L2(−Ŝ),

where P̂± are the restriction operators from L2(S2) to L2(±Ŝ), and thus their respec-

tive adjoints P̂ ∗
± : L2(±Ŝ) −→ L2(S2) are the operators of continuation by 0 outside

±Ŝ. Note here that F̂ appears as the integral operator

F̂ f(β) =

∫
+Ŝ

A(α, β) f(α) dα for β ∈ −Ŝ.

The time-reversal operator T̂ in the case of an open TRM is then defined by

T̂ f = R̂ F̂ R̂ F̂ f ,

where R̂ : L2(−Ŝ) −→ L2(+Ŝ) is the restriction of the symmetry operator defined in

section 2 (i.e., R̂f(α) = f(−α) for α ∈ Ŝ).

But one can easily check that R̂ P̂− = P̂+R and P̂ ∗
+ R̂ = R P̂ ∗

−, and since these
operators commute with the conjugation, we have by virtue of (2.5)

F̂ ∗f = P̂+F
∗P̂ ∗

−f = P̂+RFRP̂ ∗−f = R̂ P̂−FP̂ ∗
+R̂ f = R̂ F̂ R̂ f .

Hence, we can state the following result.
Proposition 5.1. The time-reversal operator T̂ for an open TRM is given by

T̂ = F̂ ∗F̂ : L2(Ŝ) −→ L2(Ŝ).

Thus, it is the integral operator with kernel

t̂(α, β) =

∫
−Ŝ

A(α, γ)A(β, γ) dγ for α, β ∈ Ŝ.(5.1)

Moreover, T̂ defines a compact positive and self-adjoint operator.
Besides the value 0, the spectrum T̂ is thus constituted of a finite or countable

sequence of positive eigenvalues (µ̂p)p≥1 admitting 0 for only possible accumulation

point. The largest eigenvalue µ̂1 of T̂ is thus given by

µ̂1 = sup
f∈L2(Ŝ) , f �=0

(
T̂ f, f

)
L2(Ŝ)

‖f‖2
L2(S2)

= sup
f∈L2(Ŝ) , f �=0

‖F̂ f‖2
L2(−Ŝ)

‖f‖2
L2(+Ŝ)

.

This expression shows in particular that the incident field corresponding to an eigen-
vector associated with this eigenvalue maximizes the diffracted field in the direction of
the TRM. Our goal now is to see if the global and selective properties proved respec-
tively in sections 3 and 4 for closed mirrors still hold in the case of an open TRM. The
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main difference between both situations is that in the latter one, the directional far
field operator F̂ is not anymore normal (the range of F̂ ∗F̂ is contained in L2(Ŝ), when

that of F̂ F̂ ∗ is contained in L2(−Ŝ)). Consequently, the eigenelements of T̂ = F̂ ∗F̂
cannot be directly related to those of F̂ . Contrary to the case of a closed TRM, the
spectral analysis need thus to be carried on the time reversal operator and not on
the far field one. Nevertheless, as we are going to see now, all the focusing results
obtained previously still hold.

5.1. Global focusing. In this subsection, we prove a global focusing property
similar to the one given in Proposition 3.3. More precisely, we have the following
result.

Proposition 5.2. Let µ̂p �= 0 be an eigenvalue of T̂ and f̂p ∈ L2(Ŝ) be a

corresponding eigenvector. Then, the Herglotz wave ûI,p associated with f̂p and defined

by ûI,p(x) =
∫
Ŝ
f̂p(α)uαI (x) dα can be written in the form

ûI,p(x) =

∫
Γ

ĵ (k(x− y))hp(y) dΓ(5.2)

for some density hp, where

ĵ (k(x− y)) =

∫
Ŝ

uβI (x)u
β
I (y) dβ =

∫
Ŝ

eikβ·(x−y) dβ.(5.3)

Proof. Like in the proof of Proposition 3.3, formula (5.2) will be proved if we can

write f̂p in the form

f̂p(β) =

∫
Γ

hp u
β
I dΓ(5.4)

for a given density hp. Indeed, if such a relation holds, then

ûI,p(x) =

∫
Ŝ

f̂p(β)uβI (x) dβ =

∫
Ŝ

∫
Γ

hp u
β
I dΓ uβI (x) dβ.

Equation (5.2) follows then by inverting the integrals over Ŝ and Γ.

Thus, it only remains to prove (5.4). We first write that for all β ∈ Ŝ,

f̂p(β) =
1

µ̂p
T̂ f̂p(β) =

1

µ̂p

∫
Ŝ

t̂(α, β)f̂p(α) dα.(5.5)

Thanks to the reciprocity relation (2.3), formula (5.1) can be written

t̂(α, β) =

∫
−Ŝ

A(α, γ)A(−γ,−β) dγ.

Using the integral representation (2.2) in the above relation, we get after some simple
computations that

t̂(α, β) =

∫
Γ

hαp u
β
I dΓ,(5.6)
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where the density hαp is given by

hαp (x) =
1

(4π)2

∫
−Ŝ

∫
Γ

∂uαT
∂ν

uγI dΓ
∂u−γT
∂ν

(x) dγ.

Combining (5.5) and (5.6), one obtains the claimed relation (5.4), with the density

hp(x) = µ̂−1
p

∫
Ŝ
hαp (x) f̂p(α) dα.

It is well known in oscillatory integrals theory that the function ĵ (x) defined by
(5.3) satisfies (one can use the stationary phase theorem; see, for instance, Theorem
1 in [19, p. 322])

ĵ (x) = O (‖x‖−1
)
.(5.7)

In the directions which are not covered by the TRM (i.e., when x/‖x‖ /∈ ±S), one
can in fact obtain a faster decay for ĵ (x), since we have then ĵ (x) = O (‖x‖−3/2

)
.

Thanks to (5.7), formula (5.2) shows thus that the incident field generated by an

eigenvector of T̂ focuses on the obstacles located in the propagation medium.

5.2. Diffraction by several small obstacles. Now we turn to the analysis
of the selective focusing in the case of a TRM partially surrounding several small
obstacles. The assumptions made on the geometry of the small scatterers are identical
to those made in section 4. Let us recall that the main difference with section 4 is that
since F̂ is not normal, the spectral analysis can no longer be achieved on F̂ but has
to be carried out directly on the time-reversal operator T̂ . In this subsection, we are
going to see that the selective focusing results obtained in section 4 can be extended
to the case of an open mirror.

Using the asymptotic formula (4.2) of the scattering amplitude, one easily gets

that the kernel t̂ε(α, β) of the time-reversal operator T̂ ε = (F̂ ε)∗F̂ ε satisfies

t̂ ε(α, β)

ε2
= t̂ (1)(α, β) +O(ε),

where

t̂ (1)(α, β) =

∫
−Ŝ

A(1)(α, γ)A(1)(β, γ) dγ ∀α, β ∈ Ŝ

and where A(1)(·, ·) is the degenerate kernel defined in (4.2). Since T̂ ε is compact
and self-adjoint, classical results of perturbation theory show again that for small ε,
the spectral elements of ε−2T̂ ε can be approximated by those of the integral operator
T̂ (1) with kernel t̂ (1)(·, ·), which also reads T̂ (1) = (F̂ (1))∗F̂ (1), where the operator

F̂ (1) : L2(Ŝ) −→ L2(−Ŝ) is defined by

F̂ (1)f(β) = −
∑
p=1,N

Cp (f, ep)L2(Ŝ) ep(β) for β ∈ −Ŝ.

If we define the normalized functions {êp; p = 1, N} in L2(Ŝ) and L2(−Ŝ) by

êp(α) = (4πr̂ )−1/2 e−ikα·sp ,(5.8)

where r̂ = mes(Ŝ)/(4π) is the opening ratio of the TRM, then

F̂ (1)f = −r̂
∑
p=1,N

Cp (f, êp)L2(Ŝ) êp in L2(−Ŝ).(5.9)
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Hence, for all f ∈ L2(Ŝ), we have

T̂ (1)f = r̂ 2
∑
q=1,N

Cq

⎛
⎝ ∑
p=1,N

Cp (f, êp)L2(Ŝ)(êp, êq)L2(−Ŝ)

⎞
⎠ êq.(5.10)

We can now state the main result of this subsection.
Proposition 5.3. The limit time reversal operator T̂ (1) : L2(Ŝ) −→ L2(Ŝ)

defined by (5.10) is a self-adjoint operator with finite rank N (the number of obstacles).
Furthermore, if the wavelength � = 2π/k is small compared with the minimum

distance between the obstacles, the family {êp; p = 1, N} defined in (5.8) provides an

approximate basis of eigenvectors of T̂ (1) associated with the approximate eigenvalues
(r̂ Cp)

2:

T̂ (1)êp = (r̂ Cp)
2 êp +O

(
�

d

)
.(5.11)

Proof. The fact that T̂ (1) is of rank N follows from the fact that the family
{êp; p = 1, N} is linearly independent in L2(Ŝ)(see the proof of Proposition 5.3).
Equation (5.11) follows from (5.10) combined with the fact that

(êp, êq)L2(Ŝ) = (êp, êq)L2(−Ŝ) =

⎧⎨
⎩

1 for p = q,

O

(
�

d

)
for p �= q.

The last estimate follows from the relation

(êp, êq)L2(Ŝ) = (4πr̂)−1

∫
Ŝ

eikβ·(sp−sq) dβ = (4πr̂)−1ĵ (k(sp − sq))

and from the decay property (5.7) of ĵ for p �= q.
Remark 6. Contrary to the case of a closed mirror (compare Propositions 4.3 and

5.3), we have not been able to compare the spectral radius of T̂ (1) with the greatest
value taken by the quantities (r̂Cp)

2.
As in the case of a closed mirror, Proposition 5.3 shows that the eigenvectors of

the time-reversal operator for an open mirror will produce selective focusing acoustic
waves if

(i) the obstacles are small enough, compared to the wavelength,
(ii) the smallest distance between them is large, compared to the wavelength,
(iii) their capacities are all distinct.

Indeed in this case all the nonzero eigenvalues of T̂ (1) will be simple: the diagonal-
ization of the time-reversal operator will then yield approximations of the focusing
densities êp since each êp generates an incident Herglotz wave ûI,p which focuses on
the pth obstacle for

ûI,p(x) =

∫
Ŝ

êp(α)uαI (x) dα =
1√
4πr̂

ĵ (k(x− sp)) = O

(
�

‖x− sp‖
)
.

Appendix A. Asymptotics for small obstacles. We detail here a constructive
proof of the asymptotic behavior (4.2) of the scattering amplitude for small obstacles,
claimed in Proposition 4.2. This result is formally derived in other papers (see, e.g.,
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[17, 18]). A more abstract proof based on potential theory was recently proposed
in [8].

The idea of our proof is to rewrite the scattering problem as a regular perturbation
of a Fredholm equation in a fixed Hilbert space, in the sense that it does not depend
on the size, say ε, of the obstacles:

(I + K
ε)ϕε = gε.(A.1)

We obtain such a formulation by means of a variant of the integral method introduced
by Jami and Lenoir [10], which has the advantage to involve nonsingular kernels,
contrary to usual integral equations (for which perturbation theory requires more
complicated arguments).

Consider the family of obstacles {Oε
p; p = 1, N} introduced in subsection 4.2.

We denote by Γεp (respectively, Γp) the boundary of Oε
p (respectively, of Op), Γε =⋃

p=1,N Γεp and Oε =
⋃
p=1,N Oε

p. Our exterior Dirichlet problem for the diffracted
field uε reads ⎧⎨

⎩
∆uε + k2uε = 0 in R

3 \ Oε,
uε = f on Γε,
R.C.,

(A.2)

where R.C. stands for the outgoing radiation condition, and f = −uαI is the Dirichlet
datum associated with an incident plane wave uαI (x) = exp(ikα·x) of direction α ∈ S2.

Reduction to a bounded domain. Around each reference obstacle Op, we
delimit a bounded part Dp of its exterior by a fictitious boundary Σp which does not
intersect Γp. We denote by Dε

p and Σεp the images of Dp and Σp by the same dilation
as for Oε

p, as well as Dε =
⋃
p=1,N D

ε
p and Σε =

⋃
p=1,N Σεp.

The Jami–Lenoir method consists of introducing a transparent boundary condi-
tion on Σε which is derived from the usual integral representation of uε. Here, in order
to get rid of the normal derivative of uε on Γε, the single-layer potential is re-expressed
as a volume potential by Green’s formula. Indeed it is easy to see that near Σε we
have

uε = f
Γε

∗ ∂Gk
∂ν

+ k2uε
Dε

∗ (χεGk) −∇uε D
ε

∗ ∇(χεGk),

where the different “convolutions” represent, respectively, the surface double-layer
potential {

f
Γε

∗ ∂Gk
∂ν

}
(x) =

∫
Γε

f(y)
∂Gk
∂νy

(x− y) dγy

and the volume potentials

{uε D
ε

∗ (χεGk)}(x) =

∫
Dε

uε(y)χε(y)Gk(x− y) dy,

{∇uε D
ε

∗ ∇(χεGk)}(x) =

∫
Dε

∇uε(y) · ∇y(χ
ε(y)Gk(x− y)) dy.

In the above expressions, Gk stands for the outgoing Green function of ∆ + k2, i.e.,
Gk(x) = − exp(ik|x|)/(4π|x|), and χε denotes a family of regular cutoff functions
(χεp)p=1,...,N defined by the ε-dilation: χεp(x) = χp((x− sp)/ε) if x ∈ Dε

p, where each
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χp is equal to 1 in a vicinity of Γp and 0 in a vicinity of Σp. Note that these integrals
involve regular kernels when x is near Σε.

As a consequence if uε solves (A.2), its restriction vε to Dε satisfies⎧⎪⎪⎨
⎪⎪⎩

∆vε + k2vε = 0 in Dε,
vε = f on Γε,

Zεvε = Zε
{
f

Γε

∗ ∂Gk
∂ν

+ k2vε
Dε

∗ (χεGk) −∇vε D
ε

∗ ∇(χεGk)

}
on Σε,

(A.3)

where Zε stands for the boundary operator (∂/∂ν + i/ε) on Σε.
Conversely, the solution to this problem extends outside Σε (by the integral rep-

resentation) to the solution to (A.2) (thanks to the term involving i/ε which prevents
the so-called irregular frequencies from being real; see [10]).

The limiting process. In order to work in a functional framework independent
of ε, we perform in each subdomain Dε

p the change of variable ξ = (x − sp)/ε. By
denoting ϕεp(ξ) = vε(x) and fεp (ξ) = f(x), for x ∈ Dε

p, as well as

Gεpq(ξ, η) = Gk(sp − sq + ε(ξ − η)) for ξ ∈ Dp and η ∈ Dq,

problem (A.3) amounts to a family of N problems set on the domains Dp coupled by
the transparent boundary conditions written on Σp:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∆ϕεp + (εk)2ϕεp = 0 in Dp,
ϕεp = fεp on Γp,

Zϕεp = Z
∑
q=1,N

{
εfεq

Γq∗ ∂Gεpq
∂ν

+ ε3k2ϕεq
Dq∗ (χqG

ε
pq) − ε∇ϕεq

Dq∗ ∇(χqG
ε
pq)

}
on Σp,

(A.4)

where Z = (∂/∂ν + i) on Σp.
We are now able to define the formal limit of the latter problem. Let G0 be the

limit of Gεk when ε tends to 0, i.e., G0(x) = −1/(4π|x|). Notice that

Gεpq(ξ, η) = Gk(sp − sq) +O(ε) if p �= q,
Gεpp(ξ, η) = ε−1G0(ξ − η) +O(1) if p = q,

(A.5)

where these formulas hold uniformly in any compact subset of Dp × Dq which does
not contain points of the diagonal when p = q, and can be derived with respect to ξ
or η. Hence the formal limit of problem (A.4) reads as⎧⎪⎪⎨

⎪⎪⎩
∆ϕ0

p = 0 in Dp,

ϕ0
p = f0

p = −eikα·sp on Γp,

Zϕ0
p = Z

{
f0
p

Γp∗ ∂G0

∂ν
−∇ϕ0

p

Dp∗ ∇(χpG0)

}
on Σp,

(A.6)

which correspond to a family of uncoupled problems. Each of them amounts to solving
an exterior Laplace equation. More precisely, we can write that ϕ0

p = −uαI (sp)Vp,
where Vp is the static potential solution to⎧⎨

⎩
∆Vp = 0 in R

3 \ Op,
Vp = 1 on Γp,
Vp = O(1/x) as |x| → ∞.

(A.7)
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Convergence. Consider the closed subspace of the usual Sobolev space H1(Dp)
given by Hp = {ψp ∈ H1(Dp); ψp = 0 on Γp}. The variational formulation of (A.4)
appears as a coupled system of variational equations:

Find ϕεp ∈ fεp + Hp, p = 1, N, such that∫
Dp

∇ϕεp · ∇ψp − (εk)2
∫
Dp

ϕεp ψp + i

∫
Σp

ϕεp ψp dσ

+

∫
Σp

Z

⎧⎨
⎩
∑
q=1,N

ε3k2ϕεq
Dq∗ (χqG

ε
pq) − ε∇ϕεq

Dq∗ ∇(χqG
ε
pq)

⎫⎬
⎭ ψp dσ

=

∫
Σp

Z

⎧⎨
⎩
∑
q=1,N

εfεq
Γq∗ ∂Gεpq

∂ν

⎫⎬
⎭ ψp dσ ∀ψp ∈ Hp, p = 1, N.

Adding these equations yields the announced Fredholm equation (A.1) in the Hilbert
space H = H1 × · · · × HN which can be equipped with the scalar product

(ϕ,ψ) =
∑
p=1,N

∫
Dp

∇ϕp · ∇ψp.

Indeed, define ϕε = (ϕε1, . . . , ϕ
ε
N ), fε = (fε1 , . . . , f

ε
N ) and, respectively, the operator

K
ε defined in H and gε ∈ H by

(Kεϕ,ψ) =
∑
p=1,N

−(εk)2
∫
Dp

ϕp ψp + i

∫
Σp

ϕp ψp dσ

+

∫
Σp

Z

⎧⎨
⎩
∑
q=1,N

ε3k2ϕq
Dq∗ (χqG

ε
pq) − ε∇ϕq

Dq∗ ∇(χqG
ε
pq)

⎫⎬
⎭ ψp dσ

(gε, ψ) =
∑
p=1,N

∫
Σp

Z

⎧⎨
⎩
∑
q=1,N

εfεq
Γq∗ ∂Gεpq

∂ν

⎫⎬
⎭ψp dσ

for all ϕ = (ϕ1, . . . , ϕN ) and ψ = (ψ1, . . . , ψN ) in H. Then our coupled system reads
as follows:

Find ϕε ∈ fε + H such that (I + K
ε)ϕε = gε.(A.8)

And of course we have a similar expression of the limit problem (A.6) with

(K0ϕ,ψ) =
∑
p=1,N

i

∫
Σp

ϕp ψp dσ −
∫

Σp

Z

{
∇ϕp

Dp∗ ∇(χqG0)

}
ψp dσ,

(g0, ψ) =
∑
p=1,N

∫
Σp

Z

{
f0
p

Γp∗ ∂G0

∂ν

}
ψp dσ.

Note that the uniqueness of the solution to (A.2) (respectively, (A.7)) implies that
I + K

ε (respectively, I + K
0) is injective, and thus bijective thanks to the following.

Lemma A.1. K
ε defines a family of compact operators in H which satisfies

‖Kε − K
0‖ = sup

ϕ,ψ∈H\{0}

(Kε − K
0)ϕ,ψ)

‖ϕ‖‖ψ‖ = O(ε).(A.9)
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Proof. Consider, for instance, the part of K
ε corresponding to the operator T

ε
pq

given by

(Tεpqϕ,ψ) =

∫
Σp

Z

{
ε∇ϕq

Dq∗ ∇(χqG
ε
pq)

}
ψp dσ

=

∫
Σp

∫
Dq

∇ϕq(η) · ∇η(εχq(η)ZξG
ε
pq(ξ − η)) dη ψp dσξ.

We detail the proof only for the latter; similar arguments can be used for the other
terms involved in the definition of K

ε.
The compactness of T

ε
pq can be easily deduced from that of its adjoint. Indeed,

using Schwarz inequality yields

‖(Tεpq)∗ψ‖ = sup
ϕ∈H\{0}

(Tεpqϕ,ψ)

‖ϕ‖ ≤ Cεpq ‖ψ‖L2(Σp), where

Cεpq =

(∫
Σp

∫
Dq

∥∥∇η{εχq(η)ZξGεpq(ξ − η)}∥∥2
dη dσξ

)1/2

.

But the trace operator is compact from H1(Dq) to L2(Σp), which implies the com-
pactness of (Tεpq)

∗ in H.
If p �= q, formula (A.5) shows that Cεpq = O(ε), and consequently the same holds

for ‖T
ε
pq‖ = ‖(Tεpq)∗‖. If p = q, the limit operator is given by

(T0
ppϕ,ψ) =

∫
Σp

Z

{
∇ϕp

Dp∗ ∇(χpG0)

}
ψp dσ,

since (A.5) shows in this case (again by Schwarz inequality) that∣∣((Tεpp − T
0
pp)ϕ,ψ)

∣∣ ≤ εC ‖∇ϕ‖L2(Dp) ‖ψ‖L2(Σp).

Hence ‖T
ε
pp − T

0
pp‖ = O(ε).

Lemma A.1 turns our problem into one of the simplest situations of perturbation
theory [11]: the use of the Neumann series readily shows that

‖(I + K
ε)−1 − (I + K

0)−1‖ = O(ε).

It remains to notice that ‖fε − f0‖ and ‖gε − g0‖ are also of order ε, from which we
conclude that

‖ϕε − ϕ0‖ = O(ε).(A.10)

The scattering amplitude. Thanks to formula (2.2), the local convergence
expressed by the latter result also provides the far field asymptotics. Here, using our
homothetic changes of variables, the scattering amplitude reads

Aε(α, β) =
−ε
4π

∑
p=1,N

∫
Γp

∂

∂ν
(ϕεp(α) − fεp (α)) fεp (β) dγ.

On one hand, (A.10) implies that ∂ϕεp(α)/∂ν tends to ∂ϕ0
p(α)/∂ν = −uαI (sp) ∂Vp/∂ν

in H−1/2(Γp) (recall that Vp is defined in (A.7)). On the other hand, fεp (α) tends to
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the constant function f0
p (α) = −uαI (sp). Hence

Aε(α, β) =
−ε
4π

∑
p=1,N

Cp u
α
I (sp)u

β
I (sp) + O(ε2), where

Cp =

∫
Γp

∂Vp
∂ν

dγ =

∫
R3\Op

|∇Vp|2

is referred to as the capacity of the obstacle Op. Proposition 4.2 is thus proved.

Acknowledgments. The authors would like to thank the referees for their valu-
able comments and suggestions.
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Abstract. We consider the interlayer exchange coupling between two ferromagnetic layers
mediated by a nonmagnetic spacer layer. We adopt the theoretical model which is based on a
macroscopic description using the Landau–Lifshitz equations and the Hoffmann boundary conditions
characterizing the interlayer exchange coupling between the interfaces of the ferromagnetic films. An
asymptotic study of such a layered system for either small or large spacer thicknesses is presented.
The asymptotic problem and the boundary conditions at interfaces both for the magnetization and
the magnetic field are characterized.

Key words. thin films, magnetic multilayers, bilinear coupling, Hoffmann’s boundary condition,
thin and thick nonmagnetic spacers

AMS subject classifications. 35D05, 78A25, 35Q60, 35B40, 82D40
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1. Introduction. The interlayer exchange coupling (IEC) between ferromag-
netic layers separated by a nonmagnetic spacer has been the subject of intense re-
search in the past few years both on the experimental side and on the theoretical
side due to its great impact on the recording and electronics industries. In the litera-
ture, the energy density (per unit surface) used to characterize the IEC is of the form
J1(1 − m · m′) + J2(1 − (m · m′)2), where J1 and J2 are parameters describing the
kind and the strength of the coupling and m and m′ are the magnetization vectors
at the inner surfaces of the bilayer stack just facing each other. The magnetization
satisfies the saturation constraint |m(t, x)| = 1 for all time and in any point of the
domain. If J1 dominates, then the coupling is of ferromagnet or antiferromagnet type
for J1 > 0 or J1 < 0, respectively, see, for example, [25], [18]. The first term in the en-
ergy is called bilinear, and the second one biquadratic, coupling. We notice, by using
the saturation constraint, that these energies may be written as J1|m −m′|2/2 and
J2|m −m′|2|m + m′|2/4. The coefficients J1 and J2 depend generally on the thick-
ness of the magnetic layers, see, for instance, Barnaś [6], Barnaś and Bulka [5], or
Grünberg and Pierce [16]. The interested reader can find complementary information
in the various review papers on this subject which have been published recently; see,
for example, Stiles [28], [29], Demokritov [14], Bruno [9], [10], Camley [11], Camley
and Stamps [12], Hartmann [18], Hubert and Schäfer [23], and the references therein.
We also refer for a systematic experimental study to de Vries [32]. Some numerical
results can be found in a paper by Labrune and Belliard [24].

In the present work we focus attention on the case in which J2 = 0. Thus
we consider only the bilinear coupling. However, recent experimental measurements
of J2 in some multilayered systems predict that J2 under certain conditions cannot
be neglected [7]. In order to simplify the presentation of the model equations, we
will neglect the effect of the surface anisotropy energy on thin films; we may refer
to [17] for some results including this effect. We restrict ourselves to the case of
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magnetic/nonmagnetic multilayered structures, and we discuss the existence theory
and the asymptotic behavior of the solutions when the thickness 2ε of the cylinder
representing the nonmagnetic spacer is such that ε tends to either 0 or 1. We shall
see that for very small spacer thicknesses the magnetic interlayer coupling becomes
important. We refer to [19] for an overview in the case where the medium is a
stack of magnetic media. Nevertheless, in [33] the authors indicate the main physical
and experimental reasons why it is preferable that the coupling should be through
an interlayer material (metallic, nonmagnetic, semiconductor, etc.) instead of there
being a direct contact between the ferromagnetic slabs.

Before proceeding with the mathematical description of the model, a few clarifying
comments are needed with regard to notation. We consider B ⊂ R

2 a bounded and
regular open set representing the cross section of the cylinder Ω = B × (−1, 1) of
R

3. The generic point of R
3 is denoted by x = (x̂, x3) with x̂ = (x1, x2) ∈ B. We

assume that a ferromagnetic material occupies the domains Ω−
ε = B × (−1,−ε) and

Ω+
ε = B× (ε, 1) separated by a nonmagnetic spacer of thickness 2ε > 0 occupying the

domain Ω0
ε = B × (−ε, ε). In what follows, S2 represents the unit sphere of R

3, and
we set Ωε = Ω−

ε ∪ Ω+
ε . The magnetization field is denoted by M(t, x), which belongs

to S2 almost everywhere, and the magnetic polarization is given by χ(Ωε)M , where
χ(Ωε) is the characteristic function of Ωε while in Ω0

ε it vanishes. The motion of the
magnetization field M is governed by the Landau–Lifshitz–Gilbert equations; see [1],
[8], for example. We have⎧⎪⎨

⎪⎩
1

1 + α2

(
∂tM − αM × ∂tM

)
= −M ×H(M) in R

+ × Ωε,

M(0, x) = M0(x) in Ωε,
∂M

∂n
= 0 on ∂Ωε \ {x3 = ±ε},

(1.1)

where the symbol × denotes the vector cross product in R
3. The parameter α > 0

depends on the gyromagnetic parameter ζ > 0 and the phenomenological parameter
β > 0. Indeed, the usual Landau–Lifshitz equation ∂tM = −ζM×H−βM×(M×H)
may be written in the Landau–Lifshitz–Gilbert equivalent form ∂tM = αM × ∂tM −
α2M × H with α = β/ζ and α2 = ζ(1 + α2). In (1.1) we set ζ = 1. The initial
magnetization M0 satisfies the condition |M0(x)|2 = 1 for almost every x ∈ Ωε, and
the total magnetic excitation H(M) is given by

H(M) = div(AgradM) + ψ(M) + gradϕ+H0.(1.2)

The termM×div(AgradM) is well defined ifM is regular. We may write it, using
the saturation condition |M(t, x)|2 = 1 a.e., in the weaker form div(M × AgradM),
which is well defined if gradM belongs to L

2(Ω) with respect to the space variable.
The first term on the right-hand side of (1.2) is called the exchange magnetic field,
where A is the exchange variable coefficient satisfying the usual ellipticity condition
in Ωε. The second term is the bulk anisotropy field (which generally is taken as
linear with respect to M), and gradϕ is the demagnetizing field, satisfying in the
magnetostatic approximation of the Maxwell equations⎧⎪⎨

⎪⎩
div(gradϕ+ χ(Ωε)M) = 0 for x3 > −1,

∂ϕ

∂x3
+ χ(B)M · u3 = 0 on x3 = −1,

(1.3)

where we have set (u1,u2,u3) to represent the canonical basis of R
3. Note that the

potential ϕ satisfies the transmission boundary conditions at the interfaces x3 = ±ε
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and x3 = 1. Indeed, (1.3) is set in the whole space R
3, but if one assumes that

our material is set on a substrate represented by the half-space x3 < −1 with infinite
conductivity, then the boundary condition satisfied by the potential ϕ is the one given
in (1.3). The transmission boundary conditions mean that ϕ and ∂ϕ

∂x3
+ χ(B)M · u3

are continuous across the interfaces x3 = −ε, x3 = ε, and x3 = 1. The last term H0

on the right-hand side of (1.2) is the applied magnetic field. In what follows, without
loss of generality and since we are dealing with the dynamic of the magnetization
field, we assume H0 = 0. Equations (1.1) are supplemented by coupling conditions
for M at the interfaces x3 = ±ε. These conditions couple the layers of the domains
Ω+
ε and Ω−

ε . This is given by the so-called Hoffmann interlayer exchange coupling law
[20], [21], which can be written as follows:

M(±ε) ×
(
∓A∂M(±ε)

∂x3
− JM(∓ε)

)
= 0.(1.4)

The constant J (previously denoted J1) is the interlayer exchange constant, which
may depend on the thickness 2ε of the nonmagnetic spacer. This boundary condition
takes the form

∓A∂M(±ε)
∂x3

− JM(∓ε) + J(M(±ε) ·M(∓ε))M(±ε) = 0.(1.5)

We wish to point out that the condition (1.4) is also called the modified Rado–
Weertman boundary condition. It has been reported by Hoffmann [20]; see also [22],
[27].

This paper is organized as follows. In section 2, we discuss the existence of
global solutions of the Landau–Lifshitz equation (1.1)–(1.3) with Hoffmann boundary
condition (1.4). We follow the classical proof given by [3], [31]. The main difference
is related to the interlayer coupling boundary condition satisfied in our model. We
give a priori estimates for the solutions and for the energy equality satisfied by the
solutions, which plays a crucial role in the next sections.

Section 3 deals with the asymptotic behavior of solutions when the thickness
parameter ε tends either to 0 or 1. Let us specify the results obtained. We first
introduce the changes of variable which transform the domains Ω±

ε and Ω0
ε into the

domains Ω± and Ω0, which are independent of ε, but (1.1)–(1.3) become equations
with variable coefficients depending on ε; see (3.9), (3.10), and (3.11). We then
analyze the behavior of the model when the thickness parameter ε → 0. For this
behavior we assume that the coefficient J is independent of ε. Passing to the limit
in the potential equation, we show that the limit potential satisfies a magnetostatic
Maxwell equation set in R

2 × (−1,−1/2) and R
2 × (1/2,∞). The solution satisfies a

new boundary condition with regularizing effect. This boundary condition couples the
interfaces z = 1/2 and z = −1/2; see Theorem 3.3. In the domains B×(−1,−1/2) and
B × (1/2, 1) the magnetization field satisfies the Landau–Lifshitz equations together
with the Hoffmann interlayer exchange coupling law at the interfaces z = −1/2 and
z = 1/2; see Theorem 3.4.

The second purpose of section 3 is to examine the behavior of thick spacers
corresponding to the case where ε → 1. This means that the thickness 1 − ε of the
two ferromagnetic domains tends to 0, and both domains are coupled with a very
weak IEC. In this case the coefficient appearing in front of the interlayer exchange
energy is −J/2(1 − ε). To get uniform bounds for the solutions of the problem we
assume that the interlayer parameter J is of order 1 − ε. More precisely we assume
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that J = (1 − ε)j, where j > 0 is independent of ε. Hence, when ε → 1, we get two
magnetization fields m+ and m− satisfying the same initial data and solving Landau–
Lifshitz equations in the cross section B of the domain with the effective magnetic
field

H±(m±) = d̂iv(a±ĝradm±) + ψ(m±) + ĝradφ± − χ(B)m± · u3u3 + jm∓.

The potential φ± is given by φ±(x̂) = φ(x̂,±1/2), where φ(x̂, z) solves in each
slab S∞ and S0 a new magnetostatic equation; see Theorem 3.7. The effect induced
by the thin layer behavior for each magnetization is the same as that described first
by Gioia and James [15] and later by Ammari, Halpern, and Hamdache [4]; Hamdache
and Tilioua [17]; Alicandro and Leone [2] in different frameworks. The Gioia–James
effect takes the form −χ(B)m± ·u3u3, which penalizes the out-of-plane component of

the demagnetizing term ĝradφ±. Moreover, in our result the potential φ± is obtained
as the trace at the interface z = ±1/2 of the potential φ. The second effect appearing
is due to the Hoffmann IEC law. It takes the form of a coupling bulk anisotropy
energy and links the two ferromagnetic films. The magnetizations m+ and m− satisfy
Landau–Lifshitz equations in the domain B and are associated with the same initial
data m0(x̂) and with the magnetic excitation H± containing the bulk anisotropy field
−jm∓ due to the interlayer exchange coupling law; see Theorem 3.9. We finally
conclude this work with some remarks and comments.

Throughout, we use the following notation: L
2(Ω) = (L2(Ω))3 an H

1(Ω) =
(H1(Ω))3 are the usual Hilbert spaces equipped with the norm | · | and ‖ · ‖, re-
spectively. We denote by (·; ·) the scalar product of L

2(Ω).

2. Global existence results. In this section, we omit the parameter ε where it
is not necessary. We shall solve problem (1.1)–(1.4) by using the nonlinear Galerkin
method; see, for example, Lions [26], Tartar [30].

We introduce the following spectral problem: find (λ,U) ∈ R
+×H

1(Ω) such that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−div(AgradU) + γU = λU in Ω,

∓A∂U(±ε)
∂x3

− JU(∓ε) = 0 in B,

A
∂U

∂n
= 0 on ∂Ω± \ {x3 = ±ε},

(2.1)

where γ > 0 is sufficiently large and Ω = Ω−
ε ∪ Ω+

ε . Recall that the coefficient A(x)
satisfies the ellipticity condition

0 < a1 ≤ A(x) ≤ a2 for almost every x ∈ Ω,(2.2)

and the parameter J is assumed to be independent of ε and such that

J > 0.(2.3)

The weak formulation of the problem (2.1) takes, for all V ∈ H
1(Ω), the form⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

aγ(U, V ) + I(U, V ) = λ(U ;V ), with

aγ(U, V ) =

∫
Ω

AgradUgradV dx+ γ

∫
Ω

U · V dx,

I(U, V ) = −J
∫
B

(
U(−ε) · V (ε) + U(ε) · V (−ε)

)
dx̂,

(2.4)
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where gradUgradV = ∂xj
Ui∂xj

Vi. A classical estimate shows that for all U ∈ H
1(Ω)

we have

|I(U,U)| ≤ J(β|gradU |2 + Cβ |U |2)(2.5)

for all β > 0 with Cβ → +∞ as β → 0. We choose β > 0 and γ > 0 in order to have
c1 := a1 − Jβ > 0 and c2 := γ − JCβ > 0. Hence, we get, for all U ∈ H

1(Ω), the
estimate

aγ(U,U) + I(U,U) ≥ c1|gradU |2 + c2|U |2.(2.6)

Notice that c1 and c2 are independent of ε. Moreover, for U and V in H
1(Ω) we have

for all β > 0 the following inequality:

|I(U, V )| ≤ J(β|gradU |2 + Cβ |U |2)1/2(β|gradV |2 + Cβ |V |2)1/2.(2.7)

Fixing β > 0, there exists c3 > 0 independent of ε such that for all U, V ∈ H
1(Ω)

we have

|aγ(U, V ) + I(U, V )| ≤ c3‖U‖‖V ‖.(2.8)

The bilinear form aγ(U, V )+I(U, V ) is continuous on H
1(Ω)×H

1(Ω) and coercive
on H

1(Ω) for γ large. Let Aint : H
1(Ω) → H

1(Ω)′ be the linear operator defined by

〈AintU, V 〉
H 1(Ω)′×H 1(Ω) = aγ(U, V ) + I(U, V ),

where H
1(Ω)′ is the dual space of H

1(Ω). Then Aint is an isomorphism from H
1(Ω)

into H
1(Ω)′, and its inverse A−1

int is a compact operator from L
2(Ω) into L

2(Ω). Since
the bilinear form aγ(U, V ) + I(U, V ) is symmetric, the operator Aint also is, and we
have

〈AintU, V 〉
H 1(Ω)′×H 1(Ω) = 〈U,AintV 〉

H 1(Ω)×H 1(Ω)′

for all U, V ∈ H
1(Ω). Hence, it follows that operator Aint is self-adjoint on its natural

domain D(Aint). We obtain the following result.

Lemma 2.1. There exists an uncountable set of solutions (λk, Uk)k∈N ⊂ R
+ ×

H
1(Ω) of problem (2.1) such that c2 < λk → +∞ as k → +∞. Moreover, the

eigenvectors Uk associated to the eigenvalues λk form an orthonormal basis of L
2(Ω),

and λ
−1/2
k Uk an orthogonal basis of H

1(Ω).

In the remainder we proceed along the lines of the global existence proof given by
Visintin [31] and Alouges and Soyeur [3]; see also Carbou and Fabrie [13]. We briefly
describe the main steps of the proof. First we introduce the penalized problem

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

1

1 + α2

(
α∂tM +M × ∂tM

)
= H(M) + νM

(
1 − |M |2

)
in R

+ × Ω±
ε ,

M(0, x) = M0(x) in Ω±
ε ,

∂M

∂n
= 0 on ∂Ω±

ε \ {x3 = ±ε},

∓A∂M(±ε)
∂x3

− JM(∓ε) = 0 in B,

(2.9)
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where the parameter ν > 0 is fixed. To solve this problem we use the nonlinear
Galerkin method (see [26], [30]) by introducing the approximated problem⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1

1 + α2

(
α∂tM

N +MN × ∂tM
N
)

= H(MN ) + νMN
(
1 − |MN |2

)
in R

+ × Ω±
ε ,

MN (0, x) = MN
0 (x) in Ω±

ε ,

(2.10)

where MN
0 is the projection of M0 in the space VN = {V =

∑N
k=1 vkUk}. The

solution MN satisfies the interlayer coupling boundary condition at the interfaces
x3 = ±ε and the homogeneous Neumann boundary condition on the remaining part
of the boundary of Ω.

Let us give some remarks on the proof. Proceeding as in [31], [3], we deduce
that the sequence of solutions MN converges to M weakly- in L∞(R+,H 1(Ω)), and
∂tM

N converges to ∂tM weakly in L2(R+,L2(Ω)). Using the strong convergence of
the traces MN (±ε) in L

2
loc(R

+×B), we may pass to the limit in the boundary integral
±J ∫

R+×BM
N (±ε)×MN (∓ε)φ dx̂dt, where φ is a test function. Using the integration

by parts, we deduce that M satisfies the interlayer coupling boundary in the following
sense:

∫
R+〈(∓A∂x3M(±ε) − JM(∓ε)),M(±ε) × φ〉H −1/2(B)×H 1/2(B) dt = 0. We get

the following existence result.
Theorem 2.2. Let M0 ∈ H

1(Ωε) be such that |M0(x)|2 = 1 for almost every
x ∈ Ωε, and let ψ : R

3 → R
3, ψ(M) = gradΨ(M) be a continuous gradient function

such that 0 ≤ Ψ(M) ≤ Ψ∞ < ∞ for all M ∈ S2. Then there exists a global solution
M ∈ L∞(R+,H 1(Ωε)) of problem (1.1)–(1.4) such that |M(t, x)|2 = 1 for almost every
(t, x) ∈ R

+ × Ωε, ∂tM ∈ L2(R+,L2(Ωε)), and gradϕ ∈ L∞(R+,L2(R2 × (−1,∞))).
Moreover, for all t ≥ 0, the following energy equality holds:

E(t) +
2α

1 + α2

∫ t

0

∫
Ωε

|∂tM(s)|2 dxds = E(0),(2.11)

where the total energy E(t) is expressed by E(t) = Eexc(t) + Evol(t) + Edm(t) + Eint(t)
with

Eexc(t) =

∫
Ωε

A|gradM |2 dx, Evol(t) =

∫
Ωε

Ψ(M) dx,

Eint(t) = −J
∫
B

M(−ε) ·M(ε) dx̂, Edm(t) =

∫
R2

∫ ∞

−1

|gradϕ|2 dx.
(2.12)

The magnetization M satisfies the Landau–Lifshitz–Gilbert equation in the sense of
distributions where the exchange contribution is written in the weak form div(M ×
A gradM).

Remark. Notice that if we add to both sides of (2.11) the quantity J |B|, where
|B| is the Lebesgue measure of the cross section B, then the IEC energy Eint can
be replaced by the right interlayer exchange energy J

∫
B

(1 −M(−ε) ·M(ε)) dx̂ =
(J/2)

∫
B
|M(−ε) −M(ε)|2 dx̂ for all t ≥ 0.

The initial magnetic field gradϕ0(x) satisfies the compatibility problem⎧⎪⎨
⎪⎩

div(gradϕ0 + χ(Ωε)M0) = 0 for x3 > −1,

∂ϕ0

∂x3
+ χ(B)M0 · u3 = 0 on x3 = −1.

(2.13)
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It follows that Edm(0) is given by

Edm(0) =

∫
R2

∫ ∞

−1

|gradϕ0|2 dx = −
∫

Ωε

M0 · gradϕ0 dx,(2.14)

which implies that |gradϕ0|L2(R2×(−1,∞)) ≤ (2(1 − ε)|B|)1/2, and then the initial
demagnetization energy satisfies

0 ≤ Edm(0) ≤ 2(1 − ε)|B|.(2.15)

The initial interlayer exchange energy satisfies

|Eint(0)| ≤ J |B|.(2.16)

One observes that if the initial magnetization is assumed to be such that M0(−ε) ·
M0(ε) ≥ 0, then we get Eint(0) ≤ 0.

The initial volume anisotropy energy satisfies

0 ≤ Evol(0) ≤ 2Ψ∞(1 − ε)|B|.(2.17)

The initial exchange energy is such that

0 ≤ Eexc(0) < a2|gradM0|2L2(Ωε)
≤ a2δ,(2.18)

where δ > 0 is independent of ε, by assuming, for example, that M0 is the restriction
to Ωε of M0 ∈ H

1(Ω).
Hence the following uniform estimates with respect to ε hold.
Corollary 2.3. Let M0 ∈ H

1(Ω) be such that |M0(x)|2 = 1 for almost every
x ∈ Ωε. Then there exists C > 0 independent of ε such that

‖gradMε‖L∞(R+,L2(Ωε)) + ‖∂tMε‖L2(R+,L2(Ωε))

+ ‖gradϕε‖L∞(R+,L2(R2×(−1,∞))) ≤ C
(2.19)

and |Mε(t, x)|2 = 1 for almost every (t, x) ∈ R
+ × Ωε.

In the next section we will discuss the behavior of the solutions (Mε, ϕε) in the
two cases ε→ 0 and ε→ 1.

3. Convergences. The nonmagnetic spacer occupies the domain Ω0
ε. We intro-

duce the following change of variables:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

z = x3 if x3 ≥ 1,

z =
1

2(1 − ε)
(x3 + 1 − 2ε) ∈

[
1

2
, 1

]
if ε ≤ x3 ≤ 1,

z =
1

2ε
x3 ∈

[
−1

2
,
1

2

]
if − ε ≤ x3 ≤ ε,

z =
1

2(1 − ε)
(x3 − 1 + 2ε) ∈

[
−1,−1

2

]
if − 1 ≤ x3 ≤ −ε.

(3.1)

We set

G+ = B ×
(

1

2
, 1

)
, G− = B ×

(
−1,−1

2

)
,

G0 = B ×
(
−1

2
,
1

2

)
, G = G+ ∪G−

(3.2)
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and introduce for t ≥ 0 and (x̂, z) ∈ G the new functions

mε(t, x̂, z) =

⎧⎨
⎩
M(t, x̂, 2(1 − ε)z + 2ε− 1) in R

+ ×G+,

M(t, x̂, 2(1 − ε)z − 2ε+ 1) in R
+ ×G−.

(3.3)

We also define the rescaled exchange coefficient aε by

aε(x̂, z) =

⎧⎨
⎩
A(x̂, 2(1 − ε)z + 2ε− 1) in G+,

A(x̂, 2(1 − ε)z − 2ε+ 1) in G−.
(3.4)

We assume that A ∈ L∞(B,C0([−1, 1])). Note that aε satisfies the coerciveness
condition (2.2).

We also introduce the slabs of R
3,⎧⎨

⎩
S− = R

2 × (−1,−1/2), S0 = R
2 × (−1/2, 1/2), S+ = R

2 × (1/2, 1),

S∞ = R
2 × (1,∞) and S+,∞ = R

2 × (1/2,∞), S−,∞ = R
2 × (−1,∞),

(3.5)

and for (t, x̂, z) ∈ R
+ × R

3
+ the functions

φε(t, x̂, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ϕ(t, x̂, z) if z ≥ 1,

ϕ(t, x̂, 2(1 − ε)z + 2ε− 1) if
1

2
≤ z ≤ 1,

ϕ(t, x̂, 2εz) if − 1

2
≤ z ≤ 1

2
,

ϕ(t, x̂, 2(1 − ε)z − 2ε+ 1) if − 1 ≤ z ≤ −1

2
.

(3.6)

We finally define σε(z) and νε(z) by setting

σε(z) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

1 if z ≥ 1,

1

4(1 − ε)2
if − 1 ≤ z ≤ −1

2
or

1

2
< z < 1,

1

4ε2
if − 1

2
≤ z ≤ 1

2

(3.7)

and

νε(z) =

⎧⎪⎪⎨
⎪⎪⎩

0 if − 1

2
< z <

1

2
or z ≥ 1,

1

2(1 − ε)
if

1

2
≤ z ≤ 1 or − 1 ≤ z ≤ −1

2
.

(3.8)

The potential φε satisfies in R
+ × S−,∞ the equations⎧⎪⎨

⎪⎩
d̂iv
(
ĝradφε + χ(G)m̂ε

)
+ ∂z(σ

ε∂zφ
ε + νεχ(G)mε · u3) = 0,

1

2(1 − ε)
∂zφ

ε + χ(B)mε · u3 = 0 at z = −1,
(3.9)
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with the usual transmission boundary conditions at the interfaces z = 1 and z = ±1/2.

The operators d̂iv and ĝrad represent the divergence and the gradient operators,
respectively, with respect to the variable x̂ and m̂ = (m1,m2, 0), where (m1,m2) are

the first two components of m. The vector ĝradφ may also be considered as a 2-D
vector or a 3-D vector where the third component is 0.

The magnetic excitation H defined in G by (1.2) becomes

Hε(mε) = d̂iv(aεĝradmε) +
1

4(1 − ε)2
∂z(a

ε∂zm
ε)

+ ψ(mε) + ĝradφε +
1

2(1 − ε)
∂zφ

εu3,(3.10)

and the interlayer exchange boundary condition takes the form

mε(±1/2) ×
(
∓ aε

2(1 − ε)
∂zm

ε(±1/2) − Jmε(∓1/2)

)
= 0.(3.11)

The Landau–Lifshitz equations are rewritten in the same form as (1.1), and the
effective magnetic field is denoted by Hε(mε).

Global existence of solutions (mε, φε) of the new system is guaranteed by Theo-
rem 2.2 proved in section 2. We shall describe the behavior of such solutions first when
ε → 0 (the thin nonmagnetic case), and then when ε → 1 (the thick nonmagnetic
case).

3.1. Asymptotic behavior with thin nonmagnetic spacers. We investigate
here the case when ε → 0. The energy estimate (2.11) satisfied by the solutions
becomes

Eε(t) +
2α

1 + α2

∫ t

0

∫
G

|∂tmε(s)|2 dxds = Eε(0),(3.12)

where the total energy Eε(t) is expressed by Eε(t) = Eεexc(t)+Eεvol(t)+Eεdm(t)+Eεint(t)
with ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eεexc(t) =

∫
G

aε|ĝradmε|2 dx+
1

4(1 − ε)2

∫
G

aε|∂zmε|2 dx,

Eεvol(t) =

∫
G

Ψ(mε) dx,

Eεint(t) = − J

2(1 − ε)

∫
B

mε

(
−1

2

)
·mε

(
1

2

)
dx̂,

Eεdm(t) =

∫
S−,∞

|ĝradφε|2 dx+

∫
S−,∞

σε|∂zφε|2 dx,

(3.13)

where σε(z) is defined by (3.7) and aε(x̂, z) is defined in G by (3.4).
Let us discuss the uniform boundedness with respect to ε of the initial energy

Eε(0). We assume that the initial magnetization mε
0 is independent of the variable

z and is such that mε
0(x̂) is uniformly bounded in H

1(B). It follows that ∂zm
ε
0 = 0

and then Eεexc(0) =
∫
G
aε|ĝradmε

0|2 dx ≤ C, where C > 0 is independent of ε since,
by (2.2), we have 0 < a1 ≤ aε(x̂, z) ≤ a2 for almost every (x̂, z). We may weaken this
hypothesis if we assume, for example, that mε

0(x̂, z) = m0(x̂, (1−ε)z) but, to simplify
the presentation, we use our strong hypothesis on mε

0. Next, we have Eεvol(0) ≤ C and
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|Eεint(0)| = J
2(1−ε) |B| ≤ C, where C > 0 is independent of ε. It remains to consider

the initial potential φε0 = φε|t=0, which satisfies the equation⎧⎪⎨
⎪⎩

d̂iv(ĝradφε0 + χ(G)m̂ε
0) + ∂z(σ

ε∂zφ
ε
0 + νεχ(G)mε

0 · u3) = 0 in S−,∞,

1

2(1 − ε)
∂zφ

ε
0 + χ(B)mε

0 · u3 = 0 at z = −1.
(3.14)

In what follows we denote by C > 0 various constants which are independent of
ε. The energy relation associated with (3.14) is∫

S−,∞
|ĝradφε0|2 dx +

∫
S−,∞

σε|∂zφε0|2 dx =

= −
∫
G

m̂ε
0 · ĝradφε0 dx− 1

2(1 − ε)

∫
G

mε
0 · u3∂zφ

ε
0 dx,(3.15)

which, by the Cauchy–Schwarz inequality, gives the estimate

Eεdm(0) ≤ 2|G|.(3.16)

The above results can be stated as follows.
Lemma 3.1. Let mε

0(x̂, z) = mε
0(x̂) ∈ H

1(B) such that ‖mε
0‖H 1(B) ≤ C and

|mε
0(x̂)|2 = 1 a.e. Then there exists a C > 0 independent of ε such that the initial

energy Eε(0) = Eε0 satisfies the estimate

0 ≤ Eε0 ≤ C.(3.17)

From (3.12) and Lemma 3.1 we deduce the following uniform bounds.
Lemma 3.2. Under the hypotheses of Lemma 3.1, it holds that⎧⎪⎪⎪⎨

⎪⎪⎪⎩

|gradmε|L∞(R+,L2(G)) + |∂tmε|L2(R+,L2(G)) ≤ C,

|ĝradφε|L∞(R+,L2(S−,∞)) + |∂zφε|L∞(R+,L2(S−,∞\S0)) ≤ C,

|∂zφε|L∞(R+,L2(S0)) ≤ C ε.

(3.18)

For a subsequence still denoted (mε, φε) we deduce the convergences⎧⎪⎪⎪⎨
⎪⎪⎪⎩

mε ⇀m weakly−  in L∞(R+,H 1(G)) ∩ L
∞(R+ ×G),

∂tm
ε ⇀ ∂tm weakly in L2(R+,L2(G)),

mε → m strongly in L2
loc(R

+,L2(G));

(3.19)

the last strong convergence is a consequence of the classical use of Aubin’s compactness
lemma. For the magnetic field we have⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

ĝradφε ⇀ ĝradφ weakly−  in L∞(R+,L2(S−,∞)),

∂zφ
ε ⇀ ∂zφ weakly−  in L∞(R+, L2(S−,∞ \ S0)),

∂zφ
ε → ∂zφ = 0 strongly in L∞(R+, L2(S0)),

Θε :=
1

2ε
∂zφ

ε ⇀ 0 weakly−  in L∞(R+, L2(S0)).

(3.20)
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Indeed, the potential φε converges weakly- to φ in L∞(R+, H1
ρ(S

−,∞)), where
H1
ρ(S

−,∞) = {g ∈ D′(S−,∞), gradg ∈ L
2(S−,∞), and ρg ∈ L2(S−,∞)} denotes the

weighted Sobolev space with ρ(x) = (1+|x̂|+|z|)−1. This space describes the behavior,
when |x| → ∞, of the potentials φε and φ. In particular, φε converges to φ weakly-
in L∞(R+, L2

loc(S
−,∞)).

We prove the last assertion of (3.20). We multiply (3.9) first by 2ε then by
g ∈ D(O) with O = R

+ × S−,∞. Integrating by parts, we get

2ε

(∫
O

ĝradφεĝradg dxdt+

∫
O\(R+×S0)

σε∂zφ
ε∂zg dxdt

)
+

∫
R+×S0

Θε∂zg dxdt

= −2ε

∫
R+×G

(
m̂ε · ĝradg + νεmε · u3∂zg

)
dxdt.(3.21)

Hence, passing to the limit, we deduce that the weak- limit Θ of the sequence
Θε satisfies ∂zΘ = 0. Then Θ is independent of the variable z, and since Θ ∈
L∞(R+,L2(S0)) and S0 = R

2 × (−1/2, 1/2), we get Θ = 0. The following theorem
gives a characterization of the potential φ.

Theorem 3.3. Let φ be the weak- limit in L∞(R+, H1
ρ(S

−,∞)) of the sequence
φε. Let φ+ and φ− be the restrictions of φ to R

+ × S+,∞ and R
+ × S−, respectively.

Then (φ+, φ−) ∈ L∞(R+, H1
ρ(S

+,∞) × H1
ρ(S

−)) satisfies the coupled magnetostatic
equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

d̂iv
(
ĝradφ+ + χ(G+)m̂+

)
+ ∂z (σ(z)∂zφ

+ + ν(z)χ(G+)m+ · u3) = 0 in R
+ × S+,∞,

d̂iv
(
ĝradφ− + χ(G−)m̂−

)
+ ∂z

(
1

4
∂zφ

− +
1

2
χ(G−)m− · u3

)
= 0 in R

+ × S−,

∂zφ
+(1−) + 2χ(B)m(1−) · u3 = 4∂zφ

+(1+),

∂zφ
−(−1) + 2χ(B)m−(−1) · u3 = 0

(3.22)
and the coupling relations⎧⎨
⎩
φ−(−1/2) = φ+(1/2),

(∂zφ
+ + 2χ(B)m+ · u3)|z=1/2 − (∂zφ

− + 2χ(B)m− · u3)|z=−1/2 = −4 ∆̂φ+(1/2),

(3.23)
where m± is the restriction of m to G±. The restriction φ0 of φ to R

+ × S0 is
independent of the variable z and is given by

φ0(t, x̂) = φ−(t, x̂,−1/2) = φ+(t, x̂, 1/2) a.e.(3.24)

Proof. In R
+ × S0 the function Θε defined in (3.20) satisfies

∂zΘ
ε = −2ε∆̂φε.(3.25)

It follows that ∂zΘ
ε is uniformly bounded in L∞(R+, L2(−1/2, 1/2;H−1

loc (R2))).
Then Θε belongs to the space L∞(R+, H1(−1/2, 1/2;H−1

loc (R2))). Using the trace
theorems, it follows that Θε(±1/2±) is well defined in L∞(R+, H−1

loc (R2)). More-
over, thanks to the convergences (3.19)–(3.20), we deduce that Θε ⇀ 0 weakly- in
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L∞(R+, H1(−1/2, 1/2;H−1
loc (R2))). Consequently, we obtain Θε(±1/2±) ⇀ 0 weakly-

. Hence, we get, at least in the sense of distributions, the following convergence:

1

2ε
∂zφ

ε(±1/2±) ⇀ 0.(3.26)

Let us consider problem (3.9). Using test functions g(t, x̂, z) first in D(R+×S+,∞)
then in D(R+ × S−) and taking into account the convergences of (3.19)–(3.20), it
is easy to see that φ+ and φ− satisfy, in the sense of distributions, the following
equations:

d̂iv
(
ĝradφ+ + χ(G+)m̂+

)
+ ∂z

(
σ(z)∂zφ

+ + ν(z)χ(G+)m+ · u3

)
= 0(3.27)

in R
+ × S+,∞, where σ(z) = 1, ν(z) = 0 if z > 1 and σ(z) = 1/4, ν(z) = 1/2 if

1/2 < z < 1, and

d̂iv
(
ĝradφ− + χ(G−)m̂−

)
+ ∂z

(
1

4
∂zφ

− +
1

2
χ(G−)m− · u3

)
= 0 in R

+ × S−,

∂zφ
− + 2χ(B)m− · u3 = 0 at z = −1.

It remains to couple this set of equations. Let φ0 be the restriction of φ to R
+ × S0.

We have shown that φ0 is independent of the variable z in the domain S0. The
transmission boundary conditions satisfied by φε at the interfaces z = ±1/2 and
z = 1 are the following:[

σε∂zφ
ε + νεχ(B)mε · u3

]
z=±1/2

=
[
σε∂zφ

ε + νεχ(B)mε · u3

]
z=1

= 0,[
φε
]
z=±1/2

=
[
φε
]
z=1

= 0.
(3.28)

In (3.28), [ ] denotes the jump across the interfaces. Passing to the limit in the
continuity condition of φε at the interfaces z = ±1/2, we get the result

φ0(t, x̂) = φ−(t, x̂,−1/2) = φ+(t, x̂, 1/2) a.e.(3.29)

Since φ0 is independent of the variable z in the domain R
+ × S0, we use, in the

weak formulation of (3.9), test functions g ∈ D(R+ × R
2), which are independent of

the variable z. An integration by parts gives∫
R+×S0

ĝradφεĝradg dxdt

=

∫
R+×R2

(
1

4ε2
∂zφ

ε(1/2−) − 1

4ε2
∂zφ

ε(−1/2+)

)
g(t, x̂) dx̂dt.

(3.30)

From (3.28) we can write that

1

ε2
∂zφ

ε(1/2−) =
1

(1 − ε)2
∂zφ

ε(1/2+) +
2

(1 − ε)
χ(B)mε(1/2+) · u3,

1

ε2
∂zφ

ε(−1/2+) =
1

(1 − ε)2
∂zφ

ε(−1/2−) +
2

(1 − ε)
χ(B)mε(−1/2−) · u3;

(3.31)

then we replace (3.31) in (3.30). We pass to the limit in (3.30) by using the fact that
∂zφ

ε(±1/2±) converges to ∂zφ
±(±1/2±) in the sense of distributions. We get the
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equation∫
R+×R2

ĝradφ0 ĝradg dx̂dt =

∫
R+×R2

[(
1

4
∂zφ

+(1/2) +
1

2
χ(B)m+(1/2) · u3

)

−
(

1

4
∂zφ

−(−1/2) +
1

2
χ(B)m−(−1/2) · u3

)]
g dx̂dt.(3.32)

This result implies, after an integration by parts, the equation⎧⎪⎨
⎪⎩

4∆̂φ0 +
[
(∂zφ

+(1/2) + 2χ(B)m+(1/2))

−(∂zφ
−(−1/2) + 2χ(B)m−(−1/2) · u3)

]
= 0 in R

+ × R
2.

(3.33)

Finally, using (3.29), we get the coupling boundary condition

(∂zφ
+(1/2) + 2χ(B)m+(1/2)) − (∂zφ

−(−1/2) + 2χ(B)m(−1/2) · u3)

= −4∆̂φ+(1/2) = −4∆̂φ−(−1/2).
(3.34)

We conclude the proof of the theorem by passing to the limit in the transmission
boundary condition at the interface z = 1. We get

∂zφ
+(1−) + 2χ(B)m(1−) · u3 = 4∂zφ

+(1+).(3.35)

The proof of the theorem is then complete.
We now are able to pass to the limit in Landau–Lifshitz equations. Let F ∈ D(Q)

be a test function where Q = R
+ × Ω and Ω = B × (−1, 1). The following weak

formulation is associated with Landau–Lifshitz equations:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1 + α2

∫
Q

χ(G)(∂tm
ε − αmε × ∂tm

ε)F dxdt

=

∫
Q

χ(G)mε × aεĝradmεĝradF dxdt

+
1

4(1 − ε)2

∫
Q

χ(G)mε × aε∂zm
ε∂zF dxdt

−
∫
Q

χ(G)mε ×
(
ψ(mε) + ĝradφε +

1

2(1 − ε)
∂zφ

εu3

)
F dxdt

− J

2(1 − ε)

∫
R+×B

mε(1/2+) ×mε(−1/2−)
(
F (1/2+) − F (−1/2−)

)
dx̂dt,

(3.36)

where we set G = G+∪G−. By the definition of aε (see (3.4)) we have the convergence

aε → a a.e.,(3.37)

where

a(x̂, z) =

⎧⎨
⎩
A(x̂, 2z + 1) in G−,

A(x̂, 2z − 1) in G+.
(3.38)

This result and (3.19)–(3.20) give the following result.
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Theorem 3.4. Let (mε, φε) be a global solution of problem (1.1) with (3.9)–(3.10)
satisfying the interlayer exchange boundary condition (3.11). Let (m,φ) be the weak-
limit of a subsequence of (mε, φε). Then (m,φ) satisfies in R

+ ×G the equations

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tm− αm× ∂tm = −(1 + α2)m×H0(m) in R
+ × (G− ∪G+),

m(0, x) = m0(x),
∂m

∂n
= 0 on ∂Ω \ {z = ±1/2},

m(±1/2) ×
(
∓ a∂zm(±1/2) − 2Jm(∓1/2)

)
= 0 in B,

H0(m) = d̂iv(a ĝradm) +
1

4
∂z(a ∂zm) + ψ(m) + ĝradφ+

1

2
∂zφ u3 in G,

where φ is the solution of the magnetostatic equations (3.22)–(3.23).

Remark. Notice that the potential φ solves the magnetostatic equations in the
disjoint domains S− and S+,∞. These domains are coupled together by a Ventcel-
type boundary condition given in Theorem 3.3 linking the interfaces z = −1/2 and
z = 1/2. The magnetization m satisfies the Hoffmann IEC law with the coefficient
2J instead of J due to the change of variable used.

3.2. Asymptotic behavior with large nonmagnetic spacers. The aim of
this subsection is to discuss the behavior of the problem when ε → 1. The estimates
satisfied by the solutions (mε, φε) are given by the energy estimate (3.12)–(3.13).
Let us discuss the admissibility criterion for the initial data mε

0. The compatibility
condition for φε0 is given by (3.14). The condition that mε

0 is independent of the
variable z ∈ G ensures that Eεexc(0) ≤ C and Eεint(0) = − J

2(1−ε) |B|. Since we have

Eεvol(0) ≤ C, it remains to show that under this condition on mε
0 we have Eεdm(0) ≤

C uniformly with respect to ε. This follows from estimates (3.15)–(3.16). As in
subsection 3.1, C > 0 denotes various constants which are independent of ε.

Lemma 3.5. Let mε
0 ∈ H

1(B) such that mε
0 is uniformly bounded in H

1(B) and
satisfies |mε

0(x̂)|2 = 1 a.e. in B. Then we have

Eεexc(0) + Eεvol(0) + Eεdm(0) ≤ C, |Eεint(0)| ≤ C
J

1 − ε
.(3.39)

Moreover, the solutions (mε, φε) associated with mε
0 satisfy, for all t ≥ 0, the estimates

0 ≤ Eεexc(t) + Eεvol(t) + Eεdm(t) ≤ C

(
1 +

J

1 − ε

)
, |Eεint(t)| ≤ C

(
1 +

J

1 − ε

)
.

(3.40)

In what follows this subsection, we assume that the interlayer exchange coefficient
J satisfies the hypothesis

J = j(1 − ε), j > 0,(3.41)

where j is independent of ε.

The energy estimate (3.12) and (3.13) imply the following uniform bounds.

Lemma 3.6. Under the hypotheses of Lemma 3.5 and (3.40), the solutions
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(mε, φε) satisfy the following estimates:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

|ĝradmε|L∞(R+,L2(G)) + |∂tmε|L2(R+,L2(G)) ≤ C,

|ĝradφε|L∞(R+,L2(S−,∞)) + |∂zφε|L∞(R+,L2(S0∪S∞)) ≤ C,

|∂zmε|L∞(R+,L2(G)) + |∂zφε|L∞(R+,L2(S−∪S+)) ≤ C(1 − ε).

(3.42)

There exists a subsequence still denoted (mε, φε) such that the following conver-
gences hold: ⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

mε ⇀m weakly−  in L∞(R+,H 1(G)) ∩ L
∞(R+ ×G),

∂tm
ε ⇀ ∂tm weakly in L2(R+,L2(G)),

∂zm
ε → 0 strongly in L∞(R+,L2(G)),

mε → m strongly in L2
loc(R

+,L2(G))

(3.43)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ĝradφε ⇀ ĝradφ weakly−  in L∞(R+,L2(S−,∞)),

∂zφ
ε → 0 strongly in L∞(R+, L2(S− ∪ S+)),

∂zφ
ε ⇀ ∂zφ weakly−  in L∞(R+, L2(S0 ∪ S∞)).

(3.44)

Let us first consider the behavior of the potential φε when ε → 1. We have the
following characterization of the potential limit φ.

We denote by φ−, φ0, φ+, and φ∞ the restrictions of φ to the domains R
+ × S−,

R
+×S0, R

+×S+, and R
+×S∞, respectively, andm± the restriction ofm to R

+×G±.
Notice that φ± and m± are independent of the variable z.

Theorem 3.7. We assume that the hypotheses of Lemma 3.6 are fulfilled. Let
φε be the solution of (3.9) and φ its weak- limit. Then we have⎧⎨

⎩
φ+(x̂) = φ∞(x̂, 1) = φ0(x̂, 1/2) a.e.,

φ−(x̂) = φ0(x̂,−1/2) a.e.
(3.45)

Moreover, the couple (φ∞, φ0) satisfies, for all t ≥ 0, the problem⎧⎪⎨
⎪⎩

∆̂φ∞ + ∂2
zφ

∞ = 0 in R
+ × S∞,

∆̂φ0 +
1

4
∂2
zφ

0 = 0 in R
+ × S0,

(3.46)

with the coupling boundary conditions⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

φ∞(1) = φ0(1/2),

∂zφ
∞(1) − 1

4
∂zφ

0(1/2) = −1

2
d̂iv(ĝradφ∞(1) + χ(B)m̂+),

∂zφ
0(−1/2) = −2d̂iv(ĝradφ0(−1/2) + χ(B)m̂−).

(3.47)



1092 KAMEL HAMDACHE AND MOUHCINE TILIOUA

Furthermore, setting Θ±
ε = 1

2(1−ε)∂zφ
ε
|S± the restriction to R

+ × S±, we have the
convergence

Θ±
ε ⇀ −χ(G±)m± · u3 weakly−  in L∞(R+, L2(S±)).(3.48)

Proof. Estimates (3.43) and (3.44) show that the restriction of φ to R
+ ×S± and

the magnetization m are independent of the variable z. We shall pass to the limit in
each slab where the potential φε is defined.

In the domains R
+ × S±, the potential φε satisfies the equation

∂z

(
1

2(1 − ε)
∂zφ

ε + χ(G±)mε · u3

)
= −2(1 − ε) d̂iv

(
ĝradφε + χ(G±)m̂ε

)
.(3.49)

Let Θ±
ε = 1

2(1−ε)∂zφ
ε
|S± be defined as previously. By Lemma 3.6, we have Θ±

ε ⇀

Θ± weakly- in L∞(R+, L2(S±)). Passing to the limit in (3.49) by using the estimates
given in Lemma 3.6, one deduces that Θ± satisfies the equation

∂z(Θ
± + χ(G±)m(x̂) · u3) = 0 in R

+ × S±.(3.50)

Consequently, we have Θ± + χ(G±)m(x̂) · u3 = C±(t, x̂), where the unknown
functions C± are independent of the variable z. Next, since the transmission boundary
conditions at the interfaces z = ±1/2± take the form

Θ±
ε (±1/2±) + χ(B)mε(±1/2±) · u3 =

1 − ε

2ε2
∂zφ

ε(±1/2∓),(3.51)

we deduce, by using the convergences given in (3.44), that ∂zφ
ε(±1/2∓) ⇀ ∂zφ(±1/2∓)

and Θε(±1/2±) ⇀ Θ(±1/2±) in the sense of distributions. Hence, we get

Θ±(±1/2) + χ(B)m(±1/2) · u3 = 0,(3.52)

and finally (3.50) gives the result

Θ±(t, x̂, z) = −χ(G±) m(t, x̂) · u3 in R
+ × S±.(3.53)

Now we are dealing with the equation satisfied by φ± in R
+ × S±. (Recall that

φ± is independent of z.) Let g ∈ D(R+ ×R
2) be a test function which is independent

of the variable z. Multiplying (3.49) by g and integrating by parts, we get⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

∫
R+×S+

(ĝradφε + χ(G+)m̂ε)(ĝradg) dx̂dzdt

=

∫
R+×R2

(
1

(2(1 − ε))2
∂zφ

ε +
1

2(1 − ε)
χ(B)mε · u3

)
(1−)g dx̂dt

−
∫

R+×R2

(
1

(2(1 − ε))2
∂zφ

ε +
1

2(1 − ε)
χ(B)mε · u3

)
(1/2+)g dx̂dt.

(3.54)

Using the transmission boundary conditions at the interfaces z = 1 and z = 1/2,
(3.54) then becomes∫

R+×S+

(ĝradφε + χ(G+)m̂ε)(ĝradg) dx̂dzdt

=

∫
R+×R2

∂zφ
ε(1+)g dx̂dt−

∫
R+×R2

1

(2ε)2
∂zφ

ε(1/2−)g dx̂dt.
(3.55)
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Passing to the limit by using Lemma 3.6, we get the equation

1

2

∫
R+×R2

(ĝradφ+ + χ(B)m̂+)(ĝradg) dx̂dt

=

∫
R+×R2

∂zφ
∞(1)g dx̂dt−

∫
R+×R2

1

4
∂zφ

0(1/2)g dx̂dt.
(3.56)

Using the continuity of the potential across the interfaces z = 1, z = ±1/2, we
deduce that φ satisfies the continuity property

φ+(x̂, 1) = φ∞(x̂, 1), φ0(x̂, 1/2) = φ+(x̂, 1/2), φ0(x̂, 1/2) = φ−(x̂, 1/2) a.e.(3.57)

Integrating by parts in (3.55) and recalling that m is independent of the variable
z in R

+ × G+, we get the transmission boundary condition coupling the interfaces
z = 1 and z = 1/2:

∂zφ
∞(1) − 1

4
∂zφ

0(1/2) = −1

2
d̂iv(ĝradφ∞(1) + χ(B)m̂+).(3.58)

Let us consider the convergence of the restriction of φε to the domain R
+ × S−.

We proceed as we did previously in the domain R
+ × S+ and recall that φε satisfies

at z = −1 the Neumann homogeneous boundary condition. We get∫
R+×S−

(ĝradφε + χ(G−)m̂ε)(ĝradg) dx̂dzdt

=

∫
R+×R2

(
1

(2(1 − ε))2
∂zφ

ε +
1

2(1 − ε)
χ(B)mε · u3

)
(−1/2−)g dx̂dt,

(3.59)

which gives, by using the transmission condition at the interface z = −1/2,∫
R+×S−

(ĝradφε + χ(G−)m̂ε)(ĝradg) dx̂dzdt

=

∫
R+×R2

1

(2ε)2
∂zφ

ε(−1/2+)g dx̂dt.
(3.60)

We pass to the limit in the equation. To do that we use the fact that φ and m
are independent of the variable z in S−, and we use the continuity of the potential φ
at the interface z = −1/2. We get the equation

2

∫
R+×R2

(ĝradφ0 + χ(B)m̂−)(ĝradg) dx̂dt =

∫
R+×R2

∂zφ
0(−1/2+)g dx̂dt(3.61)

or, equivalently, the boundary condition at the interface z = −1/2, by using the fact
that φ−(x̂) = φ0(x̂,−1/2):

∂zφ
0(−1/2+) = −2d̂iv(ĝradφ0 + χ(B)m̂−).(3.62)

Next, we pass to the limit in the equations satisfied by the potential φε in R
+×S0

and R
+ × S∞, which satisfies the equations⎧⎨

⎩
d̂iv(ĝradφε) +

1

4ε2
∂2
zφ

ε = 0 in R
+ × S0,

d̂iv(ĝradφε) + ∂2
zφ

ε = 0 in R
+ × S∞.

(3.63)
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It follows that the potential φ satisfies the equations (recall the interface continuity
equalities (3.57))

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∆̂φ0 +
1

4
∂2
zφ

0 = 0 in R
+ × S0,

∆̂φ∞ + ∂2
zφ

∞ = 0 in R
+ × S∞,

φ∞(1) = φ0(1/2).

(3.64)

Hence, the theorem is proved.

The local magnetic excitation Hε(mε) involves the magnetic field

ĝradφε +
1

2(1 − ε)
∂zφ

εu3

in S±. When ε→ 1, we get the following convergence result.

Lemma 3.8. The magnetic field satisfies the convergence

(
ĝradφε +

1

2(1 − ε)
∂zφ

εu3

)
|R+×S±

⇀ (ĝradφ± − χ(G±)m · u3u3)|R+×S±(3.65)

weakly- in L∞(R+,L2(S±)).

Now, we may pass to the limit in the Landau–Lifshitz equations. Arguing that,
in the limit, m± is independent of z, we use test functions of the type F ε(t, x̂, z) =
F (t, x̂) + 2(1 − ε)F0(t, x̂)h(2(1 − ε)z), where h ∈ D([−1, 1]) and F, F0 ∈ D(B). The
weak formulation of the problem reads in each domain Q± = R

+ ×G± as follows:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1 + α2

∫
Q±

(∂tm
ε − αmε × ∂tm

ε) (F + hε(z)F0)dxdt

=

∫
Q±

mε × (aεĝradmε)(ĝradF + hε(z)ĝradF0) dxdt

+

∫
Q±

mε × (aε∂zm
ε)F0h

′(2(1 − ε)z) dxdt

−
∫
Q±

mε ×
(
ψ(mε) + ĝradφε +

1

2(1 − ε)
∂zφ

εu3

)
(F + hε(z)F0) dxdt

− j

2

∫
R+×B

mε(±1/2) ×mε(∓1/2)
(
F + hε(±(1 − ε))F0

)
dx̂dt,

(3.66)

where we have set hε(z) = 2(1− ε)h(2(1− ε)z) and used the IEC boundary condition
at the interfaces z = ±1/2:

mε(±1/2) ×
(
∓ aε

2(1 − ε)
∂zm

ε(±1/2) − j(1 − ε)mε(∓1/2)

)
= 0.(3.67)

We pass to the limit in each term of the weak formulation (3.66). By using
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Lemmas 3.6 and 3.8, we get⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

1 + α2

∫
R+×B

(
∂tm

± − αm± × ∂tm
±) Fdx̂dt

=

∫
R+×B

m± × (a±ĝradm±)ĝradF dx̂dt

−
∫

R+×B
m± ×

(
ψ(m±) + ĝradφ± − χ(B)(m± · u3)u3

)
F dx̂dt

− j

∫
R+×B

m± ×m∓ F dx̂dt,

(3.68)

where we used the strong convergence

aε|G± → a±(x̂) = A(x̂,±1) a.e.(3.69)

Gathering all results of this subsection, we get the following convergence theorem.
Theorem 3.9. Let m± be the weak- limit in L∞(R+,H 1(G±)) of a subsequence

of mε
|G± . Then the couple (m+,m−) is independent of the variable z and satisfies

|m±(t, x̂)|2 = 1 a.e. Moreover, (m+,m−) satisfies in R
+ × B the Landau–Lifshitz–

Gilbert equations⎧⎪⎨
⎪⎩
∂tm

± − αm± × ∂tm
± = −(1 + α2)m± ×H±(m±),

m±(0, x̂) = m0(x̂),
∂m±

∂n
= 0 on ∂B,

(3.70)

where the total magnetic field H±(m±) is given by

H±(m±) = d̂iv(a± ĝradm±) + ψ(m±) + ĝradφ± − χ(B)m± · u3 u3 + jm∓.(3.71)

Furthermore, the potential φ±(t, x̂) is given by Theorem 3.7.

4. Concluding remarks. The results obtained can be applied without difficulty
to the case of the full Maxwell system. In this study we have considered a plane
interface between layers. It would be very interesting to extend this analysis to a more
general case of interfacial roughness, especially in films with compensated interfaces,
which play an important role in giant magnetoresistance (GMR) [18], [23]. Note
that the magnetic multilayers with GMR have attracted a lot of interest due to their
high density information storage and retrieval capacities. Also, as already said in the
introduction, we have limited ourselves to bilinear coupling. Thus one may consider a
more general energy coupling density which takes into account the biquadratic effect
recently discovered in layered magnetic systems [14]. It is mostly expressed [18], [23]
(see also the introduction) as J1(1 −m+ ·m−) + J2(1 − (m+ ·m−)2), where m+ and
m− are the magnetization vectors at the inner surfaces of the first and the second
magnetic slabs, respectively. To take into account that energy, we use the following
boundary condition at the interfaces + and − facing each other:

m± ×
(
A
∂m±

∂n±
− J1m

∓ − J2(m
+ ·m−)m∓

)
= 0.

Considering the problem with this energy and the roughness of interfaces, the asymp-
totic behavior of the interlayer coupling will be difficult to approach and will require
more detailed studies.
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Abstract. Flow and transport phenomena occurring within serpentine microchannels are an-
alyzed for both two- and three-dimensional curvilinear configurations. The microfluidic conduit is
modeled as a spatially periodic “thin” channel, enabling asymptotic expansions of the pertinent
transport fields in terms of a small parameter ε, representing the ratio of channel (half-)width to
curvilinear channel length per serpentine period. The electric potential distribution, as well as the
attendant electro-osmotic flow field, is calculated for the limiting case where the Debye layer thick-
ness is small relative to the channel width. Generalized Taylor–Aris dispersion theory is employed
to calculate the serpentine-scale velocity and dispersivity of a charged point-size colloidal Brownian
particle (“molecule”) entrained in the solvent Stokes flow engendered by the electrokinetic forces.
These respective macrotransport coefficients are expressed, inter alia, in terms of quadratures of the
local curvature within a unit cell of the serpentine device.
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1. Introduction. Conventional chromatographic separation schemes exploit the
differences in mean solute velocity with which the various species move throughout
the chromatograph (into which they were introduced simultaneously). As the aver-
age separation distance between species increases linearly with channel length, it is
desirable to maximize the available length between the entrance and exit of a so-
lute molecule within the device. In microfluidic devices, constrained by chip-size
limitations, improved chromatographic efficiency can therefore be achieved by fold-
ing the otherwise straight separation channel into the shape of a serpentine channel
[12, 13, 5]. In attempting to optimize chip layout design it is obviously useful to qual-
itatively understand the transport factors which distinguish curvilinear channels from
their rectilinear counterparts, whose chromatographic properties are well understood
[3]. This is the goal of the present paper.

The major drawback of all chromatographic separation devices lies in the in-
creased band-broadening experienced by the solute sample over and above that due to
purely molecular diffusion alone. This increased solute spread results from the Taylor-
dispersion mechanism, whereby Brownian solute particles sample different streamlines
(in particular their concomitant axial velocities) within the channel cross section. The
cross-sectional velocity variance is generally greater in curved channels than in com-
parably straight channels [2, 8]. Thus, while Taylor effects also exist in straight chan-
nels (especially in pressure-driven flows), channel curvature could significantly modify
these convective-dispersion effects. Accordingly, one of the main foci of the present
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paper lies in examining the relevant enhancement of solute dispersion associated with
the curvature of the serpentine channel.

A systematic analysis of solute dispersion accompanying pressure-driven flows
in serpentine channels was recently carried out by [22], using macrotransport the-
ory [3] for spatially periodic systems. All other things being equal, the mean axial

solute velocity U
∗

and dispersivity D
∗

in the direction of net flow were found to
be proportional to the corresponding quantities for the straight unfolded channel, the
constants of proportionality for these two macrotransport parameters being L/l (< 1)
and (L/l)2, respectively. The factor L/l constitutes the inverse of the “tortuosity,”
namely the ratio of serpentine channel length, l, to its projected (rectilinear) channel
length in the direction of net flow, L. These results are easily rationalized in terms
of the combined effects arising from the extended total serpentine channel length and
the decreased effective cross-sectional area of the curved channel. Since only leading-
order terms were evaluated by [22], their results are based upon a Poiseuillian velocity
profile, with no dependence upon curvature-induced deviations from it.

Practical microfluidic separation devices employ ionic solutions as the solvent
phase, acting as a buffer for the chemically sensitive solute molecules. As the bound-
aries of the channel are usually charged (as a consequence of the presence of elec-
trolytes), it is common practice to use external electric fields to drive the bulk flow.
The resulting electro-osmotic flow represents a balance between the animating electri-
cal body forces, concentrated within the Debye double-layer, and the retarding viscous
stresses. Use of electro-osmotic flows eliminates the need for inefficient micropumps in
favor of electrodes. Moreover, the length-scale on which the velocity field varies cross-
sectionally across the double-layer is extremely small compared with typical channel
widths. Thus, the velocity profile is substantially uniform over the major portion of
the channel cross section. For such “plug flows” the only source of solute dispersion is
axial molecular diffusion. We seek, inter alia, to calculate the additional Taylor–Aris
dispersion arising in curvilinear channels (over that occurring in straight channels),
wherein the velocity field deviates from a plug flow owing to channel curvature.

Furthermore, if the solute particles are charged, the electric field operates as an
external force field (albeit indirectly, owing to the presence of a Debye double-layer
around the particles). As a result of the lateral (and perhaps longitudinal) variations
of the electric field in a curved channel, the electrophoretic particle velocity (relative
to the already nonuniform velocity field) depends upon the local position of the par-
ticle within the channel. (This electrophoretic velocity is related to the electric field
through the particle’s electrophoretic mobility.) This constitutes yet another source of
solute Taylor dispersion, which, similarly to that arising from the nonuniform solvent
velocity field, is absent in electro-osmotic flows in straight channels. As nonuniformi-
ties of both velocity and electric field occur in electro-osmotic flows in curved channels,
each may individually contribute to the resulting Taylor dispersion. It is the purpose
of this paper to provide the required analysis for such phenomena, at least for solute
particles that can be regarded as being effectively “point-size” compared with the
channel width.

This paper addresses the transport of a charged solute Brownian particle en-
trained in an electro-osmotic flow occurring within a curved serpentine channel of
uniform width, modeled as a two-dimensional spatially periodic conduit. (The peri-
odicity assumption, reflecting the configurationally serpentine character of the device,
removes the need to deal with finite size “end effects” in real microfluidic devices, at
least for channels consisting of a sufficiently large number of turns.) In contrast to the
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specific conduit geometries (toroids and helices) analyzed to date for pressure-driven
flows in curvilinear channels of circular cross section [2, 8], we consider here the gen-
eral case of an arbitrary nonuniform local curvature—that is, where channel curvature
varies with distance along the center-line of the serpentine device. Attention is focused
upon situations where the channel width is small compared with the characteristic
local radius of curvature,1 which circumstances are assumed (either explicitly or im-
plicitly) in all previous attempts to analyze turn-induced dispersion [5, 10, 16]. The
present contribution entails a rigorous description of the generic channel geometry via
channel-fixed curvilinear coordinates. This allows for the systematic use of regular
asymptotic expansions of the pertinent transport fields, enabling a straightforward
perturbation solution of the coupled flow-electrostatics problem.

Using the solvent velocity and electric fields thereby derived, generalized Taylor–
Aris dispersion theory [3] is invoked to evaluate the effective macrotransport coeffi-

cients U
∗

and D
∗

serving to quantify the net unidirectional global solute transport
through the serpentine device as a whole. Since Taylor dispersion is absent during
electro-osmotic “plug flow” in a straight channel (at least in circumstances where the
Debye layer is thin compared with the channel width and where wall effects are neg-
ligible), the counterparts of the “zeroth-order” tortuosity-induced effects, analyzed
by [22] for pressure-driven flows, are trivial in the present case. Thus, leading-order
Taylor dispersion is associated with (first-order) curvature-induced velocity deviations
from a plug flow. Owing to the dependence of curvature upon curvilinear position
along the channel, both U

∗
and D

∗
are expressed as quadratures of the local channel

curvature k(s) within a unit cell of the serpentine device, s being a length parameter
measured along the (center-line of the) curved channel. Inasmuch as typical solute par-
ticles (such as DNA molecules) encountered in microfluidic devices are small compared
with the device’s channel width [24], we concentrate—in this initial communication—

on the case of “point-size” particles. This furnishes the dominant effect upon D
∗
.

Wall effects upon both U
∗

and D
∗
, arising from the finite size of particles relative to

channel width, will be discussed in a subsequent publication.

Section 2 deals with the specification of a general curvilinear channel geometry,
one which lends itself to analytic manipulation. Explicitly, channel-fixed tangent-
normal coordinates are constructed, and the required scalar and vector operators
evaluated. Description of the physical problem governing both the flow and elec-
tric potential fields, as well as the accompanying asymptotic analysis, is outlined in
section 3 for an arbitrary two-dimensional curved channel geometry. This analysis
provides both the electric and vector velocity fields, expressed in the respective forms
of regular perturbation expansions in the small parameter ε, representing the dimen-
sionless curvilinear channel width. Using these data, in section 4 we perform the
requisite macrotransport analyses, resulting in evaluation of the macrotransport co-
efficients U

∗
and D

∗
in terms of the specified global parameters characterizing the

system as a whole. In section 5 we generalize the preceding two-dimensional analy-
sis to a three-dimensional configuration, wherein the serpentine channel possesses a
circular cross section of uniform radius. The relationship between the present macro-
transport results and the single-turn models which appear in the literature is discussed
in section 6. Results are summarized at section 7.

1Cases lacking this fundamental disparity in scales are amenable only to numerical analysis,
which cannot be expected to provide qualitative insights comparable to those resulting from the
present analytical investigation.
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Fig. 1. Serpentine geometry: (a) L-scale; (b) h-scale; and (c) Debye layer scale.

2. Channel geometry. The present analysis addresses electro-osmotic trans-
port processes occurring in a spatially periodic two-dimensional curved channel of
uniform width, depicted in Figure 1. The unidirectional periodicity of the channel is
captured by the presence of a repetitive “unit cell,” characterized by the lattice vector
LX̂, with X̂ a unit vector in the X-direction and L the unit-cell rectilinear length,
measured along X. The curvilinear arc-length of the channel along its center-line for
one period is denoted by l (l ≥ L, with equality holding only for a straight channel).
The “global” position vector Rn of the nth unit cell (−∞ < n < ∞) relative to an
arbitrary origin O (situated, say, at the entrance to the cell labeled n = 0) is given
by Rn = nLX̂. The vector r is used to denote the “local” position within the fluid
domain of this particular cell. The position vector R = (X,Y ) of a point lying within
the nth cell may thus be represented as Rn + r.

In order to define the channel geometry unambiguously it is necessary to specify
the configuration of the boundaries (in some parametric form) of a single unit cell.
We begin with a plane curve Γ, serving to define the center-line of the channel. This
curve is given by the following parametric description of the local position vector

r = rc(s),(2.1)

wherein the parameter s denotes arc-length measured along Γ (0 ≤ s ≤ l). The unit
vector normal to the osculating plane (pointing out of the page) is denoted by k̂,
whereas the unit vector tangent to Γ is given by

ŝ =
drc
ds

.(2.2)
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Fig. 2. Tangent-normal local curvilinear orthogonal coordinate system.

The principal unit normal to Γ, namely n̂, is defined by the requirement that the triad
(ŝ, n̂, k̂), in that order, form a right-handed orthonormal system. The unit vectors ŝ
and n̂ are related by the Serret–Frenet relations [1],

dŝ

ds
= kn̂,(2.3a)

dn̂

ds
= −kŝ,(2.3b)

wherein k(s) is the (algebraically signed) curvature.
The lateral boundaries of the serpentine channel, denoted by sp, are defined as the

locus of points situated at a distance h from Γ. Every point on Γ is thus associated with
two boundary points, located at distances h in the n̂ and −n̂ directions, respectively.2

The length 2h is thus to be interpreted as the channel “width.” Moreover, this
procedure may be generalized to construct a local system of orthogonal, “tangent-
normal,” coordinates (s, n). This is achieved by applying the same type of translation
from points on Γ, but at an arbitrary, algebraically signed distance, say n, normal
to Γ. Every point r in the vicinity of the center-line may be identified with a pair
of coordinates s (signifying distance traversed along the center-line) and n. These
local coordinates are defined only within the fluid domain, say τ0, of a single unit cell
(0 ≤ s ≤ l, −h ≤ n ≤ h). The geometry of the channel is schematically presented in
Figure 2 (for a positive curvature).

The family of curves s = const constitutes a collection of straight lines, which

2These boundaries are well defined only for h < |k|−1. In the following analysis, however, we
concentrate on the asymptotic limit h� |k|−1. In that case the straight segments normal to Γ do not
intersect. As such, any ambiguity is appropriately removed to a degree consistent with our eventual
asymptotic solutions.
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is atypical for coordinate systems normally used to describe curvilinear geometries.
The appearance of such straight coordinate curves in the present context is related
to the fact that only lateral “width” constraints are involved in the specification of
the channel boundaries. As the orthogonal pair of tangent and normal unit vectors,
say, ŝ(s, n) and n̂(s, n), are independent of n, each is identical to its corresponding
center-line value, namely, ŝ(s) and n̂(s).

By definition, the local position vector at the point (s, n) is given by

r(s, n) = rc(s) + n n̂(s).(2.4)

Use of (2.3) yields the differential vector displacement between the neighboring points
(s, n) and (s+ ds, n+ dn), namely,

dr = ŝ(1 − nk) ds+ n̂ dn.(2.5)

The metrical coefficient, |dr|/ds, associated with the coordinate s is thus given by
1 − nk. Since the (algebraically signed) radius of curvature is given by r = 1/k,
this coefficient may be expressed as (r − n)/r, a result which was to be anticipated
(see Figure 2). The gradient operator appropriate to the tangent-normal coordinate
system is thus given by

∇ = n̂
∂

∂n
+ ŝ

1

1 − nk

∂

∂s
.(2.6)

This result may also be obtained from the invariant definition of the gradient of a
generic function f , namely,

∇f � lim
V→0

∫
∂V

dA n f

V
,

wherein n is a unit vector normal to the boundary ∂V of V ; see the elementary
“volume” element depicted in Figure 3. Use of (2.6) in conjunction with (2.3) yields
[11] the following expression for the Laplacian of a generic scalar field f(n, s),

∇2f =
∂2f

∂n2
− k

1 − nk

∂f

∂n
+

1

(1 − nk)
2

∂2f

∂s2
+

n

(1 − nk)
3

dk

ds

∂f

∂s
.(2.7)

Note that the generic geometric construction outlined in this section is, in fact, not
restricted to periodic configurations. In particular, if k is uniform along the channel
(i.e., s-independent), the curve Γ forms a circular arc, possessing a radius r = 1/k.
The operators (2.6)–(2.7) then degenerate to their respective polar-coordinate coun-
terparts, wherein the radial and azimuthal coordinates, say ρ and θ, are given by r−n
and s/r, respectively. (The latter operators are, obviously, independent of k.)

3. Electrokinetics. Consider a periodic electrolyte-filled serpentine channel,
whose nonconducting boundary is assumed to possess a uniform surface charge den-
sity. Electric potential difference is applied across the two ends of the channel, result-
ing in the establishment of an electric field, E = −∇φ.

The presence of different ionic species, combined with the surface charge, results
in regions near the boundaries displaying sharp variations in electric field intensity
and ionic species concentrations. This region constitutes the Debye double-layer. The
length-scale, say, λD (see Figure 1), associated with this variation is of the order of
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Fig. 3. Elementary “volume” (areal) element centered about (n, s).

nanometers for typical values of buffer ionic concentration [21]. This length is ex-
tremely small compared with typical channel widths, the latter being of the order of
tens of microns [5]. We therefore assume, henceforth, that λD/h→ 0. The matching
conditions for the ensuing λD-scale “double-layer” fields provide the pertinent bound-
ary conditions for the h-scale analysis [14]. The first is that the electric field normal
to the boundary vanishes:

∂φ

∂n
= 0;(3.1)

the second is the well-known Smoluchowski equation,

v =
εelζ

µ
∇φ,(3.2)

relating the (local) values of the fluid velocity v to the electric field. In the above,
εel is the electrolyte permittivity and µ the (presumably uniform) fluid viscosity. The
“zeta potential” ζ is the (uniform) excess potential of the charged surface relative to
the (local) value of the potential outside the Debye layer. Equation (3.2) serves as a
“slip-condition” imposed upon the velocity field.

The flow domain in the present problem thus corresponds to the “outer” region of
the double-layer, wherein deviations from charge neutrality are exponentially small.
In this region the Poisson equation degenerates to the Laplace equation,

∇2φ = 0,(3.3)

and electrical body forces are absent from the Navier–Stokes equations. For typical
Reynolds numbers encountered in microfluidic devices it is common to assume Stokes
flow [24], whence the pertinent flow equations become

∇ · v = 0,(3.4)

µ∇2v = ∇p,(3.5)



1106 EHUD YARIV, HOWARD BRENNER, AND SANGTAE KIM

wherein p(r) is the pressure field.
Owing to the periodicity of the channel, the electric field and local pressure gra-

dient are both spatially periodic, resulting in the following conditions:

∇φ(R+ LX̂) −∇φ(R) = 0,

∇p(R+ LX̂) −∇p(R) = 0,

which are each valid for all points R in the fluid domain of the serpentine channel.
The former condition is equivalent to the requirement that

φ(R) = φ̃(R) + V
X

L
,

where φ̃(R) is a spatially periodic function (possessing a period of length L in the
X̂ direction), and V is a constant, representing the voltage difference across a unit
cell. The corresponding “jump” condition, expressed in the local coordinate system,
is simply

φ(n, s = l) − φ(n, s = 0) = V ∀n ∈ [−h, h] .(3.6)

The analogous condition imposed upon p, reflecting the absence of an externally
applied pressure difference, is

p(n, s = l) − p(n, s = 0) = 0 ∀n ∈ [−h, h] .(3.7)

Owing to the periodicity of the serpentine geometry, we expect on the basis of
(3.7) that the resulting flow field will be periodic; that is,

v(n, s = l) − v(n, s = 0) = 0 ∀n ∈ [−h, h] .(3.8)

This, however, does not constitute an additional condition, inasmuch as the problem is
already uniquely defined by (3.1)–(3.7). As such, (3.8) will be satisfied automatically.

Inasmuch as any irrotational flow field identically satisfies the Stokes equations
(with no pressure gradients), it is obvious that the electro-osomtic velocity field is
simply proportional to the electric field, namely,

v ≡ εelζ

µ
∇φ.

The similarity between the two fields in the present problem arises from: (i) the lack
of any pressure differences in the system (cf. (3.7)) and (ii) the uniformity of the zeta
potential over the channel walls. This so-called “similitude” was discussed by [19] for
the case of electro-osmosis and by [18] for the case of electrophoresis; it reduces the
present electrokinetic analysis to the solution of the Neumann-type boundary-value
problem governing the electric potential.

3.1. Normalization. We normalize length variables with h, velocities with the
characteristic electro-osmotic velocity,

v0 =
εelζ

µ

V

l
,(3.9)

and the electric potential with V . The dimensionless unit-cell potential problem
thereby posed is thus governed by Laplace’s equation in the fluid domain,

∇2φ = 0,(3.10)
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the Neumann-type boundary condition,

n̂ · ∇φ = 0 at n = ±1,(3.11)

and the periodicity conditions,

φ(n, s = ε−1) − φ(n, s = 0) = 1 ∀n ∈ [−1, 1] .(3.12)

In the above,

ε � h

l
(3.13)

is the dimensionless “aspect-ratio” of the unit cell. Once this problem is solved, the
fluid velocity field is given by

v =
1

ε
∇φ.(3.14)

Consider the asymptotic limit ε 	 1, corresponding to the case of “thin” chan-
nels. It is obvious in such circumstances (see (3.12)) that the appropriate choice of a
dimensionless center-line coordinate is S = εs, rather3 than s. We focus on the case
where the center-line radius of curvature is of order l; we thus normalize the dimen-
sional curvature (now a function of S) by l−1. The problem reformulation, wherein
all fields appearing therein are functions of n, S, and ε, consists of the following: (i)
Laplace’s equation,

∂2φ

∂n2
− εk

1 − εnk

∂φ

∂n
+

ε2

(1 − εnk)
2

∂2φ

∂S2
+

ε3n

(1 − εnk)
3

dk

dS

∂φ

∂S
= 0;(3.15)

(ii) the channel walls boundary conditions (at n = ±1),

∂φ

∂n
= 0;(3.16)

and (iii) the serpentine periodicity condition

φ(n, S = 1; ε) − φ(n, S = 0; ε) = 1 ∀n ∈ [−1, 1] .(3.17)

3.2. Asymptotic solutions. Expand the ε-dependent terms in the Laplace
equation (3.15) into Taylor series in ε, so as to obtain the expression

(3.18)
∂2φ

∂n2
− εk

∂φ

∂n
+ ε2

(
∂2φ

∂S2
− nk2 ∂φ

∂n

)
+ ε3

(
2nk

∂2φ

∂S2
− n2k3 ∂φ

∂n
+ n

dk

dS

∂φ

∂S

)

+ ε4
(

3n2k
∂2φ

∂S2
− n3k4 ∂φ

∂n
+ 3n2k

dk

dS

∂φ

∂S

)
+ · · · = 0.

Next, expand φ into the asymptotic power series

φ(n, S; ε) ∼ φ(0)(n, S) + εφ(1)(n, S) + ε2φ(2)(n, S) + · · · .(3.19)

3In general the coordinate S should appear as an additional “slow” variable. However, the
emerging solvability conditions (required to eliminate the secular terms appearing in such a multiple-
scale approach) result in the absence of any dependence upon the “fast” variable s. This is expected,
as no mechanism exists in the present context for pronounced longitudinal variations along the length
of the channel.
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Substitution of (3.19) into (3.18) yields a system of equations which can be solved
recursively in conjunction with use of the various respective orders of the boundary
condition (3.16), namely,

∂φ(i)

∂n
= 0 at n = ±1 (i = 0, 1, 2, . . . ),(3.20)

together with the “decomposed” periodicity conditions,

φ(0)(n, S = 1) − φ(0)(n, S = 0) = 1,
φ(i)(n, S = 1) − φ(i)(n, S = 0) = 0 (i = 1, 2, . . . )

}
∀n ∈ [−1, 1] .(3.21)

Owing to the presence of the “slow” variable S, the ensuing solution possesses
a straightforward multiple-scale structure. The “solvability conditions” for the S-
dependence of each of the functions φ(i) naturally result upon application of the
periodicity condition (3.21) at the εi+2-order problem. The potential φ was evaluated
to O

(
ε4
)
, which is sufficient for the present macrotransport analysis. Details of the

calculations are presented in the appendix. The resulting solution is

φ ∼ S +
ε2

3

[
S

∫ 1

0

k2(x) dx−
∫ S

0

k2(x) dx

]

+ ε3
[
3n− n3

6

dk

dS
+ C(S)

]
+ ε4

[
7

24
(2n2 − n4)k

dk

dS
+D(S)

]
+ O(ε5),(3.22)

wherein C(S) and D(S) are arbitrary periodic functions of S, which do not affect
the leading- and first-order macrotransport coefficients. Their S-dependence, which
is required if higher-order corrections are sought, may be obtained from the respective
analyses of the O(ε5) and O(ε6) problems. Since the entire unit cell is identified with
a line in the leading-order approximation, the corresponding zeroth-order solution for
the Laplace equation, appearing in the leading-order term above, was to be expected.
It obviously corresponds to a uniform electric field along the channel. The O(ε2) term
embodies longitudinal nonuniformities in the electric field, resulting from curvature
effects. Lateral variations in the electric potential are manifested only at the O(ε3)
level of approximation.

Substitution of (3.22) into (3.14) provides the following velocity field:

u(n, s; ε) ∼ ε2
1 − n2

2

dk

dS
+

7

6
ε3n(1 − n2)k

dk

dS
+ O(ε4),(3.23a)

v(n, s; ε) ∼ 1 + εnk(S) + ε2
[(
n2 − 1

3

)
k2(S) +

1

3

∫ 1

0

k2(x) dx

]
+ O(ε3).(3.23b)

The leading-order solution constitutes an electro-osmotic plug flow, corresponding to
curvature-free geometry. The first correction to this uniform field (cf. [10]) is a locally
homogeneous shear (as in Couette flow), with a positive tangential velocity existing
near to the inner boundary.

4. Macrotransport analysis. Following the preceding calculation of the
electro-osmotic velocity field, macrotransport theory for spatially periodic systems
[3] is used to evaluate the phenomenological coefficients characterizing the transport
of a colloidal Brownian particle undergoing convection, diffusion, and electromigration
processes. The two solute particle transport coefficients of interest are, respectively,
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its mean particle velocity vector U∗ and dispersivity dyadic D
∗
. The latter quantity,

stochastically characterizing the variance in the actual instantaneous particle position
relative to its mean position U

∗
t, results from the (longitudinal) molecular diffusion of

the particle (characterized by the diffusion coefficientD) as well as from the convective
Taylor dispersion mechanism. This dispersion arises from the lateral (and perhaps
longitudinal) flow and electric field nonuniformities in conjunction with the molecular
diffusion. While the Taylor mechanism may dominate for certain convective-diffusive
processes, it is obviously absent during curvature-free electro-osmotic plug flow occur-
ring in straight channels. In the present case, where net (i.e., “global”) solute motion
occurs only in the X-direction, and where X̂ is the only vector involved in the global
specification of the serpentine geometry, it is anticipated (and confirmed; cf. (4.31),

(4.43)) that U
∗

and D
∗

possess the respective “unidirectional” forms

U
∗

= X̂U
∗
, D

∗
= X̂X̂D

∗
.(4.1)

Taylor–Aris macrotransport analyses are asymptotic in nature, valid only when
the diffusive unit-cell sampling time-scale, l2/D, is small compared with the “global”
solute holdup time, O(Nl/v0), occurring within the entire serpentine system (of pro-
jected length NL, where N denotes the number of periods comprising the finite-size
chip). As such, these analyses naturally conform with the present model of a serpen-

tine device, consisting of numerous turns, N � 1. The quantities U
∗

and D
∗
, which

characterize the transient global transport of solute through the serpentine system,
are evaluated using the local solutions of a pair of steady-state equations within the
unit-cell domain τ0, these being defined in the subsequent paragraphs. In that context
we temporarily abandon the dimensionless notation previously used.

Evaluation of U
∗
, using the macrotransport scheme of [3] for periodic systems,

requires calculating the long-time probability flux density vector field J∞
0 (r), governed

by the steady-state conservation equation

∇ · J∞
0 = 0.(4.2)

Constitutively, this flux vector possesses the convective-diffusive form,

J∞
0 = U(r)P∞

0 − D(r) · ∇P∞
0 ,(4.3)

wherein P∞
0 (r) is the long-time intracellular probability density field, D is the local

molecular diffusivity dyadic, and U is the local velocity vector of the solute particle
when situated at r. On the lateral boundaries sp of the unit cell the flux vector
satisfies the no-flux condition,

n̂ · J∞
0 = 0 on sp,(4.4)

whereas at the endpoints of the unit cell, P∞
0 satisfies the jump condition,

P∞
0 (n, s = 0) = P∞

0 (n, s = l) ∀n ∈ [−h, h] .(4.5)

In addition, P∞
0 satisfies the normalization condition∫

τ0

P∞
0 d2r = 1,(4.6)
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with τ0 the unit-cell domain and d2r a two-dimensional “volume” element. Knowledge
of the resulting field P∞

0 (r), defined by the above system of equations, enables one

to compute U
∗

via the unit-cell quadrature,

U
∗

=

∫
τ0

J∞
0 d2r.(4.7)

In the presence of an external force field F acting on the particle, the field U required
in (4.3) is represented as

U = U ′(r) + M(r) · F (r),(4.8)

wherein U ′(r) is the velocity of the particle in the absence of the force (which, in
general, may differ from the undisturbed solvent velocity field v(r), owing to nonzero
particle-size wall effects) and M is the particle mobility dyadic.

Calculation of D
∗

requires knowledge of the so-called vector B(r)-field, arising

from deviations of the particle position R at time t from its mean value, U
∗
t, at that

time. The B-field is governed by the steady-state equation

∇ · (P∞
0 D · ∇B) − J∞

0 · ∇B = P∞
0 U

∗
,(4.9)

and is subject to the jump condition

B(n, s = l) −B(n, s = 0) = −LX̂ ∀n ∈ [−h, h](4.10)

as well as the no-flux condition

n̂ · (P∞
0 D · ∇B) = 0 on sp.(4.11)

Equations (4.9)–(4.11) serve to define the B-field, albeit only to within an arbitrary

additive constant. This constant proves irrelevant, since the evaluation of D
∗

through
the following unit-cell quadrature involves only the gradients of this field. Explicitly,

D
∗

=

∫
τ0

P∞
0 (∇B)

† · D · (∇B) d2r.(4.12)

In the present “point-size” particle case, wall effects are neglected. In such cir-
cumstances the mobility (as well as the diffusivity) is isotropic and spatially uniform
(that is, M(r) ≡ MI, D(r) ≡ DI, with I the dyadic idemfactor), and the solute
velocity is accordingly given by

U(r) = v(r) +MF (r).(4.13)

Consider the transport of a nonconducting colloidal Brownian particle possessing
a uniform surface charge density. Owing to this charge, the particle motion is governed
by both the bulk flow and the electric field, the latter representing the present coun-
terpart of the generic external force field appearing in (4.13). The size of the particle
is assumed small compared with the width 2h, corresponding to a “point-size” parti-
cle. The (dimensional) particle electrophoretic velocity relative to the carrier fluid is
given by MeE, where Me is the electrophoretic mobility. In the limit of a thin Debye
layer at the particle surface, this mobility is given by the well-known Smoluchowski
relation [14, 23],

Me =
εelζp
µ

,(4.14)
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wherein ζp denotes the (uniform) excess potential, relative to φ, at the particle sur-
face.4 The dimensionless counterpart of (4.13) is thus (see (3.14))

U = ε−1(1 − α)∇φ,(4.15)

where α = ζp/ζ. The case α = 0 corresponds to an inert particle, one which is
unaffected by the presence of the electric field.

To effect a dimensionless formulation, P∞
0 is normalized with 1/τ0, where τ0 = 2hl

is the solvent-filled domain of a unit cell. The solute probability flux (normalized by
v0/τ0) is then

J∞
0 = ε−1(1 − α)P∞

0 ∇φ− Pe−1∇P∞
0 ,(4.16)

wherein

Pe =
hv0
D

(4.17)

is a hybrid Péclet number.

The dimensionless solute probability density field P∞
0 is here governed by: (i) the

solute conservation equation

∇ · [ε−1(1 − α)P∞
0 ∇φ− Pe−1∇P∞

0

]
= 0;(4.18)

(ii) the no-flux boundary condition

n̂ · [ε−1(1 − α)P∞
0 ∇φ− Pe−1∇P∞

0

]
= 0 at n = ±1;(4.19)

and (iii) the unit-cell normalization condition (cf. (4.6))

1

2

∫
τ0

P∞
0 d2r = 1,(4.20)

wherein the volume element d2r has been normalized with lh.

It is natural to normalize B with l. The resulting dimensionless B-field thus
satisfies the equation

Pe−1∇ · (P∞
0 ∇B) − J∞

0 · ∇B = εP∞
0 U

∗
,(4.21)

and is subject to the jump condition

B(n, S = 1; ε) −B(n, S = 0; ε) = −L
l
X̂, ∀n ∈ [−1, 1] ,(4.22)

as well as the no-flux condition

P∞
0 n̂ · ∇B = 0 at n = ±1.(4.23)

4In circumstances wherein the solute particle is comparable in size to Debye layer thickness,
Smoluchowski’s approximation breaks down; nevertheless, the relation (4.14) may still be used in
such situations, with ζp representing an effective zeta potential.
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4.1. Mean solute velocity. It is easy to verify, using (3.10) and (3.11), that
the trial solution

P∞
0 = 1(4.24)

satisfies the boundary-value problem (4.18)–(4.20). This result is nonintuitive, since
both the electric and solvent velocity fields are nonuniform in the n- (and s-) direc-
tions. However, it is easily verified that P∞

0 = const is, in fact, the only solution of the
generic transport problem (4.2)–(4.8), at least for point-size particles, provided that
(i) the force field is divergence-free; (ii) the force field has a null normal component
on the walls; and (iii) the solvent velocity satisfies an impenetrability condition on
the walls. In the present case, satisfaction of conditions (i) and (ii) (see (3.10), (3.11))
is associated with the assumption that λD/h → 0. Satisfaction of condition (ii) is
unique to electrophoretic motion in electro-osmotic flows.

In terms of the local (n, S) coordinate system, the probability density flux vector
is given by the expression

J∞
0 = n̂

[
ε−1(1 − α)

∂φ

∂n
P∞

0 − Pe−1 ∂P
∞
0

∂n

]

+ ŝ

[
1 − α

1 − εnk

∂φ

∂S
P∞

0 − εPe−1

1 − εnk

∂P∞
0

∂S

]
.(4.25)

Substitution of the preceding expressions for φ and P∞
0 gives, with J∞

0 = n̂Jn + ŝJs,
the component fluxes

Jn = ε2
1 − α

2

dk

dS
+ ε3

7(1 − α)

6
k
dk

dS
n(1 − n2) + O (ε4) ,

(4.26a)

Js = (1 − α) + ε(1 − α)nk + ε2(1 − α)

[(
n2 − 1

3

)
k2 +

1

3

∫ 1

0

k2(S) dS

]
+ O (ε3) .

(4.26b)

The mean solute velocity (normalized with v0) is given by the expression (cf. (4.7))

U
∗

=
1

2

∫
τ0

J∞
0 d2r.(4.27)

From (4.26), together with the relation d2r = (1 − εnk) dn dS, we obtain U
∗

in the
form of an asymptotic series,

U
∗ ∼ U (0)

+ εU
(1)

+ ε2U
(2)

+ O (ε3) ,(4.28)

in which

U
(0)

= (1 − α)

∫ 1

0

ŝ(S) dS,

U
(1)

= 0,

U
(2)

=
1

3
(1 − α)

[∫ 1

0

n̂(S)
dk

dS
dS +

(∫ 1

0

k2(S) dS

)(∫ 1

0

ŝ(S) dS

)
−
∫ 1

0

ŝk2(S) dS

]
.
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The first integral appearing in the above brackets may be transformed via use of the
identity

∫ 1

0

n̂(S)
dk

dS
dS = −

∫ 1

0

k(S)
dn̂

dS
dS,

which follows upon integration by parts in conjunction with the “periodicity” of both
n̂ and k.

With rc (see (2.1)) normalized via l, the dimensionless parametric equation for
the curve Γ is given by

r = ε−1rc(S).(4.29)

Thus, the dimensionless counterparts of (2.2)–(2.3) are

drc
dS

= ŝ,
dŝ

dS
= kn̂,

dn̂

dS
= −kŝ.(4.30)

Use of (4.29) and (4.30) eventually yields

U
∗

= U
∗
X̂,(4.31)

wherein

U
∗

= (1 − α)
L

l

[
1 +

ε2

3

∫ 1

0

k2(S) dS + O(ε3)

]
.(4.32)

The O(1) term accords with intuitive “tortuosity” effects [22], associated with the
ratio l/L (> 1) of the curvilinear/rectilinear distances traversed by the solute particle
during the same period of time. For typical microfluidic devices this ratio is O(1).
The coefficient 1−α reflects the combined effects of electro-osmosis and electrophore-
sis, such effects being either counteractive or cooperative, according to whether the
channel wall and solute particle possess like (α > 0) or unlike (α < 0) charges, re-
spectively. As v(1) is an odd function of n, the explicit functional dependence of the
mean velocity upon the curvature appears only at the O(ε2) term.

4.2. Dispersivity. Assume the following trial solution for the B-field:

B = X̂B(n, S; ε).(4.33)

Substitution of the above representation into (4.21)–(4.23), in conjunction with use
of (4.24), yields the following set of equations governing B, expressed in terms of the
local coordinates:

Pe−1

[
∂2B

∂n2
− εk

1 − εnk

∂B

∂n
+

ε2

(1 − εnk)
2

∂2B

∂S2
+

ε3n

(1 − εnk)
3

dk

dS

∂B

∂S

]

− Jn
∂B

∂n
− ε

1 − εnk
Js
∂B

∂S
= εU

∗
,(4.34)

∂B

∂n
= 0 at n = ±1,(4.35)
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B(n, S = 1) −B(n, S = 0) = −L
l

∀n ∈ [−1, 1] .(4.36)

The ε-dependent terms in (4.34) may be expanded into Taylor series, and terms of
like order in ε collected together, to obtain

Pe−1 ∂
2B

∂n2
− Jn

∂B

∂n
+ ε

(
−Pe−1k

∂B

∂n
− Js

∂B

∂S
− U

∗
)

+ ε2
(
−Pe−1nk2 ∂B

∂n
+ Pe−1 ∂

2B

∂S2
− nkJs

∂B

∂S

)

+ ε3
(
−Pe−1n2k3 ∂B

∂n
+ 2Pe−1nk

∂2B

∂S2
+ Pe−1n

dk

dS

∂B

∂S
− n2k2Js

∂B

∂S

)
+O (ε4) = 0.(4.37)

Assume the following trial expansion for B:

B(n, S; ε) ∼ B(0)(n, S) + εB(1)(n, S) + ε2B(2)(n, S) + · · · .(4.38)

Substitution into (4.37) of equations (4.26), (4.32), and (4.38) yields a system of
equations which can be solved recursively in conjunction with use of the various
orders of the boundary condition (4.35), namely,

∂B(i)

∂n
= 0 at n = ±1 (i = 0, 1, 2, . . . ),(4.39)

together with the decomposed jump condition (4.36),

B(0)(n, S = 1) −B(0)(n, S = 0) = −L/l,
B(i)(n, S = 1) −B(i)(n, S = 0) = 0 (i = 1, 2, . . . )

}
∀n ∈ [−1, 1] .(4.40)

As the solution scheme for the present boundary-value problem closely resembles that
already given for the Laplace equation governing φ (see appendix), we omit details.
Calculations up to O(ε2) yield5

B(0) = −L
l
S,(4.41a)

B(1) = 0,(4.41b)

B(2) =
L

l
(1 − α)Pe

3n− n3

3
k(S).(4.41c)

Calculation of D
∗

(normalized with D) requires effecting the quadrature (cf. (4.12))

D
∗

=
1

2ε2

∫
τ0

P∞
0 (∇B)

† · (∇B) d2r.(4.42)

Introduction of the preceding expression obtained for B eventually yields

D
∗

= X̂X̂D
∗
,(4.43)

5Since B is defined only to within an additive constant, we conveniently set B(i)(n, S = 0) = 0.
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wherein D
∗
, represented as the sum of respective “molecular” and “convective” con-

tributions, is

D
∗

= D
M

+D
C
,(4.44)

in which

D
M

=

(
L

l

)2 [
1 +

ε2

3

∫ 1

0

k2(S) dS + O (ε3)] ,(4.45a)

D
C

=
8ε2

15

(
L

l

)2

(1 − α)2Pe2

∫ 1

0

k2(S) dS + O (ε3) .(4.45b)

Whereas the (dimensional) molecular dispersion coefficient is directly proportional to
the solute particle’s molecular diffusivity D, the comparable convective coefficient is

inversely proportional to D. The O(1) term in D
M

represents the combined “tortu-
osity” effects of the extended curvilinear channel length and the decreased effective

width of the serpentine channel [22]. The D
C

term of O (ε2) constitutes the natural
extension to the constant-radius results of [10].

The convective coefficient (4.45b), which vanishes for curvature-free (i.e., rectilin-
ear) electro-osmotic plug flow, constitutes a nonnegative contribution originating from
second-order curvature effects. These arise from comparable first-order curvature cor-
rections to the otherwise uniform flow and electric fields, both of which are laterally
antisymmetric (see, e.g., (3.23b)). Whereas, to terms of dominant order, this results
in a null contribution to the average solute velocity (see (4.32)), the corresponding
variance in the Brownian particle position, which constitutes a quadratic term, does
not vanish.

As a simple example of the use of the present results, consider the case where each
period of the serpentine channel consists of two semicircular arcs, each possessing
a (dimensional) radius L/4. (This geometry can also approximate spiral channel
configurations; see [6].) The total channel length is therefore given by l = πL/2, and
the curvature is equal to ±4/L. As would be expected, the discontinuity in k does
not affect the value of the integrals in (4.45). The dimensionless magnitude of |k| is

equal almost everywhere to 4(l/L); this readily yields D
C

= 128ε2(1 − α)2Pe2/15.

5. Circular cross-section. Sections 2–4 furnished the flow and subsequent
macrotransport analyses for laterally unbounded serpentine devices, eventually re-
sulting in the macrotransport coefficients U

∗
and D

∗
. While the two-dimensional

configuration analyzed thus far is predominant in microfluidic devices [7], the present
asymptotic scheme may be easily generalized for three-dimensional flows, emphasiz-
ing the generic nature of the analysis. In this section we demonstrate the extension
of previous analysis to serpentine devices possessing circular cross sections, which
constitute another simple laterally bounded channel geometry.

5.1. Geometry. Consider a serpentine channel of uniform circular cross section,
as in Figure 4. As in the comparable two-dimensional case, it is convenient to focus
on the planar center-line curve Γ defining the axis of the channel. The boundary sp
of this channel consists of the locus of circles of radius h centered about Γ and lying
normal to it. This construction may be generalized to define a “radial” coordinate,
say ρ, whereby the surface ρ = const constitutes the collection of circles of radius
ρ centered about Γ and lying normal to it. Consequently, it is natural to adopt a
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s

n

ρ= const

Γψ

ρ

ψ

k

h

(ρ=0)

Fig. 4. Curvilinear cylindrical-like coordinate system.

system of local cylindrical coordinates, (ρ, ψ, s), appropriate to the configuration of
the present serpentine channel. The surface ψ = const corresponds to the collection
of rays originating from Γ and lying normal to it, forming an angle ψ relative to the
osculating plane. (The positive sense of ψ is taken to lie in the counter-clockwise
direction from n̂ to k̂.)

Define the respective radial and azimuthal unit vectors associated with the coor-
dinates ρ and ψ,

ρ̂ = n̂(s) cosψ + k̂ sinψ,(5.1a)

ψ̂ = −n̂(s) sinψ + k̂ cosψ.(5.1b)

The triad (ρ̂, ψ̂, ŝ), in that order, form a right-handed orthonormal system. The
position vector at the point (ρ, ψ, s) is given by

r (ρ, ψ, s) = rc(s) + ρρ̂(ψ, s).(5.2)

Use of (2.3b) and (5.1) yields the differential vector displacement dr between the
neighboring points (ρ, ψ, s) and (ρ+ dρ, ψ + dψ, s+ ds):

dr = ρ̂ dρ+ ψ̂ρ dψ + ŝ (1 − ρk cosψ) ds.

The metrical coefficients associated with the coordinates (ρ, ψ, s) are thus given by
(1, ρ, 1− ρk cosψ), respectively, whence the gradient operator appropriate to the ser-
pentine cylindrical coordinate system (cf. (2.6)) is

∇ = ρ̂
∂

∂ρ
+ ψ̂

1

ρ

∂

∂ψ
+ ŝ

1

1 − ρk cosψ

∂

∂s
.(5.3)
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Use of (5.3) yields [17] the following expression for the Laplacian of a generic scalar
field f(ρ, ψ, s):

(5.4) ∇2f =
∂2f

∂ρ2
+

1

ρ

∂f

∂ρ
− k cosψ

1 − ρk cosψ

∂f

∂ρ
+

1

ρ2

∂2f

∂ψ2

+
k sinψ

ρ (1 − ρk cosψ)

∂f

∂ψ
+

1

(1 − ρk cosψ)
2

∂2f

∂s2
+

ρ cosψ

(1 − ρk cosψ)
3

dk

ds

∂f

∂s
.

In the case of a uniform (i.e., s-independent) curvature k, these expressions degenerate
to their respective counterparts in toroidal coordinates (cf. [2]).

5.2. Electro-osmotic flow. The mathematical formulation of the present elec-
trokinetic problem possesses a structure similar to that encountered in the two-
dimensional case, (3.1)–(3.7), as all length variables are normalized here with ρ0,
rather than a. Thus, ε = ρ0/l (cf. (3.13)). In the nondimensionalization, all length
variables are normalized with h, the cylinder radius. With S = εs, the dimension-
less reformulation of the potential problem in terms of the local coordinates (ρ, ψ, S)
consists of (i) Laplace’s equation in the fluid domain:

(5.5)
∂2φ

∂ρ2
+

1

ρ

∂φ

∂ρ
− εk cosψ

1 − ερk cosψ

∂φ

∂ρ
+

1

ρ2

∂2φ

∂ψ2
+

εk sinψ

ρ (1 − ερk cosψ)

∂φ

∂ψ

+
ε2

(1 − ερk cosψ)
2

∂2φ

∂S2
+

ε3ρ cosψ

(1 − ερk cosψ)
3

dk

dS

∂φ

∂S
= 0;

(ii) the channel wall boundary conditions (at ρ = 1),

∂φ

∂n
= 0;(5.6)

and (iii) the serpentine periodicity conditions

φ(ρ, ψ, S = 1; ε) − φ(ρ, ψ, S = 0; ε) = 1 ∀(ρ, ψ) ∈ [0, 1] × [0, 2π] .(5.7)

In the limit ε	 1 the above problem may be solved using perturbation expansions
in powers of ε. The analysis is similar to that of section 3.2, whence we omit details.
The electric potential is eventually found to be given by the expression

(5.8) φ = S +
ε2

4

[
S

∫ 1

0

k2(x) dx−
∫ S

0

k2(x) dx

]
+ ε3

[
3ρ− ρ3

8

dk

dS
cosψ + E(S)

]

+ ε4
[

1

192
k
dk

dS

(
42ρ2 − 21ρ4 + 52ρ2 cos 2ψ − 26ρ4 cos 2ψ

)
+ F (S)

]
+ O (ε5) ,

wherein E(S) and F (S) are arbitrary periodic functions of S (cf. (3.22)). Substitution
into (3.14) yields the velocity components

u =
3ε2

8

dk

dS
(1 − ρ2) cosψ +

ε3

48
k
dk

dS

(
ρ− ρ3

)
(21 + 26 cos 2ψ) + O (ε4) ,(5.9a)

v =
ε2

8

dk

dS
(ρ2 − 3) sinψ +

13ε3

48
k
dk

dS

(
ρ3 − 2ρ

)
sin 2ψ + O (ε4) ,(5.9b)

w = 1 + ερk(S) cosψ

+
ε2

4

[
(2ρ2 − 1)k2(S) + 2ρ2k2(S) cos 2ψ +

∫ 1

0

k2(x) dx

]
+ O (ε3) .(5.9c)
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5.3. Macrotransport analysis. The (dimensional) equations governing the
transport of a colloidal Brownian particle are posed by equations (4.2)–(4.15), with
minor modifications reflecting the three-dimensional nature of the present problem.
To effect the dimensionless formulation, normalize P∞

0 with 1/τ0, where τ0 = πh2l is
the volume of a unit cell. The solute probability flux (normalized with v0/τ0) is then
given by (4.16), with Pe given by (4.17). Accordingly, P∞

0 is governed by the solute
conservation equation

∇ · [ε−1(1 − α)P∞
0 ∇φ− Pe−1∇P∞

0

]
= 0,(5.10)

the no-flux boundary condition

ρ̂ · [ε−1(1 − α)P∞
0 ∇φ− Pe−1∇P∞

0

]
= 0 at ρ = 1,(5.11)

and the unit-cell normalization condition (cf. (4.20))

1

π

∫
τ0

P∞
0 d3r = 1,(5.12)

wherein the volume element d3r has been normalized with h2l.
The dimensionlessB-field (normalized with l) is governed by the differential equa-

tion

Pe−1∇ · (P∞
0 ∇B) − J∞

0 · ∇B = εP∞
0 U

∗
,(5.13)

the boundary condition

P∞
0 n̂ · ∇B = 0 at ρ = 1,(5.14)

and the jump condition

B(ρ, ψ, S = 1; ε) −B(ρ, ψ, S = 0; ε) = −L
l
X̂ ∀(ρ, ψ) ∈ [0, 1] × [0, 2π].(5.15)

As the arguments leading to the identity (4.24) are independent of the unit-
cell specific geometry, the identity continues to prevail in the present problem. The
probability flux in terms of the local (ρ, ψ, s) coordinate system is therefore given by

J∞
0 � ρ̂Jρ + ψ̂Jψ + ŝJs

= ρ̂ε−1(1 − α)
∂φ

∂ρ
+ ψ̂ε−1(1 − α)

∂φ

ρ∂ψ
+ ŝ

1 − α

1 − ερk cosψ

∂φ

∂S
.(5.16)

Substitution of (5.8) yields

(5.17)

Jρ =
3ε2

8
(1 − α)

dk

dS
(1 − ρ2) cosψ +

ε3

48
(1 − α)k

dk

dS
(ρ− ρ3)(21 + 26 cos 2ψ) + O (ε4) ,

Jψ =
ε2

8
(1 − α)

dk

dS
(ρ2 − 3) sinψ +

13ε3

48
(1 − α)k

dk

dS
(ρ3 − 2ρ) sin 2ψ + O (ε4) ,

Js=(1−α)+ ε(1−α)ρk cosψ+
ε2

4
(1−α)

[
2ρ2k2 +2ρ2k2 cos 2ψ−k2 +

∫ 1

0

k2(x) dx

]
+O (ε3) .
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The mean solute velocity is given by the expression (cf. (4.27))

Ū
∗

=
1

π

∫
τ0

J∞
0 d3r.(5.18)

In conjunction with the expression

d3r = (1 − ερk cosψ) dρ dψ dS,

for the volume element, substitution of (5.17) into (5.18) eventually yields

Ū
∗

= X̂Ū∗,

wherein (cf. (4.31))

Ū∗ = (1 − α)
L

l

[
1 +

ε2

4

∫ 1

0

k2(S) dS + O(ε3)

]
.(5.19)

Similarly to (4.33), we assume the following trial solution for the B-field:

B = X̂B(ρ, ψ, S; ε).

Substitution of the preceding into (5.13)–(5.14) furnishes the differential equation

Pe−1∇2B − Jρ
∂B

∂ρ
− Jψ

∂B

ρ∂ψ
− ε

1 − ερk cosψ
Js
∂B

∂S
= εŪ∗,(5.20)

the boundary condition

∂B

∂ρ
= 0 at ρ = 1,(5.21)

and the jump condition

B(ρ, ψ, S = 1) −B(ρ, ψ, S = 0) = −L
l

∀(ρ, ψ) ∈ [0, 1] × [0, 2π] ,(5.22)

governing the scalar B-field. Expansion of B into an asymptotic series, similar to
(4.38), eventually yields the solution

B ∼ −L
l
S + ε2

L

l
(1 − α)Pe

3ρ− ρ3

4
+ O(ε3).(5.23)

Performing the quadrature in the expression for the dispersivity (cf. (4.42)), namely,

D
∗

=
1

πε2

∫
τ0

P∞
0 (∇B)

† · (∇B) d2r,(5.24)

eventually yields the anticipated form, (4.43)–(4.44), wherein (cf. (4.45))

D̄M =

(
L

l

)2 [
1 +

ε2

4

∫ 1

0

k2(S) dS + O (ε3)] ,(5.25a)

D̄C =
5ε2

48

(
L

l

)2

(1 − α)2Pe2

∫ 1

0

k2(S) dS + O (ε3) .(5.25b)
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6. Comparison with existing literature. Here, we compare our results with
those obtained using alternative models of turn-induced dispersion phenomena. Initial
investigations (see, e.g., [13]) employed intuitive kinematical models to obtain the
“skew” produced by a constant-radius turn, neglecting transverse diffusion. This skew,
quantifying the extent of distortion accompanying the introduction of an initially
uniform band of solute into a pre-existing flow, was attributed to two additive sources:
transverse variation in electric field strength, and overall migration distance within
the turn (the so-called “racetrack effect”). Culbertson, Jacobson, and Ramsey [5]
accounted for molecular diffusion using empirical expressions, for which the coefficients
appearing therein were obtained from a fit with experimental data. Those authors
proposed the use of “complementary” turns to reduce dispersion in systems operating
at large Péclet numbers.

Griffiths and Nilson [10] provided an analytical model for diffusion effects in a
constant-radius turn. Their curvature-induced shear-flow expression is equivalent to
the present v(1) (see (3.23b)). The authors have calculated solute variance following
a single turn. The variance for small Péclet numbers was evaluated using a method-
of-moments formula, whereas that in the opposite extreme of large Péclet numbers
was calculated using a kinematical skewing model. A composite expression for the
variance, presumably valid for all Péclet numbers, was suggested, having the form of
a fractional expression, which degenerates to the desired forms in the respective limits
of small and large Péclet numbers. This solution was compared with both numerical
Monte Carlo simulations as well as with the experimental data of [5].

In a related paper, Molho et al. [16] presented a two-dimensional single-turn dis-
persion model. The added variance, resulting from a single turn, was obtained using a
method-of-moments approach. These authors postulated an initially symmetric solute
band, thus enabling the solution of the advective-diffusion equation. The resulting
variance was found to be a function of both Péclet number and turn length. It was
further purposed that superposition of this dispersivity with the purely molecular dis-
persion occurring in the straight segments of the channel would provide a valid model
for channel geometries consisting of more than one turn.

Obviously, all of the above-mentioned studies have employed the assumption of
small curvature, either explicitly or implicitly (via use of an equivalent expression for
the curvature-induced shear v(1)). However, owing to the absence of a rigorous speci-
fication of the curvilinear geometry, the preceding analyses take account of curvature
effects in a rather intuitive manner, thereby embodying only leading-order effects for
small curvature.6 This contrasts with the present asymptotic scheme, which allows
for systematic expansions in ε.

Considerable effort has been expended in the above-mentioned studies to corre-
late and otherwise reconcile single-turn models with both simulation and experimental
results. The underlying idea in those studies is that the total variance occurring in a
multiturn system can be obtained by simply superposing the respective expressions
appropriate to the several geometrical elements of which the serpentine system is com-
posed (e.g., single-radius turns and straight segments). This procedure is appropriate
for small Péclet numbers, Pe 	 1, where the analyte plug can achieve a stationary
state before encountering the next turn.

6For example, both the convective and diffusive terms appearing in the solute transport equation
of [16] are incomplete owing to the failure to recognize that neither the gradient operator nor the
concomitant Laplacian operator possesses “standard” Cartesian forms when expressed in curvilinear
coordinates. The missing terms in their expressions (cf. (2.6)–(2.7)) vanish only for zero curvature.
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The present analysis does not require that the Péclet number be strictly small.
Nevertheless, the applicability of these results to the large Péclet number case is
limited by the time-scale disparity underlying macrotransport analyses. The disparity
assumption (see the discussion following (4.1)) may be written in the dimensionless
form Pe 	 Nε. Thus, for practical devices operating at large Pe, many turns would
prove necessary for N -independent behavior to be established.

It is therefore obvious that the single- and multi-turn approaches provide simi-
lar results in the case of small Péclet number transport in a single turn. There, the
diffusive unit-cell time-scale, l2/D, is small compared with the transit time around
the turn, O(l/v0). Solute distribution thus achieves a stationary state almost in-
stantaneously, which is exactly the assumption upon which macrotransport theory is
based (which, for Pe ∼ O(1), requires N � 1). In that case, and for constant-radius
turns (spatially uniform curvature), the present dispersion coefficient (4.45b) can be
expressed as arising from a superposition of “single-turn contributions,” each having
a form similar to the intermediate expression (15) of [10].

Several of the cited papers dealing with curved geometries have also proposed
schemes for minimizing solute dispersion. Obviously, one way would be to increase the
radius of curvature, for example, by using spiral geometries [6]. Another interesting
method for reducing shear-induced dispersion invokes the use of a sinusoidal wavy
channel wall at the inner track of the channel turn [9]. The resulting extension
of the inner track length leads to a reduced average velocity on that side of the
channel, thus reducing the curvature-induced shear. The wavy geometry lends itself
to analytic analysis, the latter having been employed to suggest optimal channel
shapes. Finally, a simple and effective way to reduce plug dispersion entails the use
of narrow curved segments [20]. Obviously, constant-radius models are inadequate to
describe the latter geometry, which is therefore analyzed alternatively using molecular
dynamics simulations. This point demonstrates the benefit of extending our robust
scheme to more complex geometries, for example, to the case of nonconstant channel
width.

7. Concluding remarks. Electrokinetics, in conjunction with macrotransport
theory, has been employed within the asymptotic framework of a regular perturbation
scheme to obtain the mean velocity and dispersivity of a charged colloidal point-size
Brownian particle entrained in an electro-osmotic solvent Stokes flow taking place
within a thin serpentine channel. The results obtained apply to arbitrarily shaped (al-
beit periodic) channel configurations. The present electro-osmotic analysis extends the
leading-order tortuosity results previously obtained by [22] (for nonelectro-osmotic,
pressure-driven solvent flows). Explicitly, the combined contributions of both veloc-

ity and electric field deviations to the serpentine-scale macrotransport coefficients U
∗

and D
∗

have been evaluated. Unsurprisingly, our main contribution to the existing
literature resides in the expression obtained for (the convective part of) D

∗
, as no

velocity variance—and hence no Taylor dispersion—is present in the leading-order
electro-osmotic flow occurring in straight channel geometries (at least for thin Debye
double-layers and point-size solute particles).

While only leading-order curvature corrections were obtained in the present con-
tributions, the generic asymptotic scheme may be utilized to obtain higher-order
terms, thus extending the range of applicability of the macrotransport description.
Moreover, since the asymptotic scheme results in regular perturbation expansions
in ε, it is expected that addition of such terms would extend the scheme’s range of
validity even to ε � 1, thus providing dispersion models which are valid for “tight”
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turns. Obviously, the validity of such extensions depends upon the neglect of inertial
flow effects. It is also important to note that whereas the common thin-channel as-
sumption is essential for the solution of the electrokinetic problem, this assumption is
by no means necessary for the macrotransport analysis. Thus, the present scheme can,
in principle, be employed for any periodic cell geometry, possibly requiring numerical
solution of Laplace’s equation.

The present analysis, while limited to idealized geometries, outlines a generic
scheme for the subsequent evaluation of device-scale macrotransport coefficients ap-
propriate to realistic chip geometries, incorporating both electro-osmotic and elec-
trophoretic effects. The present flow-electrostatics solution scheme may also be used
in conjunction with more realistic models, involving finite-size solute particles (relative
to the channel width), for which steric volume-exclusion effects, as well as hydrody-
namic [4, 15] (and perhaps colloidal [14]) wall effects, would serve to modify the
preceding macrotransport analysis.

Appendix. Solution of the two-dimensional electrostatic problem.
The O(1) and O(ε) problem. The leading-order problem is posed by the require-

ments that

∂2φ(0)

∂n2
= 0,

∂φ(0)

∂n
= 0 at n = ±1.

This necessitates that

∂φ(0)

∂n
= 0 ∀n ∈ [−1, 1],

or, alternatively,

φ(0) = φ(0)(S).

As a consequence of the latter condition, the O(ε) problem is identical in form to the
preceding O(1) problem, eventually yielding

φ(1) = φ(1)(S).

The O(ε2) problem. The solutions of the pertinent equations

∂2φ(2)

∂n2
= −d

2φ(0)

dS2
,

∂φ(2)

∂n
= 0 at n = ±1,

supplemented by the periodicity condition

φ(0)(n, S = 1) − φ(0)(n, S = 0) = 1,

are

φ(2) = φ(2)(S)
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and7

φ(0)(S) = S.(A.1)

The O(ε3) problem. Here, the relevant equations

∂2φ(3)

∂n2
= −n dk

dS
− d2φ(1)

dS2
,

∂φ(3)

∂n
= 0 at n = ±1,

supplemented by the periodicity condition

φ(1)(n, S = 1) − φ(1)(n, S = 0) = 0,

furnish the following solutions:

φ(3)(n, S) =
3n− n3

6

dk

dS
+ C(S)

and

φ(1) ≡ 0.(A.2)

Here, C(S) is an arbitrary (albeit “periodic”8) function of S. Its S-dependence may,
if desired, be established from analysis of the O(ε5) problem.

The O(ε4) problem. Using similar arguments, the governing equations

∂2φ(4)

∂n2
=

1 − 7n2

2
k
dk

dS
− d2φ(2)

dS2
,

∂φ(4)

∂n
= 0 at n = ±1,

supplemented by the periodicity condition

φ(2)(n, S = 1) − φ(2)(n, S = 0) = 0,

furnish the following solutions:

φ(4)(n, S) =
7

24
(2n2 − n4)k

dk

dS
+D(S)

and

φ(2)(S) =
1

3

[
S

∫ 1

0

k2(x) dx−
∫ S

0

k2(x) dx

]
.(A.3)

Here, D(S) is an arbitrary (albeit “periodic”) function of S. If desired, it may be
evaluated from analysis of the O(ε6) problem.
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7Since φ is defined only to within an additive constant, we conveniently set φ(i)(n, S = 0) = 0.
8By “periodic” it is meant that C(0) = C(1).
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Abstract. A wide class of nonlinear equations is studied in the geometrical optics approxi-
mation. It is shown that a nonlinear equation with coefficients dependent on the amplitude of the
function sought can be reduced to a system of quasi-linear equations of the gas-dynamics type. As
an illustration, the Hamilton–Jacobi equation with a specific form of the nonlinear operator has
been solved, and the propagation of monochromatic waves and of point source radiation in nonlinear
media has been studied.
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The geometrical optics approximation is an efficient and popular method in differ-
ent areas of modern physics (acoustic and electromagnetic wave propagation, quantum
mechanics, etc.). Due to its simplicity and reasonable accuracy, this method is fre-
quently applied to the solution of various specific nonlinear problems [1], [2], [3], [4].
In this paper we propose a modification of the geometrical optics approximation ap-
plicable to an arbitrary form of a nonlinear equation (differential, integral, or finite
difference) when the nonlinearity depends on the modulus of the unknown function.

1. The method. The basic equation of our problem is

Ĥ

{
ρ,R,

∂

∂R

}
Ψ(R) = 0,(1.1)

where Ĥ is a nonlinear operator, Ψ(R) is the function to be found, R = {r(R1, R2, R3),
R4} is the four-dimensional space-time vector, r is the three-dimensional spatial ra-

dius vector, R4 is the time component, and ρ = |Ψ|2. Note that the operator Ĥ is
nonlinear with respect to the unknown function. However, it could depend (linearly)
on derivatives of any order (including infinite series), which enables not only differ-
ential equations, but nonlinear integral and finite difference equations as well, to be
studied.

In what follows it is expedient to deal with the integral form of (1.1). To do this
we represent Ψ(R) in the form of a Fourier integral

Ψ(R) =

∫
Ψ̃(K)eiKRdK,(1.2)

substitute (1.2) in (1.1), and obtain
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∫
K {ρ,R,R − R′}Ψ(R′)dR′ = 0.(1.3)

Here the kernel K is given by

K(ρ,R,R − R′) =
1

(2π)4

∫
H {ρ,R, iK} eiK(R−R′)dK,(1.4)

where the function H {ρ,R, iK} is obtained from the operator Ĥ
{
ρ,R, ∂

∂R

}
by re-

placing the differential operator ∂
∂R by the vector iK. Obviously, the four-dimensional

vector K has the form K = {k(K1,K2,K3),−ω). Solutions of (1.3) can be represented
in the following form:

Ψ(R) = ρ1/2(R)eiS(R).(1.5)

When the kernel in (1.3) is a sharp function of (R − R′) in comparison with Ψ(R′),
the functions ρ(R′) and S(R′) can be expanded in power series in the vicinity of
the point R. Simple (though rather lengthy) calculations yield the following set of
equations:

∂

∂R
ρυ = 0,(1.6)

H {ρ,R, iP} = 0,(1.7)

where ∂
∂R is a vector with components { ∂

∂R1
, . . . , ∂

∂R4
}, υ = ∂H

∂P , and P = ∂S
∂R .

These equations are valid if the following inequalities hold:

Rk
Sρ

∣∣∣∣ ∂ρ∂Rk
∣∣∣∣� 1,

(1.8)

Rnk
Sn

∣∣∣∣ ∂nS∂Rnk

∣∣∣∣� 1, n = 1, 2.

Relations (1.8) are the usual conditions for the applicability of the quasi-classical
method.

Equations (1.6) and (1.7) are the continuity equation and (nonlinear) Hamilton–
Jacobi equation, respectively. Equation (1.7) can by transformed (by differentiation
with respect to R) into the form of an equation of motion that has the form

υ
∂P

∂R
+ ξ

∂ρ

∂R
= F,(1.9)

where ξ = ∂H
∂ρ and F = −∂H

∂R . Note that the classical-mechanical interpretation of the
parameters υ, P, F, and H is that they are the four-dimensional velocity, momentum,
force, and Hamilton function, respectively.

The set of geometrical optics equations related to P is quasi-linear, and it may
be transformed to a linear set with the help of a hodographic transformation, when
H is independent of R and F = 0 [5], [6]. The system of equations (1.6) and (1.7)
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may be rewritten in a form analogous to gas-dynamics equations [7], [8]. To do this
we represent all solutions of (1.7) in the form

P4 = −h(r, t, ρ,p),(1.10)

(t ≡ R4 is time, r ={R1, R2, R3},p = {p1, p2, p3} is the three-dimensional momentum
vector) and then differentiate the equality obtained, (1.10), with respect to r. This
yields the following equation of motion:

∂p

∂t
+ u

∂p

∂r
+ ξ

∂ρ

∂r
= f ,(1.11)

where

u =
∂h

∂p
, ξ =

∂h

∂ρ
, f = −∂h

∂r
.

The functions u and f are the three-dimensional velocity and force, respectively. The
continuity equation in these variables reads as

∂ρ

∂t
+
∂(ρu)

∂r
= 0.(1.12)

Equations (1.11) and (1.12) look (at least formally) like the well-known system of
gas-dynamical equations for the density ρ and p. The important difference is that in
our case the Hamiltonian depends (due to the nonlinearity) on ρ and, therefore, the
coefficient ξ in the equation of motion (1.11) is defined by the Hamilton function, while
in gas dynamics it should be found from some additional conditions—for example,
from the equation of state [5]. Note that, while in gas dynamics ξ is equal to the
square of the velocity of sound, here it arises from the nonlinearity in the Hamiltonian
and has no general physical meaning (ξ can, for example, be negative for some h(ρ)).
It should also be noted that the vector coefficient f on the right-hand side of (1.11)
(external force in gas dynamics) arises in the case under consideration from the spatial
inhomogeneity of the Hamiltonian.

The geometrical optics method developed above can be generalized for more com-
plex equations, such as

Ĥ

{
R,
(
ĤiΨ

)n
×
(
ĤkΨ

∗
)n

,
∂

∂R

}
Ψ = 0,(1.13)

where Ĥi and Ĥk are nonlinear operators introduced by (1.1). It is easy to see that

if Ĥi = Ĥk = const and n = 1, (1.13) takes the form (1.1).

2. Examples.

2.1. Nonlinear Hamilton–Jacobi equation. If a Hamilton–Jacobi equation
can be represented as

ĤΨ = Ĥ0

{
ρ,

∂

∂R

}
Ψ(R) + Ĥ ′

{
ρ,R,

∂

∂R

}
Ψ(R) = 0,(2.1)

where
∣∣∣Ĥ0Ψ

∣∣∣� ∣∣∣Ĥ ′Ψ
∣∣∣ , it is expedient to seek solutions of (1.7) and (2.1) in the form

Ψ(R) = (ρ0 + ρ′(R))1/2ei(P0R+S′(R)),(2.2)
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where P0 and ρ are constants, and |∂S′
∂R | � |P0|, |ρ′| � |ρ0|. H0 is independent of R,

and hence F = 0. Such a problem arises, for example, in studies of wave propagation
in a nonlinear homogeneous on average (Ĥ0 is independent of R) medium with weak
fluctuations of the dielectric constant.

After substitution of the expression (2.2) into (1.6) and (1.7) and linearization of
the equations obtained with respect to S′ and ρ′, we find the following equations for
S′ and ρ′:

ρ′(R) = −H
′(ρ0,R, iP0)

ξ0
− υ0n

ξ0

∂S′(R)

∂Rn
,(2.3)

βm
∂ρ′(R)

∂Rm
= −ρ0

(
∂υ0m

∂P0n

∂2S′(R)

∂Rm∂Rn
+
∂υ′m
∂Rm

)
,(2.4)

where

βm =
∂(ρ0υ0m)

∂ρ0
, υ0m =

∂H0(ρ0, iP0)

∂P0m
,

ξ0 =
∂H0(ρ0, iP0)

∂ρ0
, υ′m =

∂H ′(ρ0,R, iP0)

∂P0m
.

Substituting ρ′ from (2.3) into (2.4) we obtain the equation for S′,

ηmn
∂2S′(R)

∂Rm∂Rn
= βm

∂H ′(ρ0,R, iP0)

∂Rm
− ρ0ξ0

∂υ′m
∂Rm

= Φ(R),(2.5)

where ηmn = ξ0ρ0
∂υ0m

∂P0n
− υ0nβm. Equation (2.5) is a partial differential equation of

the second order with constant coefficients. It can be solved with the help of a Fourier
transformation. Assuming the solution in the form

S′(R) =

∫
S̃′(K)eiKRdK(2.6)

and substituting it into (2.5) we obtain

S̃′(K) = − Φ̃(K)

ηmnKmKn
,(2.7)

where S̃′(K) and Φ̃(K) are the Fourier transforms of S′(R) and Φ(R), respectively.
Thus, S′(R) can be represented as

S′(R) =

∫
G(R − R′)Φ(R′)dR′,(2.8)

where the Green function G(R − R′) is given by [9]

G(R − R′) =
1

(2π)4

∫
eiK(R−R′)

ηmnKmKn
dK,(2.9)

and ρ′ is found by substituting (2.9) into (2.3). Here the nonlinearity shows itself in
the dependence of the tensor ηmn on ρ0 and P0.
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In the case that R is a one- or three-dimensional vector, results can be obtained
immediately:

S′(R1) =
1

η11

∫ R1

0

[β1H
′(ρ0, R1, iP01) − ρ0ξ0υ

′
1] dR1,

(2.10)

ρ′(R1) = − 1

ξ0

[
1 +

υ01β1

η11

]
H ′(ρ0, R1, iP01) +

υ01ρ0υ
′
1

η11

and

S′(r) =

∫
G(r − r′)

[
βm

∂H ′(ρ0, r
′, ip0)

∂R′
m

− ρ0ξ0
∂υ′m
∂R′

m

]
dr′

ρ′(r) = −H
′(ρ0, r, ip0)

ξ0

−υ0m

ξ0

∫
∂G(r − r′)
∂Rm

[
βm

∂H ′(ρ0, r
′, ip0)

∂R′
m

− ρ0ξ0
∂υ′m
∂R′

m

]
dr′,

where the Green function is [7]

G(r − r′) =
1

4π
√
|η| η−1

mn(Rm −R′
m)(Rn −R′

n)
.(2.11)

In the linear limit, when ξ0 = 0 and υ0 is independent of ρ0, so that β = υ0, we
obtain from (2.5)

υ0
∂S′

∂R
= −H ′(R).(2.12)

If one of the axes (call it Rv) is directed along the vector υ0, (2.12) takes the form

∂S′(Rv,R⊥)

∂Rv
= − 1

v0
H ′(Rv,R⊥),(2.13)

and its solution is

S′ = − 1

v0

∫ Rv

0

H ′(Rv,R⊥)dRv,(2.14)

where R⊥ is the three-dimensional vector perpendicular to υ0. Hence it follows that
the linear case can be reduced to a one-dimensional problem.

2.2. Plane waves in nonlinear media. The fundamental property of a plane
wave is that its phase and amplitude are functions of a scalar product ζ = R•q, where
q is a (four-dimensional) wave vector. In this case the Hamilton–Jacobi equation has
the form

H

{
ζ, ρ,

∂S

∂R

}
= 0.(2.15)

We seek the solution of (2.15) in the form

ρ = ρ(ζ), S(R) = P0R + ϕ(ζ).(2.16)
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Substitution of (2.16) into (1.6) and (1.7) gives

H {ζ, ρ, pζ ,P0} = 0,

(2.17)

ρυ(ζ, ρ, pζ ,P0) = j,

where pζ = ∂ϕ
∂ζ . The second equation in (2.17) is the flux conservation law. The con-

stant j (flux) should be found from the initial conditions. If at t = 0, for example,
ρ = ρ0 and υ = υ0, the flux j = ρ0υ0. Equations (2.17) are a system of ordinary
differential equations with respect to ρ and pζ that in general may have several solu-
tions, some of which could be unstable. This question will be considered in greater
detail below.

Now we employ the general theory presented above to study the propagation of a
monochromatic wave in a nonlinear medium. Consider a medium whose parameters
depend only on ζ, and wave propagation is described by the Helmholtz equation

ĤΨ(ζ) =

[
d2

dζ2
+ w(ζ, ρ)

]
Ψ(ζ) = 0,(2.18)

where w(ζ, ρ) (the permittivity of the medium) is an arbitrary function of its argu-
ments. In this case (1.6) and (1.7) lead to the following equations:

p2
ζ = w(ζ, ρ), ρpζ = j.(2.19)

This is a generalization of the WKB method to the nonlinear case [10]. Substituting
pζ from the second equation of the set (2.19) into the first one, we obtain the following
equation for ρ:

ρ2w(ζ, ρ) = j2.(2.20)

To proceed farther the explicit form of w(ζ, p) should be specified. Assuming that w
has the Kerr form,

w(ζ, ρ) = w1(ζ) + w2(ζ)ρ,(2.21)

and substituting w from (2.21) into (2.20), we obtain a cubic equation for determining
ρ:

ρ2[w1(ζ) + w2(ζ)ρ] = j2.(2.22)

This equation has three solutions. If these solutions are real and positive, phase
hysteresis takes place. This situation was investigated in [11]. Note that in our case
the step will move; i.e., a shock wave will propagate. When ρ � |w1

w2
|, the first term

in (2.22) can be neglected, and ρ is given by

ρ =
j2/3

w
1/3
2 (ζ)

.(2.23)

When ρ is known, S can be found from the second equation of the set (2.19) as

S(ζ) ≡
∫ ζ

0

pζdζ = j1/3
∫ ζ

0

3
√
w2(ζ)dζ.(2.24)
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Combining (2.23) and (2.24), we obtain for ψ

ψ(ζ) =
j1/6

w
1/6
2

exp

[
ij1/3

∫ ζ

0

w
1/3
2 (ζ)dζ

]
.(2.25)

Another limiting case, ρ � |w1

w2
|, corresponds to the result obtained in the WKB

approximation in the linear theory [10]. One can see that, in contrast to the results of
linear geometrical optics, in the case under consideration the solution ψ(ζ) is defined
by the nonlinearity, w2(ζ). The functional dependencies of the amplitude and phase

on w are also different: in the linear case ρ ∼ w1/2(ζ) (not ∼ w
−1/3
1 (ζ) as it is in

(2.23)), and the integrand in the phase integral is equal to w
1/2
1 (ζ) (in contrast to

w
1/3
2 (ζ) in (2.25)).

2.3. Point-like antenna in a nonlinear medium. We next consider the ra-
diation of a point-like source in a spherically symmetric nonlinear medium. When the
antenna is located at the origin (r = 0), the monochromatic spherically symmetric
field is described by the Helmholtz equation

∆ψ(r) + w(r, ρ)ψ(r) = δ(r).(2.26)

Assuming that w(r, ρ) is finite for all r and ρ, we will seek the spherically symmetric
solution that at r �= 0 satisfies the equation

1

r2
d

dr

dψ(r)

dr
+ w(r, ρ)ψ(r) = 0,(2.27)

which after the substitution ψ(r) = ψ̃(r)/r takes the form

d2ψ̃(r)

dr2
+ w(r, ω)ψ̃(r) = 0, (ρ̃ =

∣∣∣ψ̃∣∣∣2).(2.28)

Equation (2.28) is similar to (2.18), which was investigated previously. Therefore, if
we represent the spherically symmetric solution of (2.26) as

ψ(r) =
ρ̃1/2

r
eiS ,(2.29)

ρ̃ and S can be found from (2.19) with ζ replaced by r. It only remains to calculate the
constant j. To this end we note that in the vicinity of the source w ≈ w(0, ρ̃(0)) ≡ w0,
where ρ̃(0) is the (known) intensity of the source, and the solution of (2.26) has the
form

ψ(r) =

√
ρ̃(0)

r
ei

√
w0r.(2.30)

Employing (2.19) we obtain

j = ρ̃(0)
√
w0.(2.31)

3. Conclusions. A geometrical optics approximation has been developed for
nonlinear equations of a rather general form. By the use of this method, solutions of
a nonlinear Hamilton–Jacobi equation have been found, and the propagation of plane
and spherical waves in nonlinear media has been studied.
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Abstract. When a signal is emitted from a source, recorded by an array of transducers, time-
reversed, and re-emitted into the medium, it will refocus approximately on the source location. We
analyze the refocusing resolution in a high frequency remote-sensing regime and show that, because
of multiple scattering in an inhomogeneous or random medium, it can improve beyond the diffraction
limit. We also show that the back-propagated signal from a spatially localized narrow-band source
is self-averaging, or statistically stable, and relate this to the self-averaging properties of functionals
of the Wigner distribution in phase space. Time reversal from spatially distributed sources is self-
averaging only for broad-band signals. The array of transducers operates in a remote-sensing regime,
so we analyze time reversal with the parabolic or paraxial wave equation.

Key words. wave propagation, random medium, Liouville–Ito equation, stochastic flow, time
reversal

AMS subject classifications. 35L05, 60H15, 35Q60

DOI. 10.1137/S0036139902411107

1. Introduction. In time reversal experiments, a signal emitted by a localized
source is recorded by an array and then re-emitted into the medium time-reversed,
that is, the tail of the recorded signal is sent back first. In the absence of absorption,
the re-emitted signal propagates back toward the source and focuses approximately
on it. This phenomenon has numerous applications in medicine, underwater acous-
tics, and elsewhere and has been extensively studied in the literature, both from the
experimental and theoretical points of view [12, 13, 14, 15, 16, 20, 24, 25, 31]. Re-
cently time reversal has been also the subject of active mathematical research in the
context of wave propagation and imaging in random media [2, 3, 4, 5, 7, 8, 9, 32]. A
schematic description of a time reversal experiment is presented in Figure 1.1.

For a point source in a homogeneous medium, the size of the refocused spot is
approximately λL/a, where λ is the central wavelength of the emitted signal, L is
the distance between the source and the transducer array, and a is the aperture of
the array. We assume here that the array is operating in the remote-sensing regime
a � L. Multiple scattering in a randomly inhomogeneous medium creates multi-
pathing, which means that the transducer array can capture waves that were initially
moving away from it but got scattered onto it by the inhomogeneities. As a result,
the array captures a wider aperture of rays emanating from the original source and
appears to be larger than its physical size. Therefore, somewhat contrary to intuition,
the inhomogeneities of the medium do not destroy the refocusing but enhance its res-
olution. The refocused spot is now λL/ae, where ae > a is the effective size of the
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Fig. 1.1. A pulse propagates toward a time reversal array of size a. The propagation distance
L is large compared to a. The ambient medium has a randomly varying index of refraction with a
typical correlation length that is small compared to L. The signal is time-reversed at the array and
sent back into the medium. The back-propagated signal refocuses with spot size λL/ae, where ae is
the effective aperture of the array (see section 3.3) and ae > a.

array in the randomly scattering medium, and depends on L. The enhancement of
refocusing resolution by multipathing is called superresolution [7]. The time-reversed
pulse is also self-averaging, and refocusing near the source is therefore statistically sta-
ble, which means that it does not depend on the particular realization of the random
medium. There is some loss of energy in the refocused signal because of scattering
away from the array, but this can be overcome by amplification, up to a point.

The purpose of this paper is to explore in detail the mathematical basis of pulse
stabilization, beyond what was done in [7]. We want to explore in particular in what
regime of parameters statistical stability is observed in time reversal. We show here
that for high frequency waves in a remote-sensing regime, spatially localized sources
lead to statistically stable superresolution in time reversal even for narrow-band sig-
nals. We also show that, when the source is spatially distributed, only for broad-band
signals do we have statistical stability in time reversal. The regime where our analysis
holds is a high frequency one, more appropriate to optical or infrared time reversal
than to ultrasound, sonar, or microwave radar. In this regime we can make precise
what “spatially localized” or “distributed” means (see section 3.1). The numerical
simulations in [7] and [8], which are set in an ultrasound or underwater sound regime,
indicate that time reversal is not statistically stable for narrow-band signals even for
localized sources. Only for broad-band signals is time reversal statistically stable in
the regime of ultrasound experiments or sonar.

If the aperture of the transducer array is small with a/L� 1, the Fresnel number
L/(ka2) is of order one, and the random inhomogeneities are weak, which is often
the case, we may analyze wave propagation in the paraxial or parabolic approxima-
tion [29]. The wave field is then given approximately by

u(t,x, z) =
1

2π

∫
eiω(z/c0−t)ψ(z,x;ω/c0)dω,(1.1)

where the complex amplitude ψ satisfies the parabolic or Schrödinger equation

2ikψz + ∆xψ + k2(n2 − 1)ψ = 0.(1.2)
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Here x = (x, y) are the coordinates transverse to the direction of propagation z, the
wave number k = ω/c0, and n(x, z) = c0/c(x, z) is the random index of refraction
relative to a reference speed c0. The fluctuations of the refraction index,

σµ
(x

l
,
z

l

)
= n2(x, z) − 1,(1.3)

are assumed to be a stationary random field with mean zero, variance σ2, correlation
length l, and normalized covariance with dimensionless arguments

R(x, z) = E{µ(x + x′, z + z′)µ(x′, z′)}.(1.4)

A convenient tool for the analysis of wave propagation in a random medium is
the Wigner distribution [19, 28] defined by

W (z,x,p) =
1

(2π)d

∫
Rd

eip·yψ
(
x − y

2
, z
)
ψ
(
x +

y

2
, z
)
dy,(1.5)

where d = 1 or 2 is the transverse dimension and the bar denotes complex conjugate.
The Wigner distribution may be interpreted as phase space wave energy, and it is
particularly well suited for high frequency asymptotics and random media [28]. The
quantity of principal interest in time reversal, the time-reversed and back-propagated
wave field, can also be expressed in terms of the Wigner distribution (see section 3.1).
The self-averaging properties of the back-propagated field are related to the self-
averaging properties of functionals of the Wigner distribution in the form of integrals
of W over the wave numbers p.

In the next section we introduce a precise scaling that corresponds to (a) high
frequency, (b) long propagation distance, (c) narrow beam propagation, and (d) weak
random fluctuations. In the asymptotic limit where the small parameters go to zero,
the Wigner distribution satisfies a stochastic partial differential equation (SPDE), a
Liouville–Ito equation, that has the form

dW (z,x,p; k) =

(
−p

k
· ∇xW +

k2D

2
∆pW

)
dz − k

2
∇pW · dB(x, z),(1.6)

where B(x, z) is a vector-valued Brownian field with covariance

E{Bi(x1, z1)Bj(x2, z2)} = −
(
∂2R0(x1 − x2)

∂xi∂xj

)
z1 ∧ z2,(1.7)

where z1 ∧ z2 = min{z1, z2}, and in the isotropic case

D = −R
′′
0 (0)

4
, R0(x) =

∫ ∞

−∞
R(x, s)ds.(1.8)

In section 2.5 we analyze this SPDE in the asymptotic limit of small correlation length
for B(x, z) in the transverse variables x and show that W (z,x,p; k)’s with different
wave vectors p are uncorrelated. From this decorrelation property, we deduce that
for localized sources the time-reversed back-propagated field is self-averaging, even for
narrow-band signals. For distributed sources, it is self-averaging only for broad-band
signals. We show in detail in section 3 how the asymptotic theory is used in time
reversal. In Appendix A we introduce other scalings which lead to the same averaged
SPDE, but we do not analyze them in detail.
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Throughout the paper we define the Fourier transform by

f̂(k) =

∫
dxe−ik·xf(x)

so that

f(x) =

∫
dk

(2π)d
eik·xf̂(k).

2. Scaling and asymptotics.

2.1. The rescaled problem. To carry out the asymptotic analysis we begin
by rewriting the Schrödinger equation (1.2) in dimensionless form. Let Lz and Lx be
characteristic length scales in the propagation direction, as, for example, the distance
L between the source and the transducer array for Lz and a multiple of the array size
a for Lx. We introduce a dimensionless wave number k′ = k/k0 with k0 = ω0/c0 and
ω0 a central frequency. We rescale x and z by x = Lxx

′, z = Lzz
′ and rewrite (1.2)

in the new coordinates, dropping primes:

2ik
∂ψ

∂z
+

Lz
k0L2

x

∆ψ + k2k0Lzσµ

(
xLx

l
,
zLz
l

)
ψ = 0.(2.1)

The physical parameters that characterize the propagation problem are (a) the
central wave number k0, (b) the strength of the fluctuations σ, and (c) the correlation
length l. We now introduce three dimensionless variables

δ =
l

Lx
, ε =

l

Lz
, γ =

1

k0l
,(2.2)

which are the reciprocals of the transverse scale relative to correlation length, the
reciprocal of the propagation distance relative to correlation length, and the central
wave length relative to the correlation length. We will assume that the dimensionless
parameters γ, σ, ε, and δ are small:

γ � 1; σ � 1; δ � 1; ε � 1.(2.3)

This is a regime of parameters where superresolution phenomena can be observed.
To make the scaling more precise we introduce the Fresnel number

θ =
Lz
k0L2

x

= γ
δ2

ε
.(2.4)

We can then rewrite the Schrödinger equation (2.1) in the form

2ikθψz + θ2∆xψ +
k2δ

ε1/2
µ
(x

δ
,
z

ε

)
ψ = 0,(2.5)

provided that we relate ε to σ and δ by

ε = σ2/3δ2/3(2.6)

so that ε → 0 is a white noise limit. One way that the asymptotic regime (2.3) can
be realized is with the ordering

θ � ε � δ � 1 ,(2.7)
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and γ � σ4/3δ−2/3, corresponding to the high frequency limit. We see from the scaled
Schrödinger equation (2.5) that this regime can be given the following interpretation.
We have first a high frequency limit θ → 0, then a white noise limit ε → 0, and then
a broad beam limit δ → 0. We will analyze in detail and interpret these limits in the
following sections. Another scaling in which (2.3) is realized is ε� θ � δ � 1. This
is a regime in which the white noise limit is carried out first, then the high frequency
limit, and then the broad beam limit. We do not analyze this case here. Additional
comments on scaling are provided in Appendix A.

It is instructive to express the constraints (2.6) and (2.7) in terms of the dimen-
sional parameters of the problem. First, both the size of the transverse scale Lx and
the propagation distance Lz should be much larger than the correlation length l of the
medium. Moreover, (2.6) implies that the longitudinal and transverse scales should
be related by

Lz
Lx

=
δ

ε
=

(
δ

σ2

)1/3

� 1

so that we are indeed in the beam approximation. The first inequality in (2.7) implies
that

Lz
Lx

�
√
k0l =

1√
γ
,

and, with the above choice of Lz, this implies that

γ3/2

σ2
� Lx

l
� 1

σ2
.

2.2. The high frequency limit. A convenient tool for the study of the high
frequency limit, especially in random media, is the Wigner distribution. It is often
used in the context of energy propagation [19, 28], but it is also useful in analyzing
time reversal phenomena [2, 3, 5, 7]. Let φθ(x) be a family of functions oscillating on
a small scale θ. The Wigner distribution is a function of the physical space coordinate
x and wave vector p defined as

Wθ(x,p) =

∫
Rd

dy

(2π)d
eip·yφθ

(
x − θy

2

)
φθ

(
x +

θy

2

)
.(2.8)

The family Wθ is bounded in the space of Schwartz distributions S ′(Rd × R
d) if the

functions φθ are uniformly bounded in L2(Rd). Therefore, there exists a subsequence
θk → 0 such that Wθk converges weakly as k → ∞ to a limit measure W (x,p). This
limit W (x,p) is nonnegative and is customarily interpreted as the limit phase space
energy density because

|φθk(x)|2 →
∫

Rd

W (x,p)dp as k → 0(2.9)

in the weak sense. This allows us to think of W (x,p) as a local energy density.
Let Wθ(z,x,p) be the Wigner distribution of the solution ψ of the Schrödinger

equation (2.5), in the transversal space-variable x. A straightforward calculation
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shows that Wθ(z,x,p) satisfies in a weak sense the linear evolution equation

∂Wθ

∂z
+

p

k
· ∇xWθ(2.10)

=
ikδ

2
√
ε

∫
eiq·x/δµ̂

(
q,
z

ε

) Wθ

(
p − θq

2δ

)
−Wθ

(
p + θq

2δ

)
θ

dq

(2π)d
.

In the limit θ → 0, the solution converges weakly in S ′, for each realization, to the
(weak) solution of the random Liouville equation

∂W

∂z
+

p

k
· ∇xW +

k

2
√
ε
∇xµ

(x

δ
,
z

ε

)
· ∇pW = 0.(2.11)

The initial condition at z = 0 is W (0,x,p) = WI(x,p), the limit Wigner distribution
of the initial wave function.

2.3. The white noise limit. In this section we take the white noise limit ε→ 0
in the random Liouville equation (2.11) whose solution we now denote by Wε. We
can do this using the asymptotic theory of stochastic differential equations and flows
[22, 6, 21, 26] as follows. Using the method of characteristics, the solution of the
Liouville equation (2.11) may be written in the form

Wε(z,x,p) = WI(Xε(z;x,p),Pε(z;x,p)),

where the processes Xε(z;x,p) and Pε(z;x,p) are solutions of the characteristic
equations

dXε

dz
= −1

k
Pε,

dPε

dz
= − k

2
√
ε
∇xµ

(
Xε

δ
,
z

ε

)

with the initial conditions Xε(0) = x and Pε(0) = p. We assume here that the
fluctuation process µ(x, z) is twice differentiable. The asymptotic theory of random
differential equations with rapidly oscillating coefficients implies that, under suitable
conditions on µ, in the limit ε → 0, the processes Xε, Pε converge weakly (in the
probabilistic sense) and uniformly on compact sets in x,p to the limit processes X(z),
P(z) that satisfy a system of stochastic differential equations

dP = −k
2
dB(z), dX = −1

k
Pdz, X(0) = x, P(0) = p.

The random process B(z) is a Brownian motion with the covariance function

E {Bi(z1)Bj(z2)}= −∂
2R0(0)

∂xi∂xj
dsz1 ∧ z2(2.12)

= δij

(
−R′′

0 (0)
)
z1 ∧ z2,

in the isotropic case, where

R0(x) =

∫ ∞

−∞
R(x, s)ds(2.13)
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is a function of |x|. This implies that the average Wigner distribution W
(1)
ε (z,x,p) =

E {Wε(z,x,p)} converges as ε → 0 uniformly on compact sets to the solution of the
advection-diffusion equation in phase space

∂W (1)

∂z
+

p

k
· ∇xW

(1) =
k2D

2
∆pW

(1)(2.14)

with the initial data W (1)(0,x,p) = WI(x,p). Here the diffusion coefficient D is
given by

D = −R
′′
0 (0)

4
.(2.15)

The one-point moments E
{
[Wε(z,x,p)]N

}
converge as ε → 0 to the functions

W (N)(z,x,p) that satisfy the same equation (2.14) but with the initial dataW (N)(0,x,
p) = [W0(x,p)]N . This is similar to the spot dancing phenomenon [11], where all one-
point moments are governed by the same Brownian motion. In particular we have
that

W (2)(z,x,p) �=
[
W (1)(z,x,p)

]2
so that the process Wε does not converge to a deterministic one, in the strong sense
pointwise.

2.4. Multipoint moment equations. As in the previous section, we may also
study the white noise limit ε → 0 of the higher moments of Wε(z,x,p) at different
points

W (N)
ε (z,x1, . . . ,xN ,p1, . . . ,pN ) = E

{
[Wε(z,x

1,p1)]r1 · . . . · [Wε(z,x
N ,pN )]rN

}
.

Here the points (xm,pm) are all distinct, and (xn,pn) �= (xm,pm). We may account
for moments that have different powers of Wε at different points by taking different
powers rj of Wε(x

j ,pj).
We now consider the joint process (Xε(z;x

m,pm),Pε(z;x
m,pm)), m = 1, . . . , N .

As ε→ 0, it converges to the solution of the system of stochastic differential equations

dPm
i = −k

2

N∑
n=1

d∑
j=1

σij

(
Xm − Xn

δ

)
dBnj (z), dXm = −1

k
Pmdz,(2.16)

with the initial conditions

Xm(0) = xm, Pm(0) = pm.

The d-dimensional Brownian motions Bm, m = 1, . . . , N , have the standard covari-
ance tensor

E
{
Bmi (z1)B

n
j (z2)

}
= δmnδijz1 ∧ z2, i, j = 1, . . . , d, m, n = 1, . . . , N.

The symmetric tensor σij(x) is determined from

d∑
k=1

σik(x)σjk(x) = −
(
∂2R0(x)

∂xi∂xj

)
.(2.17)
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We assume that (2.17) has a solution that is differentiable in x, which is compatible
with the fact that the matrix on the right is, by Bochner’s theorem, nonnegative
definite.

The moments W
(N)
ε converge as ε → 0 to the solution of the advection-diffusion

equation

∂W (N)

∂z
+

N∑
m=1

pm

k
· ∇xmW (N) =

k2D

2

N∑
m=1

∆pmW (N)(2.18)

− k2

4

N∑
n,m=1
n>m

d∑
i,j=1

∂2R0((x
n − xm)/δ)

∂xi∂xj

∂2W (N)

∂pni ∂p
m
j

with the initial data

W (N)(0,x1, . . . ,x
N ,p1, . . . ,pN ) = [WI(x

1,p1)]r1 · . . . · [WI(x
N ,pN )]rN .

From (2.18) we can calculate moments of functionals of Wε of the form

Wε,φ(z) =

∫
Wε(z,x,p)φ(x,p)dxdp.

For example, as ε→ 0, we have that

E
{
[Wε,φ(z)]

2
}→

∫
W (2)(z,x1,p1,x2,p2)φ(x1,p1)φ(x2,p2)dx1dp1dx2dp2.

A convenient way to deal not only with the limit of N -point moments but also
with the full limit process W (z,x,p), at all points x,p simultaneously, is provided by
the theory of stochastic flows [23]. For this we need to show that Wε(z,x,p) converges
weakly (in the probabilistic sense) as ε → 0 to the process W (z,x,p) that satisfies
the SPDE

dWδ =

[
−p

k
· ∇xWδ +

k2D

2
∆pWδ

]
dz − k

2
∇pWδ · dB

(x

δ
, z
)
.(2.19)

Here the Gaussian random field B(x, z) has covariance

E{Bi(x1, z1)Bj(x2, z2)} = −
(
∂2R0(x1 − x2)

∂xi∂xj

)
z1 ∧ z2.

We call (2.19) the Liouville–Ito equation. It allows us to treat all equations of the
form (2.18) simultaneously, and it is a convenient tool for simulation and analysis. The
dimensionless wave number k can be scaled out of (2.19) by writing W (z,x,p; k) =
W (z,x, p

k ; 1) so that we need only consider (2.19) with k = 1. We will use this scaling
in section 3.1.

Note that unlike the single Brownian motion (2.12) that governs the evolution of
one-point moments, the Brownian field that enters the SPDE (2.19) depends explicitly
on the dimensionless correlation length δ in the transverse direction. Therefore, the
limit process also depends on δ, and we denote it by Wδ.
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2.5. Statistical stability in the broad beam limit. We will now consider
the limit δ → 0 of the process Wδ(z,x,p) when the transverse dimension d ≥ 2.
We are particularly interested in the behavior of functionals of Wδ as δ → 0. The
analysis of one-point moments in section 2.3 showed that they do not depend on δ
and are governed by a standard Brownian motion. Therefore the process Wδ does not
have a pointwise deterministic limit. However, we will show that functionals of Wδ

become deterministic in the limit δ → 0. We refer to this phenomenon as statistical
stabilization and give conditions for it to happen. Stabilization plays an important
role in time reversal, imaging, and other applications, as discussed in the introduction.

Theorem 2.1. Assume that φ(p) is a smooth test function of rapid decay, the
transverse correlation function R0(x) has compact support, the initial Wigner distri-
bution WI(x,p) is uniformly bounded and Lipschitz continuous, and the transverse
dimension d ≥ 2. Define

Iδ,φ(z,x) =

∫
Wδ(z,x,p)φ(p)dp.(2.20)

Then

lim
δ→0

E
{
I2
δ,φ(z,x)

}
= E2 {Iδ,φ(z,x)} ,(2.21)

where E {Iδ,φ(z,x)} is independent of δ.
The independence of δ for the expectation of Iδ,φ(z,x) follows immediately from

taking expectations in the stochastic differential equation (2.19). The assumption of
compact support for R0(x) is not essential but simplifies the proof. We have already
noted that the Wigner distribution Wδ itself does not stabilize. However, (2.21)
implies that

lim
δ→0

Var {Iδ,φ} = lim
δ→0

E
{
I2
δ,φ(z)

}− E2 {Iδ,φ} = 0.(2.22)

Therefore, any smooth functional of the form (2.20) stabilizes in the limit δ → 0; that
is,

Iδ,φ ≈ E{Iδ,φ}(2.23)

in mean square, and the expectation of Iδ,φ does not depend on δ. We prove Theo-
rem 2.1 in Appendix B.

In the applications of the asymptotic theory to time reversal, we need functionals
Iδ,φ not only of the form (2.20), but also of the form

Jδ(z,x) =

∫
Wδ(z,x,p)dp.(2.24)

We need to show that such functionals are well defined with probability one and to
analyze their behavior as δ → 0. This is done in the following theorem.

Theorem 2.2. Under the same hypotheses of Theorem 2.1, and with a nonneg-
ative initial Wigner distribution WI ≥ 0, the functional Jδ is bounded, continuous,
and nonnegative with probability one. In the limit δ → 0, we have

lim
δ→0

E
{
J2
δ (z,x)

}
= E2 {Jδ(z,x)} ,(2.25)

where E {Jδ(z,x)} does not depend on δ.
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The proof of this theorem is given in Appendix B.
What is important in both Theorems 2.1 and 2.2 is that we do integrate over

the wave numbers p because there is no pointwise stabilization. In time reversal
applications, as in section 3.1, we actually need Theorem 2.2 when the integration is
only over a line segment in p space, and the dimension of the latter is d ≥ 2. Its proof
follows from the one of Theorem 2.2.

3. Application to time reversal in a random medium. We will now apply
these results to the time reversal problem [7] described in the introduction. A wave
emitted from the plane z = 0 propagates through the random medium and is recorded
on the time reversal mirror at L. It is then reversed in time and re-emitted into the
medium. The back-propagated signal refocuses approximately at the source, as shown
in Figure 1.1. There are two striking features of this refocusing in random media.
One is that it is statistically stable; that is, it does not depend on the particular
realization. The other is superresolution; that is, the refocused spot is tighter than in
the deterministic case. We discuss these two issues in this section.

3.1. The time-reversed and back-propagated field. We assume that the
wave source at z = 0 is distributed on a scale σs around a point x0; that is,

ψθ(z = 0,x; k) = eip0·(x−x0)/θψ0

(
x − x0

σs
; k

)
,

where ψ0 is a rapidly decaying and smooth function of x and k. The width of the
source σs could be large or small compared to the Fresnel number θ, and this affects
the statistical stability of the time-reversed back-propagated field, as we explain in
this section. The Green’s function, Gθ(z,x, ξ; k), solves the parabolic wave equation
(2.5) with a point source at (x, z) = (ξ, 0). Using its symmetry properties and the fact
that time reversal t → −t is equivalent to ω → −ω or k → −k, the back-propagated
time-reversed field on the plane of the source has the form

ψBθ (L,x0, ξ; k)(3.1)

=

∫ ∫
Gθ(L,x,x0 + θξ; k)Gθ(L,x0 + η,x; k)e−ip0·η/θψ0

(
η

σs
;−k

)
χA(x)dxdη.

The complex field amplitude ψBθ is evaluated at x0 + θξ, in the plane z = 0. We scale
the observation point off x0 by θ because we expect that the spot size of the refocused
signal will be comparable to the lateral spread of the initial wave function. We denote
by χA the aperture function of the time reversal mirror. It could be its characteristic
function, occupying the region A in the plane z = L,

χA(x) =

{
1, x ∈ A,
0, x /∈ A,

or a more general aperture function like a Gaussian. The time reversal mirror is
located in the plane z = L.

After changing variables, the back-propagated field is given by

ψBθ (L,x0, ξ; k)

= θd
∫
Gθ(L,x,x0 + θξ; k)Gθ(L,x,x0 + θη; k)e−ip0·ηψ0

(
θη

σs
;−k

)
χA(x)dxdη

= θd
∫
Gθ(L,x0 + θξ,x; k)Gθ(L,x0 + θη,x; k)e−ip0·ηψ0

(
θη

σs
;−k

)
χA(x)dxdη.
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It is now convenient to introduce the Wigner distribution

(3.2)

Wθ(z,x0,p; k) =

∫
θdeip·y

(2π)d
Gθ(z,x0 − yθ/2,x; k)Gθ(z,x0 + yθ/2,x; k)χA(x)dxdy,

and express the back-propagated field as

ψBθ (L,x0, ξ; k)(3.3)

=

∫
eip·(ξ−η)Wθ

(
L,x0 +

θ(ξ + η)

2
,p; k

)
e−ip0·ηψ0

(
θη

σs
;−k

)
dpdη.

The Wigner distribution is scaled differently here from in (2.8) because of the way we
have scaled the source function.

In the high frequency limit θ → 0, Wθ(z,x,p; k) tends to W (z,x,p; k), which
solves the random Liouville equation (2.11). Then, in the white noise limit, it solves
the Liouville–Ito equation (2.19). The mean of W solves (2.14), in the high frequency
and white noise limit, with initial data

W (0,x,p; k) =
χA(x)

(2π)d
.(3.4)

Let

β =
σs
θ

(3.5)

be the ratio of the width of the source to the Fresnel number and assume that it
remains fixed as θ → 0. In this limit, the time-reversed and back-propagated field is
given by

ψB(L,x0, ξ; k) =

∫
eip·(ξ−η)W

(
L,x0,

p

k

)
e−ip0·ηψ0(η/β;−k)dpdη(3.6)

=

∫
eip·ξW

(
L,x0,

p

k

)
βdψ̂0(β(p + p0);−k)dp.

Here we have used the scaling W (z,x,p; k) = W (z,x, p
k ; 1) in (2.19), and we have

dropped the last argument k = 1.

3.2. Statistical stability. From the form (3.6) of the back-propagated and
time-reversed field we see that when β = O(1) (or small), which means that σs is
comparable to the Fresnel number θ (or smaller), we can apply the results of sec-
tion 2.5 and conclude that it is statistically stable or self-averaging in the broad beam
limit δ → 0. Theorems 2.1 and 2.2 are exactly what is needed for this. The fact that
the initial function (3.4) may be discontinuous at the boundary of the set A is not a
problem. This is because we may approximate the function χA from above and below
by two smooth positive functions, to which we may apply Theorems 2.1 and 2.2, and
then use the maximum principle to deduce the decorrelation property when the initial
data is χA. We have, therefore,

ψB(L,x0, ξ; k) ≈ 〈ψB(L,x0, ξ; k)〉
in the sense of convergence in probability or in mean square, in the broad beam limit
δ → 0, for each fixed frequency ω = kc0. Statistical stability of time reversal does
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not depend on having a broad-band signal if the source is localized in space. This is
true in the regime of parameters reflected by the scaling θ � ε � δ considered here,
which is a high frequency regime encountered in optical or infrared applications like
ladar. The numerical experiments in [7] and [8] are closer to the regime of ultrasound
experiments [16] and in underwater sound propagation, which is different from the
high frequency regime analyzed here.

For distributed sources, the parameter β is large, and we cannot apply Theorems
2.1 and 2.2 to (3.6). It is necessary for statistical stability in this case to have broad-
band signals. For β large, the time-reversed and back-propagated signal in the time
domain has the form

ψB(L,x0, ξ, t)(3.7)

= (2π)de−i(p0·ξ+k0c0t)ψ0(ξ/β)

∫
W

(
L,x0,

p0

k0 + k

)
e−ikc0tĝ(−c0k)c0dk

2π

= (2π)de−i(p0·ξ+ω0t)ψ0(ξ/β)

∫
W

(
L,x0,

c0p0

ω0 + ω

)
e−iωtĝ(−ω)

dω

2π

with ĝ(c0k) the Fourier transform of the initial pulse relative to the central frequency
ω0 = c0k0. This means that we have replaced the actual wave number k by k0 + k, or
ω by ω0 +ω, with the new ω, the baseband frequency, bounded by Ω, the bandwidth,
|ω| ≤ Ω < ω0. The integration is over the bandwidth [−Ω,Ω]. This integral is well
defined with probability one and is self-averaging in the broad beam limit δ → 0 by
Theorem 2.2 and the remark following it. We will compute its average in section 3.4.

3.3. The effective aperture of the array. From the explicit expression for
the Green’s function of (2.14), with k = 1,

W (1)(z,x,p;x0,p0) =

∫
dwdr

(2π)2d
exp

(
iw · (x − x0) + ir · (p − p0) − izw · p0

)
× exp

(
−Dz

2

[
r2 + zr · w +

w2z2

3

])
,

and with the time reversal mirror a distance L from the source and x0 = 0, it follows
from (3.6) that

〈ψB(L, ξ; k)〉(3.8)

=

∫
dpdydw

(2π)2d
eip·ξβdψ̂0(β(p − p0);−k)χA(y) exp

[
−iw · y − iLw · p

k
− DL3w2

6

]
.

The high frequency white noise limit of the self-averaging time-reversed and back-
propagated field is therefore given by a convolution

〈ψB(L, ξ; k)〉 = ψβ0 (·,−k) ∗W(·)(ξ)(3.9)

with

W(η) = W(η;L, k) =
kd

(2πL)d
χ̂A(ηk/L) e−η

2/(2σ2
M ),(3.10)

the point spread function, and

ψβ0 (η,−k) = e−ip0·ηψ0(η/β)ĝ(−kc0)(3.11)
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with ψ0(η/β) the spatial source distribution function and ĝ the Fourier transform of
the pulse shape function g(t). This notation is consistent with (3.7), with the time
factor e−ik0c0t omitted, along with the horizontal phase eikz, which cancels in time
reversal. We have also introduced the refocused spot size with multipathing

σ2
M =

3

DLk2
=

L2

k2a2
e

(3.12)

and the effective aperture ae = ae(L),

ae =

√
DL3

3
,(3.13)

which we now interpret.
If the time reversal mirror is the whole plane z = L, then χA ≡ 1 and〈

ψB(L, ξ; k)
〉

= ψβ0 (ξ,−k).

In this case, the back-propagated field is the source field reversed in time, both in
the random and in the deterministic case. The point spread function W determines
the resolution of the refocused signal for a time reversal mirror of finite aperture.
Multipathing in a random medium gives rise to the Gaussian factor (3.12) whose
variance is σ2

M . We can give an interpretation of this variance, or spot size, as follows.
For a square time reversal mirror of size a, the Fourier transform of χA is the sinc
function so that

W(η1, η2;L, k) =
1

πη1
sin

(
η1ka

2L

)
1

πη2
sin

(
η2ka

2L

)
e−(η2

1+η2
2)/(2σ2

M ).

For a deterministic medium (D = 0), the Rayleigh resolution is the distance ηF to
the first zero of the sine, the first Fresnel zone in either direction,

ηF =
2πL

ka
=
λL

a
.

In general, if χA is supported by a region of size a, we may define the Fresnel resolution,
or the Fresnel spot size, by

σF =
L

ka
.

For weak multipathing, we have σM � σF and

W(η;L, k) ∼
(

k

2πL

)d
χ̂A(ηk/L) ,

which is the diffractive point spread function whose integral over η ∈ Rd is one. If,
however, we have strong multipathing, σM � σF , then we may approximate χ̂A(ηk/L)
by χ̂A(0) = ad in (3.10), and the point spread function becomes

W(η;L, k) ∼
(
ka

2πL

)d
e−|η|2/(2σ2

M ).
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By writing the variance (spot size) σ2
M in the form (3.12) we can interpret ae as

an effective aperture of the time reversal mirror. We can rewrite the point spread
function in terms of a normalized Gaussian as

W(η;L, k) ∼
(

σM√
2πσF

)d
e−|η|2/(2σ2

M )

(2πσ2
M )d/2

with the factor in front of the normalized Gaussian also equal to

(
a√

2πae

)d
.

This means that, when there is strong multipathing, the integral of the point spread
function over Rd is equal not to one but to this ratio, which can be much smaller
than one if ae � a. Multipathing produces a tighter point spread function, but there
is also loss of energy, as of course we should expect.

A more direct interpretation for the effective aperture can be given if the time
reversal mirror has a Gaussian aperture function

χA(η) = e−|η|2/(2a2).

The point spread function W now has the form

W(η;L, k) =

(
ka√
2πL

)d
e−|η|2/(2σ2

g),

with

σg =
L

kag
,

and the effective aperture ag given by

ag =

√
a2 +

DL3

3
=
√
a2 + a2

e.

Clearly, ag ≈ ae when there is strong multipathing and ae � a. Written with a
normalized Gaussian, the point spread function for a Gaussian aperture has the form

W(η) =

(
a

ag

)d
e−|η|2/(2σ2

g)

(2πσ2
g)
d/2

.

3.4. Broad-band time reversal for distributed sources. For a distributed
source, its support σs is large compared to the Fresnel number θ, so the ratio β = σs/θ
is large. In this case we can compute the average of (3.7) the same way as we did in
(3.8), and we find that

〈ΨB(L,x0, ξ, t)〉(3.14)

= (2π)de−i(p0·ξ+k0c0t)ψ0(ξ/β)

∫ 〈
W

(
L,x0,

p0

k0 + k

)〉
e−ikc0tĝ(−c0k)c0dk

2π

= e−i(p0·ξ+k0c0t)ψ0(ξ/β)

∫
dydwc0dk

(2π)d+1
χA(y)ei(

Lwp0
k0+k −w·y−kc0t)e−

DL3w2

6 ĝ(−c0k).
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L

σs

a|p0|L
k0

Fig. 3.1. A directed field propagates from a distributed source of size σs toward the time
reversal mirror of size a. The time-reversed back-propagated field depends on the location of the
mirror relative to the direction of the propagating beam.

The y integral on the right gives the Fourier transform of the aperture function χA(y),
so with ω0 = c0k0 and a change of variable from k to ω = c0k, we have

〈ΨB(L,x0, ξ, t)〉(3.15)

= e−i(p0·ξ+ω0t)ψ0(ξ/β)

∫
dω

2π
e−iωtĝ(−ω) χA ∗

(
e−x

2/(2a2
e)

(2πa2
e)
d/2

)(
Lc0p0

ω0 + ω

)
.

Here the star denotes convolution with respect to the spatial variables x, and ae is
the effective aperture defined by (3.13).

When multipathing is weak, we can ignore the Gaussian factor in the convolution
and we have

〈ΨB(L,x0, ξ, t)〉(3.16)

= e−i(p0·ξ+ω0t)ψ0(ξ/β)

∫
dω

2π
e−iωtĝ(−ω) χA

(
Lc0p0

ω0 + ω

)
.

In the opposite case, when there is strong multipathing and the effective aperture is
much larger than the physical one, ae � a, we have

〈ΨB(L,x0, ξ, t)〉(3.17)

= e−i(p0·ξ+ω0t)ψ0(ξ/β)

(
a√

2πae

)d ∫
dω

2π
e−iωtĝ(−ω)e

− 1
2 (

Lc0p0
ae(ω0+ω)

)2
.

To interpret these results, we note first that a distributed source function of
the form (3.11) can be considered as a phased array emitting an inhomogeneous plane
wave, a beam, in the direction (k,p0), within the paraxial or parabolic approximation.
The ratio |p0|/k is the tangent of the angle the direction vector makes with the z axis,
and L|p0|/k is the transverse distance of the beam center to the center of the phased
array (see Figure 3.1). If for each ω the beam displacement vector Lc0p0/(ω0 + ω)
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is inside the set A occupied by the time reversal array, then we recover at the source
the full pulse in (3.16), time-reversed,

〈ΨB(L,x0, ξ, t)〉 = e−i(p0·ξ+ω0t)ψ0(ξ/β)g(−t).

If, however, for some frequencies the transverse displacement vector is outside the
time reversal array, these frequencies will be nulled in the integration and a distorted
time pulse will be received at the source. Depending on the position of the time
reversal mirror relative to the beam, high or low frequencies may be nulled.

In a strongly multipathing medium, the situation is quite different because the
expression (3.17), or more generally (3.15), now holds. Even if the beam from the
phased array does not intercept the time reversal mirror at all, we will still get a
time-reversed signal at the source but with a much diminished amplitude. If the
beam falls entirely within the time reversal mirror, then the time-reversed pulse will
be a distorted form of g(−t), with its amplitude reduced by the factor (a/ae)

d. An
interesting and important application of the time reversal of a beam in a random
medium is the possibility of estimating the effective aperture ae by pointing the beam
in different directions toward the time reversal mirror, measuring the time-reversed
signal that back-propagates to the source, that is, to the phased array, and inferring
ae by fitting the measurements to (3.15).

4. Summary and conclusions. We have analyzed and explained two impor-
tant phenomena associated with time reversal in a random medium:

• superresolution of the back-propagated signal due to multipathing,
• self-averaging that gives a statistically stable refocusing.

Our analysis is based on a specific asymptotic limit (see section 2.1), where the lon-
gitudinal distance of propagation is much larger than the size of the time reversal
mirror, which in turn is much larger than the correlation length of the medium, fluc-
tuations in the index of refraction are weak, and the wave length is short compared to
the correlation length. This asymptotic regime is more relevant to optical or infrared
time reversal than it is to sonar or ultrasound. We have related the self-averaging
properties of the back-propagated signal to those of functionals of the Wigner dis-
tribution. Self-averaging of these functionals implies the statistical stability of the
time-reversed and back-propagated signal in the frequency domain, provided that the
source function is not too broad compared to the Fresnel number (2.4). Time reversal
refocusing of waves emitted from a distributed source is self-averaging only in the
time domain.

We apply our theoretical results about stochastic Wigner distributions to time
reversal and discuss in detail superresolution and statistical stability in section 3.

Appendix A. The white noise limit and the parabolic approximation.
We collect here some comments on the scaling analysis of section 2.1 and refer to
[1, 27, 33] for additional comments and results on scaling and asymptotics in the high
frequency and white noise regime.

The dimensionless parameters δ, ε, γ introduced by (2.2) in section 2.1, along with
the Fresnel number θ defined by (2.4), lead to the scaled parabolic wave equation (2.5).
If we do not make the parabolic approximation and keep the ψzz term, we have the
scaled Helmholtz equation, with the phase eikz removed,

ε2θ2

δ2
ψzz + 2ikθψz + θ2∆xψ +

k2δ

ε1/2
µ
(x

δ
,
z

ε

)
ψ = 0.(A.1)
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Here, as in (2.5), we relate the strength of the fluctuations σ to ε and δ by (2.6). Is
the parabolic approximation valid in the ordering (2.7), θ � ε� δ � 1, that we have
analyzed? The answer is yes, but not before both θ and ε limits have been taken, in
which case the scaled Wigner distribution (2.8) converges to the Liouville–Ito process
that is defined by the SPDE (2.19).

It is in the white noise limit ε → 0, with Fresnel number θ and δ fixed, that the
parabolic approximation is valid for (A.1), as was pointed out in [1]. This is easily
seen if the random fluctuations µ are differentiable in z. The parabolic approximation
is clearly not valid in the high frequency limit θ → 0, before the white noise limit
ε → 0 is also taken. In the white noise limit, the wave function ψ(z,x) satisfies an
Ito–Schrödinger equation

2ikθdzψ + θ2∆xψdz +
ik3δ2

4θ
R0(0)ψdz + k2δψdzB

(x

δ
, z
)

= 0.(A.2)

Here R0 is the integrated covariance of the fluctuations µ given by (2.15) and (2.13),
and the Brownian field B(x, z) has covariance

〈B(x, z1)B(y, z2)〉 = R0(x − y)z1 ∧ z2.
This Ito–Schrödinger equation is the result of the central limit theorem applied to
(A.1). Let

Bε(x, z) =
1√
ε

∫ z

0

µ
(
x,
s

ε

)
ds.

Then, as ε → 0, this process converges weakly, under suitable hypotheses, to the
Brownian field B(x, z) with the above covariance. The extra term in (A.2) is the
Stratonovich correction.

The white noise limit for SPDEs is analyzed in [10] and a rigorous theory of the
Ito–Schrödinger equation is given in [11]. The ergodic theory of the Ito–Schroedinger
equation is explored in [17]. Wave propagation in the parabolic approximation with
white noise fluctuations is considered in detail in [18, 30].

The scaled Wigner distribution for the process ψ, defined by (2.8), satisfies the
stochastic transport equation

dzWθ(z,x,p) +
p

k
· ∇xWθ(z,x,p)dz(A.3)

=
k2δ2

4θ2

∫
dq

(2π)d
R̂0(q)

(
Wθ

(
z,x,p +

θq

δ

)
−Wθ(z,x,p)

)
dz

+
ikδ

2θ

∫
dq

(2π)d
eiq·x/δ

(
Wθ

(
z,x,p − θq

2δ

)
−Wθ

(
z,x,p +

θq

2δ

))
dzB̂(q, z),

which is derived from (A.2) using the Ito calculus. The Wigner process Wθ converges
in the limit θ → 0 to the Liouville–Ito process defined by the SPDE (2.19).

Appendix B. Decorrelation of the Wigner process.

B.1. Proof of Theorem 2.1. We give here the proof of Theorems 2.1 and 2.2.
We consider Theorem 2.1 first. It will follow from the Lebesgue dominated conver-
gence theorem if we show that for p1 �= p2

E {Wδ(z,x,p1)Wδ(z,x,p2)} − E {Wδ(z,x,p1)}E {Wδ(z,x,p2)} → 0(B.1)
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as δ → 0 because the function Wδ is uniformly bounded and E {Wδ(z,x,p1)} does not
depend on δ. Furthermore, the correlation function at the same spatial point, but for

two different values of the wave vector, U
(2)
δ (z,x,p1,p2) = E {Wδ(z,x,p1)Wδ(z,x,p2)},

is the solution of (2.18) with N = 2 and the initial data

W
(2)
δ (0,x1,p1,x2,p2) = WI(x1,p1)WI(x2,p2),

evaluated at x1 = x2 = x. Therefore, U
(2)
δ may be represented as

U
(2)
δ (z,x1,p1,x2,p2) = E

{
WI(X

1
δ(z),P

1
δ(z))WI(X

2
δ(z),P

2
δ(z))

}
.

The processes X1,2
δ and P1,2

δ satisfy the system of stochastic differential equations
(2.16), which may be more explicitly written as

dP1
δ = −

[
σ(0)dB1(z) +

1

2
σ

(
X1
δ − X2

δ

δ

)
dB2(z)

]
,(B.2)

dP2
δ = −

[
σ(0)dB2(z) +

1

2
σ

(
X2
δ − X1

δ

δ

)
dB1(z)

]
,

dX1
δ = −P1

δdz, dX2
δ = −P2

δdz

with the initial conditions X1,2
δ (0) = x, Pm

δ (0) = pm, m = 1, 2. Here σ2(0) = D, the
diffusion coefficient (2.15), and the coupling matrix σ(x) is given by (2.17). Recall
that Wδ(z,x,p, k) = Wδ(z,x,p/k; 1), and we need only consider the case k = 1.

It is convenient to introduce the processes X1,2 and P1,2 that are solutions of
(2.16) with no coupling,

dPm = −σ(0)dBm(z), dXm = −Pmdz,(B.3)

X1,2(0) = x, Pm(0) = pm, m = 1, 2,

and define the deviations of the solutions of the coupled system of stochastic differ-
ential equations (B.2) from those of (B.3): Zmδ = Xm

δ − Xm, Smδ = Pm
δ − Pm. Then

we have

dS1
δ = −1

2
σ

(
X1
δ − X2

δ

δ

)
dB2(z), dS2

δ = −1

2
σ

(
X2
δ − X1

δ

δ

)
dB1(z),(B.4)

dZ1
δ = −S1

δdz, dZ2
δ = −S2

δdz

with the initial data Smδ (0) = Zm(0) = 0. Define

V(X1,X2,P1,P2,Z1
δ ,Z

2
δ ,S

1
δ ,S

2
δ)(B.5)

= WI(X
1 + Z1

δ ,P
1 + S1

δ)WI(X
2 + Z2

δ ,P
2 + S2

δ) −WI(X
1,P1)WI(X

2,P2).

Then we have, with the above notation,

E {Wδ(z,x,p1)Wδ(z,x,p2)} − E {Wδ(z,x,p1)}E {Wδ(z,x,p2)}(B.6)

= E
{V(X1(z),X2(z),P1(z),P2(z),Z1

δ(z),Z
2
δ(z),S

1
δ(z),S

2
δ(z))

}
≤ CE

{|Z1
δ(z)| + |Z2

δ(z)| + |S1
δ(z)| + |S2

δ(z)|
}

since WI is a Lipschitz function.
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Let us assume for simplicity that the correlation function R(x) has compact sup-
port inside the set |x| ≤ M . Then the coupling term in (B.2) is nonzero only when
|X1

δ −X2
δ | ≤Mδ. We introduce the processes Qδ = P1

δ −P2
δ and Yδ = X1

δ −X2
δ that

govern (B.4). They satisfy the stochastic differential equations

dQδ = −
[
σ(0) − 1

2
σ

(
Yδ

δ

)]
dB̃, dYδ = −Qδdz,(B.7)

Qδ(0) = p1 − p2, Yδ(0) = 0

with B̃ = B1 − B2 being a Brownian motion.
In order to prove the theorem, we show that the coupling term σ(·) in (B.2)

introduces only lower order correction terms; that is, Smδ and Zmδ are small. We
first show that after a small “time” τ , the points Xm

δ are driven apart since Qδ(0) =
P1
δ(0)−P2

δ(0) �= 0. Then we show that after the points have separated the probability
that they come close so that the coupling term σ(·) becomes nonzero is small. This
“nonrecurrence” condition requires that the spatial dimension d ≥ 2. It follows that
to leading order, the points Xm

δ are uncorrelated when d ≥ 2 and that the coupling
term introduces only lower order corrections. A similar argument for d = 1 would
require an estimate of the time that points that are originally separated in the spatial
variable spend near each other, where the coupling term in (B.2) is not zero.

We need the following two lemmas. The first one shows that particles that start
at the same point x, with different initial directions p1 and p2, get separated with a
large probability.

Lemma B.1. Let Yδ, Qδ solve (B.7) with Yδ(0) = 0, Qδ(0) = q �= 0. Then for
any ε > 0 there exists τ0(ε) > 0 that depends only on q = p1 − p2 but not on δ so

that we have P (|Yδ(τ)| ≥ |q|τ
2 ) ≥ 1 − ε for all τ ≤ τ0(ε).

The second lemma shows that, after the particles are separated, the probability
that they come close to each other is small.

Lemma B.2. Given any fixed r > 0 and z > 0, if Yδ, Qδ solve (B.7) with
|Yδ(0)| ≥ r, Qδ(0) = q �= 0, then P (inf0≤s≤z |Yδ(s)| ≤Mδ) → 0 as δ → 0.

We prove Theorem 2.1 before proving Lemmas B.1 and B.2.
Proof. Let z and q = p1 − p2 be fixed and defined as above. Given ε > 0, then

for any τ < τ0(ε) (with τ0 as defined in Lemma B.1), Lemma B.2 and the Markov
property of the Brownian motion imply that

P

(
Smδ (z) = Smδ (τ)

∣∣∣|Yδ(τ)| ≥ τ |q|
2

)
≥ 1 − ε

and

P

(
Zmδ (z) = Zmδ (τ) + (z − τ)Smδ (τ)

∣∣∣|Yδ(τ)| ≥ τ |q|
2

)
≥ 1 − ε

for δ < δ0(τ, ε). Furthermore,

E

{
|Z1
δ(τ)| + |Z2

δ(τ)| + |S1
δ(τ)| + |S2

δ(τ)|
∣∣∣|Yδ(τ)| ≥ τ |q|

2

}
(B.8)

≤ E
{|Z1

δ(τ)| + |Z2
δ(τ)| + |S1

δ(τ)| + |S2
δ(τ)|

}
/(1 − ε) ≤ Cτ

because the function σ is uniformly bounded. Therefore, we have

E
{V(X1,X2,P1,P2,Z1

δ ,Z
2
δ ,S

1
δ ,S

2
δ)
}
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= E

{
V(X1,X2,P1,P2,Z1

δ ,Z
2
δ ,S

1
δ ,S

2
δ)
∣∣∣|Yδ(τ)| ≥ τ |q|

2

}
P

(
|Yδ(τ)| ≥ τ |q|

2

)
(B.9)

+E

{
V(X1,X2,P1,P2,Z1

δ ,Z
2
δ ,S

1
δ ,S

2
δ)
∣∣∣|Yδ(τ)| ≤ τ |q|

2

}
P

(
|Yδ(τ)| ≤ τ |q|

2

)
= I + II.

The second term above is small because the probability for Yδ(τ) to be very small
is bounded by Lemma B.1. More precisely, given ε > 0 and τ < τ0(ε), Lemma B.1
implies that

II ≤ Cε.(B.10)

The first term in (B.9) corresponds to the more likely scenario that Yδ at time
τ has left the ball of radius τ |q|/2. We estimate it as follows. The probability that
Yδ re-enters the ball of radius Mδ is small according to Lemma B.2. Moreover, if Yδ

stays outside this ball, the difference variables Zm and Sm are bounded in terms of
their values at time τ . The latter are small if τ is small. More precisely, using (B.8),
we choose τ so small that

E

{
|Z1
δ(τ)| + |Z2

δ(τ)| + |S1
δ(τ)| + |S2

δ(τ)|
∣∣∣|Yδ(τ)| ≥ τ |q|

2

}
≤ ε.

Then we obtain

I ≤ E

{
V(X1,X2,P1,P2,Z1

δ ,Z
2
δ ,S

1
δ ,S

2
δ)
∣∣∣|Yδ(τ)| ≥ τ |q|

2

}

≤ E

{
V(X1,X2,P1,P2,Z1

δ ,Z
2
δ ,S

1
δ ,S

2
δ)
∣∣∣|Yδ(τ)| ≥ τ |q|

2
and inf

τ≤s≤z
|Yδ(s)| ≤Mδ

}

×P
(

inf
τ≤s≤z

|Yδ(s)| ≤Mδ
∣∣∣|Yδ(τ)| ≥ τ |q|

2

)

+E

{
|Z1
δ(z)| + |Z2

δ(z)| + |S1
δ(z)| + |S2

δ(z)|
∣∣∣|Yδ(τ)| ≥ τ |q|

2
and inf

τ≤s≤z
|Yδ(s)| ≥Mδ

}

×P
(

inf
τ≤s≤z

|Yδ(s)| ≥Mδ
∣∣∣|Yδ(τ)| ≥ τ |q|

2

)
= I1 + I2.

The term I1 goes to zero as δ → 0 by Lemma B.2. However, if the conditions in I2
hold, then

Smδ (z) = Smδ (τ), Zmδ (z) = Zmδ (τ) − 1

k
(z − τ)Smδ (τ).

Therefore, the term I2 may be bounded with the help of (B.8) by

I2 ≤ E

{
|Z1
δ(z)| + |Z2

δ(z)| + |S1
δ(z)| + |S2

δ(z)|
∣∣∣|Yδ(τ)| ≥ τ |q|

2
and inf

τ≤s≤z
|Yδ(s)| ≥Mδ

}

≤ CE

{
|Z1
δ(τ)| + |Z2

δ(τ)| + |S1
δ(τ)| + |S2

δ(τ)|
∣∣∣|Yδ(τ)| ≥ τ |q|

2

}
≤ Cτ.

Putting together (B.9), (B.10), and the above bounds on I1 and I2, we obtain

E
{|Z1

δ(z)| + |Z2
δ(z)| + |S1

δ(z)| + |S2
δ(z)|

} ≤ Cε

for δ < δ̄, and Theorem 2.1 follows from (B.6).
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B.2. Proofs of Lemmas B.1 and B.2. We first prove Lemma B.1.
Proof. We write

Qδ(z) = q −
∫ z

0

(
σ(0) − 1

2
σ(Y(s)/δ)

)
dB̃(s) ≡ q + Q̃δ(z)

so that

Yδ(t) = −qt−
∫ t

0

Q̃δ(s)ds.

Then we have

P

(
sup

0≤s≤τ
|Q̃δ(s)| > r

)
≤ Cτ/r2(B.11)

and hence

P (|Yδ(τ) + τq| > rτ) ≤ P

(
sup

0≤s≤τ
|Q̃δ(s)| > r

)
≤ Cτ/r2.

We let r = |q|/2 in the above formula and obtain

P

(
|Yδ(τ)| < τ ||q|

2

)
≤ C

|q|2 τ,

and the conclusion of Lemma B.1 follows.
Finally, we prove Lemma B.2.
Proof. Let τδ be the first time Yδ(z) enters the ball of radius Mδ,

τδ = inf {z : |Yδ(z)| ≤Mδ} ,
with Yδ(0) = Y0 �= 0. For 0 < α < 1, let ∆z = δ1−α, n = �z/∆z�, Ji = (i∆z, (i +
1)∆z), and p < 1. Note that, until the time τδ, the process (Yδ,Qδ) coincides with
the process (Y,Q) governed by (B.7) without the coupling term σ(Yδ/δ). We find

P (τδ < z) ≤
n−1∑
i=0

{
P (|Y(i∆z)| < Mδp) + P

(
inf
s∈Ji

|Y(s)| < Mδ
∣∣∣ |Y(i∆z)| ≥Mδp

)}
.

The process Y(s) is Gaussian with mean Y0 and variance O(s2). Therefore, there is
a δ̄ > 0 such that for δ < δ̄

P (|Y(i∆z)| < Mδp) ≤ Cδdp.

If we assume

p < 1 − α,(B.12)

then also

P (τδ < z) ≤ nC

(
δdp + P

(
sup

0<s<∆z
|Y(s) − Y0| ≥M [δp − δ]

))

≤ C

(
δdp+α−1 + δα−1E

{
B(δz)2r

}
∆z2r

(δp − δ)2r

)

≤ C
[
δdp+α−1 + δα−1−rp+3r(1−α)/2

]
.

Note that, with p < 1 − α and r large enough, there is a q > 0 so that

P (τδ < z) ≤ Cδq

if d ≥ 2, and Lemma B.2 follows.
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B.3. Proof of Theorem 2.2. We need to first show that

Jδ(z,x) =

∫
Wδ(z,x,p)dp(B.13)

is finite with probability one. The stochastic flow (Xδ(z,x,p),Pδ(z,x,p) is continu-
ous in (z,x,p) with probability one, so Wδ(z,x,p) = WI(Xδ(z,x,p),Pδ(z,x,p)) is
bounded and continuous. It is, moreover, nonnegative if WI ≥ 0. We know that∫

E{Wδ(z,x,p)}dp

is finite and independent of δ, and the order of integration and expectation can be
interchanged by Tonelli’s theorem. This theorem implies in addition that Jδ(z,x) is
finite with probability one.

We can now consider

E{J2
δ (z,x)} =

∫
E{Wδ(z,x,p1)Wδ(z,x,p2)}dp1dp2.

The integrand is bounded by an integrable function uniformly in δ because

E{Wδ(z,x,p1)Wδ(z,x,p2)} ≤ E1/2{W 2
δ (z,x,p1)}E1/2{Wδ(z,x,p2)};

the right side does not depend on δ and is integrable. Therefore, by the Lebesgue
dominated convergence theorem and the results of the previous section, we have that

lim
δ→0

E{J2
δ (z,x)} = E2{Jδ(z,x)}

and the right side does not depend on δ. This completes the proof of Theorem 2.2.
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Abstract. We present a novel simple formulation of the problem of 3D object reconstruction
from images. In this formulation, the object is seen as lying at the intersection of the projection of
orbits of custom built Lie group actions. The group parameters correspond to unknown irrelevant
quantities such as the camera orientation, the depth parameters of the object with respect to the
camera, and the focal length. We then use an algorithmic method based on moving frames à la
Fels–Olver to obtain a fundamental set of invariants of these group actions. The invariants are used
to define a set of equations determining the 3D object, thus providing a mathematical formulation
of the problem where the irrelevant parameters do not appear.

Key words. structure from motion, group action, invariants, moving frame, pinpoint camera,
orthographic camera
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1. Introduction. This paper has two goals. Its first goal is to illustrate the
potential of using the formalism of invariant theory in certain applications. This
potential is, at this point, rather unexploited, and we hope to set a trend with these
results. Its second goal is to provide new insights on the problem of structure from
motion through a novel formulation in terms of group actions.

The problem of structure from motion is rather old and well studied. It consists
of reconstructing an object from a set of pictures of this object (e.g., a movie). In
this paper, we consider the case of objects represented by an ordered set of points in
R

3 and assume that the camera parameters (position and orientation of the camera,
focal length) are unknowns.

The concept of invariance is of major importance in modern geometry. In the
field of computer vision, invariants of classical groups have been used in the design of
methods of object recognition and reconstruction for more than a decade (see [12, 13]).
In particular, the invariants of the projective and affine transformation groups have
been widely used [16, 21, 18]. However, invariant theory can also deal with a variety
of other group actions such as the ones we encounter in the problem of structure from
motion.

For our purposes, invariants are defined as real-valued functions on a manifold M
which remain unchanged under the action (denoted by ∗) of a group G on M . The
case of Lie group actions is particularly interesting. (The reader unfamiliar with the
concept of Lie group actions may refer to [8] for an introduction.) When the Lie group
action satisfies certain conditions, there exists a finite set of fundamental invariants
I1, . . . , IN , which are local coordinates for the quotient space M/G. In other words,
for any point z ∈ M , there exists a neighborhood U of z, which can be written as
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U = U1 × U2, where U1 is coordinatized by the value of the invariants and U2 is
coordinatized by some (or all) of the group parameters. A modern theory of moving
frames recently developed by Fels and Olver [5, 6] provides us with a systematic way
to obtain a set of fundamental invariants for any (regular) Lie group action.

One reason for interest in being able to obtain a set of fundamental invariants
in a systematic manner is the following. Many problems involve unknown irrelevant
parameters. Often, one needs to solve for these irrelevant parameters only because
they are involved in the intermediate steps of the solution process, although they do
not appear in the final solution. When the irrelevant parameters can be seen as group
parameters transforming the other unknowns of the problem, using the coordinates
provided by the invariants is a simple way to eliminate them. In these circumstances,
the moving frame method is used as a computational method to eliminate unwanted
unknowns in a set of equations.

For example, suppose that given the values of x1, x2, y1, y2 ∈ R, one is interested in
finding the values of the unknowns z1 and z2 ∈ R. Assume that there exist parameters
u and v ∈ R for which a set of equations of the type

z1 = f1(x1, x2, u),
z2 = f2(x1, x2, u),
z1 = g1(y1, y2, v),
z2 = g2(y1, y2, v)

⎫⎪⎪⎬
⎪⎪⎭(1.1)

holds. Since we are not interested in the values of u and v, it would be desirable
to eliminate these two variables from (1.1). Suppose that the functions f1 and f2
correspond to an action of R on R

2 parameterized by u,(
z1
z2

)
= u ∗

(
x1

x2

)
.

If this group action satisfies certain conditions (to be explained in section 3), then
there exists an invariant I : R

2 → R such that the equation

I(x1, x2) = I(z1, z2)

can be used in place of the first two equations of (1.1). Similarly, if g1 and g2 corre-
spond to an action of R on R

2 parameterized by v which satisfies the correct conditions,
then we can find another invariant J : R

2 → R such that the equation

J(y1, y2) = J(z1, z2)

can be used in place of the last two equations of (1.1). We thus see that the solution
(z1, z2) of our problem lies at the intersection of two orbits: these are the orbit through
(x1, x2) under the group action defined by f1 and f2 and the orbit through (y1, y2)
under the group action defined by g1 and g2.

The problem of structure from motion is one that involves many irrelevant un-
knowns. For example, the camera parameters used for taking each picture are irrele-
vant since we are merely interested in the structure of the object. It turns out that
many of the irrelevant unknowns of this problem can be seen as group parameters
acting on the other unknowns and eliminated using the moving frame method.

We begin our exposition in section 2 with a summary of the relevant theoretical
aspects of the theory of moving frames and its application to the computation of (joint)
invariants. In section 3, we consider the problem of structure from motion when the
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pictures are taken using a pinpoint camera (perspective projections). We reformulate
the problem in terms of a Lie group action and use a fundamental set of invariants of
this group action to get rid of most of the irrelevant parameters. (As will be explained,
it is impossible to get rid of all of them.) In the case of a fixed-focus camera, the
invariants describe the object with nonlinear equations involving the object points
and the camera centers; the camera orientation and the depth parameters of the
object with respect to the camera are included in the group parameters and thus
eliminated from the problem. Eliminating the camera orientation parameters in the
case of a simultaneously translating and rotating camera is known to be difficult,
unless vanishing points are identified. By contrast, the invariant framework easily
takes care of this problem. In addition, the invariant formulation leads to a simple
test to identify camera motions that are pure rotations.

The nonlinear equations given by the invariants can be solved with regular bundle
adjustment techniques [20] where the nonlinear system of equations is viewed as an
optimization problem in the unknown parameters. Efficient optimization techniques
like the Levenberg–Marquardt algorithm are available to solve such problems. After
presenting a practical example of three-dimensional (3D) object reconstruction using
the invariant framework and such an optimization technique, we finish section 3 by
showing how to deal with the case of a variable focus in a similar fashion.

Of course, approaches other than this direct one exist for structure from motion.
For example, one can describe the perspective projection in projective space where
it is expressed by simple matrix equations. With projective coordinates, projective
relations and constraints such as the epipolar constraint or the trifocal tensor can be
used to recover both the underlying shape and camera motion from a set of multilinear
equations [9]. In section 4, we apply our invariant-based method to a formulation
using projective coordinates. We obtain a set of invariants involving the projective
coordinates of the object points and the camera centers, which are, in fact, much
simpler than the invariants of the Euclidean approach used in section 3.

Other existing approaches use an affine approximation of the projection in order
to simplify the problem. This leads to factorization techniques [19] based on the SVD.
In section 5, we apply our method to the case of orthographic projections and obtain
a set of linear invariants involving only the object points and the directions of the
normals to the camera planes. Our equations can be solved with similar factorization
techniques but involve fewer and simpler parameters than the ones in [19].

Our invariant-based approach actually applies to types of cameras other than the
ones discussed here. For instance, the model used in section 3 works for any central
projection, whether or not the image points lie on a plane. We hope that the sample
cases presented here will convince the reader of the usefulness and versatility of this
group theoretic approach to eliminating unknowns and inspire new applications of
invariants.

2. Definitions and theoretical foundations. Let M be an m-dimensional
smooth (Hausdorff) manifold and G be an r-dimensional Lie group. Denote by e the
identity in G. Let ∗ : G×M →M be an action of G on M , i.e., a map (g, z) �→ g ∗ z
such that e ∗ z = z for all z ∈ M and (gh) ∗ z = g ∗ (h ∗ z) for all z ∈ M and all
g, h ∈ G.

Definition 2.1. An invariant is a function I : M → R which remains unchanged
under the action of the group. In other words,

I(g ∗ z) = I(z) for all z ∈M and all g ∈ G.
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A local invariant is a function I : U → R for some open subset U ⊂M such that

I(g ∗ z) = I(z) for all z ∈ U and all g ∈ G s.t. g ∗ z ∈ U.

Definition 2.2. We say that G acts semiregularly on M if all orbits have the
same dimension. If, in addition, any point p0 ∈ M is surrounded by an arbitrarily
small neighborhood whose intersection with the orbit through p0 is connected, then we
say that G acts regularly.

The following theorem, due to Frobenius [7], is of central importance to our ap-
proach. A proof can be found in [14]. It provides us with a simple way of characterizing
the orbits using invariants.

Theorem 2.3 (Frobenius theorem). If G acts on an open set O ⊂ M semi-
regularly with s-dimensional orbits, then for all p0 ∈ O there exist m− s functionally
independent local invariants I1, . . . , Im−s defined on a neighborhood U of p0 such that
any other local invariant H defined near p0 is a function H = f(I1, . . . , Im−s). If
G acts regularly on O, then we can choose I1, . . . , Im−s to be global invariants on O.
In that case, two points p1, p2 ∈ O are in the same orbit relative to G if and only if
Ii(p1) = Ii(p2) for all i = 1, . . . ,m− s.

By functional independence of the (smooth) functions I1, . . . , Im−s on an open
set O, we simply mean that the Jacobian matrix of I1, . . . , Im−s has maximal rank
m − s on an open and dense subset of O. The set {I1, . . . , Im−s} is often called a
complete fundamental set of invariants on O. Note that a complete fundamental set
of invariants is not unique.

As we shall consider actions on multiple points, we are interested in the case
where M = V × V × · · · × V (n-times) =: V×(n) is the Cartesian product of n copies
of a manifold V.

Definition 2.4. We say that G acts diagonally on V×(n) if there exists an action
· of G on V such that for any g ∈ G, any n ∈ N, and any z1, . . . , zn ∈ V, the action
g ∗ (z1, . . . , zn) can be written as

g ∗ (z1, . . . , zn) = (g · z1, . . . , g · zn).
The group actions we will define for our object-camera systems are not diagonal

actions. However, for each of these actions there is a normal subgroup H of G (the
subgroup generating the translations along the rays of light) such that G/H acts
diagonally. So for all practical purposes, we shall ultimately have to deal with diagonal
group actions.

In our approach to structure from motion, invariants are used to obtain equations
that must be satisfied by the object and the camera. The more invariants we have,
the more equations need to be satisfied. We need enough equations to completely
determine the object. Observe that the dimension of the orbit is bounded by the
dimension of the group. So in the case of a diagonal action, taking more and more
copies of V (i.e., more and more points) allows for the existence of as many invari-
ants as necessary. The question that remains is as follows: How can we obtain an
expression for these invariants? Thanks to a new formulation of Cartan’s theory of
moving frames [4, 5, 6], this problem can be solved in an algorithmic fashion. We now
summarize some of the relevant aspects of the theory of moving frames, including
how moving frames can be used as a tool to obtain a complete set of fundamental
invariants.

Definition 2.5. A (right) moving frame is a map ρ : M → G which is (right)
equivariant; i.e., ρ(g ∗ z) = ρ(z)g−1 for all g ∈ G and z ∈M .
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Unfortunately moving frames do not exist for all group actions.
Theorem 2.6. A moving frame exists if and only if the action of the group

satisfies

{g ∈ G|∃z ∈M, g ∗ z = z} = {e},

where e denotes the identity in G. This property is called freeness of the group action.
Demanding freeness of the group action is very strong. It appears that, in order

to be able to deal with the generic cases, we need to relax this condition a little bit.
Definition 2.7. A local moving frame is a map ρ : M → G such that ρ(g ∗ z) =

ρ(z)g−1 for all g ∈ Ne, a neighborhood of the identity e ∈ G, and all z ∈M .
Theorem 2.8. A local moving frame exists if and only if there exists a neighbor-

hood Ne of the identity in e ∈ G such that

{g ∈ Ne|∃z ∈M, g ∗ z = z} = {e}

or, equivalently, if and only if for all z ∈ M , the dimension of the orbit through z
is equal to r, the dimension of G. This property is called local freeness of the group
action.

We are now interested in determining a condition on the action of G on M which
guarantees that the diagonal action will be locally free on a sufficiently large number
of copies of M .

Definition 2.9. We say that G acts on M effectively if

{g ∈ G| g ∗ p = p for all p ∈M} = {e}.

We say that G acts on M locally effectively if

{g ∈ G| g ∗ p = p for all p ∈M} is a discrete subgroup of G.

Many groups do not act effectively. However, given G acting noneffectively on
M , we can consider G̃ = G/GM , where GM = {g ∈ G|g ∗ z = zfor all z ∈M}, which
acts in essentially the same way as G except that it acts effectively. Unfortunately,
effectiveness is not sufficient to guarantee that the diagonal action eventually becomes
locally free.

Definition 2.10. We say that G acts effectively on subsets of M if, for any
open subset U ⊂M ,

{g ∈ G| g ∗ p = p for all p ∈ U} = {e}.

We say that G acts locally effectively on subsets of M if, for any open subset U ⊂M ,

{g ∈ G| g ∗ p = p for all p ∈M} is a discrete subgroup of G.

Observe that effectiveness on subsets implies effectiveness. The converse, of
course, holds for all analytic group actions. However, this is not true in general
(see [2] for a counterexample).

Theorem 2.11 (see [2]). If a group G acts on a manifold V locally effectively on
subsets, then there exists n ∈ N+ such that the induced diagonal action of G on V×(n)

is locally free on an open and dense subset of V×(n). This is equivalent to saying that
the orbit dimension is equal to the dimension of G on this open and dense subset. We
denote by n0 the minimal integer for which this is true.
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This means that any group action that is effective on subsets (e.g., any analytic
group action, once the subgroup acting trivially is moded out) will be locally free on
a sufficiently large number of copies of the manifold and a local moving frame will
exist on this product.

We now explain how to construct a (local) moving frame and to obtain a com-
plete fundamental set of invariants. A more detailed exposition can be found in [14,
Chapter 8]. Let g = (g1, . . . , gr) be local coordinates for G in a neighborhood of
the identity. Suppose that G acts regularly on M . For simplicity, let us assume in
addition that the orbits of G have the same dimension r as G itself. In other words,
we are assuming that the action is locally free. Shortly after, we will explain how to
deal with the case of merely regular actions using a simple variation of the following
algorithm.

• Step 1. Write down the group transformation equations x̄ = g ∗ x explicitly.⎧⎪⎨
⎪⎩

x̄1 = f1(g1, . . . , gr, x1, . . . , xm),
...

x̄m = fm(g1, . . . , gr, x1, . . . , xm).

• Step 2. Choose constants c1, . . . , cr ∈ R and set r of the transformed coor-
dinates equal to those constants. For simplicity, we relabel the coordinates
and write ⎧⎪⎨

⎪⎩
f1(g1, . . . , gr, x1, . . . , xm) = c1,

...
fr(g1, . . . , gr, x1, . . . , xm) = cr.

(2.1)

These equations are called the normalization equations.
• Step 3. Solve the normalization equations for g = (g1, . . . , gr). The solution
g = ρ(x) is a moving frame.

• Step 4. Compute the action of the moving frame on the remaining coordi-
nates. The set of resulting functions,

⎧⎪⎨
⎪⎩

x̄r+1|g=ρ(x) = I1(x1, . . . , xm),
...

x̄m|g=ρ(x) = Im−s(x1, . . . , xm),

is a complete fundamental set of local invariants.
The choice of constants in Step 2 is somewhat arbitrary; we are free to choose

any numbers for which a solution to the normalization equations exists, provided that
these constants define a cross-section (i.e., provided that the normalization equations
define a submanifold which is transversal to the orbits). To simplify the solution
process, it is usually a good idea to choose as many constants as possible to be zero.

If the action is not free but merely regular, we can still find a system of functionally
independent local invariants. We proceed as follows. Let s be the dimension of
the orbits of G (s < r). We solve the s equations f1(g, x) = c1, . . . , fs(g, x) = cs
for s of the group parameters and replace them in the remaining equations xs+1 =
fs+1(g, x), . . . , xm = fm(g, x) to get the m−s invariants. The other group parameters
gs+1, . . . , gr will not appear in the final expressions. This procedure is called a partial
moving frame normalization method.
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Equipped with these tools, obtaining invariants becomes a simple systematic pro-
cedure. We can thus feel free to consider any Lie group action imaginable and try to
obtain its invariants. As we have seen, in theory, the invariants can always be found
provided that the group action is locally effective on subsets (which we can always
arrange in the case of analytic group actions). Of course, in practice, computational
difficulties can be encountered in explicitly determining the invariants. Fortunately,
the invariants are easily computed for the problem of structure from motion.

3. The case of a perspective camera. Let us assume that we are given t sets
of n ordered points pτ1 , . . . , p

τ
n ∈ R

2, τ = 1, . . . , t, which represent t pictures of a 3D
unknown object made of n ordered points O1,O2, . . . ,On ∈ R

3. We would like to
determine the points O1,O2, . . . ,On from these pictures. One possible way to try to
solve this problem would be to define an equivalence relation between all the possible
pictures of an object and to find functions depending on the picture points which are
constant on each equivalence class. Characteristics of the object could be inferred
from these functions, regardless of the camera position relative to the object. To
define such an equivalence class, one could try to use the orbits of a group action; in
other words, one could look for invariants of a group action that is transitive on the
set of pictures of any given object, i.e., view invariants.

Unfortunately, as is commonly known in the vision community, view invariants
do not exist for 3D point sets of arbitrary size (in general position). One can still
build invariants for specific objects (for instance, planar sets of points, pencils of lines,
etc.) but not for arbitrary shapes. The problem is that the set of pictures of any object
intersects with the set of pictures of other objects. Observe that if a view invariant I
takes a constant value c for all pictures of an object O, then I is also equal to c on the
set of pictures of any object whose set of pictures intersects with the set of pictures of
O. One can actually show [3] that any equivalence relation between all the pictures
of each object defines a unique equivalence class on the space of pictures, and thus
any view invariant is trivial. From a group point of view, this means that any group
action that is transitive on the set of pictures of any object must be transitive on the
set of all pictures.

Another way to try to solve this problem would be to use the reverse approach:
try to characterize all the possible objects corresponding to a given picture. It would
be useful to find functions which are constant on equivalence classes that include all
the objects corresponding to a given picture. However, it is easy to see that such
equivalence classes of objects are in one to one correspondence with the equivalence
classes of pictures discussed above and thus that only one such equivalence class can
exist. There are therefore no object invariants. Nevertheless, given a view of an object,
one can infer information about the object, so there must be a way to overcome this
difficulty.

The trick is to define an equivalence relation on a higher dimensional space, lifting
the set of objects of different pictures to different “heights” in the extra dimensions.
For this, we can use the three extra dimensions provided by the camera center posi-
tion. More precisely, we can construct a Lie group action on the object points and the
camera center which summarizes what is unknown about the object-camera system
given a picture of an object and knowing the mechanism used by the camera. Invari-
ants of this group action prove to be sufficient for solving the problem of recovering
the object coordinates in R

3.
So let us think for a moment about the process of taking a picture. This process

involves, first, the placement of a camera in space. Then, particles of light start from
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each point of the object and travel on a straight line in the direction of the camera
center, leaving their trace on a film, i.e., on the intersection of the picture plane and
the travel lines. So, to the picture-camera system placed somewhere in R

3, there
corresponds a set of n straight lines in R

3 representing the paths of light going from
the object to the camera center (sometimes referred to as a “ray bundle”).

This process can be seen as a result of the action of a group composed of an action
of the special Euclidean group SE(3) (i.e., the group of rotations and translations
in R

3) and an action of R
n on the camera center and the image points (in three

dimensions). Here is how.
Given is a two-dimensional (2D) image depicting n points p1, . . . , pn ∈ R

2. We
assume this picture was taken by a camera with fixed internal parameters. These
parameters can be calibrated beforehand so that the focal length is F = 11 and the 2D
image coordinates match the 3D coordinates as defined below. We embed the picture-
camera system in R

3 by setting the camera center to be p̃0 = (0, 0, 0) and the picture
points p̃i’s to be p̃i = pi × F . This is, in general, not the actual position in which
the picture was taken. However, there exists a rigid transformation g ∈ SE(3) acting
diagonally on (R3)×n such that g ∗ (p̃0, p̃1, . . . , p̃n) = (P0,P1, . . . ,Pn) corresponds to
the actual position of the picture-camera system at the moment where the picture
was taken. Once the picture points are in this position, we know that we can move
each of them independently along each ray of light so as to go back to its source on
the object. This way, the picture can be mapped onto the object.

In summary, the mapping is given by the transformation

P̄0 = RP0 + T,(3.1)

P̄i = R(Pi + λi(Pi − P0)) + T for i = 1, . . . , n,(3.2)

with R ∈ SO(3) a rotation, T ∈ R
3 a translation, and λi ∈ R a factor of depth, applied

to P0 = p̃0 and Pi = p̃i for i = 1, . . . , n. As one can check, this mapping is actually a
group action: we have an action of R

n (parameterized by the λ’s) commuting with an
action of SE(3) (parameterized by rotations R and translations T ). Therefore, this
defines an action of the (6 + n)-dimensional Lie group SE(3) × R

n on the (3n + 3)-
dimensional manifold (R3)×(n+1).

We would like to determine where P0 and the Oi’s lie. Given a picture, it is of
course impossible to determine the camera center and object points (P0,O1, . . . ,On).
However, we know to which orbit under the action of SE(3) × R

n they belong, since
they belong to the same orbit as the (embedding of the) picture-camera system!

Assuming that the picture points are distinct, then the group action is regular
and the orbits are six-dimensional for n = 1 and (6+n)-dimensional as soon as n ≥ 2.
Therefore, by Theorem 2.3, there are 2n− 3 fundamental invariants whenever n ≥ 2
and these invariants can be used to characterize the orbits. We follow the steps of the
moving frame normalization method to obtain them. We set

P̄0 = (0, 0, 0)T ,

(0, 1, 0)P̄1 = 0,

(0, 0, 1)P̄1 = 0,

(0, 0, 1)P̄2 = 0,

and (1, 0, 0) · P̄i = 1 for all i = 1, . . . , n.

1The value is arbitrary. It simply fixes the overall scale of the 3D reconstruction.
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Solving for the group parameters, we obtain

T = −RP0,

R = R1R2R3,

R1 =

⎛
⎜⎜⎝

1 0 0

0 f√
f2+g2

g√
f2+g2

0 − g√
f2+g2

f√
f2+g2

⎞
⎟⎟⎠ ,

R2 =

⎛
⎜⎜⎜⎝

√
x2
1+y

2
1√

x2
1+y

2
1+z21

0 z1√
x2
1+y

2
1+z21

0 1 0

−z1√
x2
1+y

2
1+z21

0

√
x2
1+y

2
1√

x2
1+y

2
1+z21

⎞
⎟⎟⎟⎠ ,

R3 =

⎛
⎜⎝

x1√
x2
1+y

2
1

y1√
x2
1+y

2
1

0

− y1√
x2
1+y

2
1

x1√
x2
1+y

2
1

0

0 0 1

⎞
⎟⎠ ,

λi = 1
(R(Pi−P0))x

− 1,

(3.3)

where f = −y1x2+x1y2√
x2
1+y

2
1

, g =
z2(x

2
1+y

2
1)−z1(x1x2+y1y2)√

x2
1+y

2
1

√
x2
1+y

2
1+z21

, (x1, y1, z1)
T = P1 − P0, and

(x2, y2, z2)
T = P2 − P0. These group parameters define a moving frame MF. Substi-

tuting the moving frame into the transformation equations, we get

P̄0

∣∣
MF

= (0, 0, 0)T ,

P̄1

∣∣
MF

= (1, 0, 0)T ,

P̄2

∣∣
MF

=

⎛
⎜⎝

1
f
√
x2
1+y

2
1+z21(x1y2−x2y1)+g[z2(x

2
1+y

2
1)−z1(x1x2+y1y2)]

(x1x2+y1y2+z1z2)
√
x2
1+y

2
1

√
f2+g2

0

⎞
⎟⎠ ,

P̄i
∣∣
MF

=

⎛
⎜⎜⎜⎝

1
f
√
x2
1+y

2
1+z21(x1yi−xiy1)+g[zi(x

2
1+y

2
1)−z1(x1xi+y1yi)]

(x1xi+y1yi+z1zi)
√
x2
1+y

2
1

√
f2+g2

g
√
x2
1+y

2
1+z21(xiy1−x1yi)+f [zi(x

2
1+y

2
1)−z1(x1xi+y1yi)]

(x1xi+y1yi+z1zi)
√
x2
1+y

2
1

√
f2+g2

⎞
⎟⎟⎟⎠

for all i = 3, . . . , n, where (xi, yi, zi) = Pi − P0. Each component of these vectors is
an invariant of the group action.

These expressions have an easy geometric interpretation. Since
√
f2 + g2 =
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‖(x1,y1,z1)×(x2,y2,z2)‖√
x2
1+y

2
1+z21

, we can rewrite the above system as

P̄0

∣∣
MF

= (0, 0, 0)T ,

P̄1

∣∣
MF

= (1, 0, 0)T ,

P̄2

∣∣
MF

=

⎛
⎝ 1

‖(x1,y1,z1)×(x2,y2,z2)‖
(x1,y1,z1)·(x2,y2,z2)

0

⎞
⎠ ,

P̄i
∣∣
MF

=

⎛
⎜⎜⎝

1
[(x1,y1,z1)×(xi,yi,zi)]·[(x1,y1,z1)×(x2,y2,z2)]
[(x1,y1,z1)·(xi,yi,zi)] ‖(x1,y1,z1)×(x2,y2,z2)‖
(xi,yi,zi)·[(x2,y2,z2)×(x1,y1,z1)]‖(x1,y1,z1)‖
[(x1,y1,z1)·(xi,yi,zi)] ‖(x1,y1,z1)×(x2,y2,z2)‖

⎞
⎟⎟⎠ ,

where · represents the scalar product between two vectors.
We now see that the components of P̄2

∣∣
MF

and P̄i
∣∣
MF

are sine or cosine of angles

between the directions spanned by P1P0, P2P0, PiP0 and the directions orthogonal
to them. These are clearly invariant by translation, rotation, and motion along the
projection lines. As a fundamental set, we simply pick the only 2n − 3 nonconstant
invariants:

I2 =
‖(x1, y1, z1) × (x2, y2, z2)‖

(x1, y1, z1) · (x2, y2, z2)
,

Ii =
[(x1, y1, z1) × (xi, yi, zi)] · [(x1, y1, z1) × (x2, y2, z2)]

[(x1, y1, z1) · (xi, yi, zi)] ‖(x1, y1, z1) × (x2, y2, z2)‖ ,

Ji =
(xi, yi, zi) · [(x2, y2, z2) × (x1, y1, z1)]‖(x1, y1, z1)‖
[(x1, y1, z1) · (xi, yi, zi)] ‖(x1, y1, z1) × (x2, y2, z2)‖

for i = 3, . . . , n.
Each picture taken defines a point in R

3 × (R3)×(n) and therefore determines an
orbit of our group action. Each orbit is characterized by the set of 2n − 3 equa-
tions given by the invariants. More precisely, indexing the pictures with the discrete
parameter τ = 1, . . . , t, we have

Ii(P
τ
0 , P1, . . . , Pn) = ατi for i = 2, . . . , n,

Jj(P
τ
0 , P1, . . . , Pn) = βτj for j = 3, . . . , n

for appropriate constants ατi ’s and βτj ’s. These constants are prescribed by the pic-
tures: since the picture-camera system itself belongs to the orbits, we have

ατi = Ii(p̃
τ
0 , p̃

τ
1 , . . . , p̃

τ
n),

βτj = Jj(p̃
τ
0 , p̃

τ
1 , . . . , p̃

τ
n).

We are interested in solving the equations

Ii(P
τ
0 ,O1, . . . ,On) = ατi for i = 2, . . . , n,

Jτj (Pτ
0 ,O1, . . . ,On) = βτj for j = 3, . . . , n

for τ = 1, . . . , t. We have a system of (2n − 3)t (nonlinear) equations with 3n + 3t
unknowns, the solution of which is determined up to a rotation and translation of the
3D camera-object system as a whole, which we can fix arbitrarily, thus eliminating
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a b c d

Fig. 3.1. A reconstruction example: (a) The first of six images, with line and rectangle features
drawn; (b) a similar view of the 3D reconstructed features; (c) a top view; (d) a side view of the
reconstruction.

six variables.2 For n > 3 and t ≥ 3n−6
2n−6 , the number of equations is greater than the

number of unknowns, so we can try to solve them.
Experiments with real video images have been performed (see Figure 3.1) using

a sequential nonlinear optimization technique based on the Levenberg–Marquardt
algorithm [15]. The points used as picture points (p̃τ0 , p̃

τ
1 , . . . , p̃

τ
n) are the endpoints

of lines and rectangles drawn on Figure 3.1(a). These points have been obtained in
successive images with a simple tracking procedure [1]. We computed the values of all
the invariants (ατi , β

τ
j ) using these points and solved the (2n−3)t nonlinear equations

for the unknowns (Pτ
0 ,O1, . . . ,On). The solution gave us the reconstructed 3D object,

namely, the set of lines and rectangles defined by (O1, . . . ,On). Although the bottom
and left elements are not perfectly replaced due to noise in the input picture points,
the reconstructed object is visually correct in any view. In particular, there is no
global distortion, as one would fear in the case of projective reconstructions. The
computations take only a few minutes.

Observe that our camera-system does not take into account the angle of the
camera; the orientation of the image plane was only included in the group parameters
(not on the space acted on) and thus factored out of the problem in the invariant
formulation. Besides the advantage of not having to solve for this unwanted unknown,
we also obtain the following lemma.

Lemma 3.1. The motion of the camera between two pictures is a pure rotation
(i.e., a rotation around the center of projection P0) if and only if the values of the
invariants {Ii, Jj |i = 2, . . . , n, j = 3, . . . , n} evaluated on any corresponding points in
the two views are equal.

Proof. Invariance of our invariants under pure rotations is obvious from the
construction of the invariants.

To prove that equality of our invariants evaluated on all corresponding points
guarantees that the camera motion is a pure rotation, observe that the first invariant
I2 is the tangent of the angle between the lines P0O1 and P0O2. Its value remains
constant for fixed O1,O2 only if P0 moves along a circle around the O1O2 axis. This
holds for all possible choices of O1 and O2, so the camera center must lie somewhere
on the intersection of a set of circles, which can be taken to intersect at merely one
point to guarantee that the camera center does not move.

Tomasi and Kanade [19] identify two problems related to using the traditional
direct approach to structure from motion in a noisy context. First there is the fact

2However, we should keep in mind that the choice of these variables will affect the numerical
resolution [10].
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that, when the camera motion is small, the effects of a camera rotation and trans-
lation are hard to distinguish. Second, obtaining the shape by comparing depths
is sensitive to noise, since the depth can be considerably larger than the dimen-
sions of the shape. Note that both these difficulties are bypassed by our approach,
since the depths and the rotation of the camera do not appear in our equations.
We also provide a new formulation in Euclidean space that involves quantities in-
dependent of any choice of world coordinate system, removing the so-called gauge
problem.

Unfortunately, the nonlinearity of the invariants is a serious drawback. As one
can tell from the orbit structure of this group action, this is inherent to the prob-
lem as formulated. One might want to ask whether there exist coordinates which
lead to simpler expressions for the invariants. For example, we could use an induc-
tive moving frame construction [11] in order to obtain invariants of one subgroup
of SE(3) × R

n, say, either SE(3) or R
n, and use these invariants as new coordi-

nates on which the remaining group coordinates are acting. The resulting invari-
ants are actually much simpler in these coordinates. However, it turns out that
each of these new coordinates would involve the camera center. One would thus
need to define a new set of coordinates for each picture so there would always be
more unknown coordinates than equations. These invariants are thus not useful
for recovering the structure from a set of pictures, although they could be good
tools for analyzing the motion of an object taken by a fixed or even rotating cam-
era.

Another way of obtaining simpler equations is to work in projective coordinates.
However, as a trade-off, projective coordinates require using more variables. We will
discuss this other method in the next section, but first we generalize the Euclidean
coordinate approach to the case of a variable focal length.

3.1. Letting the focal distance vary. It is a bit more complicated to set up
the group transformation equations in the case where the focal length is allowed to
vary from one image to the next. One way to do this is the following. Consider PM ,
the closest point to P0 on the image plane, i.e., the embedding of the middle point
of the picture. Changing the focal distance corresponds to transforming PM into a
point P ′

M with a real parameter α according to the rule

P ′
M = PM + α(PM − P0).

The induced action on the Pi’s can be taken as a rotation about the center of cam-
era P0 which preserves the distance to the camera center. More precisely, each Pi
is moved to a new point P ′

i in such a way that ‖P ′
i − P0‖ = ‖Pi − P0‖ and that its

transformed picture point is p̃′i = p̃i + α(PM − P0). Since the picture point is given
by pi = P0 + Pi−P0

(Pi−P0)·(PM−P0)
, we find that

P ′
i = P0 + ‖Pi − P0‖

Pi−P0

(Pi−P0)·(PM−P0)
+ α(PM − P0)∥∥∥ Pi−P0

(Pi−P0)·(PM−P0)
+ α(PM − P0)

∥∥∥ .

Combining translations of the Pi’s along the line PiP0 together with rotations and
translations of the line arrangement as a whole, we get the following (n + 7)-dimen-
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sional Lie group action:

P̄0 = RP0 + T,

P̄M = R (PM + α(P0 − PM )) + T,

P̄i = R

⎛
⎝P0 + (1 + λi)‖Pi − P0‖

Pi−P0

(Pi−P0)·(PM−P0)
+ α(PM − P0)∥∥∥ Pi−P0

(Pi−P0)·(PM−P0)
+ α(PM − P0)

∥∥∥
⎞
⎠+ T.

Observe that the change of focal length parameterized by α commutes with the action
of each λi on Pi because it preserves the norm ‖Pi − P0‖.

We apply the previous moving frame normalization technique by setting

P̄0 = (0, 0, 0)T ,

P̄M = (1, 0, 0)T ,

P̄1 · (0, 0, 1) = 0,

and P̄i · (1, 0, 0) = 1 for all i = 1, . . . , n.

The corresponding group parameters are similar to (3.3) for R and T , except that
(x1, y1, z1)

T and (x2, y2, z2)
T must be replaced by (u1, v1, w1)

T = PM − P0 and
(u2, v2, w2)

T = P1 − P0. The other parameters are

α =
1

‖PM − P0‖ − 1,

λi =

∥∥∥ Pi−P0

(Pi−P0)·(PM−P0)
+ α(PM − P0)

∥∥∥
‖Pi − P0‖‖PM − P0‖ + ‖Pi−P0‖

‖PM−P0‖
− 1 for all i = 1, . . . , n.

Substituting these group parameters into the equations for the P̄i’s, we obtain the
following complete fundamental set of invariants:

I1 =
‖(PM − P0) × (P1 − P0)‖

(P1 − P0) · (PM − P0) (1 + ‖PM − P0‖ − ‖PM − P0‖2)
,

Ii=
(PM − P0) × (Pi − P0) · (PM − P0) × (P1 − P0)

‖(PM − P0) × (P1 − P0)‖(Pi − P0) · (PM − P0) (1 + ‖PM − P0‖ − ‖PM − P0‖2)
,

Ji=
(Pi − P0) · [(P1 − P0) × (PM − P0)] ‖PM − P0‖

‖(PM − P0) × (P1 − P0)‖(Pi − P0) · (PM − P0) (1 + ‖PM − P0‖ − ‖PM − P0‖2)

for i = 2, . . . , n.
Observe that solving for PM and P0 implies solving for the focal length. Therefore,

the focal length has not been removed in this formulation. Having to solve for the
focal length is undesirable since it can induce numerical instabilities. We can actually
completely include the focal length in the group parameters by letting v = PM−P0

‖PM−P0‖
and γ = α‖PM − P0‖2. Then γ can be seen as a new group parameter γ ∈ R �=−1 in
the group action given by

P̄0 = RP0 + T,

v̄ = Rv,

P̄i = R

(
P0 + (1 + λi)‖Pi − P0‖ Pi − P0 + (γ(Pi − P0) · v) v

‖Pi − P0 + (γ(Pi − P0) · v) v‖
)

+ T.
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One can check that the group action parameterized by γ is compatible with the
group structure of R �=−1 with group multiplication ◦ given by

γ1 ◦ γ2 = γ1 + γ2 + γ1γ2 for all γ1, γ2 ∈ R �=−1.

We have an action of the (7 + n)-dimensional Lie group SE(3) × R �=−1 × R
n on

a (3n + 5)-dimensional space; there are 2n − 2 fundamental invariants. To obtain
these invariants, we start by setting P̄0 = (0, 0, 0)T and solve for T . We then set
v̄ = (1, 0, 0)T and the third component of P̄1 to zero and solve for the rotation matrix
R. We skip the details of these computations since they are very similar to the
previous cases. Substituting these group parameters into the other transformation
equations, we obtain

P̄i = (1 + λi)‖Pi − P0‖

⎛
⎜⎜⎝

Fi · v
(v×Fi)·(v×F1)

‖v×F1‖
Fi·(v×F1)
‖v×F1‖

⎞
⎟⎟⎠ for i = 2, . . . , n,

P̄1 = (1 + λ1)‖P1 − P0‖
⎛
⎝ F1 · v

‖v × F1‖
0

⎞
⎠ ,

where Fi represents the fraction

Fi =
Pi − P0 + (γ(Pi − P0) · v)v

‖Pi − P0 + (γ(Pi − P0) · v)v‖ for i = 1, . . . , n.

We then set the first component of each P̄i to one for i = 1, . . . , n and solve for the
λi’s. (For this, we need to assume that (Pi−P0) · v �= 0.) Substituting these λi’s into
the transformation equations, we get

P̄i =

⎛
⎜⎜⎝

1
(v×Fi)·(v×F1)
‖v×F1‖Fi·v
Fi·(v×F1)
‖v×F1‖Fi·v

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

1
(v×(Pi−P0))·(v×(P1−P0))

‖v×(P1−P0)‖(1+γ)(Pi−P0)·v
(Pi−P0)·(v×(P1−P0))

‖(v×(P1−P0))‖(1+γ)(Pi−P0)·v

⎞
⎟⎟⎠ for i = 2, . . . , n,

P̄1 =

⎛
⎜⎝

1
‖v×F1‖
F1·v
0

⎞
⎟⎠ =

⎛
⎜⎝

1
‖v×(P1−P0)‖

(1+γ)(P1−P0)·v
0

⎞
⎟⎠ .

Provided that P1−P0 is not parallel to v, we can finish obtaining the moving frame by
setting the second component of P̄1 to one and solving for γ. Substituting this γ into
the two nonconstant components of each Pi, we obtain the following two invariants:

Ii =
v · (P1 − P0)(v × (Pi − P0)) · (v × (P1 − P0))

v · (Pi − P0)‖v × (P1 − P0)‖2
,

Ji =
v · (P1 − P0)(Pi − P0) · (v × (P1 − P0))

v · (Pi − P0)‖v × (P1 − P0)‖2

for i = 2, . . . , n. In a similar way as for the case of a fixed focal length, when the
number of pictures t and the number of object points n are large enough, these
invariants provide a number of equations which are, in most cases, sufficient to solve
for P1, . . . , Pn and P τ0 , vτ for τ = 1, . . . , t.
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4. Using projective coordinates. The projective space P
3 is the set{

(x, y, z, w) ∈ R
4 \ {(0, 0, 0, 0)}} modulo multiplication by a scalar multiple in R\{0}.

If (x, y, z, w) ∈ {R
4 \ {(0, 0, 0, 0)}}, then the coset of (x, y, z, w) in P

3 is denoted by
(x : y : z : w). Consider the chart U of P

3 defined by {(x : y : z : w) ∈ P
3|w �= 0}.

The map φ : U → R
3 defined by

φ(x : y : z : w) =
( x
w
,
y

w
,
z

w

)
provides coordinates for the chart U . In other words, Euclidean coordinates of R

3 are
local coordinates for a piece of P

3. One way to obtain simpler invariants is to work
directly in R

4\{(0, 0, 0, 0)} (i.e., in projective coordinates) by choosing representatives
(x0, y0, z0, w0) and (xi, yi, zi, wi) in {(x, y, z, w) ∈ R

4|w �= 0} for the camera center
and the object points, respectively.

Consider the following action of SE(3) × R
n on n+ 1 copies of R

4:⎛
⎜⎜⎝

x̄0

ȳ0
z̄0
w̄0

⎞
⎟⎟⎠ =

(
R T

0 0 0 1

)⎛⎜⎜⎝
x̄0

ȳ0
z̄0
w̄0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

x̄i
ȳi
z̄i
w̄i

⎞
⎟⎟⎠ =

(
R T

0 0 0 1

)⎡⎢⎢⎣
⎛
⎜⎜⎝

xi
yi
zi
wi

⎞
⎟⎟⎠+ λi

⎛
⎜⎜⎝
⎛
⎜⎜⎝

xi
yi
zi
wi

⎞
⎟⎟⎠−

⎛
⎜⎜⎝

x0

y0
z0
w0

⎞
⎟⎟⎠
⎞
⎟⎟⎠
⎤
⎥⎥⎦

for i = 1, . . . , n,

where R ∈ SO(3) is a 3 × 3 rotation matrix, T ∈ R
3 represents a translation, and

the λi ∈ R are the depth parameters. Since lines through the origin are mapped to
lines through the origin, this induces an action on P

3. In local coordinates φ for the
chart U , this corresponds exactly to the action defined by (3.1) and (3.2). Assuming
that the object points are pairwise distinct (and, of course, also distinct from the
camera center), then, as soon as the number of object points n ≥ 2, the orbits are
(6+n)-dimensional both on (R4)×(n+1) and on (P3)×(n+1). There are therefore 3n−2
fundamental invariants in projective coordinates.

To obtain a fundamental set of invariants, we start by setting ωi = 1 for all i’s,
and P̄0 = (0, 0, 0)T . Provided that all wi �= w0, the corresponding group parameters
are λi = 1−wi

wi−w0
and T = − 1

w0
R. For simplicity, we let βi = 1−wi

wi−w0
. We then set the

second and third components of P̄1 to zero and the third component of P̄2 to zero and
solve for the rotation matrix R to finish obtaining the moving frame. Substituting
the moving frame into the transformation equations, we obtain

(x̄0, ȳ0, z̄0, w̄0)|MF = (0, 0, 0, w0),

(x̄1, ȳ1, z̄1, w̄1)|MF = (‖Q1‖, 0, 0, 1) ,

(x̄2, ȳ2, z̄2, w̄2)|MF =

(
Q2 ·Q1

‖Q1‖ ,
‖Q2 ×Q1‖

‖Q1‖ , 0, 1

)
,

(x̄i, ȳi, z̄i, w̄i)|MF =

⎛
⎜⎜⎜⎜⎝

Qi·Q1

‖Q1‖
(Q1×Qi)·(Q1×Q2)

‖Q1‖‖Q1×Q2‖
Qi·(Q1×Q2)
‖Q1×Q2‖

1

⎞
⎟⎟⎟⎟⎠

T

for i = 3, . . . , n,



STRUCTURE FROM MOTION 1171

where · represents the scalar product between two vectors and Qi = (1+βi)Pi− (βi+
1
w0

)P0. As a complete set of fundamental invariants, we can take, in addition to the
coordinate w0, the functions

Hi = Qi ·Q1 for i = 1, . . . , n,

Ii = (Q1 ×Qi) · (Q1 ·Q2) for i = 2, . . . , n,

Ji = Qi · (Q1 ×Q2) for i = 3, . . . , n.

The invariants are thus functions of the object points Pi’s, the βi’s, and the
camera center projective coordinates P0 and w0. For every picture, the parameter w0

can be fixed arbitrarily to any value other than zero. Given t pictures, the unknowns
are thus the Pi’s, β

τ
i ’s, and P τ0 for i = 1, . . . , n and τ = 1, . . . , n, while the invariants

provide t(3n−3) equations. With enough points and enough pictures, we obtain more
equations than unknowns.

5. The case of an orthographic camera. The orthographic camera is an
approximation of the perspective camera. In this model, we assume that the camera
center lies at infinity, and so the rays of light are parallel to each other.

Let v = (vx, vy, vz)
T be the unit direction vector of the rays of light and let

P1, . . . , Pn represent the object points in R
3. Any picture of the object provides

some information about the structure of the object. What remains unknown is the
orientation and the position of the camera at the moment when the picture was taken,
as well as the distance from the camera plane to each object point. The following
action of SE(3)×R

n on {(v, P1, . . . , Pn) ∈ (R3)×(n+1) such that |v| = 1} summarizes
what is unknown about the object given a picture:

v̄ = Rv,

P̄i = R(Pi + λiv) + T for i = 1, . . . , n,

where R ∈ SO(3) is a rotation matrix, T ∈ R
3 represents a translation, and the

real numbers λ1, . . . , λn are the depth parameters. More precisely, given a picture
p1, . . . , pn, the orbit passing through

Pi = (pi, 0) for i = 1, . . . , n,

v = (0, 0, 1)

(i.e., the embedding of the picture in R
3) under this group action corresponds to all

possible 3D objects that could have been used to take this picture.
To obtain the invariants of this group action, we set P̄1 = (0, 0, 0)T , the first

component of each P̄i to zero, the second and third components of P̄1 to zero, and
the third component of P̄1 to zero. We use the partial moving frame normalization
method and, in order to obtain a moving frame, solve for all parameters except λ1,
which does not appear in the final expressions. Substituting this moving frame in the
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group transformation equations, we obtain

v̄|MF = (1, 0, 0)T ,

P̄1

∣∣
MF

= (0, 0, 0)T ,

P̄2

∣∣
MF

=

⎛
⎝ 1

‖(P2 − P1) − [(P2 − P1) · v]v‖
0

⎞
⎠ ,

P̄i
∣∣
MF

=

⎛
⎜⎜⎝

1

(Pi − P1) · (P2−P1)−[(P2−P1)·v]v
‖(P2−P1)−[(P2−P1)·v]v‖

(Pi − P1) ·
(
v × (P2−P1)−[(P2−P1)·v]v

‖(P2−P1)−[(P2−P1)·v]v‖
)
⎞
⎟⎟⎠ for i = 1, . . . , n.

A fundamental set of invariants is given by the nonconstant components of these
vectors. Observe that some of these expressions are fractions. However, their denom-
inator is actually one of the invariants of the fundamental set. We can thus simply
get rid of the denominator and take the following functions as our fundamental set of
invariants:

I2 = ‖(P2 − P1) − [(P2 − P1) · v]v‖,
Ii = (Pi − P1) · [(P2 − P1) − [(P2 − P1) · v]v] for i = 3, . . . , n,

Ji = (Pi − P1) · [v × (P2 − P1)] for i = 3, . . . , n.

Given pictures pτ1 , . . . , p
τ
n ∈ R

2, we let vτ for τ = 1, . . . , n be the direction vectors
of the rays of light of the camera. The object points P1, . . . , Pn and direction vectors
vτ thus satisfy the matrix equation(

(P2 − P1) − [(P2 − P1) · vτ ]vτ
vτ × (P2 − P1)

)(
P2 − P1, P3 − P1, . . . , Pn − P1

)
=

(
ατ2 , ατ3 , . . . , ατn
βτ2 , βτ3 , . . . , βτn

)
,

where the α’s and β’s are constants prescribed by the pictures. For solving these
equations, we can make a change of variable and let the two entries of the leftmost
matrix be two unknown parameters mτ

1 and mτ
2 subject to the condition |mτ

1 |+|mτ
2 | ≤

|P2 − P1|. We obtain a factorization equation, like the one introduced by Tomasi
and Kanade [19], with a different formulation. Note that our system involves only
the normal to the camera plane, i.e., two parameters, while theirs involves all three
parameters specifying the orientation of the camera.

6. Conclusion. This paper presented applications of a systematic technique
invented by Fels and Olver for building invariants of a Lie group action. We started
by summarizing this technique. We then showed how to formulate the problem of
structure from motion in three different settings (Euclidean coordinates, projective
coordinates, and orthographic projections) in terms of Lie group actions. In each
setting, the group parameters included unknown unwanted parameters of the problem.
These parameters were removed from the equations by reformulating the problem
using invariants of these group actions.

The orbit structure and the invariants of the group action provide interesting
insights on the geometry of the projections. They also provide a formalization for
similar results obtained more empirically [17]. For solving the structure from motion
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problem, our results relate to several well-known techniques but eliminate additional
unnecessary parameters, sometimes difficult to remove otherwise. Further work is now
ongoing to make such invariant systems more computationally attractive for various
practical applications.
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Abstract. In this paper we analyze a class of second-order traffic models and show that these
models support stable oscillatory traveling waves typical of the waves observed on a congested road-
way. The basic model has trivial or constant solutions where cars are uniformly spaced and travel
at a constant equilibrium velocity that is determined by the car spacing. The stable traveling waves
arise because there is an interval of car spacing for which the constant solutions are unstable. These
waves consist of a smooth part where both the velocity and spacing between successive cars are
increasing functions of a Lagrange mass index. These smooth portions are separated by shock waves
that travel at computable negative velocity.

Key words. conservation laws, traffic congestion, follow-the-leader
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1. Introduction. In the last several years a number of authors [1, 2, 3, 4, 5,
6, 7, 8, 9] have advanced “higher order” traffic models in an attempt to characterize
strong permanent waves which appear in congested traffic. At the continuum level all
of these authors have worked with models of the following form:

∂s

∂t
− ∂u

∂m
= 0(1.1)

and

ε
∂u

∂t
= εP ′(s)

∂u

∂m
+ V (s) − u.(1.2)

Here t ≥ 0 is time, m is a Lagrangian mass coordinate which gives the car index, and
ε > 0 has the interpretation of a relaxation time. The velocity of the mth car at time
t is u(m, t), and s(m, t) ≥ L > 0 is a measure of the spacing between successive cars.
Finally, the function s → V (s) has the interpretation of an “equilibrium” velocity,
and the term εP ′(s) ∂u∂m appearing in (1.2) is typically referred to as the anticipatory
acceleration. All authors assume that P ′(s) ≥ 0 on s ≥ L. The parameter L > 0 has
the interpretation of the length of a car on the roadway.

The trajectory of the mth car is given as the solution of

∂x

∂t
= u and x(m, 0) = x0(m),(1.3)

where x0(m) is the position of the mth car at t = 0. s(m, t) is related to x(m, t) by

s(m, t) =
∂x

∂m
(m, t)(1.4)

and measures the spacing between successive cars.
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The hypothesis that P ′(s) ≥ 0 implies that the system (1.1) and (1.2) is hyperbolic
with wave speeds c = −P ′(s) ≤ 0 and c = 0 and thus information propagates from
right to left. This observation implies that when constructing finite difference schemes
for (1.1) and (1.2) the appropriate spatial differences should be downwind, i.e., that

s(m, t)=̇
x(m+ ∆m, t) − x(m, t)

∆m
(1.5)

and

∂u

∂m
(m, t)=̇

u(m+ ∆m, t) − u(m, t)

∆m
.(1.6)

If one chooses to discretize (1.1)–(1.4) spatially, keep time continuous, and, moreover,
choose ∆m = 1 (recalling that cars are really discrete entities), one is led to the classic
follow-the-leader system

dxm
dt

= um(1.7)

and

ε
dum
dt

= εP ′(xm+1 − xm)(um+1 − um) + V (xm+1 − xm) − um(1.8)

studied by traffic engineers. On the other hand, if one lets

ρ(x, t) =
1

s(m, t)
and v(x, t) = u(m, t)(1.9)

when

x = x(m, t),(1.10)

one finds that as functions of x and t the functions ρ and v satisfy

∂ρ

∂t
+

∂

∂x
(ρv) = 0(1.11)

and

ε

(
∂v

∂t
+ (v + ρR,ρ (ρ))

∂v

∂x

)
= W (ρ) − v,(1.12)

where

R(ρ)
def
= P (1/ρ) and W (ρ)

def
= V (1/ρ).(1.13)

Of course

ρ2R,ρ (ρ) = −P ′(s = 1/ρ) ≤ 0 and ρ2W,ρ (ρ) = −V ′(s = 1/ρ) ≤ 0.(1.14)

References [2, 3, 4, 5] dealt primarily with the case where P (·) and V (·) were
monotone increasing on s ≥ L and had the following additional properties:

V (L+) = 0 and lim
s→∞V (s) = v∞(1.15)
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and

0 < V ′(s) ≤ P ′(s), P ′′(s) < 0 and V ′′(s) < 0, L < s <∞.(1.16)

In that series of papers the authors established a variety of results about the system
(1.1)–(1.4) and its discrete counterpart (1.7)–(1.8), notably that the constant solutions

s(m, t) ≡ s0 > L and u(m, t) ≡ V (s0)(1.17)

were stable in the L∞ norm.
Bando et al. [6] considered the discrete system (1.7)–(1.8) when P ′(·) ≡ 0 and

found that the steady solutions (1.7)–(1.8) were linearly unstable if 0 < V ′(s0) was
large enough and linearly stable otherwise. The continuous system (1.1)–(1.2) with
P ′(·) ≡ 0 supports a stronger conclusion, namely, that all steady solutions are linearly
unstable and this is a defect in that model. In that same paper, Bando and his
coauthors also exhibited large amplitude oscillatory solutions to (1.7) and (1.8) in the
case where

V (s) =
v∞
(
tanh

(
s−rL
δ

)
+ tanh

(
(r−1)L

δ

))
(
1 + tanh

(
(r−1)L

δ

)) , s ≥ L(1.18)

when

r > 1, v∞ > 0, and δ > 0.(1.19)

These solutions are reminiscent of the strong permanent waves seen in congested
traffic. The authors’ calculations gave no indication of the propagation speeds of
these waves.

Finally, Greenberg, Klar, and Rascle [7] considered the system (1.1)–(1.2) when

P (s) = v∞ (1 − L/s) , 0 < L ≤ s(1.20)

and

V (s) =

⎧⎨
⎩

µv∞ (1 − L/s) , L ≤ s < s∗

v∞ (1 − L/s) , s∗ < s <∞,
(1.21)

where 0 < µ < 1 and v∞ > 0. The trivial equilibria for this model are

s = s0 and u ≡ V (s0) when s0 �= s∗(1.22)

and

s = s∗ and any u = u∗ in the interval (µv∞ (1 − L/s∗) , v∞ (1 − L/s∗)) .(1.23)

The former equilibria are stable and the latter unstable. In [7] the authors estab-
lished the existence of stable periodic traveling waves (the ring-road scenario) of large
amplitude which propagate with speed c = −P ′(s∗). These waves were functions of
ξ = m− ct and were composed of a smooth increasing portion satisfying

s(−m+
a ) = sa, s(0) = s∗, and s(M−

a ) = Sa.(1.24)
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The numbers sa < s∗ < Sa were not arbitrary. They satisfied

P (Sa) − P (sa)

Sa − sa
= P ′(s∗),(1.25)

and the numbers ma and Ma satisfied

k (ma +Ma) = M and k

∫ Ma

ma

s(ξ)dξ = l.(1.26)

Here M represents the number of cars on the ring-road, l is the length of the ring-road,
and k ≥ 1 is an integer which gives the number of increasing segments per period.
These waves have jump discontinuities at the points {ma ± n (ma +Ma)}∞n=0 and
(1.25) guarantees that the Rankine–Hugoniot conditions for (1.1)–(1.2) hold across
the discontinuities. These waves also satisfy the Lax entropy condition across the
shocks, namely, the condition that Sa > sa.

Our goal in the remainder of this paper is to show that the results of [7] were no
fluke; that is, they were not an artifact of the jump discontinuity in the equilibrium
velocity function defined in (1.21) but rather were generic. In the remainder of this
paper we shall limit ourselves to the analysis of (1.1)–(1.2) when P (·) and V (·) are
both increasing on [L,∞) and satisfy the normalization conditions

P (L+) = V (L+) = 0 and lim
s→∞V (s) = v∞ > 0.(1.27)

We shall assume that V ′(·) has an isolated single maximum at s∗ > L, that

V ′′(s) > 0, L ≤ s < s∗ and V ′′(s) < 0, s∗ < s <∞,(1.28)

that the difference (P ′ − V ′) (·) has two isolated zeros at points s1 and s2 satisfying
L < s1 < s∗ < s2 <∞, and, finally, that (P ′ − V ′)(·) > 0 on (L, s1) ∪ (s2,∞).

In section 2 we shall give a simple argument showing that for s0 in (s1, s2),
the constant solution defined in (1.17) is unstable. We shall also show that if the
initial data for s lies in this interval, then s approximately evolves via a convective
backwards heat equation, thus confirming the instability of the constant solutions.
This latter result will be established by using a Chapman–Enskog expansion of the
solutions of (1.1) and (1.2). In section 3 we shall show how to construct the large
amplitude periodic traveling wave solutions to (1.1)–(1.2) reminiscent of the waves
seen in congested traffic. These solutions are similar in structure to those obtained in
[7]. Section 4 will be devoted to numerical simulations. Here we shall limit ourselves
to

P (s) = λ(1 − L/s), L ≤ s,(1.29)

and V (·) given by (1.18). We shall demonstrate that for nonconstant initial data tak-
ing on values in the unstable interval (s1, s2), solutions converge to traveling waves.
These simulations will be run on the follow-the-leader model (1.7)–(1.8). Comprehen-
sive surveys on this vast subject may be found in Helbing [8] and Nagel, Wagner, and
Woesler [9].

2. Linear stability of (1.17). We look for solutions of (1.1)–(1.2) of the form

s = s0 + δ1A and u = V (s0) + δ1W,(2.1)
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where 0 < δ1 � 1. To leading order in δ1 we find that A satisfies

ε

(
∂2A

∂t2
− P ′(s0)

∂2A

∂t∂m

)
= V ′(s0)

∂A

∂m
− ∂A

∂t
.(2.2)

If we look for solutions of (2.2) of the form

A = exp(ikm+ λt),(2.3)

we find that λ and k satisfy

ελ2 + (1 − ikεP ′(s0))λ− ikV ′(s0) = 0.(2.4)

Moreover, if we write λ = α+ iβ (with α and β real), we obtain

ε(α2 − β2) + α+ kεP ′(s0)β = 0(2.5)

and

2εαβ + β − kεP ′(s0)α− kV ′(s0) = 0.(2.6)

If we restrict our attention to the case where 0 < ε� 1, we find one root goes as

λ1 = −1

ε
+ ik(P ′ − V ′)(s0) + 0(ε)(2.7)

and the other as

λ2 = ikV ′(s0) − εk2V ′(s0)(P ′ − V ′)(s0) + 0(ε2)(2.8)

and it is the latter identity which allows us to conclude that the system is linearly
stable when (P ′ − V ′)(s0) > 0 and linearly unstable when (P ′ − V ′)(s0) < 0.

A similar conclusion may be reached if we apply a Chapman–Enskog procedure
to (1.1) and (1.2) when 0 < ε � 1. Specifically, we seek solutions to (1.1) and (1.2)
where u is of the form

u = U1 = u0 + εu1(2.9)

and u0 and u1 are independent of ε and functionals of s. Insertion of the ansatz (2.9)
into (1.2) yields

u0 = V (s), u1 = V ′(s) (P ′(s) − V ′(s))
∂s

∂m
and

U1 = V (s) + εV ′(s) (P ′(s) − V ′(s))
∂s

∂m
.

(2.10)

Then s is determined by solving

∂s

∂t
=

∂

∂m

(
V (s) + εV ′(s) (P ′(s) − V ′(s))

∂s

∂m

)
.(2.11)

This latter equation has a strong maximum principle so long as the initial data for s
satisfies either

L ≤ s(m, 0) < s1 for all m(2.12)

or

s2 ≤ s(m, 0) <∞ for all m(2.13)

because in either of these cases the diffusion coefficient, V ′(s)(P ′(s) − V ′(s)), is pos-
itive. On the other hand, when s1 < s < s2, the diffusion coefficient is negative and
this yields explosive growth of the solution, confirming the instability of the constant
solution (1.17) when s1 < s0 < s2.
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3. Large amplitude periodic traveling waves. In this section we seek solu-
tions to (1.1) and (1.2) that are functions of

ξ = m+ ct, c > 0,(3.1)

which are periodic in ξ with periodic M , the number of cars on the ring-road. The
conversation structure of (1.1) implies that the s(·) component of the solution satisfies∫ M

0

s(ξ)dξ = l,(3.2)

where l is the length of the ring-road.
Insertion of the ansatz (3.1) into (1.1) implies that u(·) and s(·) satisfy

u(ξ) = u# + c(s(ξ) − s#),(3.3)

and we insist that

u# = V (s#) and s(0) = s# ∈ (s1, s2).(3.4)

The relations (3.3) and (3.4) further imply that

εc (c− P ′(s))
ds

dξ
= (V (s) − V (s#) − c(s− s#)) .(3.5)

We seek a solution to (3.4) and (3.5) which is increasing on −ma < ξ < Ma, where
−ma < 0 < Ma. For speeds 0 < c < V ′(s#), we see that the right-hand side of (3.5)
satisfies

sign (V (s) − V (s#) − c(s− s#)) = sign (s− s#)(3.6)

for |s− s#| small enough, and thus to obtain an increasing solution to (3.4) and (3.5)
on some interval containing ξ = 0 in its interior we are compelled to choose

c = P ′(s#).(3.7)

This choice of c, together with the hypothesis that P ′′(·) < 0, guarantees that

sign (P ′(s#) − P ′(s)) = sign (s− s#),(3.8)

and thus, with this choice of c, we are guaranteed a solution of (3.4) and (3.5) defined
in some interval −m̃a < ξ < M̃a, where −m̃a < 0 < M̃a. Moreover, this solution
satisfies

ds

dξ
(0) =

− (V ′(s#) − P ′(s#))

εP ′(s#)P ′′(s#)
> 0(3.9)

for s1 < s# < s2.
We shall now refine the observations of the preceding paragraphs. If

V (L) − V (s2) − P ′(s2)(L− s2) > 0,(3.10)

we let s̄ in (s1, s2) be the unique solution of

V (L) − V (s̄) − P ′(s̄)(L− s̄) = 0,(3.11)
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whereas, if

V (L) − V (s2) − P ′(s2)(L− s2) ≤ 0,(3.12)

we let

s̄ = s2.(3.13)

In either case, for any s# in (s1, s̄) we let L < s−(s#) < s# < s+(s#) be the other
two solutions of

V (s±) − V (s#) − P ′(s#)(s± − s#) = 0.(3.14)

We of course have

V (s) − V (s#) − P ′(s#)(s− s#) < 0, s−(s#) < s < s#,(3.15)

and

V (s) − V (s#) − P ′(s#)(s− s#) > 0, s# < s < s+(s#).(3.16)

For any sa in (s−(s#), s#) we now let S(sa) > s# be the unique solution of

P (S(sa)) − P (sa)

S(sa) − sa
= P ′(s#)(3.17)

and note that

dS(sa)

dsa
=

(P ′(s#) − P ′(sa))
(P ′(s#) − P ′ (S(sa)))

< 0.(3.18)

We also let s(s#) be the smallest value of sa ≥ s−(s#) such that S(sa) ≤ s+(s#) and
for any sa in (s(s#), s#) we let

−ma = εP ′(s#)

∫ s#

sa

(P ′(r) − P ′(s#)) dr

(V (r) − V (s#) − P ′(s#)(r − s#))
< 0(3.19)

and

Ma = εP ′(s#)

∫ S(sa)

s#

(P ′(s#) − P ′(r))dr
(V (r) − V (s#) − P ′(s#)(r − s#))

> 0.(3.20)

We note that one of the integrals (3.19) or (3.20) or both diverge as sa → s(s#)+.
For any ξ in (−ma,Ma), the solution to (3.4) and (3.5) is given by the quadrature
formula

εP ′(s#)

∫ s(ξ)

s#

(P ′(s#) − P ′(r)) dr
(V (r) − V (s#) − P ′(s#)(r − s#))

= ξ,(3.21)

and the solution is extended to (−∞,∞) by insisting that the periodicity condition

s (ξ ± n(ma +Ma)) = s(ξ), n = 0, 1, . . . ,(3.22)

holds. As constructed, the solution has jump discontinuities as the points Ma±
n(ma+Ma), n = 0, 1, . . . , and (3.17), (3.19), and (3.20) guarantee that the Rankine–
Hugoniot condition for (1.1) and (1.2) holds across these discontinuities. The Lax
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entropy condition that s− (Ma ± n(ma +Ma)) > s+ (Ma ± n(ma +Ma)) is also guar-
anteed since

s−(Ma ± n(ma +Ma)) = S(sa) > sa = s+(Ma ± n(ma +Ma)).(3.23)

What remains to be shown is that for integers k = 1, 2, . . . we can choose sa in
(s(s#), s#) and s# in (s1, s) so that

k(ma +Ma) = M(3.24)

and ∫ M

0

s(ξ)dξ = l.(3.25)

The integer k represents the number of increasing segments per period.
We start by analyzing (3.24). Equations (3.19) and (3.20) imply that solving

(3.24) is equivalent to solving

kεP ′(s#)

∫ S(sa)

sa

(P ′(s#) − P ′(r)) dr
(V (r) − V (s#) − P ′(s#)(r − s#))

def
= F (s#, sa) = M.(3.26)

We observe for any s# in (s1, s) that

F (s#, s#) = 0,(3.27)

∂F

∂sa
(s#, sa) = kεP ′(s#)

(
(P ′(s#) − P ′(S(sa))S

′(sa))
(V (S(sa)) − V (s#) − P ′(s#) (S(sa) − s#))

+
(P ′(sa) − P ′(s#))

(V (sa) − V (s#) − P ′(s#)(sa − s#))

)(3.28)

for any sa in (s(s#), s#), and, finally, that

lim
sa→s(s#)+

F (s#, sa) = +∞.(3.29)

Then (3.27)–(3.29) guarantee that for each s# in (s1, s) there is a unique number
sa(s#) in (s(s#), s#) satisfying (3.26). Thus, solving (3.24) and (3.25) is equivalent
to finding an s# in (s1, s) such that

kεP ′(s#)

∫ S(sa(s#))

sa(s#)

(P ′(s#) − P ′(r)) rdr
(V (r) − V (s#) − P ′(s#)(r − s#))

= l.(3.30)

The last identity is a consequence of (3.25) and the fact that on (−ma,Ma)

dξ

dr
=

kεP ′(s#) (P ′(s#) − P ′(r))
(V (r) − V (s#) − P ′(s#)(r − s#))

.(3.31)

If we exploit the fact that sa(s#) satisfies (3.26), we find that solving (3.30) is equiv-
alent to solving

Ms# + kεP ′(s#)

∫ S(sa(s#))

sa(s#)

(P ′(s#) − P ′(r)) (r − s#)dr

(V (r) − V (s#) − P ′(s#)(r − s#))
= l.(3.32)
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To get some idea about the range of the function defined by the left-hand side of
(3.32) we note that

sign

(
(P ′(s#) − P ′(r)) (r − s#)

(V (r) − V (s#)) − P ′(s#)(r − s#)

)
= sign (r − s#)(3.33)

and that for r close to s#

(P ′(s#) − P ′(r)) (r − s#)

(V (r) − V (s#) − P ′(s#)(r − s#))
∼ −P ′′(s#)(r − s#)

(V ′ − P ′) (s#)
.(3.34)

So long as s1 < s# < s we have s−(s#) < sa(s#) and S(sa(s#)) < s+(s#) and the

integrand
(P ′(s#)−P ′(r))(r−s#)

(V (r)−V (s#)−P ′(s#)(r−s#)) is nonsingular. In this case the function defined

by the left-hand side of (3.32) is approximately given by

Ms# − kεP ′(s#)P ′′(s#)(S(sa(s#)) − sa(s#))(S(sa(s#)) + sa(s#) − 2s#)

2(V ′ − P ′)(s#)
.(3.35)

This last identity is instructive, especially in the situation where P ′′(·) is approxi-
mately constant. In that case S(sa(s#)) + sa(s#) − 2s# is approximately zero and
thus the function defined by (3.35) approximately reduces to Ms#. Equation (3.30)
then approximately becomes

Ms# = l.(3.36)

This sort of analysis on the function defined by the left-hand side of (3.30) is all we
could manage with the degree of generality allowed on the functions P (·) and V (·).
Though not particularly sharp it gives a fair indication of when (3.24) and (3.25) are
solvable.

4. Simulations. All computations in this section were run with the follow-the-
leader model (1.7) and (1.8) when

P (s) = λ

(
1 − L

s

)
, L ≤ s,(4.1)

and

V (s) = v∞

(
tanh

(
s−rL
δ

)
+ tanh

(
(r−1)L

δ

))
(
1 + tanh

(
(r−1)L

δ

)) .(4.2)

The specific parameters used were

L = 15 feet,(4.3)

λ = 150 feet/sec = 102.2727 . . . mph,(4.4)

v∞ = 100 feet/sec = 68.1818 . . . mph,(4.5)

δ = 15 feet,(4.6)

and

r = 3.(4.7)
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100 200 300 400
0

10

20

30

40

50

60

speed(mph)

100 200 300 400

20

30

40

50

60

70

80

spacing(feet)

20 40 60 80
0

10

20

30

40

50

60

velocity vs spacing 

20 40 60 80

1

0

1

2

3

4

5

6

 d(PV)/ds vs s 

Fig. 2.
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Fig. 3.

For initial data, we choose three sets of data

x(k)
m (0) = 45m+ 30

m−1∑
j=0

sin

(
kjπ

200

)
(4.8)
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and

u(k)
m (0) = 35 feet/sec(4.9)

for m = 0,±1,±2, . . . and k = 1, 2, and 3. The observation that

x
(k)
m+400(0) = x(k)

m (0) + 18000(4.10)

implies that we may interpret the data as initial data for a ring-road with 400 cars
which is of length 18000 feet.

For our choice of parameter values the unstable region for (P ′ − V ′)(·) is the
interval 33.59625 . . . < s < 69.8215 and our data has initial car spacings

s(k)m (0) = x
(k)
m+1(0) − x(k)

m (0)(4.11)

which lie in that interval. A graph of s → (P ′ − V ′)(s) is shown in the fourth panel
of Figures 1–3. Simulations were run with relaxation times

ε = 1, 5, and 10.(4.12)

We show the spatially periodic solutions at time t = 1 hour when ε = 10 sec-
onds. Figures 1, 2, and 3 correspond to the initial data indexed by k = 1, 2, and
3, respectively. The solution indexed by each particular k has k discontinuities per
period after one hour. Run over a longer period, they all revert to a solution with
one discontinuity per period.

The first two frames in each figure are self-explanatory. In the third frame of each
figure we plot the curve m → (sm = xm+1 − xm, um). This curve is shown in green.
The blue curve is the equilibrium curve s→ (s, V (s)) and the black concave curve is
a suitably normalized image of P (·). The circle -o- is the image of (s1, u1).
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Abstract. The surface displacements produced by normal and tangential point loads applied
to the surface of an incompressible, transversely isotropic material are considered when anisotropy
is produced by a single family of fibers oriented perpendicular to the surface normal. Three elastic
constants (two shear moduli and a fiber modulus) characterize the linear elasticity of such a material.
The problems are solved analytically in two-dimensional Fourier transform space, and explicit surface
displacement formulae are given for the inverses in physical space. Simple relations are given as
asymptotic expansions for weak anisotropy. Computed surface displacement patterns are illustrated,
and the application of the results to atomic force microscopy is discussed.
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1. Introduction. The present problem is motivated by recent interest in using
the atomic force microscope (AFM) as a microindenter of biological samples with the
intent of determining the local elastic moduli of the tissue (Dimitriadis et al. (2002),
Chadwick (2002)). The condition of material incompressibility can hold for biological
samples when the time required to deform the tissue is small compared to the time
required for water to flow out of it. Also, structural fibers do not penetrate biolog-
ical membranes, which typically form the surfaces that are probed by the AFM. It
seems, therefore, that the present problem is the simplest relevant departure from an
isotropic half-space. A recent account of Green’s functions for anisotropic materials
is given by Pan and Yuan (2000). While the case of point loading of a compress-
ible, transversely isotropic elastic half-space with fibers oriented in the direction of
the surface normal has been well studied for normal loads (Lekhnitskii (1963), Willis
(1966), Conway, Farnham, and Ku (1967), Green and Zerna (1968)) and tangential
loads (Chen (1965), Turner (1980)), the present problem has apparently not received
much specific attention. Here we use the stress-strain relation of Spencer (1984), the
Fourier transform formalism developed by Willis (1966), and the inversion method
developed by Barnett and Lothe (1975) for general anisotropic bodies. Spencer’s
stress-strain formalism has the advantages of avoiding a sometimes delicate limiting
process needed to treat the incompressible case, and also having a more physical in-
terpretation of the elastic constants, compared to the more general formalism used
by Willis (1966), for example. Also, Willis, being interested in the Hertzian problem,
did not need to invert the point force solutions. Barnett and Lothe (1975) developed
their inversion method in conjunction with the Stroh formalism for crystal symmetry
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classes, as they describe and extend. The Stroh formalism, with hexagonal symmetry,
can also be used to study problems of biological interest such as we consider here.

2. Formulation. We consider a half-space (x, y, z) with the elastic material in
the domain z < 0. Let the fibers run in a direction specified by the unit vector −→a .
The stress-strain relation of the material is given by Spencer (1984),

σij = −pIij + 2µT eij + Efakeklalaiaj + 2(µL − µT )(aiakekj + eikakaj),(2.1)

where p is an isotropic pressure term required for an incompressible material; Iij
is the unit tensor; eij is the strain tensor 1

2 (∂ui/∂xj + ∂uj/∂xi), where the ui are
displacements; and Ef , µT , and µL are the fiber modulus and the shear moduli
normal and parallel to the fiber direction, respectively. Introducing the displacement
components (u, v, w) and taking −→a : (0, 1, 0), so that fibers run in the y direction, the
stress components are

σxx = −p+ 2µT
∂u

∂x
, σyy = −p+ (Ef + 4µL − 2µT )

∂v

∂y
, σzz = −p+ 2µT

∂w

∂z
,

(2.2)

σxy = µL

(
∂u

∂y
+
∂v

∂x

)
, σzy = µL

(
∂w

∂y
+
∂v

∂z

)
, σxz = µT

(
∂u

∂z
+
∂w

∂x

)
.

(2.3)

Substitution of (2.2), (2.3) into the equations of equilibrium ∂σij/∂xj = 0, and using
the condition of incompressibility ∂ui/∂xi = 0, yields the following system:

(2µT − µL)
∂2u

∂x2
+ µL

∂2u

∂y2
+ µT

∂2u

∂z2
+ (µT − µL)

∂2w

∂x∂z
− ∂p

∂x
= 0,(2.4)

µL
∂2v

∂x2
+ (Ef + 3µL − 2µT )

∂2v

∂y2
+ µL

∂2v

∂z2
− ∂p

∂y
= 0,(2.5)

µT
∂2w

∂x2
+ µL

∂2w

∂y2
+ (2µT − µL)

∂2w

∂z2
+ (µT − µL)

∂2u

∂x∂z
− ∂p

∂z
= 0,(2.6)

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0.(2.7)

To complete the formulation we consider three separate surface stress conditions:

σxz(x, y, 0) = δ(x)δ(y), σyz(x, y, 0) = 0, σzz(x, y, 0) = 0,(2.8)

σxz(x, y, 0) = 0, σyz(x, y, 0) = δ(x)δ(y), σzz(x, y, 0) = 0,(2.9)

σxz(x, y, 0) = 0, σyz(x, y, 0) = 0, σzz(x, y, 0) = −δ(x)δ(y),(2.10)

where δ(xi) denotes the Dirac delta function. In each case all stress components must
decay as z → −∞. The conditions specified by (2.8) represent a point shear force
acting in a cross-fiber direction (see Problem 1), those specified by (2.9) represent
a point shear force acting in the fiber direction (Problem 2), and those specified by
(2.10) represent a compressive point normal force (Problem 3).
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3. Solutions in Fourier transform space. Following Willis (1966), we take
Fourier transforms in the x and y directions. Thus

U(ξ, η, z) =
1

2π

∫ ∫ ∞

−∞
u(x, y, z)e[i(ξx+ηy)]dxdy,(3.1)

with similar expressions for V, W, and P , the transforms of v, w, and p. Transforming
the set (2.4)–(2.7) yields a system of coupled ordinary differential equations in z.
Assuming a solution form U(ξ, η, z) = U(ξ, η) exp[iλz], and similarly for the other
transformed variables, gives the homogeneous algebraic system

−[(2 − β)ξ
2
+βη2+λ2]U + (1 − β)ξλW +

iξP

µT
= 0,(3.2)

−[βξ
2
+(α+ 3β − 2)η

2
+βλ2]V +

iηP

µT
= 0,

(1 − β)ξλU − [ξ
2
+βη2+(2 − β)λ

2
]W − iλP

µT
= 0,

iξU + iηV − iλW = 0,

which has solutions, provided that the determinant of the matrix M of coefficients
of U , V , W , and P is zero. Here we have introduced the ratios of elastic moduli:
α = Ef/µT and β = µL/µT . The determinant is a sixth-order polynomial in λ that
turns out to be bicubic and factorable:

(λ2 + ξ2 + βη2)[βλ4 + (αη2 + 2βη2 + 2βξ2)λ2 + βη4 + (α+ 2β)ξ
2
η2 + βξ4] = 0.

(3.3)

Of the six roots, which occur in complex conjugate pairs, we choose those that have
negative imaginary parts to ensure decay of stress as z → −∞. Thus, from the first
factor we obtain

λ1 = −i
√
ξ2 + βη2,(3.4)

while from the second, which is biquadratic, we find

λ2 = −i
√
ξ2 + η2

[
1 +

α

2β
(1 + φ)

]
,(3.5)

λ3 = −i
√
ξ2 + η2

[
1 +

α

2β
(1 − φ)

]
,

where φ =
√

1 + 4βα . Note that each of the three radicands is positive for positive elas-
tic moduli. Corresponding to each of these roots are three vectors

−→
bi : (Ui, Vi,Wi, Pi),

that are the eigenvectors corresponding to the zero eigenvalues of the matrices M(λi),

i = 1, 2, 3. These vectors have the following components:
−→
b1 : (λ1/ξ, 0, 1, 0),

−→
b2 :

(U2, V2, (ξU2 + ηV2)/λ2, 1), and
−→
b3 : (U3, V3, (ξU3 + ηV3)/λ3, 1), where

V2 =
i

η[2(β − 1)+ 1
2α(1 − φ)]

,(3.6)

U2 =
βξV2[2(β − 1) + α(1 − φ)]

η[2β(β − 1) − α(1 + φ)]
,
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and

V3 =
i

η[2(β − 1)+ 1
2α(1 + φ)]

,(3.7)

U3 =
βξV3[2(β − 1) + α(1 + φ)]

η[2β(β − 1) − α(1 − φ)]
.

The general solution for the transformed variables
−→
Ψ : (U, V ,W,P ) is the superpo-

sition of the three eigenvectors, i.e.,

Ψj(ξ, η, z) =

3∑
n=1

Anbnje
iλnz, j = 1, 2, 3, 4,(3.8)

where Ψ1 = U, Ψ2 = V , . . . , and bnj denotes the jth component of the eigenvector−→
bn . The An are arbitrary functions of (ξ, η) that will be evaluated by applying the
three stress boundary conditions appropriate for each problem. Using (2.2), (2.3),
(3.1), and (3.8), the transformed surface stresses are

σxz(ξ, η, 0) = iµT

3∑
n=1

An(λnbn1 − ξbn3),(3.9)

σyz(ξ, η, 0) = iµL

3∑
n=1

An(λnbn2 − ηbn3),

σzz(ξ, η, 0) = µT

3∑
n=1

An(2iλnbn3 − bn4).

The solution of Problem 1 is obtained by solving the linear system (3.9) for A1, A2, A3

when the left-hand sides are set to 1/(2π), 0 , 0, respectively. Similarly, for Problems
2 and 3 the left-hand sides are set to 0, 1/(2π), 0, and 0, 0, −1/(2π), respectively.

4. Fourier inversions. We now adopt the more concise notation Gij(x, y) or
Gij(r, ϕ) in polar coordinates to denote the Green’s tensor that represents the surface
displacement component in the ith direction (i = 1, 2, 3) due to a point force in
the jth problem or direction (j = 1, 2, 3), and Ḡij(ξ, η) or Ḡij(ρ, θ) to denote the
corresponding transforms. Willis (1966), Barnett and Lothe (1975), and Pan and
Yuan (2000) have shown for compressible general anisotropic materials that the Ḡij
are homogeneous of degree −1 in ρ, i.e., Ḡij(ρ, θ) = ρ−1ḡij(θ). It is easily seen that
this result carries over to the present incompressible case. This is important because
it enables a great simplification of the inversions into physical space:

Gij(x, y) =
1

2π

∫ ∫ ∞

−∞
Ḡij(ξ, η)e

−i(ξx+ηy)dξdη,(4.1)

Gij(r, ϕ) =
1

2π

∫ 2π

0

∫ ∞

0

ρ−1ḡij(θ)e
−iρr cos(θ−ϕ)ρdρdθ,

where polar coordinates ξ = ρ cos θ, η = ρ sin θ, and x = r cosϕ, y = r sinϕ have been
introduced. The radial integration is accomplished via the identity used by Barnett
and Lothe (1975):∫ ∞

0

e−iρr cos(θ−ϕ)dρ = πδ(r cos(θ − ϕ)) − iP
1

r cos(θ − ϕ)
,(4.2)
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where P denotes the principal value. Furthermore, Barnett and Lothe introduced the
functional identity

δ(r cos(θ − ϕ)) =
δ(θ − ϕ± π

2 )

|r sin(θ − ϕ)| .(4.3)

These two identities lead directly to the inversion formula

Gij(r, ϕ) =
1

4πµT r
ḡij(θ)|ϕ±π

2
− i

4π2µT r
P

∫ 2π

0

ḡij(θ)

cos(θ − ϕ)
dθ.(4.4)

The first term of the inversion formula is simply the sum of two ninety-degree rotations
of the functions in transform space, while the second term is a principal value integral.
In the present problem we note the following symmetry properties of the ḡij(θ) in
terms of their Fourier series expansions on 0 ≤ θ ≤ 2π: ḡ11, ḡ22, and ḡ33 have cosine
series expansions in even multiples of θ; ḡ12 and ḡ21 have sine series expansions in even
multiples of θ; ḡ13 and ḡ31 have cosine series expansions in odd multiples of θ; and ḡ23
and ḡ32 have sine series expansions in odd multiples of θ. The principal-value integrals
vanish for those functions that have an expansion in even multiples of θ, while the
sum of the two ninety-degree rotations are additive for those functions. Thus G11,
G22, G33, G12, and G21 simply reduce to

Gij(r, ϕ) =
1

2πµT r
ḡij

(
ϕ+

π

2

)
.(4.5)

For the remaining off-diagonal terms ḡ13, ḡ31, ḡ23, and ḡ32,which have expansions
in odd multiples of θ, the sum of the two ninety-degree rotations cancels, and their
principal-value integrals can be evaluated using the following formulae given by Bar-
nett and Lothe (1975):

P

∫ 2π

0

cos(2n+ 1)

sin(θ − θ0)
dθ = −2π sin(2n+ 1)θ0,(4.6)

P

∫ 2π

0

sin(2n+ 1)

sin(θ − θ0)
dθ = 2π cos(2n+ 1)θ0,(4.7)

where n = 0, 1, 2, . . . . Thus G13 and G23 reduce to the sums

G13(r, ϕ) =
1

2πµT r

∞∑
n=0

cn sin
[(

2n+ 1)(ϕ+
π

2

)]
(4.8)

G23(r, ϕ) = − 1

2πµT r

∞∑
n=0

sn cos
[(

2n+ 1)(ϕ+
π

2

)]
(4.9)

where the cn are the Fourier cosine coefficients of −iḡ13, and the sn are the Fourier sine
coefficients of −iḡ23. We will see in the following sections that G12 = G21, G13 = G31,
and G32 = G23.

5. Asymptotic results for small anisotropy. Although the exact expressions
for the transformed surface displacements are quite unwieldy and are not displayed
here, they can be easily obtained using Mathematica (Wolfram Research, Chicago,
IL). As an independent check on the exact method given in section 4, it turns out that
Mathematica can invert the transformed surface displacements term by term when
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they are expanded in a Taylor series about α = 0 and β = 1 for small anisotropy.
Here we summarize the results, where an expanded surface displacement in transform
space is immediately followed by its corresponding inverse transform into physical
space. The method for obtaining these inverses is described in the appendix.

Problem 1.

2πµTU(ξ, η) =
ξ2 + 2η2

2(ξ2 + η2)3/2
− (β − 1)

η2

2(ξ2 + η2)3/2
− α

5ξ2η4

16(ξ2 + η2)7/2
+ · · · ,(5.1)

2πµTu(x, y, 0) =
y2 + 2x2

2(y2 + x2)3/2
− (β − 1)

x2

2(y2 + x2)3/2
− α

5y2x4

16(y2 + x2)7/2
+ · · · ,

2πµTV (ξ, η) = − ξη

2(ξ2 + η2)3/2
+ (β − 1)

ξη

2(ξ2 + η2)3/2
+ α

ξη3(6ξ2 + η2)

16(ξ2 + η2)7/2
+ · · · ,

2πµT v(x, y, 0) =
yx

2(y2 + x2)3/2
− (β − 1)

yx

2(y2 + x2)3/2
− α

yx3(6y2 + x2)

16(y2 + x2)7/2
+ · · · ,

2πµTW (ξ, η) = i(β − 1)
ξη2

2(ξ2 + η2)2
+ iα

ξη4

8(ξ2 + η2)3
+ · · · ,

2πµTw(x, y, 0) = (β − 1)
x(x2 − y2)

4(y2 + x2)2
+ α

x(3x4 − 6x2y2 − y4)

64(y2 + x2)3
+ · · · .

Problem 2.

(5.2)

2πµTU(ξ, η) = − ξη

2(ξ2 + η2)3/2
+ (β − 1)

ξη

2(ξ2 + η2)3/2
+ α

ξη3(6ξ2 + η2)

16(ξ2 + η2)7/2
+ · · · ,

2πµTu(x, y, 0) =
yx

2(y2 + x2)3/2
− (β − 1)

yx

2(y2 + x2)3/2
− α

yx3(6y2 + x2)

16(y2 + x2)7/2
+ · · · ,

2πµTV (ξ, η) =
2ξ2 + η2

2(ξ2 + η2)3/2
− (β − 1)

2ξ2 + η2

2(ξ2 + η2)3/2
− α

η2(8ξ4 + 4ξ2η2 + η4)

16(ξ2 + η2)7/2
+ · · · ,

2πµT v(x, y, 0) =
2y2 + x2

2(y2 + x2)3/2
− (β − 1)

2y2 + x2

2(y2 + x2)3/2
− α

x2(8y4 + 4y2x2 + x4)

16(y2 + x2)7/2
+ · · · ,

2πµTW (ξ, η) = −i(β − 1)
ξ2η

2(ξ2 + η2)2
− iα

ξ2η3

8(ξ2 + η2)3
+ · · · ,

2πµTw(x, y, 0) = −(β − 1)
y(y2 − x2)

4(y2 + x2)2
+ α

y(3x4 − 6x2y2 − y4)

64(y2 + x2)3
+ · · · .

Problem 3.

2πµTU(ξ, η) = i(β − 1)
ξη2

2(ξ2 + η2)2
+ iα

ξη4

8(ξ2 + η2)3
+ · · · ,(5.3)

2πµTu(x, y, 0) = (β − 1)
x(x

2 − y2)

4(y2 + x2)2
+ α

x(3x4 − 6x2y2 − y4)

64(y2 + x2)3
+ · · · ,

2πµTV (ξ, η) = −i(β − 1)
ξ2η

2(ξ2 + η2)2
− iα

ξ2η3

8(ξ2 + η2)3
+ · · · ,

2πµT v(x, y, 0) = (β − 1)
y(x

2 − y2)

4(y2 + x2)2
+ α

y(3x4 − 6x2y2 − y4)

64(y2 + x2)3
+ · · · ,
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2πµTW (ξ, η) = − 1

2(ξ2 + η2)1/2
+ (β − 1)

η2

2(ξ2 + η2)3/2
+ α

η4

16(ξ2 + η2)5/2
+ · · · ,

2πµTw(x, y, 0) = − 1

2(y2 + x2)1/2
+ (β − 1)

x2

2(y2 + x2)3/2
+ α

x4

16(y2 + x2)5/2
+ · · · .

Notice that the formulae reduce to the well-known results for an incompressible
isotropic material (cf. Landau and Lifshitz (1975, pp. 29–30)) when α = 0 and
β = 1.

6. Symmetry properties of Green’s tensor. Reverting back to the Gij(x, y)
notation, we see from the preceding asymptotic formulae the surprising result that
Gij(x, y) = Gji(x, y) for i �= j. This is also true for the exact transformed displace-
ments, according to logical comparisons in Mathematica. Should we be surprised by
this result, and how general is it? The Green’s tensor is symmetric for an isotropic
half-space and infinite medium (Landau and Lifshitz (1975, pp. 29–30)), as well as
for a half-space with cubic crystal symmetry (Portz and Maradudin (1977)). How-
ever, other authors do not mention this symmetry for general anisotropic half-space
problems. Courant and Hilbert (1962, pp. 393–394) indicate that a Green’s tensor
has this symmetry property when the differential system is self-adjoint. As we shall
show, this symmetry depends upon whether or not a reciprocal theorem exists in the
form ∫ ∫

S

−→σ · −→u∗dS =

∫ ∫
S

−→
σ∗ · −→u dS,

where −→u and
−→
u∗ are the respective surface displacements resulting from two dif-

ferent surface stress vectors −→σ and
−→
σ∗, applied to an elastic body having a sur-

face S. Such a reciprocal relation has been attributed to Betti for elastic systems
and Rayleigh for more general dynamic systems (see Timoshenko (1930, pp. 351–
355)). A similar relation for incompressible creeping viscous flow was established by
Lorentz (see Happel and Brenner (1965, pp. 85–87)). The reciprocal theorem can be
shown to hold not only for the elastic solid considered here, but also for a general
linear anisotropic elastic solid having the stress-strain relation σij = cijklekl. The
geometry of the body can also be arbitrary. To see this, consider the quadratic
form σije

∗
ij = cijklekle

∗
ij = cklije

∗
ijekl = σ∗

klekl = σ∗
ijeij , noting that the switch

cijkl = cklij is permissible since the strain energy 1
2 cijkleijekl must be invariant to

the switch. Consider further, from the definition of strain, σije
∗
ij = 1

2 σij∂u
∗
i /∂xj + 1

2

σij∂u
∗
j/∂xi = 1

2 σij∂u
∗
i /∂xj + 1

2 σji∂u
∗
j/∂xi = σij∂u

∗
i /∂xj , where symmetry of the

stress tensor σij = σji has been used. Therefore σije
∗
ij can be written in the divergence

form σije
∗
ij = ∂(σiju

∗
i )/∂xj , since ∂σij/∂xj = 0 is the condition of static equilibrium.

Therefore ∂(σiju
∗
i )/∂xj = ∂(σ∗

ijui)/∂xj , which is the condition of self-adjointness.
Integrating over the volume of the body and applying the divergence theorem gives
the surface integral form of the reciprocal relation. The symmetry of Green’s tensor
follows from this relation when the stress vectors are due to point forces. A breakdown
of the reciprocal theorem evidently occurs in problems involving elastic inclusions and
inhomogeneities (Eshelby (1961)) and lattice defects (Eshelby (1956)). In such cases
the difference between the two sides of the reciprocal theorem is identified with an
interaction energy.

7. Surface displacement patterns. We calculate surface displacements using
the formulae given in section 4. Surface displacement patterns are displayed graph-
ically as superpositions of contour plots for the displacement component normal to
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Fig. 1. In Problem 1, a shear point force is applied at the origin, with the force oriented normal
to the y-directed family of fibers. The center inset shows the fiber orientation, and the force direction
is shown by the red arrow. The contours represent w, the z-directed deformation of the surface of
the material, where the in-plane displacements are shown as arrows.
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Fig. 2. In Problem 2, a shear point force is applied at the origin, oriented in the direction of
the fibers.

the surface, together with quiver plots for the in-plane displacements. Patterns for
Problems 1–3 are shown in Figures 1–3, respectively. Each figure comprises two pan-
els. In the left panel, α = 5 and β = 1.2; in this case the fiber modulus Ef is 5 times
larger than the transverse shear modulus µT , while the longitudinal shear modulus
µL is 1.2 times larger than µT . In the right panel, α = 0.2, β = 5; in this case Ef is 5
times smaller than µT , while µL is 5 times larger than µT . The left panels therefore
depict surface displacements induced by surface point forces in a material in which
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Fig. 3. In Problem 3, a normal point load is applied at the origin. The red “x” in the center
inset depicts a force directed into the surface of the half-space.

fibers are relatively stiff compared to the surrounding matrix, while the right panels
show the response of a material whose matrix is relatively stiff in a direction nor-
mal to relatively compliant fibers. Figure 4 comprises a triad of panels representing
Problems 1–3 for the set of parameters α = 10, β = 0.2. These parameters could
be representative of a biological gel-like tissue having embedded, directed collagenous
fibers.

8. Discussion. It is of interest to outline how the Green’s functions found in
this paper might be used to extract the three elastic moduli of isolated small samples
of biological material using the AFM. The AFM piezo/cantilever system can be used
to apply normal or tangential loads, the magnitudes of which can be determined by
measuring the deflections induced by the bending or twisting of calibrated cantilevers
using the laser/photodetector system of the instrument. The AFM can also map
topographic variations of the sample surface on a nanometer scale. The following
strategies can be used to sequentially determine µT , µL, and Ef . Since elements of
the Green’s tensor Gij(x, y) represent surface displacements in the ith direction that
result from a unit point force at the origin acting in the jth direction, the surface
displacements resulting from a force

−→
f acting at the origin are ui(x, y) = Gij(x, y)fj .

By applying a known tangential force of magnitude f1 in the cross-fiber direction,
and noting that G11(0, y) does not involve µL or Ef (cf. section 5), we can estimate
the transverse shear modulus µT by fitting measured surface displacements u1(0, y)
to a function of 1/y. If the tangential force were applied by the AFM cantilever,
then u1(0, y) could be measured by optical imaging of microspheres, for example.
Alternatively, if the tangential force were applied by another calibrated probe, then
the AFM cantilever would be available for scanning the topography before and after
application of the force. Subtraction and postprocessing of two topographic images
would then provide an estimate of u1(0, y), provided that the signal-to-noise ratio
were large enough. Similarly, G11(x, 0) does not involve Ef , so the longitudinal shear
modulus µL can be estimated by fitting measured surface displacements u1(x, 0) to
a function of 1/x. Finally, applying a known tangential force of magnitude f2 in
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Fig. 4. Surface displacement patterns for Problems 1–3. Parameters are thought to be repre-
sentative of a biological gel-like material having directed, embedded collagenous fibers.

the fiber direction and fitting measured values of u2(x, 0) to a function of 1/x could
provide an estimate of Ef via the G22(x, 0) function. Other strategies using only a
normal force of magnitude f3 can be devised using G33(0, y), G13(x, x), etc.

Finally, it is worth estimating the distance from the probe in terms of the contact
radius a, at which the point-force solution should provide a good approximation to the
contact problem. For an isotropic, incompressible material, the ratio of the normal
displacement resulting from Hertzian contact (outside the contact region) to that from
a normal point force is given by

3

4
ζ

[
(2 − ζ2) sin−1 1

ζ
+
√
ζ2 − 1

]
= 1 +

1

10ζ2
+ · · · as ζ → ∞,

where ζ = r/a. From this relationship, we see that the point-force solution is very
quickly approached only a few contact radii away from the origin.

Appendix. Evaluation of some inverse Fourier transforms. Mathematica
can invert two key transform types, from which all of the results in section 5 can be
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obtained. One is the remarkable result that transformed functions having the form

Fm(ξ, η) =
η2m

(ξ2 + η2)m+ 1
2

, m = 0, 1, . . . ,(A.1)

have inverse transforms in x, y space that are simply rotations of π/2 radians of the
function itself; i.e.,

fm(x, y)=F−1
m (ξ, η) =

x2m

(y2 + x2)m+ 1
2

, m = 0, 1, . . . .(A.2)

Inverse transforms of

Fmn(ξ, η) =
η2m−nξn

(ξ2 + η2)m+ 1
2

, m = 0, 1, . . . , n = 1, 2, . . . ,(A.3)

can be easily evaluated by recursively integrating fm(x, y) with respect to y and
differentiating the result with respect to x, e.g.,

f31(x, y) =
∂

∂x

∫
x6

(y2 + x2)
7
2

dy = − yx5

(y2 + x2)
7
2

,(A.4)

f32(x, y) = − ∂

∂x

∫
yx5

(y2 + x2)
7
2

dy =
y2x4

(y2 + x2)
7
2

, etc.

Note that these inverses also exhibit a simple rotation property. Inverse transforms
of

Hmn(ξ, η) =
η2m−1−nξn

(ξ2 + η2)m
, m = 2, 3, . . . , n = 1, 2,(A.5)

can be found directly by Mathematica:

hmn(x, y) = H−1
mn(ξ, η) =

poly2m−1(x, y)

(y2 + x2)m
, m = 2, 3, . . . , n = 1, 2,(A.6)

where poly2m−1(x, y) is a polynomial, homogeneous of degree 2m− 1, e.g.,

h21(x, y)=
−i
2

x(x2 − y2)

(y2 + x2)2
, h31(x, y)=

−i
8

x(3x4 − 6x2y2 − y4)

(y2 + x2)3
,(A.7)

h32(x, y)=
i

8

y(3x4 − 6x2y2 − y4)

(y2 + x2)3
.
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Abstract. The purpose of this paper is to study a singular perturbation limit of a Keller–Segel
system that generates blow-up in finite time. The main question that is addressed is the description
of the evolution of the solutions of this problem beyond the blow-up time for the limit problem if
a suitable parameter ε > 0 approaches zero. This problem is studied using matched asymptotic
expansions. The resulting limit solution can be described beyond the blow-up time by means of the
motion of a set of points whose dynamics is coupled with a parabolic-elliptic system of equations.
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1. Introduction. Chemotactic aggregation has received a lot of attention in
recent decades, both from experimental and theoretical viewpoints (cf., for instance,
[1, 4, 5, 7, 8, 10, 11, 13, 20, 28, 34, 37, 39, 42, 44, 45]).

A particular model that has been extensively used in several studies of chemotaxis
is the well-known Keller–Segel one (cf. [28]). A property of the Keller–Segel system
that has been considered often is the fact that for suitable choices of the chemotactic
function, solutions of this problem might blow-up in finite time (cf. [3, 17, 18, 24, 25,
26, 27, 32, 33]). More detailed references about recent results concerning blow-up in
chemotaxis models can be found in [5, 16, 47] and references therein.

Blow-up is a property that cannot be expected to take place for the magnitudes
that describe the behavior of biological or physical systems. Usually, in many prob-
lems in applied mathematics blow-up occurs only for some approximation of the real
problem, and it indicates the presence not of a real singularity, but rather of a change
in the orders of magnitude of the values of some quantity that characterizes the state
of a system. For instance, this is a well-established fact in combustion theory, where
blow-up just means that the values of the temperature and other physical magnitudes
rise several orders of magnitude when ignition takes place (cf. [30]). Blow-up usually
takes place in physical or biological models if they are approximations of more realistic
models, usually containing some small parameter, say ε > 0, that cannot exhibit sin-
gular behaviors unless this parameter is set to zero. Suppose that for ε = 0 the limit
problem can develop singularities in finite time. The behavior of the complete model
for ε > 0 usually is similar to that of the limit model away from the singularities.
However, the features of the problem with ε > 0 but small are usually very different
from those of the limit problem near the singularities. The presence of blow-up just
indicates that the approximations that led to that simpler model where blow-up takes
place are not valid anymore near the singularity and that the whole dynamics of the
complete model needs to be taken into account there.
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The goal of this paper is to study by means of matched asymptotic expansions
the behavior of the solutions of a system of partial differential equations of the Keller–
Segel type. The problem under consideration will contain a parameter ε ≥ 0. If ε = 0
the problem exhibits blow-up in finite time. It will be shown that the original model,
in a suitable asymptotic limit, can describe in a rather detailed manner the formation
and motion of some regions where the mass of the cells is concentrated. In particular
a set of equations describing the motion of these points will be obtained. Since the
solutions of the considered model blow-up if the singular perturbation parameter is
set to zero, the behavior of the solutions derived here can be considered as some kind
of “continuation beyond blow-up” for the solutions of the original system.

The precise problem that will be considered in this paper is the following:

∂u

∂t
= ∆u−∇(Gε(u)∇v), x ∈ R

2, t > 0,(1.1)

∆v + u = 0, x ∈ R
2, t > 0,(1.2)

where u denotes the concentration of the organism and v is the concentration of the
chemical secreted by it. In this particular version of the system a term vt in the
right-hand side of (1.2) has been neglected. This assumption is usually made in the
study of the Keller–Segel model because diffusion for the organism is usually much
slower than diffusion of the chemical that can be assumed to be at equilibrium. We
will make the following choice of chemotactic function:

Gε(u) =
1

ε
Q(εu),(1.3)

where ε > 0 is a small parameter, and the function Q(ξ) is an increasing function
satisfying

Q(s) = s− αs2 + . . . as s→ 0,(1.4)

Q(s) ∼ L as s→ ∞,(1.5)

where L > 0 is a given number. A typical example would be Q(s) = s
1+s . In other

words, instead of assuming that the chemotactic function Gε(u) increases without
limit as the concentration of the organism becomes high, it will be assumed that
the mobility of the organism saturates to a constant value. Another choice of Gε(u)
certainly would be possible, but we will use this particular one just for the sake of
simplicity.

The idea of replacing the linear function u by a function Gε(u) preventing cell
density collapse has been used in [21]. More complicated models that would avoid
blow-up also can be found in [6]. A rigorous study of the continuation of the solu-
tions for the Keller–Segel model beyond the blow-up time in radial cases has been
undertaken in [41].

The choice of the function Gε(u) in (1.1) is not motivated by some strong biologi-
cal reason, but it has been basically made on mathematical grounds, to avoid collapse
of the solutions.

System (1.1)–(1.5) is a particular case of the Keller–Segel model. Let us remark
that for ε = 0 the system (1.1)–(1.5) formally becomes

∂u

∂t
= ∆u−∇(u∇v), x ∈ R

2, t > 0,(1.6)

∆v + u = 0, x ∈ R
2, t > 0.(1.7)
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It is known that solutions of the problem (1.6), (1.7) might blow-up in a finite
time T > 0 (cf. [9, 17, 27, 32]). As long as u, v remain bounded, the limit from
(1.1)–(1.5) to (1.6), (1.7) does not pose any serious mathematical problem. However,
the situation becomes mathematically more interesting for times t > T , because the
solutions of (1.1)–(1.5) are globally defined in time, something that does not occur for
the solutions of (1.6), (1.7). It is then natural to ask what happens to the solutions
of (1.1)–(1.5) as ε→ 0 and t > T . This is the problem that will be addressed in this
paper using asymptotic expansions.

Aggregation processes in real biological systems are complex processes involv-
ing many diverse ingredients. One of the most extensively studied problems is the
aggregation of Dictyostelium discoideum. Many characteristics of that aggregation
process are not included in simple models such as (1.1)–(1.5); one such character-
istic is that the chemical does not propagate in a simple diffusive manner as indi-
cated by (1.2), but rather by means of a sophisticated chemical oscillatory process
(cf. [31, 38, 46]). On the other hand, aggregation of Dictyostelium discoideum does
not occur by means of continuous densities u as occurs in (1.1)–(1.5), but on the
contrary cells aggregate in some characteristic streams where cells move towards
the center (cf. [38]). In any case, simple continuous models like (1.1)–(1.5) have
been extensively used and provide some understanding of some features of the ag-
gregation process in Dictyostelium discoideum and other organisms (cf., for instance,
[22, 23, 29]).

The plan of this article is as follows. Section 2 describes the structure of some
steady states associated to (1.1)–(1.5). Section 3 provides a description of the mo-
tion of regions with high densities of u that will be called concentration regions. In
section 3, a system of equations that describes the dynamics of such a concentration
region is derived. The well-posedness of such a system of equations has been proved
in [48]. Finally, in the appendix a rigorous proof of some asymptotic properties of the
steady states that have been formally derived in section 2 is provided.

In a second part of this paper (cf. [49]) the relation between the results of the
present paper and the blow-up mechanism for (1.6), (1.7) is considered. The sec-
ond paper studies how the blow-up process for (1.6), (1.7) is stopped for times close
enough to the blow-up time if (1.6), (1.7) are replaced by (1.1), (1.2). In particular,
it is seen that blow-up for (1.6), (1.7) yields for (1.1), (1.2) the formation of con-
centration regions that evolve later according to the equations derived in the present
paper.

2. Steady states. In this section, as a preliminary step, we study radial steady
state solutions of (1.1), (1.2). More precisely we consider the radial solutions of the
system

∆ū−∇(Gε(ū)∇v̄) = 0, x ∈ R
2,(2.1)

∆v̄ + ū = 0, x ∈ R
2,(2.2)

where Gε(u) is as in (1.3)–(1.5), and where from now on bars will be introduced
above the functions that denote steady states. The scaling structure of Gε(u) in (1.3)
suggests introducing the new set of variables

ū =
1

ε
Ū ,(2.3)

x =
√
εy(2.4)
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that transforms (2.1), (2.2) into

∆yŪ −∇y(Q(Ū)∇y v̄) = 0, y ∈ R
2,(2.5)

∆y v̄ + Ū = 0, y ∈ R
2.(2.6)

Let us write r = |y|. The main result obtained in this section is given in the
following theorem.

Theorem 2.1. Suppose that Q(·) ∈ C1(R+) is an increasing function satisfying

(1.4). Let us assume also that Q(s)
s is a decreasing function. Then, for each M > 8π

there exists a unique radial solution (up to rigid displacements) such that∫
R2

Ū(y;M)d2y = M.

The function Ū(y;M) = Ū(r;M) is decreasing on r and its asymptotic behavior as
r → ∞ is given by

Ū(r;M) ∼ k(M)

r
M
2π

as r → ∞.

Proof of Theorem 2.1. For radial solutions, integration of (2.5) in R
2 yields

r
∂Ū

∂r
−Q(Ū)r

∂v̄

∂r
= c,(2.7)

where c is a real constant to be determined. If we assume that Ū has a finite amount
of mass in R

2 it would follow that c = 0.
On the other hand, we can write (2.6) for radial solutions as

1

r

∂

∂r

(
r
∂v̄

∂r

)
+ Ū = 0.(2.8)

Plugging (2.7) (with c = 0) into (2.8) we obtain

1

r

∂

∂r

(
r

Q(Ū)

∂Ū

∂r

)
+ Ū = 0(2.9)

that has to be solved with the additional condition

∂Ū

∂r
(0) = 0.(2.10)

Assume that

Ū(0) = λ, λ > 0.(2.11)

Problem (2.9)–(2.11) can be analyzed using standard ODE theory. We will denote
from now on as Ū(r;λ) the unique solution of (2.9)–(2.11), although by convenience
we will drop the dependence on λ if it is clear from the context. Notice that we can
rewrite (2.9) as

1

Q(Ū)

∂2Ū

∂r2
− Q′(Ū)

(Q(Ū))2

(
∂Ū

∂r

)2

+
1

Q(Ū)

∂Ū

∂r
+ Ū = 0;(2.12)
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examining the sign of ∂2Ū
∂r2 at the possible points where ∂Ū

∂r = 0, we see that Ū is
decreasing as long as it remains positive. We then have three possibilities. Either Ū
vanishes at some r0 > 0, or limr→∞ Ū(r) = Ū0 > 0, or limr→∞ Ū(r) = 0. In order
to exclude the possibility of Ū vanishing at a finite value r0 > 0 we argue as follows.
Since Ū ≤ λ for 0 ≤ r ≤ r0, by multiplying (2.9) by r and integrating we obtain

r
∂

∂r
[S(Ū)] ≥ −λr

2

2
,(2.13)

where S(Ū) = − ∫ 1

Ū
dξ
Q(ξ) . Notice that S(Ū) = log(Ū) + O(1) as Ū → 0+. Dividing

(2.13) by r and integrating in the interval [0, r], we arrive at

S(Ū(r)) ≥ S(λ) − λr2

4
.(2.14)

Therefore if Ū(r0) = 0, the left-hand side of (2.14) converges to −∞ as r → r+0
and the right-hand side remains bounded, yielding a contradiction.

Suppose then that limr→∞ Ū(r) = Ū0 > 0. Thus for r large enough (2.9) could
be approximated as

∂

∂r

(
r

Q(Ū0)

∂Ū

∂r

)
+ Ū0r = 0.

Integrating this equation twice one would obtain the following asymptotics for U
to the leading order:

Ū ∼ − Ū0r
2

4
,

but, since this asymptotics implies that Ū changes sign for large r we would derive a
contradiction again. Therefore, the only possibility that has been left is Ū(r) > 0 for
any r > 0 and limr→∞ Ū(r) = 0.

We can then compute in a more detailed manner the asymptotics of Ū(r) as
r → ∞. Notice that to the leading order (2.9) can be written for r → ∞ as

1

r

∂

∂r

(
r
∂(V̄ )

∂r

)
+ eV̄ = 0,(2.15)

where we have written V̄ = log(Ū). Equation (2.15), which is known as Emden’s equa-
tion and also as Bratu’s equation, can be transformed into an autonomous differential
equation by means of the change of variables

V̄ = −2 log(r) + W̄ , r = eξ

that transforms (2.15) into

∂2W̄

∂ξ2
+ eW̄ = 0.(2.16)

This equation can be explicitly solved. Standard analysis of the Hamiltonian
system (2.16) shows that its solutions behave asymptotically as

W̄ ∼ −θξ + C + o(1) as ξ → ∞,



A SINGULAR LIMIT OF THE KELLER–SEGEL MODEL 1203

where θ, C are real constants, and θ > 0. In the original set of variables this asymp-
totics reads as

Ū ∼ k(λ)

rβ(λ)
as r → ∞,(2.17)

where λ is as in (2.11) and β(λ) = 2 + θ > 2.
It is possible to derive a relation between β(λ) and the mass of the function Ū .

Integration of (2.9) in a ball BR(0) yields

∫
BR(0)

Ūd2x = −
∫
∂BR(0)

1

Q(Ū)

∂Ū

∂r
dSx.(2.18)

Using (1.4) and (2.17) we obtain the asymptotics

1

Q(Ū)

∂Ū

∂r
∼ −β(λ)

1

r
as r → ∞.

Therefore, taking the limit R→ ∞ in (2.18) we obtain∫
R2

Ūd2x = 2πβ(λ).(2.19)

This shows that the coefficient β(λ) > 2 is uniquely determined by the mass of Ū .
It turns out that for a rather large class of functions Q(ξ) the function β(λ) (or,

equivalently, the mass of Ū) is increasing with respect to λ. For instance, this property
is satisfied if the following assumption holds:

Q(s)

s
is decreasing with respect to s.(2.20)

For example, the function Q(s) = s
1+s satisfies this assumption. Suppose that

(2.20) is satisfied. We define

H(ξ, λ) ≡ λQ

(
ξ

λ

)
= ξ

Q(s)

s
,

where s = ξ
λ . We remark that under the assumption (2.20) H(ξ, λ) is increasing on

λ for each ξ fixed. If we assume also that Q(s) is differentiable, (2.20) would imply

that Q′(s) − Q(s)
s < 0 for s > 0. Combining this inequality with (1.4), the following

inequalities hold:

Q(s) < s for s > 0,(2.21)

Q′(s) < 1 for s > 0.(2.22)

We will assume also that Q(s) is an increasing function. Then

Q′(s) > 0 for s > 0.(2.23)

In order to conclude the proof of Theorem 2.1 we need some information con-
cerning the asymptotics of M(λ) for λ → 0+ and λ → ∞. The following result will
conclude the proof of the theorem.



1204 J. J. L. VELÁZQUEZ

Proposition 2.2. Suppose that (1.3), (2.20) hold. Let us denote as U(r, λ)
the solution of (2.9)–(2.11). Then the function M(λ) ≡ ∫

R2 U(r, λ)d2x is strictly
increasing on λ. Moreover,

lim
λ→0+

M(λ) = 8π, lim
λ→∞

M(λ) = +∞.(2.24)

A rigorous proof of Proposition 2.2 will be given in the appendix. Using formal
asymptotics we will now derive the behavior of the solutions of (2.9)–(2.11) as λ→ 0+

and λ→ ∞ since some of these asymptotic properties will be used later.
In the case λ → 0+ we remark that the monotonicity of Ū(r;λ) on r as well as

(2.11) shows that limλ→0+ Ū(r, λ) = 0. We can then approximate to the leading order
Q(Ū) by Ū in (2.9). More precisely, we introduce new variables ϕ, ξ by means of

Ū =
λ

8
ϕ, r =

√
8√
λ
ξ.(2.25)

The factors
√

8, 8 have been introduced here just to obtain some of the formulae
in forthcoming computations normalized in a convenient manner. Plugging (2.25) in
(2.9) and taking the limit λ→ 0+, (2.9) becomes

1

ξ

∂

∂ξ

(
ξ

ϕ0

∂ϕ0

∂ξ

)
+ ϕ0 = 0,(2.26)

where ϕ0(ξ;λ) = limλ→0+ ϕ(ξ;λ).
This equation has to be complemented with the boundary conditions (cf. (2.10),

(2.11))

ϕ0(0) = 8,
∂ϕ0

∂ξ
(0) = 0.(2.27)

The solution of (2.26), (2.27) is given by

ϕ0 =
8

(1 + ξ2)2
.(2.28)

Then

Ū(r;λ) ∼ λ

(1 + λr2

8 )2
as λ→ 0+(2.29)

whence the first formula from (2.24) follows. We will later need, in the study of the
mechanism of the formation of the concentration regions, the first higher correction
to (2.29). To this end, we just expand U, or, equivalently, ϕ in powers of λ. By
assumption Q(s) satisfies (1.4). We then look for ϕ in the form

ϕ = ϕ0 +
αλ

8
ϕ1 + . . . ,(2.30)

where ϕ0 is given by (2.28) and satisfies (2.26), (2.27). Standard computations show
that ϕ1 satisfies

1

ξ

∂

∂ξ

(
ξ

ϕ0

∂ϕ1

∂ξ

)
− 1

ξ

∂

∂ξ

(
ξϕ1

(ϕ0)2
∂ϕ0

∂ξ

)
+ ϕ1 = −1

ξ

∂

∂ξ

(
ξ
∂ϕ0

∂ξ

)
,(2.31)

ϕ1(0) = 0.(2.32)
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A particular homogeneous solution of (2.31) can be obtained using the fact that
there exists a transformation group of rescalings associated to (2.26). More precisely,
given ϕ0(ξ), a solution of (2.26), it is possible to compute a one-parameter family of
solutions given by ϕ0,λ(ξ) = λϕ0(

√
λξ). Differentiating this formula, as well as the

equation (2.26) with respect to λ at the particular value λ = 1, we obtain that the
following function solves the homogeneous part of (2.31):

ϕ1,h(ξ) =

[
16

(1 + ξ2)3
− 8

(1 + ξ2)2

]
.(2.33)

The analysis of (2.31), (2.32) becomes simpler using as variable the mass of ϕ.
This is commonly done in the study of radial solutions of the Keller–Segel model. Let
us define

m(ξ) =

∫ ξ

0

ηϕ1(η)dη.(2.34)

Using (2.31) it then follows after some computations that m solves

1

ϕ0

∂2m

∂ξ2
−
(
ϕ0,ξ

ϕ2
0

+
1

ϕ0ξ

)
∂m

∂ξ
+m = −ξϕ0,ξ.(2.35)

A solution of the homogeneous equation associated to (2.35) can be obtained by
applying the transformation (2.34) to (2.33). After multiplying the resulting solution
by a constant due to the linearity of the problem we obtain

mh(ξ) =
ξ2

(1 + ξ2)2
.

The solution of (2.35) can then be obtained using the standard variation of
constants method. Looking for solutions of (2.35) in the form m(ξ) = mh(ξ)f(ξ)
and using the fact that the boundary condition (2.32) combined with (2.31) implies
m(ξ) = O(ξ2) as ξ → 0+, we obtain, after some computations,

m(ξ) =
16

3

ξ2

(1 + ξ2)3
[ξ4 + 4ξ2 + 2(ξ2 + 1) log(ξ2 + 1)].(2.36)

Using (2.34) and (2.36) it would be possible to compute ϕ1(ξ). Notice, however,
that it will be more relevant for us to compute just the asymptotics of M(λ) as
λ→ 0+. The definition (2.34) implies that the total contribution of ϕ1(ξ) to the mass

M(λ) is παm(∞)
4 (cf. (2.30)). Using (2.36) it then follows that

M(λ) = 8π +
4παλ

3
+ o(λ) as λ→ 0+.(2.37)

The computed asymptotics (2.29), (2.37) will be useful in describing the formation
of regions with high values of u.

Let us remark that the asymptotics of the solutions of (2.9)–(2.10) can be derived
using standard asymptotic methods. It turns out that

M(λ) ∼ 2πaλν1√
L

as λ→ ∞,(2.38)

where a = |∂J0

∂r (ν1)| = 0.51914750 . . . , and ν1 is the first root of the Bessel function
J0.
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3. Singular points dynamics. In this section we will formally derive a limit
problem that describes the evolution of some solutions of (1.1)–(1.5) as ε→ 0+.

Notice that the analysis of the steady states in section 2 shows the existence of
stationary solutions of (1.1)–(1.2) having their mass concentrated in regions of size

√
ε

and an amount of mass M ∈ (8π,+∞). Our goal is to describe asymptotically solu-
tions of (1.1)–(1.5) containing finite amounts of mass of u that are concentrated near
some particular points xj(t). These regions will be termed from now on as concentra-
tion regions or singular points. In the neighborhoods of these singular points, solutions
will be described by means of the steady states described in section 2. Although there
are several differences at the technical level some of the ideas used in this section are
closely related to the study of the so-called spike dynamics in reaction-diffusion equa-
tions that has been studied by several authors in both steady and evolution settings
(cf. [2, 35, 36, 40, 50, 51]).

It is interesting to remark also that the evolution laws for the concentration
regions have some analogies with the motion of a set of point vortices, a problem that
has been thoroughly studied (cf. [43]). The analogies and differences of the resulting
limit problem with the problem of vortex dynamics will be discussed in more detail
below.

3.1. Global existence of solutions if ε > 0. The solutions of (1.1)–(1.5), in
contrast to those of (1.6), (1.7), are globally defined in time in the following proposi-
tion.

Proposition 3.1. For any u0(·) ∈ L1(R2)∩L∞(R2)∩Cα(R2), u0 ≥ 0, 0 < α < 1,
for any Q(·) ∈ C1(R+) satisfying (1.4), (1.5), and for any ε > 0, there exists a
unique solution u(·) ∈ C([0,∞] , L∞(R2))∩C∞((0,∞)×R

2) of (1.1)–(1.3) satisfying
u(x, t) = u0(x) with v uniquely determined by means of the formula

v(x, t) = − 1

2π

∫
R2

log(|x− y|)u(y, t)d2y.(3.1)

Remark 3.2. The choice of a particular v is required because for each given u,
the solution of (1.2) is not uniquely determined without suitable growth estimates at
infinity for v.

Proof of Proposition 3.1. Local existence can be obtained using classical methods
of semigroup theory (cf. [15]). Indeed, (1.1), (1.2) can be rewritten as the fixed point
problem

u(·) = et∆u0(·) −
∫ t

0

e(t−s)∆[∇(Gε(u)∇v(·, s))]ds(3.2)

with v given by (3.1) and where et∆ is the heat semigroup in the whole plane that is
given by the formula

et∆f(x) =
1

4πt

∫
R2

e−
(x−y)2

4t f(y)d2y.

Classical potential theory (cf. [14]) shows that

‖∇v(·, s)‖L∞(R2) ≤ C ‖u(·, s)‖L∞(R2) .(3.3)

On the other hand, regularity theory for parabolic equations (cf. [12]) yields

∥∥∇(et∆f(·))∥∥
L∞(R2)

≤ C√
t
‖f(·)‖L∞(R2) .(3.4)
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Estimates (3.3), (3.4) can be used as it is usual in semigroup theory (cf. [15]) to
obtain existence and uniqueness of a solution of (3.2) in C([0,∞], L∞(R2)∩Cα(R2)).
By classical regularity theory this solution is a classical solution (cf. [12]).

In order to show global existence notice that as long as u, solution of (1.1)–(1.3),
is bounded in L∞(R2), we have∫

R2

u(x, t)d2x =

∫
R2

u0(x)d
2x.(3.5)

Using potential theory it follows that for this range of times

‖∇v(·, t)‖L∞(R2) ≤ C

∫
R2

u0(x)d
2x.(3.6)

On the other hand, using the boundedness Q, Q′, as well as (1.2), we obtain

|∇(Gε(u)∇v)| ≤ C

(
|∇v| + 1

ε
u

)
.

The global boundedness of u, v (cf. (3.5), (3.6)) as well as regularity theory for
parabolic equations then implies

‖u(·, t)‖L∞(R2) ≤
C

ε

∫
R2

u0(x)d
2x, t > 0(3.7)

whence the global existence of a classical solution follows.
Remark 3.3. Estimate (3.7) is optimal in its ε dependence as will be checked in

the asymptotic formulae computed in the next subsection.

3.2. Derivation of the equations of motion of the concentration regions.
We now compute the “outer limit” that describes the solutions of (1.1)–(1.5) away
from the concentration regions. Assuming for the moment that a given solution can
be described by a family of concentration regions placed at some points x = xj(t),
j = 1, 2, . . . N, having, respectively, masses Mj(t), we can approximate u in the region
|x− xj(t)| �

√
ε as

u ≈
N∑
j=1

Mj(t)δ(x− xj(t)) + ureg(x, t),(3.8)

where Mj(t) > 8π, j = 1, 2, . . . N, and ureg(x, t) is a bounded function that will be
described in more detail later. To fix ideas we will assume that u(·, 0) ∈ L1(R2) and
that problem (1.1)–(1.5) is solved in R

2 × R
+. Moreover, as indicated in Proposition

3.1, we will determine uniquely v, solution of (1.2), by means of (3.1). Using (3.8),
(3.1) it would follow that

v(x, t) ≈ − 1

2π

N∑
j=1

Mj(t) log(|x− xj(t)|) + vreg(x, t),(3.9)

where

vreg(x, t) = − 1

2π

∫
R2

log(|x− y|)ureg(y, t)d2y.(3.10)
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By assumption in the outer region, |x− xj(t)| �
√
ε, u� ε−1, and therefore we

can use the following approximation (cf. (1.3)):

Gε(u) ≈ u as ε→ 0+.

Taking into account (1.1) and (3.9) we then obtain the following equation for ureg
in the outer region as ε→ 0+:

∂ureg
∂t

= ∆ureg +
1

2π

N∑
j=1

Mj(t)
(x− xj(t))

|x− xj(t)|2 · ∇ureg −∇(ureg∇vreg),(3.11)

where we have approximated u by ureg in the outer region and where vreg is given by
(3.10).

It is interesting to remark that near any of the points x = xi(t), (3.11) can be
approximated locally as

∂ureg
∂t

= ∆ureg +
Mi(t)

ri
· ∂ureg
∂ri

+ higher order terms,

where ri = |x − xi(t)| � 1. In other words, problem (3.11) behaves locally, near

each point xi(t) as the heat equation in “space dimension” (2 + Mi(t)
2π ). This feature

suggests that (3.10), (3.11) complemented with suitable initial data is a well-posed
mathematical problem (at least locally in time). This fact will be shown rigorously in
[48]. The only crucial information needed at this stage is that problem (3.10), (3.11)
admits solutions with bounded ureg.

In order to compute the motion of the singular points, and also to show that the
“ansatz” (3.8) leads to reasonable solutions of the original problem (1.1)–(1.5), we
need to study in a detailed manner the “inner region” near each point x = xi(t). To
this end we introduce a new set of inner variables:

u(x, t) =
1

ε
U(ξ, τ),(3.12)

x = xi(t) +
√
εξ, t = ετ.(3.13)

Using these variables (1.1)–(1.3) becomes

∂U

∂τ
−√

εẋi(t)∇ξU = ∆ξU −∇ξ(Q(U)∇ξv),(3.14)

∆ξv + U = 0.(3.15)

We need to complement (3.14), (3.15) with suitable matching conditions. No-
tice that for bounded ureg, there exists limx→xi(t) ∇xvreg(x, t) = ∇xvreg(xi(t), t) (cf.
(3.10)). Using (3.9) and (3.13) we obtain the following outer approximation for ∇v:

∇ξv ≈ −Mi(t)

2π
· ξ

|ξ|2 +Ai(t)
√
ε as |ξ| � 1, |x− xi(t)| � 1,(3.16)

where Ai(t) is the vector

Ai(t) = −
N∑

j=1, j �=i

Mj(t)

2π
· (xi(t) − xj(t))

|xi(t) − xj(t)|2 + ∇xvreg(xi(t), t).(3.17)
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The intuitive meaning of (3.16), (3.17) is rather clear. Indeed, notice that Ai(t) is
basically the “gravitational field” (that in the context of this problem is a “chemical
field”) induced by the singular points different from xi(t) plus a contribution due to
the regular part of the concentration of organisms ureg(xi(t), t).

To further simplify the problem (3.14)–(3.16) we introduce an auxiliary function
ψ such that

v =
√
εAi(t) · ξ + ψ.

Using this new variable instead of v, problem (3.14)–(3.16) becomes

∂U

∂τ
= ∆ξU −∇ξ(Q(U)∇ξψ) +

√
ε[ẋi(t)∇ξU −Ai(t)∇ξ(Q(U))],(3.18)

∆ξψ + U = 0,(3.19)

∇ξψ ∼ −Mi(t)

2π
· ξ

|ξ|2 as |ξ| � 1.(3.20)

Notice that in the inner scale the time scale for stabilization of solutions to steady
states is of order t ≈ ε (cf. (3.13)). Since these times are much shorter than those
expected for having important variations of zi(t), Ai(t), Mi(t), we will assume that
zi(t), Ai(t), Mi(t) are frozen and U, ψ have reached their equilibrium state in the
time scale τ . In other words, we will approximate (3.18)–(3.20) by means of the steady
state problem

∆ξU −∇ξ(Q(U)∇ξψ) +
√
ε[ẋi(t)∇ξU −Ai(t)∇ξ(Q(U))] = 0,(3.21)

∆ξψ + U = 0(3.22)

complemented with (3.20). Since, as it will be checked below, the solutions of (3.21),
(3.22) are close to the solutions of (2.5), (2.6) it follows that the main assumption
that is implicitly made here is that the steady states obtained in section 2 are stable.
The energy arguments in section 5 of [47] indicate that this is so.

In the limit ε → 0+ we can approximate (3.20)–(3.22) by means of the equation
for the steady states described in section 2 (cf. (2.5), (2.6)):

∆ξŪ −∇ξ(Q(Ū)∇ξ v̄) = 0,(3.23)

∆ξ v̄ + Ū = 0,(3.24)

∇ξ v̄ ∼ −Mi(t)

2π
· ξ

|ξ|2 as |ξ| � 1.(3.25)

It has been shown in section 2 that under assumption (2.20) the problem (3.23)–
(3.25) admits a unique radial solution for each Mi(t) > 8π. Therefore we then obtain
to the leading order the following approximation for U :

U ≈ Ū(ξ;λi(t)),(3.26)

where we recall that Ū(ξ;λ) is the unique solution of (2.9)–(2.11). Notice that we are
assuming that the value of λi that uniquely characterizes Ū is not fixed but changes in
time. Moreover, we are assuming that this change of λi takes place in the time scale
t. The fact that this is the right time scale for λi will be checked later “a posteriori,”
verifying the consistency of the derived asymptotics.



1210 J. J. L. VELÁZQUEZ

Our next goal is to show by means of a perturbative argument that it is possible
to obtain solutions close to (Ū , ψ̄) and ε small enough for each value of Ai(t) if ẋi(t) is
computed using a suitable compatibility condition. To this end we look for solutions
of (3.23)–(3.25) in the form

U = Ū +
√
εU1 + εU2 + . . . ,(3.27)

ψ = v̄ +
√
εv1 + εv2 + . . . .(3.28)

Using these expansions and (3.21), (3.22) we obtain

−∆ξU1 + ∇ξ(Q
′(Ū)∇ξ v̄U1) + ∇ξ(Q(Ū)∇ξv1) =[
ẋi(t)∇ξŪ −Ai(t)∇ξ(Q(Ū))

] ≡ h,(3.29)

∆ξv1 + U1 = 0,(3.30)

− ∆ξU2 + ∇ξ(Q
′(Ū)∇ξ v̄U2) + ∇ξ(Q(Ū)∇ξv2)

= −∂Ū
∂λ

dλ

dt
(t) + ∇ξ

(
Q′(Ū)∇ξv1 +

1

2
Q′′(Ū)∇ξ v̄U

2
1

)
(3.31)

+(Ai(t)∇ξ(Q
′(Ū)U1) − ẋi,1(t)∇ξŪ − ẋi,0(t)∇ξU1),

0 = U2 + ∆ξv2.(3.32)

We begin analyzing the system (3.29)–(3.30). To this end it is convenient to
rewrite this system in a more convenient manner. We define

F = U1 −Q(Ū)v1.(3.33)

Notice that (2.7) (with c = 0) implies ∇ξŪ = Q(Ū)∇ξ v̄. Taking this into account
(3.29), (3.30) become

∆ξF −∇ξ

(
Q′(Ū)∇ξŪ

Q(Ū)
F

)
+ h = 0.(3.34)

On the other hand, (3.30) can be rewritten as

∆ξv1 +Q(Ū)v1 + F = 0.(3.35)

Differentiating (3.24) with respect to ξk, k=1, 2, and using that ∇ξŪ=Q(Ū)∇ξ v̄,
we obtain that zk = ∂v̄

∂ξk
solves the equation

∆ξzk +Q(Ū)zk = 0

or, in an equivalent manner, the functions zi are eigenfunctions associated to a zero
eigenvalue of the homogeneous part of (3.35) considering F as a source there. There-
fore in order to solve the problem (3.34), (3.35) we need to impose the following
compatibility condition:∫

R2

Fzkd
2ξ =

∫
R2

F
∂v̄

∂ξk
d2ξ = 0, k = 1, 2.(3.36)

We need to reformulate the compatibility condition (3.36) in terms of function h
in (3.34). To this end we define functions gk as the solutions of the following equation:

∆ξ(gk) +
Q′(Ū)∇ξŪ

Q(Ū)
· ∇ξ(gk) =

∂v̄

∂ξk
, k = 1, 2,(3.37)
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satisfying

gk(ξ) = O(|ξ|) as |ξ| → 0,(3.38)

gk(ξ) = o(1) as |ξ| → ∞.(3.39)

The main properties of the functions gk(ξ) are contained in the result that follows
in Lemma 3.4.

Lemma 3.4. Problem (3.37)–(3.39) is uniquely solvable. The corresponding so-
lutions have the form gk(ξ) = ḡ(r) ξk|ξ| , where r = |ξ| and ḡ(r) > 0 for r > 0 and

satisfies

ḡ(r) = O(r) as r → 0,(3.40)

ḡ(r) = o(1) as r → ∞.(3.41)

Proof. Taking into account (3.37) it follows that ḡ(r) solves

ḡ′′(r) +
1

r
ḡ′(r) − ḡ(r)

r2
+
Q′(Ū(r))Ū ′(r)

Q(Ū(r))
· ḡ′(r) = v̄′(r).(3.42)

Taking into account that (3.42) is a first order equation for ḡ′(r) it follows that
there exists at least one solution of (3.42) such that ḡ(r) = O(r) as r → 0 and
ḡ(r) = o(1) as r → ∞. Uniqueness follows by means of a standard maximum prin-
ciple argument. Uniqueness for (3.37)–(3.39) follows also by the maximum principle.
Moreover, since v̄′(r) < 0 it follows that ḡ(r) solution of (3.42) is positive, since oth-
erwise, due to the asymptotics of ḡ as r → 0 and r → ∞, it would follow that ḡ
would have a negative minimum, but this is impossible due to the maximum principle
argument. This concludes the proof of the lemma.

Taking into account that the decay of gi and their smoothness at the origin provide
integrability for the integrals appearing in (3.36), we obtain that∫

R2

hgkd
2ξ =

∫
R2

[
∆ξF −∇ξ

(
Q′(Ū)∇ξŪ

Q(Ū)
F

)]
gkd

2ξ

=

∫
R2

F

[
∆ξ(gk) +

Q′(Ū)∇ξŪ

Q(Ū)
· ∇ξ(gk)

]
d2ξ

=

∫
R2

F
∂v̄

∂ξi
d2ξ.

The compatibility condition (3.36) then implies∫
R2

hgkd
2ξ = 0, k = 1, 2.(3.43)

Using (3.29) and (3.43) we obtain the following formula for ẋi(t) to the leading
order as ε→ 0+:

ẋi(t)

∫
R2

gk∇ξŪd
2ξ = Ai(t)

∫
R2

gk∇ξ(Q(Ū))d2ξ, k = 1, 2.

Since the angular dependence of gk and ∂Ū
∂ξk

is the same, it follows that

ẋi(t) = Γ(Mi)Ai(t),(3.44)
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where we have defined

Γ(M) ≡
∫

R2 g1(ξ, λ(M)) ∂
∂ξ1

(Q(Ū(ξ, λ(M))))d2ξ∫
R2 g1(ξ, λ(M)) ∂Ū∂ξ1 (ξ, λ(M))d2ξ

, M > 8π,(3.45)

where λ = λ(M) is the only value of λ associated to a given value of the mass M > 8π
(cf. (2.11) and Proposition 2.2).

Relation (3.44) provides the law of motion for the concentration regions placed
at x = xi(t), i = 1, . . . , N .

For further reference we derive some estimates for Γ(M) that will be included in
the following lemma.

Lemma 3.5. The function Γ(M) defined by (3.45) has the following properties:

0 < Γ(M) < 1,(3.46)

lim
M→8π+

Γ(M) = 1,(3.47)

lim
M→∞

Γ(M) = 0.(3.48)

Proof. Using (3.45) we obtain

Γ(M) =

∫
R2 g1Q

′(Ū) ∂Ū∂ξ1 d
2ξ∫

R2 g1
∂Ū
∂ξ1

d2ξ
.

As indicated before, g1 and ∂Ū
∂ξ1

have a similar angular dependence cos(θ). More-

over, as indicated in Lemma 3.4, g1 can be written as g1 = ḡ1(|ξ|) ξ1|ξ| with ḡ1 having a

constant sign. Moreover, ∂Ū
∂ξ1

= Ū ′(|ξ|) ξ1|ξ| . Since Ū is decreasing on |ξ| we obtain that

g1
∂Ū
∂ξ1∫

R2 g1
∂Ū
∂ξ1

d2ξ
> 0. Therefore (2.22), (2.23), and (3.45) yield (3.46). The asymptotics

(3.47) and (3.48) are a consequence of the asymptotics of Ū as λ→ 0 and λ→ ∞ as
well as (1.4), (1.5) and the regularity properties of Q(s).

It is interesting to notice that the monotonicity of Γ(M) on M as well as (3.44)
implies that for a given value of Ai(t) its effect on the velocity of the singular point
is smaller. In other words, it is harder to move larger singular points, as could be
expected in an intuitive manner.

We remark that the expansion (3.27), (3.28) loses its validity for |ξ| large. Indeed

(2.17), (2.19) imply Ū ∼ K̄(Mi)

|ξ|
Mi
2π

as |ξ| � 1. Therefore for large |ξ| we can approximate

(3.34) as

∆ξF +
Mi

2π
· ξ

|ξ|2∇ξF =
(ẋi(t) −Ai(t))Mi

2π
· ξ

|ξ|Mi
2π +2

.

The asymptotics for the solutions of this problem is given by

F ∼ (ẋi(t) −Ai(t))K̄(Mi)

|ξ|Mi
2π −1

· ξ|ξ| as |ξ| � 1.(3.49)

On the other hand, the leading terms in (3.35) as |ξ| → ∞ are ∆ξv1 + F = 0.
Using (3.49), as well as the fact that the angular dependence of v1 is the same as that
of ẋi(t) · ξ

|ξ| , it follows that v1 = O( 1
|ξ| ) as |ξ| → ∞. Therefore U1 ∼ F as |ξ| → ∞.

Taking into account (2.17) it then follows that the asymptotics (3.27) breaks down at
distances |ξ| ∼ 1√

ε
or, equivalently, for |x− xi(t)| ≈ 1.
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3.3. Computation of the rate of change of the concentration regions.
Notice that the set of equations (3.10), (3.11), (3.44), (3.45) describes a set of equa-
tions for the concentration regions coupled with the external fields ureg, vreg that
has to be completed with the evolution law for the mass of the concentration regions
Mi(t). Computing the evolution law for Mi(t) is equivalent to computing that of λi(t)
(cf. (3.26)). This can be done by means of a matching condition between the outer
contribution due to U2 (cf. (3.27)) and the inner contribution due to ureg. Although
this detailed computation is interesting, in order to check the consistency of the ob-
tained asymptotics we will compute the rate of change of Mi(t) by means of a simpler
argument in Lemma 3.6 that consists of directly computing the derivative of Mi(t)
using the asymptotics already computed.

Lemma 3.6. For the formal solutions of (1.1)–(1.5) that behave asymptotically as
in (3.8) the rate of change of the mass of the concentration regions is given by

dMi(t)

dt
= ureg(xi(t), t)Mi(t), i = 1, . . . , N.(3.50)

The time scale for stabilization of u in regions close to the concentration region
is, up to logarithmic terms, of order ε. This is much shorter than the time scale
associated to the macroscopic evolution of the system that is of order one. Therefore,
in order to compute the amount of mass lost by ureg(x, t) in a neighborhood of each
concentration region we can assume that it can be described by a steady state. We
then fix δ > 0 small, and integrate (3.11) in a ball Bδ(xi(t)). After some integrations
by parts we obtain

d

dt

(∫
U\Bδ(xi(t))

uregd
2x

)
(3.51)

= −
∫
∂Bδ(xi(t))

∂ureg
∂n

dSx − 1

2π

N∑
j=1

Mj(t)

∫
∂Bδ(xi(t))

ureg
(x− xj(t)) · n
|x− xj(t)|2 dSx

+

∫
∂Bδ(xi(t))

ureg
∂vreg
∂n

dSx +

∫
∂U
f(x, t)dSx,

where U is a domain whose size is of order one containing only the concentration
region xi(t) and f(x, t) are the fluxes of u away from U . Notice that the last term
on the right-hand side of (3.51) does not contribute to the variation of the mass of
the concentration region in x = xi(t). On the other hand, the regularity properties
of ureg, vreg (cf. [48]), show that in the limit δ → 0, the contribution of the first and
third term on the right-hand side of (3.51) approaches zero. The same occurs with
the contributions in the second term, except for the one due to j = i. Then, taking
into account that the flux of u lost for ureg yields an increase in Mi(t), we obtain

dMi(t)

dt
=
Mi(t)

2π
lim
δ→0

(∫
∂Bδ(xi(t))

ureg(x, t)
(x− xi(t)) · n
|x− xi(t)|2 dSx

)
,

and taking into account that
∫
∂Bδ(xi(t))

(x−xi(t))·n
|x−xi(t)|2 dSx = 2π, we arrive at (3.50).

Notice that since dMi(t)
dt ≥ 0, the mass of each concentration region is an increasing

function, as could be expected on account of the attractive character for the organisms.
We summarize here the main result concerning the motion of the concentration

regions as a formal theorem, with the understanding that the proof has been obtained
only at the level of formal asymptotics.
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Theorem 3.7 (formal). Suppose that u solves (1.1)–(1.5). It is possible to obtain
formal asymptotic expansions for the solutions of (1.1)–(1.5) that in the limit ε → 0
behave asymptotically as in (3.8), where the dynamics of ureg, xi(t), Mi(t) is given by
the following set of equations:

∂ureg
∂t

= ∆ureg +
1

2π

N∑
j=1

Mj(t)
(x− xj(t))

|x− xj(t)|2 · ∇ureg −∇(ureg∇vreg),(3.52)

vreg(x, t) = − 1

2π

∫
R2

log(|x− y|)ureg(y, t)d2y,(3.53)

ẋi(t) = Γ(Mi(t))Ai(t), i = 1, . . . , N,(3.54)

Ai(t) = −
N∑

j=1, j �=i

Mj(t)

2π
· (xi(t) − xj(t))

|xi(t) − xj(t)|2

+∇xvreg(xi(t), t), i = 1, . . . , N,(3.55)

dMi(t)

dt
= ureg(xi(t), t)Mi(t), i = 1, . . . , N,(3.56)

where function Γ(M) is given in (3.45).

Remark 3.8. Notice that all the dependence of the limit problem in the particular
shape of the nonlinearity Gε(u) is contained in Γ(M).

Remark 3.9. As indicated below there are some analogies between (3.52)–(3.56)
and the equations for the evolution of a set of point vortices (cf. [43]). In both cases a
set of points moves with a velocity that can be obtained by adding the contributions
of the other points. In both cases the interaction between the points decays according
to the law 1

r . A first difference is that in the case of the concentration regions obtained
above the interaction between points follows a Newtonian gravitational law. On the
contrary, in the case of vortices this interaction law should be replaced by the formula
of the velocity induced by a fluid at a given point by a vortex line, which must
be computed using Biot–Savart’s law. In (3.52)–(3.56) there is also a background
field ureg interacting with the concentration regions. It is possible to also imagine
situations in fluid mechanics where a background vorticity field could interact with a
set of point vortices. There are, of course, several differences between both problems,
but also enough analogies to suggest that perhaps some of the methods of analysis
used in the theory of point vortices could have some usefulness for the study of (3.52)–
(3.56).

Remark 3.10. The set of equations (3.52)–(3.56) is the main result of section 3.
This problem defines an evolution problem for the points x = xi(t), whose dynamics
is coupled with that of the fields ureg, vreg. Due to the fact that the domain where
the problem has to be solved is not prescribed, but is part of the problem to be
solved, the mathematical well-posedness of this system of equations is not standard.
A rigorous analysis of the well-posedness of this problem can be found in [48]. This
well-posedness result can be expected only locally in time because there are at least
two different ways in which the solution of the problem (3.52)–(3.56) might develop
singularities in a finite time. First, solutions could have additional blow-ups analogous
to those considered in [17, 18, 19] at points where u, v are bounded for previous times.
On the other hand, concentration regions could coalesce and merge in a finite time.
Indeed, if two concentration regions at positions xk(t), x	(t) are close enough, their
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motion could be approximated by means of the system of ODEs (cf. (3.55))

ẋk(t) = −Γ(Mk(t))M	(t)

2π
· (xk(t) − x	(t))

|xk(t) − x	(t)|2 ,

ẋ	(t) = −Γ(M	(t))Mk(t)

2π
· (x	(t) − xk(t))

|x	(t) − xk(t)|2 .

Therefore

d

dt
(xk(t) − x	(t)) = − (Γ(M	(t))Mk(t) + Γ(M	(t))Mk(t))

2π
· (x	(t) − xk(t))

|x	(t) − xk(t)|2 .

Since the coalescence process is rather fast, the masses of the concentration regions
can be considered to be constant during the process. If we denote the coalescence
time as t∗, then it follows that

|x	(t) − xk(t)| ∼
√
C(t∗ − t) as t→ t∗,(3.57)

where C = (Γ(M�(t
∗))Mk(t∗)+Γ(M�(t

∗))Mk(t∗))
4π . It then follows that the velocities of

the concentration regions would become singular at t = t∗. One could also imagine
coalescence of more than two concentration regions simultaneously, but such events
should be “nongeneric.” Clearly, in the original problem (1.1)–(1.5) functions u, v
would have a complicated shape during this process that will not be considered here.
In particular this analysis does not establish in a completely rigorous manner that the
solutions of (1.1)–(1.5) would collapse as indicated in (3.57) if ε > 0. In a strict sense
(3.57) holds only for the limit equations (3.52)–(3.56). In order to obtain rigorous
coalescence results for the solutions (1.1)–(1.5) a careful analysis of the dynamics of
two merging concentration regions should be made. It is unlikely that this could
be achieved by means of explicit analytic formulae. In particular the quasi-steady
approximation (3.21)–(3.22) would not hold during the whole coalescence process.

3.4. Analysis of a boundary layer in the inner region. In order to conclude
this section we will verify that due to (3.56) (cf. (3.50)) it is possible to match the inner
expansion (3.27) with the outer contribution of u as x → xi(t) that is just given by
ureg(xi(t), t). This will be done to check the consistency of the computed asymptotics.
In order to avoid tedious computations just a sketch of the main arguments will be
given. We recall that (U2, v2) solves the system (3.31), (3.32). We introduce a new
variable as

F2 = U2 −Q(Ū)v2.(3.58)

Then (3.31) becomes

−∆ξF2 + ∇ξ(Q
′(Ū)∇ξ v̄F2)

= −∂Ū
∂λ

dλ

dt
(t) + ∇ξ

(
Q′(Ū)∇ξv1 +

1

2
Q′′(Ū)∇ξ v̄U

2
1

)
(3.59)

−ẋi,1(t)∇ξŪ + (Ai(t)∇ξ(Q
′(Ū)U1) − ẋi,0(t)∇ξU1).

Let us denote as θ the angle that makes a given direction with the direction of
Ai(t). In another words, given a vector ξ, we define θ by means of

Ai(t) · ξ|ξ| = |Ai(t)| cos(θ).(3.60)
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Taking into account the invariance under rotations of (3.29) and (3.30), and also
that the term h in (3.29) has the form h(ξ, t) = h̃(r, t) cos(θ), where r = |ξ|, it follows,
using separation of variables, that U1, v1 have the particular form

U1 = Ũ1(r) cos(θ), v1 = ṽ1(r) cos(θ),(3.61)

where Ũ1(r), ṽ1(r) solve a system of ordinary differential equations whose precise
form will not be needed here, and where from now on, by simplicity, we will not
write explicitly the dependence of the different functions on t, λ. The only relevant
information about Ũ1(r), ṽ1(r) that we will need is that both functions are bounded in
compact sets, and that, due to (3.30), (3.33), and (3.49), they satisfy the inequalities

Ũ1 = O

(
1

r
Mi
2π −1

)
, ṽ1 = O

(
1

r

)
as r → ∞.(3.62)

We now proceed to simplify the different terms on the right-hand side of (3.59).

First, notice that Ū = Ū(r;λ) is radial for each λ. Therefore ∂Ū
∂λ is a radial function.

On the other hand, using the formula cos2(θ) = 1+cos(2θ)
2 , as well as the formulae for

the gradient and the divergence of a function in polar coordinates, it can be seen after
some computations that

∇ξ

(
Q′(Ū)∇ξv1 +

1

2
Q′′(Ū)∇ξ v̄U

2
1

)
=

1

2r

∂

∂r
(rf0(r)) + f1(r) cos(2θ)

+f2(r) sin(2θ),

where f2, f3 are bounded functions that decay fast enough as r → ∞ and f0(r) is
given by

f0(r) = Q′(Ū(r))Ũ1(r)ṽ
′
1(r) +

1

2
Q′′(Ū(r))v̄′(r)(Ũ1(r))

2.(3.63)

The term −ẋi,1(t)∇ξŪ gives a contribution with the angular dependence cos(θ).
The contribution of this term can be analyzed exactly as it was analyzed for the terms

U1, v1. Finally, using (3.54) and (3.60), as well as the formulae cos2(θ) = 1+cos(2θ)
2 ,

sin2(θ) = 1−cos(2θ)
2 , it follows after some computations that the last term in (3.59)

can be written as

(Ai(t)∇ξ(Q
′(Ū)U1) − ẋi,0(t)∇ξU1) =

1

r

∂

∂r
(rg0(r)) + g1(r) cos(2θ),

where g0(r), g1(r) are bounded functions, g1(r) decays fast enough as r → ∞, and
g0(r) satisfies

g0(r) =
|Ai(t)|

2
[Γ(Mi)Ũ1(r) −Q′(Ū(r))Ũ1(r)] = O

(
1

r
Mi
2π −1

)
as r → ∞.(3.64)

Function F2 can be decomposed as F2 = F̃2,0(r)+F̃2,1(r) cos(θ)+F̃2,2,1(r) cos(2θ)+

F̃2,2,2(r) sin(2θ). The main contribution to U2 as r → ∞ is due to the radial term

F̃2,0(r) that solves the ODE

1

r

∂

∂r

(
r
∂F̃2,0

∂r

)
− 1

r

∂

∂r

(
r
Q′(Ū)Ū ′

Q(Ū)
F̃2,0

)

+
1

r

∂

∂r
(r(g0(r) + f0(r))) =

∂Ū

∂λ
λ̇i(t).
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We can write F̃2,0 = F̃2,0,1 + F̃2,0,2, where F̃2,0,1, F̃2,0,2 solve, respectively, the
equations

1

r

∂

∂r

(
r
∂F̃2,0,1

∂r

)
− 1

r

∂

∂r

(
r
Q′(Ū)Ū ′

Q(Ū)
F̃2,0,1

)
(3.65)

+
1

r

∂

∂r
(r(g0(r) + f0(r))) = 0

and

1

r

∂

∂r

(
r
∂F̃2,0,2

∂r

)
− 1

r

∂

∂r

(
r
Q′(Ū)Ū ′

Q(Ū)
F̃2,0,2

)
=
∂Ū

∂λ
λ̇i(t).(3.66)

Integrating (3.65) once it is possible to find F̃2,0,1 in an elementary manner. After
some elementary computations we obtain

F̃2,0,1 = aQ(Ū) −Q(Ū(r)) ·
∫ r

0

[g0(η) + f0(η)]

Q(Ū(η))
dη,

where a is a real constant. Using (1.4), (2.17), (3.63), (3.64) and the fact that Mi

2π > 4,

it follows that limr→∞ F̃2,0,1 = 0. It remains only to compute the contribution due

to F̃2,0,2. To this end, notice that after multiplying (3.66) by r, integrating, and after
solving the resulting differential equation we arrive at

F̃2,0,2 = λ̇i(t)Q(Ū(r))

∫ r

0

[∫ η

0

ξ
∂Ū

∂λ
(ξ)dξ

]
dη

ηQ(Ū(η))
+ bQ(Ū(r)),

where b is a real number. Using (1.4), (2.17) it follows that

lim
r→∞ F̃2,0,2 =

[
λ̇i(t)

∫ ∞

0

s
∂Ū

∂λ
(s)ds

]
lim
r→∞

[
Q(Ū(r))

∫ r

0

dη

ηQ(Ū(η))

]

=
2πλ̇i(t)

Mi(t)

∫ ∞

0

s
∂Ū

∂λ
(s)ds.

To compute
∫∞
0
s∂Ū∂λ (s)ds we differentiate (2.9) with respect to λ. Multiplying by

r and integrating on r > 0, we then obtain∫ ∞

0

s
∂Ū

∂λ
(s)ds = lim

r→∞

[
r

Ū2

∂Ū

∂λ

∂Ū

∂r
− r

Ū

∂

∂r

(
∂Ū

∂λ

)]

= − lim
r→∞

[
r
∂

∂r

(
∂(log(Ū))

∂λ

)]
=
M ′
i(λ)

2π
.

Therefore

lim
r→∞ F̃2,0,2 =

1

Mi(t)

dMi(t)

dt
.

Then using (1.4), (2.17), (3.32), (3.58) as well as the fact that the only term in
F2 that yields a nonzero contribution in the matching condition is F̃2,0,2 we obtain
the matching condition

U2 ∼ 1

Mi(t)

dMi(t)

dt
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as |ξ| � 1, |x − xi(t)| � 1. Taking into account (2.17), (3.12), (3.27), and (3.49) we
obtain the matching condition

uinner ∼ 1

Mi(t)

dMi(t)

dt
,

as |ξ| � 1, |x− xi(t)| � 1. Assuming, as we would expect, that uinner coincides with
ureg(xi(t), t) that provides the outer contribution to u as ε→ 0+, we then obtain the
equation

ureg(xi(t), t) =
1

Mi(t)

dMi(t)

dt

that is equivalent to (3.56). Therefore the consistency of the computed asymptotics
follows.

4. Concluding remarks. In this paper a system of equations for the dynamics
of a set of points whose evolution is coupled with a parabolic-elliptic system has been
derived (cf. (3.52)–(3.56)). This system has been obtained by taking as the starting
point a singular perturbation problem for a system of equations of the Keller–Segel
type (cf. (1.6), (1.7)). The manner in which these singular points can develop in a
finite time by means of a blow-up mechanism for the solutions of the limit problem
has also been described. The significance of the derived results is that they provide
a natural way of continuing the solutions of the limit problem (1.1), (1.2) after Dirac
mass formation takes place for this model.

5. Appendix: Proof of Proposition 2.2. In this appendix we prove Propo-
sition 2.2. Let us define F (r) =

∫ r
0
ξU(ξ)dξ. Using (2.9) we obtain

Frr − Fr
r

+Q

(
Fr
r

)
F = 0,(5.1)

and (2.11) implies

F (r) ∼ λr2

2
as r → 0+.(5.2)

We will denote as F (r) the solution of (5.1), (5.2), although occasionally the
notation F (r, λ) will be used if the dependence on λ plays a crucial role.

Let us introduce the new variable

r = eξ−
1
2 log(λ).(5.3)

Using ξ as the new variable, (5.1) becomes

Fξξ − 2Fξ +
e2ξ

λ
Q(λe−2ξFξ)F = 0,(5.4)

or, in an equivalent manner,

Fξ = V,(5.5)

Vξ = 2V − e2ξ

λ
Q(λe−2ξV )F,(5.6)
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where (5.2) implies the condition

F ∼ e2ξ

2
, V ∼ e2ξ as ξ → −∞.(5.7)

Notice that assumption (2.20) implies

e2ξ

λ
Q(λe−2ξV ) < lim

θ→∞

[
θQ

(
V

θ

)]
= V.(5.8)

Let us denote as (F̄ , V̄ ) the solution of

F̄ξ = V̄ ,(5.9)

V̄ξ = 2V̄ − V̄ F̄(5.10)

satisfying (5.7). Function (F̄ , V̄ ) is easily computed and is given by

F̄ =
4

(1 + 8e−2ξ)
, V̄ =

64e−2ξ

(1 + 8e−2ξ)2
, V̄ = 2F̄ − (F̄ )2

2
.

On the other hand, using (5.8) it follows, arguing by comparison, that (F, V )
satisfies

V > 2F − F 2

2
, F > 0.(5.11)

Actually, a similar argument can be applied to any two values of λ. Given λ1 < λ2,
let us consider the corresponding solutions of (5.5)–(5.7) and let us denote them as
(F1, V1), (F2, V2), respectively. Using (5.1), (5.2) it follows that

Fi(r) ∼ λir
2

2
− Q(λi)λi

16
r4 + . . . as r → 0, i = 1, 2,

or, equivalently, using (5.3),

Fi ∼ e2ξ

2
− Q(λi)

16λi
e4ξ as ξ → −∞, i = 1, 2,(5.12)

Vi ∼ e2ξ − Q(λi)

4λi
e4ξ as ξ → −∞, i = 1, 2.(5.13)

Therefore

Vi = 2Fi − Q(λi)

2λi
(Fi)

2 + . . . as ξ → −∞, i = 1, 2.(5.14)

By (2.20), Q(λ1)
λ1

> Q(λ2)
λ2

. Then, for F small enough we have

V2(F ) > V1(F ).(5.15)

We can deduce some general properties of F, the solution of (5.1), (5.2). Com-
bining (5.5), (5.11) we easily obtain

lim inf
r→∞ F (r) ≥ 4(5.16)
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for any λ > 0. Using (5.1) we obtain Frr ≤ Fr

r , whence Fr

r ≤ C. Notice that (1.3),
(1.4) imply Q(ξ) ≥ βξ for ξ ∈ (0, C). Using these estimates and (5.16) it then follows
using (5.1) that

Frr − β

r
Fr ≤ 0

for some β < 1 and r large enough. Then Fr ≤ C1 + C2r, whence limr→∞(Fr

r ) = 0.
Therefore, it is possible to approximate (5.1) as r → ∞, by means of the equation
Frr − Fr

r + FFr

r = 0. Moreover, since F ≥ 4 − δ0, as r → ∞ for some δ0 > 0, it then
follows that F approaches a constant value as r → ∞:

lim
r→∞F (r) = M(λ) < +∞.(5.17)

In order to show the monotonicity of M(λ) we will show that (5.15) is satisfied for
all the values of F, and not only for small values of F . Suppose that there exists F̃ > 0
such that V2(F̃ ) = V1(F̃ ) ≡ Ṽ . Let us denote as ξi(F̃ ), i = 1, 2, the corresponding
value of ξ where this identity is reached. Using (5.5) it follows that

∫ F̃

Fi(ξ)

(
1

Vi(f)
− 1

2f

)
df +

1

2
log

(
F̃

Fi(ξ)

)
= ξi(F̃ ) − ξ, i = 1, 2.

Using (5.7) and taking the limit ξ → −∞ it then follows that

∫ F̃

0

(
1

Vi(f)
− 1

2f

)
df +

1

2
log(F̃ ) = ξi(F̃ ), i = 1, 2.(5.18)

Using (5.15) we then obtain that ξ2(F̃ ) < ξ1(F̃ ). Since λ2 > λ1 it follows from
(2.20) that

e2ξ2(F̃ )

λ2
Q(λ2e

−2ξ2(F̃ )Ṽ ) <
e2ξ1(F̃ )

λ1
Q(λ1e

−2ξ1(F̃ )Ṽ ),

and using (5.5), (5.6) we then obtain that at the intersection point (F̃ , Ṽ ) it holds
that

dF1

dξ
(ξ1(F̃ )) =

dF2

dξ
(ξ2(F̃ )),

dV1

dξ
(ξ1(F̃ )) <

dV2

dξ
(ξ2(F̃ )),

or, equivalently, dV1

dF < dV2

dF . However, this is impossible due to (5.15) that was satisfied

for 0 < F < F̃ . Hence, (5.15) holds during the whole evolution of the trajectories in
the upper plane. Using this, it then follows that

M(λ1)

2π
= F∞ ≡ lim

r→∞F1(r) ≤ lim
r→∞F2(r) =

M(λ2)

2π
.

Actually, this inequality is strict. In order to show that, we argue as follows.
Notice that (5.15) and (5.18) imply

ξ2(F ) < ξ1(F ).(5.19)
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Combining (5.5) and (5.6) we obtain

dVi
dF

= 2 − e2ξi(F )

λi
Q(λie

−2ξi(F )Vi)
F

Vi
, i = 1, 2,(5.20)

where Vi = Vi(F ). Using (5.19) and taking into account (2.20) as well as the fact that
λ2 > λ1, it follows that

e2ξ2(F )

λ2
Q(λ2e

−2ξ2(F )V2) <
e2ξ1(F )

λ1
Q(λ1e

−2ξ1(F )V2).

On the other hand, (2.20) and (5.15) imply

Q(aV2)

V2
=
V1

V2

Q
(
a V1

V1/V2

)
V1

<
Q(aV1)

V1
.

Therefore

e2ξ2(F )

λ2

Q(λ2e
−2ξ2(F )V2)

V2
<
e2ξ1(F )

λ1

Q(λ1e
−2ξ1(F )V1)

V1
.(5.21)

Using (5.20) and (5.21) we obtain

d(V2 − V1)

dF
=

[
e2ξ1(F )

λ1

Q(λ1e
−2ξ1(F )V1)

V1
− e2ξ2(F )

λ2

Q(λ2e
−2ξ2(F )V2)

V2

]
> 0,(5.22)

an inequality that remains valid as long as Vi(F ), i = 1, 2. Combining (5.15), (5.22)
we then obtain that since V1(F∞) = 0, we have V2(F ) > 0. Henceforth

lim
r→∞F2(r) > F∞.

In order to conclude the proof of Proposition 2.2 it remains to show that limλ→0+

M(λ) = 8π and limλ→∞M(λ) = ∞ (or, in an equivalent manner, F (∞, λ) → 4
as λ → 0+, F (∞, λ) → ∞ as λ → ∞). In section 2 we have already obtained
these asymptotics in a formal manner. We provide here a rigorous proof of them.
Taking into account the monotonicity of V (F ) on λ it follows that V (F ) → V̄ (F )
as λ → 0+, where (F̄ , V̄ ) is the solution of (5.9), (5.10) satisfying (5.7), whence the
computation concerning the first limit follows. On the other hand, a comparison

argument shows that F ≤ e2ξ

2 , V ≤ e2ξ. For ξ of order one (perhaps large) and

V positive of order one, we have (cf. (1.3)) e2ξ

λ Q(λe−2ξV ) → 0 as λ → ∞. Taking
into account (5.5), (5.6) it then follows that F becomes arbitrarily large if λ is large.
Henceforth limλ→∞ F (∞, λ) = ∞.
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Abstract. This paper continues the analysis started in the first part of this article (cf. [J. J. L.
Velázquez, SIAM J. Appl. Math., 64 (2004), pp. 1198–1223]). It was seen there, using the method
of matched asymptotics, that a regularized version of the Keller–Segel system admits, for a suitable
asymptotic limit, solutions with some regions of high concentrations for the cell density. This paper
considers the relation between the phenomenon of blow-up for the limit problem and the dynamics of
the concentration regions described in [J. J. L. Velázquez, SIAM J. Appl. Math., 64 (2004), pp. 1198–
1223]. In particular, this paper analyzes the precise way in which the regularization introduced in the
Keller–Segel system stops the aggregation process and yields the formation of concentration regions.
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1. Introduction. The purpose of this paper is to continue the analysis begun in
[22]. That paper studied a regularized version of a Keller–Segel model whose solutions
blow-up in finite time.

A characteristic feature of some of the models that have been introduced in the
literature to describe chemotactic aggregation is that in some cases their solutions
blow-up in a finite time. This is a well-known fact, for instance, for the Keller–Segel
model (cf. [16]). In particular, the study of blow-up for this model has received a lot
of attention in recent years (cf. [1], [2], [3], [5], [6], [7], [8], [9], [10], [12], [13], [14],
[15], [17], [18], [19], [21]).

The presence or absence of blow-up for each particular form of the Keller–Segel
model, as well as the asymptotics of the solutions near the blow-up time, depends very
sensitively on the choice of the aggregation function that measures cell sensitivity to
the gradient of chemicals. In particular, for chemotactic functions that are linear in
the cell concentration, the solutions of the resulting Keller–Segel model yield in some
general circumstances Dirac mass aggregation in finite time (cf. [8], [9]).

In [22] we addressed the problem of describing the behavior of the solutions of a
Keller–Segel system whose chemotactic function behaves linearly for values of the cell
concentration that are not too high but are saturating to a constant value for high
cell concentrations.

In a more precise manner, the problem considered in this paper is the following:

∂u

∂t
= ∆u−∇(Gε(u)∇v), x ∈ R

2, t > 0,(1.1)

∆v + u = 0, x ∈ R
2, t > 0,(1.2)

where u denotes the concentration of the organism and v is the concentration of the
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chemical secreted by it. We will make the following choice of chemotactic function:

Gε(u) =
1

ε
Q(εu),(1.3)

where ε > 0 is a small parameter, and the function Q(ξ) is an increasing function
satisfying

Q(s) = s− αs2 + · · · as s→ 0,(1.4)

Q(s) ∼ L as s→ ∞,(1.5)

where L > 0, α > 0 are given numbers. A typical example would be Q(s) = s
1+s .

In other words, instead of assuming that the chemotactic function Gε(u) increases
without limit as the concentration of the organism becomes high, it will be assumed
that the mobility of the organism saturates to a constant value. Other choices of
Gε(u) would be certainly possible, but we will use this particular one just for the sake
of simplicity.

System (1.1)–(1.5) is a particular case of the Keller–Segel model. Let us remark
that for ε = 0 the system (1.1)–(1.5) formally becomes

∂u

∂t
= ∆u−∇(u∇v), x ∈ R

2, t > 0,(1.6)

∆v + u = 0, x ∈ R
2, t > 0.(1.7)

It is known that solutions of the problem (1.6), (1.7) might blow-up in a finite
time T > 0 (cf. [4], [8], [15], [17]). As long as u, v remain bounded, the limit from
(1.1)–(1.5) to (1.6), (1.7) does not pose any serious mathematical problem. However,
the situation becomes mathematically more interesting for times t > T , because the
solutions of (1.1)–(1.5) are globally defined in time, something that does not occur for
the solutions of (1.6), (1.7). It is then natural to ask what happens to the solutions
of (1.1)–(1.5) as ε→ 0 and t > T .

In [22] it was seen that it is possible to obtain using matched asymptotics a set
of solutions of the regularized problem (1.1)–(1.5) that in the limit ε → 0 can be
decomposed in a regular part plus a set of “concentration regions” where the values
of u are very high, containing an amount of mass of order one in a very localized
region. Such solutions behave asymptotically as

u ≈
N∑
i=1

Mi(t)δ(x− xi(t)) + ureg(x, t),(1.8)

where ureg(x, t) is a bounded function.
The detailed dynamics of the points xi(t), as well as their masses Mi(t) and the

values of ureg(x, t), has been derived in [22].
The goal of this paper is to verify that the fact that the solutions of (1.6), (1.7)

might blow-up in a finite time provides a mechanism of transition between bounded
solutions of (1.1)–(1.5), i.e., solutions containing only the regular part ureg(x, t) and
solutions containing concentration regions as in (1.8). More precisely, we will describe
how the blow-up mechanism described in [8], [9] evolves in a short transition time to
a region of high density as those described in [22].

The detailed manner in which this transition from a “blowing up” regime evolves
to a “quasi-steady regime” characterized by high cell densities depends on some details



1226 J. J. L. VELÁZQUEZ

of the function Q(·) given above. Nevertheless, only a few characteristics of the
function Q(·) play a crucial role, namely, the precise quadratic corrective behavior as
s→ 0 given in (1.4). The analysis in this paper should be modified for nonlinearities
Q(·) having corrective behaviors different from the one given in (1.4). In any case,
the goal of this paper is not to obtain the most general description of the transition
between the blowing up regime and the quasi-steady regime, but only to point out
that this feature takes place and to describe methods for performing the analysis of
such transitions.

In section 2 of this paper the main characteristics of the blow-up mechanism for
(1.6), (1.7) obtained in [8], [9] will be recalled. Section 3 summarizes some of the
basic properties of the stationary states of (1.1)–(1.5) that have been derived in [22].
Section 4 describes in a detailed manner the transition between the blowing up regime
and the quasi-steady regime.

2. Formation of concentration regions: The limit ε = 0. In this section
we recall the mechanism of Dirac mass formation described in [8], [9] for the system
(1.6), (1.7).

The main idea of this section is the following. For u bounded we can approximate
(1.1), (1.2) in the limit ε→ 0 by the simpler model (1.6), (1.7).

It is a well-known fact that solutions of (1.6), (1.7) might develop singularities
in finite time (cf. [4], [8], [15], [17]). Moreover, such solutions develop Dirac masses
containing exactly the amount of mass 8π (cf. [8], [9], [18]) in a finite time, which will
be denoted henceforth as t = T > 0.

Let us state in Theorem 2.1 the main result that will be recalled in this section.
Theorem 2.1. There exists a solution of (1.6), (1.7) that yields concentration of

an amount of mass 8π at the origin. The asymptotics of this solution near the origin
is given by

u(x, t) ∼ 8

(T − t)(ε(| log(T − t)|))2
1(

1 + |x|2
(T−t)(ε(| log(T−t)|))2

)2

for |x| = O(ε(| log(T −t)|)√(T − t)) and t→ T−, where the asymptotics ε(τ) is given
by

ε(τ) ∼ 2e−
2+γ
2 e−

√
τ/2

(
1 +O

(
log(τ)√

τ

))
as τ → ∞(2.1)

and where γ = 0.5772156 . . . is the classical Euler constant.
Theorem 2.1 has been proved rigorously in [8]. In this section we will just provide

a formal description of the considered solution. Two other different ways of computing
asymptotic descriptions of the sought-for solutions can be found in [9], [21]. Never-
theless, the variables used in this section to compute the asymptotics of the desired
solution are more convenient than the previous ones, keeping in mind the analysis in
section 4.

Formal proof of Theorem 2.1. It is convenient to introduce a “mass variable” as
is usually done in the study of radial problems. Let M(r, t) be

M(r, t) =

∫ r

0

ξu(ξ, t)dξ.(2.2)

The name “mass variable” is due to the fact that M(r, t) is, except for a factor
2π, the amount of mass of u in a ball of radius Br(0).
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Differentiating (2.2) and using (1.2) we obtain

u(r, t) =
1

r

∂M

∂r
,(2.3)

∂v

∂r
= −M

r
.(2.4)

Integrating (1.1) in a ball Br(0) and using (2.3), (2.4) we obtain

∂M

∂t
= r

∂

∂r

(
1

r

∂M

∂r

)
+Gε

(
Mr

r

)
M.(2.5)

In the limit ε = 0, (2.5) becomes

∂M

∂t
= r

∂

∂r

(
1

r

∂M

∂r

)
+
MMr

r
,(2.6)

that is, the parabolic equation that we would obtain applying the transformation (2.2)
to the system (1.6), (1.7).

A crucial role in the analysis of the considered singularity formation mechanism
is played by the steady state

M̄(r) =
4r2

r2 + 1
.(2.7)

In order to study the sought-for singularity formation mechanism it is convenient
to introduce self-similar variables

M(r, t) = Φ̄

(
r√
T − t

,− log(T − t)

)
, ȳ =

r√
T − t

, τ̄ = − log(T − t),(2.8)

where t = T is the blow-up time. The reason for writing bars above all the variables
is that a set of slightly different variables (without bars) will be used later in section
4 to analyze the problem in the case ε > 0. In this set of variables (2.6) becomes

Φ̄τ̄ = ȳ
∂

∂ȳ

(
1

ȳ

∂Φ̄

∂ȳ

)
− 1

2
ȳΦ̄ȳ +

1

ȳ
Φ̄Φ̄ȳ.(2.9)

The singular solution described in [8] behaves like the steady state (2.7) in the
region |ȳ| → 0 after a suitable rescaling. In order to compute in a precise manner the
size of such a region we introduce a new variable by means of

ξ̄ =
ȳ

δ̄(τ̄)
,(2.10)

where the undetermined function δ̄(τ̄) approaches zero as τ̄ → ∞.
Using ξ̄ as a new space variable (1.6) reads as

Φ̄τ̄ =
1

δ̄2

[
ξ̄
∂

∂ξ̄

(
1

ξ̄

∂Φ̄

∂ξ̄

)
+

1

ξ̄
Φ̄
∂Φ̄

∂ξ̄

]
+
δ̄τ̄
δ̄
ξ̄
∂Φ̄

∂ξ̄
− ξ̄

2

∂Φ̄

∂ξ̄
.(2.11)

In order to compute δ̄(τ̄) we need to obtain two terms in the asymptotics of
Φ̄(ξ̄, τ̄) as τ̄ → ∞. By assumption, to the leading order, we have Φ̄(ξ̄, τ̄) → M̄(ξ̄) as
τ̄ → ∞. It is then natural to try an expansion of the form

Φ̄(ξ̄, τ̄) = M̄(ξ̄) + ψ(ξ̄, τ̄) + · · · ,(2.12)
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where |ψ| � 1 as τ̄ → ∞. Linearizing and keeping only the leading terms in (1.6) we
obtain

ξ̄
∂

∂ξ̄

(
1

ξ̄

∂ψ

∂ξ̄

)
+

1

ξ̄
M̄(ξ̄)

∂ψ

∂ξ̄
+

1

ξ̄
ψ
∂M̄

∂ξ̄
=

(
δ̄2

2
− δ̄δ̄τ̄

)
ξ̄
∂M̄

∂ξ̄
.(2.13)

Since ϕ(ξ̄) = ξ̄2

(ξ̄2+1)2
solves the homogeneous problem associated to (1.6), we can

solve this problem by looking for solutions in the form

ψ(ξ̄, τ̄) = ϕ(ξ̄)F (ξ̄, τ̄).(2.14)

Therefore

ξ̄
∂

∂ξ̄

(
1

ξ̄

∂F

∂ξ̄

)
+

4

(ξ̄2 + 1)

(
1

ξ̄

∂F

∂ξ̄

)
= 8

(
δ̄2

2
− δ̄δ̄τ̄

)
.(2.15)

We can assume without loss of generality that F (0, τ̄) = 0. Otherwise ψ would
contain a contribution of the form F (0, τ̄)ϕ(ξ̄), where by hypothesis, F (0, τ̄) → 0
as τ̄ → ∞. Since the homogeneous solution ϕ(ξ̄) is associated to the infinitesimal
changes of M̄(ξ̄) due to the application of the rescaling group of (2.6), it would be
possible to eliminate F (0, τ̄) by means of a change of δ̄(τ̄). In an equivalent way, the
choice F (0, τ̄) = 0 is just a way of prescribing δ̄(τ̄) in a precise manner. In particular,
using (2.2) and (1.6), it follows that the choice F (0, τ̄) = 0 is equivalent to setting

8
(δ̄(τ̄))2

= u(0, t). The factor 8 has been introduced in order to obtain some simpler

formulae later.
Solving (2.15) with the additional condition F (0, τ̄) = 0 we obtain

F (ξ̄, τ̄) = 4

(
δ̄2

2
− δ̄δ̄τ̄

)∫ ξ̄

0

(η2 + 1)2

η3

[
log(η2 + 1) − η2

η2 + 1

]
dη.(2.16)

Standard computations yield the following asymptotics for F (ξ̄, τ̄) as ξ̄ → ∞:

F (ξ̄, τ̄) ∼ 4

(
δ̄2

2
− δ̄δ̄τ̄

)
[ξ̄2 log(ξ̄) − ξ̄2 +O((log(ξ̄))2)] as ξ̄ → ∞.(2.17)

Combining (2.8), (2.12) and the asymptotics (2.17) we obtain the following match-
ing condition:

Φ̄(ξ̄, τ̄) ∼ 4ξ̄2

(ξ̄2 + 1)
+ 4

(
δ̄2

2
− δ̄δ̄τ̄

)[
log(ξ̄) − 1 +O

(
(log(ξ̄))2

ξ̄2

)]
(2.18)

for ξ̄ 	 1, ȳ � 1, τ̄ → ∞.
We now describe the asymptotics of Φ̄ on the “outer region” ȳ ∼ 1. To this end

we linearize (1.6) around its limit value Φ̄∞ = 4. More precisely, let us write

Φ̄ = 4 + ψ.(2.19)

Then ψ solves

ψτ̄ = ψȳȳ +
3

ȳ
ψȳ − ȳψȳ

2
+

(Φ̄ − 4)

ȳ
Φ̄ȳ.(2.20)
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At first glance it could seem possible to neglect the term (Φ̄−4)
ȳ Φ̄ȳ =

ψψȳ

ȳ that
is quadratic on ψ. It turns out, however, that this is not possible, because this
term yields a relevant contribution in the region ȳ ≈ δ̄(τ̄). Using the approximation
Φ̄ ∼ M̄(ξ̄) in the region ȳ ≈ δ̄(τ̄) we obtain

(Φ̄ − 4)

ȳ
Φ̄ȳ ≈ − 1

δ̄2
· 32

(ξ̄2 + 1)3
as τ̄ → ∞.

Notice that the operator ∂2
ȳ + 3

ȳ∂ȳ that appears on the right-hand side of (1.7)

is the Laplacian acting on radial functions in four spatial dimensions. Since (Φ̄−4)
ȳ Φ̄ȳ

is concentrated in the region ȳ ≈ δ̄(τ̄) it would be natural to approximate this term
by some kind of Dirac mass function, but due to the dimensionality of the Laplacian
operator in (1.7) the mass of the singular part has to be computed in four dimensions.

Using the fact that Γ ≡ ∫
R4

d4ξ̄

(ξ̄2+1)3
= π2

2 , it is natural to approximate (2.20) as

ψτ̄ = ψȳȳ +
3

ȳ
ψȳ − ȳψȳ

2
− 32Γ(δ̄(τ̄))2δ(4)(ȳ),(2.21)

where δ(4)(ȳ) is a four-dimensional Dirac mass. In order to study (1.7) it is convenient
to decompose ψ as

ψ(ȳ, τ̄) = ā0(τ̄) +Q(ȳ, τ̄),(2.22)

where 〈Q, 1〉 = 0, and where from now on,

〈f, g〉 =

∫
R4

f(ȳ)g(ȳ)e−
|ȳ|2
4 d4ȳ.(2.23)

It then follows that

ȧ0(τ̄) = − 32Γ

〈1, 1〉 (δ̄(τ̄))
2 = −(δ̄(τ̄))2,(2.24)

where we have used the fact that 〈1, 1〉 = 32Γ.
Notice that ψ → 0 as τ̄ → ∞. Therefore

ā0(τ̄) =

∫ ∞

τ̄

(δ̄(s))2ds.(2.25)

On the other hand, Q(ȳ, τ̄) solves

Qτ̄ = Qȳȳ +
3

ȳ
Qȳ − ȳQȳ

2
− 32Γ(δ̄(τ̄))2

[
δ(4)(ȳ) − 1

〈1, 1〉
]
.(2.26)

The function δ̄(τ̄) does not contain exponential factors in its asymptotics (cf. [8]),

or in a more precise way, we can assume that | δ̄τ̄
δ̄
| � 1. It then follows that we can

approximate Q(ȳ, τ̄) as the unique solution of

0 = Qȳȳ +
3

ȳ
Qȳ − ȳQȳ

2
− 32Γ(δ̄(τ̄))2

[
δ(4)(ȳ) − 1

〈1, 1〉
]

(2.27)
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satisfying 〈Q, 1〉 = 0. The general solution of (2.27) is

Q(ȳ, τ̄) = (δ̄(τ̄))2
[
− 4

ȳ2
+ 2 log(ȳ) +B

]
,

where B ∈ R has to be obtained using the orthogonality condition 〈Q, 1〉 = 0. It then
follows, after some computations, that B = γ− log(4), where γ = 0.577215 . . . , is the
standard Euler constant. Therefore

Q(ȳ, τ̄) = Ω(ȳ)(δ̄(τ̄))2,(2.28)

where Ω(ȳ) ≡ [− 4
ȳ2 + 2 log(ȳ) + γ − log(4)].

In order to obtain a matching condition between the inner and the outer expansion
we need to compute an additional term in the asymptotics of Q(ȳ, τ̄). We write

Q(ȳ, τ̄) = Ω(ȳ)(δ̄(τ̄))2 +R(ȳ, τ̄),(2.29)

where R satisfies

2δ̄δ̄τ̄Ω(ȳ) +Rτ̄ = Rȳȳ +
3

ȳ
Rȳ − ȳRȳ

2
, 〈R, 1〉 = 0.(2.30)

The “algebraic-like” behavior of R (i.e., the absence of exponential terms), sug-
gests that approximating R(ȳ, τ̄) to the leading order as R(ȳ, τ̄) = δ̄δ̄τ̄W (ȳ), where
W (ȳ), solves

2Ω(ȳ) = Wȳȳ +
3

ȳ
Wȳ − ȳWȳ

2
, 〈W, 1〉 = 0.(2.31)

It is possible to obtain an explicit formula for W (ȳ), but since it will not be
needed for our purposes we will not pursue that here. The only information that we
will need about W (ȳ) is the asymptotics

W (ȳ) ∼ −4 log(ȳ) + ζ + o(1) as ȳ → 0,(2.32)

where ζ is a real number whose precise numerical value will not be of relevance here.

Let us summarize. We have obtained the following asymptotics for Φ̄ in the region
ȳ ∼ 1 (cf. (2.19), (2.22), (2.25), (2.28)):

Φ̄(ȳ, τ̄) =

∫ ∞

τ̄

(δ̄(s))2ds+ Ω(ȳ)(δ̄(τ̄))2 + δ̄(τ̄)δ̄τ̄ (τ̄)W (ȳ) + · · ·(2.33)

as τ̄ → ∞.

Using the asymptotics of Ω(ȳ), W (ȳ) as ȳ → 0+ we obtain the following outer
matching condition:

Φ̄(ȳ, τ̄) ∼ 4 − 4(δ̄(τ̄))2

ȳ2
+

∫ ∞

τ̄

(δ̄(s))2ds+ 2(δ̄(τ̄))2 log(ȳ)

(2.34)
+(γ − log(4))(δ̄(τ̄))2 − 4δ̄(τ̄)δ̄τ̄ (τ̄) log(ȳ) + ζδ̄(τ̄)δ̄τ̄ (τ̄) + · · ·

for δ̄(τ̄) � |ȳ| � 1 and τ̄ → ∞.
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On the other hand, using that ξ̄ = ȳ

δ̄(τ̄)
as well as (1.6) we obtain the following

inner matching condition:

Φ̄(ȳ, τ̄) ∼ 4 − 4(δ̄(τ̄))2

ȳ2
+ 4

(
δ̄2

2
− δ̄δ̄τ̄

)
log(ȳ) − 4

(
δ̄2

2
− δ̄δ̄τ̄

)
log(δ̄)

(2.35)

− 4

(
δ̄2

2
− δ̄δ̄τ̄

)
+ · · ·

for δ̄(τ̄) � |ȳ| � 1 and τ̄ → ∞.
Matching (2.34), (2.35) we obtain the following integral equation:∫ ∞

τ̄

(δ̄(s))2ds+ (γ − log(4))(δ̄(τ̄))2 + ζδ̄(τ̄)δ̄τ̄ (τ̄)

(2.36)
= −2(δ̄2 − 2δ̄δ̄τ̄ ) log(δ̄) − 2(δ̄2 − 2δ̄δ̄τ̄ ).

The solution of (2.36) that approaches zero as τ̄ → ∞ behaves asymptotically as

δ̄(τ̄) ∼ 2e−
(γ+2)

2 e−
√

τ̄
2 (1 + o(1)) as τ̄ → ∞.(2.37)

Using the set of original variables x, t (cf. (2.8)), (2.37) means that the mass is
concentrated in a region of size

|x| ∼ 2e−
(γ+2)

2

√
T − te−

√
| log(T−t)|

2 (1 + o(1)) as t → T−,(2.38)

that is, exactly the size computed in [21]. A similar formula, where some of the
numerical constants have not been computed in so detailed a manner and containing
some typographical mistakes, can be found in [9]. This concludes the description of
the formal argument behind the proof of Theorem 2.1.

Let us remark that the blow-up profile M(r, T ) can also be computed. To this
end we argue as follows. We fix ȳ0 > 0 large enough and t0 close to T . Taking into
account (2.8) and (2.34) it follows that

M(r, t0) ∼ 4 +

∫ ∞

τ̄0

(δ̄(s))2ds

for r ∼ ȳ0
√
T − t0, τ̄0 = − log(T − t0). Using (2.37) we obtain the approximation

M(r, t0) ∼ 4 + 4e−(γ+2)
√

2τ̄0e
−√

2τ̄0 , r ∼ ȳ0
√
T − t0.(2.39)

Notice that for t0 < t < T , (2.6) implies that M(r, t) remains nearly constant on a
set of the form r ∈ [(ȳ0−C)

√
T − t0, (ȳ0 +C)

√
T − t0] if C < ȳ0 and C, ȳ0 are chosen

large enough. This is due to the fact that for times (T − t0), perturbations propagate
at most distances of order

√
T − t0 for the solutions of the parabolic equation (2.6).

Using this fact, as well as (2.39), it follows that

M(r, T ) ∼ 4 + 4e−(γ+2)
√

2τ̄0e
−√

2τ̄0 , r ∼ ȳ0
√
T − t0.

Since τ̄0 = − log( r
2

ȳ0
) ∼ − log(r2) as r → 0+ for each fixed ȳ0, we have

M(r, T ) ∼ 4 + 8e−(γ+2)
√
| log(r)|e−2

√
| log(r)|(2.40)
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as r → 0+.
To conclude this section, let us remark that it is also possible to compute the

asymptotics of M(r, t) for t→ T+, something that will be needed in order to derive a
description of the precise manner in which the concentration region begins to increase
its mass. Notice that the asymptotics (2.40), as well as the definition of M(r, t) (cf.
(2.2)), indicates the presence of a Dirac mass placed at r = 0, with a total amount
of mass 8π. Actually, it is possible to obtain the desired asymptotics as follows.
Near the origin M ∼ 4, whence (2.6) can be approximated by the linear equation
Mt = Mrr + 3

rMr that is just the usual heat equation in dimension four. More
precisely, replacing M by the new variable

ϕ = M − 4(2.41)

and neglecting quadratic terms on ϕ in (2.6), we obtain the equation

ϕt = ϕrr +
3

r
ϕr.(2.42)

This equation can be solved using as initial data the function ϕ in (2.40), (2.41)
and caloric kernels. Therefore, to the leading order,

ϕ(r, t) =
1

(4π(t− T ))2

∫
R4

e−
(x−ξ̄)2

4(t−T )ϕ(|ξ̄|, T )d4ξ̄,(2.43)

where r = |x| and ϕ(r, T ) ∼ 8e−(γ+2)
√| log(r)|e−2

√
| log(r)| as r → 0+. In order to

compute the asymptotics of ϕ(r, t) as t → T+ it is convenient to deal in a different
manner with the regions |x| ≤ C

√
t− T and |x| 	 √

t− T . Let us define ȳ = x√
t−T .

Notice that (2.43) implies

ϕ(r, t) =
1

(4π)2

∫
R4

e−
(ȳ−η)2

4 ϕ(|η|√t− T , T )d4η.

Using this formula, we obtain for |ȳ| ≤ C the asymptotics

ϕ(r, t) ∼ 4e−(γ+2)
√

2| log(t− T )|e−
√

2| log(t−T )| ·
(2.44)

·
{

1 − 1√| log(t− T )|
1

(4π)2

∫
R4

e−
(ȳ−η)2

4 log(|η|)d4η + · · ·
}

as t→ T+.
Assume on the contrary that

√
t− T � |x| � 1. We then define ȳ by means of

|ξ̄| = r0 + ȳ
√
t− T ,

where r0 = |x|, √t− T � r0 � 1.
Using the asymptotics of ϕ(r, T ) it follows that

ϕ(|ξ̄|, T ) ∼ ϕ(r0, T )

as r0 → 0. Using this as well as (2.43) it then follows that

ϕ(r0, t) ∼ ϕ(r0, T ) ∼ 8e−(γ+2)
√
| log(r0)|e−2

√
| log(r0)|.(2.45)

It is not hard to check that (2.44) and (2.45) match for |ȳ| 	 1.
For further reference we notice that we have found the following formula for the

amount of mass concentrated at the concentration region (cf. (2.44)):

m(t) ∼ 8π
(
1 + e−(γ+2)

√
2| log(t− T )|e−

√
2| log(t−T )| + · · ·

)
as t → T+.(2.46)
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3. Steady states. In this section, we recall the basic properties of the steady
states of (1.1), (1.2) that have been obtained in [22]. More precisely we consider the
radial solutions of the system

∆ū−∇(Gε(ū)∇v̄) = 0, x ∈ R
2,(3.1)

∆v̄ + ū = 0, x ∈ R
2,(3.2)

where Gε(u) is as in (1.3)–(1.5), and where from now on bars will be introduced
above the functions that denote steady states. The scaling structure of Gε(u) in (1.3)
suggests introducing the new set of variables

ū =
1

ε
Ū ,(3.3)

x =
√
εy(3.4)

that transforms (3.1), (3.2) into

∆yŪ −∇y(Q(Ū)∇y v̄) = 0, y ∈ R
2,(3.5)

∆y v̄ + Ū = 0, y ∈ R
2.(3.6)

Let us write r = |y|. The following result has been obtained in [22].
Theorem 3.1. Suppose that Q(·) ∈ C1(R+) is an increasing function satisfying

(1.4). Let us assume also that Q(s)
s is a decreasing function. Then, for each M > 8π

there exists a unique radial solution (up to translations) such that∫
R2

Ū(y;M)d2y = M.

The function Ū(y;M) = Ū(r;M) is decreasing on r and its asymptotic behavior as
r → ∞ is given by

Ū(r;M) ∼ k(M)

r
M
2π

as r → ∞

for some suitable k(M) > 0.
In some of the computations below it will be convenient to use Ū(0;M) instead

of M in order to characterize the steady states. In Theorem 3.2 we summarize the
results that will be used in forthcoming sections and that have been proved in [22].

Theorem 3.2. Suppose that Ū(0;M) = λ. Then, in the limit λ→ 0 the following
asymptotics holds:

Ū(0;M) ∼ λ

8

(
ϕ0(ξ) +

αλ

8
ϕ1(ξ) + · · ·

)
, ξ =

√
λr√
8
,(3.7)

uniformly in bounded regions of ξ, where α is as in (1.4) and

ϕ0(ξ) =
8

(1 + ξ2)2
, ϕ1(ξ) =

32

3

[
ξ4 + 10ξ2 + 2 ln(1 + ξ2) − 2ξ4 ln(1 + ξx2)

(1 + ξ2)4

]
.

(3.8)

Moreover,

M = 8π +
4παλ

3
+ o(λ) as λ→ 0+.(3.9)
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4. Formation of concentration regions: The limit ε → 0+.

4.1. Sketch of the main argument and preliminary results. Standard
continuity results on the initial data for PDEs show that as long as the solutions of
(1.6), (1.7) are bounded, the solutions of (1.1)–(1.5) converge to the solutions of (1.6),
(1.7) as ε → 0+. On the other hand, it has been shown in [22] that the solutions of
(1.6), (1.7) are globally bounded in time for any ε > 0 fixed. It also has been seen in
[22] that there exist formal solutions of (1.1)–(1.5) containing “Dirac masses” for the
cell density in some particular regions. In this section it will be confirmed that as one
approaches the blow-up time the solutions of (1.1)–(1.5) make a transition between
the blowing up behavior obtained for ε = 0 recalled in section 2 of this paper and the
“quasi-steady behavior” for regions of high density that is in the basis of the dynamics
described in [22].

We will restrict our analysis to radial solutions. In the general nonradial case
computations become much more cumbersome, but on the other hand, irrelevant
changes arise (cf. [21]). Restricting the analysis to radially symmetric situations
does not suppose an important loss of generality because the transition described
here occurs very fast and during these times the displacements of the concentration
regions would be very small.

In all the analysis made in this paper the only blow-up mechanism that will be
considered is the one described in section 2. It is not known if this blow-up mechanism
is the only one that can take place for this equation in the two-dimensional case. It
is known that for two-dimensional solutions blow-up for the system (1.6), (1.7) can
occur only by means of the aggregation of a finite amount of mass at a point (cf. [18]).

If the blow-up mechanism considered here had been unstable it would not be
realistic to describe the formation of concentration regions by means of the methods
considered in this paper. The question of the stability of this blow-up mechanism has
been addressed using asymptotic analysis in [21].

The goal of this section is to study the precise manner in which the blow-up
mechanism described in section 2 is regularized for ε > 0 small due to the boundedness
of Gε(u) in (1.1). Global well-posedness for (1.1)–(1.5) has been proved in [22].

As a preliminary step, it is possible to obtain a rough estimate of the time scales
for which the approximation (1.6), (1.7) stops being valid. The term Gε(

Mr

r ) differs
most from its limit value in the region r ≈ 0. We will approximate M in that region
using (2.8), (1.6). Therefore M(r, t) ∼ M̄( r√

T−tδ̄(τ̄) ), where δ̄(τ̄) is as in (2.37).

Whence Mr

r ∼ 1
(T−t)(δ̄(τ̄))2

M̄ξ̄

ξ̄
. Recalling that Gε(s) = Q(εs)

ε , it would follow that

the approximation Gε(s) ∼ s ceases being valid if εMr

r becomes of order one, i.e., for
ε

(T−t)(δ̄(τ̄))2 ∼ 1, or in an equivalent manner (T − t) ∼ εe
√

2| log(ε)|. Using (2.38), it

would follow that the width of the region occupied for the concentration region would
be of order |x| ∼ √

ε, something that agrees with the size of a developed concentration
region as computed in [22].

Actually, the precise computation of the size of the transition between the “blow-
up regime” described in section 4 and the “quasi-steady regime” described in [22] is
more involved due to the presence of many logarithmic terms in the singularity forma-
tion mechanism (cf. (2.37), (2.38)), albeit the main rationale behind the forthcoming
computations is basically the elementary computation above.

There are some related mathematical results that have been studied by some
authors. In [11] a model has been introduced that also avoids large values of the
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chemotactic function for large values of u. On the other hand, in [20] the authors
study, using rigorous methods, a possible way of extending the solutions of (1.6),
(1.7) for radial solutions. Although the approach and methods used in these papers
are different from the one here, some of the basic ideas there are rather close to the
approach of this paper.

In order to describe in detail the unfolding of the concentration region starting
from the blow-up mechanism described in (1.6), (1.7) we will use the asymptotics
of the steady states of (2.5) whose total mass approaches 8π. Such asymptotics has
been recalled in section 3, Theorem 3.2. Let us describe here those results using as
the variable the mass function M(r) instead of the concentration u. Let us denote as
Mλ(r) with λ > 0 the steady state of (2.5) uniquely defined by means of the condition
U(0;M) = λ. By (2.2) we have

Mλ(r) ∼ λr2

2
as r → 0+.(4.1)

Combining (3.8) and (2.2) we obtain the following asymptotics for Mλ(r) as
λ→ 0+:

Mλ(r) ∼ 4ξ̄2

1 + ξ̄2
+
αλ

8
m(ξ̄) + · · · as λ→ 0+,(4.2)

where ξ̄ =
√
λ√
8
r and α is as in (3.7). Therefore

Mλ(∞) ∼ 4 +
2αλ

3
+ · · · as λ→ 0+,(4.3)

which is just another way of writing (3.9).

4.2. Quadratic terms in the chemotactic function stop aggregation.

4.2.1. Derivation of a differential equation for the size of the concen-
tration region. To describe the unfolding mentioned above we begin analyzing the
effect of the boundedness of Q(·) in the computations of section 2. If we just keep the
first corrective order, instead of approximating Q(s) just by s, we could approximate

Q(s) by s− αs2 as long as |εMr|
r � 1. In another way, we approximate (2.5) as

Mt = Mrr − Mr

r
+
MMr

r
− αεM

(
Mr

r

)2

.(4.4)

Our first goal is to compute in a detailed manner the effect of the term αεM(Mr

r )2

in the aggregation process described in section 2. To this end, it is convenient to make
a small change of variables, replacing T in (2.8) by some suitable Tε to be described in
detail later. Clearly, if ε > 0, Tε does not have the meaning of a blow-up time because
the solutions of (4.4) do not blow-up in that case. The variable Tε will be that suitable
time scale satisfying Tε ∼ T that characterizes when the transition between the blow-
up regime described in section 2 and the “quasi-steady regime” in [22] has already
taken place.

We define a new set of variables as follows:

M(r, t) = Φ

(
r√
Tε − t

,− log(Tε − t)

)
, y =

r√
Tε − t

,

(4.5)

τ = − log(Tε − t) + log

(
Tε
T

)
, ξ =

r

δ(τ)
√
Tε − t

.
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The term log(Tε

T ) in the definition of τ has been added just to obtain the normal-
ization τ = τ̄ = − log(T ) for t = 0.

The term −αεM(Mr

r )2 will be more relevant in the region r ≈ 0. It will then
be convenient to rewrite (4.4) using the variable ξ in (4.5). Using this variable, (4.4)
becomes

δ2
∂M

∂τ
+

(
δ2

2
− δδτ

)
ξMξ = Mξξ − Mξ

ξ
+
MMξ

ξ
− αε

(Tε − t)δ2
M

(
Mξ

ξ

)2

.(4.6)

For ε = 0, M could be approximated to the leading order as M̄(ξ) for τ → ∞,
where M̄(ξ) is as in (2.7). We can expect this approximation to remain valid to the
leading order as long as αε

(Tε−t)δ2 � 1. Taking into account the structure of (2.7) it

would be natural to look for approximations of M in the form

M(ξ, τ) = M̄(ξ) +

(
δ2

2
− δδτ

)
W1(ξ) +

αε

(Tε − t)δ2
W2(ξ) + · · · ,(4.7)

where W1(ξ), W2(ξ) satisfy, respectively,

W1,ξξ − 1

ξ
W1,ξ +

M̄

ξ
W1,ξ +

M̄ξ

ξ
W1 = ξM̄ξ,(4.8)

W2,ξξ − 1

ξ
W2,ξ +

M̄

ξ
W2,ξ +

M̄ξ

ξ
W2 = M̄

(
M̄ξ

ξ

)2

,(4.9)

Wi(ξ) = o(ξ2), ξ → 0+, i = 1, 2.(4.10)

Arguing as in [22, section 2], it follows that

W1(ξ) =
4ξ2

(ξ2 + 1)2

∫ ξ

0

(1 + η2)2

η3

[
log(1 + η2) − η2

(1 + η2)

]
dη,(4.11)

W2(ξ) = m(ξ) =
16

3

ξ2

(ξ2 + 1)3
(ξ4 + 4ξ2 + 2(ξ2 + 1) log(ξ2 + 1)).(4.12)

Using (4.7) as well as (2.7), (4.11), and (4.12) we obtain the following matching
condition:

M(ξ, τ) ∼ 4 − 4

ξ2
+ 4

(
δ2

2
− δδτ

)
[log(ξ) − 1] +

16αε

3(Tε − t)δ2
+ · · ·(4.13)

as |ξ| 	 1, |y| � 1.
Expansion (4.7) is not valid if |x| ∼ √

Tε − t as it also happened in section 2.
Notice that as long as αε

(Tε−t)δ2 � 1 we can argue as in that section and approximate

M as 4. Using then the self-similar variables (2.8) we obtain the following equation
for ψ defined as in (1.6):

ψτ = ψyy +
3

y
ψy − yψy

2
, y > 0.(4.14)

On the other hand, since ψ ∼ − 4δ2

|y|2 as δ � |y| � 1 (cf. (4.13)), we would obtain

that ψ satisfies approximately (2.27) if we want to compute ψ in the region |y| ∼ 1.
We decompose ψ(y, τ) as in (2.22), where a0(τ) solves (2.24) and Q(y, τ) satisfies

(2.26). As long as |δδτ | � δ2 we can approximate, as in section 2, Q(y, τ) by means
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of the solution of (2.30), (2.31). Therefore, arguing exactly as in section 2, we would
arrive at an outer matching condition similar to (2.34) with

∫∞
τ

(δ(s))2ds replaced by
a0(τ) there. Matching that expansion with (4.13) we arrive at the following equation:

a0(τ) + (γ − log(4))(δ(τ))2 + ζδ(τ)δτ (τ)

= −2(δ2 − 2δδτ ) log(δ)(4.15)

−2(δ2 − 2δδτ ) +
16αε

3(Tε − t)(δ(τ))2
+ · · · .

It is interesting to compare (4.15) with (2.36). Notice that the additional term
16αε

3(Tε−t)(δ(τ))2 appears due to the presence of corrective terms Q(s) as s→ 0+. Notice

that (4.15) has to be complemented with the analogue of (1.7) that we rewrite here
by convenience as

a0,τ (τ) = −(δ(τ))2.(4.16)

System (4.15), (4.16) provides a description of the solutions of (2.5) as long as
|δτ | � δ. It is important to remark that in the case ε > 0, it is not natural to assume
that limτ→∞ a0(τ) = 0, since for ε > 0, ψ does not need to approach zero as τ → ∞.
Therefore, in order to determine a0(τ) uniquely we will then use its asymptotics for
the range of times where the regularizing terms of Q(s) did not begin to act yet. We
recall that (2.37), (4.16) imply, for ε = 0, the following asymptotics of a0(τ):

a0(τ) ∼ 4e−(γ+2)
√

2τ̄ e−
√

2τ̄ (1 + o(1)) as τ̄ → ∞.(4.17)

In order to simplify system (4.15), (4.16) it is convenient to eliminate some nu-
merical constants by means of the following change of variables,

δ(τ) = 2e−
(γ+2)

2 b(τ), a0(τ) = 4e−(γ+2)â0(τ),(4.18)

that transforms (4.15), (4.16) into

â0 + νbbτ +O(b2τ + bbττ ) = −2(b2 − 2bbτ ) log(b) +
αe2(γ+2)εeτ

3
· T
Tε

· 1

b2
,(4.19)

(â0)τ = −b2,(4.20)

where ν = ζ − 4 + 2(γ + 2 − log(4)).
We now study the precise manner in which the last term in (4.19) and, in general,

replacing Gε(s) by s in (1.1) modify the dynamics of δ(τ), a0(τ) (equivalently, b,
â0(τ)). As a first step we need to compute the change of δ(τ) due to the fact that
instead of solving (1.1), (1.2) with Gε(s) we use s instead. To the leading order we
approximate Gε(s) by s − αεs2. By assumption we solve (1.1), (1.2) with the same
initial data u0(x) but choose either ε = 0 or ε > 0. Using the set of self-similar
variables (4.5), (4.4) becomes

Φτ = Φyy − yΦy
2

− Φy
y

+
ΦΦy
y

− αεeτ
T

Tε
Φ

(
Φy
y

)2

(4.21)

with initial data Φ0(τ) = u0(
r√
Tε

). Notice that in the case ε = 0, (4.21) would be

equivalent to (1.6) (with ȳ replaced by y and τ̄ by τ). The corresponding initial data
for ε = 0 would be Φ̄(ȳ,− log(T )) = Φ̄0(ȳ) = u0(

r√
T

).
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Let us write ψ(ȳ, τ̄) = Φ(ȳ, τ̄) − Φ̄(ȳ, τ̄). Notice that we are not choosing the
independent variables for Φ as (y, τ) but instead we are taking as variables for this
function the ones associated to Φ̄. This will simplify some computations later. To the
leading order ψ solves

ψτ̄ = ψȳȳ − ȳψȳ
2

− ψȳ
ȳ

+ Φ̄
ψȳ
ȳ

+
Φ̄ȳ
ȳ
ψ − αεTeτ̄

Tε
Φ̄

(
Φ̄ȳ
ȳ

)2

(4.22)

with initial data

ψ(ȳ,− log(T )) = − 1

2T
ȳu′0(ȳ)(Tε − T ).(4.23)

The difference ψ cannot be computed using the approximation (4.22), (4.23) near
the blow-up time. However, we intend to use this approximation only as long as ψ
is small enough compared with Φ̄. For later times the use of the whole nonlinear
problem will be needed.

The next set of arguments is reminiscent of those used in [21], although with a
different set of functions. Using the inner variable ξ̄ = y

δ̄(τ)
, (4.22) becomes

δ̄2ψτ̄ +

(
δ̄2

2
− δ̄δ̄τ̄

)
ξ̄ψξ̄ = ψξ̄ξ̄ −

ψξ̄
ξ̄

+ Φ̄
ψξ̄
ξ̄

+
Φ̄ξ̄
ξ̄
ψ − αεTeτ̄

Tεδ̄2
Φ̄

(
Φ̄ξ̄
ξ̄

)2

.(4.24)

We expand ψ in a series of terms having different relative sizes. We write

ψ = ψ0 + ψ1 + · · · ,(4.25)

where ψ0, ψ1 solve the problems

ψ0,ξ̄ξ̄ −
ψ0,ξ̄

ξ̄
+ Φ̄

ψ0,ξ̄

ξ̄
+

Φ̄ξ̄
ξ̄
ψ0 = 0,(4.26)

ψ1,ξ̄ξ̄ −
ψ1,ξ̄

ξ̄
+ Φ̄

ψ1,ξ̄

ξ̄
+

Φ̄ξ̄
ξ̄
ψ1 = ψ0,τ +

(
δ̄2

2
− δ̄δ̄τ̄

)
ξ̄ψ0,ξ̄ +

αεTeτ̄

Tεδ̄2
Φ̄

(
Φ̄ξ̄
ξ̄

)2

.(4.27)

We choose ψ0 in such a way that limξ→0+
ψ(ξ̄,τ̄)

ψ0(ξ̄,τ̄)
= 1. Since ψ,ψ0, ψ1 behave

quadratically in ξ̄ as ξ̄ → 0+ this means that we are assuming that ψk(ξ̄, τ̄) = o(ξ̄2)
as ξ̄ → 0+, k = 1, 2, . . . .

The required solution of (4.26) is then given by

ψ0(ξ̄, τ̄) = A(τ̄)ϕ(ξ̄),(4.28)

where

ϕ(ξ̄) =
ξ̄2

(ξ̄2 + 1)2
(4.29)

and A(τ̄) = limξ̄→0(
ψ(ξ̄,τ̄)

ξ̄2
). We can then solve (4.27) using variation of constants.

After some computations we finally obtain the following:

ψ1(ξ̄, τ̄) = {W1(ξ̄) +W2(ξ̄) +W3(ξ̄)}ϕ(ξ̄),(4.30)
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where

W1(ξ̄) ≡ Aτ̄ δ̄
2

2

∫ ξ̄

0

(η2 + 1)

η3
((η2 + 1) log(η2 + 1) − η2)dη,

W2(ξ̄) ≡ A

(
δ̄2

2
− δ̄δ̄τ̄

)∫ ξ̄

0

(
1 + 2η2

η
− (η2 + 1)2

η3
log(η2 + 1)

)
dη,

W3(ξ̄) ≡
16αεeτ̄

(
T
Tε

)
3δ̄2

(
ξ̄4 + 4ξ̄2

ξ̄2 + 1
+ 2 log(ξ̄2 + 1)

)
.

Using (4.25), (4.28), (4.29), (4.30) we can compute the asymptotics of ψ(ξ̄, τ̄)
as ξ̄ → ∞. We then deduce the following matching condition for the inner solution
ψ(ξ̄, τ̄):

ψ(ξ̄, τ̄) ∼ A(τ̄)

ξ̄2
+

[
Aτ̄ δ̄

2

2
+A

(
δ̄δ̄τ̄ − δ̄2

2

)](
log(ξ̄) − 3

2

)
(4.31)

+
Aτ̄ δ̄

2

4
+

16αTεeτ̄

3Tεδ̄2
+ · · ·

for 1 � ξ̄ � 1
δ̄2

.
We now proceed to obtain an outer expansion for ψ. Taking into account the

outer expansion for Φ̄ obtained in section 2 (cf. (2.34)) and neglecting terms of the

form O(δ̄2ψ) as well as the term αTεeτ̄

Tε
Φ̄(

Φ̄ȳ

ȳ )2 that will be negligible compared with

δ̄4 in the range of times where we will use the approximation of ψ currently under
computation, we obtain the following equation for ψ:

ψτ̄ = ψȳȳ +
3

ȳ
ψȳ − ȳψȳ

2
.(4.32)

The matching condition (4.31) suggests that the order of magnitude of ψ is Aδ̄2. It
is then convenient to introduce a new function G by means of the formula ψ = Aδ̄2G.
Function G satisfies to the leading order

(Aδ̄2)τ̄
Aδ̄2

G+Gτ̄ = Gȳȳ +
3

ȳ
Gȳ − ȳGȳ

2
.(4.33)

Notice that the exponential growth of the last term in (4.31) indicates that for
τ̄ large, A grows like eτ̄ , with perhaps some algebraic-like corrections. On the other
hand, one can expect that A should contain some contribution behaving like those of
the homogeneous part of (4.24). The leading part of such contributions also grows
like eτ̄ , due to the fact that those terms are associated to changes in the blow-up time
for solutions of (2.6) (see the related analysis in [21]). In another manner, it should

be limτ→∞
(Aδ̄2)τ̄
Aδ̄2

= 1. It is then natural to look for expansions for G in the form

G(ȳ, τ̄) = G0(ȳ, τ̄) +G1(ȳ, τ̄) + · · · ,(4.34)

where (cf. (4.33))

G0 = G0,ȳȳ +
3

ȳ
G0,ȳ − ȳG0,ȳ

2
,(4.35) [

(Aδ̄2)τ̄
Aδ̄2

− 1

]
G0 + (G0,τ̄ ) +G1 = G1,ȳȳ +

3

ȳ
G1,ȳ − ȳG1,ȳ

2
.(4.36)
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Higher order corrections would provide contributions of order O(( (Aδ̄2)τ̄
Aδ̄2

− 1)2 +

( (Aδ̄2)τ̄
Aδ̄2

)τ̄ ). Our goal is to include in G0 the singular contributions of G as ȳ → 0+.

We then select G0 satisfying the matching condition G0 ∼ 1
ȳ2 as ȳ → 0+. We also

assume that the corresponding solutions of (4.35), (4.36) do grow exponentially as
ȳ → ∞ because such growths would rule out the possibility of getting matchings with
bounded solutions in the region x ∼ 1. It then follows that

G0(ȳ, τ̄) =
1

ȳ2
.(4.37)

We can then easily solve (4.36). Taking into account (4.31) it follows that we
have to choose G1 bounded as ȳ → 0. The corresponding solution of (4.36) is given
by

G1(ȳ, τ̄) = −
(

(Aδ̄2)τ̄
Aδ̄2

− 1

)
1

ȳ2

∫ ȳ

0

υe
υ2

4

(∫ ∞

υ

e−
η2

4
dη

η

)
dυ.(4.38)

Computing the asymptotics of G1 as ȳ → 0, and also using (4.37) as well as the
fact that ψ = Aδ̄2G, we finally obtain the following matching condition for ψ(ȳ, τ̄):

ψ ∼ Aδ̄2

ȳ2
− Aδ̄2

2

(
(Aδ̄2)τ̄
Aδ̄2

− 1

)[
−1

2
log(ȳ) +

1

4
(1 + log(4) − γ)

]
+ · · ·(4.39)

as ȳ → 0+. We then use ξ̄ = ȳ
δ̄

in order to match (4.31) with (4.39) to derive the
following differential equation for A(τ̄):

−
(

3

2
+ log(δ̄)

)(
Aτ̄ δ̄

2

2
+A

(
δ̄δ̄τ̄ − δ̄2

2

))
+
Aτ̄ δ̄

2

4
+

16αεeτ̄
(
T
Tε

)
3δ̄2

= −1

2
(1 + log(4) − γ)

[
Aτ̄ δ̄

2

2
+A

(
δ̄δ̄τ̄ − δ̄2

2

)]
(4.40)

+O

([(
Aτ̄
A

− 1

)2

+

(
δ̄τ̄
δ̄

)2

+

(
Aτ̄
A

)
τ̄

+

(
δ̄τ̄
δ̄

)
τ̄

]
Aδ̄2

)
.

This is the desired equation that will be used to study the evolution of the size
of the concentration region during the transition between the blow-up regime and the
quasi-steady regime.

4.2.2. Study of the solutions of the differential equation describing the
size of the transition region. In this subsection we study the consequences of
(4.40). As a first step notice that we can simplify this expression using the change of

variables δ̄ = 2e−
(γ+2)

2 b̄. Equation (4.40) then becomes

− log(b̄)

(
Aτ̄ b̄

2

2
+A

(
b̄b̄τ̄ − b̄2

2

))
+
Aτ̄ b̄

2

4
+

16αεeτ̄
(
T
Tε

)
3δ̄2

= O

([(
Aτ̄
A

− 1

)2

+

(
b̄τ̄
b̄

)2

+

(
Aτ̄
A

)
τ̄

+

(
b̄τ̄
b̄

)
τ̄

]
Ab̄2

)
.

The asymptotics for the solutions of this equation can be obtained using the
change of variables A = eτ̄h, in order to eliminate the exponential growth of A. Using
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(2.37) it follows that

A(τ̄) ∼ −2e2(γ+2)αε

3

(
T

Tε

)
eτ̄e2

√
2τ̄ + Cεe

τ̄ as τ̄ → ∞,(4.41)

where Cε is a real constant to be determined later.
Let us compute now the precise manner in which δ(τ) differs from δ̄(τ̄) due to the

change of Φ to Φ̄ previously computed. We recall that ψ(ȳ, τ̄) = Φ(ȳ, τ̄)− Φ̄(ȳ, τ̄). On
the other hand, we have defined δ(τ) by means of the normalization Φ(y, τ) ∼ 4ξ2 =
4( y
δ(τ) )

2 for y � δ(τ), with ξ = r√
Tε−t(δ(τ)) , (cf. (4.7), (4.10)). The definition of δ̄(τ̄)

is similar, namely, Φ̄(ȳ, τ̄) ∼ 4( ȳ

δ̄(τ̄)
)2 for ȳ � δ̄(τ̄). Since ȳ, τ̄ above have been used

as dummy variables in the difference Φ(ȳ, τ̄) − Φ̄(ȳ, τ̄), we obtain, using (4.28), that

Φ(ȳ, τ̄) ∼ 4

(
ȳ

δ̄(τ̄)

)2

+A(τ̄)

(
ȳ

δ̄(τ̄)

)2

for ȳ � δ̄(τ̄). Then 4
(δ(τ̄))2 ∼ 4+A(τ̄)

(δ̄(τ̄))2
or also, using Taylor’s theorem, δ(τ̄) ∼ δ̄(τ̄)(1 −

A(τ̄)
8 ) as τ̄ → ∞. Using the relations between δ, b and δ̄, b̄, as well as (4.18), (4.41),

we obtain the following asymptotics for b(τ̄):

b(τ̄) ∼ e−
√

τ̄
2

(
1 +

e2(γ+2)αε

12

(
T

Tε

)
eτ̄e2

√
2τ̄ − Cε

8
eτ̄
)

as τ̄ → ∞.(4.42)

At this point, it remains only to compute the value of Cε. Notice that the linearity
of (4.22), (4.23) on ε( TTε

), (T − Tε) implies for Cε the functional dependence Cε =

C1ε(
T
Tε

) +C2(T − Tε), where C1, C2 are fixed real constants. The precise value of C1

will not be relevant here and therefore it will not be computed in detail. However, the
value of C2 will be needed later, and therefore we proceed to compute it. In order to
do this we would need to solve (4.22), (4.23), dropping the last term in (4.22). Notice
however, that the argument that yields to (4.22), (4.23) implies that this problem is
equivalent to computing the change in δ̄(τ̄) due to using the variables (4.5) instead of
(2.8) in the solution of (1.6). In order to do this, notice that by definition of δ̄(τ̄),

M̄(r, t) ∼ 4r2

(T − t)(δ̄(τ̄))2
for r � √

T − t, t → T−.(4.43)

On the other hand, let us denote as δ̂(τ) the corresponding function, which would
be obtained in a similar manner, but assuming that the set of variables (4.5) is used
instead. In another way, we assume that

M̄(r, t) ∼ 4r2

(Tε − t)(δ̃(τ))2
for r �

√
Tε − t,≈ → T−

ε .(4.44)

In order to compute the value of C2 we need to compute the difference between δ̂
and δ̄ to the linear order for times not too close to the blow-up time. More precisely,
let us assume that |T − t| 	 |Tε−T |. Formulae (4.43), (4.44) combined with Taylor’s
expansion imply for this range of times that

δ̂(τ) = δ̄(τ̄) +
(T − Tε)

2
eτ̄ δ̄(τ̄) + · · · .(4.45)
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It remains to estimate the correction due to the change of variables from τ̄ to
τ , in order to have both functions δ̄, δ̂ written in the same variables. Notice that
|δ̄τ̄ | = O( δ̄√

τ̄
) and, on the other hand, τ − τ̄ = O((T − Tε)e

τ̄ ) for |T − t| 	 |Tε − T |.
Henceforth δ̄(τ̄) − δ̄(τ) = O( (T−Tε)e

τ̄ δ̄(τ̄)√
τ̄

), and since this term is negligible compared

with (T−Tε)
2 eτ̄ δ̄(τ̄), we can ignore the fact that in different sides of (4.45) we are using

different variables. We then finally obtain

δ̂(τ̄) = δ̄(τ̄) +
(T − Tε)

2
eτ̄ δ̄(τ̄) + · · · .

Using then the analogue of (4.42) that would be obtained for this problem, it
then follows that C2 = −4. Due to the linearity of the problem, we can then rewrite
(4.42) as

b(τ̄) ∼ e−
√

τ̄
2

(
1 +

e2(γ+2)α

12

(
T

Tε

)
εeτ̄e2

√
2τ̄

(4.46)

+

(
C3

T

Tε
ε+

(T − Tε)

2

)
eτ̄
)

as τ̄ → ∞,

where C3 = −C1

8 is a real constant.
Remark 4.1. It is rather natural to ask if it would not be possible to simplify the

rather cumbersome argument that yields (4.46) using instead the ODEs (4.19), (4.20)
that provide a description of the width of the region where the mass is concentrated.
The idea would be to use the fact that b = b̄(τ), â0(τ) =

∫∞
τ

(b̄(s))ds provide a

solution of (4.19), (4.20), with b̄ = δ̄

2e−
(γ+2)

2

and ε = 0. Linearizing around this

solution in (4.19), (4.20) it would be possible to derive a linear set of ODEs that in
principle could be used to derive (4.46). Actually such a method can be used to derive

the term
4αε( T

Tε
)eτ̄e2

√
2τ̄

3(2e−
(γ+2)

2 )4
in (4.46). Unfortunately, the last terms of (4.46) cannot be

derived in that manner. The reason is the following. In (4.19) there are corrective
terms that are neglected in the computations. A typical representative term of this
type of term is, for instance, bbττ . Suppose that we write b = b̄ + κ and formally
linearize. The term bbττ would generate terms in the linearized problem having the
form b̄κττ , whose effect should be compared with some of the terms arising from
the leading terms in (4.19); a typical one would have the form b̄ log(b̄)κ. It is not
hard to see, linearizing in the term −2(b2 − 2bbτ ) log(b), that κ contains as its main
factor a term growing exponentially. However, the term b̄κττ , as well as the relative
sizes of the terms b̄ and b̄ log(b̄) (whose order is 1√

τ̄
), would generate “algebraic-

like” corrections that would modify the exponential growth of κ. In particular, it
would not be possible to determine using such a linearization argument if the last
term in (4.46) has exactly the functional dependence eτ̄ or, say, eτ̄ (τ̄)a for some
a > 0. Unfortunately, this information will be relevant later. On the other hand, this
problem could not be solved by just computing one additional term in the matching
conditions that yields (4.19), because the same problem would be produced by bbτττ
and similar corrective terms. The real reason for the difficulty lies in the exponential
growth of the correction κ. This difficulty does not arise in computing b by means of
(4.19) because b is an “algebraic-like” (in contrast with “exponential”) function, and
therefore differentiating on τ we obtain smaller functions as τ → ∞. This makes it
possible to neglect terms like bbττ and similar ones. This argument illustrates some
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difficulties that might lie in a naive handling of equations that have been derived by
means of formal arguments and explains why the tortuous path that led to (4.46) has
been used.

4.3. Regularizing terms yield a fully developed concentration region.
After deriving (4.46) we now study another problem that we must consider in order
to describe the process of concentration region formation. A crucial argument in the
derivation of (4.19), (4.20) is the assumption |δτ | � δ or, equivalently, |bτ | � b.
However, the exponential growth of the corrective terms in (4.46) implies that this
assumption fails if τ̄ is large enough. In order to study the precise manner in which
this failure takes place we use a standard boundary layer argument. We introduce a
new set of variables by means of

b = e−
√

τε
2 h, â0 =

√
2τεe

−√
2τεϕ, τ̄ = τε + s,(4.47)

where τε is defined by the following formula:

αe2(γ+2)εeτεe2
√

2τε

3
=

√
2τε.(4.48)

This change of variables transforms (4.19), (4.20) into

√
2τεϕ+ νhhs +O(h2

s + hhss)
(4.49)

=
√

2τε(h
2 − 2hhs) − 2 log(h)(h2 − 2hhs) +

√
2τε

es

h2
,

ϕs = − h2

√
2τε

(4.50)

whence, since τε → ∞, we obtain to the leading order the problem

ϕ = h2 − 2hhs +
es

h2
,(4.51)

ϕs = 0.(4.52)

Using (4.17) and (4.48) we obtain the matching condition ϕ → 1 as s → −∞.
The system (4.51), (4.52) can then be reduced to the ODE

1 = h2 − 2hhs +
es

h2
.(4.53)

On the other hand, (4.46) provides, after some computations, the following match-
ing condition:

h(s) ∼ 1 +
s

2
es +

(
3

2

(T − Tε)
√

2τεe
−2(γ+2)

αεe2
√

2τε
+

√
2τε
4

)
es + · · ·(4.54)

as s → −∞. Notice that in deriving (4.54) we are assuming that (T − Tε) � 1, and
therefore T

Tε
→ 1. Notice also that we are neglecting the contribution of the term

C3
T
Tε
εeτ̄ in (4.46) that is negligible if compared with the previous term there.

Before finding the explicit solution of (4.53), (4.54) we briefly discuss its range
of validity. Notice that in deriving (4.19), (4.20) we repeatedly use the assumption
|δτ | � δ or, equivalently, |hs| � h. This requirement is valid as s → −∞, but it will



1244 J. J. L. VELÁZQUEZ

be lost as s becomes of order one. It turns out, however, that the validity of (4.53)
can be extended until the range of times in which h becomes of order one. In order to
check this, we examine the changes that are required in the previous arguments that
led to (4.19), (4.20) if the condition |δτ | � δ is lost. First, we remark that expansion
(4.13) remains valid even if |δτ | ∼ δ, as long as δ remains small. However, if |δτ | ∼ δ,
it is not possible to approximate the solutions of (4.22) by means of those of (2.20).
We are then forced to study the complete solution of (4.22) as soon as the requirement
|δτ | � δ is lost. Also using the asymptotics of Q(y, τ) we are then led to study the
following problem instead of (2.27):

Qs = Qyy +
3

y
Qy − yQy

2
− 32Γ(δ(s))2

[
δ(4)(y) − 1

〈1, 1〉
]
,(4.55)

Q(y, s) = (δ(s))2Ω(y) as s→ −∞,(4.56)

where (4.18), (4.47), (4.54) provide a matching condition for δ(s) as s→ −∞.
It is possible to write an explicit formula for Q(y, s) using caloric kernels, as well

as the following asymptotics for Q(y, s) as y → 0+:

Q(y, s) ∼ −4(δ(s))2

y2
+ 4

(
δ2

2
− δδs

)
log(y) + λ(s) + o(1),(4.57)

where λ(s) depends on the values of δ(s̃) for s̃ ≤ s. It would be possible to write this
dependence using an explicit integral formula but this will not be needed. The only
relevant information that we need at this point is that as far as h(s̃) remains bounded

for s̃ ≤ s (equivalently, |δ(s̃)| = O(e−
√

τε
2 ) for s̃ ≤ s), then |λ(s)| = O(e−

√
2τε). If we

then match the asymptotics (4.13) with (4.57) we derive the following equation that
would generalize (4.15) for |δτ | ∼ δ:

a0(s) + λ(s) = −2(δ2 − 2δδs) log(δ) − 2(δ2 − 2δδs) +
16αε

3(Tε − t)δ2
.(4.58)

Using (4.18), (4.47) as well as the above-mentioned fact that |λ(s)| = O(e−
√

2τε),
it follows that to the leading order (4.53) remains valid as long as h = O(1).

Having asserted the validity of (4.53) in the desired region of times we proceed to
solve it with the matching condition (4.54). To this end we introduce a new variable
w = h2e−s. Writing (4.53) in terms of w instead of h we would obtain

esws =
1

w
− 1

that is a separable equation with solution

w + log(w − 1) = e−s + C,(4.59)

where C is a real number. Deriving (4.59) we are implicitly assuming that w > 1, a
property that can be expected at least for s→ −∞ due to (4.54).

Using (4.59) we obtain the following asymptotics for h(s):

h(s) ∼ 1 +
s

2
es +

C

2
es + · · · as s→ −∞,(4.60)

h(s) ∼ Ke
s
2 + · · · as s→ ∞,(4.61)
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where

eK
2

(K2 − 1) = eC .(4.62)

Combining (4.54) and (4.60) we then obtain the following value of C:

C =
3(T − Tε)

√
2τεe

−2(γ+2)

αεe2
√

2τε
+

√
2τε
2

.(4.63)

Notice that for any C > 0 the solution of (4.53) is defined globally for −∞ < x <
∞. Indeed, notice that h cannot approach zero for a finite value of s because (4.53)
implies that for h small enough hs is positive. On the other hand, (4.53) implies that
hs is linearly bounded on h for h large.

At this point we need to choose Tε. We will choose Tε in such a way that C in
(4.63) approaches −∞ as ε→ 0. In another way, we assume that

εe2
√

2τε ∼ εe2
√

2 log( 1
ε ) � (Tε − T ) � 1.(4.64)

At first glance the choice (4.64) might look a bit artificial, but on the contrary it
turns out that it is rather natural. Choosing Tε in this manner we will obtain that
K in (4.61), (4.62) approaches its minimum value K = 1 as ε → 0. As we will show
briefly, this choice of K (i.e., K ≈ 1) will imply that for t ≈ Tε, M(r, t) behaves
approximately near the origin as one of the steady states Mλ(r) described at the
beginning of this section (cf. (4.1), (2.37)), having an amount of mass 4 + a0(τε) (cf.
(4.3)). If the choice K ≈ 1 had not been made, M(r, Tε) would have a width much
larger than the steady state associated to mass 4+a0(τε) or, in a more precise manner,
it would not be possible to describe M(r, Tε) using a steady state. The choice of (4.64)
essentially means that Tε has been chosen close to T but at the same time |Tε− T | is
large enough to allow stabilization of the solutions to steady states. Of course, if Tε
is not chosen satisfying (4.64) the aspect of the solution would not change. However,
at t = Tε, M(r, Tε) would not yet be a steady state, and some additional analysis
would be required to describe how such approximation to a steady state would take
place. The choice (4.64) (or K ≈ 1) just simplifies the description of M(r, t) in an
analytical manner. Some intuitive understanding of the choice of Tε can be acquired
if we assume instead in a provisional manner that Tε = T . In that case (4.63) would

imply that C =
√

2τε
2 → ∞, and in that case K → ∞. Therefore the width of the

region where the mass is distributed would be larger (cf. (4.61)). In other words, the
term −αεM(Mr

r )2 in (4.4) slows down the process of chemotactic aggregation as it
could be expected.

Taking into account (4.18), (4.47) as well as the asymptotics (4.61) we obtain

δ(s) ∼ Ke−
√

τε
2 e

s
2 = Ke−

√
τε
2 e−

τε
2 e

τ̄
2 as s = τ̄ − τε → ∞,(4.65)

where due to our choice of Tε, K has to be set as one.
In order to describe the asymptotics of M (or Φ) as s→ ∞ we remark that as long

as δ(s) � 1 we can use the approximation (4.14) with the matching condition ψ ∼
− 4δ2

y2 as y → 0+. It is natural to decompose ψ as in (2.22). Functions a0(s), Q(y, s)

evolve according to the equations (2.24), (2.26), respectively. To the leading order,
and taking into account (4.50) (cf. also (4.18), (4.47)), a0(s) remains approximately
constant if s remains of order one. However, this ceases being so if s→ ∞, due to the



1246 J. J. L. VELÁZQUEZ

exponential growth of δ(s). Integrating (2.24) we obtain the following approximation
for a0(s):

a0(s) ≈ a0(τε) −K2e−
√

2τεes(4.66)

for s of order one, or larger. Function Q(y, s) can be approximated in the form
esW (y) as s→ ∞. It is easier to compute this approximation in the following manner.
Formula (4.66) suggests looking for approximations of ψ in the form

ψ = a0(τε) + (δ(s))2Z(y)

with Z satisfying

Z = Zyy +
3

y
Zy − yZy

2
− 32Γδ(4)(y).(4.67)

The solution of (4.67) can be computed explicitly as

Z = − 4

y2
.

Therefore, to the leading order

ψ ∼ a0(τε) − 4(δ(s))2

y2
as s→ ∞, y 	 δ(s).(4.68)

Summarizing, using (1.6) and (4.68) we obtain that in the range of times τε ≤ τ ,
and as long as δ(s) � 1, we can approximate Φ as

Φ ≈ 4 + a0(τε) − 4(δ(s))2

y2
for y 	 δ(s),(4.69)

where in (4.69) we will understand that only the larger of the terms a0(τε),
4(δ(s))2

y2

is meaningful. In a more precise manner (4.69) means Φ = 4 + a0(τε) − 4(δ(s))2

y2 +

o(max{a0(τε),
(δ(s))2

y2 }), where by assumption y is bounded and satisfies y 	 δ(s).

Due to the exponential growth of δ(s) (cf. (4.65)), the term 4(δ(s))2

y2 , which initially is
negligible if y is of order one, becomes the dominant one as s grows.

If y ∼ δ(s), Φ might be approximated using (4.7), a formula that matches (4.69)
in the intermediate region δ(s) � y � 1. In particular, to the leading order Φ is
approximately a steady state in the region y ∼ δ(s).

Approximation (4.69) is valid as long as e−
√

2τεes remains small, because as soon
as this quantity becomes of order one δ(s) becomes of order one (cf. (4.65)), and Φ
cannot be approximated by means of (4.13) anymore. Let us define sε by means of

e−
√

2τεesε = 1. Formulae (4.65) and (4.69) provide an approximation of Φ as long as
s � sε. In the original variables, such an approximation would be valid for t < tε,
T − tε = O(e−(τε+

√
2τε)).

We finally proceed to compute M(r, Tε) in a way analogous to that in the case

ε = 0. In the region |x| ≥ e−
τε
2 ≈ √

ε e
√

2 log( 1
ε
)

(log( 1
ε ))

1
4

, we can argue exactly as in section 2

since a0(τ) remains almost constant for t between tε and Tε. On the other hand, for
|x| ≤ e−

τε
2 we can use the fact that Φ is already close to a steady state (cf. (4.65)),
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and the solution continues being close to a steady state for t ≤ tε. Actually, it is
interesting to note that the steady state that has been reached is the one associated
to the amount of mass 4+a0(τε) (cf. (4.3) and (4.69)). Indeed, the asymptotics (4.3)

gives a width for the steady state (δ(s))2 ∼ 4K2e−(γ+2)e−
√

2τε+s, or, in the original

variables, |x|2 ∼ 4K2e−(γ+2)e−
√

2τε−τε , where K ≈ 1. Taking into account the form
in which the parameter ε appears in (2.5), it turns out that the value of the parameter
λ (cf. (4.1)) for a steady state with width (δ(s))2 is

λ ∼ 8εeτ̄

(δ(s))2
∼ 6e−(γ+2)

√
2τε

αK2
e−

√
2τε ∼ 6e−γ

αK2
e−

√
2 log( 1

ε )

√
2 log

(
1

ε

)
.(4.70)

The mass associated to this value of λ is (cf. (4.3))

Mλ(∞) ∼ 4 +
2α

3
λ ∼ 4 + 4e−(γ+2)

√
2τεe

−√
2τε

(4.71)

∼ 4 + 4e−γe−
√

2 log( 1
ε )

√
2 log

(
1

ε

)
,

where we have used the fact that K ≈ 1, which coincides exactly with the asymptotics
ofM in the outer region |y| 	 δ. In a more precise manner for times (Tε−t) ≤ e−τε−sε
in a region close to the origin, M becomes close to a steady state of (2.5) having the

mass concentrated in a region of size |x| ∼ √
ε e
√

1
2

log( 1
ε
)

(log( 1
ε ))

1
4

≡ χ(ε). Notice that χ(ε) 	
√
ε; therefore the size of this steady state is still much larger than the developed

concentration region described in [22]. This is due to the fact that this concentration
region has a mass that is still very close to 8π.

Finally we describe the evolution of M(r, t) for ε e
√

2 log( 1
ε
)

(log( 1
ε ))

1
2

� t− Tε � 1. Notice

that in a region with size |x| ≈ O(
√
ε e
√

1
2

log( 1
ε
)

(log( 1
ε ))

1
4

), solutions stabilize to equilibrium

solutions in times of order ε e
√

2 log( 1
ε
)

(log( 1
ε ))

1
2

. For longer times we can then assume that the

inner region has already stabilized to the value of the steady state associated to the
value of the mass M in the corresponding outer region. Therefore, if t > Tε, the inner
region just follows the steady state having the mass given by the “outer behavior”
computed in (2.46). Since in the outer region Gε(

Mr

r ) can be approximated as Mr

r ,
it then follows that the corresponding solution can be approximated by the solution
of (2.6). The inner region has a size of order |x| ≤ χ(ε) for times t ≤ t̄ε, where√| log(t̄ε − Tε)|e−

√
2| log(t̄ε−Tε)| ∼ e−

√
2 log( 1

ε )
√

log( 1
ε ) or, in an equivalent manner,

t̄ε − Tε ∼ ε. If t ≥ t̄ε the asymptotics (2.44) cannot be assumed to be constant
anymore and the steady state that describes the inner layer begins to be modified.
The width of the region occupied for the concentration regions can then be computed
using (4.3) as well as (2.44). Such width turns out to be given by

λ ∼ 6

α
e−(γ+2)

√
2| log(t− Tε)|e−

√
2| log(t−Tε)| as ε� t− Tε � 1,

where λ is as in (4.1).
Notice that, as it could be expected, λ becomes of order one for |t− Tε| of order

one.
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5. Concluding remarks. This paper continues the analysis begun in [22]. The
question considered in both papers is to study the effect of cutting off the chemotactic
function for large values of cell concentration. For linear chemotactic functions it is
known that the Keller–Segel model yields formation of Dirac masses in finite time. If
the chemotactic function is assumed to saturate, solutions of the Keller–Segel system
are global in time. It was seen in [22], using matched asymptotics, that solutions of
this last system can exhibit some concentration regions that interact among them-
selves and with the surrounding cells. The dynamics of such regions has been studied
in [22] in detail. This paper describes how the transition between the blowing up
solutions of limit system (1.6), (1.7) and the type of solutions described in [22] takes
place.

REFERENCES

[1] P. Biler, Local and global solvability of some parabolic systems modelling chemotaxis, Adv.
Math. Sci. Appl., 8 (1998), pp. 715–743.

[2] M. P. Brenner, P. Constantin, L. P. Kadanoff, A. Schenkel, and S. C. Venkataramani,
Diffusion, attraction and collapse, Nonlinearity, 12 (1999), pp. 1071–1098.

[3] M. P. Brenner, L. S. Levitov, and E. O. Budrene, Physical mechanisms for chemotactic
pattern formation by bacteria, Biophys. J., 74 (1998), pp. 1677–1693.

[4] S. Childress, Chemotactic collapse in two dimensions, in Modelling of Patterns in Space and
Time, Lecture Notes in Biomath. 55, Springer-Verlag, Berlin, 1984, pp. 61–66.

[5] S. Childress and J. K. Percus, Nonlinear aspects of chemotaxis, Math. Biosci., 56 (1981),
pp. 217–237.

[6] H. Gajewski and K. Zacharias, Global behaviour of a reaction-diffusion system modeling
chemotaxis, Math. Nachr., 195 (1998), pp. 77–114.

[7] M. A. Herrero, Asymptotic properties of reaction-diffusion systems modeling chemotaxis,
Applied and Industrial Mathematics, Venice-2, 1998, R. Spigler, ed., Kluwer Academic
Publishers, Dordrecht, The Netherlands, 2000.

[8] M. A. Herrero and J. J. L. Velázquez, Singularity patterns in a chemotaxis model, Math.
Ann., 306 (1996), pp. 583–623.

[9] M. A. Herrero and J. J. L. Velázquez, Chemotactic collapse for the Keller–Segel model, J.
Math. Biol., 35 (1996), pp. 177–196.

[10] M. A. Herrero and J. J. L. Velázquez, A blow-up mechanism for a chemotaxis model, Ann.
Scuola Norm. Sup. Pisa Cl. Sci. (4), 24 (1997), pp. 1739–1754.

[11] T. Hillen and K. Painter, Global existence for a parabolic chemotaxis model with prevention
of overcrowding, Adv. in Appl. Math., 26 (2001), pp. 280–301.

[12] D. Horstmann, The nonsymmetric case of the Keller–Segel model in chemotaxis: Some recent
results, NoDEA Nonlinear Differential Equations Appl., 8 (2001), pp. 399–423.

[13] D. Horstmann and G. Wang, Blow-up in a chemotaxis model without symmetry assumptions,
European J. Appl. Math., 12 (2001), pp. 159–177.

[14] D. Horstmann, On the existence of radially symmetric blow-up solutions for the Keller–Segel
model, J. Math. Biol., 44 (2002), pp. 463–478.
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Abstract. The Hodgkin–Huxley (HH) gating model has been extensively employed over the last
half century to describe bioelectricity phenomena related to normal and impaired electrophysiological
functions. Since the HH gating model is relatively empirical, the associated modelling methodology
requires estimating model parameters (including functions of membrane voltage) from experimental
data. Until now, as is the case for most nonlinear models, parameter estimation has been carried
out through nonlinear least square fitting, which presents important limitations for the modelling
methodology.

Here we pursue a different approach to the estimation problem, which allows us to overcome all
the limitations inherent to nonlinear fitting. As initially introduced by Beaumont, Roberge, and Leon
[Math. Biosci., 115 (1993), pp. 65–101], instead of fitting we invert the solution. Specifically, model
parameters (including functions of membrane voltage) are obtained from multiple transformations (or
modals) applied to the solution, or equivalently, from an experimental data set. Such transformations
enable one to deduce, for a given data point, disjoint ranges of parameter values which allow the
model to exactly reproduce the solution. Using sufficiently large data sets and continuity criteria, it
is possible to narrow down estimates to a specific value.

Our main results are (i) a more accurate estimation procedure; (ii) the ability to determine
whether a data set sufficiently constrains the model, i.e., whether it is complete; (iii) if it is not, the
possibility to identify a model family capable of reproducing the entire data set; and (iv) stimulation
protocols which can produce complete data sets.

Key words. Hodgkin–Huxley model, nonlinear parameter estimation, membrane current kinet-
ics, inverse problem
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1. Introduction. The elucidation of dynamic changes in membrane conduc-
tance at the origin of cell excitability as well as its modelling by Hodgkin and Huxley
[18], and the introduction of patch clamp techniques by Neher and Sackmann (see
[15] for a detailed description), are among the most important discoveries of the last
century in bioelectricity. In their classical study [18], Hodgkin and Huxley introduced
a nonlinear model (the HH model) which describes current kinetics as a function of
membrane channel states. While relatively empirical, the HH model has provided
many insights into various bioelectric phenomena. In fact, both patch clamp tech-
niques and gating models like the HH model are still the basic tools employed in
investigations of bioelectric phenomena, e.g., the initiation and perpetuation of car-
diac arrhythmias [4, 5, 29, 27, 28, 20, 16, 13, 10], the effect of electrical shocks on the
evolution of cardiac arrhythmias [7, 33, 25, 21], neuromuscular control [12], coding of
visual [19, 14, 31] as well as auditory signals [8, 9], cognitive functions like memory
[1] and learning [24, 32, 23, 30], and finally brain diseases [22].

In practice, there are two modes for membrane current recording: one for analysis
of channel populations, and another one for isolated channels. Here, we are concerned
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only with the electrical activity of a channel population. To date, the HH gating model
has been the most popular way to represent such activity. An alternative to this
model is the deterministic Markovian model [26]. The Markovian model describes the
biophysics of the gating process by treating membrane channels as entities exhibiting
multiple voltage-dependent transitions between discrete states, and thus it is in better
agreement with experimentation [26]. Also, several details of the current kinetics
cannot be reproduced with an HH model [26]. However the link between changes in
channel conformation and current kinetics is far from being obvious, and arguments
based on current kinetics were not supported by an extensive mathematical analysis.

Because the HH model is relatively empirical, its parameters can only be es-
timated from experimental data. In mathematical terms we are facing an inverse
problem, i.e, given only the solution of a nonlinear ODE (HH model), estimate its
initial conditions and parameters. Until now, parameter estimation has followed the
practice introduced by Hodgkin and Huxley [18], where parameters are obtained from
currents recorded during voltage clamp stimulations (voltage clamp data). In such
protocols, the membrane potential is held constant for an interval of time sufficiently
long for the current flow to reach a steady state. Then time-dependent currents are
recorded following the application of a test potential. Sets of currents are generated
by varying the holding or test potentials. In experimental studies, it has become
a common practice to approximate the parameters associated with the steady state
functions of the model from currents obtained by varying the holding potential, and
the time constants by fitting exponentials to the rising or decaying phase of the cur-
rents. A mathematical analysis has shown that this approach may provide a good
approximation to several model parameters if specific conditions are respected [2]. If
they are not, the error may be very large [2]. The weakness of this approach was also
reported by Willms and colleagues [34, 35] (it is referred to as the disjoint method in
their paper).

If appropriately performed, nonlinear least square fitting of voltage clamp data
can produce good estimates, even in the presence of Gaussian noise [34, 35]. Nev-
ertheless, nonlinear fitting has important drawbacks. The existence of local minima
in the merit function to be optimized is particularly problematic. While the pa-
rameters are estimated with voltage clamp data, in most applications, the model is
employed in other conditions to simulate the generation and transmission of electri-
cal impulses in biological tissues. Although parameter values associated with various
local minima may allow good reproduction of the voltage clamp data at the origin of
the fit, they may produce different predictions when inserted in a more macroscopic
model. This becomes a serious limitation when, for example, studying how channel
mutations may render the myocardium more susceptible to the initiation of various
arrhythmias. Considering two limitations of voltage clamp data sets, the range of
inverse solutions can be large. First, voltage clamp data are relatively imprecise due
to imperfect voltage control, space clamp, and seal between the mouth of the pipette
and the cell membrane [15]. These errors are difficult to correct, and taking them into
consideration by accepting a variation in the solution, even if small, may lead to large
variations in the model parameters. Second, we do not know whether a voltage clamp
data set produced by current practice constrains the HH gating model sufficiently. In
fact, from the theory developed here it will become evident that it does not in most
cases.

Following earlier studies [2, 3], we present here an inversion procedure which
overcomes all the difficulties inherent to nonlinear fitting. The estimation problem
requires evaluation of one constant and, for each state variable included in the model,



INVERSION OF THE HODGKIN–HUXLEY GATING MODEL 1251

two functions of membrane voltage, namely the steady state and the time constant.
We introduce transformations which, when applied to voltage clamp data sets ob-
tained by keeping the test potential constant, allow estimation of steady states. Once
these functions are evaluated, we bound the inverse solution by applying other trans-
formations to complementary data sets. Interestingly, the bounds delineate disjoint
ranges of valid parameter values. For any point taken within these bounds, we can
associate to it a time constant. Due to the existence of disjoint ranges, inversion
of the time constants produces a structure with multiple branches. When the data
set is complete, it is possible to deduce a function from such a structure. Important
outcomes of the study are the ability to determine whether a voltage clamp data set
is complete or not, and to identify a set of protocols which can produce a complete
data set. Both elements are, we believe, important for experimental design and for
the development of a systematic modelling methodology.

The paper is organized as follows. For the sake of completeness we introduce the
model and various definitions in section 2. In section 3 we introduce transformations
that allow estimation of the steady state functions. Finally, transformations to bound
the inverse solution and to estimate the time constants are derived in section 4.

2. Preliminaries. In the HH gating model, a given channel is composed of
several molecular components (gates). These change state under the influence of
the electrostatic potential existing across the cell membrane (V). Each molecular
component has two states: closed (C) or open (O). The channel is open when all its
molecular components are in the open state. Otherwise it is closed. Such behavior is
represented by the following state diagram:

Ci
αi(V )
⇀↽

βi(V )
Oi,(2.1)

where V is the membrane potential and α(V ) and β(V ) are, respectively, the forward
and backward rates of transition between the open (O) and closed (C) states of the
molecular gate i. The law of mass action governs the dynamical changes between the
two states. Precisely, the variable y represents the fraction of a population of gates
in the open state, the kinetics of which obeys

dyi(V, t)

dt
= αi(V ) (1 − yi(V, t)) − βi(V )yi(V, t).(2.2)

We refer to the variables yi as the gating variables. When in the open state, the
channel is seen as a resistive barrier to the passage of ions and has a fixed maximal
conductance denoted by ḡ. We assume ḡ constant, but, as will be clear later, the
method applies as well when ḡ is a function of voltage, as long as this function is
known. The driving force for the passage of ions across the channel is the electro-
chemical gradient, which is given by V − ek, where ek is the Nernst potential related
to an ion species “k” [11, Chap. 2]. The membrane current for an ion species “k,”
denoted by Ik(V, t), is

Ik(V, t) = ḡk

⎛
⎝n̄(k)∏
n=0

yk,n(V, t)
λk,n

⎞
⎠ (V − ek),(2.3)

where n̄(k) is the number of distinct molecular gates of a channel, and λk,n the number
of similar components of a molecular gate n in a channel k.
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Fig. 2.1. A: Setup for voltage clamp experiment. B: Stimulation protocol. C: Typical current
wave shape.

Data at the basis of the parameter estimation are membrane currents recorded in
isolated cells during voltage clamp stimulation. The experimental setup is illustrated
in Figure 2.1 and described in detail in [15]. Briefly, cells are isolated, then a pipette is
apposed against the membrane surface, and suction is applied to break the membrane
under the pipette tip. The interior of the pipette is then in continuum with the
intracellular space. An electronic feedback circuit allows one to simultaneously impose
potential and record current on the electrode placed inside the pipette. The voltage
clamp stimulation (Figure 2.1B) consists of clamping the membrane potential at a
holding potential VH for an interval of time sufficiently long for ionic fluxes to reach
steady state. Then at t0 a step to a test potential VT is applied. The membrane
current is recorded just after the application of the step. In the following we assume
that only one type of membrane channel produces the current. Thus we use only one
subscript to refer to the gating variables. In these conditions, the time course of a
gating variable yi is given by

yi(t;VH , VT ) = si(VT ) + (si(VH) − si(VT )) e−t/τi(VT ),(2.4)

where si(V ) and τi(V ) are, respectively, the steady state and time constant associated
to the gating variables yi. They are related to the forward and backward rates of
transition by

s(V ) =
α(V )

α(V ) + β(V )
and τ(V ) =

1

α(V ) + β(V )
.(2.5)

Because s(V ) and τ(V ) are parameters more directly measurable, the format

dy(V, t)

dt
=
s(V ) − y(V, t)

τ(V )
(2.6)

for the expression governing the dynamical changes in yi is preferred. It is an experi-
mental fact that, for the great majority of membrane channels, si(V ) are monotonic
functions exhibiting sigmoidal shape. They are commonly parameterized by

s(V ) ≈ 1

1 + e(V−V0)/sf
,(2.7)
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Fig. 2.2. Steady state functions si(V ) of a two-component gating model.

which for reasons unknown to these authors is called a Boltzmann function. Although
there exist some arguments justifying parameterizing si(V ) with the above function
[6], [17, Chap. 2], here we assume only that si(V ) is monotonic.

When si(V ) is monotonically increasing/decreasing with the membrane potential,
we refer to the related gating variable (yi) as an activation/inactivation gate (Figure
2.2). In this paper we deal with gating models incorporating only two gates, one
activation and one inactivation gate, which is a situation frequently encountered in
bioelectricity. We term the voltage range where

∏n̄
n=0 s

λn
n (V ) > 1% the conductance

window. To simplify the writing, we denote si(Va) ≡ sia and similarly for the time
constants τi(Va) ≡ τ ia, where Va refers to a specific membrane voltage. For an HH
model with one activation (y0) and one inactivation gate (y1), the current waveform
during a voltage clamp stimulation has at most two extrema. The time coordinates
of the peak currents are given by the zeros of

δ(t) =
τ0
Tλ1

τ1
Tλ0

s0T
(s0T − s0H)

et/τ
0
T +

s1T
(s1T − s1H)

et/τ
1
T −

(
1 +

τ0
Tλ1

τ1
Tλ0

)
,(2.8)

which has a critical point at

tc =
τ0
T τ

1
T

τ0
T − τ1

T

ln

[
λ0s

1
T (s0T − s0H)

λ1s0T (s1H − s1T )

]
.(2.9)

At the critical point,

d2δ(t)

dt2

∣∣∣∣
t=tc

=

(
1

τ0
T

− 1

τ1
T

)[
λ0(s

0
T − s0H)

s0T

] τ0
T

(τ1
T

−τ0
T

)
[

s1T
λ1(s1H − s1T )

] τ1
T

(τ0
T

−τ1
T

)

.(2.10)

The reader should consult [2] for more details about (2.8)–(2.10).
Below, we denote time derivatives with a dot above the differentiated variables.

For an arbitrary couple VH , VT , we denote the membrane current by I(t), J(t) ≡
İ(t)/I(t), and IN (t; tr) ≡ I(t)/I(tr), where t is a continuous variable and tr a given
reference time within the recording interval [ta, tb]. Sometimes it is necessary to
specify the potentials of the voltage clamp stimulation associated with a current. In
this case we denote the current by I(t;VH , VT ), where the potentials on the right
of the semicolon are in the order in which they are applied in time during stimula-
tion. A similar notation applies to any function derived from such a current, e.g.,
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J(t) → J(t;VH , VT ), IN (t; tr) → IN (t, tr;VH , VT ). Transformations derived below
are applied to sets of functions (or currents) which share similar properties. Examples
of such sets are I(t) acquired through repetitive application of voltage clamp steps
where only one potential of the step is varied at each stimulation. We denote sets by
indicating the voltage partition associated with the stimulation sequence in the argu-
ments. For example, we denote by I(t; [VH0 · · ·VHn], VT ), [VH0 · · ·VHn], a partition of
[VH0, VHn], and similarly when VT is varied. Sets of functions derived from a set of cur-
rents are denoted analogously, e.g., J(t; [VH0 · · ·VHn], VT ), IN (t, tr; [VH0 · · ·VHn], VT ).
We denote by Ωt,V the space t ∈ [ta, tb], V ∈ [VH0, VHn] generated during the acquisi-
tion of I(t; [VH0 · · ·VHn], VT ) or I(t;VH , [VT0···VTn]). The context always makes clear
what is intended as the V axis of Ωt,V . Finally, since λi are integers, and based on
experimental observations they are small (i.e., λi < 6), in our estimation procedure
we assume these constants to be known.

3. Estimation of the steady states, si(V ). Since the expression of any
I(t;V, VT ) ∈ I(t; [VH0 · · ·VHn], VT ), V ∈ [VH0 · · ·VHn], differs only in siH (see (2.4)),
the data set I(t; [VH0 · · ·VHn], VT ) poses considerable constraints on the model pa-
rameters. Here we exploit this property to evaluate si(V ).

Theorem 3.1. For any I(t) and associated J(t), t ∈ [ta, tb], obtained from a
single step stimulation,

siH
siT

= 1 − J(tr) + λı̄/τ
ı̄
T (1 − εı̄(tr))

J(tr) + λi/τ iT + λı̄/τ ı̄T (1 − εı̄(tr))
etr/τ

i
T ,(3.1)

tr ∈ [ta, tb], i ∈ [0, 1], ı̄ = 1 − i,

where

εj(tr) =
sjT

sjT + (sjH − sjT )e−tr/τ
j
T

, tr ∈ [ta, tb], j ∈ [0, 1].(3.2)

Proof. Take the derivative with respect to time of (2.3), divide the resulting
expression by (2.3), and replace in the latter dyi(V, t)/dt by (2.6). It follows that

J(t) =
λ0

y0

dy0
dt

+
λ1

y1

dy1
dt

= −λ0

τ0
T

(1 − ε0(t)) − λ1

τ1
T

(1 − ε1(t)).(3.3)

Solve εi(t) for siH/s
i
T ; (3.1) follows immediately.

Interesting simplifications occur when the following holds.
Condition 3.2. Max{ε1(t;V, VT )} ≤ εth � 1 over a set I(t;V, VT ), t, V ∈ Ωt,V .
Here dependence on s1(V ) is eliminated in (3.3). The counterpart to this condi-

tion is the following.
Condition 3.3. Max{ε0(t;V, VT )} ≤ εth � 1 over a set I(t;V, VT ) t, V ∈ Ωt,V .
Fortunately, stimulation sequences producing currents satisfying these conditions

exist.
Proposition 3.4. Condition 3.2 is satisfied if[

I(ta;V, VT )

I(tmax;V, VT ) + I(tb;V, VT )

]1/λ1

< εth, tmax, V ∈ Ωt,V , V < VT ,(3.4)

and 3.3 if[
I(ta;V, VT )

I(tmax;V, VT ) + I(tb;V, VT )

]1/λ0

< εth, tmax, V ∈ Ωt,V , V > VT ,(3.5)
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where t ∈ [ta, tb], ta < tmax < tb, I(tmax) = Max{I(t)}, Ita > Itb .
Proof. If in a single step stimulation sequence the currents are acquired in the

space Ωt,V , which also satisfies VH < VT , then dε0(t)/dt < 0, dε1(t)/dt > 0, ε0(t) ∈
(1,∞), ε1(t) ∈ (0, 1). Remarking that εj(t) = sjT /yj(t), then

I(ta)

I(tmax) + I(tb)
=
ελ0
0 (tmax)ε

λ1
1 (tmax) + ελ0

0 (tb)ε
λ1
1 (tb)

ελ0
0 (ta)ε

λ1
1 (ta)

.(3.6)

Using the monotonicity of εj(t), the fact that ε1(t) is bounded, and that the left

member of 3.6 as well as ε
λj

j (t) are positive functions,

I(ta)

I(tmax) + I(tb)
>
ελ0
0 (tmax)

ελ0
0 (ta)

+
ελ0
0 (tb)ε

λ1
1 (tb)

ελ0
0 (ta)ε

λ1
1 (ta)

(3.7)

> ελ1
1 (ta)

[
ελ0
0 (tmax)

ελ0
0 (ta)

ελ0
0 (ta)

ελ0
0 (tb)

+
ελ1
1 (tb)

ελ1
1 (ta)

]
> ελ1

1 (tb)

= [Max{ε1(t)}]λ1 , t ∈ {ta, tb}.
The same applies to Condition 3.3 when currents are acquired in a space Ωt,V
satisfying V > VT . The proof easily follows from the above and is left to the
reader.

Interestingly, due to the structure of the HH gating model, most of the relations
developed for the estimation of si(V ) are symmetric with respect to Conditions 3.2
and 3.3.

Definition 3.5 (symmetric expression). Take two arbitrary sets of currents I1

and I2 respectively satisfying some conditions C1 and C2. Assume expressions E1 and
E2 are obtained from the application of the same transformations respectively to I1

and I2. We say that E1 and E2 have a symmetric structure or simply are symmetric
with respect to the conditions C1 and C2 if E1 can be obtained from E2, and vice versa,
simply by interchanging the indices 0 and 1 of each parameter and function.

Obviously (3.1) is symmetric with respect to Conditions 3.2 and 3.3.
We now deduce modals which allow us to evaluate τ iT in (3.1).
Lemma 3.6. Consider a set I(t;V, VT ), t, V ∈ Ωt,V , which satisfies Condition

3.2. Then for any J(t, V, VT ) and IN (t, tr;V, VT ), t, V ∈ Ωt,V , deduced from this set,

J(t; tr;V, VT ) =

λ0

τ0
T

(
J(tr;V, VT ) + λ1

τ1
T

)
e−(t−tr)/τ0

T

(
J(tr;V, VT ) + λ0

τ0
T

+ λ1

τ1
T

)
−
(
J(tr;V, VT ) + λ1

τ1
T

)
e

−(t−tr)

τ0
T

− λ1

τ1
T

,(3.8)

IN (t; tr;V, VT )
1
λ0 =

τ0
T

λ0

[(
J(tr;V, VT ) +

λ0

τ0
T

+
λ1

τ1
T

)

−
(
J(tr;V, VT ) +

λ1

τ1
T

)
e

−(t−tr)

τ0
T

]
e

−λ1(t−tr)

λ0τ1
T .(3.9)

Furthermore, both (3.8) and (3.9) are symmetric with respect to Conditions 3.2 and
3.3.

Proof. Equation (3.8) follows from substituting (3.1) into (3.3). To obtain (3.9),
integrate (3.8) in the interval [tr, t], take the exponential of the resulting expression,
and elevate each member to the power 1/λ0. Symmetry of (3.8) and (3.9) with respect
to Conditions 3.2 and 3.3 follows from symmetry of (3.1) to the same conditions.
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Expressions of Lemma 3.6 provide two independent relations dependent on two
unknowns: τ0

T and τ1
T . Thus we search for combinations of (3.8) and (3.9) which allow

one to factor these unknowns.
Theorem 3.7. For any IN (t; tr;V, VT ) and J(tr;V, VT ) deduced from I(t;V, VT ),

t, V ∈ Ωt,V , tr ∈ [ta, tb], which satisfies Condition 3.2,

I
1
λ0

N (t, tr;V, VT ) − 1 = θ0

(
−λ0

dIN (t, tr;V, VT )

dt
+ J(tr;V, VT )

)
(3.10)

−θ1
∫ t

tr

IN (t, tr;V, VT )dt,

with

θ0 =
τ0
T τ

1
T

(2λ1τ0
T + λ0τ1

T )
and θ1 =

λ1

λ0τ1
T

(
λ1τ

0
T + λ0τ

1
T

2λ1τ0
T + λ0τ1

T

)
,(3.11)

from (3.11) we have

τ0
T =

θ0λ0

(1 − 4λ0θ0θ1)1/2
, τ1

T =
2λ1θ0

1 − (1 − 4λ0θ0θ1)1/2
,(3.12)

where (3.10)–(3.12) are symmetric with respect to Conditions 3.2 and 3.3.
Proof. Consider a set I(t, V, VT ), t, V ∈ Ωt,V , satisfying Condition 3.2. Solve

(3.9) for e−(1/τ0
T +λ1/(λ0τ

1
T ))(t−tr). Then substitute the resulting expression into the

derivative of (3.9). This leads to

dIN (t, tr;V, VT )
1
λ0

dt
=

(
1 +

τ0
Tλ1

τ1
T
λ0

)
τ0
T

[( τ0
T

λ0
J(tr) + 1 +

τ0
Tλ1

τ1
T
λ0

)
(
1 +

τ0
T
λ1

τ1
T
λ0

) e
−λ1
λ0τ1

T

(t−tr)
(3.13)

−IN (t, tr;V, VT )
1
λ0

]
.

From the integration of (3.13) in the interval [tr, t] we have

IN (t, tr;V, VT )
1
λ0 − 1 = −

(
τ0
T

λ0
J(tr;V, VT ) + 1 +

τ0
Tλ1

τ1
T
λ0

)
(
τ0
T
λ1

τ1
T
λ0

) (
e

λ1
λ0τ1

T

(t−tr) − 1

)

−
(
1 +

τ0
Tλ1

τ1
T
λ0

)
τ0
T

∫ t

tr

IN (t, tr;V, VT )1/λ0dt.(3.14)

Solve for e(−λ1/(λ0τ
1
T ))(t−tr) using (3.13) and substitute the resulting expression into

(3.14); formula (3.10) follows. Finally, symmetry of (3.13) and (3.14) with respect to
Conditions 3.2 and 3.3 follows from the symmetry of (3.9) with respect to the same
conditions.

In practice the above procedure does not provide satisfying results when the
conductance window is very narrow, a situation that is commonly encountered in
bioelectricity (e.g., sodium current of many tissues from human and most animal
species). In such an instance, the range of holding potentials for which it is possible
to record a current and to satisfy Conditions 3.2 or 3.3 allows one to estimate only
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the very foot of si(V ). To overcome this problem, we further develop a procedure
introduced by Beaumont, Roberge, and Lemieux [3], which is based on an analytical
expression for the normalized currents and their derivative.

Theorem 3.8. Consider a set I(t;V, VT ), satisfying Condition 3.2, and J(t;V, VT ),
t, V ∈ Ωt,V , deduced from this set. Then

I(t;V, VT )

I(t;VR, VT )
=

[
s1(V )

s1R

]λ1

⎡
⎣J(t;VR, VT ) + λ0

τ0
T

+ λ1

τ1
T

J(t;V, VT ) + λ0

τ0
T

+ λ1

τ1
T

⎤
⎦
λ0

, VR ∈ [VH0 · · ·VHn],(3.15)

where (3.15) is symmetric with respect to Conditions 3.2 and 3.3.
Proof. Consider any I(t;VH , VT ) ∈ I(t;V, VT ), t, V ∈ Ωt,V , satisfying Condition

3.2. Solve (3.3) for e−t/τi and substitute the resulting expression into (2.4). Then at
tr ∈ [ta, tb],

y0(tr;V, VT ) = s0T

λ0

τ0
T

J(tr;V, VT ) + λ0

τ0
T

+ λ1

τ1
T

,(3.16)

y1(tr;V, VT ) = s1H

⎡
⎣ J(tr;V, VT ) + λ1

τ1
T

J(tr;V, VT ) + λ0

τ0
T

+ λ1

τ1
T

s0T
s0T − s0H

⎤
⎦
τ0
T /τ

1
T

.(3.17)

Substitute (3.16) and (3.17) into (2.3). Evaluate the resulting expression at two dif-
ferent potentials, and divide one of them by the other; then (3.15) follows. Symmetry
of (3.15) with respect to Conditions 3.2 and 3.3 follows from symmetry of (3.16)
and (3.17), which in turn follows from symmetry of (3.3) with respect to the same
conditions.

Theorem 3.8 is complementary to Theorem 3.1 in the sense that it provides, for
the same set, information about sı̄(V ), ı̄ = 1 − i. Fortunately, the conditions of
application for each theorem are the same.

There remains another problem with the practical application of Theorems 3.1
and 3.8. Under restrictions imposed by Conditions 3.2 and 3.3, some models may not
produce currents detectable by available instrumentation. This occurs with Condition
3.3 in a step simulation when τ0

T < τ1
T , VT < Va, VH > Vb. In other words, during a

step stimulation, the gate which is closing reacts more rapidly to changes in membrane
potential than the one which is opening. This is the case for the sodium channel of
cardiac cells of most animal species. To remedy this problem, we propose modifying
the stimulation protocol by inserting a conditioning pulse prior to the application of
the test pulse. The protocol is illustrated in Figure 3.1.

In this double step stimulation we consider ν to be an independent variable, and
νr an arbitrary value along the ν axis. To be consistent with the notation introduced
here, we denote an arbitrary current by I(t; νr), a current produced with specific
potentials by I(t; νr;VH , VC , VT ), and sets of currents produced by varying either
VH or ν in a stimulation sequence, respectively, by I(t; νr; [VH0 · · ·VHn], VC , VT ) and
I(t; [ν0 · · · νn];VH , VC , VT ), where [ν0 · · · νn] is a partition of [ν0, νn], νn > ν0. In this
last case the acquisition space is denoted by Ωt,ν . As with the single step stimulation,
a similar notation applies to functions or sets deduced from these sets. Finally, we
still denote the recording interval during the application of the test pulse by [ta, tb].

Although the addition of a conditioning pulse complicates the analytical expres-
sion for the membrane current, it is still possible to express si(V ) as a function of
various modals of the current.
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VH
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2t  =01t  =−ν νr

νr

V A B

t2

Fig. 3.1. A: Voltage clamp protocol, which includes the insertion of a conditioning pulse (po-
tential VC and duration ν) prior to the application of a test pulse. B: Typical current traces.

Theorem 3.9. For any I(t, νr) ∈ I(t; νr, V, VC , VT ) and J(t, νr) ∈ J(t; νr, V, VC , VT ),
t, V ∈ Ωt,V , deduced from the same set,

siH
siT

=
siC
siT

−
(
siC
siT

− 1

)
e

νr

τi
c −

(
J(tr; νr) + λı̄

τ ı̄ (1 − ψı̄(tr; νr))
)(

J(tr; νr) + λi

τ i
T

+ λı̄

τ ı̄
T

(1 − ψı̄(tr; νr))
)e
(

tr

τi
T

+ νr

τi
C

)
,

tr ∈ [ta, tb], i ∈ [0, 1], ı̄ = i− 1,(3.18)

with

ψj(tr; νr) =
sjT

sjT + (sjC − sjT )e

−tr

τ
j
T + (sjH − sjC)e

−
(

tr

τ
j
T

+ νr

τ
j
c

) , tr ∈ [ta, tb].(3.19)

Proof. The time course of yi(t), t ∈ [ta, tb], in a double step voltage clamp
stimulation is given by

yi(t, νr) = siT + (siC − siT )e
−t

τi
T + (siH − siC)e

−
(

t

τi
T

+ νr

τi
C

)
.(3.20)

Inserting (3.20) and its derivative into (3.3), we get

J(t, νr) = −λ0

τ0
T

(1 − ψ0(t; νr)) − λ1

τ1
T

(1 − ψ1(t; νr)).(3.21)

Solving ψi(t; νr) in (3.21) for (siH/s
i
T − siC/s

i
T ), (3.18) follows immediately.

As with the single step stimulation, interesting simplifications occur when the
following holds.

Condition 3.10. Max{ψ1(t; ν;V, VC , VT )} ≤ ψth � 1 over a set I(t; ν;V, VC , VT ),
t, V ∈ Ωt,V or t, ν ∈ Ωt,ν .

Here s1(V ) is eliminated in (3.18). The counterpart to this condition is the
following.

Condition 3.11. Max{ψ0(t; ν;V, VC , VT )} ≤ ψth � 1 over a set I(t; ν;V, VC , VT ),
t, V ∈ Ωt,V or t, ν ∈ Ωt,ν .

Fortunately, double step stimulation sequences producing currents satisfying these
conditions exist.

Proposition 3.12. Condition 3.10 is satisfied in t, V ∈ Ωt,V or t, ν ∈ Ωt,ν when[
I(ta; ν;V, VC , VT )

I(tmax; ν;V, VC , VT ) + I(tb; ν;V, VC , VT )

]1/λ1

< ψth if V, VC ≤ VT ,(3.22)
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and Condition 3.11 is satisfied when[
I(ta; ν;V, VC , VT )

I(tmax; ν;V, VC , VT ) + I(tb; ν;V, VC , VT )

]1/λ0

< ψth if V, VC ≥ VT .(3.23)

Proof. The proof follows from the proof of the existence of Conditions 3.2 and 3.3.
If in a double step stimulation sequence currents are acquired in the space Ωt,V or
Ωt,ν which also satisfy V, VC ≤ VT , then dψ0(t)/dt ≤ 0, dψ1(t)/dt ≥ 0, ψ0(t) ∈ (∞, 1),

ψ1(t) ∈ (0, 1). Remarking that ψj(t) = sjT /yj(t), it becomes obvious that inequalities
derived in the proof of the existence of Conditions 3.2 and 3.3 apply as well here,
when replacing εj(t) by ψj(t).

Similarly a condition exists, (2.3), for currents acquired in the space Ωt,V or Ωt,ν ,
if for each current V, VC ≥ VT .

Finally, relation (3.18) is symmetric with respect to Conditions 3.10 and 3.11, a
property that follows from symmetry of (3.21) with respect to the same conditions.

The ability to extract information for estimation of si(V ) from currents acquired
in double step stimulations allows experimentalists to design experiments where acqui-
sition of bioelectric signals is more amenable to currently available instrumentation.
However, since utilization of Theorem 3.9 requires knowing siC/s

i
T , VC should be set

to a value where it is possible to record currents satisfying either Condition 3.2 or 3.3
during single step stimulation. For some models such a condition may be impossible
to meet. To circumvent this problem, we look for new stimulation protocols which
can provide more freedom as to the values at which VC can be set. First, we remark
that the expression of several modals of membrane currents acquired with double step
stimulation can be simplified when VH = VT . Specifically, we claim the following.

Lemma 3.13. Take a set I(t; ν;VT , VC , VT ) satisfying Condition 3.10. Then for
any J(t; νr;VT , VC , VT ) ∈ J(t; ν;VT , VC , VT ), t, ν ∈ Ωt,ν ,

s0C
s0T

= 1 −
⎛
⎝ J(tr, νr) + λ1

τ1
T

J(tr, νr) + λ0

τ0
T

+ λ1

τ1
T

⎞
⎠
⎛
⎝ e

tr
τ0
T

1 − e
−νr
τ0
c

⎞
⎠ ,(3.24)

J(t, ν) =

(
λ0

τ0
T

)(
J(tr, νr) + λ1

τ1
T

)
h(ν; νr)e

−(t−tr)

τ0
T(

J(tr, νr) + λ0

τ0
T

+ λ1

τ1
T

)
−
(
J(tr, νr) + λ1

τ1
T

)
h(ν; νr)e

−(t−tr)

τ0
T

− λ1

τ1
T

,(3.25)

h(ν; νr) =
1 − e

−ν

τ0
C

1 − e
−νr
τ0
C

,(3.26)

where (3.24)–(3.26) are symmetric with respect to Conditions 3.10 and 3.11. Further-
more (3.25) is satisfied for at most one value of τ0

C .
Proof. Equation (3.24) is obtained by setting s0H = s0T in (3.18). Substituting

(3.24) into (3.21) in which we impose s0H = s0T , and ψ1(t; ν) = 0, we get (3.21). Sym-
metry of (3.24) and (3.25) with respect to Conditions 3.10 and 3.11 follows from the
symmetry of (3.18) and (3.21) to the same conditions. To demonstrate the uniqueness
of τ0

C , solve (3.25) for h(ν), which leads to

ρ(t, ν)e
−νr
τ0
c − e

−ν

τ0
c = ρ(t, ν) − 1,(3.27)

ρ(t, ν)=

(
J(tr, νr) + λ0

τ0
T

+ λ1

τ1
T

)(
J(t, ν) + λ1

τ1
T

)
(
J(t, ν) + λ0

τ0
T

+ λ1

τ1
T

)(
J(tr, νr) + λ1

τ1
T

) .(3.28)
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For a specific time t0 ∈ [ta, tb] we search for a value of τ0
C satisfying the above relation.

Since the left member of (3.27) is equal to ρ(t, ν) − 1 as 1/τ0
C → 0, approaches 0 as

1/τ0
C → ∞, and has an extrema at

τ0
C =

(ν − νr)

ln (ν/(ρ(t, ν)νr))
,(3.29)

(3.27) admits at most one solution for τ0
C at any given time.

In summary, the estimation of si(V ) proceeds as follows. Take sets I(t;V, VT ),
t, V ∈ Ωt,V with V < VT and t, V ∈ Ωt,V with V > VT . Use Theorems 3.7, 3.1, and 3.8
to estimate si(V )/siT . If the range over which si(V )/siT can be evaluated is too narrow,
augment the data suite at the origin of the estimation with sets I(t; νr;V, VC , VT ),
t, V ∈ Ωt,V , and I(t; ν;VT , VC , VT ), t, ν ∈ Ωt,ν , for which either V, VC > VT or
V, VC < VT . Use Lemma 3.13 and Theorem 3.9 to evaluate si(V )/siT . Repeat the
same procedure with different values of VC until the range over which si(V )/siT can
be evaluated is sufficiently large to appropriately define si(V ).

4. Estimation of the time constants, τi(V ). Transformations of the previ-
ous section enable us to estimate all model parameters. However, all of them require
the test potential of the stimuli (single or double step) to be outside the conductance
window. Since estimation of τi(V ) requires analyzing currents generated at any test
potential, we need to develop other transformations which do not present any con-
straints as to where VT can be set. From this point we assume si(V ) known and take
advantage of this situation to develop an inversion procedure for τi(V ). The basic idea
consists of determining ranges of possible values of the model parameter R = 1/ḡ.
We show that there exist disjoint ranges for R which enable the model to reproduce a
data point. To any value of R picked within the allowed ranges, we associate a finite
number of time constants which enable the model to reproduce a given data point.
From these time constants and continuity criteria, we determine functions of voltage
which complete the parameter estimation.

The cornerstone of the inversion is provided below.
Theorem 4.1. For an arbitrary data point taken on I(tr), tr ∈ [ta, tb],∏

i∈Ā
γi(yi;VH , VT ) = etrJ(tr)

∏
i∈A

γi(yi;VH , VT )(4.1)

with

γi =

⎧⎪⎪⎨
⎪⎪⎩
[
siT−siH
si
T
−yi

]λi(s
i
T

−yi)

yi
if i ∈ A,

[
siT−siH
yi−siT

]λi(yi−si
T

)

yi
if i ∈ Ā,

(4.2)

where A is the set of indices for which sign dsi(V )/dV = sign (VT − VH), and Ā its
complement. The functions γi are defined in the range yi ∈ [siH , s

i
T ], they are equal

to unity at each end of their domain, and they have one and only one extremum.
Proof. Substitute (2.6) into (3.3) to get

J(t) = −
n̄∑
i=0

(
λi
τi

yi − siT
yi

)
.(4.3)
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Fig. 4.1. Functions γ0(y0) (A) and γ1(y1) (B). Segments on the left and right sides of the
extrema are respectively denoted γli, γ

r
i , i ∈ [0, 1].

Solve (2.4) for 1/τ iT and substitute the resulting expression into (4.3); (4.1) follows
immediately. One may easily verify that γi(yi) has one and only one extremum at

ȳi = siT ln

[
siT − siH
siT − ȳi

]
,(4.4)

γi = 1 at yi = siH , s
i
T , and that

γ(ȳi) =

⎧⎪⎨
⎪⎩

e

λi(s
i
T

−ȳi)

si
T if i ∈ A,

e

λi(ȳi−si
T

)

si
T if i ∈ Ā.

(4.5)

The reader is referred to [2] for more details about the above derivations.
Typical functions γ are shown in Figure 4.1. Theorem 4.1 provides a restriction

on yi with respect to a data point. Note that the latter is a generalization of a relation
derived in Beaumont, Roberge, and Leon [2]. We use a parameter µ ∈ [0, 1] to refer
to a specific couple (γ0(µ), γ1(µ)) satisfying (4.1). Specifically, [γia, γ

i
b] is the range of

γi over which (4.1) can be satisfied. It is defined by[
γ0
a, γ

0
b

]
=
[
Max(1, e−tJ(t)),Min(γ̄0, e

−tJ(t)γ̄1)
]
,(4.6) [

γ1
a, γ

1
b

]
=
[
Max(1, etJ(t)),Min(γ̄1, e

tJ(t)γ̄0)
]
.(4.7)

The parameter µ of the parametric form of (4.1),

γi(µ) = γia + (γib − γia)µ, µ ∈ [0, 1],(4.8)

allows us to systematically sweep this range (see Figure 4.2).
For the sake of the description of the inversion procedure, we introduce functions

γli(yi) and γri (yi), which are the left and right (with respect to the extremum) branches
of γi(yi) (Figure 4.1). Inversion of the left and right branches of these functions are
respectively denoted by yi = γ−li (γi) and yi = γ−ri (γi). Now we use Theorem 4.1 to
bound ranges of R = 1/ḡ allowing the model to reproduce a given data point. First
we define

Rm,n(µ) =
V − ek

I(tr;VH , VT )

[
γ−m0 (γ0(µ))

]λ0
[
γ−n1 (γ1(µ))

]λ1
,(4.9)

m,n ∈ [(l, l), (r, r), (l, r), (r, l)], µ ∈ [0, 1].
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Fig. 4.2. Implication of Theorem 4.1. A: Current trace in time. B: Geometrical construction
associated with (4.2) for the three specific data points shown in A.

Note that the order of the indices in Rmn(µ) matters. The first index is related to
gating variable 0 and the second to gating variable 1.

From (4.10) it is obvious that Rm,m(µ), m ∈ [l, r], are monotonic, and Rm,n(µ),
m,n ∈ [l, r], m 	= n, can be, and in fact are most of the time, nonmonotonic. Note
that the line (4.8) crosses either the axis γ0 = γ0

b or γ1 = γ1
b of the (γ0, γ1) plane

(Figure 4.2). Therefore each function Rm,n(µ = 1), m,n ∈ [l, r], m 	= n, intersects
either Rll(µ = 1) or Rrr(µ = 1) at µ = 1.

The functions Rm,n(µ) m,n ∈ [(l, l), (r, r), (l, r), (r, l)] allow us to bound the
inverse solution in µ ∈ [0, 1].

Definition 4.2 (Bounds{R(µ)}). Ranges of R for which it is possible to invert
the solution are denoted by Bounds{R(µ)}. Such bounds are evaluated from the func-
tions Rm,n(µ), m,n ∈ [(l, l), (r, r), (l, r), (r, l)]. Formally, when Rl,r(µ) and Rr,l(µ),
µ ∈ [0, 1], intersect,

Bounds{R(µ)} = [Min{Rll(µ)},Max{Rrr(µ)}] , µ ∈ [0, 1].(4.10)

However, when they don’t intersect, the bounds are constituted by two disjoint ranges.
Specifically, if γ0(ȳ0) > γ1(ȳ1), then Rl,l(µ = 1) = Rl,r(µ = 1), Rr,r(µ = 1) =
R(r, l)(µ = 1), and

Bounds{R(µ)} = [Min{Rll(µ)},Max{Rl,r(µ)}](4.11)

∪ [Min{Rr,l(µ)},Max{R,rr(µ)}] , µ ∈ [0, 1];

if γ0(ȳ0) < γ1(ȳ1), then Rl,l(µ = 1) = Rr,l(µ = 1), Rr,r(µ = 1) = R(l, r)(µ = 1), and

Bounds{R(µ)} = [Min{Rll(µ)},Max{Rr,l(µ)}](4.12)

∪ [Min{Rl,r(µ)},Max{Rr,r(µ)}] , µ ∈ [0, 1].

Due to the nature of Rm,n(µ), m,n ∈ [l, r], m 	= n, in general their inversion at
a specific Rk ∈ Bounds{R(µ)} leads to a set of coordinates µ, which we denote by
[µk0 · · ·µkn] = R−1(Rk) (Figure 4.3). To this set correspond couples γ0(µk,i), γ1(µk,i)
(Figure 4.2). For each of these couples we can obtain a specific value of yi by inverting
the appropriate branch of γi(yi) (Figure 4.1). Since the steady states are known, the
time constants τi(V ) follow from (2.4).
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Fig. 4.3. Functions Rij(µ) built with the 4 different branches of the functions γ. See text for
more details about the construction. Functions Rr(µ) and Rl(µ) may (A) or may not (B) intersect.

From the above, the general inversion procedure should be obvious to the reader.
Take sets I(t;VH , V ), t, V ∈ Ωt,V . Find Bounds{R(µ)} over Ωt,V . The inverse solution
(Rk = 1/ḡ) lies within the global bounds, which are the intersection of Bounds{R(µ)}
evaluated in Ωt,V . We refer to these global bounds by Bounds{R(µ)} ∩ Ωt,V . If the
data sufficiently constrain the model, Bounds{R(µ)} ∩ Ωt,V should be very narrow.
Then for each Rk ∈ Bounds{R(µ)} ∩ Ωt,V (ideally one value), evaluate the time
constants, i.e., invert γi(µ), then γi(yi), and solve (2.4) for τi(V ). Even if the bounds
are very narrow, the inversion of τi(V ) produces a structure with multiple branches
along the V axis since inversion R−1(Rk) is not unique. Because the inverse solution
exists, at least one root of such structure should traverse [VT0, VTn]. If the data
set does not sufficiently constrain the model, then several branches may traverse
[VT0, VTn].

Inversion of Rm,n(µ) m,n ∈ [l, r], m 	= n, requires determining the location of all
extrema of each function. In Beaumont, Roberge, and Leon [2] it was shown that when
etJ(t) = 1 (i.e., for peak currents), these functions have at most two extrema. At this
time, it has not been possible to generalize the proof for the case where etJ(t) 	= 1.
However, below we devise a numerical algorithm which allows us to determine the
number of extrema and locate all of them. First, we state the following.

Theorem 4.3. For any data point taken on I(tr;VH ;VT ), tr ∈ [ta, tb], at the
extrema of Rmn(µ), m 	= n, m,n ∈ [l, r], µ ∈ [0, 1],

σm0 (µ) = σn1 (µ), m 	= n, m,n ∈ [l, r],(4.13)

with

σi(yi) =

[
siT − yi
siT − siH

]siT /yi
, σmi (µ) =

[
siT − ymi (µ)

siT − siH

]siT /ymi (µ)

,(4.14)

and

ymi (µ) = γ−mi (γi(µ)), m ∈ [l, r] i ∈ [0, 1].(4.15)

Functions σmi (µ) are monotonic with sign dσm0 (µ)/dµ = sign dσn1 (µ)/dµ if m 	= n,
and are bounded between in µ[0, 1].
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Proof. From the derivative chain rule we have

∂Rmn(µ)

∂µ
= 0 → ym0 (µ)

λ0 (γ0
b − γ0

a)

dγm0
dy0

=
−yn1 (µ)

λ1 (γ1
b − γ1

a)

dγn1
dy1

.(4.16)

Since ∂γji (yi)/∂yi 	= 0, j ∈ [l, r], i ∈ [0, 1],

dγ−ji (γi)

dγi
=
dyi

dγji
=

1

dγji /dyi
, i, j ∈ [l, r].(4.17)

Inserting dγji (yi)/dyi, j ∈ [l, r], into (4.16), we get (4.13).
We now examine the shape of σi(µ) in µ ∈ [0, 1]. From dσi(yi)/dyi = 0 we have

e
−yi

(si
T

−yi) =
(siT − yi)

(siT − siH)
.(4.18)

The left and right terms of (4.18) are monotonic. The left term is bounded between
[0, 1] in the range yi ∈ [siH , s

i
T ], and is 0 at yi = siT . Since its second derivative is

positive in this range, (4.18) cannot be satisfied, and therefore σi(yi) is monotonic.
Since

dσmi (µ)

dµ
=
dγ(µ)

dµ

dσm
1 (yi)
dyi

dγm
i

(yi)

dyi

,(4.19)

signdσ0(y0)/dy0 	= signdσ1(y1)/dy1, and signdγm0 (y0)/dy0 	= signdγn1 (y1)/dy1, then
sign dσm0 (µ)/dµ = sign dσn1 (µ)/dµ, m,n ∈ [l, r], m 	= n, µ ∈ [0, 1].

We are now ready to expose the algorithm for the determination of the extrema
of Rmn(µ), m,n ∈ [l, r], m 	= n. In this algorithm we need to invert σmi (µ), m ∈ [l, r],
i ∈ [0, 1]. We denote the inversion by µk = σ−m

i (σk), σk being a specific value of σ.
Algorithm 4.4.

1. Take a function Rmn(µ), m,n ∈ [l, r], m 	= n, µ ∈ [0, 1].
2. Start at an arbitrary point µk ∈ [0, 1].
3. If σm0 (µk) > σn1 (µk), then p = m, q = n, j = 0, and k = 1. Else p = n,
q = m, j = 1, k = 0.

4. If functions σm0 (µ) and σn1 (µ) have multiple intersections, they form loops
within which one can move until crossing points are reached. Specifically, to
move right along the µ axis, i.e., µk → µk+1 with µk+1 > µk, proceed as
follows: µk+1 = σ−p

j (σqk(µk)).
5. Move left along the µ axis, i.e., µk → µk−1 with µk−1 < µk as follows: µk−1 =
σ−q
k

(
σpj (µk)

)
.

6. Repeat step 4 to obtain µk+1 → µk+2, and step 5 to obtain µk−1 → µk−2,
until an intersection between σm0 (µ) and σn1 (µ) is found or until an end point
of the search interval is reached.

7. Repeat these operations starting from step 4 until the excursion performed
over the µ-axis covers the search interval, i.e., [0, 1].

As mentioned in the previous section, for some models it is not possible to ob-
tain measurable currents when VT of a step voltage clamp simulation is outside the
conductance window. In this case, we can proceed as for the estimation of si(V ) by in-
terpolating a conditioning pulse prior to the application of the test pulse. Fortunately,
the theory developed in this section is still applicable. It requires only

siH → siC + (siH − siC)e−ν/τ
i
C ,(4.20)

which operation can be performed before starting the inversion of the time constants.
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5. Conclusions. Procedures currently used to estimate the parameters of the
HH gating model are all based on nonlinear least square fitting. It is well known that
this approach has several drawbacks. Namely, the parameters obtained in this manner
may correspond to a local minimum of the merit function undergoing minimization.
Thus not only may estimates lack accuracy, but there is no way to know whether other
minima exist. Knowing the existence of such minima is important for the modelling
methodology because, considering the experimental error, several of them may corre-
spond to plausible inverse solutions. In this case gating model predictions related to
each minimum need to be examined. If model predictions are too wide-ranging, then
additional experiments need to be performed to obtain more specific current kinetics.
While this is a highly desirable approach to the modelling of bioelectric phenomena,
it is not possible to pursue in practice due to the inability to locate, in a rigorous
manner, minima of the objective function.

Here, we have proposed an inversion methodology which overcomes all these lim-
itations. The procedure is accurate because it guarantees that the model will exactly
reproduce the data set. If the solution does not sufficiently constrain the model,
bounds for the inverse solution are large, and it is possible to identify a model family
capable of accurately reproducing the data set at the origin of the estimation. In ad-
dition, since the inversion relates the functions of the model (si(V ) and τi(V )) to the
experimental data, the estimation procedure specifies in which potential range current
kinetics need to be better characterized. In other words the estimation method may
help to design experiments.

Is the inverse solution of the HH gating model with respect to a given voltage
clamp data set unique? Answering this question is not trivial, but is crucial for the
modelling methodology. As we have stressed above, due to the existence of multiple
inverse solutions, conclusions drawn from simulation results can be entirely erroneous.
At this point it should be clear to the reader that if the data set does not probe the
steady states and time constants over a potential range sufficiently large to define these
functions appropriately, the model is under-determined. Unfortunately this seems to
be the case with most data sets employed in common practice.

Furthermore, incomplete data sets result in an inverse solution which is charac-
terized by disjoint ranges of valid values. Consequently in this case very different
models can reproduce a given experimental data set well. This warrants great care
in drawing conclusions from simulations carried out with macroscopic models. This
said, in many cases the lack of data is due to the technical difficulties discussed in
section 4. Here we have provided means to analyze data generated with more elab-
orate protocols (double step) than the conventional step stimulation. We believe
this will provide experimentalists the flexibility they need to overcome the difficulties
commonly encountered.
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with the preparation of this manuscript.

REFERENCES

[1] D.A. Baxter, C.C. Canavier, J.W. Clark, Jr., and J.H. Byrne, Numerical model of the
serotonergic modulation of sensory neurons in Aplysia, J. Neurophysiol., 82 (1999), 2914–
2935.

[2] J. Beaumont, F.A. Roberge, and L.J. Leon, On the interpretation of voltage-clamp data
using the Hodgkin–Huxley model, Math. Biosci., 115 (1993), pp. 65–101.



1266 GUAN JUN WANG AND JACQUES BEAUMONT

[3] J. Beaumont, F.A. Roberge, and D.R. Lemieux, Estimation of the steady-state character-
istics of the Hodgkin–Huxley model from voltage clamp data, Math. Biosci., 11 (1993), pp.
145–186.

[4] J. Beaumont, N. Davidenko, J.M. Davidenko, and J. Jalife, Spiral waves in two-
dimensional models of ventricular muscle: Formation of a stationary core, Biophys. J., 75
(1998), pp. 1–14.

[5] J. Beaumont, N. Davidenko, and A. Goodwin, Vortices of electrical waves in the heart
muscle. Mechanisms of stabilization at high frequencies, Biophys. J., submitted.

[6] L. Beccuci, M.R. Moncelli, and R. Guidelli, Pore formation by 6-ketocholestanol in phos-
pholipid monolayers and its interpretation by a general nucleation-and-growth model ac-
counting for the sigmoidal shape of voltage-clamp curves of ion channels, J. Amer. Chem.
Soc., 125 (2003), pp. 3784–3792.

[7] J.A. Benett and B.J. Roth, Time dependence of anodal and cathodal refractory periods in
cardiac tissue, Pacing & Clinical Electrophysiol., 22 (1999), pp. 1031–1038.

[8] L.A. Cartee, C. van den Honert, C.C. Finley, and R.L. Miller, Evaluation of a model of
the cochlear neural membrane. I. Physiological measurement of membrane characteristics
in response to intrameatal electrical stimulation, Hearing Res., 146 (2000), pp. 143–152.

[9] L.A. Cartee, Evaluation of a model of the cochlear neural membrane. II: Comparison of model
and physiological measures of membrane properties measured in response to intrameatal
electrical stimulation, Hearing Res., 146 (2000), pp. 153–166.

[10] P. Comtois and A. Vinet, Curvature effects on activation speed and repolarization in an ionic
model of cardiac myocytes, Phys. Rev. E., 60 (1999), pp. 4619–4628.

[11] J. Cronin, Mathematical Aspects of Hodgkin–Huxley Neural Theory, Cambridge University
Press, London, Cambridge, 1987.

[12] O. Ekeberg and S. Grillner, Simulations of neuromuscular control in lamprey swimming,
Phil. Trans. R. Soc. London B, 354 (1999), pp. 895–902.

[13] F. Fenton and A. Karma, Fiber-rotation-induced vortex turbulence in thick myocardium,
Phys. Rev. Lett., 81 (1998), pp. 481–484.

[14] R.J. Greenberg, T.J. Velte, M.S. Humayun, G.N. Scarlatis, and E. de Juan, Jr., A
computational model of electrical stimulation of the retinal ganglion cell, IEEE Trans.
Biomed. Engrg., 46 (1999), pp. 505–514.

[15] O.P. Hamill, A. Marty, E. Neher, B. Sackmann, and F.J. Sigworth, Plügers Arch., 391
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Abstract. We study the pricing of three exotic derivative securities (barrier, lookback, and
passport options) which can be characterized by boundary value PDE problems in the context of
popular Markovian stochastic volatility models of stock prices. By extending the fast mean-reverting
asymptotic analysis in [J.-P. Fouque, G. Papanicolaou, and K. R. Sircar, Derivatives in Financial
Markets with Stochastic Volatility, Cambridge University Press, London, 2000], the usual “Greek”
correction to the Black–Scholes prices of these contracts is further corrected by a boundary integral
term that is rapidly computed numerically. In the case of the passport option, the asymptotic method
is effective in accounting for stochastic volatility effects in a simple and robust fashion even in the
presence of a highly nonlinear embedded stochastic control problem.
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1. Introduction. In this paper we describe a framework for approximating the
prices of certain path-dependent derivative securities to take into account the observed
“implied volatility skew,” which contains information about the market’s view of the
asymmetry and leptokurtosis in stock price returns. The pricing problems for these
exotic options are characterized by boundary value problems for PDEs, under the
class of stochastic volatility diffusion models we consider here. Our examples are a
barrier option, a lookback option, and a passport option, whose prices solve Dirichlet,
mixed, and Neumann boundary value problems, respectively. From the point of view
of the practical application, there is a need for a quick calculation from which a trader
can quote a price to a client. The approximation method used here is computationally
fast and robust to specific modeling of the unobserved stochastic volatility process.
The analysis extends the singular perturbation approximations for stochastic volatility
models studied in [13].

1.1. Empirical foundation. The basis of the approximations is a rapid time-
scale of fluctuation in the stock price volatility relative to the time horizon of the
options contract. Such a fast scale has been identified in market data in [16, 1, 4], for
example, and is convenient for constructing approximations over times when other,
slower, factors in the volatility can be considered relatively benign. Extension of the
approach in [13] to incorporate a slower scale is begun in [15]. Asymptotic analysis of
a different type of exotic path-dependent contract, Asian options, is studied in [12].

In [16], we studied high-frequency S&P 500 data over the period of a year. The
result, using both variogram and spectral methods, was the clear presence of a fast
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time-scale of volatility fluctuation, corresponding to a characteristic mean-reversion
time on the order of a few days.

There is also considerable evidence of a slower scale. Many empirical studies have
looked at low-frequency (daily) data, with the data necessarily ranging over a period
of years, and have found a low rate of volatility mean-reversion. (These analyses of
data at lower frequencies over longer time periods primarily pick up a slower time-scale
of fluctuation and do not identify scales at the same order as the sampling frequency.)
Often, the slow factor half-life is found to be on the order of 70–90 days in equity
indices [10].

The combined conclusion has led recently to the study of two-factor stochastic
volatility models [4], where one factor is slowly mean-reverting and the other is fast
mean-reverting. Another recent empirical study [1], this time of exchange rate dy-
namics, finds “the evidence points strongly toward two-factor [volatility] models with
one highly persistent factor and one quickly mean-reverting factor.”

In the option-pricing asymptotics presented here, we focus on the effect of the
fast volatility scale. This corresponds to assuming the lifetime of the derivative is on
the order of the typical half-life of the slow factor, or less, because that factor would
act approximately like a constant.

1.2. Alternative approaches. There are a number of other approaches to
stochastic volatility modeling, and we briefly discuss only the more common ones
here. Volatility models built on diffusions were introduced in the literature in the late
1980s by Hull and White [23], among others. One popular class of models builds on
the Feller process model introduced in this context by Heston [20] because call option
prices can be solved for in closed form up to a Fourier inversion.

Typically a lot of emphasis is placed on fitting the models very closely to ob-
served implied volatilities (see subsection 1.3 for the definition), and not surprisingly,
models with more degrees of freedom perform better in this regard. For example, the
models studied in [2, 9] include jumps in stochastic volatility on top of a Heston-type
model. However, little attention is paid to the stability of the estimated parame-
ters over time, and it is the usual practice in the industry simply to recalibrate each
day.

The approach taken here, based on modeling volatility in terms of its charac-
teristic scales rather than specific distributions, sacrifices some of the goodness of
in-sample fit to current data for greater stability properties. It also allows for effi-
cient computation of approximations to prices of exotic contracts, such as considered
here. Otherwise, these prices have to be found by simulations or numerical solu-
tion of a high-dimensional PDE associated with the full stochastic volatility model.
Other authors have also studied this approximation [5] or applied it in different con-
texts, for example, pricing volatility derivatives [22] or analyzing trading volume
[21].

1.3. Calibration from market-implied volatilities. The three options stud-
ied here are called exotic (and are listed in increasing order of “exoticness”) because
they are less heavily traded than standard “vanilla” call and put options. Lookbacks
and passport options are usually sold as over-the-counter products. However, mar-
ket vanilla option prices contain valuable information about the market’s perception
of future risks. This is typically expressed in units of implied volatility. Given the
observed price Cobs of a European call option, which gives the holder the right but
not the obligation to buy one unit of stock for strike price K on date T , the implied
volatility I is defined as that volatility which equates the Black–Scholes option pricing
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Fig. 1.1. Implied volatility as a function of moneyness for fixed maturity options. The skew
represents asymmetry in the returns distribution of the stock, and the increase in level over historical
volatility is due to the excess kurtosis over lognormal models.

formula CBS(t,Xt;K,T ; I) to this price:

CBS(t,Xt;K,T ; I) = Cobs.

Here, t denotes the current time and Xt the current stock price.
A basic problem in financial engineering, given the market’s implied volatilities, is

to find prices of exotic contracts that are consistent with the principle of no arbitrage.
(In general, there is no unique solution without making further assumptions on an
underlying model.)

Under a large class of fast mean-reverting stochastic volatility models, it is shown
in [13] that the implied volatility surface I(K,T ) (that is, I considered as a function
of the option’s strike price K and maturity date T for fixed t and Xt) is approximated
by an affine function of the log-moneyness-to-maturity ratio (LMMR):

I ≈ a× LMMR + b, LMMR =
log(K/Xt)

T − t
,(1.1)

where a and b are some market constants to be estimated by fitting this formula to
option implied volatility data. See Figure 1.1.

Then, given estimates of the slope a and the intercept b, we consider the problem
of finding consistent approximations for various exotic options. The cases of American
and Asian options, as well as barriers, were studied in [13]. The latter contained an
error in the calculation, and we include it here, corrected and in a somewhat different
format from the subsequent erratum to [13], as our starting point.

When the formula (1.1) is fitted to certain regimes of S&P 500 implied volatility
data, the estimated parameters a and b have good stability properties [13, 14]. This
is particularly important for pricing path-dependent securities as considered here,
because they depend not just on a one-time distribution of the stock price, but also
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on the evolution of the process. The stability and goodness-of-fit, particularly to
short-dated options, can be improved by including time-dependent periodic factors,
as is done in [14].

Given the condensation of the pricing measure contained in a and b, we show
that the asymptotic correction term in these boundary value problems is explicit up
to a one-dimensional integral, which can be computed very quickly. It is then easy to
gauge the impact of, for example, the slope of the implied volatility skew, measured
by a, on the prices of these path-dependent contracts, as we illustrate numerically. The
upshot of the analysis is that one obtains the usual asymptotic correction terms to the
Black–Scholes prices of the exotics (which can be expressed in terms of the “Greeks,”
or partial derivatives of the Black–Scholes prices) plus an additional boundary integral
term that corrects the Greek correction for skew effects.

1.4. Hedging. Another important problem is hedging the risk of a position in
exotic options using the underlying asset and perhaps other vanilla options which are
liquidly traded. While this is a well-defined problem in a complete market model
(for example, the constant volatility Black–Scholes model), and the hedging ratio,
the number of stocks held in order to hedge perfectly, is a by-product of the pricing
problem, this is not the case in incomplete market models, such as with stochastic
volatility, where the additional randomness driving the volatility cannot be hedged
because volatility is not a tradeable asset. Many studies on hedging in incomplete
markets model the preferences of the individual or institutional hedger through a
loss function. The hedging strategies are found as solutions of a stochastic control
problem of minimizing the expected loss for a given initial hedging capital. We do not
discuss these approaches in this paper. The example of minimizing expected shortfall
is studied in [11], and asymptotic approximations in the case of fast mean-reverting
stochastic volatility are constructed in [26].

For the Black–Scholes model, the hedging ratio for a barrier or lookback option
is given by the Delta (the partial derivative with respect to x, the stock price) of
the option price. It is natural to consider the same quantity, replacing the Black–
Scholes price by the asymptotic approximation of the stochastic volatility price we
derive here; such an approach was developed in [13, Chapter 7]. This type of strategy
is not self-financing, but the value of the hedging portfolio is close to the value of
the option. These are discussed in sections 2.5 and 3.5. The hedging problem for a
passport option is discussed in section 4.6.

2. Barrier options. A barrier option is a path-dependent claim whose payoff
depends on whether or not the underlying asset price hits a specified value before
the maturity date. One example of a barrier option is the down-and-out call option,
which gives the holder the right to buy the underlying asset on expiration date T for
strike price K unless the asset price has hit the barrier B at some time before T , in
which case the contract expires worthless. The payoff at expiration T can be written
as

h (XT ) = (XT −K)
+

1{min0≤t≤T Xt≥B},

where 1 denotes the indicator function.

2.1. Asymptotic approximation. The fast mean-reverting stochastic volatil-
ity approximation for barrier options was studied in [13]. In this paper, we give a
brief review, which derives the relevant PDE problems to solve for the terms in the
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asymptotic expansion. In this case, the boundary condition arises naturally due to
the structure of the option.

We shall look at stochastic volatility models in which volatility (σt) is driven
by an ergodic process (Yt) that approaches its unique invariant distribution at an
exponential rate 1/ε. The size of this rate captures the volatility decorrelation speed,
and in particular we shall be interested in asymptotic approximations when ε is small,
which describes fast mean-reverting volatility.

As explained in [13], it is convenient for exposition to take a specific simple
example for (Yt) and allow the generality of the modeling to be in the unspecified
relation between volatility and this process: σt = f(Yt), where f is some positive
(and sufficiently regular) function, bounded above and away from zero. Further,
taking (Yt) to be a Markovian Itô process allows us to simply model the asymmetry,
or fatter left-tails of returns distributions, by incorporating a negative correlation
between asset price and volatility shocks. We shall thus take (Yt) to be a mean-
reverting Ornstein–Uhlenbeck (OU) process, so that the stochastic volatility models
we consider are

dXt = µXt dt+ f(Yt)Xt dWt,(2.1)

dYt =
1

ε
(m− Yt) dt+

ν
√

2√
ε

(
ρ dWt +

√
1 − ρ2 dZt

)
,

where (Xt) is the stock price process. Here (Wt) and (Zt) are independent standard
Brownian motions on a probability space (Ω,F ,P), and ρ is the instantaneous corre-
lation between asset price and volatility shocks that captures the skew, asymmetry, or
leverage effect. The asymptotic results as they are used are not specific to the choice
of the OU diffusion process, nor do they depend on specifying f . In this scaling, the
invariant density of Y is Gaussian, N (m, ν2), which does not depend on ε. Through-
out the paper, we adopt the standard practice of denoting the initial values of the
processes X and Y with lowercase letters, x and y.

The model (2.1) describes an incomplete market, meaning that not all contingent
claims can be replicated by trading only in the underlying stock, the volatility process
being untradeable. This has profound consequences for pricing, hedging, and calibra-
tion problems for derivative securities. By standard no-arbitrage pricing theory [8],
there is more than one possible equivalent martingale (or risk-neutral pricing) mea-

sure P
�(γ) because the volatility is not a traded asset; the nonuniqueness is denoted

by the dependence on γ, which we identify as the market price of volatility risk.
By Girsanov’s theorem, (W �

t , Z
�
t ) defined by

W �
t = Wt +

∫ t

0

(µ− r)

f (Ys)
ds, Z�t = Zt +

∫ t

0

γsds

are independent Brownian motions under a measure P
�(γ) defined by

dP�

dP

(γ)

= exp

(
−
∫ T

0

(µ− r)

f (Ys)
dWs −

∫ T

0

γsdZs − 1

2

∫ T

0

[(
(µ− r)

f (Ys)

)2

+ γ2
s

]
ds

)
,

assuming (γt) is a nonanticipating process with sufficient regularity.
In particular, γt is the risk premium factor from the second source of randomness Z

that drives the volatility. As explained in [13], we take the view that the market
selects a pricing measure identified by a particular γ which is reflected in liquidly
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traded around-the-money European option prices. Other derivative securities must
be priced with respect to this measure, if there are to be no arbitrage opportunities.
We shall assume that the market price of volatility risk γt is a bounded function of the
state Yt: γt = γ(Yt). In general, it may be a more complicated function of time and the
paths of the two Brownian motions, but we make the assumption that (X,Y ) remains
a time-homogeneous Markov process under the pricing measure and that Y remains a
Markov process by itself under P

�(γ). This simplification implies, in particular, that
the market parameters V ε2 (defined in (2.11) below) and, consequently, the implied
volatility calibration parameter b in (1.1) do not depend on time or the level of the
stock price x. The effects of this assumption are reflected in fitting the model to data;
the performance study in [14] shows that the fitted b is typically quite stable.

Under P
�(γ), (X,Y ) evolves according to

dXt = rXtdt+ f(Yt)XtdW
�
t ,(2.2)

dYt =

[
1

ε
(m− Yt) − ν

√
2√
ε

Λ(Yt)

]
dt+

ν
√

2√
ε

(
ρ dW �

t +
√

1 − ρ2 dZ�t

)
,(2.3)

where

Λ(Yt) = ρ
(µ− r)

f (Yt)
+
√

1 − ρ2 γ(Yt).

We also define the infinitesimal generator Lε of (X,Y ) under this measure and
write it grouped in powers of ε as follows:

Lε =
1

ε
L0 +

1√
ε
L1 + L2,(2.4)

L0 = ν2 ∂
2

∂y2
+ (m− y)

∂

∂y
,(2.5)

L1 =
√

2νρf(y)x
∂2

∂x∂y
−
√

2νΛ(y)
∂

∂y
,(2.6)

L2 =
∂

∂t
+

1

2
f(y)2x2 ∂

2

∂x2
+ r

(
x
∂

∂x
− ·
)
.(2.7)

Here L0 is the infinitesimal generator of the mean-reverting OU process, L1 contains
the mixed derivative (from the correlation) and the market price of risk γ, and L2 is
the Black–Scholes partial differential operator LBS(f(y)) at the volatility level f(y).

The price P (t, x, y) of the down-and-out barrier call option satisfies

LεP = 0 in x > B and t < T ,

with a terminal condition at t = T , P (T, x, y) = (x−K)+, and a boundary condition
at x = B, P (t, B, y) = 0. The latter expresses the knock-out condition on the barrier.

An asymptotic analysis detailed in [13] shows that the fast mean-reverting ap-
proximation (in the limit ε ↓ 0) for the barrier option is given by

P (t, x, y) ≈ P (0)(t, x) + P̃ (1)(t, x).

Here, P 0(t, x) is the Black–Scholes price of the option with constant volatility param-
eter σ̄, which is related to the original volatility model by

σ̄2 = 〈f2〉,
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where 〈·〉 denotes averaging with respect to the invariant density of Y , N (m, ν2).
Notice that, under the fast volatility scaling, the first two terms of the expansion
do not depend on y, the level of the unobservable process Y . Therefore, P (0) is the
solution of the homogenized boundary value problem

LBS(σ̄)P (0) = 0 in x > B and t < T,(2.8)

P (0)(T, x) = (x−K)+,

P (0)(t, B) = 0.

We can obtain a formula for P (0)(t, x) by the method of images (see [29], for example)

P (0)(t, x) = CBS(t, x; σ̄) −
( x
B

)1−k
CBS(t, B2/x; σ̄),(2.9)

where k = 2r/σ̄2 and CBS(t, x; σ̄) is the Black–Scholes pricing formula for a call
option, with the volatility parameter σ̄:

CBS(t, x; σ̄) = xN(d1) −Ke−r(T−t)N(d2),

d1 =
log(x/K) +

(
r + 1

2 σ̄
2
)
(T − t)

σ̄
√
T − t

,

d2 = d1 − σ̄
√
T − t,

and N denotes the standard cumulative normal distribution function.

2.2. First-order correction. From the asymptotic calculations in [13], the

stochastic volatility correction P̃ (1)(t, x), which is of order
√
ε, satisfies the PDE

problem

LBS(σ̄)P̃ (1) = AP (0) in x > B and t < T,

P̃ (1)(T, x) = 0,

P̃ (1)(t, B) = 0,

where A is defined as

A = V ε3 x
∂

∂x

(
x2 ∂

2

∂x2

)
+ V ε2 x

2 ∂
2

∂x2
,(2.10)

V ε2 = −ν
√
ε√
2

〈Λφ′〉 ,(2.11)

V ε3 =
ρν

√
ε√

2
〈fφ′〉 ,(2.12)

and φ(y) is a solution of L0φ(y) = f(y)2 − σ̄2. As shown in [13], the boundedness
assumptions on f and γ imply that we can choose φ to have a bounded first derivative.

The interpretations of the two market constants above are as follows: V ε2 con-
tains the effect of the market price of volatility risk; V ε3 contains the effect of the
correlation, or skew, ρ. In the case of zero correlation, V ε3 = 0 and our correction
formulas (2.19), (3.10), and (4.18) below simplify and do not require numerical inte-
gration. However, in equity markets, ρ is typically estimated to be negative.

In practice, we do not use the homogenization formulas (2.11) and (2.12) to ob-
tain V ε3 and V ε2 from a specific stochastic volatility model. Rather, they are calibrated
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from liquid European options prices, or the implied volatility surface using the LMMR
formula (1.1). As computed in [13], V ε3 and V ε2 are obtained from a and b in (1.1),
and from the long-run mean historical volatility σ̄ estimated from stock returns, by

V ε2 = −σ̄
(
a

(
r − 1

2
σ̄2

)
+ (b− σ̄)

)
,

V ε3 = −aσ̄3.

The problem of solving this boundary value problem with a source term can be
simplified to a one-dimensional integral by defining

P̂ (t, x) = P̃ (1) +
V ε3
σ̄
xP

(0)
xσ̄ +

V ε2
σ̄
P

(0)
σ̄

for x ≥ B. Then P̂ (t, x) solves

LBS(σ̄)P̂ (t, x) = 0 in x > B and t < T,(2.13)

P̂ (T, x) = 0,

P̂ (t, B) =
V ε3
σ̄
g(t),

where we define

g(t) = xP
(0)
xσ̄

∣∣
x=B

.(2.14)

This is because the barrier option Vega V = P
(0)
σ̄ solves the PDE problem

LBS(σ̄)V = −σ̄x2P (0)
xx in x > B and t < T,

V(T, x) = 0,

V(t, B) = 0,

as can be seen by formally differentiating (2.8) with respect to σ̄. Differentiating again

with respect to x, we can see that the Vega of the hedge U = xP
(0)
xσ̄ satisfies

LBS(σ̄)U = −σ̄x ∂

∂x
(x2P (0)

xx ), U(T, x) = 0,

but U(t, B) �= 0 in general.

2.3. Interpretation of the Greeks. In the case of a regular option without a
barrier boundary condition, the correction to the price is given by

P̃ (1) = −V
ε
3

σ̄
xP

(0)
xσ̄ − V ε2

σ̄
P

(0)
σ̄ ,

which corresponds to the alternative formulation

P̃ (1) = −(T − t)

(
V ε3 x

∂

∂x

(
x2 ∂

2

∂x2

)
+ V ε2 x

2 ∂
2

∂x2

)
P (0)

given in [13] because

V = σ̄(T − t)x2P (0)
xx ,(2.15)

xP
(0)
xσ̄ = σ̄(T − t)x

∂

∂x
(x2P (0)

xx ).(2.16)
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While it is intuitive to present the asymptotic correction in terms of the so-called

Greeks P
(0)
σ̄ and P

(0)
xσ̄ , intuition can be misleading because, here, these terms are

evaluated at the long-run mean volatility σ̄, and not at (an estimate of) the current
volatility level f(Yt). In other words, these terms represent sensitivity to the global
mean volatility rather than local sensitivity, which is how the Greeks are usually
employed in practice. The asymptotic calculation has highlighted the Vega and Vega

of the Delta P
(0)
xσ̄ as primary measures of the effect of stochastic volatility on pricing

in the fast mean-reversion limit, but the current volatility level is unimportant to this
order. It is analogous to a central limit theorem correction to a law of large numbers.

In the case of path-dependent options considered here, these Greek terms do
not comprise the whole correction, and the term P̂ , which can be represented as a
boundary integral as we shall see below, plays an important role.

2.3.1. Calculation. The problem (2.13) can be transformed to a constant co-
efficient backward heat equation by the simple transformations η = log(x/B) and

P̂ (t, x) =
V ε3
σ̄
v(t, η) exp

(
−1

8
σ̄2(1 + k)2(T − t) +

1

2
(1 − k)η

)
.

Then v(t, η) solves

vt +
1

2
σ̄2vηη = 0 in η > 0 and t < T ,(2.17)

v(T, η) = 0,

v(t, 0) = g̃(t),

where

g̃(t) = e
1
8 σ̄

2(1+k)2(T−t)B− 1
2 (1−k)g(t).

By Duhamel’s theorem (see [3, page 31], for instance), the solution is given by the
one-dimensional integral

v(t, η) =
1

σ̄
√

2π

∫ T

t

η

(s− t)3/2
e−η

2/2σ̄2(s−t)g̃(s) ds.(2.18)

We obtain the correction to the barrier price as

P̃ (1)(t, x) = −V
ε
3

σ̄
xP

(0)
xσ̄ (t, x) − V ε2

σ̄
P

(0)
σ̄ (t, x)

(2.19)

+
V ε3
σ̄

x

B
log
( x
B

) 1

σ̄
√

2π

∫ T

t

e−
1
2dB(s−t)2 g(s)

(s− t)3/2
ds,

where

dB(τ) =
log(x/B)

σ̄
√
τ

+
1

2
(1 + k)σ̄

√
τ .

Explicit formulas for g(t) and P̃ (1)(t, x) are given in Appendix A. These are illustrated
in Figures 2.1 and 2.2. As depicted in Figure 2.1, the effect of changing the slope of the
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Fig. 2.1. Effect of changing the slope of the skew a on down-and-out call option price. The
parameters used for pricing the contract are K = 100, B = 89, T = 0.5, σ̄ = 0.17, b = 0.23. As
shown more closely in the right figure, near the barrier, making a more negative increases the price.
This effect reverses at higher stock prices. In the figures, the solid line shows the corresponding
Black–Scholes price. In the right figure, the values of a reading upwards after the Black–Scholes
pricing curve are a = −0.02,−0.04,−0.09,−0.18.
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Fig. 2.2. The first-order correction for down-and-out call option at time t = 0. The parameters
used for pricing the contract are as in Figure 2.1 with a = −0.154. The solid line shows the first-

order correction P̃ (1), the dotted line is P̂ , and the dashed line is the contribution of the Greek terms

to P̃ (1) in (2.19).

implied volatility curve has a mixed structure. For the stock prices that are further
away from the strike price, where there is a small possibility of having a positive
payoff, making a more negative increases the price. For the stock prices that are
around the strike price, this effect is reversed. An increase in b, which can also be
interpreted as using a higher volatility as we push up the implied volatility curve,
increases the corrected price.
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2.4. Convergence. In the case of a smooth payoff-at-maturity function, the
proof of the convergence result

|P (t, x, y) − (P (0)(t, x) + P̃ (1)(t, x))| = O(ε)

at a fixed point (t, x, y) is obtained by an adaptation of the proof given in [13, sec-
tion 5.4]. Here the sense of convergence is with t < T , x > B, and y ∈ R fixed and
as ε ↓ 0, as is needed in the finance application.

The error Zε(t, x, y) defined by

P = P (0) +
√
εP (1) + εP (2) + ε3/2P (3) − Zε

satisfies

LεZε = ε(L1P
(3) + L2P

(2)) + ε3/2L2P
(3),

Zε(T, x, y) = εP (2)(T, x, y) + ε3/2P (3)(T, x, y),

Zε(t, B, y) = εP (2)(t, B, y) + ε3/2P (3)(t, B, y),

using the definitions of P (0)(t, x), P (1)(t, x) and choosing P (2)(t, x, y) and P (3)(t, x, y)
as solutions of

L0P
(2) + L2P

(0) = 0,(2.20)

L0P
(3) = −(L1P

(2) + L2P
(1)),(2.21)

respectively. The latter can be chosen to be at most logarithmically growing in y by
the properties of the Poisson equations (2.20) and (2.21) and the assumed boundedness
of f and Λ. The result follows from the maximum principle because smoothness of
the payoff implies P (2) and P (3) are smooth with bounded derivatives.

When the payoff is only continuous as in the case of the barrier call option here,
the argument of [17] can be adapted to show that

|P (t, x, y) − (P (0)(t, x) + P̃ (1)(t, x))| = O(ε1−p)

for any p > 0. This involves a regularization of the payoff, which can be conveniently
done by replacing the nonsmooth call payoff (x −K)+ by the Black–Scholes barrier
option price P (0)(T − δ, x; σ̄) a small time δ > 0 from maturity. This payoff is smooth
and zero at the barrier x = B, and we can utilize the explicit Black–Scholes barrier
option pricing formula (2.9) to easily estimate the blow-up rates of derivatives at
x = K as δ ↓ 0 and t→ T .

The important point is that the barrier price P (0) is smooth in x > B and its
derivatives have finite limits as x → B+. Therefore the presence of the knock-out
barrier introduces no further complications.

The only further adaptation to the proof in [17] that needs to be made is in
showing that the solution of the regularized problem converges to the solution of the
unregularized problem as δ ↓ 0 at a rate independent of ε. This can be achieved by
a rotation of coordinates so that the two solutions can be written as expectations of

functionals of independent processes (ξ, Y ), where ξ = X − F (Y ) and F ′ =
√
ερ

ν
√

2
f ,

stopped on a curved boundary. (Such a transformation is not computationally conve-
nient but is useful to derive regularity properties.) The result follows by conditioning
on the subordinating process Y and ε-independent moments of this process.
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2.5. Hedging. As mentioned in section 1.4, one possible hedging strategy is to
hold

∆ε
t :=

∂

∂x
(P (0) + P̃ (1))(t,Xt)

stocks at time t, and e−rt(P (0) + P̃ (1) − ∆ε
tXt) units of account in the bank. This is

not a self-financing strategy, but the value of the hedging portfolio remains close to
the price of the barrier option under the assumption of fast volatility mean-reversion,
as shown in [13, Chapter 7].

It is well known that certain popular hedging strategies based on the Greeks
Delta, Vega, and Gamma run into trouble when the stock price is close to the barrier
because these derivatives do not converge to zero as x ↓ B. The asymptotic methods
we consider here are not intended to remedy this problem, and indeed we would expect
the approximations to be less effective close to the barrier because the assumption
of the remaining lifetime of the option being long compared with the characteristic
half-life of the volatility breaks down. This is similar to the situation when the option
is close to maturity (see [13, section 5.5] for a discussion). In these cases, boundary
layer effects are important (see [22] for an analysis).

3. Lookback options. Lookback options are path-dependent options whose pay-
off depends on the realized maximum or minimum of the underlying asset price during
the life of the option. One example of this class of options is the floating strike look-
back put, which pays the difference of the realized maximum of the underlying asset
during the option’s life and the asset price itself at the expiration time T . Its payoff is
JT−XT , where we define the running maximum Jt = max0≤s≤tXs. Pricing equations
for lookback options in the Black–Scholes constant volatility model were first given
and solved in [18]. A combination of a lookback call (paying the difference between
the terminal stock price and the minimum) and a lookback put can be used to model
trading strategies employed by many trend-following hedge funds, as discussed in [6],
for example. Davydov and Linetsky [7] derive the closed-form solutions for Laplace
transforms of the prices of lookback options in the case of the constant elasticity
of variance (CEV) model. This is a complete market model in which the volatility
process is a power function of the stock price: σt = κSγt . Linetsky [27] studies the
construction of spectral expansions for the same model.

In a stochastic volatility environment, the price P (t, x, J, y) of this option satisfies

LεP = 0 in x < J and t < T ,

with a terminal condition P (T, x, J, y) = J − x and a boundary condition at x = J ,
PJ(t, J, J, y) = 0. The derivation of the boundary condition is given in [18], expressing
the fact that the price of the lookback option forXt = Jt is insensitive to small changes
in Jt because the realized maximum at time T is larger than the realized maximum
at time t with probability one.

The problem of finding P (t, x, J, y) can be reduced to a two (space)-dimensional
boundary value problem with the following similarity reduction:

ξ = x/J and P (t, x, J, y) = JQ(t, ξ, y).
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We can express Q(t, ξ, y) as the solution of(
1

ε
L0 +

1√
ε
L1 + L2

)
Q = 0 for ξ < 1 and t < T,

Q(T, ξ, y) = 1 − ξ,

(Qξ −Q)(t, 1, y) = 0,

where, in a slight abuse of notation, we redefine L1 and L2 to be the same as (2.6)
and (2.7), but with ξ replacing x.

3.1. Asymptotic approximation. Our approximation for the lookback price
is

Q(t, ξ, y) ≈ Q(0)(t, ξ) + Q̃(1)(t, ξ),

where P (0)(t, x, J) = JQ(0)(t, x/J) is the Black–Scholes price of the option with
volatility parameter σ̄. That is, following the usual asymptotic analysis such as in
[13], Q(0) solves

〈L2〉Q(0) = Q
(0)
t +

1

2
σ̄2ξ2Q

(0)
ξξ + r(ξQ

(0)
ξ −Q(0)) = 0 in ξ < 1 and t < T,(3.1)

Q(0)(T, ξ) = 1 − ξ,

(Q
(0)
ξ −Q(0))(t, 1) = 0.

The correction term solves

Q̃
(1)
t +

1

2
σ̄2ξ2Q̃

(1)
ξξ + r

(
ξQ̃

(1)
ξ − Q̃(1)

)
= AQ(0) in ξ < 1 and t < T,(3.2)

with Q̃(1)(T, ξ) = 1 − ξ and (
Q̃(1) − Q̃

(1)
ξ

)
(t, 1) = 0.

Here, the operator A is as in (2.10), but with ξ replacing x.

3.2. Zero-order term. Although the pricing formula P (0)(t, x, J) for a lookback
put is well known, we will start by deriving P (0)(t, x, J), as the transformations will

also be useful in the derivation of P̃ (1)(t, x, J) = JQ̃(1)(t, x/J).
The PDE problem (3.1) can be transformed to a PDE with constant coefficients

by using logarithmic variables. That is, defining

η = log ξ, u(0)(t, η) = Q(0)(t, ξ),

we find u(0)(t, η) to satisfy

u
(0)
t +

1

2
σ̄2u(0)

ηη +

(
r − 1

2
σ̄2

)
u(0)
η − ru(0) = 0 in η < 0 and t < T ,(3.3)

with the conditions

u(0)(T, η) = 1 − eη,

(u(0)
η − u(0))(t, 0) = 0.
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We first find w(0)(t, η) = u
(0)
η (t, η) − u(0)(t, η), which solves the (Dirichlet) boundary

value problem

w
(0)
t +

1

2
σ̄2w(0)

ηη +

(
r − 1

2
σ̄2

)
w(0)
η − rw(0) = 0 in η < 0 and t < T ,

with the conditions w(0)(T, η) = −1 and w(0)(t, 0) = 0. The solution for w(0)(t, η) can
be found via the method of images

w(0)(t, η) = e−r(T−t)[e(1−k)ηN(c1(T − t)) −N(c2(T − t))],(3.4)

where

c1(τ) =
η

σ̄
√
τ

+
1

2
(1 − k)σ̄

√
τ and c2(τ) =

−η
σ̄
√
τ

+
1

2
(1 − k)σ̄

√
τ .

Restoring all transformations, we get, in the notation of [29],

P (0) = −x+ x(1 + k−1)N(d7) + Je−r(T−t)
(
N(d5) − k−1

(x
J

)1−k
N(d6)

)
,(3.5)

where

d5 =
log(J/x) − (r − 1

2 σ̄
2)(T − t)

σ̄
√
T − t

, d6 =
log(x/J) − (r − 1

2 σ̄
2)(T − t)

σ̄
√
T − t

,

d7 =
log(x/J) + (r + 1

2 σ̄
2)(T − t)

σ̄
√
T − t

.

3.3. First-order correction. Analogous to the zero-order calculation, we de-
fine

η = log ξ, u(1)(t, η) = Q̃(1)(t, ξ),

and from (3.2) find u(1)(t, η) to satisfy

u
(1)
t +

1

2
σ̄2u(1)

ηη +

(
r − 1

2
σ̄2

)
u(1)
η − ru(1) = Ãu(0) in η < 0 and t < T,(3.6)

u(1)(T, η) = 0,

(u(1)
η − u(1))(t, 0) = 0,

where

Ã = V ε3

(
∂3

∂η3
− ∂2

∂η2

)
+ V ε2

(
∂2

∂η2
− ∂

∂η

)
.

Defining LLB by

LLB =
∂

∂t
+

1

2
σ̄2 ∂

2

∂η2
+

(
r − 1

2
σ̄2

)
∂

∂η
− r·,

we can verify by differentiating (3.3) with respect to σ̄ that

LLBu(0)
σ̄ = −σ̄(u(0)

ηη − u(0)
η ) and LLBu(0)

ησ̄ = −σ̄(u(0)
ηηη − u(0)

ηη )
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with u
(0)
σ̄ (T, η) = (u

(0)
ησ̄−u(0)

σ̄ )(t, 0) = 0 and with u
(0)
ησ̄ (T, η) = 0, but (u

(0)
ηησ̄−u(0)

ησ̄ )(t, 0) �=
0 in general.

This motivates us to define û(t, η) by

V ε3
σ̄
û = u(1) +

1

σ̄
(V ε3 u

(0)
ησ̄ + V ε2 u

(0)
σ̄ ).

We find that û solves

ût +
1

2
σ̄2ûηη +

(
r − 1

2
σ̄2

)
ûη − rû = 0 in η < 0 and t < T,

û(T, η) = 0,

(ûη − û)(t, 0) = g(t),

where we define

g(t) = (u
(0)
ηησ̄ − u

(0)
ησ̄ )
∣∣
η=0

= w
(0)
ησ̄

∣∣
η=0

.(3.7)

Defining ŵ = ûη − û, ŵ(t, η) solves the Dirichlet boundary value problem

ŵt +
1

2
σ̄2ŵηη +

(
r − 1

2
σ̄2

)
ŵη − rŵ = 0 in η < 0 and t < T,

ŵ(T, η) = 0,

ŵ(t, 0) = g(t).

Following the analysis leading to (2.18), we can write

ŵ(t, η) = − ηeη

σ̄
√

2π

∫ T

t

e−
1
2 c3(s−t)2 g(s)

(s− t)3/2
ds,(3.8)

where

c3(τ) =
η

σ̄
√
τ

+
1

2
σ̄(1 + k)

√
τ .

This formula, together with a Taylor expansion of g, yields ŵη(t, 0) = 1
2 (1 − k)g(t).

To recover û(t, η), we use

û(t, η) =

∫ η

0

eη−zŵ(t, z) dz + eηh(t),(3.9)

where

h′(t) = −1

2
σ̄2ŵη(t, 0) − rg(t), h(T ) = 0.

Therefore

h(t) =
1

2

(
r +

1

2
σ̄2

)∫ T

t

g(s) ds.

Restoring the transformations, the first-order correction is given as

P̃ (1)(t, x, J) = −V
ε
3

σ̄
xP

(0)
xσ̄ (t, x) − V ε2

σ̄
P

(0)
σ̄ (t, x) +

V ε3
σ̄
Jû(t, log(x/J)).(3.10)

Explicit formulas for the Greeks and g are given in Appendix B.
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Fig. 3.1. The left graph shows the effect of changing the slope of the skew a on the lookback put
option price. The parameters of the contract are T = 0.5, σ̄ = 0.17, b = 0.23. The current running
maximum is J = 111. The solid line shows the corresponding Black–Scholes price; the values of
a reading downward at the right of the graph are a = −0.02,−0.04,−0.09,−0.18. When the stock
price is near to its running maximum, making a more negative decreases the option price. The right
graph shows the percentage of first-order correction to the Black–Scholes price for the lookback put
option at time t = 0. The parameters of the contract are as in the left figure with a = −0.154. The
solid line shows the whole first-order correction, the dashed line shows the contribution of the Greek
terms in (3.10), and the dotted line shows the remainder, i.e., the boundary correction.

Figure 3.1 illustrates the effect of the two parts of the correction, and for various
skew slopes. As in the case of the barrier option, the effect of changing a has a mixed
structure. For stock prices that are close to the running maximum, that is, when
there is a potential of going above the running maximum, making a more negative
decreases the price. For smaller stock prices, the effect is reversed. An increase in the
intercept of the implied volatility curve increases the price, as in the barrier option
case.

3.4. Convergence. From (3.5), second and higher derivatives of P (0) with re-
spect to x blow up as t → T and x → J , similar to the Black–Scholes price of an
at-the-money European call option. Therefore the proof of a convergence result of
the form ∣∣∣P (t, x, J, y) − (P (0)(t, x, J) + P̃ (1)(t, x, J))

∣∣∣ = O(ε1−p)

for any p > 0 at a fixed point (t, x, J, y) requires the regularization techniques in [17],
which are discussed in section 2.4.

3.5. Hedging. In the Black–Scholes model, the hedging strategy for the look-
back option is again given by the Delta of the option price (see [29], for example).
Following our discussion in section 1.4, we can again consider the hedging strategy
consisting of

∆ε
t =

∂

∂x

(
P (0) + P̃ (1)

)
(t,Xt, Jt)

stocks and the amount e−rt((P (0) + P̃ (1))(t,Xt, Jt)−∆ε
tXt) in the bank account. As

in [13, Chapter 7], the portfolio is not self-financing but its value is close to the value
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of the lookback option. We do not consider optimal hedges involving other options
and loss measurement functions in this paper.

4. Passport options. A passport option allows its holder to trade the stock con-
tinuously, starting with initial capital v, and collect his or her profit at the expiration
date T , if any, with losses written off. Its price is studied by Hyer, Lipton-Lifschitz,
and Pugachevsky [24], where they assumed a log-normal process for the underlying
stock. They derive and solve the Hamilton–Jacobi–Bellman equation for the price.
Shreve and Vecer [28] used probabilistic techniques to price this option as well as
other variants. Henderson and Hobson [19] analyzed passport option pricing under
stochastic volatility models where they assume independence of the volatility driving
process from the stock price process. They give the price analytically using power
series expansion methods for different volatility models.

Let (qt)0≤t≤T be a possible trading strategy, where qt is the number of stocks
held in the trading account at time t. Additionally, −1 ≤ qt ≤ 1 at all times, so the
trader is restricted to be at most long or short one stock at any time. Let (Vt) be the
value of the holder’s portfolio so that

dVt = rVt dt+ qtf(Yt)Xt dW
�
t ,(4.1)

written in terms of the risk-neutral Brownian motionW � because cash flows are priced
under P

�(γ). The payoff of the passport option is simply V +
T and so the no-arbitrage

pricing function P (t, x, y, v) of the contract is given by

P (t, x, y, v) = sup
|q|≤1

E
�(γ){e−r(T−t)V +

T | Xt = x, Yt = y, Vt = v}.

Assuming P has one continuous derivative in t and is twice continuously differentiable
in the spatial variables, P solves the Hamilton–Jacobi–Bellman PDE

∂P

∂t
+ sup

|q|≤1

L(q)
x,y,vP = 0,

where L(q)
x,y,v is the infinitesimal generator of (X,Y, V ), plus the discounting term:

L(q)
x,y,v =

1

2
f(y)2x2

(
∂2

∂x2
+ 2q

∂2

∂x∂v
+ q2

∂2

∂v2

)

+ρ
ν
√

2√
ε
f(y)x

(
∂2

∂x∂y
+ q

∂2

∂y∂v

)
+

1

2

ν2

ε

∂2

∂y2

+r

(
x
∂

∂x
+ v

∂

∂v

)
+

(
1

ε
(m− y) − ν

√
2√
ε

Λ(y)

)
∂

∂y
− r · .

The terminal condition is P (T, x, y, v) = v+, and the domain is t < T, x > 0, −∞ <
y, v <∞.

The PDE above can be derived directly (see [24], for instance) by setting up a
hedged portfolio of the passport option, another vanilla option, and the underlying
stock, and assuming that the holder of the passport option trades the stock optimally.

4.1. Similarity reduction. We first take advantage of a natural homogeneity
in the problem. From (2.2) and (4.1), we see that scaling X and V by a common
factor, say θ, as in

X �→ θX, V �→ θV,
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does not change those equations. In other words, P (t, θx, y, θv) = θP (t, x, y, v), and
so we look for a solution of the form

P (t, x, y, v) = xQ(t, ξ, y), ξ = v/x,

for some function Q.
Substituting this form gives that Q(t, ξ, y) solves the PDE problem

Qt + sup
|q|≤1

{
1

2
f(y)2(q − ξ)2Qξξ + ρ

ν
√

2√
ε
f(y)(q − ξ)Qξy

}
(4.2)

+
1

2

ν2

ε
Qyy +

[
1

ε
(m− y) − ν

√
2√
ε

Λ(y) + ρ
ν
√

2√
ε
f(y)

]
Qy = 0,

Q(T, ξ, y) = ξ+

in the domain t < T, −∞ < ξ, y < ∞. Notice that r has disappeared from the
problem because the transformations Q = P/x and ξ = v/x mean that we are using
the stock price as our numeraire, which grows at rate r under the risk-neutral measure.

Consider the quadratic (in q) term in (4.2):

1

2
f(y)2(q − ξ)2Qξξ + ρ

ν
√

2√
ε
f(y)(q − ξ)Qξy.(4.3)

Assuming that Qξξ > 0 for t < T , the maximum of this quadratic over q ∈ [−1, 1] is
at the boundaries: q∗ = ±1 at each point in the domain. Therefore (q∗)2 = 1 and the
sup term in (4.2) can be replaced by

1

2
f(y)2(1 + ξ2)Qξξ − ρ

ν
√

2√
ε
f(y)ξQξy + f(y)2

∣∣∣∣∣ξQξξ − ρν
√

2√
εf(y)

Qξy

∣∣∣∣∣ .
Let R(t, ξ, y) be the solution to PDE (4.2) with terminal condition R(T, ξ, y) = |ξ|.

It is then straightforward to verify that the function 1
2 (ξ + R(t, ξ, y)) satisfies both

the PDE and the terminal condition in (4.2), so we have

Q(t, ξ, y) =
1

2
(ξ +R(t, ξ, y)).(4.4)

The PDE problem for R is therefore

Rt +
1

2
f(y)2(1 + ξ2)Rξξ − ρ

ν
√

2√
ε
f(y)ξRξy +

1

2

ν2

ε
Ryy

+

[
1

ε
(m− y) − ν

√
2√
ε

Λ(y) + ρ
ν
√

2√
ε
f(y)

]
Ry(4.5)

+f(y)2

∣∣∣∣∣ξRξξ − ρν
√

2√
εf(y)

Rξy

∣∣∣∣∣ = 0,

R(T, ξ, y) = |ξ|.
Observe that (4.5) is unchanged by the transformation ξ �→ −ξ. As a consequence,

R(t, ξ, y) is an even function of ξ. This property carries over to the first two terms of
our expansion, where we will take advantage of it.
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4.2. Asymptotic expansion. We derive the asymptotic expansion for this op-
tion pricing function to highlight the differences with the calculation for the previous
two cases given in [13]. See [26, 25] for approximations for stochastic control problems
from hedging and portfolio optimization.

The expansion is written here for R, but applies, with obvious modifications to
the terminal condition, for Q. Under the usual fast mean-reversion scaling, we rewrite
the PDE (4.2) as (

1

ε
L0 +

1√
ε
L1 + L2

)
R+ NLε = 0,

where L0, L1, and L2 are the linear differential operators

L0 = ν2 ∂
2

∂y2
+ (m− y)

∂

∂y
,

L1 = −
√

2 ρνf(y)ξ
∂2

∂ξ∂y
+
√

2 ν(ρf(y) − Λ(y))
∂

∂y
,

L2 =
∂

∂t
+

1

2
f(y)2(1 + ξ2)

∂2

∂ξ2
,

and NLε is the nonlinear term

NLε = f(y)2

∣∣∣∣∣ξRξξ − ρν
√

2√
ε f(y)

Rξy

∣∣∣∣∣ .
We look for an expansion

R = R(0) +
√
εR(1) + εR(2) + · · · ,

valid for small ε > 0. Inserting the series and comparing terms of O(ε−1) gives

L0R
(0) = 0.

This is an ODE in y, and from the properties of L0, the only solutions with reasonable
growth at infinity are constants in y. Therefore we take R(0) = R(0)(t, ξ), independent
of y. Hence, in the expansion of NLε,

NLε = f(y)2

∣∣∣∣∣− ρν
√

2√
ε f(y)

R
(0)
ξy + ξR

(0)
ξξ − ρν

√
2

f(y)
R

(1)
ξy + O(

√
ε)

∣∣∣∣∣ ,
the O(ε−1/2) disappears.

Comparing terms of O(ε−1/2) therefore gives

L0R
(1) + L1R

(0) = 0.

Since L1 takes y-derivatives, this reduces to

L0R
(1) = 0,

which implies that R(1) also does not depend on y. Now

NLε = f(y)2

∣∣∣∣∣ξR(0)
ξξ +

√
ε

(
ξR

(1)
ξξ − ρν

√
2

f(y)
R

(2)
ξy

)
+ O(ε)

∣∣∣∣∣ ,(4.6)

including the next order. The O(1) terms of the expansion in the PDE give

L0R
(2) + L1R

(1) + L2R
(0) + f(y)2 |ξ|R(0)

ξξ = 0,(4.7)

where we have assumed that R
(0)
ξξ ≥ 0; that is, the leading term inherits the convexity
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of R in ξ. The second term L1R
(1) = 0 because R(1) does not depend on y. We view

(4.7) as a Poisson equation for R(2). For there to be a solution, the source term must
be centered with respect to the invariant distribution of the OU process (Yt), namely,

〈L̃2〉R(0) = 0,(4.8)

where we define

L̃2 = L2 + f(y)2|ξ| ∂
2

∂ξ2

=
∂

∂t
+

1

2
f(y)2(1 + |ξ|)2 ∂

2

∂ξ2
.

The averaged operator simply replaces f(y)2 by the constant σ̄2. Therefore R(0),
when transformed back, gives the passport option pricing function with the constant
long-run average volatility σ̄. To move to the next order, we formally linearize the
expression (4.6) for NLε as follows:

NLε = f(y)2

(
|ξ|R(0)

ξξ +
√
ε sgn(ξ)

[
ξR

(1)
ξξ − ρν

√
2

f(y)
R

(2)
ξy

])
+ O(ε).

Now comparing terms in the expanded PDE of O(
√
ε) gives

L0R
(3) + L1R

(2) + L2R
(1) + sgn(ξ)

[
ξf(y)2R

(1)
ξξ − ρν

√
2f(y)R

(2)
ξy

]
= 0.

This is a Poisson equation for R(3) whose solvability condition gives

〈L̃2〉R(1) = −
〈(

L1 − ρν
√

2 f sgn(ξ)
∂2

∂ξ∂y

)
R(2)

〉
(4.9)

= ν
√

2

〈(
ρf sgn(ξ)(1 + |ξ|) ∂2

∂ξ∂y
− (ρf − Λ)

∂

∂y

)
R(2)

〉
.

As in section 2.2, let φ(y) be a solution to L0φ = f(y)2 − σ̄2. Then (4.7) gives

R(2) = −1

2
φ(y)(1 + |ξ|)2R(0)

ξξ +D(t, ξ)

for some function D that does not depend on y. Substituting and computing the
right side of (4.9) gives a combination of second and third derivatives of R(0) in the ξ
variable.

As usual, we absorb the
√
ε term into the correction and call R̃(1) =

√
εR(1).

Then R̃(1)(t, ξ) solves

R̃
(1)
t +

1

2
σ̄2(1 + |ξ|)2R̃(1)

ξξ = − (V ε3 − V ε2 )(1 + |ξ|)2R(0)
ξξ

(4.10)
− V ε3 sgn(ξ)(1 + |ξ|)3R(0)

ξξξ,

where V ε2 and V ε3 are the market group parameters defined in (2.11) and (2.12). The

terminal condition is R̃(1)(T, ξ) = 0.

4.3. Zero-order term. Again we start by finding the zero-order approximation.
We work with R(t, ξ, y) and recover Q(t, ξ, y) using (4.4). Thus R(0) satisfies

R
(0)
t +

1

2
σ̄2(1 + |ξ|)2R(0)

ξξ = 0 in −∞ < ξ <∞ and t < T ,(4.11)

R(0)(T, ξ) = |ξ|.(4.12)
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It follows that R(0)(t, ·) is even at all times, so by the smoothing properties

of (4.11) we have R
(0)
ξ (t, 0) = 0 for t < T . Hence we can solve

R
(0)
t +

1

2
σ̄2(1 + ξ)2R

(0)
ξξ = 0 in ξ > 0 and t < T ,(4.13)

R(0)(T, ξ) = ξ,

R
(0)
ξ (t, 0) = 0,

and obtain the solution in ξ < 0 by the even extension.
We transform to constant coefficients via

η = log(1 + ξ), R(0)(t, ξ) = u(0)(t, η).

Then u(0)(t, η) solves the Neumann boundary value problem

u
(0)
t +

1

2
σ̄2(u(0)

ηη − u(0)
η ) = 0 in η > 0 and t < T,(4.14)

u(0)(T, η) = eη − 1,

u(0)
η (t, 0) = 0.

Similar to the case of lookback option, we first find the partial derivative w(0) = u
(0)
η ,

which solves a Dirichlet boundary value problem. Using the method of images, we
find w(0)(t, η) as

w(0)(t, η) = eηN(c5(T − t)) −N(c6(T − t)),

where

c5(τ) =
η

σ̄
√
τ

+
1

2
σ̄
√
τ and c6(τ) =

−η
σ̄
√
τ

+
1

2
σ̄
√
τ .(4.15)

Restoring all the transformations gives P (0)(t, x, v) as

P (0) =
1

2

[
v + xu(0)

(
t, log

(
1 +

|v|
x

))]
,

which can be written in the notation of [28] as

P (0) =
1

2

[
v + (x+ |v|)N(d+) − xN(d−)

+ xσ̄
√
T − tN ′(d−) − xσ̄

√
T − t d−N(−d−)

]
,

where

d± =
log
(
1 + |v|

x

)
σ̄
√
T − t

± 1

2
σ̄
√
T − t.

4.4. First-order correction. The first-order correction R̃(1) satisfies the PDE

R̃
(1)
t +

1

2
σ̄2(1 + |ξ|)2R̃(1)

ξξ = −(V ε3 − V ε2 )(1 + |ξ|)2R(0)
ξξ − V ε3 (1 + |ξ|)3R(0)

ξξξ,

with terminal condition R̃(1)(T, ξ) = 0. Thus R̃(1) is again an even function of ξ, and
we can solve

R̃
(1)
t +

1

2
σ̄2(1 + ξ)2R̃

(1)
ξξ = −(V ε3 − V ε2 )(1 + ξ)2R

(0)
ξξ − V ε3 (1 + ξ)3R

(0)
ξξξ,
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with the terminal condition R̃(1)(T, ξ) = 0 and the boundary condition R̃
(1)
ξ (t, 0) = 0

in ξ > 0, t < T . We will subtract the “particular solution” at a later stage when it
becomes easier to identify.

Applying the same set of transformations, namely,

η = log(1 + ξ), R̃(1)(t, ξ) = u(1)(t, η),

we get from (4.7) that

u
(1)
t +

1

2
σ̄2(u(1)

ηη − u(1)
η ) = Ãu(0) in η > 0 and t < T,(4.16)

u(1)(T, η) = 0,

u(1)
η (t, 0) = 0,

where

Ã = −V ε3
(
∂3

∂η3
− ∂2

∂η2

)
+ (V ε2 + V ε3 )

(
∂2

∂η2
− ∂

∂η

)
.

Defining Lp by

Lp =
∂

∂t
+

1

2
σ̄2

(
∂2

∂η2
− ∂

∂η

)
,

we can verify by differentiating (4.14) that

Lpu(0)
σ̄ = −σ̄(u(0)

ηη − u(0)
η ) and Lpu(0)

ησ̄ = −σ̄(u(0)
ηηη − u(0)

ηη ).

Moreover, u
(0)
σ̄ = u

(0)
ησ̄ = u

(0)
ηησ̄ = 0 for t = T and u

(0)
ησ̄ (t, 0) = 0 but u

(0)
ηησ̄(t, 0) �= 0 in

general. This motivates us to define û by

V ε3
σ̄
û = u(1) − V ε3

σ̄
u

(0)
ησ̄ −

(
V ε2
σ̄

+
V ε3
σ̄

)
u

(0)
σ̄ .

Further, defining ŵ = ûη to reduce to a Dirichlet boundary value problem, we find
that ŵ(t, η) solves

ŵt +
1

2
σ̄2 (ŵηη − ŵη) = 0 in η > 0 and t < T ,

ŵ(T, z) = 0,

ŵ(t, 0) = g(t),

where

g(t) = −u(0)
ηησ̄

∣∣
η=0

= −w(0)
ησ̄

∣∣
η=0

.(4.17)

The rest of the calculation is similar to the analysis in section 3.3. Following the same
steps and restoring all transformations, we obtain the first-order correction for the
passport option as

P̃ (1)(t, x, v) = − V ε3
σ̄

(
1 +

x

|v|
)
xP

(0)
xσ̄ −

(
V ε2
σ̄

− V ε3
σ̄

x

|v|
)
P

(0)
σ̄

(4.18)

+
1

2

V ε3
σ̄
xû

(
t, log

(
1 +

|v|
x

))
.

Explicit formulas for the Greeks and g are given in Appendix C.
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Fig. 4.1. The left graph illustrates the effect of changing the slope of the skew a on the passport
option price. The parameters of the contract are x = 100, T = 0.5, σ̄ = 0.17, and b = 0.23. As
|v| gets larger, making a more negative increases the option value, while this effect reverses as |v|
gets closer to 0. The right figure shows more closely the upper right corner of the left figure. The
solid line shows the corresponding Black–Scholes price; the values of a reading upwards after the
Black–Scholes pricing curve are a = −0.02,−0.04,−0.09,−0.18.
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Fig. 4.2. The first-order correction for the passport option at time t = 0. The parameters of the
contract are as in Figure 4.1 with a = −0.154. The solid line shows the full first-order correction,
the dashed line shows the contribution of the Greek terms in (4.18), and the dotted line shows the
remainder, i.e., the boundary correction.

Figures 4.1 and 4.2 illustrate the effect of the correction and the slope of the
implied volatility skew analyzed as a function of current wealth. As in the previous
cases, the effect of changing a has a mixed structure. When the wealth is too large
or too small, making a more negative increases the option value. For the wealth level
that is close to zero, the reverse is observed. The effect of a higher b is to increase the
price, as in the other cases.
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4.5. Convergence. The existence of a classical solution to the strongly nonlin-
ear PDE (4.5) is an open question. If such a solution exists so that Rξ = 0 at ξ = 0
for t < T , then one can write a nonlinear error equation for Zε defined by

R = R(0) +
√
εR(1) + εR(2) + ε3/2R(3) − Zε

with suitable terminal and boundary conditions. Under regularity hypotheses on the
solution, a weak convergence result may be obtained by introducing test functions in
(ξ, y). The convergence is necessarily weak in this case because of the sense in which
the expansion of the | · | function can be used.

4.6. Hedging. Hedging a passport option differs from the viewpoint of the
writer and the holder. The trading strategy of the holder is defined as the maxi-
mizer in the definition of the price. This quantity q∗ is always plus or minus one,
according to the optimizer of the quadratic expression (4.3). The hedging strategy of

the seller in the case of a complete market with constant volatility σ̄ is P
(0)
x + q∗P (0)

v ,
given the strategy of the holder. In the case of a complete market this type of strategy
perfectly replicates the payoff if the holder is trading optimally.

As in the barrier and lookback cases, this strategy could be adapted to our cor-
rected price so that the value of the hedging portfolio remains close to the price of
the option. Another strategy that also depends only on the calibrated parameters V ε2
and V ε3 but focuses on reducing the hedging error, the difference between the option
payout, and the hedging portfolio at maturity, is discussed in [13, section 7.2].

Appendix A. Formulas for barrier option correction. Here we include the
following explicit formulas for the terms in (2.19). Namely, g(t), defined in (2.14), is
given by

g(t) = −
[

2 log B
K

σ̄2(T − t)
VBS(t, B) +

4r

σ̄3
CBS(t, B)

]
,

and the Greeks of the barrier option are given by

P
(0)
σ̄ (t, x) = VBS(t, x) −

( x
B

)1−k
VBS

(
t,
B2

x

)
− 4r

σ̄3
log

x

B

( x
B

)1−k
CBS

(
t,
B2

x

)
,

P
(0)
xσ̄ (t, x) = CBSxσ̄ (t, x) +

( x
B

)−k (k − 1

B
VBS

(
t,
B2

x

)
+
B

x
CBSxσ̄

(
t,
B2

x

))

− 4r

σ̄3

( x
B

)−k 1

B

(
1 − k log

x

B

)
CBS

(
t,
B2

x

)

+
4r

σ̄3

( x
B

)−(k+1)

log
x

B
∆BS

(
t,
B2

x

)
,

where ∆BS(t, x), VBS(t, x), CBSxσ̄ (t, x) are the Greeks of a call option that has the
same parameters:

∆BS(t, x) = CBSx (t, x) = N(d1),

VBS(t, x) = CBSσ̄ (t, x; σ̄) = xe−
1
2d

2
1

√
T − t√
2π

,

CBSxσ̄ (t, x) =
VBS(t, x)

x

(
1 − d1

σ̄
√
T − t

)
.
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Appendix B. Formulas for lookback option correction. The formula for
g(t) in the case of the lookback option, defined in (3.7), is

g(t) =
2k

σ̄
e−r(T−t)N

(
1

2
(1 − k)σ̄

√
T − t

)
− 2

e−
1
8 (1+k)2σ̄2(T−t)

σ̄2
√

2π(T − t)
.

And the Greek terms for this option referred to in (3.10) are

P
(0)
σ̄ (t, x) = −Je−r(T−t)

(x
J

)1−k ( σ̄
r

+
2

σ̄
log

x

J

)
N(d6(T − t)) +

σ̄

r
xN(d7(T − t)),

P
(0)
xσ̄ (t, x) =

(
4r

σ̄3
log

x

J
− σ̄

r
− 2

σ̄
log

x

J

)
J

x
N(d6(T − t))

− 2 log x
J

σ̄2
√
T − t

J

x
N ′(d6(T − t)) +

σ̄

r

J

x
N(d7(T − t)).

Appendix C. Formulas for passport option correction. In the case of the
passport option, g(t) defined in (4.17) is simply given by

g(t) = 2
e−

1
8 σ̄

2(T−t)

σ̄2
√

2π(T − t)
.

The Greek terms used in (4.18) are as follows:

P
(0)
σ̄ (t, x) = xσ̄(T − t)N(d−) + 2x

√
T − tN ′(d−),

P
(0)
xσ̄ (t, x) =

P
(0)
σ̄ (t, x)

x
−

2|v| log
(
1 + |v|

x

)
(x+ |v|)σ̄2

√
T − t

N ′(d−).
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Abstract. Magnetohydrodynamic mixing of two fluids in an annular microchannel is modelled
as a two-dimensional laminar convection-diffusion problem and examined using asymptotic analysis
and numerical simulation. The time T required for mixing of a plug of solute depends on the Péclet
number Pe and on the geometry of the annulus. Three scaling regimes are identified: purely diffusive,
Taylor-dispersive, and convection-dominated; each has a characteristic power-law dependence of T
upon Pe. Consequences of these results for optimal micromixer design are discussed.

Key words. laminar mixing, convection-diffusion, asymptotic analysis, microfluidics
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1. Introduction. Recent advances in microfluidic and lab-on-a-chip technology
have led to increased interest in laminar mixing of fluids [1, 2, 3]. Efficient mixing
is vital for chemical reactions, but turbulence is absent at the low Reynolds numbers
common in microscale devices, and molecular diffusion mixes on an unacceptably slow
timescale. In this paper we discuss the mathematical modelling of an annular mag-
netohydrodynamic (MHD) micromixer, prototypes of which are under development
at the Irish National Microelectronics Research Centre [4]. The device consists of an
annular channel (see Figures 1 and 2), with inner and outer walls acting as electrodes
and with an electromagnet underneath, which provides a vertical magnetic field. A
radial electric field is imposed by applying a potential difference across the inner and
outer electrodes, and the electric and magnetic fields produce an azimuthal Lorentz
force, which acts as a pumping mechanism for the fluid [5].

The idealized mixing action of this device is illustrated in Figure 1: in the absence
of molecular diffusion, the initially separated fluids are convected through each other,
increasing the interfacial length between them (linearly in time), and so promoting the
mixing action of diffusion. In reality, the actions of convection and diffusion are felt
simultaneously, and the goal of this paper is to examine their effect upon the efficiency
of the mixer. The discussion here is limited to two dimensions, where the idealized
limit of infinite depth has been taken. Previous studies of MHD pumping in an
annulus have been motivated by liquid-metal flows and their stability [5, 6], but to our
knowledge this is the first investigation of the mixing effects in an annular geometry.

2. Notation and equations. The geometry of the annulus is shown in Figure 2.
The radius of the center-line is R, and ρ represents the half-width of the channel; thus
the inner wall is located at r = R − ρ, and the outer wall at r = R + ρ. We describe
the geometry using the nondimensional parameter
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Fig. 1. Operation of an idealized micromixer at three times, neglecting diffusion.

φ 
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ρ 

Fig. 2. Annular geometry, showing the center-line radius R and the channel half-width ρ.

γ =
ρ

R
,(1)

which satisfies 0 < γ < 1. Note that the limit γ → 0 corresponds to a locally straight
channel, and γ approaches 1 as the annulus becomes a punctured disk.

The fluid velocity in the micromixer is found by solving the steady Navier–Stokes
equations in the presence of the MHD body force [6]. In the two-dimensional case
considered here, this reduces to an ordinary differential equation for the azimuthal
velocity v(r), all other velocity components being zero:

d2v

dr2
+

1

r

dv

dr
− v

r2
= −α

r
,(2)

where α represents the MHD forcing (specifically, α = −BI/4πhη, where I and B are
the root-mean-square current and magnetic field strengths, h is the channel depth,
and η is the absolute viscosity of the fluid). The solution of (2) satisfying no-slip
boundary conditions at the walls r = R− ρ and r = R+ ρ is

v(r) =
ω

8Rρr

[
1

4
− (R2 − ρ2)2

16R2ρ2

(
ln
R− ρ

R+ ρ

)2
]−1

×
[
(R2 − ρ2)2 ln

R− ρ

R+ ρ
+ r2(R− ρ)2 ln

r

R− ρ
+ r2(R+ ρ)2 ln

R+ ρ

r

]
,(3)
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where the velocity is characterized by an average angular velocity ω, which is related
to the MHD forcing parameter α by

ω = α

[
1

4
− (R2 − ρ2)2

16R2ρ2

(
ln
R− ρ

R+ ρ

)2
]
.(4)

The profile (3) reduces to the parabolic Poiseuille profile for a straight channel when
γ → 0,

v(r) ≈ 3ωR

2ρ2
(r −R+ ρ)(R+ ρ− r),(5)

with maximum at r = R:

vmax =
3

2
ωR.(6)

The mixing of a plug of solute into a surrounding solvent is governed by the
convection-diffusion equation (assuming both fluid phases have similar density, vis-
cosity, etc.)

∂c

∂t
+ ∇ · (uc) − κ∇2c = 0,(7)

where u(x, t) is the fluid velocity vector, c(x, t) is the concentration of the solvent,
and κ is the molecular diffusion coefficient. In the annular micromixer the convection-
diffusion equation may be written in polar coordinates,

∂c

∂t
+
v(r)

r

∂c

∂φ
− κ

r

∂

∂r

(
r
∂c

∂r

)
− κ

r2
∂2c

∂φ2
= 0,(8)

with no-flux boundary conditions at the walls:

∂c

∂r
(R− ρ, φ, t) = 0,

∂c

∂r
(R+ ρ, φ, t) = 0.(9)

In the following sections we examine solutions of (8) using analytical, asymptotic, and
numerical methods.

The dimensionless parameter used to compare the importance of convection and
diffusion in (7) is the Péclet number, which we define for our system as

Pe =
ωRρ

κ
.(10)

Note that ωR is the characteristic linear velocity, while ρ is the smallest linear di-
mension in the system. Two natural groupings of parameters to give a dimensional
time will be used in what follows: the diffusion time R2/κ, which measures the time
for azimuthal mixing by diffusion in the absence of convection, and the convection
time ω−1, which is representative of the timescale of rotation of the fluid. The choice of
appropriate time-scaling depends on whether diffusion or convection is dominant—we
initially choose ω−1 but will consider the alternative in section 6.
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A completely mixed solute-solvent system has the initial concentration c(x, 0) of
solute spread evenly over the whole annulus. We define mixing efficiency using the
timescale over which the concentration profile evolves to the uniform state. In order to
measure the deviation from uniformity, we first introduce two averaging procedures,
each operating on a function f(r, φ) defined on the annulus. Radial averaging is
denoted by an overbar,

f =
1

2Rρ

∫ R+ρ

R−ρ
f(r, φ)rdr,(11)

and angle brackets signify angular averaging,

〈f〉 =
1

2π

∫ 2π

0

f(r, φ)dφ.(12)

Thus the average value of the concentration over the whole annulus is

〈c〉 =
1

4πRρ

∫ R+ρ

R−ρ

∫ 2π

0

c(r, φ, t)r dφ dr.(13)

In fact, it is straightforward to show from the convection-diffusion equation that 〈c〉
is a constant—the total amount of solute is not changed over time but is simply
redistributed evenly over the annulus.

In the following sections we adopt a simple initial concentration,

c(r, φ, 0) = 1 + cosφ,(14)

for ease of asymptotic analysis. Later we show that the asymptotic results also apply
to other initial conditions, for instance to the condition used in Figure 1:

c(r, φ, 0) =

{
1 if 0 ≤ φ < π,
0 if π ≤ φ < 2π.

(15)

A mixing measure m(t) is a positive function of time characterizing the deviation
of the concentration at time t from its uniformly mixed state 〈c〉. Define m(t) by

m(t) =

〈
(c(r, φ, t) − 〈c〉)2

〉
〈
(c(r, φ, 0) − 〈c〉)2

〉 ,(16)

so that m(0) = 1, and m(t) → 0 as t→ ∞. The time TM for m(t) to decay from 1 to
a specified value M is called the mixing time and is defined by the condition

m(TM ) = M.(17)

From the point of view of experimentalists and design engineers, it is desirable to
have simple formulas relating the mixing time TM to the Péclet number Pe and the
geometry ratio γ of the micromixer. We proceed to obtain asymptotic approximations
to the solution of (8), and hence scaling laws for the mixing times TM .
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3. Low Péclet numbers. When the Péclet number (10) is sufficiently small,
diffusive effects completely dominate convective motion. The mixing time by diffusion
alone may be calculated by solving the diffusion equation

∂c

∂t
− κ

r

∂

∂r

(
r
∂c

∂r

)
− κ

r2
∂2c

∂φ2
= 0(18)

in the annulus, i.e., neglecting the convective term in (8). A series solution can be
written as

c = 〈c〉 +

∞∑
n=1

∞∑
j=1

e−κλnjtGn

(
r
√
λnj

)
[αnj cos(nφ) + βnj sin(nφ)] ,(19)

where the αnj and βnj are constants (determined from the initial condition) and λnm
are eigenvalues determined by the conditions

dGn
dr

= 0 at r = R− ρ and r = R+ ρ.(20)

The eigenfunctions Gn are given in terms of Bessel functions as

Gn(r
√
λ) = Jn(r

√
λ) − Yn(r

√
λ)

⎡
⎣Jn−1

(
(R− ρ)

√
λ
)
− Jn+1

(
(R− ρ)

√
λ
)

Yn−1

(
(R− ρ)

√
λ
)
− Yn+1

(
(R− ρ)

√
λ
)
⎤
⎦ .(21)

For the single-mode initial condition (14), only the n = 1 term of the double sum
is present in (19). Consequently, the mixing measure (16) in this case is

m(t) =
∞∑
j=1

e−2κλ1jt
G1

(
r
√
λ1j

)2
G1

(
r
√
λ1j

)2 .(22)

The form of m(t) at large times t is dominated by the first term (j = 1) in this sum.
Indeed, in the limit γ → 0, we have

m(t) ∼ exp(−2κλ11t) as t→ ∞,(23)

with the eigenvalue given by

λ11 =
1

R2

[
1 +

1

3
γ2 +O(γ4)

]
for γ 
 1.(24)

The asymptotic mixing time TM as defined in (17) then follows from (23) and (24),

TM ∼ 1

2κλ11
ln

(
1

M

)
as M → 0,(25)

and so the nondimensional mixing time is

ωTM ≈ Pe

2γ
ln

(
1

M

)[
1 − 1

3
γ2 + · · ·

]
for γ 
 1.(26)
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4. Intermediate Péclet numbers. In this section we follow and adapt Taylor’s
arguments [7] (see also [8]) to derive an effective dispersion under certain conditions on
the Péclet number, and we clearly identify the limits of validity. We note that Nunge,
Lin, and Gill [9] have derived a Taylor dispersion coefficient in a curved channel
(matching our (35)), but they do not investigate for which values of Pe the analysis is
valid. These bounding values of Pe assume great importance in our later analysis, so
we follow Taylor’s original formulation to understand when the approximations break
down.

Consider a reference frame rotating with angular velocity ω, i.e., with azimuthal
angle measured by

φ′ = φ− ωt.(27)

The convection-diffusion equation (8) in this rotating frame is

∂c

∂t
+

(
v(r)

r
− ω

)
∂c

∂φ′
− κ

r

∂

∂r

(
r
∂c

∂r

)
− κ

r2
∂2c

∂φ′2
= 0,(28)

with boundary conditions as before. We will work in this rotating frame for the
remainder of this section and thus drop the prime on φ. Following Taylor, we assume
that the concentration is quasi-steady in the rotating frame, with angular gradient ∂c

∂φ
independent of r. Moreover, the effect of azimuthal diffusion is neglected compared
to radial diffusion. The resulting equation is readily integrated twice to yield

c = c(R− ρ, φ) +
1

κ

∂c

∂φ

∫ r

R−ρ

1

r2

∫ r2

R−ρ
[v(r1) − ωr1] dr1 dr2.(29)

We take the radial mean (as defined in (11)) to allow us to eliminate c(R− ρ, φ) and
obtain

c = c+
1

κ

∂c

∂φ
[g(r) − g] ,(30)

having used the notation

g(r) =

∫ r

R−ρ

1

r2

∫ r2

R−ρ
[v(r1) − ωr1] dr1 dr2(31)

for brevity. The average flux of solvent through the line φ = constant (in the moving
frame) is given by the radial average of the product of the concentration and angular
velocity ω′ (also relative to the moving frame):

J = c ω′

=
1

2Rρ

∫ R+ρ

R−ρ

[
c+

1

κ

∂c

∂φ
(g(r) − g)

] [v
r
− ω

]
r dr

=
1

κ

∂c

∂φ

1

2Rρ

∫ R+ρ

R−ρ
(v(r) − ωr) g(r)dr.(32)

If we assume

∂c

∂φ
≈ ∂c

∂φ
,(33)
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this implies that the radial mean concentration in the moving frame is governed by a
one-dimensional diffusion equation

∂c

∂t
= D

∂2c

∂φ2
,(34)

where D is the Taylor dispersion coefficient for the annulus, defined by

D =
1

κ

1

2Rρ

∫ R+ρ

R−ρ
(v(r) − ωr) g(r) dr

=
1

κ

1

2Rρ

∫ R+ρ

R−ρ
(v(r) − ωr)

∫ r

R−ρ

1

r2

∫ r2

R−ρ
[v(r1) − ωr1] dr1 dr2 dr.(35)

This integral may be calculated for the velocity (3); after some algebra we find

D =
ω2R2

24κγ

[
4γ2 − (1 − γ2)2 ln

(
1 − γ

1 + γ

)]−2

×
[
48γ5(1 + γ2) + 120γ4(1− γ2)2 ln

1 + γ

1− γ
− 72γ3(1 − γ2)2(1 + γ2)

(
ln

1 + γ

1 − γ

)2

− 6γ(1− γ2)4(1 + γ2)

(
ln

1 + γ

1− γ

)4

+ (1− γ2)4(3 + 10γ2 + 3γ4)

(
ln

1 + γ

1− γ

)5
]
.(36)

In the γ 
 1 limit, this reduces to

D ≈ ωPe

[
2

105
γ +

346

1576
γ3 · · ·

]
.(37)

The solution of the one-dimensional diffusion equation (34) with initial condition
from (14) is straightforward. Having found c, we can calculate the concentration c and
thus the mixing measure m(t) from (30) and (16), respectively. The mixing measure
has an exponential tail,

m(t) ∼ exp(−2Dt) as t→ ∞,(38)

and so the mixing time TM is

TM ∼ 1

2D
ln

(
1

M

)
as M → 0(39)

in the Taylor dispersion regime. From (37), this yields the (nondimensional) asymp-
totic form

ωTM ≈ 1

γPe
ln

(
1

M

)
105

4

[
1 − 18165

1576
γ2 + · · ·

]
for γ 
 1(40)

when the assumptions made above are valid.
The range of Pe for which the above approximate analysis holds will prove to be of

great interest in later sections, so we now examine carefully the two basic assumptions
that were made and cast these into conditions on Pe for the result (40) to hold.

The first condition stems from the requirement that the azimuthal diffusion be
negligible compared to the radial diffusion; effectively, this requires that the coefficient



MODELLING ANNULAR MICROMIXERS 1301

of ∂2c
∂φ2 in (28), actually its radial average, should be much less than the dispersion

coefficient (35):

κ
 Dr2.(41)

Consider this condition when γ 
 1, using the first term of (37):

κ
 2

105
γωPeR2

⇐⇒ Pe2  105

2
.(42)

The resulting condition Pe 7.2 is analogous to that in a straight capillary; see, for
instance, [8].

The second important approximation is the replacement of ∂c∂φ by ∂c
∂φ in (33). This

is valid if the coefficient of ∂c
∂φ in (30) is very small. The order of magnitude of this

coefficient is g/κ, and so the condition is

1

κ

1

2Rρ

∫ R+ρ

R−ρ
r

∫ r

R−ρ

1

r2

∫ r2

R−ρ
[v(r1) − ωr1] dr1 dr2 dr 
 1.(43)

Again, this yields a simple condition if γ 
 1:

1

15

ωρ2

κ

 1

⇐⇒ Pe
 15

γ
.(44)

Thus (42) and (44) provide rough bounds on Pe for the lower and upper ranges of
validity of the Taylor dispersion approximations.

5. Convection-dominated mixing: Pe � 1. When molecular diffusion is
small compared to convective effects, i.e., at large Péclet number, (8) is singularly
perturbed. Mixing of a scalar at high Péclet numbers is a topic that has attracted
much attention recently, with particular attention paid to the mixing of a passive
scalar (as in our case), or vorticity (an active scalar), in the spiral flow field of a
vortex [10, 11, 12]. In this section we apply approximation approaches based upon
these works to understand the mixing speed in the annular micromixer.

As in previous sections, we examine the asymptotic limit of small γ, i.e., neglecting
higher order effects of the channel curvature. Accordingly, (8) is rewritten using the
nondimensional variables

r̃ =
r −R

ρ
,

t̃ = ωt.(45)

Note that the nondimensional radial variable r̃ lies between −1 and 1, with r̃ = 0
in the center of the channel. Taking the limit of small γ and using (5), equation (8)
reduces to

∂c

∂t̃
+

3

2

(
1 − r̃2

) ∂c
∂φ

− ε
∂2c

∂r̃2
= 0,(46)
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where ε = (γPe)−1 is a small parameter when Pe is sufficiently large.
It is well known [10, 11, 12] that scalar mixing occurs in vortex spiral flows on

times scaling as Pe1/3. Here we follow [10] to show that a similar scaling arises in the
annular mixer, at least for early times. We consider the scalar evolving according to
(46), and introduce the notation Ω(r̃) = 3/2(1− r̃2) for the azimuthal velocity. In the
complete absence of molecular diffusion, i.e., if ε = 0, the evolution of the nth angular
mode from an initial condition of

c(t̃ = 0) = exp [inφ](47)

is given by simple angular convection:

c = exp
[
inφ− inΩ(r̃)t̃

]
.(48)

In order to include the effects of nonzero diffusion, we follow [10] and introduce a
Lagrangian angular variable:

θ = φ− Ω(r̃)t̃.(49)

The derivatives in (46) are then modified as follows:

∂

∂t̃
→ ∂

∂t̃
− Ω

∂

∂θ
,

∂

∂φ
→ ∂

∂θ
,

∂

∂r̃
→ ∂

∂r̃
− Ω′t̃

∂

∂θ
.(50)

Thus (46) becomes

∂c

∂t̃
= ε

(
∂

∂r̃
− Ω′t̃

∂

∂θ

)2

c,(51)

and if the second term in parentheses dominates the first, we obtain

∂c

∂t̃
= εΩ′2t̃2

∂2c

∂θ2
.(52)

The solution of this equation satisfying the initial condition (47) is

c = exp
[
inθ − εn2Ω′2t̃3/3

]
= exp

[
inφ− inΩt̃− εn2Ω′2t̃3/3

]
.(53)

Noting that Ω′ = −3r̃ and n = 1 in our example, the mixing measure m(t) can be
calculated from (16) to yield (restoring dimensional variables)

m(t) =

√
π

2
F

(
6ω3t3

γPe

)
,(54)

where F is defined as the monotonic function

F (x) = x−1/2erf(x1/2).(55)



MODELLING ANNULAR MICROMIXERS 1303

The nondimensional mixing time corresponding to a mixing measure value of M is
therefore

ωTM ≈
[
γPe

6
F−1

(
2M√
π

)]1/3
,(56)

and note in particular that this increases as Pe1/3 when M and γ are fixed.
The approximation made to obtain (52) from (51) has limited validity, and so the

Pe1/3 scaling obtained in (56) is not expected to hold for all times. In particular, we
note that Ω′(r̃) = 0 at the center of the channel, and so (52) is not accurate there.
An analogous situation was considered recently [13] for scalar mixing in a vortex: the
vanishing azimuthal velocity at the center of the vortex is shown there to render the
approximate solution (53) invalid at large times. A different approach is required: we
follow [13] and [14] in seeking a solution of (46) of the form

c = g(t̃) exp

[
inφ− 3

2
int̃− if(t̃)r̃2

]
,(57)

where the functions g(t̃) and f(t̃) are to be determined, subject to initial conditions
g(0) = 1, f(0) = 0. This form for c can be motivated by noting that if g ≡ 1 and
f ≡ 0, then (57) would be an exact solution of (46) if the azimuthal velocity Ω had
no r̃-dependence. In fact, f(t̃) and g(t̃) can be found so that (57) is an exact solution
of (46). Substituting (57) into (46) and taking n = 1 for the initial condition (14), we
find first order equations for f and g:

df

dt̃
= −4iεf2 − 3

2
,

dg

dt̃
= −2iεfg.(58)

Solutions satisfying the initial conditions are given by

f(t̃) =
3(1 + i)

2

1

µ
tanh

(−1 + i

2
µt̃

)
,

g(t̃) =

[
cosh

(−1 + i

2
µt̃

)]− 1
2

,(59)

where we have written µ = 2
√

3ε for clarity. After some manipulation, using (57) in
(16) yields a mixing measure

m =

√
π

6
µ
[
sinh(µt̃) − sin(µt̃)

]− 1
2 erf

[√
3

µ

√
sinh(µt̃) − sin(µt̃)

cosh(µt̃) + cos(µt̃)

]
.(60)

When µt̃
 1, this reduces to

m ≈
√
π

2

(
µ2t̃3

)− 1
2 erf

[
1√
2

(
µ2t̃3

) 1
2

]

=

√
π

2
F

(
6ω3t3

γPe

)
,(61)

as in (54). The corresponding scaling for TM is given by (56) and applies for values
of M large enough so that µt̃
 1.
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For µt̃ 1, the solution (60) decays exponentially in time:

m ≈
√
π

3
µ erf

[√
3

µ

]
exp

[
−1

2
µt̃

]
,(62)

and for large Péclet numbers µ 
 1, so the asymptotic mixing time is given (in
dimensional variables) by

ωTM ≈ 1

4

√
γPe

3
ln

[
4π2

3M4

1

γPe

]
.(63)

Note that this mixing time scales as Pe1/2 lnPe for fixed M and γ. This longer
timescale replaces the Pe1/3 scaling given by (56) when the mixing time TM is suf-
ficiently large that the µt̃  1 asymptotics are important—this is relevant when we
seek a level of mixing M that is sufficiently small. Physically, this new scaling emerges
as a consequence of the vanishing of the differential rotation rate at the center of the
channel: Ω′(0) = 0; see [13] for a detailed discussion of the analogous problem at the
vortex centers. Over short timescales (with µt̃ 
 1), the advective stretching and
diffusion mix the scalar with time scaling as Pe1/3. This convection-enhanced mixing
is most effective near the sides of the channel, where the scalar is stretched into thin
lamellae; see Figure 1(right-most panel). The more persistent scalar structure at the
center of the channel is destroyed only on the longer timescales (µt̃  1), leading to
the Pe1/2 lnPe scaling in (63). It is noteworthy that neither (53) nor (57) satisfy
the no-flux boundary conditions (9) at the walls of the channel. However, numerical
simulations (see section 6) indicate that this does not have an appreciable effect upon
the accuracy of the asymptotic formulas. This is a consequence of the fast mixing of
the scalar near the walls, so that any error in the boundary conditions is dominated
by the slower-mixing scalar structure in the channel center.

6. Numerical simulations. To check the asymptotic results derived in previ-
ous sections, and to extend our analysis to cases with initial conditions other than
the simple form (14), we solve the convection-diffusion equation (8) numerically. A
decomposition into a finite number N of Fourier modes in the azimuthal angle is
employed,

c(r, φ, t) =
1

2
g0(r, t) +

N∑
n=1

gn(r, t) cos(nφ) + hn(r, t) sin(nφ),(64)

and substitution into (8) yields partial differential equations for gn and hn. Having
solved the system of equations for the Fourier coefficients, the full concentration field
may be constructed from (64), or the mixing measures may be evaluated more directly
from (16) by integrating over the angle and normalizing m(0) to unity:

m(t) =
(g0

2
− 〈c〉

)2

+
1

2

N∑
n=1

g2
n + h2

n.(65)

Logarithmic plots of m(t) as a function of time at various Pe values are shown in
Figure 3 for γ = 0.05. For comparison we plot also the asymptotic forms of m(t),
using (23) in the diffusive regime, (38) in the Taylor regime, and (54) and (60) in
the convective regime. The asymptotic formulas fit the numerical results well, with
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Fig. 3. Mixing measure m(t) as a function of nondimensional time, calculated in numerical
simulations with γ = 0.05 and various Péclet numbers as shown. Asymptotic predictions are also
shown for Pe = 0.5 (dashed) using (23) and Pe = 64 (dotted) using (38) in the upper panel. In the
lower panel the asymptotic formulas (54) (dot-dash) and (60) (dotted) are shown for Pe = 16384.

the exception of (54), which, as noted in section 5, is limited to early times. Taking
account of the vanishing differential rotation rate at the center of the channel leads
to (60), which matches the numerical results very well (the dotted line being almost
indistinguishable from the solid).

From the numerical solution for m(t), it is straightforward to calculate the mixing
times TM required for the measure to decay from its initial value of 1 to the value M .
We choose three values of M for comparison with the asymptotic predictions—M =
0.3, 0.1, and 0.01—and investigate a wide range of Péclet numbers. For fixed values
of γ and M , the asymptotic analysis of the previous sections predicts a mixing time
proportional to Pe in the diffusion-dominated regime, to Pe−1 in the Taylor dispersion
regime, and to either Pe1/3 or Pe1/2 lnPe when convection dominates. The numerical
values of nondimensional times ωTM are plotted in Figure 4 along with the straight
lines corresponding to the formulas (26), (40), and (56) for all three values of M . Note
the excellent agreement with predictions, except for the lowest value of M , when the
approximation (54) no longer accurately describes the time evolution of m(t). For
this value of M the asymptotic result (63) is plotted with a dotted line and is found
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Fig. 4. Nondimensional mixing times as a function of Péclet number, for γ = 0.05. Asymptotic
results are shown as lines, and numerical results as symbols for values of the mixing measure: M =
0.3 (dashed line; squares), M = 0.1 (solid line, points), and M = 0.01 (dot-dash line, triangles).
The long-time asymptotic result (63) is also plotted as a dotted line for the case of M = 0.01.

to closely match the numerical results.

Because much of our analysis has concentrated on the γ → 0 limit, it is worthwhile
comparing numerics and asymptotics for a larger value of γ, noting that the maximum
possible value of γ is 1. In Figure 5 we plot the results for γ = 0.2 and find that
in general the correspondence between predicted and numerical values is excellent.
However, we note that the limits on the Taylor regime now preclude the formation of
a clear Pe−1 scaling range.

Another simplification in the analysis concerns the initial condition (14), which
consists of only a single harmonic of the azimuthal variable. In order to examine the
robustness of our predictions, we numerically solve the convection-diffusion equation
for initial condition (15), replacing the discontinuous function by hyperbolic tangents
to avoid Gibbs oscillations. The decay of the mixing measure is still dominated
by the first angular harmonic, and so the mixing times are remarkably close to the
asymptotic estimates; see Figure 6. We therefore expect the formulas to be useful for
rather general initial distributions of the solute.

The nondimensional time ωTM used in Figures 3–6 may be replaced by the alter-
native nondimensionalization mentioned in section 2, i.e., the diffusion time κTM/R

2.
The timescales are related by

κTM
R2

=
γ

Pe
ωTM ,(66)

and so the data of, for example, Figure 4 is easily recast in terms of the diffusion
time; see Figure 7. The relevant mixing times in the diffusive, Taylor, and convective
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Fig. 5. Nondimensional mixing times as a function of Péclet number for γ = 0.2. Asymptotic
results are shown as lines, and numerical results as symbols for values of the mixing measure: M =
0.3 (dashed line; squares), M = 0.1 (solid line, points), and M = 0.01 (dot-dash line, triangles).
The long-time asymptotic result (63) is also plotted as a dotted line for the case of M = 0.01.

10
0

10
1

10
2

10
3

10
4

10
5

10
1

10
2

   Pe

ω T    

Fig. 6. Nondimensional mixing times as a function of Péclet number, for γ = 0.05 and an
initial concentration given by (15) (slightly smoothed). Asymptotic results are shown as lines, and
numerical results as symbols for values of the mixing measure: M = 0.3 (dashed line; squares),
M = 0.1 (solid line, points), and M = 0.01 (dot-dash line, triangles). The long-time asymptotic
result (63) is also plotted as a dotted line for the case of M = 0.01.
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Fig. 7. Mixing times nondimensionalized by the diffusion time, κT/R2, as a function of Péclet
number, for γ = 0.05. Asymptotic results are shown as lines, and numerical results as symbols for
values of the mixing measure: M = 0.3 (dashed line; squares), M = 0.1 (solid line, points), and
M = 0.01 (dot-dash line, triangles). The long-time asymptotic result (70) is also plotted as a dotted
line for the case of M = 0.01.

regimes are thus found by multiplying (26), (40), (56), and (63) by γ/Pe, yielding

κTM
R2

≈ 1

2
ln

(
1

M

)[
1 − 1

3
γ2 + · · ·

]
(67)

for Pe
 7.2 and

κTM
R2

≈ 1

Pe2
ln

(
1

M

)
105

4

[
1 − 18165

1576
γ2 + · · ·

]
(68)

for 7.2 
 Pe 
 15/γ. For the highest Péclet numbers Pe  15/γ, we obtained two
asymptotic forms, the first valid for short times (moderate M values),

κTM
R2

≈ Pe−
2
3 γ

4
3

[
1

6
F−1

(
2M√
π

)]1/3
,(69)

and the second for longer times (smaller M values),

κTM
R2

≈ Pe−
1
2 γ

3
2

1

4
√

3
ln

[
4π2

3M4

1

γPe

]
.(70)

Figure 7 is especially of interest to experimentalists working with a particular solute
and solvent (so that κ is fixed) while varying the rate of rotation velocity ω of the
micromixer to change Pe. The mixing time is seen to decrease from the diffusion
time through the Taylor regime (at a rate proportional to Pe−2), and then continue
to decrease at a slower rate beyond the Taylor regime. The slower rate corresponds
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to a Pe−2/3 scaling when (54) is valid, i.e., for M ≥ 0.1, but is closer to Pe−1/2 lnPe
for very small values of M .

From our analysis of the limits of validity of the Taylor dispersion description (see
(44)), we can estimate the end of the Taylor regime as 15γ−1 for small γ. Of interest
to the micromixer designer is the influence of the geometry ratio γ: since the mixing
time decreases as Pe−2 until Pe ≈ 15γ−1, it seems advisable to decrease γ as much as
possible in order to achieve faster mixing at lower velocities. However, this approach
is overly simplistic, since the Péclet number also depends on γ—the linear velocity
in the channel decreases with decreasing ρ, all other things being equal. A problem
of great relevance to experimentalists is to find the optimal annular geometry to give
the lowest possible mixing time for a given species, and given values of the electric
and magnetic pumping fields (so κ and α are fixed). Suppose that the “footprint” R
of the device is chosen; then we must find the channel half-width ρ to minimize the
mixing time. Since Pe may be shown to increase monotonically with ρ, we conclude
from Figure 7 that the mixing time decreases as the channel width increases. Practical
considerations such as the minimal inner radius for effective electrodes will also provide
an upper bound on the acceptable geometry ratio γ.

7. Summary. Laminar mixing in a two-dimensional annulus has been examined
by asymptotic analysis and numerical simulation of the convection-diffusion equation
(8). The mixing measure defined in (16) has been shown to decay exponentially in the
diffusion and Taylor regimes (see (23) and (38)), with time constants given in terms of
the Péclet number and the ratio γ characterizing the annulus geometry. Correspond-
ing mixing times TM are predicted to scale as Pe0 and Pe−2 relative to the azimuthal
diffusion time; see (67) and (68). Figures 3–7 demonstrate the robustness of these pre-
dictions by comparing them to numerical simulations. In the convection-dominated
regime, asymptotic analysis modelled upon studies of mixing in vortices yields the
mixing measure (60), with two interesting subregimes for the mixing time: a Pe−2/3

dependence for early times, crossing over to a Pe−1/2 lnPe scaling at longer times, as
shown in (69) and (70), respectively. These predictions are again found to agree well
with numerical results. Although the asymptotic formulas were derived in the limit
γ → 0, we find that they also yield good predictions for larger values of γ (Figure 5).

An important limitation of the present analysis is the assumption that all motion
is two-dimensional; it is known [15, 16] that the dispersion in a channel of finite
depth may not equal the value calculated by assuming the depth to be infinite. Work
incorporating three-dimensional effects may yield further insight into this important
problem.

Acknowledgment. We acknowledge the helpful comments of the anonymous
referees.
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1. Introduction and notation. This work is concerned with the study of the
problem ⎧⎨

⎩ min
1

2

∫
Ω

|Ku− f |2dx+
α

2

∫
Ω

|u|2dx+ β

∫
Ω

|Du|
over u ∈ BV(Ω),

(1.1)

where Ω is a simply connected domain in R
2 with Lipschitz continuous boundary ∂Ω,

f ∈ L2(Ω), β > 0, α ≥ 0 are given, and K ∈ L(L2(Ω)). By K∗ we denote the adjoint
of K. We assume that K∗K is invertible or α > 0. Further, BV(Ω) denotes the space
of functions of bounded variation. A function u is in BV(Ω) if the BV seminorm
defined by ∫

Ω

|Du| = sup

{∫
Ω

u div�v : �v ∈ (C∞
0 (Ω))2, |�v(x)|�∞ ≤ 1

}

is finite. It is well known [16] that BV(Ω) ⊂ L2(Ω) for Ω ⊂ R
2 , and that u �→

|u|L2 +
∫
Ω
|Du| defines a norm on BV(Ω). If K = identity, then (1.1) is the well-known

image restoration problem with BV-regularization term. It consists of recovering the
true image u from the noisy image f . It is well known [9] that (1.1) admits a unique
solution u∗ ∈ BV(Ω) . BV-regularization, differently from regularization by means of∫
Ω
|∇u|2 dx, for example, is known to be preferable due to its ability to preserve edges

in the original image during the reconstruction process. Since the pioneering work in
[23], the literature on (1.1) has grown tremendously. We give some selected references
[1, 5, 7, 12, 14, 18] and refer to the recent monograph [25] for further references.
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The original formulation has been extended in various directions including concepts
of reconstruction of images with multiple scales; see, e.g., [2, 4, 6, 19].

Despite its favorable properties for reconstruction of images, and especially images
with blocky structure, problem (1.1) poses some severe difficulties. On the analytical
level these are related to the fact that (1.1) is posed in a nonreflexive Banach space,
the dual of which is difficult to characterize [16, 19], and on the numerical level the
optimality system related to (1.1) consists of a nonlinear partial differential equation,
which is not directly amenable to numerical implementations.

In the present work we show the remarkable result that while the dual of the non-
reflexive Banach space problem (1.1) has a complicated measure theoretic structure,
its predual can be characterized in a well-known Hilbert space setting. Specifically,
the predual to (1.1) is a quadratic optimization problem with bilateral constraints.
For such problems the literature provides a variety of possible algorithms. Here we
describe and analyze two variants of semismooth Newton methods. We prove their
superlinear convergence and provide numerical examples for some denoising and zoom-
ing problems. In practice these algorithms are globally convergent without the need
for line searches. As a by-product we obtain that the Lagrange multiplier associated
with the box constraints acts as an edge detector. We show numerically that the
edge detecting property does not require any postprocessing on the multiplier such as
thresholding or sharpening techniques.

Let us briefly mention a few alternatives that have been investigated for treating
(1.1) numerically. In [23] a time marching scheme to solve the necessary optimality
condition related to (1.1) is used. Time marching is also essential for the work in,
e.g., [6]. In [19, 26] fixed point iteration schemes are applied to the optimality system
using primal variables only. The optimality system based on the primal and dual
variables is the basis for the schemes in [19] and [8]. In the former an augmented
Lagrangian-based active set strategy is used; in the latter a Newton method is ap-
plied. Compared to the formulations used in earlier work, ours appears to have the
advantage of being of significantly simpler structure since only a quadratic problem
with affine box constraints must be solved. In earlier work, if analysis is carried out,
then frequently

∫
Ω
|Du| is replaced by

∫
Ω

√
δ + |∇u|2dx,(1.2)

for δ > 0. In our approach the algorithms are well posed for δ = 0, and for the
discretized formulations we have superlinear convergence, still with δ = 0.

The paper is organized as follows. In the remainder of this section we recall some
facts from convex analysis and summarize the function space notation that will be
used. In section 2 we characterize the predual of (1.1) in the sense of Fenchel. We shall
point out the close connection, for 1D (one–dimensional) problems, between our algo-
rithm and the taut-string algorithm well known in nonparametric regression analysis
[11, 21]. Section 3 is devoted to the description and convergence proof for a class of
regularized problems. Semismooth Newton methods for the predual problems are de-
veloped in section 4. Superlinear convergence for the regularized infinite-dimensional
problems, and for the discretized predual problems without extra regularization, is
proved. Section 5 is devoted to a numerical feasibility study of our results.

We recall the Fenchel duality theorem in infinite-dimensional spaces in a form that
is convenient for our work; see, e.g., [3, 13] for details. Let V and Y be Banach spaces
with topological duals denoted by V ∗ and Y ∗, respectively. Further, let Λ ∈ L(V, Y )
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and let F : V → R ∪ {∞}, G : Y → R ∪ {∞} be convex lower semicontinuous
functionals not identically equal to ∞, and assume that there exists v0 ∈ V such that
F(v0) <∞, G(Λv0) <∞, and G is continuous at Λv0. Then we have

inf
u∈V

F(u) + G(Λu) = sup
p∈Y ∗

−F∗(Λ∗p) − G∗(−p),(1.3)

where F∗ : V ∗ → R ∪ {∞} denotes the conjugate of F defined by

F∗(v∗) = sup
v∈V

〈v, v∗〉V,V ∗ −F(v).

Under the conditions imposed on F and G, it is known that the problem on the
right-hand side of (1.3) admits a solution. Moreover, (ū, p̄) are solutions to the two
optimization problems in (1.3) if and only if

Λ∗p̄ ∈ ∂F(ū),(1.4a)

−p̄ ∈ ∂G(Λū),(1.4b)

where ∂F denotes the subdifferential of the convex functional F .
To compute, formally, the Fenchel dual to (1.1) we set Λ = ∇,

F(u) =
1

2
|Ku− f |2 +

α

2
|u|2 and G(�p) = β

∫
Ω

|�p|�1dx,

where u and �p denote a scalar and a 2D vector-valued function, respectively. Further,
| · | denotes the L2(Ω)-norm and | · |�1 stands for the �1-norm on R

n. For the convex
conjugates we find

F∗(v) =
1

2
(v + K∗f,B−1(v + K∗f)) − 1

2
|f |2 and G∗(�p) = I[−β�1,β�1](�p),

where �1 is the 2D vector field with 1 in both coordinates, B = α I +K∗K, and

I[−β�1,β�1](�p) =

{
0 if − β�1 ≤ �p(x) ≤ β�1 for almost every (a.e.) x ∈ Ω,
∞ otherwise.

Thus, formally the dual to (1.1) is given by{
inf 1

2 |div �p+ K∗f |2B
s.t. − β�1 ≤ �p(x) ≤ β�1 for a.e. x ∈ Ω,

(1.5)

where |v|2B = (v,B−1v), and the relationship (1.4) applied to the solutions of (1.1)
and (1.5) implies that

div �p = Bu− K∗f, �p = β

(
uxi

|uxi |
)n
i=1

on {x : uxi(x) �= 0 for all i}.(1.6)

The functional analytic statement corresponding to (1.6) is given in (2.3), (2.4) below.
We note that nondifferentiability due to the BV-term in (1.1) is replaced by the

bilateral constraints in the formal dual (1.5).
In the next section we shall put (1.5) into a proper functional analytical frame-

work. For this purpose we require some notation which we summarize next. Let
IL2(Ω) = L2(Ω)× L2(Ω) endowed with the Hilbert space inner product structure and
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norm. If the context suggests to do so, then we shall distinguish between vector
fields �v ∈ IL2(Ω) and scalar functions v ∈ L2(Ω) by using an arrow on top of the
letter. Analogously we set IH1

0(Ω) = H1
0 (Ω) × H1

0 (Ω). We denote L2
0(Ω) = {v ∈

L2(Ω) :
∫
Ω
vdx = 0}, H0(div) = {�v ∈ IL2(Ω) : div�v ∈ L2(Ω), �v · n = 0 on ∂Ω},

where n is the outer normal to ∂Ω. The space H0(div) is endowed with |�v|2H0(div) =

|�v|2
IL2(Ω)

+ |div�v|2L2 as norm. Further, we put H0(div 0) = {�v ∈ H0(div) : div�v =

0 almost everywhere in Ω}. It is well known that

IL2(Ω) = grad H1(Ω) ⊕H0(div 0);(1.7)

cf. [10, p. 216], for example. Moreover,

H0(div) = H0(div 0)⊥ ⊕H0(div 0),(1.8)

with

H0(div 0)⊥ = {�v ∈ gradH1(Ω) : div�v ∈ L2(Ω), �v · n = 0 on ∂Ω},
and div : H0(div 0)⊥ ⊂ H0(div) → L2

0(Ω) is a homeomorphism. In fact, it is injective
by construction, and for every f ∈ L2

0(Ω) there exists, by the Lax–Milgram lemma,
ϕ ∈ H1(Ω) such that

div∇ϕ = f in Ω, ∇ϕ · n = 0 on ∂Ω,

with ∇ϕ ∈ H0(div 0)⊥. Hence, by the closed mapping theorem we have

div ∈ L(H0(div)⊥, L2
0(Ω)).

Finally, let Pdiv and Pdiv⊥ denote the orthogonal projections in IL2(Ω) onto H0(div 0)
and gradH1(Ω), respectively. Note that the restrictions of Pdiv and Pdiv⊥ toH0(div 0)
coincide with the orthogonal projections in H0(div) onto H0(div 0) and H0(div 0)⊥.

2. The Fenchel predual. The section is devoted to the study of the problems⎧⎨
⎩ min

1

2
|div �p+ K∗f |2B over �p ∈ H0(div)

s.t. − β�1 ≤ �p ≤ β�1,
(2.1)

and ⎧⎨
⎩ min

1

2
|div �p+ K∗f |2B + γ

2 |Pdiv�p|2 over �p ∈ H0(div)

s.t. − β�1 ≤ �p ≤ β�1,
(2.2)

where γ > 0 is given, and we recall that for v ∈ L2(Ω) we set |v|2B = (v,B−1v)L2 .
Proposition 2.1. Both (2.1) and (2.2), admit a solution. The solution to (2.2)

is unique.
Proof. Existence of a solution to (2.1) as well as (2.2) can be proved by standard

arguments. To verify uniqueness of the solution to (2.2) we note that the set of feasible
�p is convex. Hence it suffices to verify strict convexity of J(�p) = 1

2 |div �p + K∗f |2B +
γ
2 |Pdiv�p|2. To ascertain strict convexity of J we use the fact that the second derivative
satisfies

J ′′(�p, �p) = |div �p |2B + γ|Pdiv�p |2 ≥ κ|�p |2H0(div)
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for a constant κ > 0 independent of �p ∈ H0(div). Here we have used (1.6) and the sub-
sequent comments. Hence J is even uniformly convex, and uniqueness
follows.

Theorem 2.2. The Fenchel dual to (2.1) is given by (1.1), and the solutions u∗

of (1.1) and �p ∗of (2.1) are related by

Bu∗ = div �p ∗ + K∗f,(2.3)

〈(−div)∗u∗, �p− �p ∗〉H0(div)∗,H0(div) ≤ 0 for all �p ∈ H0(div),(2.4)

with −β�1 ≤ �p ≤ β�1.
Alternatively, (2.1) can be considered as the predual of the original problem (1.1).

If (2.1) is a zero-residue problem, i.e., �p ∗ satisfies div �p ∗ = −K∗f , then the addi-
tional penalty term in (2.2) chooses from among all solutions the one which minimizes
|Pdiv�p

∗|.
Proof of Theorem 2.2. We apply Fenchel duality as recalled in section 1 with V =

H0(div), Y = Y ∗ = L2(Ω), Λ = −div, G : Y → R given by G(v) = 1
2 |v − K∗f |2B , and

F : V → R defined by F(�p ) = I[−β�1,β�1](�p ). The convex conjugate G∗ : L2(Ω) → R

of G is given by

G∗(v) =
1

2
|Kv + f |2 +

α

2
|v|2 − 1

2
|f |2.

Further, the conjugate F∗ : H0(div)∗ → R of F is given by

F∗(�q) = sup
�p∈S1

〈�q, �p 〉H0(div)∗,H0(div) for �q ∈ H0(div)∗,(2.5)

where S1 = {�p ∈ H0(div) : −β�1 ≤ �p ≤ β�1}. Let us set

S2 = {�p ∈ C1
0 (Ω) × C1

0 (Ω) : −β�1 ≤ �p ≤ β�1}.
The set S2 is dense in the topology of H0(div) in S1. In fact, let �p be an arbitrary
element of S1. Since (D(Ω))2 is dense in H0(div) (see, e.g., [15, p. 26]), there exists
a sequence �pn ∈ (D(Ω))2 converging in H0(div) to �p. Let P denote the canonical
projection in H0(div) onto the closed convex subset S1 and note that, since �p ∈ S1,

|�p− P�pn|H0(div) ≤ |�p− �pn|H0(div) + |�pn − P�pn|H0(div)

≤ 2|�p− �pn|H0(div) → 0 for n→ ∞.

Hence limn→∞ |�p−P�pn|H0(div) = 0 and S2 is dense in S1. Returning to (2.5), we have

for v ∈ L2(Ω) and (−div)∗ ∈ L(L2(Ω), V ∗),

F∗((−div)∗v) = sup
�p∈S2

(v,−div �p ),

which can be +∞. By the definition of the functions of bounded variation it is finite
if and only if v ∈ BV(Ω) (see [16, p. 3]) and

F∗((−div)∗v) = β

∫
Ω

|Dv| <∞ for v ∈ BV(Ω).

The dual problem to (2.1) is found to be

min
1

2
|Ku− f |2 +

α

2
|u|2 + β

∫
Ω

|Du| over u ∈ BV(Ω).
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From (1.4), moreover, we find

〈(−div)∗u∗, �p− �p ∗〉H0(div)∗,H0(div) ≤ 0 for all p ∈ S1

and

Bu∗ = div �p ∗ + K∗f.

We obtain the following optimality system.
Corollary 2.3. Let �p ∗ ∈ H0(div) be a solution to (2.1). Then there exists

�λ∗ ∈ H0(div)∗ such that

div∗B−1 div �p ∗ + div∗B−1K∗f + �λ∗ = 0,(2.6)

〈�λ∗, �p− �p ∗〉H0(div)∗,H0(div) ≤ 0 for all �p ∈ H0(div),(2.7)

with −β�1 ≤ �p ≤ β�1.
For convenience we also specify the variational form of (2.6) which holds in

H0(div)∗ :

(B−1 div �p ∗,div�v )L2 + (B−1K∗f,div�v )L2 + 〈�λ∗, �v 〉H0(div)∗,H0(div) = 0

for all �v ∈ H0(div).

Proof of Corollary 2.3. Set �λ∗ = −div∗ u∗ ∈ H0(div)∗ and apply div∗B−1 to

obtain (2.6). For this choice of �λ∗, equation (2.7) follows from (2.4).
The optimality system for (2.2) is given next.
Corollary 2.4. Let �p ∗ ∈ H0(div)∗ denote the solution to (2.2). Then there

exists �λ∗ ∈ H0(div)∗ such that

div∗B−1 div �p ∗ + div∗B−1K∗f + γPdiv�p
∗ + �λ∗ = 0,(2.8)

〈�λ∗, �p− �p ∗〉H0(div)∗,H0(div) ≤ 0 for all �p ∈ H0(div),(2.9)

with −β�1 ≤ �p ≤ β�1.
Proof. We only sketch the proof here since the assertion will also follow from

the proof of Theorem 3.1 below. By (1.6), every �v ∈ H0(div) can be decomposed
according to �v = �v1 + �v2 ∈ H0(div 0)⊥ ⊕ H0(div 0). The functional in (2.2) is then
separable, and (2.2) can be expressed as

min
�p∈H0(div)

F(�p) + G1(Λ1�p1) + G2(Λ2�p2),

where F is defined in the proof of Theorem 2.2, G1 and Λ1 coincide with G and Λ
from the proof of Theorem 2.2, and we set

G2 : IL2(Ω) → R, G2(�p) =
γ

2
|�p |2

IL2(Ω)
,

Λ2 ∈ L(H0(div 0), IL2(Ω)) with Λ2 the canonical injection. From general results in
convex analysis (e.g., [13, p. 61]), there exist �u ∗

1 ∈ IL2(Ω) and �u ∗
2 ∈ IL2(Ω) such that

B�u ∗
1 = div �p ∗

1 + K∗f = div �p ∗ + K∗f,
−�u ∗

2 = γ�p ∗
2 = γPdiv�p

∗
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and

〈−div∗ �u ∗
1 + �u ∗

2 , �p− �p ∗〉H0(div)∗,H0(div) ≤ 0 for all �p ∈ S1.

The claim follows with �λ∗ = −div∗ �u ∗
1 + �u ∗

2 .
We end this section with the following remarks.
Remark 1.
• In our numerical tests, in many cases we can set γ = 0. This suggests the

conjecture that the constraints −β�1 ≤ �p ≤ β�1 imply some type of uniqueness.
• We point out the close connection between (2.1) and the taut-string algorithm

well known in regression analysis [11, 21]. Here we have K = I, α = 0. A
continuous version of the taut-string algorithm can be expressed as⎧⎨

⎩ min

∫ 1

0

√
1 + |wx|2dx,

s.t. F − β ≤ w ≤ F + β,
(2.10)

where F (x) =
∫ x
0
f(s)ds. The denoised image u is obtained from u = wx.

Observe that the change of variables p = w − F transforms (2.10) into⎧⎨
⎩ min

∫ 1

0

√
1 + |px + f |2dx,

s.t. − β ≤ p ≤ β
(2.11)

and u = px + f . Thus, except for the square root in (2.11), we obtain (2.1).

3. A family of regularized problems. To treat (2.1) and (2.2) numerically
one can discretize these box constrained problems and implement one’s algorithm
of choice for the resulting finite-dimensional quadratic optimization problems with
affine constraints. With such an approach the infinite-dimensional structure tends
to get covered up. One of the features that can be pointed out by considering (2.6)
and (2.8) of the optimality systems is that the leading differential operator is not
smoothing (see (1.7)) as it is for obstacle-type problems, nor is it a compact pertur-
bation of the identity operator as, for instance, for control constrained optimal control
problems [17]. This complicates the convergence analysis for semismooth Newton al-
gorithms; see [17, 24]. Therefore we describe in this section a family of approximating
problems which have more amenable properties for Newton-type algorithms in an
infinite-dimensional setting. A second difficulty with (2.1), (2.2) is related to the fact
that β will typically be chosen as a small constant so that the resulting problems are
close to bottleneck problems. We shall see in section 5 that the algorithms we propose
are able to deal efficiently with such constraints.

As announced above, we focus in this section on a family of approximating prob-
lems given by

⎧⎪⎨
⎪⎩

min
1

2c
|∇�p |2 +

1

2
|div �p+ K∗f |2B +

γ

2
|Pdiv�p |2

+
1

2c
|max(0, c(�p− β�1))|2 +

1

2c
|min(0, c(�p+ β�1))|2 over �p ∈ IH1

0(Ω),

(3.1)

where c > 0. Let �pc denote the unique solution to (3.1). It satisfies the optimality
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condition

− 1

c
∆�pc −∇B−1 div �pc −∇B−1K∗f + γPdiv�pc + �λc = 0,(3.2a)

�λc = max(0, c(�pc − β�1)) + min(0, c(�pc + β�1)).(3.2b)

Next we address convergence as c→ ∞.
Theorem 3.1. The family {(�pc, �λc)}c>0 converges weakly in H0(div) × IH1

0(Ω)
∗

to the unique solution (�p ∗, �λ∗) of (2.8), (2.9). Moreover, the convergence of �pc to �p ∗

is strong in H0(div).
Proof. Recall the variational form of (2.8) given by

(div �p ∗,div�v )B + (K∗f,div�v )B + γ(Pdiv�p
∗,Pdiv�v ) + 〈�λ∗, �v 〉H0(div)∗,H0(div) = 0

(3.3)

for all �v ∈ H0(div). To verify uniqueness, let us suppose that (�pi, �λi) ∈ H0(div) ×
H0(div)∗, i = 1, 2, are two solution pairs to (2.8), (2.9). For δ�p = �p2−�p1, δ�λ = �λ2−�λ1

we have

(B−1 div δ�p,div�v ) + γ(Pdivδ�p,Pdiv�v ) + 〈δ�λ,�v 〉H0(div)∗,H0(div) = 0(3.4)

for all �v ∈ H0(div), and

〈δ�λ, δ�p 〉H0(div)∗,H0(div) ≥ 0.

With �v = δ�p in (3.4) we obtain

|B−1 div δ�p |2 + γ|Pdivδ�p |2 ≤ 0,

and hence �p1 = �p2. From (3.3) we deduce that �λ1 = �λ2. Thus uniqueness is estab-
lished, and we can henceforth rely on subsequential arguments.

In the following computation we consider the coordinates �λic, i = 1, 2, of �λc. We
have for the pointwise a.e. evaluation at x ∈ Ω

�λic �p
i
c =

(
max(0, c(�p ic − β)) + min(0, c(�p ic + β))

)
�p ic

=

⎧⎨
⎩

c(�p ic − β)�p ic if �p ic ≥ β,
0 if |�p ic | = β,
c(�p ic + β)�p ic if �p ic ≤ β.

It follows that

(�λic, �p
i
c)L2(Ω) ≥

1

c
|�λic|2L2(Ω)

for i = 1, 2,

and consequently

(�λc, �pc)IL2(Ω) ≥
1

c
|�λc|2IL2(Ω)

for every c > 0.(3.5)

From (3.2) and (3.5) we deduce that

1

c
|∇�pc|2 + |div �pc|2B + γ|Pdiv�pc|2 ≤ |div �pc|B |K∗f |B
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and hence

1

c
|∇�pc|2 +

1

2
|div �pc|2B + γ|Pdiv�pc|2 ≤ 1

2
|K∗f |B .(3.6)

We further estimate

|�λc|IH1
0(Ω)

∗ = sup
|�v |

IH1
0(Ω)

=1

〈�λc, �v 〉IH1
0(Ω)

∗
,IH1

0(Ω)

≤ sup
|�v|

IH1
0(Ω)

=1

{
1

c
|∇�pc||∇�v | + |div �pc|B |div�v |B + |K∗f |B |div�v |B

+ γ|Pdiv�pc| |Pdiv�v |
}
.

From (3.6) we deduce the existence of a constant K independent of c ≥ 1 such that

|�λc|IH1
0(Ω)

∗ ≤ K.(3.7)

Combining (3.6) and (3.7), we can assert the existence of (�p ∗, �λ∗) ∈ H0(div)×IH1
0(Ω)

∗

such that for a subsequence denoted by the same symbol

(�pc, �λc) ⇀ (�p ∗, �λ∗) weakly in H0(div) × IH1
0(Ω)

∗
.(3.8)

We recall the variational form of (3.2), i.e.,

1

c
(∇�pc,∇�v ) + (div �pc,div�v )B + (K∗f,div�v )B + γ(Pdiv�pc,Pdiv�v )

+ (�λc, �v ) = 0 for all �v ∈ IH1
0(Ω).

Passing to the limit c→ ∞, using (3.6) and (3.8) we have

(div �p ∗,div�v )B+(K∗f,div�v )B + γ(Pdiv�p
∗,Pdiv�v )

+〈�λ∗, �v 〉IH1
0(Ω)

∗
,IH1

0(Ω) = 0 for all �v ∈ IH1
0(Ω).

(3.9)

Since IH1
0(Ω) is dense in H0(div) and �p ∗ ∈ H0(div), we have that (3.9) holds for all

�v ∈ H0(div). Consequently �λ∗ can be identified with an element in H0(div)∗, and
〈·, ·〉IH1

0(Ω)
∗
,IH1

0(Ω) in (3.9) can be replaced by 〈·, ·〉H0(div)∗,H0(div). We next verify that
�p ∗ is feasible. For this purpose note that

(�λc, �p− �pc) =
(
max(0, c(�pc − β�1)) + min(0, c(�pc + β�1), �p− �pc

) ≤ 0(3.10)

for all −β�1 ≤ �p ≤ β�1. From (3.1) we have

1

c
|∇�pc|2 + |div �pc + K∗f |2B + γ|Pdiv�pc|2 +

1

c
|�λc|2 ≤ |K∗f |2B .(3.11)

Consequently, 1
c |�λc|2 ≤ |K∗f |2B for all c > 0. Note that

1

c
|�λc|2IL2(Ω)

= c|max(0, �pc − β�1)|2
IL2(Ω)

+ c|min(0, �pc + β�1)|2
IL2(Ω)

and thus

|max(0, (�pc − β�1))|2
IL2(Ω)

c→∞→ 0,

|min(0, (�pc + β�1))|2
IL2(Ω)

c→∞→ 0.
(3.12)
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Recall that �pc ⇀ �p ∗ weakly in IL2(Ω). Weak lower semicontinuity of the convex
functional �p �→ |max(0, �p− β�1)|IL2(Ω) and (3.12) imply that∫

Ω

|max(0, �p ∗ − β�1)|2dx ≤ lim inf
c→∞

∫
Ω

|max(0, �pc − β�1)|2dx = 0.

Consequently, �p ∗ ≤ β�1, and analogously one verifies that −β�1 ≤ �p ∗. In particular,
�p ∗ is feasible, and from (3.10) we conclude that

〈�λc, �p ∗ − �pc〉H0(div)∗,H0(div) ≤ 0 for all c > 0.(3.13)

By optimality of �pc for (3.1) we have

lim sup
c→∞

(
1

2
|div �pc + K∗f |2B +

γ

2
|Pdiv�pc|2

)
≤ 1

2
|div �p+ K∗f |2B +

γ

2
|Pdiv�p |2(3.14)

for all �p ∈ S2 = {�p ∈ (C1
0 (Ω))2 : −β�1 ≤ �p ≤ β�1}. Density of S2 in S1 = {�p ∈ H0(div) :

−β�1 ≤ �p ≤ β�1} in the norm of H0(div) implies that (3.14) holds for all �p ∈ S1 and
consequently

lim sup
c→∞

(
1

2
|div �pc + K∗f |2B +

γ

2
|Pdiv�pc|2

)
≤ 1

2
|div �p ∗ + K∗f |2B +

γ

2
|Pdiv�p

∗|2

≤ lim inf
c→∞

(
1

2
|div �pc + K∗f |2B +

γ

2
|Pdiv�pc|2

)
,

where for the last inequality weak lower semicontinuity of norms is used. The above
inequalities together with weak convergence of �pc to �p ∗ in H0(div) imply strong con-
vergence of �pc to �p ∗ in H0(div). Finally we aim at passing to the limit in (3.13). This

is impeded by the fact that we only established �λc ⇀ �λ∗ in IH1
0(Ω)

∗
. Note from (3.2)

that {− 1
c∆�pc+�λc}c≥1 is bounded in H0(div). Hence there exists �µ∗ ∈ H0(div)∗ such

that

−1

c
∆�pc + �λc ⇀ �µ∗ weakly in H0(div)∗,

and consequently also in IH1
0(Ω)

∗
. Moreover, { 1√

c
|∇�pc|}c≥1 is bounded and hence

−1

c
∆�pc ⇀ 0 weakly in IH1

0(Ω)
∗

as c→ ∞. Since �λc ⇀ �λ∗ weakly in IH1
0(Ω)

∗
, it follows that

〈�λ∗ − �µ∗, �v 〉IH1
0(Ω)

∗
,IH1

0(Ω) = 0 for all �v ∈ IH1
0(Ω).

Since both �λ∗ and �µ∗ are elements of H0(div)∗ and since IH1
0(Ω) is dense in H0(div),

it follows that �λ∗ = �µ∗ in H0(div)∗. For �p ∈ S2 we have

〈�λ∗, �p− �p ∗〉H0(div)∗,H0(div) = 〈µ∗, �p− �p ∗〉H0(div)∗,H0(div)

= lim
c→∞

〈
−1

c
∆�pc + �λc, �p− �pc

〉
H0(div)∗,H0(div)

= lim
c→∞

(
1

c
(∇�pc,∇(�p− �pc)) + (�λc, �p− �pc)

)

≤ lim
c→∞

(
1

c
(∇�pc,∇�p) + (�λc, �p− �pc)

)
≤ 0
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by (3.10) and (3.11). Since S2 is dense in S1, we find

〈�λ∗, �p− �p ∗〉H0(div)∗,H0(div) ≤ 0 for all �p ∈ S1.

The problem formulation (3.1) contains two limiting processes: the IH1
0(Ω) smooth-

ing, which will be used to guarantee superlinear convergence of semismooth Newton
methods applied to the first order optimality conditions (3.2) of (3.1) in function
spaces (see section 4), and a penalization of the constraints −β�1 ≤ �p ≤ β�1 resulting
in the max- and min-terms. There is no need to utilize the same parameter c for both
limiting processes. Rather, if 1

2c |∇�p|2 is replaced by 1
2c̄ |∇�p|2, then (�pc̄,c, �λc̄,c) con-

verges to (�p∗, �λ∗) weakly in H0(div)× IH1
0(Ω)

∗
, where (�pc̄,c, �λc̄,c) denotes the solution

of (3.2) with 1
c∆�pc replaced by 1

c̄∆�pc̄,c, as c→ ∞ and c̄→ ∞.

4. Semismooth Newton methods. Here we shall describe two algorithms,
one for a discretized form of (2.2) and another one for (3.1). Both algorithms are
locally superlinearly convergent.

First we consider the unregularized problem (2.2). After discretization it is of the
form ⎧⎨

⎩ min
1

2
|A1p+ f̃ |2 +

γ

2
|A2p|2

s.t. − β1 ≤ p ≤ β1,

(4.1)

where p ∈ R
m, for some m ∈ N with coordinates pi. Further, A1, A2 are m × m-

matrices, f̃ ∈ R
m, and 1 ∈ R

m denotes the vector with all entries equal to 1. We
assume that kerA1 ∩ kerA2 = 0. The optimality condition for (4.1) is given by

AT1 A1p+ γAT2 A2p+AT1 f̃ + λ = 0,

λ = max(0, λ+ c(p− β1)) + min(0, λ+ c(p+ β1)),
(4.2)

where c > 0 is arbitrary and fixed. The primal-dual active set strategy, or equivalently
the semismooth Newton algorithm applied to (4.2), is specified next.

Algorithm A.

(1) Choose p0, λ0 ∈ R
m and set k = 0.

(2) Define

A+
k+1 = {i : (λk + c(pk − β1))i > 0},

A−
k+1 = {i : (λk + c(pk + β1))i < 0},

Iik+1 = {i : i /∈ A±
k+1}.

(3) Solve for pk+1, λk+1

AT1 A1pk+1 + γAT2 A2pk+1 +AT1 f̃ + λk+1 = 0,
(λk+1)i = 0 for i ∈ Ik+1,

(pk+1)i = β for i ∈ A+
k+1, (pk+1)i = −β for i ∈ A−

k+1.

(4) Stop, or set k = k + 1 and go to (2).
This algorithm can be obtained by applying a formal Newton step to (4.2), choos-

ing as generalized derivative for the function s �→ max(0, s) the value 1 if s ≥ 0 and
0 if s < 0, and making an analogous choice for s �→ min(0, s).
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For the following result we suppose that, given p0, the first equation in (4.2) is
used to compute λ0. Then we have the following result.

Theorem 4.1. If |p0−p∗|Rm is sufficiently small, then the iterates {(pk, λk)}∞k=1

of Algorithm A converge superlinearly to the solution (p∗, λ∗) of (4.2).
The result can be verified by standard techniques from semismooth Newton meth-

ods; see, e.g., [17]. We do not enter into the details here but rather for Algorithm B
below, where they are more involved.

We turn to the algorithmic treatment of the infinite-dimensional problem (3.1),
for which we propose the following algorithm.

Algorithm B.

(1) Choose �p0 ∈ IH1
0(Ω) and set k = 0.

(2) Set, for i = 1, 2,

A+,i
k+1 = {x : (�p ik − β�1)(x) > 0},

A−,i
k+1 = {x : (�p ik + β�1)(x) < 0},

Iik+1 = Ω \ (A+,i
k+1 ∪ A−,i

k+1).

(3) Solve for �p ∈ IH1
0(Ω) and set �pk+1 = �p, where

1

c
(∇�p,∇�v ) + (div �p,div�v )B + (K∗f,div�v )B + γ(Pdiv�p,Pdiv�v )

+ (c(�p− β�1 )χA+
k+1

, �v ) + (c(�p+ β�1 )χA−
k+1

, �v ) = 0
(4.3)

for all �v ∈ IH1
0(Ω).

(4) Set

�λik+1 =

⎧⎪⎪⎨
⎪⎪⎩

0 on Iik+1,

c(�p ik+1 − β�1) on A+,i
k+1,

c(�p ik+1 + β�1) on A−,i
k+1,

for i = 1, 2.
(5) Stop, or set k = k + 1 and go to (2).
In the above, χA+

k+1
stands for

χiA+
k+1

=

{
1 if x ∈ A+,i

k+1,

0 if x /∈ A+,i
k+1,

and analogously for A−
k+1. The superscript i, i = 1, 2, refers to the respective com-

ponent. We note that (4.3) admits a solution �pk+1 ∈ IH1
0(Ω). Step (4) is included for

the sake of the analysis of the algorithm. Let C : IH1
0(Ω) → H−1(Ω) ×H−1(Ω) stand

for the operator

C = −1

c
∆ −∇B−1 div +γPdiv.

It is a homeomorphism for every c > 0 and allows us to express (3.2) as

C�p−∇B−1K∗f + cmax(0, �p− β�1) + cmin(0, �p+ β�1) = 0,(4.4)
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where we drop the index in the notation for �pc. For ϕ ∈ L2(Ω) we define

Dmax(0, ϕ)(x) =

{
1 if ϕ(x) > 0,
0 if ϕ(x) ≤ 0,

(4.5)

and

Dmin(0, ϕ)(x) =

{
1 if ϕ(x) < 0,
0 if ϕ(x) ≥ 0.

(4.6)

These operators define semismooth derivatives; see, e.g., [22] for the finite-dimensional
case and [17, 24] for the infinite dimensions. Using (4.5), (4.6) as generalized deriva-
tives for the max and the min operations in (4.4), the semismooth Newton step can
be expressed as

C�pk+1 + c(�pk+1 − β�1)χA+
k+1

+ c(�pk+1 + β�1)χA−
k+1

−∇B−1K∗f = 0,(4.7)

and �λk+1 from step (4) of Algorithm B is given by

�λk+1 = c(�pk+1 − β�1)χA+
k+1

+ c(�pk+1 + β�1)χA−
k+1

.(4.8)

The iteration of Algorithm B can also be expressed with respect to the variable �λ
rather than �p. For this purpose we define

F (�λ)=�λ− cmax(0, C−1(∇f̂ − �λ) − β�1) − cmin(0, C−1(∇f̂ − �λ) + β�1),(4.9)

where we put f̂ = B−1K∗f . Setting �pk = C−1(∇f̂ − �λk), the semismooth Newton

step applied to F (�λ) = 0 at �λ = �λk results in

�λk+1 = c(C−1(∇f̂ − �λk+1) − β�1)χA+
k+1

+ c(C−1(∇f̂ − �λk+1) + β�1)χA−
k+1

,

which coincides with (4.8). Therefore the semismooth Newton iterations according to

Algorithm B and for F (�λ) = 0 coincide, provided that the initializations are related by

C�p0 −∇f̂ +�λ0 = 0. The mapping F is slantly differentiable; i.e., for every �λ ∈ IL2(Ω)

|F (�λ+ �h) − F (�λ) −DF (�λ+ �h)h|IL2(Ω) = O(|�h|IL2(Ω))(4.10)

for |�h|IL2(Ω) → 0 (see [17]). Here D denotes the derivative of F defined by means of

(4.5) and (4.6). For (4.10) to hold the smoothing property of C−1 in the sense of an
embedding from IL2(Ω) into ILp(Ω) for some p > 2 is essential. The following result
now follows from standard arguments.

Theorem 4.2. If |�λc−�λ0|IL2(Ω) is sufficiently small, then the iterates {(�pk, �λk)}∞k=1

of Algorithm B converge superlinearly in IH1
0(Ω) × IL2(Ω) to the solution (�pc, �λc) of

(3.1).

5. Discretization and numerical examples. We report now on numerical
results attained by Algorithms A and B. In the examples below we choose K = I
and α = 0 for image denoising. We also include results for image zooming; see, e.g.,
[20] for a general description. In this case, we use given data f which correspond
to a coarse (low-pixel–based) approximation of a given image. Then the aim is to
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reconstruct the original image at the original pixel-scale. As a consequence, K �= I
with ker(K) typically nontrivial, which requires us to choose α > 0.

In our tests, for the div-operator we use backward differences with quadratic ex-
trapolation on the left boundary for Algorithm B. For Algorithm A we use symmetric
differences with quadratic extrapolation on the boundary, where A1 denotes the dis-
cretized divergence operator. The discrete grad−div-operator is taken as AT1 A1. For
Algorithm B we need the discrete Laplacian with homogeneous Dirichlet boundary
conditions. We use the standard five-point stencil for its discretization. The projec-
tion Pdiv�p is obtained by solving a Neumann problem as stated at the end of section 1.
Again we use the five-point stencil for discretizing the Laplace operator with symmet-
ric differences for the discretization of the Neumann boundary condition.

To investigate possible ill-conditioning due to the parameter c appearing in Al-
gorithm B we also tested a first order augmented Lagrangian variant of Algorithm B.
To specify the algorithm we define

L(�p,�λ) =
1

2c̄
|∇�p |2 +

1

2
|div �p+ K∗f |2B + γ

2 |Pdiv�p |2 + φc(�p,�λ),

where φc is the generalized Moreau–Yosida regularization of the indicator function φ
of the set {�p ∈ IL2(Ω) : −β�1 ≤ �p ≤ β�1}. We have

φc(�p,�λ) = inf
�q∈IL2(Ω)

φ(�p− �q ) + (�λ, �q )IL2(Ω) +
c

2
|�q |2

IL2(Ω)

for c > 0 and �λ ∈ IL2(Ω). Some simple manipulations result in

φc(�p,�λ) =
1

2c

∣∣max
(
0, �λ+ c(�p− β�1)

)∣∣2
IL2(Ω)

+
1

2c

∣∣min
(
0, �λ+ c(�p+ β�1)

)∣∣2
IL2(Ω)

− 1

2c

∣∣�λ∣∣2
IL2(Ω)

.

Augmented Lagrangian Method (ALM).

(1) Choose �λ0 ∈ IL2(Ω), c > 0, and n = 0.

(2) Given �λn ∈ IL2(Ω), determine

�pn = argmin{L(�p,�λn) : �p ∈ IL2(Ω)}.

(3) Update �λn by �λn+1 = φ′c(�pn, �λn).
(4) If convergence is not achieved, set n = n+ 1 and go to step (2).
In step (3) we have

φ′c(�p,�λ) = max
(
0, �λ+ c(�p− β�1)

)
+ min

(
0, �λ+ c(�p+ β�1)

)
.

Note that the auxiliary problems in step (2) of ALM coincide with (3.1) except for

the shift by �λn in the max/min operations. In our numerical tests below we typically
choose c̄ = c.

The algorithms in sections 3 and 4 are stated in terms of exact system solutions.
Our numerical implementation utilizes inexact Newton techniques to underscore the
feasibility of the proposed methods for large scale problems. In order to describe our
approach let rk denote the residual of the respective system, i.e., (4.2) for Algorithm A
and (4.3) for Algorithm B. We resolve the respective system with the preconditioned
conjugate gradient method (CG-method). The preconditioner involves the (vector)
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Fig. 1. Upper left: original image (128× 128 pixel). Upper right: noisy image with 10% noise.
Lower: noisy image with 50% noise.

Laplacian and, for Algorithm B, the terms involving the indicator functions of A±
k+1.

The stopping tolerance for the CG-method in iteration k + 1 is given by

tolk+1 = 0.1 min(r1.25k , rk).

This choice is motivated by the locally superlinear convergence rate of our algorithms.
Example 1. The test images for our first image denoising example are displayed in

Figure 1. The upper left image is the original image, which is similar to the one in [8].
It has a dynamic range of [0, 255]. The other two images contain Gaussian white noise.
The upper right one has 10% noise, and the remaining image contains 50% noise; i.e.,
we add Gaussian noise with standard deviation of 25.5 and 127.5, respectively. In
the subsequent tables we denote by #as the total number of active set iterations, by
#cg the total number of CG-iterations, and by #alm the total number of iterations
updating �λn for ALM. We stopped each algorithm as soon as the discrete L2-norm
of the residual dropped below tol=

√
εM , with εM the machine precision, or when

the difference between two successive residuals was smaller than tol, i.e., no further
progress was observed.

Let us first report on the results obtained for denoising the image with 10% noise.
For all algorithms we choose c = 1E4. However, let us note that Algorithm A does not
require large c since c is not linked to a regularization term. Rather it is a parameter
associated with the reformulation of the complementarity system induced by the box
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Table 5.1

Results for 10% noise.

Algorithm #as #cg #alm

Algorithm A 16 64 -
Algorithm B 9 23 -

ALM 14 27 3

Fig. 2. Upper left: result of Algorithm A. Upper right: result of Algorithm B. Lower: result of
ALM.

constraints. Further, for all three algorithms we chose β = 0.2, γ = 0 for ALM and
Algorithm B, and γ = 1E-3 for Algorithm A. In general, for ALM and Algorithm
B, γ had no noticeable effect on the results attained. However, Algorithm A is more
sensitive to γ. This can be attributed to the fact that the system matrix in Algorithm
A is singular for γ = 0. In Table 5.1 we report on the iteration numbers for the
respective algorithms.

We note that Algorithm B requires the least number of AS-iterations. For ALM
we point out that we initialized it with �λ0 ≡ 0; then, typically, 8–10 AS-iterations
were required in the first ALM-iteration. The subsequent ALM-iterations needed 2–3
AS-iterations.

In Figure 2 we display the reconstructions. The upper left and right correspond
to Algorithms A and B. The lower image is the result obtained by Algorithm ALM.
The quality of the reconstructions is equally good for all algorithms.
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Fig. 3. Left: Lagrange multiplier of Algorithm B. Right: corresponding edge detector.

Table 5.2

Results for 50% noise.

Algorithm #as #cg #alm

Algorithm A 15 59 -
Algorithm B 7 18 -

ALM 13 33 3

In the introduction we mentioned that the Lagrange multiplier associated with
the box constraints serves as an edge detector. Figure 3 shows the �1-norm of the
multiplier attained by Algorithm B and a resulting edge detector. The edge detector
is obtained from a simple thresholding technique. In fact, as a threshold we took c
and computed the edge detector λe as

λe(xi) =

{
1 if |�λ∗(xi)|�1 ≥ c,
0 otherwise.

In the above, xi denotes the ith pixel of the image, and �λ∗ the multiplier upon
termination of B. For the multipliers resulting from Algorithms A and ALM a similar
observation holds true.

Now we turn to the results for the image containing 50% noise. The parameters
had the values c = 1E4, β = 0.9, and γ = 0 for ALM and Algorithm B, and c = 1E4,
β = 0.75, γ = 1E-3 for Algorithm A. Figure 4 shows the reconstructions obtained from
our algorithms. As in the previous test case, the quality of the results for Algorithms
B and ALM is comparable. Algorithm A appears to be slightly more sensitive to
noise. This behavior could not be ruled out by tuning the parameters c, γ, and β.
The iteration numbers are reported on in Table 5.2. As can be seen from these results,
the number of iterations of the respective algorithm is rather stable with respect to
the noise level.

In Figure 5 we display the �1-norm of the multiplier �λ∗ upon termination of Al-
gorithm B. The related edge detector, which is obtained in the same way as explained
previously, is given in the right image of Figure 5. We conclude that—without any
thresholding—the Lagrange multiplier may act as an edge detector.
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Fig. 4. Upper left: result of Algorithm A. Upper right: result of Algorithm B. Lower: result of
ALM.

Fig. 5. Left: Lagrange multiplier of Algorithm B. Right: corresponding edge detector.

Let us briefly comment on the difference of stability with respect to β of Algo-
rithms A and B compared to ALM. In general the choice of β influences the quality of
the reconstruction. A large value for β decreases the number of active pixels, i.e., pix-
els at which �p ∗ hits either the upper or the lower bound. As a consequence, details of
the image are missed in the reconstruction. The right image in Figure 6 corresponds
to the result attained by Algorithm B with β = 1.5 (compared to β = 1.25 in the
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Fig. 6. Reconstruction for β = 1.5. Left: ALM. Right: Algorithm B.

Table 5.3

Convergence behavior of the residual.

#as 4.67E6 1.5E-1 9.6E-4 6.2E-7 1.8E-8 9.15E-9

previous run). Due to the larger β-value, the quality of the reconstruction degrades
in the sense that details are missed, e.g., at the corners of the triangle. On the other
hand, the left image in Figure 6 shows the result for ALM with β = 1.5.

Obviously the reconstruction is superior to the one obtained from Algorithm B.
This reflects a general observation from our test runs, i.e., ALM is more stable with
respect to the choice of β. The behavior of Algorithm A with respect to changes in β
is comparable to that of Algorithm B.

Let us discuss the convergence behavior of our algorithms in terms of reductions
of the residuals. From the results reported in Tables 5.1 and 5.2 we find that our
algorithms require a rather small number of iterations which are even stable with
respect to different noise levels. In Table 5.3 we show the behavior of the residual
for Algorithm B for 50% noise, indicating a fast convergence. This fast convergence
is also true for the numerical resolution of the auxiliary problem of ALM. A similar
convergence behavior is obtained for Algorithm A. For smaller values of β the iter-
ates converge superlinearly. Small values of β, however, imply a deterioration of the
reconstruction. Here the ill-posedness in the problem becomes evident.

In [8] an inexact Newton method for solving a primal-dual formulation of the
Euler–Lagrange equations associated with a regularized TV-based image reconstruc-
tion problem is proposed. The test problem in [8] involves the same geometry as in
our test example. In Figure 7 (upper left plot) we show the noisy image containing
Gaussian white noise with variance σ2 ≈ 1200, which gives a signal-to-noise ratio of
approximately 1. This parallels the test setting in [8]. We also made an effort to
adjust the stopping rule of Algorithm B for the comparison with the algorithm in [8].
Algorithm B requires nine iterations for obtaining the denoised image in the upper
right plot of Figure 7. The algorithm in [8] with a line search and a continuation
strategy with respect to δ in the regularization of the TV-seminorm of the type (1.2)
is reported to need 12 iterations. The size of the systems which have to be solved per
iteration in both algorithms is comparable. The edged detector, based on the �1-norm
of �λ upon termination of Algorithm B, is given in the last subplot of Figure 7.
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Fig. 7. Upper left: noisy image (256 × 256 pixel). Upper right: result of Algorithm B. Lower:

�1-norm of �λ.

Example 2. Now we report on the behavior of Algorithm B for the benchmark
problem in Figure 8. The upper left plot shows the original image. The upper right
image contains 7.5% Gaussian white noise. The parameters had the values c = 1E4,
γ = 0, and β = 0.15. The algorithm stopped after nine AS-iterations (31 CG-
iterations total) with a residual of 6.2E-9. The corresponding reconstruction is given
in the lower left plot of Figure 8. The lower right plot displays the �1-norm of the
Lagrange multiplier associated with the box constraints. As in the previous examples,
it behaves like an edge detector.

Example 3. We conclude our numerical section with the results obtained by
Algorithm B for an image zooming/resizing problem. In this case, we have K �= I.
The data f correspond to a coarse version of the original image satisfying f2i−1,2j−1 =
f2i,2j−1 = f2i−1,2j = f2i,2j . For an arbitrary 256×256-pixel image u the application
v = Ku is related to a 128×128-pixel version ṽ of the image with ṽi,j = u2i−1,2j−1 and
v2i−1,2j−1 = v2i,2j−1 = v2i−1,2j = v2i,2j = ṽi,j . For more details on image zooming
involving more advance operators K, we refer to [20]. Our aim is to use Algorithm
B for reconstructing the fine image u from the given coarse image f . Since K has
a nontrivial kernel, we choose α = 1E-10. Further, we pick the parameter values
c = 1E5, β = 0.35, and γ = 0. In Figure 9 we display the original image in the upper
left plot. The result after 16 iterations of Algorithm B is shown in the upper right plot.
The lower left plot shows the 128×128-pixel version expanded by a factor of 2, and
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Fig. 8. Upper left: exact data (256 × 256 pixel). Upper right: noisy data. Lower left: recon-
struction obtained by Algorithm B. Lower right: �1-norm of the Lagrange multiplier.

the lower right plot provides the result obtained by a nearest neighbor interpolation.
Observe that the reconstructions differ quite noticeably along the boundaries of the
person’s left arm, for example.

6. Conclusions. The efficient numerical treatment of BV-regularization–based
image restoration poses many challenges in theory as well as in the design of algo-
rithms. In this paper we first establish the relationship between the primal problem
in the nonreflexive Banach space BV and its predual which is posed in the Hilbert
space H0(div). This analytical result appears to be of interest in its own right. We
then introduce and study two semismooth Newton methods for solving the Fenchel
predual problem of the underlying BV-regularized minimization problem. By predual-
ization we obtain a box constrained minimization problem which—from the numerical
optimization point of view—has the advantage that we can rely on sophisticated min-
imization algorithms. The convergence analysis of our semismooth Newton methods
in function spaces relies on a smoothing procedure. The regularizing effect of our
smoothing results in a two-norm property which is required for arguing locally su-
perlinear convergence of our semismooth Newton method in an L2-setting. Without
smoothing we obtain a locally superlinearly convergent method on the discrete level.

Acknowledgment. We would like to thank Prof. O. Scherzer, University of
Innsbruck, Austria, for making us aware of the taut string algorithm discussed in
Remark 1.
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Fig. 9. Upper left: exact data (256 × 256 pixel). Upper right: reconstruction obtained by
Algorithm B. Lower left: 128× 128-pixel image expanded by a factor of 2. Lower right: result using
a nearest neighbor interpolation technique.
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Birkhäuser, Boston, Basel, Stuttgart, 1984.

[17] M. Hintermüller, K. Ito, and K. Kunisch, The primal-dual active set strategy as a semis-
mooth Newton method, SIAM J. Optim., 13 (2003), pp. 865–888.

[18] K. Ito and K. Kunisch, An active set strategy based on the augmented Lagrangian formulation
for image restoration, M2AN Math. Model. Numer. Anal., 33 (1999), pp. 1–21.

[19] K. Ito and K. Kunisch, BV-type regularization methods for convoluted objects with edge, flat
and grey scales, Inverse Problems, 16 (2000), pp. 909–928.

[20] F. Malgouyres and F. Guichard, Edge direction preserving image zooming: A mathematical
and numerical analysis, SIAM J. Numer. Anal., 39 (2001), pp. 1–37.

[21] E. Mammen and S. van de Geer, Locally adaptive regression splines, Ann. Statist., 25 (1997),
pp. 387–413.

[22] L. Q. Qi and J. Sun, A nonsmooth version of Newton’s method, Math. Programming, 58
(1993), pp. 353–367.

[23] L. I. Rudin, S. Osher, and E. Fatemi, Nonlinear total variation based noise removal algo-
rithms, Phys. D, 60 (1992), pp. 259–268.

[24] M. Ulbrich, Semismooth Newton methods for operator equations in function spaces, SIAM J.
Optim., 13 (2003), pp. 805–841.

[25] C. R. Vogel, Computational Methods for Inverse Problems, Frontiers Appl. Math. 23, SIAM,
Philadelphia, 2002.

[26] C. R. Vogel and M. E. Oman, Fast, robust total variation-based reconstruction of noisy,
blurred images, IEEE Trans. Image Process., 7 (1998), pp. 813–824.



CONSTRUCTING MULTIPLY CONNECTED
QUADRATURE DOMAINS∗

DARREN CROWDY† AND JONATHAN MARSHALL†

SIAM J. APPL. MATH. c© 2004 Society for Industrial and Applied Mathematics
Vol. 64, No. 4, pp. 1334–1359

Abstract. Multiply connected bounded quadrature domains, with finite connectivity, are re-
constructed from their quadrature data using conformal mappings that are ratios of products of
Schottky–Klein prime functions. This method provides the natural generalization of the conformal
maps to simply and doubly connected quadrature domains constructed by the first author in a num-
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1. Introduction. The mathematical theory of quadrature domains is well de-
veloped (e.g., [1], [2], [3], [4], [5], [6]). The simplest example of a quadrature domain
is a circular disc. Let z = x + iy and suppose that the disc is centered at the origin
z = 0 with radius r. The well-known “mean value theorem” says that, if h(z) is any
function analytic in the disc D and integrable over it, then∫ ∫

D

h(z)dxdy = πr2h(0).(1)

Equation (1) is a simple example of a quadrature identity. The idea of quadrature
domain theory is to consider more complicated domains satisfying more complicated
quadrature identities. Consider a planar domain D and let h(z) be any function that
is analytic in D and integrable over it. Suppose that

∫ ∫
D

h(z)dxdy =

N∑
k=1

nk−1∑
j=0

cjkh
(j)(zk),(2)

where {zk ∈ C} is a set of points strictly inside D, {cjk ∈ C}, and h(j)(z) denotes
the jth derivative of h. Here, N and {nk ≥ 1} are integers. Then D is known as a
quadrature domain. The quadrature identity (2) generalizes (1).

While quadrature domains are mathematically interesting in their own right, per-
haps more remarkable is the fact that they are relevant to the mathematical study
of a wide range of physical problems. An important early paper of Richardson [7]
was the first to illustrate the connection with the study of the free boundary problem
involving singularity-driven flows in a Hele–Shaw cell. Richardson’s paper involved
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simply connected fluid domains. The essential result is that quadrature domains are
preserved by the dynamics of the physical problem. Since then, quadrature domains
have been found to be useful in a variety of different problems. For example, En-
tov, Etingof, and Kleinbock [8] have discussed a number of generalizations of the
singularity-driven Hele–Shaw problem, including the dynamics of flows in a rotat-
ing Hele–Shaw cell and the problem of “squeeze flow” in a Hele–Shaw cell. Both
problems also preserve quadrature domains [9], [10]. Crowdy [11] has pointed out
the relevance of quadrature domains to a biharmonic-governed (as opposed to the
harmonic-governed Hele–Shaw model) free boundary problem involving slow viscous
flows driven by surface tension. Here, in certain circumstances, the dynamics is also
such as to preserve quadrature domains. Outside the realm of free boundary prob-
lems, it has also been shown [12], [13] that quadrature domains have relevance to the
study of multipolar vortical equilibria of the two-dimensional Euler equations govern-
ing the inviscid flow of an ideal fluid. The problem of finding equilibrium shapes of
free boundaries involving irrotational Euler flows with surface tension (see, e.g., [14])
can also be interpreted in terms of quadrature domain theory.

This compendium of different physical applications suggests a need to be able
to construct quadrature domains of various finite connectivities. Gustafsson [5] has
shown that construction of an N -connected quadrature domain is equivalent to the
construction of a conformal mapping, which is a meromorphic function on a Riemann
surface of genus N − 1. For N = 1 and N = 2, this is possible using the theory of
rational functions and elliptic functions (or, equivalently, loxodromic functions, which
are naturally related to elliptic functions [15]). Indeed, these two cases constitute most
of the existing literature. Richardson used rational function conformal mappings in
his original paper [7] and, more recently, elliptic function conformal mappings for
singularity-driven Hele–Shaw flows of doubly connected fluid regions [16]. Crowdy [9]
has used loxodromic functions to derive exact solutions for the evolution of doubly
connected domains in a rotating Hele–Shaw cell, providing a mathematical model for
some recent experimental results involving a fluid annulus [17]. Elliptic/loxodromic
function theory has also been used to construct exact solutions to the problem of the
surface tension–driven Stokes flow of doubly connected fluid regions [18], [19], [20].

For higher connectivities, the situation is much more challenging. The subject of
constructing multiply connected quadrature domains (of connectivity greater than 2)
has been the focus of much recent activity. Two new methods of construction have
recently been proposed in the context of specific applications. The first author [13]
has implemented a construction based on the fact that the boundaries of quadrature
domains are algebraic curves. This method has been successfully applied, for example,
to the construction of vortical equilibria of the Euler equations [13] and to the squeeze
flow problem in a Hele–Shaw cell [10]. Meanwhile, in considering the related problem
of singularity-driven flow of multiply connected fluid domains (with zero surface ten-
sion) in a Hele–Shaw cell, Richardson [23] has proposed a different method based on
conformal mapping. In this paper we present a new method which, like Richardson’s,
is based on conformal maps. However, our approach is different. In light of all the
recent work on this problem, we also discuss in detail how the new construction differs
from other methods, and how it compares to them in terms of practical application.

To motivate the present work, we recall that it is a standard result [1] that simply
connected quadrature domains can be constructed by rational function mappings from
a unit ζ-disc to the domain. Any rational function with given zeros and poles can be
written as a ratio of products of the fundamental function P (ζ) = 1−ζ. For example,
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if the conformal map has poles {αk|k = 1, . . . , N} and zeros {βk|k = 1, . . . , N}, it can
be written

z(ζ) = R

∏N
k=1 P (ζβ−1

k )∏N
k=1 P (ζα−1

k )
,(3)

where R is a constant. Furthermore, it is also known that a representation of a general
conformal mapping (again with poles {αk|k = 1, . . . , N} and zeros {βk|k = 1, . . . , N})
from the annulus ρ < |ζ| < 1 to a doubly connected quadrature domain can be written
exactly as in (3) but with the fundamental function P (ζ, ρ) defined differently as

P (ζ, ρ) = (1 − ζ)
∞∏
k=1

(1 − ρ2kζ)(1 − ρ2kζ−1).(4)

Note that when ρ = 0, (4) reduces to the function P (ζ) = (1−ζ) relevant for the con-
struction of the rational functions in the simply connected case. In light of this, it is
natural to ask whether the representation (3) can also be used for quadrature domains
with connectivity greater than two but with suitably generalized “fundamental func-
tions.” This is the question addressed in this paper. The generalized “fundamental
functions” needed are known as the Schottky–Klein prime functions [21].

The treatment in this paper is based on the presentation in Chapter 12 of a
monograph by Baker [21]. Our aim here is to show how to apply these general results
for the specific purpose of constructing multiply connected quadrature domains. For
clarity, any general results needed are stated without proof and in modified form
suited to present purposes. The interested reader is referred to [21] for more details.

Richardson’s constructive method also employs the Schottky model and mappings
from the circular domains used here, but his representation of the conformal maps
is different. Richardson does not use, or define, the Schottky–Klein prime function.
Instead, his conformal maps are constructed as ratios of Poincaré series—a method
of constructing meromorphic functions on compact Riemann surfaces described, for
example, by Beardon [22]. The present authors believe the new construction based on
the Schottky–Klein prime function presented herein to be an important alternative
to Richardson’s method for two reasons. First, it is the natural generalization of
the representation (4) used by Crowdy [20] and, moreover, it is closely related to a
representation in terms of ratios of products of generalized theta functions defined on
Riemann surfaces [21], [25]. Note that (4) is the Schottky–Klein prime function in the
genus-1 case. Second, we have found the present method to be easier to implement
than Richardson’s method both conceptually and practically. The majority of the
example domains in this paper have been constructed using both methods. In all
cases considered, the boundaries of the domains are indistinguishable even at very
low orders of truncation.

2. Quadrature domains. Let D denote a bounded g+1-connected quadrature
domain. It is known [5] that the conformal mapping from a conformally equivalent
region (in, say, a parametric ζ-plane) to D is given by a meromorphic function on a
Riemann surface of genus g. This Riemann surface can be identified with the Schottky
double of the region D [5]. These conformal mapping functions will be explicitly
constructed here as ratios of products of Schottky–Klein prime functions [21]. Such
functions are defined in section 4. In order to define them, it is necessary to introduce
Schottky groups [22], [24]; these are discussed in section 3. In what follows, we first
show how Schottky groups are relevant to multiply connected quadrature domains.
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Fig. 1. Schematic of conformal mapping from region H in the ζ-plane to region D in the
physical z-plane.

Consider the integral ∫ ∫
D

h(z)dz̄ ∧ dz,(5)

where h(z) is analytic in D and dz̄ ∧ dz = 2idxdy if z = x+ iy. If D is a quadrature
domain, then

∫ ∫
D

h(z)dz̄ ∧ dz =

N∑
k=1

Nk−1∑
j=0

cjkh
(j)(zk)(6)

for some set of complex numbers {cjk, zk}, where the points {zk} are strictly inside

D. {Nk ≥ 1|k = 1, . . . , N} are a set of integers, and
∑N
k=1Nk is known as the order

of the quadrature identity. Using Green’s theorem,

∫ ∫
D

h(z)dz̄ ∧ dz =

∮
∂D0

h(z)z̄dz −
g∑
j=1

∮
∂Dj

h(z)z̄dz,(7)

where ∂D0 denotes the outer boundary of the bounded quadrature domain and
∂Di, i = 1, . . . , g, denotes the boundaries of the g enclosed holes.

Now let us introduce a conformal mapping z(ζ) to the domain D from a region H
in a parametric ζ-plane bounded by the unit ζ-circle and a set of g smaller nonover-
lapping circles totally contained inside |ζ| = 1. Such a region shall be referred to as
a circular region. Let the unit circle be denoted C0, and let the g enclosed circles be
labeled Ci, i = 1, . . . , g, with centers δi and radii ρi. The circle C0 will map to the
outer boundary ∂D0, while the circle Ci maps to the boundary ∂Di. A schematic
is shown in Figure 1. Note that, by the assumed reflectional symmetry about the
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real axis of the domains considered here, the conjugate conformal map, defined by

z̄(ζ) ≡ z(ζ̄), satisfies

z̄(ζ) = z(ζ).(8)

Using this conformal mapping function, the integral in (7) becomes

∫ ∫
D

h(z)dz̄ ∧ dz =

∮
C0

h(z(ζ))z̄(ζ̄)zζ(ζ)dζ −
g∑
j=1

∮
Cj

h(z(ζ))z̄(ζ̄)zζ(ζ)dζ.(9)

On C0,

ζ̄ = ζ−1,(10)

so that, written as a function of ζ, the first integrand on the right-hand side of (9) is

h(z(ζ))z̄(ζ−1)zζ(ζ).(11)

Let us now consider what is necessary in order that the sum of all the integrals on the
right-hand side of (9) reduces to a single integral of the same integrand (11) around
the entire boundary of H. For this to happen, it is necessary that

z̄(φj(ζ)) = z̄(ζ−1), j = 1, . . . , g,(12)

where, on Cj ,

ζ̄ = φj(ζ) ≡ δ̄j +
ρ2
j

ζ − δj
.(13)

Therefore, defining

θj(ζ) ≡ φj(ζ
−1) = δj +

ρ2
jζ

1 − δ̄jζ
,(14)

we require that the conformal mapping z(ζ) satisfy

z(ζ) = z(θj(ζ)), j = 1, . . . , g.(15)

The g maps {θj} are Mobius maps and generate a free group of transformations known
as a Schottky group [21], [24]. See section 3 to follow. The mapping z(ζ) must be
invariant with respect to the substitutions of this group.

For j = 1, 2, . . . , g, let C ′
j be the circle obtained by reflection of the circle Cj in

the unit circle |ζ| = 1 (i.e., the circle obtained by the transformation ζ �→ 1/ζ̄). C ′
j

lies in the region exterior to the unit ζ-circle. The image of the circle C ′
j under the

transformation θj is the circle Cj . Since the g circles {Cj} are nonoverlapping, so are
the g circles {C ′

j}. Consider the region of the plane exterior to the 2g circles {Cj}
and {C ′

j}; a schematic is shown in Figure 2. This region turns out to have a special
significance. (It is known as the fundamental region associated with the Schottky
group generated by the Mobius maps {θj |j = 1, . . . , g} and their inverses—see the
next section.) This is because the functional relations (15) allow the function z(ζ) to
be analytically continued outside this fundamental region to any point of the plane
which can be reached by a finite number of applications of the transformations {θj}
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C1

C2

C3H

C0

C2′

C1′

C3′

Fig. 2. The fundamental region is the unbounded region exterior to all six Schottky circles
C1, C′

1, C2, C′
2, C3, C′

3.

and their inverses to a point in this fundamental region. It is therefore enough to
establish the singularity structure of z(ζ) within just this fundamental region.

Now, if the functional relations (15) hold, we have∫ ∫
D

h(z)dz̄ ∧ dz =

∮
∂H

h(z(ζ))z̄(ζ−1)zζ(ζ)dζ,(16)

where ∂H denotes the whole boundary of H. Now let

zk = z(ᾱ−1
k ), k = 1, . . . , N,(17)

for some points {ᾱ−1
k |k = 1, . . . , N} contained in H. Now if z̄(ζ−1) has poles in H

only at the points {ᾱ−1
k }, then the integral on the right-hand side of (16) produces

the pure sum of residues (6). This means that z(ζ) will have poles in the fundamental
region only at the points {αk}. That is, z(ζ) is meromorphic in the fundamental
region.

3. Schottky groups. Consider the 2g Mobius maps given by

θ1, θ
−1
1 , θ2, θ

−1
2 , . . . , θg, θ

−1
g .(18)
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The Schottky group of transformations will be denoted Θ and is the infinite free group
formed by all possible compositions of the Mobius maps (18). These maps are also
referred to as the primary substitutions. Associated with this group is a fundamental
region mentioned in the previous section. Sometimes we shall refer to the ordinary
and singular points of the group [22], [24]. If a point in the plane can be reached by
a finite number of applications of any of the 2g primary substitutions to a point in
the fundamental region, then it is called an ordinary point of the group. If it can be
reached only by an infinite number of applications, then it is called a singular point.
A very accessible discussion of Schottky groups and their applications can be found
in a recent monograph by Mumford, Series, and Wright [24].

Some special infinite subsets of transformations in a given Schottky group will
be needed in the construction of the conformal mapping functions taking the circular
regions in the ζ-plane to the multiply connected quadrature domains. A special
notation is now introduced. This notation is not standard but is introduced here to
clarify the presentation.

Notation. The full Schottky group is denoted Θ. The notation iΘj is used to
denote all transformations of the full group which do not have a power of θi or θ−1

i on
the left-hand end or a power of θj or θ−1

j on the right-hand end. As a special case of
this, the notation Θj simply means all substitutions of the group which do not have
any positive or negative power of θj at the right-hand end (but with no stipulation
about what appears on the left-hand end). Similarly, jΘ means all substitutions which
do not have any positive or negative power of θj at the left-hand end (but with no
stipulation about what appears on the right-hand end). In addition, the single prime
notation will be used to denote a subset where the identity is excluded from the set;
thus Θ′

1 denotes all substitutions, excluding the identity, and all transformations with
a positive or negative power of θ1 at the right-hand end. The double prime notation
will be used to denote a subset where the identity and all inverse substitutions are
excluded from the set. This means, for example, that if θ1θ2 is included in the set,
the transformation θ−1

2 θ−1
1 must be excluded. Thus, Θ′′ means all substitutions of

the group excluding the identity and all inverses. Similarly, the notation 1Θ
′′
2 denotes

all substitutions of the group, excluding inverses and the identity, which do not have
any power of θ1 or θ−1

1 on the left-hand end or any power of θ2 or θ−1
2 on the right-

hand end. In the same way, Θ′′
j denotes all substitutions of the group, excluding the

identity and all inverses, which do not have any positive or negative power of θj at
the right-hand end.

3.1. The loxodromic group. Consider a mapping to a doubly connected quadra-
ture domain from an annular region ρ1 < |ζ| < 1 in the ζ-plane. In this case, the
mapping must satisfy

z(ζ) = z(ρ2
1ζ).(19)

Meromorphic functions satisfying (19) are known as loxodromic functions [15]. They
are automorphic with respect to the transformations of the loxodromic group generated
by a single map of the form θ1(ζ) = ρ2

1ζ. It should be noted that the fundamental
region in this case can be taken to be the annulus ρ1 < |ζ| < ρ−1

1 , which does not
include the point at infinity. The usual definition of the fundamental region associated
with a classical Schottky group [22] does include the point at infinity. However, we
adopt the convention of considering the loxodromic group to be a special case of a
general Schottky group. Richardson [23] adopts the same convention.
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4. The Schottky–Klein prime function. Following Baker [21], if the ith sub-
stitution of the group Θ acts on some point ζ, then the image point will be denoted
ζi for brevity. Using this notation, the Schottky–Klein prime function is defined as

ω(ζ, γ) = (ζ − γ)
∏
i∈Θ′′

{
ζ,
γ

γi
, ζi

}
,(20)

where the product is over all substitutions in the set Θ′′. The curly bracket notation
denotes the cross-ratio defined in the standard way as{

ζ,
γ

γi
, ζi

}
≡ (ζi − γ)(γi − ζ)

(ζi − ζ)(γi − γ)
.(21)

The function ω(ζ, γ) is single-valued on the whole ζ-plane, has a zero at γ and all
points equivalent to γ under the substitutions of the group Θ, and, excepting the
singular points of the group, is infinite only at ζ = ∞.

The Schottky–Klein prime function can be regarded as fundamental and is the
generalization to Riemann surfaces of genus g of the irreducible factor (ζ − γ) used
in the construction of meromorphic functions on a genus-0 Riemann surface (i.e., the
rational functions) and the function P (ζ/γ, ρ) (see (4)) used in the construction of
meromorphic functions on a genus-1 Riemann surface (i.e., the loxodromic functions).

4.1. Trivial group. When the Schottky group is just the trivial group, the
definition (20) reduces to ω(ζ, γ) = (ζ−γ). It is well known that any rational function
with poles at the N points {αk|k = 1, . . . , N} and zeros at {βk|k = 1, . . . , N} admits
the representation

R
(ζ − β1)(ζ − β2) · · · (ζ − βN )

(ζ − α1)(ζ − α2) · · · (ζ − αN )
,(22)

where R is a multiplicative constant. Note that in this case there is no restriction on
the locations of the poles and zeros of the function.

4.2. Loxodromic group. When the relevant Schottky group is the loxodromic
group generated by the single substitution θ1(ζ) = ρ2

1ζ, the definition (20) reduces to

ω(ζ, γ) = (ζ − γ)
∞∏
k=1

(ρ2k
1 ζ − γ)(ρ2k

1 γ − ζ)

(ρ2k
1 ζ − ζ)(ρ2k

1 γ − γ)

= (ζ − γ)

∞∏
k=1

(ρ2k
1 ζ/γ − 1)(ρ2k

1 γ/ζ − 1)

(ρ2k
1 − 1)(ρ2k

1 − 1)

=

( −γ∏∞
k=1(ρ

2k
1 − 1)2

)
P (ζ/γ, ρ1),

so that the relevant Schottky–Klein prime function ω(ζ, γ) in this case is simply
proportional to the function P (ζ/γ, ρ1) given in the introduction. It is well known
[15] that one representation for a loxodromic function with poles at {αk|k = 1, . . . , N}
and zeros at {βk|k = 1, . . . , N} is

R
P (ζ/β1, ρ1)P (ζ/β2, ρ1) · · ·P (ζ/βN , ρ1)

P (ζ/α1, ρ1)P (ζ/α2, ρ1) · · ·P (ζ/αN , ρ1)
,(23)
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provided the poles and zeros satisfy the condition

N∏
k=1

αk =

N∏
k=1

βk,(24)

i.e., there is a single condition on the poles and zeros of the function. It is important
to point out that another representation of a loxodromic function with the same poles
and zeros is given by

Rζ
P (ζ/β1, ρ1)P (ζ/β2, ρ1) · · ·P (ζ/βN , ρ1)

P (ζ/α1, ρ1)P (ζ/α2, ρ1) · · ·P (ζ/αN , ρ1)
,(25)

where we emphasize the appearance of an additional prefactor of ζ in front of the ratio
of products of the P (ζ, ρ)-functions. In this case, the poles and zeros must satisfy the
modified condition

N∏
k=1

αk = ρ2
1

N∏
k=1

βk.(26)

Crowdy [20] has explicitly constructed quadrature domains corresponding to annular
arrays of near-touching cylindrical particles using the second representation (25).

4.3. More general Schottky groups. By a natural extension of the familiar
special cases of sections 4.1 and 4.2, it can be shown [21] that one representation of
a meromorphic function on a Riemann surface of genus g with the poles {αk|k =
1, . . . , N} and zeros {βk|k = 1, . . . , N} is

R
ω(ζ, β1)ω(ζ, β2) · · ·ω(ζ, βN )

ω(ζ, α1)ω(ζ, α2) · · ·ω(ζ, αN )
.(27)

It is natural that in the genus-g case there exist g conditions on the poles and zeros.
These are the generalizations of the single condition (24) or (26) in the g = 1 case.
To ascertain these conditions, introduce Ak and Bk as the two fixed points of the
generating substitution θk defined as

Ak = θ−∞
k ζ, Bk = θ∞k ζ,(28)

where ζ is any given point. Note that Ak and Bk are simply the roots of ζ = θk(ζ),
which is just a quadratic because θk(ζ) is a Mobius transformation. Letting θk = ζ ′,
it is possible to write

ζ ′ −Bk
ζ ′ −Ak

= µke
iκk

ζ −Bk
ζ −Ak

,(29)

where µk, κk ∈ R. The two roots Ak and Bk are then distinguished by the fact
that |µk| < 1 in (29). Now the function (27) is the required meromorphic function,
provided the following g conditions hold:

N∏
j=1

∏
θi∈Θk

(αj − θi(Bk))

(αj − θi(Ak))

/
(βj − θi(Bk))

(βj − θi(Ak))
= 1, k = 1, . . . , g.(30)

Note that the substitutions in the second product are taken from the subset Θk. The
g conditions (30) will be referred to henceforth as the automorphicity conditions.
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In the same way that both (23) and (25) are two different representations of a
loxodromic function with the same distribution of poles and zeros, there are a number
of distinct representations of meromorphic functions on a Riemann surface of genus
g > 1 as shown in Baker [21]. In constructing a particular quadrature domain, it is
necessary to ascertain which representation is the appropriate one needed to construct
the required conformal mapping. One alternative representation (used later in the case
studies) is

⎛
⎝Rζ∏

i∈Θ′
1

ζ − θi(B1)

ζ − θi(A1)

⎞
⎠ ω(ζ, β1)ω(ζ, β2) · · ·ω(ζ, βN )

ω(ζ, α1)ω(ζ, α2) · · ·ω(ζ, αN )
,(31)

where θ1 denotes the loxodromic transformation given as

θ1(ζ) = ρ2
1ζ.(32)

The poles and zeros also satisfy g automorphicity conditions, one of which is given by

(33)
N∏
i=1

∏
j∈Θ1

(
βi − θj(B1)

βi − θj(A1)

/
αi − θj(B1)

αi − θj(A1)

)
=

1

µ1eiκ1

∏
s∈1Θ′′

1

(
B1 − θs(A1)

A1 − θs(A1)

/
B1 − θs(B1)

A1 − θs(B1)

)2

,

while the remaining g − 1 conditions are given by

(34)
N∏
i=1

∏
j∈Θb

(
βi − θj(Bb)

βi − θj(Ab)

/
αi − θj(Bb)

αi − θj(Ab)

)
=
∏
s∈1Θb

(
θ−1
s (B1) −Ab

θ−1
s (A1) −Ab

/
θ−1
s (B1) −Bb

θ−1
s (A1) −Bb

)

for b = 2, . . . , g, where Ab and Bb denote the fixed points of the mapping θb.
Finally, it is instructive to see how the general condition (30) reduces to (24) in

the g = 1 case, where the Schottky group is the loxodromic group. In this case the
group is generated by the single substitution,

θ1(ζ) = ρ2
1ζ.(35)

The subset Θ1 then contains only the identity. It is also clear that

A1 = ∞, B1 = 0.(36)

With these identifications, it is easy to show that (30) is precisely equivalent to (24).
Indeed, it is also straightforward to show that the factor

ζ
∏
i∈Θ′

1

ζ − θi(B1)

ζ − θi(A1)
(37)

in (31) reduces simply to ζ in the case where the Schottky group is precisely the
loxodromic group, so that (31) reduces to (25). At the same time, the automorphicity
condition (33) reduces to (26).
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5. Equations for the mapping parameters. Only quadrature domains sat-
isfying quadrature identities of the form∫ ∫

D

h(z)dz̄ ∧ dz = 2i

N∑
k=1

akh(zk)(38)

will be considered here. The equations to be satisfied by the conformal mapping pa-
rameters come from the specified quadrature identity together with any assumptions
made regarding the areas of the enclosed holes. Intuitively, it is useful to think of
specifying the real parameter ρi as equivalent to specifying the area of the ith hole.

From (17) recall that we require

z(ᾱ−1
k ) = zk, k = 1, . . . , N.(39)

Also, recall that we require z̄(ζ−1) to have poles in H only at the points ᾱ−1
k . In this

case, where the quadrature identity is of the form (38), these poles are simple. Thus
near ζ = ᾱ−1

k , z̄(ζ−1) has the form

z̄(ζ−1) =
Pk

ζ − ᾱ−1
k

+ regular,(40)

where Pk ∈ C. We therefore require that

ak = πPkzζ(ᾱ
−1
k ), k = 1, . . . , N.(41)

It is useful to think of the N conditions (39) as being equations for the N poles
{αk|k = 1, . . . , N}, while (41) provides equations for the N zeros {βk|k = 1, . . . , N}.

This leaves only the set {δk|k = 1, . . . , g} to be determined. However, equations
for these can be understood as being given by the g automorphicity conditions (30).
The equation count is therefore very natural, as indicated by the following schematic
encapsulating the correspondence between parameters:

{zk ∈ C|k = 1, . . . , N} → {αk ∈ C|k = 1, . . . , N},
{ak ∈ C|k = 1, . . . , N} → {βk ∈ C|k = 1, . . . , N},

{specifying the area of g holes} → {ρk ∈ R|k = 1, . . . , g},
{g automorphicity conditions} → {δk ∈ C|k = 1, . . . , g}.

(42)

A minor modification of the prime function (20) is needed when the mapping is
required to have a zero or pole at the point at infinity. In this case formula (20) must
be replaced by

ω(ζ,∞) =
∏
i∈Θ′′

(∞i − ζ)

(ζi − ζ)
,(43)

where ∞i denotes the images of the point at infinity under the ith substitution of the
set Θ′′.

Many of the examples to follow possess various rotational symmetries in the dis-
tribution of the poles and zeros of the relevant conformal mapping function. It is
therefore convenient to define ωn(ζ, γ) as

ωn(ζ, γ) ≡
n−1∏
k=0

ω(ζ, e2πik/nγ).(44)

It should be noted that the Schottky–Klein prime function depends implicitly
on the parameters {δk, ρk|k = 1, . . . , g} from which the primary substitutions are
constructed; however, the notation ω(ζ, γ) suppresses this dependence.
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6. Examples. In computing explicit cases it is necessary to truncate the number
of maps used from any of the relevant infinite sets. This is done in a natural way by
picking a level of composition of the primary substitutions up to which all composed
substitutions are included. (Mumford, Series, and Wright [24] discuss various other
methods of truncation.) For example, if a Schottky group has two primary substitu-
tions θ1 and θ2 and all maps up to and including level 2 are used, the following maps
would be included in the definition of ω(ζ, γ):

level 1 : θ1, θ2; level 2 : θ21, θ
2
2, θ1θ2, θ2θ1, θ

−1
1 θ2, θ1θ

−1
2 .(45)

Note that the identity is the only map at level 0, and this is excluded in defining the
Schottky–Klein prime function.

Since the zeros and poles in the Schottky–Klein prime function representation are
explicit, construction of a given quadrature domain requires only consideration of the
distribution of the poles and zeros of the conformal mapping in the ζ preimage plane.
Often, the quadrature identity combined with symmetry considerations can be used
to deduce the positions of these poles and zeros. The functional form of the relevant
conformal mapping can then be written down immediately.

6.1. A triply connected quadrature domain. Consider four circular discs of
equal radius r initially less than 1, with centers at ±√

3 and ±i. For r < 1 the circular
discs are disconnected. If we increase r to 1, then the discs touch. If r ≤ 1, such a
configuration is a disconnected quadrature domain satisfying the quadrature identity
(38) with N = 4, a1 = a2 = a3 = a4 = πr2, and z1 =

√
3 = −z3, z2 = i = −z4.

When r increases above 1, the domain satisfying the quadrature identity (38) with
quadrature data given by a1 = a2 = a3 = a4 = πr2 and z1 =

√
3 = −z3, z2 = i = −z4

can be expected to form a triply connected quadrature domain.
We shall construct a triply connected domain which is close to the case of touching

circular discs. In particular, we take a1 = a2 = a3 = a4 = 1.0010π and z1 =
1.6966, z2 = 0.9969i.

Note that the quadrature domain is symmetric with respect to reflection in both
the real and imaginary axes, and its two holes have their centers on the real axis. It is
natural to expect the same structure in the associated circular regionH in the ζ-plane.
If C1 and C2 are the circles mapping to the boundaries of these two holes, we expect
them to have equal radii with centers at δ1, δ2 ∈ R, where δ1 = −δ2. The conformal
mapping will have four poles corresponding to each of the zk for k = 1, 2, 3, 4. We label
these αk for k = 1, 2, 3, 4. It will also have four zeros, which we label βk (k = 1, 2, 3, 4).
Again, it is natural to expect the distribution of the poles of the conformal map in the
ζ-plane to mirror the distribution of the points zk (k = 1, 2, 3, 4) in the physical plane.
We therefore expect α1 = −α3 purely real and α2 = −α4 purely imaginary. Thus, the
combination ω2(ζ, α1)ω2(ζ, α2) will appear in the denominator of the conformal map.
Note that the compact notation ω2(ζ, α1) (defined in (44)) automatically captures
both the pole at α1 and that at −α1. As for the zeros, because we choose ζ = 0
to map to z = 0, one of the zeros (say β3) is at the origin. Thus ω(ζ, 0) appears in
the numerator of the conformal map. By symmetry, one of the remaining three zeros
(say β4) must be at ∞, while the other two, β1 and β2, should be either purely real
or purely imaginary with β1 = −β2. Thus, the combination ω(ζ,∞)ω2(ζ, β1) also
appears in the numerator. In fact, it is found that β1 is purely real. Figure 3 shows
a schematic illustrating the ζ preimage plane and the distribution of poles and zeros
in the fundamental region.
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pole

zero

C2 C1

β1

α1

−β1

−α1

α2

−α2

Fig. 3. Schematic illustrating the ζ preimage plane with distribution of poles and zeros of the
conformal mapping to the triply connected quadrature domain in Figure 4.

Combining the above considerations, the form of the conformal map is deduced
to be

z(ζ) = R
ω(ζ, 0)ω(ζ,∞)ω2(ζ, β1)

ω2(ζ, α1)ω2(ζ, α2)
.(46)

The map contains six parameters: R, β1, α1, α2, δ1, ρ1. We can specify ρ1, which
corresponds to fixing the area of each of the two holes. Then the equations to solve for
the remaining five unknowns come from (30), (39), (41). Note that, due to symmetry,
the two equations given by (30) are actually the same, and (39), (41) each give only
two independent equations. Thus we have five equations for five unknowns. Explicitly,
these are

4∏
j=1

∏
θi∈Θ1

(αj − θi(B1))

(αj − θi(A1))

/
(βj − θi(B1))

(βj − θi(A1))
= 1,(47)

z1 = z(ᾱ−1
1 ),(48)

z2 = z(ᾱ−1
2 ),(49)

a1 = πP1zζ(ᾱ
−1
1 ),(50)

a2 = πP2zζ(ᾱ
−1
2 ),(51)
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Fig. 4. Triply connected domain constructed using the Schottky–Klein prime function (top left)
and Poincaré series (top right) both at level 3. Here R = 2.5215, β1 = 1.4776, α1 = 1.1520, α2 =
1.5969i, δ1 = 0.3160, ρ1 = 0.2000. For comparison, the lower diagram shows a superposition of the
upper two diagrams.

where analytical formulae for P1 and P2 can easily be deduced. For example,

P1 = − R

α2
1

(
ω(α1, 0)ω(α1,∞)ω2(α1, β1)

ω̂(α1, α1)ω(α1,−α1)ω2(α1, α2)

)
,(52)

where ω̂(ζ, γ) is defined as

ω̂(ζ, γ) ≡
∏
i∈Θ′′

{
ζ,
γ

γi
, ζi

}
.(53)

These five equations are solved for the unknown parameters using Newton’s method.
The image of the conformal map is shown in the left-most diagram in Figure 4.

For purposes of comparison with the approach to constructing quadrature do-
mains expounded recently by Richardson [23] we constructed the same quadrature
domain using a conformal map based on the use of Poincaré series as opposed to the
Schottky–Klein prime function. The image of this map is shown in the right-most
diagram in Figure 4. The images of the respective conformal maps are indistinguish-
able, as can be seen from their superposition in the lower diagram in Figure 4. A brief
overview of Richardson’s general method, and details of how it was used to construct
the above triply connected domain, are given in the appendix.

6.2. A quadruply connected quadrature domain. A second example is to
consider three circular discs in an annular array surrounding a smaller circular disc.
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The quadrature identity associated with such a domain is of the form (38) with
N = 4 and z1 purely real, z2 = z1e

2πi/3, z3 = z1e
4πi/3, and z4 = 0. In the case where

the circular discs are touching, we have a1 = a2 = a3 = π, a4 = π(2/
√

3 − 1)2 and
z1 = 2/

√
3, z4 = 0. We shall construct a quadruply connected domain which is close

to the case of touching discs. In particular, we have taken the quadrature data to be
a1 = a2 = a3 = 1.0010π, a4 = 0.0250π and z1 = 1.1488, z4 = 0.

The domain has three holes. Since the holes in the physical plane are rotations
of each other through 2π

3 , we expect the circles in the preimage plane to share these
symmetries. Let C1, C2, and C3 be the circles inside the unit ζ-circle mapping to the
boundaries of the holes. Then C1 will be centered on the ray arg[ζ] = π

3 , and C2 and
C3 will be rotations of this circle through 2π

3 .
If we fix the physical origin to be the image of ζ = 0, then we require the factor

ω(ζ, 0) to appear in the numerator of the conformal map. Note that one of the zk is
zero, namely z4. Thus from (17), we see that we require the pole α4 (corresponding to
the point z4) to be at ∞. Thus we must include the factor ω(ζ,∞) in the denominator
of the map. There will also be three other poles, symmetrically disposed about ζ = 0,
corresponding to the symmetrically disposed points z1, z2, and z3. One of these,
denoted α1, is on the real ζ-axis. There will also be three additional zeros of the
conformal map in the fundamental region, which are also expected to be symmetrically
disposed about ζ = 0. One of these, β1 say, is found to be real.

Using these considerations, the conformal map is deduced to have the form

z(ζ) = R
ω(ζ, 0)ω3(ζ, β1)

ω(ζ,∞)ω3(ζ, α1)
.(54)

The image of this map, constructed to level-3 accuracy, is shown in the left-most
diagram in Figure 5 along with the image of the conformal map constructed using
the Poincaré series method of Richardson [23] to its right (again, to level-3 accuracy).
Their superposition is also shown in Figure 5. The boundaries are indistinguishable.

6.3. A quintuply connected quadrature domain. It is straightforward to
generalize the previous example to a quadrature domain which is close to the case
of four circular discs in an annular array surrounding a smaller circular disc. The
quadrature identity associated with such a domain is of the form (38) with N = 5
and z1 purely real, zk = z1e

(k−1)πi/2, k = 2, 3, 4, and z5 = 0. In the case where
the discs are touching, we have a1 = a2 = a3 = a4 = π, a5 = π(

√
2 − 1)2 and

z1 =
√

2, z5 = 0. We shall construct a quintuply connected domain which is close to
the case of touching circular discs. In particular, we choose quadrature data given by
a1 = a2 = a3 = a4 = 0.9980π, a5 = 0.1716π and z1 = 1.4029, z5 = 0.

Considerations similar to the previous example can be used to deduce that the
associated map has the form

z(ζ) = R
ω(ζ, 0)ω4(ζ, β1)

ω(ζ,∞)ω4(ζ, α1)
.(55)

The image of the conformal map is shown in the left-most diagram in Figure 6 along
with the image of the conformal map constructed using Poincaré series. Both are
constructed to level-3 accuracy. Their superposition is also shown in Figure 6 and,
again, the quadrature domain boundaries are indistinguishable. Crowdy [13] has
considered this class of domains from the point of view of algebraic curves in the
context of constructing multipolar equilibria of the Euler equations, and this will be
considered again later in section 8.
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Fig. 5. Quadruply connected domain constructed using the Schottky–Klein prime function (top
left) and Poincaré series (top right) at level 3, with superposition (lower). Here R = 0.0536, β1 =
3.4038, α1 = 1.2500, δ1 = 0.2608eiπ/3, ρ1 = 0.1275.

6.4. A septuply connected quadrature domain. Richardson [23] has con-
sidered the case of six circular discs in an annular array containing a disc of equal
radius in the center. Such a case is a trivial extension of the examples in sections 6.2
and 6.3. The preceding two examples have conformal mappings of the general func-
tional form

z(ζ) = R
ω(ζ, 0)ωn(ζ, β1)

ω(ζ,∞)ωn(ζ, α1)
,(56)

where section 6.2 deals with n = 3 while section 6.3 treats the case n = 4. The case
of six circular discs surrounding a central one will have a conformal map of the form

z(ζ) = R
ω(ζ, 0)ω6(ζ, β1)

ω(ζ,∞)ω6(ζ, α1)
,(57)

i.e., it is given by a mapping of the form (56) with n = 6. The associated quadrature
identity is of the form (38) with N = 7 and z1 purely real, zk = z1e

(k−1)πi/3, k =
2, . . . , 6, and z7 = 0. In the case of touching circular discs, we have a1 = · · · = a7 = π
and z1 = 2, z7 = 0. For illustration, we construct a septuply connected domain which
is close to the case of touching circular discs with a1 = · · · = a6 = 1.0266π, a7 =
1.0010π and z1 = 2.0002, z7 = 0. Figure 7 shows the results constructed using both
methods to level-2 accuracy.
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Fig. 6. Quintuply connected domain constructed using the Schottky–Klein prime function (top
left) and Poincaré series (top right) at level 3, with superposition (lower). Here R = 0.1849, β1 =
2.0789, α1 = 1.2329, δ1 = 0.3591eiπ/4, ρ1 = 0.1290.

6.5. 3-by-3 square array. More complicated domains are also easy to construct
using the Schottky–Klein prime function representation. Consider, for example, nine
circles in a 3-by-3 square array. The associated quadrature domain is of the form (38)
with N = 9 and z1 real, z2 = z1i, z3 = −z1, z4 = −z1i, and z5 on the π/4 ray, with
z6 = z5i, z7 = −z5, z8 = −z5i, and z9 = 0. In the case where the circular discs are
touching, we have z1 = 2, z5 = 2

√
2eπi/4, and a1 = · · · = a9 = π. We shall construct a

quintuply connected domain which is close to the case of touching circular discs with
a1 = · · · = a9 = 1.0010π and z1 = 1.9533, z5 = 2.7696eπi/4, z9 = 0.

There will be four circles C1, . . . , C4 inside the unit circle in the preimage ζ-plane.
Since the holes in the physical plane are centered on the rays arg[z] = π

4 ,
3π
4 ,

5π
4 ,

7π
4 ,

we also expect the centers of the circles C1, . . . , C4 to be on these rays in the ζ-plane.
Let ζ = 0 map to z = 0. This means that ω(ζ, 0) must appear in the numerator
of the conformal map. Furthermore, because z9 = 0, there must be a corresponding
pole of the conformal map at infinity in the ζ-plane. Therefore, ω(ζ,∞) must appear
in the denominator. We expect four symmetrically disposed poles in the ζ-plane
corresponding to z1, . . . , z4 . Let one of these be α1 on the real axis. Similarly, let α2

(taken on the ray arg[ζ] = π
4 ) and its rotations through π

2 correspond to z5, . . . , z8.
Thus, the combination ω4(ζ, α1)ω4(ζ, α2) will also appear in the denominator. The
zeros are expected to be similarly distributed in the ζ-plane. Therefore we include
the combination ω4(ζ, β1)ω4(ζ, β2) in the numerator so that the zeros of the map are
β1 (and its three rotations through π

2 ) and β2 (along with its three rotations through
π
2 ). It is found that β1 is real while β2 is on the ray arg[ζ] = π

4 .
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Fig. 7. Septuply connected domain constructed using the Schottky–Klein prime function (top
left) and Poincaré series (top right) at level 2, with superposition (lower). Here R = 0.6089, β1 =
1.5358, α1 = 1.2195, δ1 = 0.4900eiπ/6, ρ1 = 0.1260.

Fig. 8. 3-by-3 square array constructed using the Schottky–Klein prime function at level
2. Here R = 0.7887, β1 = 1.8298, β2 = 1.1828eiπ/4, α1 = 1.3899, α2 = 1.0989eiπ/4, δ1 =
0.5093eiπ/4, ρ1 = 0.2100.

The conformal map therefore has the form

z(ζ) = R
ω(ζ, 0)ω4(ζ, β1)ω4(ζ, β2)

ω(ζ,∞)ω4(ζ, α1)ω4(ζ, α2)
.(58)

The image of the conformal map is shown in Figure 8.
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6.6. Examples with a loxodromic subgroup. If we map H onto a multiply
connected quadrature domain which is rotationally symmetric about the origin and
which has the origin inside one of its holes, then the boundary ∂D1 of this hole will
be centered at the origin, and thus the circle C1 in the associated circular region in
the ζ-plane will be centered at ζ = 0. So, referring to (14), we see that the associated
Schottky group will contain a loxodromic subgroup.

If the quadrature domain is in fact just doubly connected and ∂D1 is its only inner
boundary, then the associated Schottky group will be precisely the loxodromic group.
In this case, the form (23) does not map the circular region to the required image.
However, Crowdy [20] has shown that the appropriate loxodromic function is given
by (25) where the poles and zeros satisfy (26). It is similarly found that if a more
general Schottky group contains the loxodromic group as a subgroup, it is necessary
to use a suitably generalized representation of the required conformal mapping.

We now present an example where the Schottky group has a loxodromic subgroup.
The example chosen is one suggested by Richardson [23]. Consider six circular discs
arranged in a triangular array. The quadrature identity associated with such a domain
is of the form (38) with N = 6 and z1 purely real, z2 = z1e

2πi/3, z3 = z1e
4πi/3, and z4

on the π/3 ray, z5 = z4e
2πi/3, z6 = z4e

4πi/3. In the case where the circular discs are
touching we have a1 = · · · = a6 = π and z1 = 2√

3
, z4 = 4√

3
eπi/3. We shall construct a

quintuply connected domain which is close to the case of touching circular discs with
a1 = · · · = a6 = 1.0500π and z1 = 1.1737, z4 = 2.3536eπi/3.

In this case, there will be a total of four enclosed holes: one centered at the origin
and three others at symmetrically disposed positions about the origin. Let C1 be the
circle in the ζ-plane mapping to the central hole, and let C2, C3, C4 map to the other
three holes. C2 is a circle centered at some point δ2 on the ray arg[ζ] = π

3 , while C3

and C4 are the rotations of this circle through 2π
3 and 4π

3 , respectively. Corresponding
to z1, z2, and z3 we expect three symmetrically disposed poles in the ζ-plane. Let one
of these be α1 on the real axis. Similarly, let α2 (on the ray arg[ζ] = π

3 ) and its two
rotations through 2π

3 correspond to z4, z5, and z6. The combination ω3(ζ, α1)ω3(ζ, α2)
will therefore appear in the denominator of the conformal map. Again, the distribution
of zeros is expected to be similar. Thus, we put ω3(ζ, β1)ω3(ζ, β2) in the numerator
so that β1 and β2 (along with their respective rotations through 2π

3 ) will be the zeros
of the conformal map in the fundamental region. It is found that β1 is real while β2

is on the ray arg[ζ] = π
3 .

A natural choice to make for the mapping is therefore

z(ζ) = R
ω3(ζ, β1)ω3(ζ, β2)

ω3(ζ, α1)ω3(ζ, α2)
.(59)

However, no univalent conformal maps to a quadrature domain with the given quadra-
ture data could be found for a map of this form. Therefore, a modified representation
of a meromorphic function on the same Riemann surface (and with the same poles
and zeros) is required. Such a representation is given by (31). Thus, it is natural to
propose that the conformal mapping has the generalized form

z(ζ) =

⎛
⎝Rζ∏

i∈Θ′
1

ζ − θi(B1)

ζ − θi(A1)

⎞
⎠ ω3(ζ, β1)ω3(ζ, β2)

ω3(ζ, α1)ω3(ζ, α2)
,(60)

where θ1 denotes the loxodromic transformation

θ1(ζ) = ρ2
1ζ(61)
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Fig. 9. Quintuply connected domain constructed using the Schottky–Klein prime function (top
left) and Poincaré series (top right) at level 2, with superposition (lower). Here R = 0.0302, β1 =
5.3203, β2 = 1.1228eiπ/3, α1 = 1.6393, α2 = 1.0526eiπ/3, δ1 = 0, δ2 = 0.6054eiπ/3, ρ1 =
0.1450, ρ2 = 0.1450.

associated with the circle C1 = {|ζ| = ρ1}. Note that, accordingly, the poles and zeros
must now satisfy g modified automorphicity conditions given (in the general case) by
(33) and (34). The map (60) is indeed found to provide the required univalent map to
a quadrature domain satisfying the given quadrature identity. It is emphasized that
the additional prefactor in (60) relative to (59) is precisely the generalization of the
additional ζ-prefactor in (25) relative to (23).

The image of the conformal map constructed using both conformal mapping meth-
ods is shown in Figure 9 along with their superposition. Although this complicated
domain is only constructed to level-2 accuracy (in both methods), the plots are again
virtually indistinguishable.

7. Nonsymmetric domains. All the examples considered so far have certain
degrees of spatial symmetry. However, the general method also applies to domains
devoid of any such symmetry. Figure 10 shows two typical quadrature domains,
plotted using conformal maps based on Schottky–Klein prime functions, possessing
less symmetry than those in Figure 4. The constructive method is essentially the
same, with only minor differences. For example, with no symmetry, there are now
two independent automorphicity conditions, whereas in the symmetric case there was
just one.
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Fig. 10. More general triply connected quadrature domains.

8. Algebraic curves and uniformization. In the context of steady vortical
equilibria of the Euler equation, Crowdy [13] has recently presented an alternative
construction of multiply connected quadrature domains from their quadrature data.
The method makes use of the result that the boundaries of quadrature domains are
algebraic curves [2]. For completeness, and purposes of comparison, we now use
conformal maps to reconstruct one of the domains of [13].

The quintuply connected quadrature domains constructed in [13] satisfy the iden-
tity ∫ ∫

D

h(z)dxdy = πr2h(z1) + πr2h(z2) + πr2h(z3) + πr2h(z4) + πp2h(0).(62)

To within a finite set of special points [6] (which turn out to be useful in the construc-
tion; see [13]), the boundaries of the domains corresponding to (62) are given by the
algebraic curve

P(z, z̄) = 0,(63)

where

P(z, w) =

5∑
k,j=0

akjz
kwj .(64)

The set of coefficients {akj} form a Hermitian matrix A, where Akj = akj and

A =

⎛
⎜⎜⎜⎜⎜⎜⎝

k 0 0 0 4p2 0
0 g 0 0 0 −4
0 0 f 0 0 0
0 0 0 e 0 0

4p2 0 0 0 −(4r2 + p2) 0
0 −4 0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎠
.(65)

The top-left diagram of Figure 11 features a reproduction of the quadrature domain
in Figure 8 of Crowdy [13] (this reference contains all the information required to
derive the matrix A).

The relevant conformal map will have the form (55). In addition to the quadrature
data, to determine this map we also need to specify the area of the holes. This can
be computed using the algebraic curve, but we employ an alternative (equivalent)
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Fig. 11. A quintuply connected quadrature domain from Crowdy (see Figure 8 of [13]) con-
structed using algebraic curves (top left); the same domain constructed using conformal maps based
on the Schottky–Klein prime function (top right). The superposition is shown in the lower diagram.

method. Following Crowdy [13], it is known that there exists a so-called special point
at some point zs = seiπ/4. At such a point it is known [13] that

z̄s = S(zs),(66)

where S(z) is known as the Schwarz function of the quadrature domain boundary
[13]. It is related to the conformal mapping function by the relation

S(z(ζ)) = z̄(ζ−1).(67)

Crowdy [13] gives the explicit value s = 1.008 for the domain shown in Figure 11 (on
the left). In terms of the conformal map, this point must correspond to the image of

some point δ̂eiπ/4 in the ζ preimage plane, i.e.,

zs = seiπ/4 = z(δ̂eiπ/4).(68)

At the same time, by the property (66), we must have

z̄s = se−iπ/4 = z̄(δ̂−1e−iπ/4).(69)

Therefore, instead of considering the area of the holes, (68) and (69) provide two
equations relating the conformal mapping parameters, one determining the newly
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introduced δ̂ and the other effectively specifying the area of the hole. The top-right
diagram in Figure 11 shows the domain constructed using the conformal map. The
lower figure shows a superposition with the domain constructed using algebraic curves.
Again, the boundaries are indistinguishable.

From a theoretical viewpoint, the conformal map just constructed essentially
provides the uniformization of the algebraic curve (63). That is, given the matrix
A, the conformal map is such that

P(z(ζ), z̄(ζ−1)) = 0.(70)

This relation holds everywhere on the boundary of the quadrature domain, but it
also holds globally by analytic continuation. In this sense, the conformal map has
uniformized the algebraic curve.

9. Discussion. There are a variety of ways in which multiply connected quadra-
ture domains can be constructed from their quadrature data (and information regard-
ing the area of any holes). The algebraic curve method of Crowdy [13] has many
conceptual advantages and requires the least analytical overhead. Using this method,
an implicit description of the boundary is obtained. The idea is to iterate on the
algebraic curve coefficients until equations deriving from the quadrature identity are
satisfied. When the domains have symmetry, the consideration of the special points of
the domain can greatly facilitate the construction by providing explicit sets of equa-
tions to be satisfied by the coefficients of the curve. The special points can also have
physical significance; in Crowdy [13] they corresponded to stagnation points of the
vortical flow.

In this paper, a conceptually different method has been used based on conformal
mapping from a canonical region in a parametric plane. This leads to an explicit
representation of the boundary curve. The Schottky model has been employed and
the mappings written as ratios of products of Schottky–Klein prime functions. These
functions are the natural generalizations of the well-known prime functions in a simply
and doubly connected case, as discussed in the introduction. The conformal mappings
are essentially “uniformizing functions” of the algebraic curves considered in [13].
Richardson [23] has presented an alternative conformal mapping method based on
the use of Poincaré series to represent the mapping functions.

From a mathematical point of view, it is natural to ask questions about the con-
vergence properties of the infinite products used in defining the Schottky–Klein prime
functions. We have not studied such questions in detail. However, the boundaries
of the quadrature domains obtained in the explicit examples of this paper have been
found to be indistinguishable from those obtained using either the algebraic curve
method of Crowdy [13] or the conformal mapping method based on Poincaré series
introduced by Richardson [23]. We consider this to be direct evidence that conver-
gence issues do not necessarily constitute an impediment to the practical use of the
Schottky–Klein prime function in the reconstruction of quadrature domains from their
quadrature data.

Appendix. The method of Richardson [23]. We shall now briefly describe
an alternative construction of the quadrature domains via an approach using Poincaré
series as expounded recently by Richardson [23]. This method also produces maps
from circular regions of a parametric ζ-plane and requires the machinery of the Schot-
tky groups associated with these circular regions. The method differs in the functional
form, and representation, of the conformal mapping functions; Richardson constructs
his maps as a ratio of two automorphic forms which are each constructed as Poincaré
series.



CONSTRUCTING MULTIPLY CONNECTED QUADRATURE DOMAINS 1357

Definition A.1. A Poincaré series associated with a given Schottky group is of
the form

T (ζ) =

∞∑
i=0

H(θi(ζ))

(ciζ + di)2m
,(71)

where

θi(ζ) ≡ aiζ + bi
ciζ + di

, aidi − bici = 1(72)

denotes the ith Mobius map of the Schottky group, H(ζ) is some rational function
of which none of the poles is at a singular point of the Schottky group, and m is an
integer. Provided ζ = ∞ is not a singular point of the Schottky group, this series
converges for all m ≥ 2.

Definition A.2. A form φ(ζ) is called an automorphic form with respect to the
Schottky group if it has the property

φ(θi(ζ)) = (ciζ + di)
2mφ(ζ)(73)

for all maps θi of the Schottky group, where m is some integer.
If the Schottky group Θ is generated by g basic maps, and φ(ζ) is an automorphic

form with Z zeros and P poles in the fundamental region, then it is known that

Z − P = 2mg.(74)

If φ(ζ) is in fact an automorphic function, then we see Z = P .
Richardson’s construction is to use two different choices of the rational func-

tions Hn(ζ), Hd(ζ) to form the respective Poincaré series for two automorphic forms
Tn(ζ), Td(ζ) corresponding to the same value of m ≥ 2. Then the ratio

Tn(ζ)

Td(ζ)
(75)

and any constant multiple of this give the required automorphic function. Richard-
son’s strategy is precisely the one described by Beardon [22] for the construction of
meromorphic functions on compact Riemann surfaces.

Given a quadrature domain, there are a number of constraints on the relevant
choices forHn(ζ) andHd(ζ). These are discussed in the context of a number of specific
examples in Richardson [23]. Here we give very brief details of the construction for
the triply connected example of section 6.1. Following Richardson, we choose m = 2.
Recall that, in this example, there are poles at α1 and α3, where α1 = −α3 (purely
real), and two at α2 and α4, where α2 = −α4 (purely imaginary). Also, g = 2.
Following Richardson [23], we take Hd(ζ) to be 1. From (74) it follows that Td(ζ)
has eight zeros in the fundamental region. Due to the symmetry of the quadrature
domain, we expect these zeros to be arranged in a pattern that is symmetric with
respect to reflection in both axes. Thus we include in Hn(ζ) the polynomial factor
(ζ8 + aζ6 + bζ4 + cζ2 + d), where the four real parameters a, b, c, d are to be chosen
so that Tn(ζ) has the same zeros as Td(ζ) in the fundamental region. Also due to
the symmetry of the quadrature domain, we include a factor of ζ in the numerator of
Hn(ζ). Finally, because none of the zk in the associated quadrature identity are zero,
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the map must be bounded as ζ → ∞; in fact, we require it to behave like 1/ζ at ∞.
So the denominator of Hn(ζ) must be of degree 10. Since we require simple poles at
α1, α2, α3, and α4, we include the factors (ζ −αj) for j = 1, . . . , 4 in the denominator
of Hn(ζ). We must then choose the remaining factors such that α1, α2, α3, α4 are still
the only poles of the map in the fundamental region. This can be done by choosing
to include (ζ − θi(αj)) for i = 1, 2 and j = 1, 2, 3 as the extra factors. Finally, the
form for the map is the ratio (75) multiplied by some constant R to be determined.

In this representation there are nine unknowns, namely R,α1, α2, δ1, ρ1 as well
as a, b, c, d. We can specify a value for ρ1, thus leaving eight unknowns. The eight
equations for the remaining eight unknowns are (39) and (41) plus the four from the
requirement that Tn(ζ) be zero at the zeros of Td(ζ) in the fundamental region. Note
that these zeros are not known explicitly and must therefore be found (numerically)
as part of the solution.

There are a number of comments to be made concerning the two methods:
(i) The zeros of the map are not explicit in the Poincaré series representation,

but are explicit in the Schottky–Klein prime function representation. The
explicitness of the poles and zeros means that the general form of the required
mapping can be written down immediately.

(ii) Once ρ is specified, the Poincaré series representation depends on eight pa-
rameters compared to only five parameters when the Schottky–Klein prime
function representation is used. Moreover, the determination of the eight pa-
rameters in the Poincaré series representation in fact requires the solution of
twelve nonlinear equations, owing to the fact that the four (distinct) zeros
of Td(ζ) (in the fundamental region) must be found numerically during the
solution process. In the prime function representation, exactly five equations
are solved for exactly five unknowns.

(iii) Two of the equations to be solved in either method are the residue equa-
tions (41). With the prime function representation, explicit formulae for
the residues P1, P2 are straightforward to compute (cf. the formula for P1 in
(52)). However, care has to be taken when finding the analogous equations
with the Poincaré series representation because the inclusion of factors such
as (ζ − θi(αj)) in the denominator of Hn(ζ) can mean that more than one
term in the sum Tn(ζ) contributes to the residue at each of the poles.

(iv) As discussed in detail by Richardson [23], the most convenient choice is
Hd(ζ) = 1. However, if the Schottky group has a loxodromic subgroup,
then the Poincaré series Td(ζ) with Hd(ζ) = 1 does not converge. Richard-
son therefore proposes three possible remedial measures in this case, two of
which are not implemented for various reasons. Such complications do not
arise when using the Schottky–Klein prime function representation. In the
latter case, it is simply necessary to pick the appropriate representation for
the mapping, which can involve additional prefactors of the ratio of products
of prime functions, as illustrated explicitly in the context of the example in
section 6.6.

(v) A particular advantage of using the Schottky–Klein prime function represen-
tations concerns changes of topology, particularly in cases where the con-
nectivity of the domain decreases. In the conformal mappings constructed
in this paper, the functional form of the mappings as ratios of products of
prime functions is the same; the only change is the definition of the relevant
Schottky group.
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1. Introduction. This paper addresses the dispersion-periodic nonlinear Schrö-
dinger (NLS) equation,

i
∂u

∂z
+
m

2ε
Dε(z)

∂2u

∂t2
+

1

2
D0

∂2u

∂t2
+ |u|2u = 0,(1.1)

which models optical pulse propagation in dispersion-managed communication sys-
tems. Here u ∈ C is the wave envelope of the electromagnetic field, z (≥ 0) is the
distance along the optical fiber, t ∈ R is the retarded time of the optical pulse, D0

is the average dispersion, Dε(z) is an ε-periodic mean-zero dispersion map, and m is
the strength of the map variations. Lump amplification and losses are not included
in the model (1.1) for the sake of simplicity.

Special solutions of the dispersion-periodic NLS equation (1.1) are called disper-
sion-managed (DM) solitons. They have been the subject of growing interest in recent
literature [1, 2, 3]. DM solitons are periodic solutions of (1.1) in the form

u(z, t) = Φ(z, t) eiµz,(1.2)

where Φ(z + ε, t) = Φ(z, t) and µ ∈ R. Existence of periodic solutions of (1.1) is
studied with the normal-form transformations in the limit ε → 0 [4]. The normal-
form transformations average the fast periodic variations of 1

εDε(z) and reduce the
dispersion-periodic NLS equation (1.1) to an integral NLS equation [5, 6]. Bound
states of the integral NLS equation exist in the case of D0 > 0 [7] and in the case
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D0 = 0 [8]. Numerical results indicate nonexistence of bound states of the integral
NLS equation in the case D0 < 0 [9].

In what follows we consider the case D0 > 0 only. Early papers by Nijhof et
al. [11] reported numerically the existence of “exactly” periodic bound states in the
dispersion-periodic NLS equation (1.1), which do not radiate any energy. Later, more
careful numerics [3] showed that such bound states actually had nonvanishing radi-
ation tails. Recent results of Yang and Kath [10] showed that exactly-periodic DM
solitons do not exist in the dispersion-periodic NLS equation (1.1) because resonances
in the perturbation series generate nonvanishing radiation tails. These tails can be ex-
tremely small in certain parameter regimes [10], but they do not vanish when D0 > 0.

Radiation tails of DM solitons occur due to parametric resonance between the
DM soliton and the periodic variation of the dispersion. This parametric resonance
drains energy out of the DM soliton and leads to its radiative damping. Parametric
resonances can be predicted by viewing the periodic term of (1.1) as an external
forcing term:

i
∂u

∂z
+

1

2
D0

∂2u

∂t2
+ |u|2u = −m

2ε
Dε(z)

∂2u

∂t2
.(1.3)

We expand Dε(z) into a Fourier series,

Dε(z) =

∞∑
n=−∞

dn e
2πinz

ε , d0 = 0, d−n = d̄n,(1.4)

where d̄n is the complex conjugate of dn. When the nonlinear term in (1.3) is neglected
and the averaged DM soliton u(z, t) = Φ(t) eiµz is substituted into the right-hand
side of (1.3), we find a solution of the linear inhomogeneous problem in the form of
the Fourier series in z,

u(z, t) =

( ∞∑
n=−∞

un(t) e
2πinz

ε

)
eiµz.(1.5)

The correction terms un(t) take the form of Fourier integrals in t,

un(t) = −mdn
4πε

∫ ∞

−∞

ω2Φ̂(ω)eiωtdω
1
2D0ω2 + 2πn

ε + µ
,(1.6)

where Φ̂(ω) is the Fourier transform of Φ(t). The inhomogeneous solution has resonant
denominators at

ω2 = ω2
n = − 2

D0

(
µ+

2πn

ε

)
> 0.(1.7)

Resonances are absent if D0 = 0 and µ �= −2πn/ε for any integer n. This is the
only case when DM soliton solutions (1.2) may exist in the dispersion-periodic NLS
equation (1.1). In this case, the asymptotic representation of Φ(z, t) in (1.2) was
found recently in [12] in the limit ε = O(m) � 1 with the use of the inverse scattering
transform methods.

If D0 > 0, sufficiently large negative terms of the Fourier series (1.5)–(1.6) are in
resonance (1.7) for n ≤ −Nµ, where Nµ =

[
εµ
2π

]
is the integer ceiling of εµ

2π > 0. The
periodic variations of the dispersion map Dε(z) lead to a coupling of a bound state
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and linear waves of the averaged dispersion map and to the energy transfer from the
bound state to radiative waves. As a result, the pulse solution has resonant peaks in
the spectrum û(z, ω) at ω = ±ωn, and nonzero values of u(z, t) in the far-field |t| � 1,
as reported numerically in [3, 10].

Radiation damping of solitons in the presence of a weak sinusoidal dispersion
variation was considered analytically in [13]. The radiative wave amplitudes and
decay rates of solitons were computed by means of the soliton perturbation theory
for the standard NLS equation. Dynamics of DM solitons was studied in [14, 15, 16]
by variational and numerical methods. Recently, analytical and numerical studies of
the same problem were undertaken in [10] by asymptotic beyond-all-orders methods
in the limit ε = O(m) � 1. Radiation-tail amplitudes and decay rates of DM solitons
were found to be exponentially small in this limit. It was also shown in [10] that
radiation-tail amplitudes drop to near-zero values in certain windows on the m-axis.

We study here nonlinear parametric resonance of DM solitons for average-anoma-
lous dispersion (D0 > 0) in the limit m � 1, while we keep ε = O(1). This is a
different limit from the one studied in [10]. In this limit, the DM soliton decays
much faster because radiation-tail amplitudes are only algebraically small in terms of
O(m). The new feature of our analysis is that the periodic dispersion map Dε(z) is
allowed to be arbitrary in (1.4) as compared to a single sine function in [13]. Thus,
our dispersion maps include the piecewise-constant dispersion map which is widely
used in fiber communication systems.

Our analysis starts with the standard NLS equation (1.3) for m = 0, such that the
right-hand side of (1.3) is treated as a small perturbation. The first-order perturbation
theory describes generation of linear waves due to parametric resonances (1.7), and the
second-order perturbation theory leads to the decay rate of DM solitons. Methods of
our analysis are similar to the soliton perturbation theory in [13], but our calculations
are more systematic. We find that the DM soliton decays according to a nonlinear
Fermi golden rule, which generalizes the Fermi golden rule for radiative decay of bound
states in the linear Schrödinger equation with a time-periodic potential. Rigorous
analysis of decay rates in the linear Schrödinger equation was recently considered
in [17, 18], where the bound states were supported by a time-dependent periodic
potential in [17] and by a time-independent potential in [18].

This paper is structured as follows. Section 2 contains perturbation series expan-
sions and derivations of the Fermi golden rule for DM solitons. Section 3 is devoted
to analytical approximations of radiative decay of DM solitons. Section 4 describes
a comparison between the analytical and numerical results. Section 5 concludes the
paper. Appendices A and B describe technical details of the first-order solution in
the perturbation series expansions.

2. Perturbation series expansions. We start with the dispersion-periodic
NLS equation in the form (1.3), where ε is finite and m is small. If D0 > 0, we
employ the following rescaling of variables:

z = εẑ, u =
û√
ε
, t =

√
εD0 t̂, m = εD0m̂.(2.1)

When the hats are dropped, (1.3) becomes

iuz +
1

2
utt + |u|2u = −m

2
D1(z)utt,(2.2)

where the dispersion map D1(z) has unit period. In other words, we have normalized
ε and D0 in (1.3) so that ε = 1 and D0 = 1.
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When m = 0, the standard NLS equation (2.2) has a bound state:

u(z, t) = Φ(t;µ)eiµz,(2.3)

where µ > 0 and Φ(t;µ) =
√

2µ sech
(√

2µ t
)
. When m �= 0, the NLS soliton (2.3)

would generate radiative tails and decay accordingly. Parameter µ of the NLS soli-
ton (2.3) changes in z, such that the z-dependence of µ(z) serves as a condition for
Poincaré continuation of the perturbation series for u(z, t) in powers of m. The Fermi
golden rule of radiative decay of NLS solitons follows from the dynamical equation for
µ = µ(z). In order to formalize this qualitative picture, we employ the transformation

u(z, t) = U(z, t;µ(z))e
i
∫ z

0
µ(z′)dz′

,(2.4)

where U(z, t;µ) solves the problem

i
∂U

∂z
+ iµ̇

∂U

∂µ
− µU +

1

2

∂2U

∂t2
+ |U |2U = −m

2
D1(z)

∂2U

∂t2
(2.5)

with the initial data U(0, t;µ0) = Φ(t;µ0) and µ(0) = µ0. The transformation (2.4)
describes the adiabatically varying orbit of the NLS soliton (2.3). We present the
asymptotic solution of (2.5) as a perturbation series for U(z, t;µ) and µ(z) in powers
of m:

U(z, t;µ) =

∞∑
k=0

mkU (k)(z, t;µ)(2.6)

and

µ̇ =
∞∑
k=1

m2kΓ(2k)(µ),(2.7)

where Γ(2k)(µ) are corrections of the Fermi golden rule for radiative decay of NLS
solitons. Substitution of (2.6)–(2.7) into (2.5) produces a chain of equations for cor-
rections of the perturbation series. At the leading, first and second orders, the chain
of perturbative equations takes the form

i
∂U (0)

∂z
− µU (0) +

1

2

∂2U (0)

∂t2
+ |U (0)|2U (0) = 0,(2.8)

i
∂U (1)

∂z
− µU (1) +

1

2

∂2U (1)

∂t2
+ 2|U (0)|2U (1) + U (0)2Ū (1) = −1

2
D1(z)

∂2U (0)

∂t2
,(2.9)

and

i
∂U (2)

∂z
− µU (2) +

1

2

∂2U (2)

∂t2
+ 2|U (0)|2U (2) + U (0)2Ū (2)(2.10)

= −iΓ(2)(µ)
∂U (0)

∂µ
− 1

2
D1(z)

∂2U (1)

∂t2
− 2|U (1)|2U (0) − U (1)2Ū (0).

Initial conditions for these equations are

U (0)(0, t;µ0) = Φ(t;µ0), µ(0) = µ0,(2.11)
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and

U (k)(0, t;µ0) = 0, k ≥ 1.(2.12)

Order O(1). The nonlinear equation (2.8) at order O(1) with initial data (2.11) has
a unique solution, U (0)(z, t;µ) = Φ(t;µ), which is the NLS soliton with the adiabatic
change of µ = µ(z).

Order O(m). The linear inhomogeneous equation (2.9) at order O(m) has the
Fourier series solution

U (1)(z, t;µ) =

∞∑
n=−∞

U (1)
n (z, t;µ) e2πinz,(2.13)

where U
(1)
0 = 0 and (U

(1)
n , Ū

(1)
−n) at n ≥ 1 solve the coupled equations

i
∂U

(1)
n

∂z
− (µ+ 2πn)U (1)

n +
1

2

∂2U
(1)
n

∂t2
+ Φ2(t;µ)

(
2U (1)

n + Ū
(1)
−n
)

(2.14)

= −dn
2

Φ′′(t;µ),

−i∂Ū
(1)
−n
∂z

− (µ− 2πn) Ū
(1)
−n +

1

2

∂2Ū
(1)
−n

∂t2
+ Φ2(t;µ)

(
2Ū

(1)
−n + U (1)

n

)
(2.15)

= −dn
2

Φ′′(t;µ).

It follows from (2.12) that the system (2.14)–(2.15) is supplemented with zero initial

conditions: U
(1)
n (0, t;µ0) = 0 for any |n| ≥ 1. Solutions of the system (2.14)–(2.15) are

constructed in Appendix A with the use of the spectral decomposition for a linearized

NLS operator [19, 20]. Asymptotic limits of the correction terms U
(1)
n (z, t;µ) are

obtained in Appendix B with the use of generalized functions. These calculations

show that the continuous-wave radiation in the solution U
(1)
n (z, t;µ) at large distance

z and time t is given by the following expression [see (A.1) and (B.9)]:

lim
|t|→∞,z→∞

U
(1)
−n = −πi

√
2µ d−n(kn + i)2

4kn
sech

πkn
2

ei
√

2µ kn|t|, n ≥ Nµ,(2.16)

and

lim
|t|→∞,z→∞

U
(1)
−n = 0, n < Nµ,(2.17)

where

kn =

√
2πn

µ
− 1 > 0, Nµ =

[ µ
2π

]
.(2.18)

This result will be used at order O(m2) to calculate the decay rate Γ(2)(µ) of DM
solitons.

Order O(m2). Solution of the linear inhomogeneous equation (2.11) at order
O(m2) can also be represented by the Fourier series:

U (2)(z, t;µ) =

∞∑
n=−∞

U (2)
n (z, t;µ) e2πinz.(2.19)
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Since the right-hand side of (2.11) has a nonzero mean term in z, the nonzero mean

term U
(2)
0 (z, t;µ) satisfies the inhomogeneous equation

i
∂U

(2)
0

∂z
− µU

(2)
0 +

1

2

∂2U
(2)
0

∂t2
+ Φ2(t;µ)

(
2U

(2)
0 + Ū

(2)
0

)
= − iΓ(2)(µ)

∂Φ(t;µ)

∂µ

−
∞∑

n=−∞

(
1

2
d−n

∂2U
(1)
n

∂t2
+ 2Φ(t;µ)U (1)

n Ū (1)
n + Φ(t;µ)U (1)

n U
(1)
−n

)
.(2.20)

The mean term in the right-hand side of (2.20) leads to a secular growth of U
(2)
0 (z, t;µ)

in z unless the right-hand side of (2.11) is orthogonalized with respect to eigenfunc-
tions of the kernel of the linearized operator (the Fredholm alternative theorem). The
correction Γ(2)(µ) is found from the orthogonalization constraint as follows. Project-
ing (2.20) onto Φ(t;µ) and subtracting a complex conjugate equation, we obtain a

single equation under the condition that U
(2)
0 (z, t;µ) is bounded in t:

i
∂

∂z
〈Φ, U (2)

0 + Ū
(2)
0 〉 = −iΓ(2)(µ)

∂

∂µ
〈Φ,Φ〉 − 1

2

∞∑
n=−∞

〈Φ′′, d−nU (1)
n − d̄−nŪ (1)

n 〉

−
∞∑

n=−∞
〈Φ2, U (1)

n U
(1)
−n − Ū (1)

n Ū
(1)
−n〉,(2.21)

where 〈f, g〉 is the standard inner product in L2(R):

〈f, g〉 =

∫ ∞

−∞
f̄(t)g(t)dt.

The right-hand side of (2.21) can be simplified with the use of the system (2.14)–(2.15)
as follows:

i
∂

∂z
|U (1)
n |2 +

1

2

∂

∂t

(
Ū (1)
n

∂U
(1)
n

∂t
− U (1)

n

∂Ū
(1)
n

∂t

)
= −1

2
Φ′′(t;µ)

(
d̄−nŪ (1)

n − d−nU (1)
n

)

−Φ2(t;µ)
(
Ū (1)
n Ū

(1)
−n − U (1)

n U
(1)
−n
)
.(2.22)

As a result, the projection formula (2.21) takes the form

i
∂

∂z

[
〈Φ, U (2)

0 + Ū
(2)
0 〉 +

∞∑
n=−∞

〈U (1)
n , U (1)

n 〉
]

= −iΓ(2)(µ)
∂

∂µ
〈Φ,Φ〉 − 1

2

∞∑
n=−∞

(
Ū (1)
n

∂U
(1)
n

∂t
− U (1)

n

∂Ū
(1)
n

∂t

)∣∣∣∣
t=∞

t=−∞
.(2.23)

It follows from (B.1) and (B.5) of Appendix B for finite t that 〈U (1)
n , U

(1)
n 〉 becomes

z-independent in the limit z → ∞. It also follows from (2.16) that the limiting values

of U
(1)
n at |t| � 1 are nonzero and constant in the limit z → ∞ for large negative

n ≤ −Nµ, where Nµ = [ µ2π ] is the integer ceiling of µ
2π > 0. Therefore, we conclude

that the correction term U
(2)
0 (z, t;µ) is free of secular terms in z in the limit z → ∞

only if Γ(2)(µ) is defined by the nonlinear Fermi golden rule,

Γ(2)(µ) = −
√

2µ

4i

−Nµ∑
n=−∞

lim
z→∞

(
Ū (1)
n

∂U
(1)
n

∂t
− U (1)

n

∂Ū
(1)
n

∂t

)∣∣∣∣
t=∞

t=−∞
,(2.24)
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where we use the formula

∂

∂µ
〈Φ,Φ〉 =

√
2√
µ
.(2.25)

Using (2.16), we transform (2.24) to the explicit form

Γ(2)(µ) = −π
2µ2

4

∞∑
n=Nµ

|dn|2(1 + k2
n)

2

kn
sech2

(
πkn
2

)
.(2.26)

Assuming limn→∞ |dn|2 = 0, the infinite series in (2.26) converges when µ �= µn ≡
2πn, where n is any positive integer. Critical resonances occur at µ = µn, when
kn = 0. This case will be studied in more detail in section 3.

The correction term U
(2)
0 (z, t;µ) solves the linear inhomogeneous equation (2.20)

under the constraint (2.26). The right-hand side of (2.20) is bounded but nondecaying
in the limits |t| → ∞ and z → ∞ because of the asymptotic limit (2.16). The
nondecaying terms in (2.16) are not in resonance with the left-hand side of (2.20)
since k2

n+1 = 2πn
µ �= 0 for n �= 0. As a result, we conclude from (2.20) that a solution

U
(2)
0 (z, t;µ) exists and is bounded in the limit z → ∞ under the condition (2.26).

Similarly, one can show that a bounded solution exists for any U
(2)
n (z, t;µ) where n

is an integer; i.e., the bounded right-hand side term D1(z)U
(1)
tt in (2.11) is not in

resonance with the left-hand side of (2.11). This completes consideration of the order
O(m2) of the perturbation series expansions.

3. Decay rates of DM solitons. Formula (2.26) generalizes the Fermi golden
rule for radiative decay of bound states in a linear Schrödinger equation with time-
periodic potentials [17, 18]. The correction term Γ(2)(µ) is always negative, such that
the dynamical system (2.7) exhibits a simple behavior of a monotonic decay of µ(z) to
zero, starting with any initial value µ(0) = µ0 > 0. Therefore, the DM soliton decays
due to parametric resonances and radiative losses. The decay rate of µ(z) depends
on the nonlinear function Γ(2)(µ) in (2.26). Here we study solutions of the truncated
equations (2.7) and (2.26) at the order of O(m2):

dµ

dz
= −m2π4

∞∑
n=Nµ

|dn|2n2

kn
sech2

(
πkn
2

)
.(3.1)

We choose the dispersion coefficient D1(z) as a two-step symmetric function,

D1(z) =

{
1, mod(z, 1) ∈ (0, 1

4

) ∪ ( 3
4 , 1
)
,

−1, mod(z, 1) ∈ ( 1
4 ,

3
4

)
.

(3.2)

For this dispersion map, the DM soliton is chirp-free at mod(z, 1) = 0 and mod(z, 1) =
1
2 (see [21], for instance). The Fourier coefficients dn for this dispersion map are

dn =
2(−1)n+1

πn
sin
(πn

2

)
.(3.3)

As a result, the dynamical system (3.1) takes an explicit form,

dµ

dz
= −4π2m2

∞∑
n=Nµ
n odd

1

kn
sech2

(
πkn
2

)
, kn =

√
2πn

µ
− 1.(3.4)
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This equation is the main result of this paper. It describes the radiation damping of
DM solitons in the normalized dispersion-periodic NLS equation (2.2) with piecewise-
constant dispersion maps. It is asymptotically accurate when m � 1 and µ is not
close to critical values µn = 2πn, where n is a positive odd integer. If µ ≈ µn, critical
resonances occur and radiation tails become large, such that the perturbation series
breaks down in a strict mathematical sense. The decay-rate function Γ(2)(µ) in the
right-hand side of (3.4) for m = 1 is plotted in Figure 1.

A similar equation for the radiative decay of DM solitons in the presence of weak
sinusoidal dispersion variation has been derived in [13]. In that paper, only one term
appears in the right-hand side of (3.1) since the Fourier series for Dε(z) in (1.4)
contains only a single term in that case.

Below, we analyze the dynamical equation (3.4) under three different limits: (i)
µ� 1; (ii) µ = O(1); (iii) µ� 1.

1. Limit of small values of µ. When µ � 1, all terms in the series in (3.4)
are present since Nµ = 1. But only the first term with n = 1 dominates, since the
higher terms are exponentially smaller in µ compared to the (exponentially small)
first term. Therefore, the dynamical equation (3.4) can be truncated at the first term
and simplified as

dµ

dz
= −16π2m2e−πk1

k1
, k1 =

√
2π

µ
− 1.(3.5)

Comparison between numerical solutions of the simplified equation (3.5) and the orig-
inal equation (3.4) indicates that the simplified equation (3.5) gives a very good ap-
proximation to the original equation (3.4) not only for µ � 1, but also for µ < 2π
(see Figures 2 and 3).

In the limit µ → 0, methods of exponential asymptotics can be developed after
further simplification of the dynamical equation (3.5):

dµ

dz
= −αm2µ1/2 exp

(
− β

µ1/2

)
,(3.6)

where α = 4(2π)3/2 and β = π(2π)1/2. In this limit, the radiation damping of DM
solitons and the continuous-tail radiation emitted by the DM soliton are exponentially
weak. This agrees with the asymptotic beyond-all-orders calculations by Yang and
Kath [10]. A similar situation occurs in the dynamics of embedded solitons in the
perturbed integrable fifth-order KdV equation in the small velocity limit [22].

Results of [10] are valid when µ � 1 and m is arbitrary, while our results are
valid when m � 1 and µ arbitrary. In the regime of common validity, i.e., m � 1
and µ � 1, the two results match each other, as shown next. When µ � 1, the
radiation field is dominated by the n = −1 term in the Fourier-series solution (2.13)
for U (1)(z, t;µ). The amplitude of this radiation field is thus given asymptotically
from (2.16) as

urad = 2mπ
1
2 exp

(
−π

3/2

√
2µ

)
.(3.7)

Due to the rescaling of variables (2.1) and different notations, results of [10] need to be
reformulated. In the present notations, the amplitude of the radiation field obtained
in [10] is in the form

urad =
1

2
Cπ

1
2 exp

(
−π

3/2

√
2µ

)
,(3.8)
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Fig. 1. Decay rate Γ(2)(µ) of DM solitons versus the parameter µ as in (3.4) for m = 1.

where C is a dispersion map-dependent constant given in Figure 1 of [10]. Our
parameter m is equal to 1

2 (σ2 − σ1) of [10]. When m � 1, inspection of Figure 1 in
[10] shows that C ≈ 2(σ2 − σ1) = 4m. Thus, in the limits m,µ � 1, the radiation
field (3.7) from our analysis agrees perfectly with (3.8) from [10]. We note that Yang
and Kath [10] also found windows of low radiation field at large values of m. Since
our results are valid only in the limit m � 1 and up to the order of O(m2), the low-
radiation windows cannot be recovered in our analysis unless the perturbation series
(2.6) and (2.7) are extended to at least O(m4).

The dynamical equation (3.6) can be integrated with the help of the Laplace
method as follows:

1

2
αm2(z + z0) = exp

(
β

µ1/2

)[
µ

β
+ O(µ3/2)

]
,(3.9)

where z0 is a constant of integration. The leading-order asymptotic solution for µ(z)
in the limit µ→ 0 is derived from (3.9) in the form

µ(z) =

⎡
⎣ β

log
[
αm2

2β (z + z0) log2(z + z0)
]

+ O
(

1
log(z+z0)

)
⎤
⎦

2

.(3.10)

As z → ∞, the parameter µ(z) decays logarithmically as

µ(z) ∼ β2

log2 z

[
1 − 4

log log z

log z

]
.(3.11)

This logarithmic decay of bound states has been reported previously for internal modes
of envelope solitons in [23]. Logarithmic decay is associated with an exponentially
small Fermi golden rule for exponentially small radiative waves.

2. Solutions near critical values µn. If µ(0) > 2π, the decay of DM solitons always
leads to the point where the parameter µ has to pass through a critical value µn = 2πn,
where n is a positive odd integer. When this happens, the radiation field becomes
large, and the perturbation-series solution formally breaks down. Consequently, the
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solution of the dynamical equation (3.4) may no longer give a good approximation to
the true solution. However, numerical results indicate that the solution of (3.4) still
agrees qualitatively with the solution of the full equation (2.2) (see Figure 4). Here
we derive the solution of the dynamical equation (3.4) when it passes through a single
critical value µ = µN at z = zN .

Since Nµ is an integer ceiling of µ
2π , and Nµ is odd, the one-sided limit z → z−N is

nonsingular, and the parameter µ(z) approaches µN with a linear slope:

µ(z) = µN − µ′
N (z − zN ) + O(z − zN )2, z < zN ,(3.12)

where

µ′
N = 4m2π2

∞∑
n=Nµ
n odd

1

kn
sech2

(
πkn
2

)
,(3.13)

and kn are all computed at µ = µN . Once the parameter µ(z) passes below µN , a
singular term with n = N appears in the dynamical equation (3.4) because kN = 0
at µ = µN . The leading-order asymptotic approximation for the solution µ(z) for
z > zN takes the form

µ(z) = µN − [α(z − zN )]
2/3

+ O(z − zN ), z > zN ,(3.14)

where α = 6m2π2√µN . The slope of µ(z) is infinite in the limit z → z+
N , but the

solution µ(z) is still continuous at z = zN . The asymptotic solution (3.14) describes
a sharp drop in the amplitude of the DM soliton after it passes through a critical
resonance value µN .

3. Limit of large values of µ. When µ� 1, the dynamical equation (3.4) can also
be simplified. Using the formula

k2
n+2 − k2

n =
4π

µ
(3.15)

and the Riemann sum approximation for the integral with areas of rectangles, we
approximate the sum as

1

µ

∞∑
n=Nµ
n odd

1

kn
sech2

(
πkn
2

)
=

1

2π

∞∑
n=Nµ
n odd

sech2

(
πkn
2

)
(kn+2 + kn)

2kn
(kn+2 − kn)

≈ 1

2π

∫ ∞

k0(µ)

sech2

(
πk

2

)
dk,(3.16)

where k0(µ) = kNµ such that 0 < k0(µ) < 1. In this approximation, the dynamical
system (3.4) simplifies to the form

dµ

dz
= −4m2µ [1 − tanh(k0(µ))] .(3.17)

Using the comparison principle for (3.17), we conclude that DM solitons decay with
a linear decay rate when µ(z) � 1:

µ(0) exp
(−4m2z

) ≤ µ(z) ≤ µ(0) exp
(−4m2α0z

)
,(3.18)
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where α0 = 1 − tanh1 > 0.

We note that when µ(0) � 1, the monotonic decay of µ(z) passes through many
critical values, where radiation amplitudes are large. As a result, the asymptotic
solution (3.18) may not give a good quantitative approximation to the true solution.
Nevertheless, the solution (3.18) still describes qualitatively the decay of DM solitons
for µ(0) � 1 (see Figure 5).

4. Numerical simulations of DM solitons. Here we directly simulate the
normalized dispersion-periodic NLS equation (2.2) and compare numerical solutions
with the above analytical solutions. Our numerical method uses the fast Fourier
transform (FFT) to compute the derivatives in t, and the fourth-order Runge–Kutta
scheme to advance in z. At the values of z where the dispersion has a discontinuity
(i.e., mod(z, 1) = 1

4 and mod(z, 1) = 3
4 ), the stepsize ∆z is reduced so that the

overall fourth-order accuracy in z is assured. To eliminate radiation reflection at the
boundaries of the t-interval, damping boundary conditions are used. Our results are
checked with longer t-intervals, more grid points in t, and smaller stepsize ∆z, and
the results are found to remain the same.

Our numerical simulation starts with the initial condition of a standard (unchirped)
NLS soliton:

u(0, t) =
√

2µ0 sech
√

2µ0 t.(4.1)

It is known that DM solitons are unchirped in the middle point of each constant-
dispersion segment, i.e., at mod(z,1) = 0 and mod(z,1) = 1/2 in the present case.
Thus, when the unchirped NLS soliton (4.1) is launched at z = 0, the radiation
emission is minimal compared to that of chirped solitons.

Below, we describe numerical computations withm = 0.1 and four different values
of µ(0).

1. Figure 2: µ(0) = 1. Figure 2(a) shows the soliton amplitude versus distance
z. We see that this soliton’s amplitude is oscillating (breathing) with unit period,
which is the period of the dispersion map D1(z). This behavior is a signature of
DM solitons. The evolution of the average soliton amplitude in z is plotted in Figure
2(b). This average amplitude is numerically calculated for each unit distance z as
the average between the maximum and minimum amplitudes. It is clear from Figure
2(b) that the DM soliton slowly decays due to the parametric resonance between the
soliton and the dispersion map, in accordance with the analytical prediction above.
Also in Figure 2(b), the analytical values of the average soliton amplitude

√
2µ ob-

tained from the dynamical equation (3.4) and its simplified version (3.5) are plotted
as circles “o” and crosses “x,” respectively. We see that both analytical equations
(3.4) and (3.5) agree with numerical values and with each other extremely well. This
comparison confirms that the dynamical equation (3.4) for radiation damping of DM
solitons is asymptotically accurate in the case m � 1 and µ(0) < µ1 = 2π, and
that the simplified equation (3.5) is a very good approximation to (3.4) not only
for µ � 1, but also for µ = O(1). The soliton profile at z = 2000 is shown in
Figure 2(c) in a logarithmic scale. We clearly see the central DM-pulse is flanked
by continuous-wave radiation. The radiation amplitude is nearly constant. This is
because the radiation is excited mainly by the lowest-order resonance with n = 1
in (3.4), and the radiation field is dominated by the lowest-order radiative waves
with n = 1 in (2.16). At z = 2000, the parameter µ can be inferred from Fig-
ure 2(b) as roughly 0.6731, and the radiation field should be dominated by waves
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Fig. 2. Numerical evolution of the DM soliton with m = 0.1 and µ(0) = 1. (a) Soliton amplitude
versus distance z. (b) Average soliton amplitude versus z: numerical results (solid curve); analytical
average soliton amplitude

√
2µ from (3.4) (circles); analytical average soliton amplitude

√
2µ from

(3.5) (crosses). (c) Solution profile at z = 2000. (d) Fourier spectrum of the solution at z = 2000.

with frequencies ±√
2µ k1 ≈ ±3.35, according to (2.16). This is confirmed in Fig-

ure 2(d), where the solution spectrum at z = 2000 is shown. This spectrum has
two spikes at frequencies ±3.33, which are due to the radiation field. The loca-
tions of these frequency spikes are in excellent agreement with the theoretical values
±3.35.

2. Figure 3: µ(0) = 6. In this case, the initial value of µ is close to but still
below the lowest critical resonance value µ1 = 2π. Therefore, we expect that the
radiation field would be larger, and the theoretical approximation (3.4) for the DM
soliton less accurate. This is indeed the case. In Figure 3(a), the soliton amplitude
versus distance z is plotted. We see that the amplitude oscillates irregularly, and the
period of oscillations is not equal to the unit dispersion map period any-more. This
is an indication that the central pulse has deviated from the DM soliton. However,
our analytical solution for the average soliton amplitude

√
2µ, which is calculated

from the dynamical equation (3.4), still gives a very reasonable approximation to the
true solution (see the dashed line in Figure 3(a)). We have also compared solutions
from the dynamical equation (3.4) and its simplified form (3.5) for the present set
of parameters, and found that the two solutions differ by only less than 6%. Thus,
over a wide range of µ values below the critical resonance µ1 = 2π, the simplified
equation (3.5) gives a very good approximation to the original dynamical equation
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Fig. 3. Numerical evolution of the DM soliton with m = 0.1 and µ(0) = 6. (a) Soliton
amplitude versus z: numerical results (solid curve); analytical average soliton amplitude

√
2µ from

(3.4) (dashed curve). (b) Solution profile at z = 60. (c) Spectrum of the solution at z = 60.

(3.4). In Figures 3(b) and (c), the numerically obtained field profile and its Fourier
spectrum at distance z = 60 are plotted. Due to the quasi-critical resonance, the
radiation field in Figure 3(b) is much larger than that in Figure 2(c). In addition, the
Fourier spectrum in Figure 3(c) indicates that the solution can no longer be called a
DM soliton. Nevertheless, the main resonant spikes on the two sides of Figure 3(c)
are still well predicted by the resonance conditions at k = ±√

2µ k1.
3. Figure 4: µ(0) = 12. In this case, the initial value of µ is above the lowest

critical resonance value µ1 = 2π, and the monotonic decay of the DM soliton passes
through this critical resonance. Here we focus on how this transition occurs. In Figure
4(a), the soliton amplitude versus distance z is plotted as the solid curve. We see that
radiation damping is initially slow, as the average soliton amplitude decreases toward
the critical value at

√
2µ1 ≈ 3.54. In this process, the DM soliton oscillates with the

unit period of the dispersion map. A solution profile plotted in Figure 4(b) at z = 50
shows a weak radiation field, which is the reason for the slow decay of the DM soliton.
The corresponding Fourier spectrum in Figure 4(d) shows that the radiation field
consists of a discrete set of frequencies which are precisely the resonant frequencies.
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When the average soliton amplitude passes through
√

2µ1, a critical resonance
occurs. Consequently, the soliton decays much faster (see Figure 4(a)). Strong contin-
uous-wave radiation is emitted in this process, and the DM soliton is strongly modified.
After the average soliton amplitude passes below

√
2µ1, the pulse oscillates irregu-

larly, and its oscillation period is no longer equal to the unit period of the dispersion
map. A solution profile shown in Figure 4(c) at z = 100 confirms that the radiation
field becomes much stronger past the critical-resonance stage. The Fourier spectrum
in Figure 4(e) shows that the radiation field is no longer dominated by a discrete
set of resonant frequencies. In addition, the Fourier spectrum appears to be quite
noisy.

When a critical resonance is reached, the perturbation-series solution (2.6) and
(2.7) formally breaks down, and the analytical results are not expected to provide
quantitatively accurate approximations to the numerical solution. This is indeed the
case. In Figure 4(a), the analytical average soliton amplitude

√
2µ obtained from

(3.4) is also plotted (dashed line). We see that prior to the critical resonance, the
analytical curve closely follows the numerical average soliton amplitude (not shown).
However, when the numerical solution gets close to the critical resonance, it starts
to deviate from the analytical curve considerably. In fact, the numerical solution
passes through the critical resonance much earlier than what the theory predicts
(see Figure 4(a)). Nevertheless, the analytical solution still agrees qualitatively with
the numerical solution. For instance, the sharp (infinite-slope) drop of the soliton
amplitude as predicted in (3.14) does occur past the critical value of the soliton
amplitude at

√
2µ1 ≈ 3.54 (see Figure 4(a)).

4. Figure 5: µ(0) = 100. When the initial value of µ is large, the asymptotic
analysis predicts that the soliton decays exponentially according to the bounds in
(3.18). However, the monotonic soliton-decay passes through many critical reso-
nances in this case. Thus, the accuracy of the analytical prediction needs to be
examined. To address this issue, the results from numerical simulations at m = 0.1
and µ(0) = 100 are shown in Figures 5(a)–(e). When µ � 1, the DM soliton
spends most of the time inside individual constant-dispersion segments, where the
DM soliton is governed by the standard NLS equation. This is reflected by the
fast amplitude oscillations inside each constant-dispersion segment in Figure 5(a).
Due to the radiative damping, the DM soliton passes through critical resonances at
n = 15, 13, 11, 9, 7, . . . , 1, when the average soliton amplitude matches the critical val-
ues at

√
4πn = 13.73, 12.78, 11.76, 10.63, 9.38, . . . , 3.54, respectively. It follows from

Figure 5(a) that, even though the DM soliton passes through a number of critical
resonances here, it still holds up and maintains its DM soliton character and the unit
periodicity up to the first four critical resonances. The solution profile and the Fourier
spectrum of the DM soliton at z = 15 are shown in Figures 5(b) and (d). Further
evolution of the DM soliton shows that the DM soliton character is lost after the fifth
critical resonance at the average amplitude about 9.38. The solution profile and its
Fourier spectrum at z = 24 are shown in Figures 5(c) and (e). A noisy spectrum past
the critical resonances similar to that of Figure 4(e) is observed.

It follows from Figure 5(a) that higher-order critical resonances have a much
weaker effect on the dynamics of the DM soliton than do lower-order resonances. As
a result, the analytical dashed curve in Figure 5(a) for the average soliton amplitude
agrees well with the numerical results until the fifth critical resonance is reached. We
have also checked that the analytical curve in Figure 5(a) is indeed bounded between
the two exponentially decaying functions in (3.18).
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Fig. 4. Numerical evolution of the DM soliton with m = 0.1 and µ(0) = 12. (a) Soliton
amplitude versus z: numerical results (solid curve); analytical average soliton amplitude

√
2µ from

(3.4) (dashed curve). (b), (c) Solution profiles at z = 50 and z = 100. (d), (e) Spectra of the solutions
at z = 50 and z = 100.
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Fig. 5. Numerical evolution of the DM soliton with m = 0.1 and µ(0) = 100. (a) Soliton
amplitude versus z: numerical results (solid curve); analytical average soliton amplitude

√
2µ from

(3.4) (dashed curve). (b), (c) Solution profiles at z = 15 and z = 24. (d), (e) Spectra of the solutions
at z = 15 and z = 24.
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Fig. 6. Numerical evolutions of the DM soliton amplitudes with m = 0.2 and (a) µ(0) = 1; (b)
µ(0) = 6; (c) µ(0) = 12. Numerical results are shown by solid curves. Analytical average soliton
amplitudes

√
2µ from (3.4) are shown by dashed curves.

In the end of this section, we discuss how the solution changes when the pertur-
bation strength m gets larger. For this purpose, we choose m = 0.2, compared to
m = 0.1 in Figures 2–5. The soliton amplitudes versus distance z for µ(0) = 1, 6, 12
are shown in Figures 6(a), (b), and (c), respectively. The average soliton amplitudes
predicted from (3.4) are also plotted for comparison. Figure 6(a) shows that in the
case of small and moderate values of µ(0), the soliton still decays according to the
analytical equation (3.4). Figures 6(b) and (c) indicate that when µ(0) is close to or
above the lowest critical resonance value µ1 = 2π, the pulse deviates further from the
DM soliton than in the case of m = 0.1, and the pulse amplitude oscillates with a
period further away from the unit period of the dispersion map. When m increases,
the distance scale for soliton evolution shrinks by a factor of m2, as formula (3.4)
predicts. For instance, when m = 0.1 and µ(0) = 12, the lowest critical resonance is
reached in the numerical solution at z ≈ 76 (see Figure 4(a)), while when m = 0.2,
the critical resonance in the numerical solution is reached at z ≈ 18, i.e., four times
faster.

5. Summary and discussion. In this paper, we have studied the nonlinear
parametric resonance of DM solitons for average-anomalous dispersion (D0 > 0) in
the limit m → 0 by both analytical and numerical methods. We have found that
due to a resonance between the DM soliton and the dispersion map, the soliton
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keeps shedding continuous-wave radiation and consequently decays. The radiation
amplitude is on the order of m, while the decay rate of DM solitons is on the order
of m2. We have calculated the analytical approximations for the decay rate of DM
solitons in the limits of small, intermediate, and large initial soliton amplitudes. We
have shown that when the soliton passes through a critical resonance, it decays much
faster. All these analytical results are found to be in excellent agreement with direct
numerical simulations.

Resonances in the dispersion-periodic NLS equation (1.1) resemble a nonlinear
generalization of parametric resonances in a linear Schrödinger equation studied re-
cently in [17, 18]. The perturbation term in [17, 18] satisfies the assumption of being
periodic in time and decaying fast in space. The nonlinear problem (1.1) does not sat-
isfy this localization assumption. In addition, the periodic variations of Dε(z) are not
generally small perturbations of the mean term D0 in real communication systems.
Thus, rigorous analysis of the parametric resonance of DM solitons in dispersion-
periodic NLS equation (1.1) with nonsmall dispersion variations needs further inves-
tigation.

Appendix A: Solutions of the first-order problem (2.14)–(2.15). We
use Kaup’s method [19] to solve the inhomogeneous problem (2.14)–(2.15) with the
spectral decomposition for a linearized NLS operator. Since the potential of the
problem can be rescaled as Φ(t;µ) =

√
2µ Φ(T ), where Φ(T ) = sechT and T =

√
2µt,

we transform the variables as follows:

U (1)
n (z, t;µ) = 2dn

√
2µ Vn(Z, T ), Z = µz, T =

√
2µt.(A.1)

The system (2.14)–(2.15) in new variables transforms to the following:

i
∂Vn
∂Z

− (1 + λn)Vn +
∂2Vn
∂T 2

+ 2 sech2T
(
2Vn + V̄−n

)
= −1

2
Φ′′(T ),(A.2)

−i∂V̄−n
∂Z

− (1 − λn) V̄−n +
∂2V̄−n
∂T 2

+ 2 sech2T
(
2V̄−n + Vn

)
= −1

2
Φ′′(T ),(A.3)

where

λn =
2πn

µ
.

The system is written in matrix notations as

L
[

Vn
V̄−n

]
=

(
i
∂

∂Z
− λn

)[
Vn
V̄−n

]
+

1

2

[
1
−1

]
Φ′′(T ),(A.4)

where the linearized NLS operator is

L =

[
− ∂2

∂T 2 + 1 − 4 sech2T −2 sech2T

2 sech2T ∂2

∂T 2 − 1 + 4 sech2T

]
.(A.5)

The linearized NLS operator L possesses a complete set of eigenfunctions [19] that
consists of eigenfunctions associated with two branches of the continuous spectrum
and eigenfunctions associated with the zero eigenvalue of the discrete spectrum. The
continuous spectrum eigenfunctions are

ψ1(T ; k) = eikT
[(

1 − 2ike−T

(k + i)2 coshT

)(
0
1

)
+

1

(k + i)2 cosh2 T

(
1
1

)]
(A.6)
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and

ψ2(T ; k) = e−ikT
[(

1 +
2ike−T

(k − i)2 coshT

)(
1
0

)
+

1

(k − i)2 cosh2 T

(
1
1

)]
,(A.7)

such that Lψ1(T ; k) = −(1 + k2)ψ1(T ; k) and Lψ2(T ; k) = (1 + k2)ψ2(T ; k). The
zero eigenvalue has algebraic multiplicity four and geometric multiplicity two. The
eigenfunctions of the zero eigenvalue are

φ1(T ) =

(
1
−1

)
sechT, φ2(T ) =

(
1
1

)
sechT tanhT,(A.8)

such that Lφ1,2(T ) = 0. The generalized eigenfunctions of the zero eigenvalue are

φd1(T ) =

(
1
1

)
(T tanhT − 1) sechT, φd2(T ) =

(
1
−1

)
T sechT,(A.9)

such that Lφd1,2(T ) = 2φ1,2(T ). Eigenfunctions of the linearized NLS operator L
satisfy the orthogonality conditions

〈ψ1(k
′)|σ3|ψ1(k)〉 = −2πδ(k′ − k), 〈ψ2(k

′)|σ3|ψ2(k)〉 = 2πδ(k′ − k),(A.10)

〈φ1|σ3|φd1〉 = −2, 〈φ2|σ3|φd2〉 = 2,(A.11)

with respect to the inner product

〈f |σ3|g〉 =

∫ ∞

−∞

[
f̄1(T )g1(T ) − f̄2(T )g2(T )

]
dT.(A.12)

All other inner products computed with eigenfunctions (A.6)–(A.9) are identically
zero. The orthogonality conditions (A.10)–(A.11) are modified compared with the
original definition in [19]. Orthogonality conditions similar to (A.10)–(A.11) were
used by Kaup and Lakoba [20].

The right-hand side term of (A.4) can be decomposed through a complete set of
eigenfunctions (A.6)–(A.9) as follows:

F =
1

2

[
1
−1

]
Φ′′(T ) =

∫ ∞

−∞
[α(k)ψ1(T ; k) + β(k)ψ2(T ; k)] dk

+aφ1(T ) + bφ2(T ) + cφd1(T ) + dφd2(T ),(A.13)

where the expansion coefficients can be explicitly computed as

α(k) = − 1

2π
〈ψ1(k)|σ3|F〉 =

(k + i)2

8
sech

πk

2
,(A.14)

β(k) =
1

2π
〈ψ2(k)|σ3|F〉 = − (k − i)2

8
sech

πk

2
,(A.15)

a = −1

2
〈φd1|σ3|F〉 = −1

2
, b =

1

2
〈φd2|σ3|F〉 = 0,(A.16)
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c = −1

2
〈φ1|σ3|F〉 = 0, d =

1

2
〈φ2|σ3|F〉 = 0.(A.17)

Here we have used the exact value,

1

π

∫ ∞

−∞

cos kT

coshT
dT = sech

(
πk

2

)
.

The solution of (A.2)–(A.3) can be found by using the spectral decomposition:[
Vn
V̄−n

]
(Z, T ) =

∫ ∞

−∞
[αn(k, Z)ψ1(T ; k) + βn(k, Z)ψ2(T ; k)] dk

+ an(Z)φ1(T ) + bn(Z)φ2(T ) + cn(Z)φd1(T ) + dn(Z)φd2(T ).(A.18)

Coefficients of the expansion satisfy a simple Z-evolution problem with zero initial
conditions:

i
∂αn
∂Z

= (λn − 1 − k2)αn − α(k), i
∂βn
∂Z

= (λn + 1 + k2)βn − β(k),(A.19)

i
∂an
∂Z

= λnan + 2cn − a, i
∂bn
∂Z

= λnbn + 2dn − b,(A.20)

and

i
∂cn
∂Z

= λncn − c, i
∂dn
∂Z

= λndn − d.(A.21)

The unique solution of the Z-evolution problem (A.19)–(A.21) is

αn(k, Z) =
α(k)

λn − 1 − k2

[
1 − e−i(λn−1−k2)Z

]
,(A.22)

βn(k, Z) =
β(k)

λn + 1 + k2

[
1 − e−i(λn+1+k2)Z

]
,(A.23)

an(Z) = − 1

2λn

[
1 − e−iλnZ

]
, bn(Z) = 0,(A.24)

and

cn(Z) = 0, dn(Z) = 0.(A.25)

Equations (A.24)–(A.25) are obtained with the use of (A.16)–(A.17).

Appendix B: Asymptotic limits for the first-order solution. We analyze
the first-order solution (Vn, V̄−n)(Z, T ) defined in the spectral representation form
(A.18) of Appendix A with explicit spectral coefficients in (A.14)–(A.15) and (A.22)–
(A.25). The asymptotic limit Z → ∞ depends on a range of values of T .

(i) |T | < ∞ and Z → ∞. The first-order solution is a sum of two terms,
Vn(Z, T ) = Wn(T )+Qn(Z, T ), where Wn(T ) is generated by the inhomogeneous part
of the system (A.2)–(A.3) and Qn(Z, T ) is generated by the homogeneous part of the
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system (A.2)–(A.3) in the initial-value problem. Using the spectral decomposition
(A.18), we express Wn(T ) and Qn(Z, T ) explicitly as

[
Wn

W̄−n

]
(T ) =

∫ ∞

−∞

[
α(k)

λn − 1 − k2
ψ1(T ; k) +

β(k)

λn + 1 + k2
ψ2(T ; k)

]
dk − 1

2λn
φ1(T )

(B.1)

and

[
Qn
Q̄−n

]
(Z, T ) = −

∫ ∞

−∞

[
α(k)e−i(λn−1−k2)Z

λn − 1 − k2
ψ1(T ; k)

+
β(k)e−i(λn+1+k2)Z

λn + 1 + k2
ψ2(T ; k)

]
dk +

e−iλnZ

2λn
φ1(T ).(B.2)

We use formulas of generalized functions,

lim
Z→∞

e±iKZ

K
= ±πiδ(K)(B.3)

and

δ(k2 + k2
n) = 0, δ(k2 − k2

n) =
1

2kn
[δ(k − kn) + δ(k + kn)] ,(B.4)

and notice that the limit Z → ∞ in (B.2) is nonzero only if the resonance equation
1 + k2 ± λn = 0 has a solution for real k. We consider n > 0 such that λn > 0 and
denote kn =

√
λn − 1 ≥ 0 for λn ≥ 1. The resonance condition λn ≥ 1 is satisfied for

n ≥ Nµ, where Nµ = [ µ2π ] is the integer ceiling of µ
2π > 0. With the use of (B.3)–(B.4),

we compute the limit Z → ∞ for Qn(Z, T ) at n ≥ Nµ and finite T :

lim
Z→∞

[
Qn
Q̄−n

]
(Z, T ) =

πi

2kn
[α(kn)ψ1(T ; kn) + α(−kn)ψ1(T ;−kn)] .(B.5)

The first-order solution Vn(Z, T ) = Wn(T ) +Qn(Z, T ) is bounded in T and Z in the
limit Z → ∞.

(ii) |T | → ∞ and Z → ∞. It follows from (B.3)–(B.4) that

lim
T→±∞

eikT

(k − kn)(k + kn)
= ± πi

2kn

[
δ(k − kn)e

iknT − δ(k + kn)e
−iknT ].(B.6)

Using this formula for n ≥ Nµ, we find from (B.1) and (B.5) that

lim
T→±∞

[
Wn

W̄−n

]
(T ) = ∓ πi

16kn
sech

πkn
2

[
eiknT (kn ± i)2 − e−iknT (kn ∓ i)2

]( 0
1

)(B.7)

and

lim
T→±∞,Z→∞

[
Qn
Q̄−n

]
(Z, T ) =

πi

16kn
sech

πkn
2

[
eiknT (kn ± i)2 + e−iknT (kn ∓ i)2

]( 0
1

)
.

(B.8)
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As a result, the boundary values of the first-order solution Vn(Z, T ) satisfy the Som-
merfeld radiation boundary conditions:

lim
|T |→∞,Z→∞

V−n(Z, T ) = −πi(kn + i)2

8kn
sech

πkn
2
eikn|T |, n ≥ Nµ.(B.9)

(iii) |T | → ∞ and Z <∞. Using formula (B.6) in (B.1)–(B.2), we find that both
terms cancel out since

lim
k→±kn

(
1 − e−i(λn−1−k2)Z

)
= 0.

As a result, we have zero boundary values for Vn(Z, T ) in the limit |T | → ∞ for finite
Z:

lim
|T |→∞

Vn(Z, T ) = 0.(B.10)

The first-order solution represents radiative waves diverging from the NLS soliton.
In the limit Z → ∞, the radiative waves approach the Z-independent boundary
values given by (B.9). In the intermediate region, where |T | → ∞, Z → ∞, and
limZ→∞ T/Z = C, where 0 < C < ∞, the radiative waves move with the group
velocity 2kn, according to the intermediate asymptotic expression

lim
|T |→∞,Z→∞

V−n(Z, T ) = −πi(kn + i)2

8kn
sech

πkn
2

eikn|T | H
(

2kn − |T |
Z

)
, n ≥ Nµ,

(B.11)

where H(z) = 1 for z > 0 and H(z) = 0 for z < 0. The intermediate asymptotic
expression includes (B.9) and (B.10) as particular cases.
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COLLAPSE OF THE KELDYSH CHAINS AND STABILITY OF
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Abstract. In the present paper, eigenvalue problems for non-self-adjoint linear differential op-
erators smoothly dependent on a vector of real parameters are considered. Bifurcation of eigenvalues
along smooth curves in the parameter space is studied. The case of a multiple eigenvalue with the
Keldysh chain of arbitrary length is investigated. Explicit expressions describing bifurcation of eigen-
values are found. The obtained formulas use eigenfunctions and associated functions of the adjoint
eigenvalue problems as well as the derivatives of the differential operator taken at the initial point of
the parameter space. These results are important for the stability problems and sensitivity analysis
of nonconservative systems. As a mechanical application, the extended Beck problem of stability
of an elastic column subjected to a partially tangential follower force is considered and discussed in
detail.

Key words. nonconservative system, non-self-adjoint differential operator, Keldysh chain, mul-
tiple eigenvalue, bifurcation, stability boundary
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1. Introduction. In nonconservative dynamic stability problems arising in me-
chanics and physics, energy is not conserved; it can be pumped into the system or
taken out depending on problem parameters. Increase of energy leads to growth of
vibrational amplitudes, i.e., to instability of vibrations. If energy is lost the ampli-
tudes decay in time, which implies stability for the system. Unlike buckling prob-
lems of conservative systems for nonconservative ones, the dynamic method of sta-
bility study must be applied. Two types of instability in nonconservative systems
are distinguished: static (divergence) and dynamic (flutter). Important examples
of nonconservative systems are aircraft wings and panels vibrating in a flow, elastic
missiles subjected to a jet thrust, which is a nonpotential follower force, and tubes
conveying fluid; see Bolotin [1], Ziegler [2], Leipholz [3], and Paidoussis [4]. Sensitivity
analysis of critical stability parameters for nonconservative systems was developed by
Pedersen and Seyranian in [5]. A comprehensive review of nonconservative stability
problems was given by Langthjem and Sugiyama in [6].

Non-self-adjoint operators naturally appear in nonconservative problems. In dis-
crete problems such an operator is just a nonsymmetrical matrix. The general theory
of non-self-adjoint operators going back to the works by Birkhoff was then developed
by many mathematicians; see the review by Davies [7]. Keldysh [8] was the first to
generalize the notion of the Jordan chain of vectors to a wide class of non-self-adjoint
operators. For that reason it was called the Keldysh chain; see Gohberg and Krein [9]
and Gohberg, Lancaster, and Rodman [10]. In the work by Vishik and Lyusternik [11],
the perturbation theory for nonsymmetrical matrices and non-self-adjoint differential
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operators, L = L0 + εL1 with ε as a small parameter, was developed. This practical
and constructive theory allows one to find the perturbation coefficients of eigenvalues
and eigenvectors in an explicit form. The paper by Vishik and Lyusternik [11] was not
widely known in the Western (and even Russian) literature on the subject for a long
time. However, its importance was highly appreciated in the paper by Moro, Burke,
and Overton [12]. We extend this perturbation theory to multiparameter bifurcation
analysis of eigenvalues of non-self-adjoint differential operators.

It is known that in the generic case the spectrum of a multiparameter family of
nonsymmetrical matrices contains multiple eigenvalues with the Jordan chains; see
Arnold [13]. In many important cases multiple eigenvalues define geometrical proper-
ties of the stability boundary of a corresponding system. At the same time, multiple
eigenvalues create considerable mathematical difficulties due to their nondifferentia-
bility with respect to parameters. An effective tool for analysis of stability boundary
is the study of bifurcations of multiple eigenvalues due to change of parameters. For
the discrete case, this method based on the perturbation theory [11] was developed in
the works by Seyranian [14], Mailybaev and Seyranian [15], and Seyranian and Kir-
illov [16]. To perform the stability analysis in the continuous case, we need to consider
bifurcations of eigenvalues in multiparameter families of non-self-adjoint differential
operators. The study of generic properties of the spectrum of the multiparameter
family of non-self-adjoint differential operators remains a difficult problem. It seems
that in the infinite-dimensional case there is still no analogue to the Arnold theory of
versal deformations of matrices, allowing us to classify the generic singularities of the
bifurcation and stability diagrams: even in the self-adjoint case the progress is quite
slow; see Teytel [17].

In our paper we combine the ideas of [8], [11], and [14]. This allows us to find
explicit formulas describing bifurcation of multiple eigenvalues with the Keldysh chain
of any length. These formulas suit for a wide class of non-self-adjoint eigenvalue prob-
lems arising in applications and take into account parameters both in the differential
expression and in the boundary conditions. Besides, our approach allows one to study
bifurcations of multiple eigenvalues both in regular and degenerate cases. An analo-
gous approach was applied by Seyranian and Kliem to the investigation of stability
problems for continuous conservative systems with gyroscopic forces [18].

The paper is organized in the following way. In section 2 basic relations for
eigenvalue problems with general linear differential operators and boundary conditions
are introduced.

In section 3 it is supposed that the differential expression and boundary conditions
smoothly depend on a vector of real parameters. A formula describing splitting of
a multiple eigenvalue with the Keldysh chain of arbitrary length depending on a
change of the parameters is derived. Both regular and degenerate cases are studied.
Finally, a formula for bifurcation of a semisimple multiple eigenvalue is obtained.
These formulas generalize the results for splitting of eigenvalues obtained earlier for
the finite-dimensional case in [14], [15], and [16]. The obtained formulas take into
account both variations of the differential expression and boundary conditions due
to change of the parameters and can be applied to a wide class of nonconservative
problems.

In section 4 we apply the results of previous sections to stability problems of
general nonconservative (circulatory) systems. General solutions in an explicit form
via eigenvalues and eigenvectors are obtained. Then stability boundaries in the pa-
rameter space are investigated. It is shown that the smooth parts of the boundaries
correspond to either simple zero (stability-divergence boundary) or double positive
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eigenvalues with the Keldysh chain of length 2 (stability-flutter boundary). Normal
vectors to the boundaries between stability, flutter, and divergence domains are found.
It is remarkable that only information at a point of the stability boundary is needed
for the calculation of the vectors.

Section 5 treats a mechanical example—an elastic column loaded by the partially
tangential follower force. This problem is referred to as the extended Beck column.
The stability boundaries of this two-parameter continuous system are carefully inves-
tigated and analyzed. Explicit expressions for eigenfunctions and associated functions
are derived. With the use of these expressions, the linear and quadratic approxima-
tions of the stability boundary at its regular and singular points are constructed. The
behavior of eigenvalues in the vicinity of the stability boundaries is studied by the
perturbation approach, showing a good agreement with the numerical results.

2. Basic relations. Using the notation of Naimark [19] we consider an eigen-
value problem for a linear differential operator L defined by

l(u) = λu, Us(u) = 0, s = 1, . . . ,m,(2.1)

l(u) ≡
m∑
i=0

ai
dm−iu
dxm−i , Us(u) ≡

m−1∑
i=0

(
αsi
diu

dxi

∣∣∣∣
x=0

+ βsi
diu

dxi

∣∣∣∣
x=1

)
.

The operators Us(u) are linear forms with respect to the variables u(0), u′(0), . . . ,
u(m−1)(0); u(1), u′(1), . . . , u(m−1)(1). These variables are values of the function
u ∈ C(m)[0, 1] and its derivatives up to (m− 1)th order evaluated at the points x = 0
and x = 1. It is assumed that the forms Us, s = 1, 2, . . . ,m, are linearly independent.

The differential expression

l∗(v) ≡
m∑
i=0

(−1)m−i ai
dm−iv
dxm−i ,

where the overbar denotes complex conjugation, is called adjoint to the differential
expression l(u) [19]. With the use of integration by parts it can be shown that

∫ 1

0

l(u)v̄dx = P (α, β) +

∫ 1

0

ul∗(v)dx,(2.2)

where P (α, β) is a bilinear form of the variables

α = (u(0), u′(0), . . . , u(m−1)(0), u(1), u′(1), . . . , u(m−1)(1)),(2.3)

β = (v(0), v′(0), . . . , v(m−1)(0), v(1), v′(1), . . . , v(m−1)(1)).(2.4)

Let us choose the forms Um+1, Um+2, . . . , U2m so that U1, U2, . . . , U2m are lin-
early independent. Then variables (2.3) can be expressed as linear combinations of
the forms U1, U2, . . . , U2m. Substituting these linear combinations into (2.2), we get
the Lagrange identity [19]

(l(u), v) − (u, l∗(v)) = U1V 2m + · · · + U2mV 1,(2.5)

where (u, v) =
∫ 1

0
u(x)v(x)dx is the inner product of the functions u, v ∈ Cm[0, 1].
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The coefficients at U1, U2, . . . , U2m are linear forms with respect to variables
(2.4) and are denoted by V 2m, . . . , V 2, V 1, respectively. The forms V 1, V 2, . . . , V 2m

are linearly independent [19]. The boundary conditions

V s(v) = 0, s = 1, . . . ,m,

are called adjoint to boundary conditions (2.1). The differential operator L∗, corre-
sponding to the differential expression l∗(v) and to the adjoint boundary conditions,
is referred to as adjoint to the operator L, and we say that the eigenvalue problem

l∗(v) = λv, V s(v) = 0, s = 1, . . . ,m,(2.6)

is adjoint to eigenvalue problem (2.1).
Due to the boundary conditions in (2.1) and (2.6), identity (2.5) for the adjoint

operators L and L∗ takes a simple form: (l(u), v) = (u, l∗(v)). If we consider differ-
ential expression l(u) and assume that the function u satisfies the nonhomogeneous
boundary conditions

Us(u) = Gs, s = 1, . . . ,m,(2.7)

then the Lagrange identity (2.5) yields

(l(u), v) − (u, l∗(v)) = G1V 2m + · · · +GmV m+1.(2.8)

This is valid since v satisfies the boundary conditions in (2.6).

3. Collapse of the Keldysh chain. Suppose that in eigenvalue problem (2.1)
the coefficients of the differential expression l(u) and the coefficients of the forms
Us(u) are real functions, smoothly dependent on a vector of real parameters p =
(p1, p2, . . . , pn) on an open set Ω ⊂ Rn. Let λ0 be an eigenvalue of the operator L
at the point p = p0. We are interested in bifurcation of eigenvalues along the curves
p(ε) = p0 + εe+ ε2d+o(ε2), emitted from the initial point p0 in the parameter space.
The vector e = (e1, e2, . . . , en) defines a direction of the curve, and ε ≥ 0 is a small
parameter.

Due to variation of parameters the differential expression l(u) and the forms Us(u)
are expanded as

l(u) = l0(u)+εl1(u)+ε
2l2(u)+ · · · , Us(u) = Us0 (u)+εUs1 (u)+ε2Us2 (u)+ · · · ,(3.1)

where l0 = l(u)|p=p0
, Us0 = Us (u)|p=p0

, the differential expressions l1(u), l2(u) look
like

l1(u) =

n∑
i=1

ei
∂l

∂pi
(u), l2(u) =

n∑
i=1

di
∂l

∂pi
(u) +

1

2

n∑
i,j=1

eiej
∂2l

∂pi∂pj
(u),(3.2)

and for the forms Us1 (u), Us2 (u) we have

Us1 (u) =

n∑
i=1

ei
∂Us

∂pi
(u), Us2 (u) =

n∑
i=1

di
∂Us

∂pi
(u) +

1

2

n∑
i,j=1

eiej
∂2Us

∂pi∂pj
(u).(3.3)

All the derivatives in formulas (3.2) and (3.3) are evaluated at the point p = p0.
Thus, we deal with the regular perturbations which do not increase the order of the
nonperturbed operator L0 = L(p0) [11].
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Consider an eigenvalue λ0 with the Keldysh chain of length k > 0. This means
that at p = p0 there exist an eigenfunction u0(x) and associated functions u1(x),
u2(x), . . . , uk−1(x), corresponding to the λ0 and satisfying the equations and the
boundary conditions

l0(u0) = λ0u0, Us0 (u0) = 0;
l0(ui) = λ0ui + ui−1, Us0 (ui) = 0;
i = 1, . . . , k − 1; s = 1, . . . ,m.

(3.4)

For the adjoint operator L∗ we have

l∗0(v0) = λ0v0, V s0 (v0) = 0;

l∗0(vi) = λ0vi + vi−1, V s0 (vi) = 0;
i = 1, . . . , k − 1; s = 1, . . . ,m.

(3.5)

The notion of the Keldysh chain is an analogue of the Jordan chain of vectors when
we consider eigenvalue problems for differential operators [8], [9], [19]. Eigenfunctions
and associated functions of adjoint operators L and L∗ are related by the following
conditions:

(uj , v0) = 0, j = 0, . . . , k − 2, (uk−1, v0) ≡ (u0, vk−1) �= 0;(3.6)

(uj−1, vi) ≡ (uj , vi−1), i, j = 1, . . . , k − 1.(3.7)

This naturally follows from (3.4) and (3.5) with the relation (l(u), v) = (u, l∗(v))
stated for the adjoint operators.

A variation of the vector of parameters p = p0 + εe+ o(ε) causes perturbation of
eigenvalues and eigenfunctions. In the case of a multiple eigenvalue with the Keldysh
chain of length k, the expansions for eigenvalues and eigenfunctions contain terms
with fractional powers of the small parameter εj/k, j = 0, 1, 2, . . . [11]:

λ = λ0 + ε1/kλ1 + ε2/kλ2 + · · · , u = u0 + ε1/kw1 + ε2/kw2 + · · · .(3.8)

Substituting expansions (3.1) and (3.8) into eigenvalue problem (2.1), we get expres-
sions that determine the first order perturbations of the eigenvalue λ0 and eigenfunc-
tion u0,

l0(wj) − λ0wj = λju0 +

j−1>0∑
i=1

λj−iwi, Us0 (wj) = 0, j = 1 . . . k − 1,(3.9)

l0(wk) − λ0wk = λku0 − l1(u0) +

k−1>0∑
i=1

λk−iwi, Us0 (wk) = −Us1 (u0).(3.10)

The functions wj can be found from (3.4) and (3.9) in the form

wj = λj1uj +

j−1∑
p=0

γjpup, j = 1, . . . , k − 1,(3.11)

where γjp are arbitrary constants.
Consider the inner product of the function v0 with the left- and right-hand sides

of (3.10). Using then expression (3.11) for wj , equations (3.6) and (3.7), and the
Lagrange identity (2.8), which in this case has the form

(l0(wk) − λ0wk, v0) − (wk, l
∗
0(v0) − λ0v0) = −

m∑
s=1

Us1 (u0)V
2m−s+1
0 (v0),
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Fig. 3.1. Splitting of the multiple eigenvalue λ0 with the Keldysh chain of length k = 5.

we get the coefficient λ1 in the expansion of the eigenvalue λ,

λk1 =
(l1(u0), v0) −

∑m
s=1 U

s
1 (u0)V

2m−s+1
0 (v0)

(uk−1, v0)
.(3.12)

Introducing scalar product 〈a,b〉 of the vectors a,b ∈ Rn and taking into account
expressions (3.2) and (3.3) we can rewrite (3.12) in the form [14]

λ1 = k
√
〈fk, e〉 + i〈gk , e〉,(3.13)

where the real vectors fk and gk correspond to the k-fold eigenvalue λ0 at the point
p = p0 and their components are

f jk + igjk =
( ∂l
∂pj

(u0), v0) −
∑m
s=1

∂Us

∂pj
(u0)V

2m−s+1
0 (v0)

(uk−1, v0)
, j = 1, . . . , n.(3.14)

The right-hand side of (3.13) takes k complex values. If the radicand in (3.13) is
not zero, the expression λ = λ0 + ε1/kλ1 + o(ε1/k) describes the splitting of the k-fold
eigenvalue with a change of parameters along a curve emitted in the direction e, as
shown in Figure 3.1.

We emphasize that for real eigenvalue λ0 the vector gk=0 since the eigenfunctions
and associated functions can be chosen real, and the coefficient λ1 does not depend
on normalization conditions.

After splitting, the length of the Keldysh chain decreases from k to 1, and we say
that collapse of the Keldysh chain occurs.

In particular, (3.8) and (3.13) describe the behavior of a simple eigenvalue for
k = 1, and for k = 2-splitting of a double eigenvalue λ0 with the Keldysh chain of
length 2, which are the most important cases in applications.

Consider now for a double eigenvalue the degenerate case

〈f2, e∗〉 + i〈g2, e∗〉 = 0.(3.15)

It follows from condition (3.15) that the coefficient λ1 in expansions (3.8) becomes
zero. Substitution of expansions (3.8) into eigenvalue problem (2.1) gives equations
determining second order terms λ2 and w2,

l0(w2) − λ0w2 = λ2u0 − l1(u0), Us0 (w2) = −Us1 (u0),(3.16)
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l0(w4)−λ0w4 = λ4u0−l2(u0)+λ2w2−l1(w2), Us0 (w4) = −Us1 (w2)−Us2 (u0).(3.17)

Multiplying both parts of (3.17) by v0 and using the Lagrange identity (2.8), we get

λ2(w2, v0)−(l1(w2), v0)−(l2(u0), v0)+

m∑
s=1

(Us1 (w2)+U
s
2 (u0))V

2m−s+1
0 (v0) = 0.(3.18)

Multiplication of (3.16) by v1 with the use of (2.8) and (3.5) gives the term (w2, v0),

(w2, v0) = λ2(u0, v1) − (l1(u0), v1) +

m∑
s=1

Us1 (u0)V
2m−s+1
0 (v1).(3.19)

The solution of (3.16) has the form w2 = λ2u1 + ŵ2 + γu0, where γ is an arbitrary
constant and ŵ2 is a particular solution of the boundary value problem

l0(ŵ2) − λ0ŵ2 = −l1(u0), Us0 (ŵ2) = −Us1 (u0).(3.20)

The solution of boundary value problem (3.20) exists due to degeneration condition
(3.15), playing here the role of the solvability condition. Substituting (3.19) and the
expression for w2 into (3.18) we get the quadratic equation in λ2,

λ2
2 + λ2a1 + a2 = 0.(3.21)

The coefficients a1 and a2 are determined by the expressions

a1 =

∑m
s=1[U

s
1 (u0)V

2m−s+1
0 (v1) + Us1 (u1)V

2m−s+1
0 (v0)]

(u0, v1)
− (l1(u0), v1) + (l1(u1), v0)

(u0, v1)
,

(3.22)

a2 =
−(l1(ŵ2), v0) − (l2(u0), v0) +

∑m
s=1(U

s
1 (ŵ2) + Us2 (u0))V

2m−s+1
0 (v0)

(u0, v1)
.(3.23)

These coefficients can be written in the form

a1 = 〈h, e∗〉 + i〈k, e∗〉, a2 = 〈He∗, e∗〉 + i〈Ke∗, e∗〉 − 〈f2,d〉 − i〈g2,d〉,(3.24)

where components of the real vectors h, k are defined by the relationship

hj + ikj(3.25)

=

∑m
s=1[

∂Us

∂pj
(u0)V

2m−s+1
0 (v1)+ ∂Us

∂pj
(u1)V

2m−s+1
0 (v0)]

(u0, v1)
−

( ∂l
∂pj

(u0), v1)+( ∂l∂pj (u1), v0)

(u0, v1)
,

and the real symmetric matrices H and K can be found according to (3.23) and (3.24).
Thus, bifurcation of the double eigenvalue λ0 in degenerate case (3.15) is described
by the formula λ = λ0 + ελ2 + o(ε), where λ2 are the two roots of (3.21).

Finally, we consider at p = p0 a so-called [18] semisimple eigenvalue λ0 of mul-
tiplicity k with k linearly independent eigenfunctions u1

0, u
2
0, . . . , u

k
0 satisfying eigen-

value problem (2.1). The complex-conjugate λ0 is the semisimple eigenvalue of adjoint
eigenvalue problem (2.6) with the eigenfunctions v1

0 , v2
0 , . . . , v

k
0 .

Expansion of the parameters p = p0 + εe + o(ε) causes perturbations of the
eigenvalue and eigenfunctions, which can be expressed as Taylor series with respect
to the small parameter ε [11],

λ = λ0 + ελ1 + o(ε), u = w0 + εw1 + o(ε).(3.26)
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Substituting these expansions as well as expansions (3.1) into eigenvalue problem (2.1)
we get equations determining the functions w0, w1:

l0(w0) − λ0w0 = 0, Us0 (w0) = 0;(3.27)

l0(w1) − λ0w1 = −l1(w0) + λ1w0, Us0 = −Us1 (w0).(3.28)

A general solution of eigenvalue problem (3.27) has the form

w0 =

k∑
i=1

γiu
i
0

with unknown coefficients γi. Taking the inner product of (3.28) and the functions
v1
0 , v2

0 , . . . , v
k
0 and using the Lagrange identity

(l0(w0) − λ0w0, v
j
0) − (w0, l

∗
0(v

j
0) − λ0v

j
0) = −

m∑
s=1

Us1 (w0)V
2m−s+1
0 (vj0),

we come to the system of equations on the coefficients γ1, γ2, . . . , γk,

k∑
i=1

(
(l1(u

i
0), v

j
0) −

m∑
s=1

Us1 (ui0)V
2m−s+1
0 (vj0) − λ1(u

i
0, v

j
0)

)
γi = 0, j = 1, . . . , k.

This system has a nontrivial solution if and only if

det

[
(l1(u

i
0), v

j
0) −

m∑
s=1

Us1 (ui0)V
2m−s+1
0 (vj0) − λ1(u

i
0, v

j
0)

]
= 0.(3.29)

The coefficients of (3.29) can also be expressed in terms of the vector of varia-
tion e. For the sake of convenience we suppose that the eigenfunctions satisfy the
orthonormality conditions

(uσ0 , v
j
0) = δσj , σ, j = 1, . . . , k,(3.30)

where δσj is the Kronecker symbol. Introducing the real vectors fσj and gσj of
dimension n with the components defined by the equation

fσjr + igσjr =

(
∂l

∂pr
(uσ0 ), vj0

)
−

m∑
s=1

∂Us

∂pr
(uσ0 )V 2m−s+1

0 (vj0), r = 1, . . . , n,(3.31)

we can write (3.29) in the following form:

det[〈fσj + igσj , e〉 − λ1δσj ] = 0, σ, j = 1, . . . , k.(3.32)

Equation (3.32) is a polynomial of kth order for the coefficients λ1 in expansions
(3.26), which describe splitting of a multiple eigenvalue λ0.

4. Application to nonconservative stability problems. Let us consider
nonconservative systems, described by a partial differential equation with the bound-
ary conditions

ÿ + l(y) = 0, Us(y) = 0, s = 1, . . . ,m,(4.1)
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where y = y(x, t), dots mean differentiation with respect to time t, while l(y) and
Us(y) are, respectively, the linear differential expression in terms of x ∈ [0, 1] and
the boundary forms defined in section 2. Such systems are usually called circulatory
systems [1], [2], [3]. Note that damping and gyroscopic forces are not involved in such
systems. However, circulatory forces play an important role in aeroelasticity, plasma
physics, gyrodynamics, and other fields.

Looking up the solution of (4.1) in the form

y(x, t) = u(x)e±it
√
λ

we come to the eigenvalue problem (2.1). Recall that the coefficients of the differential
expression l(u) and the coefficients of the forms Us(u) are real functions, smoothly
dependent on a vector of real parameters p = (p1, p2, . . . , pn). It follows from the basic
theorems of the theory of ordinary differential equations [20] that solutions z1, . . . , zm
of (2.1) with the initial conditions (δij is the Kronecker symbol)

z
(j−1)
i (0) = δij , i, j = 1, . . . ,m,

forming the fundamental system of solutions of (2.1), smoothly depend on λ and
p. The characteristic determinant ∆≡det

∥∥U i(zj)∥∥ is thus a smooth function of the
spectral parameter λ and the vector p: ∆ = ∆(λ,p).

We assume that at some fixed value p0 of the vector p the spectrum of the operator
L formed by the differential expression l(u) and boundary conditions Us(u) = 0 is
discrete. The eigenvalues λ can be simple or multiple roots of the characteristic
equation ∆(λ,p0) = 0.

If all eigenvalues λj are simple, then a general solution of (4.1) has the form

y(x, t) =

∞∑
j=1

uj0(x)(αje
it
√
λj + βje

−it
√
λj )(4.2)

with arbitrary constants αj , βj . This form is also valid for semisimple eigenvalues λ0

of algebraic multiplicity k (λj = λj+1 = · · · = λj+k−1 = λ0), which means that the
number of linearly independent eigenfunctions µ corresponding to λ0 is equal to k.
However, when µ < k in the general solution of (4.1), the secular terms proportional

to tσe±it
√
λ0 with σ < k appear.

Let λ = λ0 be the k-fold root of the characteristic equation ∆(λ,p0) = 0, and let
the functions u0(x), u1(x), . . . , uk−1(x) satisfying (3.4) be the Keldysh chain of length
k corresponding to λ0. In this case µ = 1, and the partial solution of the boundary
value problem (4.1) has the form

y(x, t) = (αeit
√
λ0 + βe−it

√
λ0)

k−1∑
r=0

yr(x)
tk−r−1

(k − r − 1)!
,(4.3)

yr(x) =

r∑
j=0

(−1)r−j(2i
√
λ0)

r−2jCr−2j
r−j ur−j(x), Cr−2j

r−j =

{
0, 2j > r,

(r−j)!
j!(r−2j)! , 2j ≤ r,

which can be verified by direct substitution to (4.1).
In the more complicated case of the multiple eigenvalue λ0 of multiplicity

∑µ
s=1 ks

with µ Keldysh chains of lengths k1, k2, . . . , kµ, respectively, the solution correspond-
ing to λ0 is a sum of functions (4.3) over all µ Keldysh chains,

y(x, t) =

µ∑
s=1

(αse
it
√
λ0 + βse

−it√λ0)

ks−1∑
r=0

ysr(x)
tks−r−1

(ks − r − 1)!
,(4.4)
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where the functions ysr(x) are related to the functions usr(x) by the second of equations
(4.3).

From (4.2)–(4.4) it is obvious that the linear system described by (4.1) is stable if
and only if all the eigenvalues λ are nonnegative and semisimple. If all λ are real and
some of them negative, then the circulatory system is statically unstable (divergence).
Existence of at least one complex eigenvalue or a multiple real positive eigenvalue with
the Keldysh chain of length k > 1 means flutter instability. Multiple zero eigenvalue
with the Keldysh chain of length k > 1 causes divergence.

Let us now study the stability boundaries of circulatory systems in the parameter
space. If at the point p = p0 the characteristic equation has the k-fold real root
λ = λ0, i.e., ∆(λ0,p0) = ∂∆/∂λ = · · · = ∂k−1∆/∂λk−1 = 0, ∂k∆/∂λk �= 0, then
according to Malgrange’s preparation theorem [21] there exists a neighborhood U0 ⊂
R×Rn of the point (λ0,p0), where ∆(λ,p) has the form

∆(λ,p) =

[
(λ− λ0)

k +

k−1∑
i=0

(λ− λ0)
iai(p)

]
b(λ,p).(4.5)

The functions a0(p), . . . , ak−1(p) and b(λ,p) are real and smooth, ai(p0) = 0, and
b(λ0,p0) �= 0.

Let, for example, λ0 be a simple real root of the equation ∆(λ,p0) = 0. Then
due to (4.5) we can write λ = λ0 − a0(p), and λ remains real and simple in some
neighborhood of the point p0. We can conclude from this fact that if at p = p0 all
the eigenvalues of eigenvalue problem (2.1) are positive and simple, then p0 is the
inner point of the stability domain of circulatory system (4.1).

Similarly, the points of the parameter space, corresponding to either simple zero
eigenvalue or real double eigenvalue with the Keldysh chain of length 2, form smooth
surfaces of dimension n− 1. Indeed, if λ0 = 0 at p = p0, then in the vicinity of p0 we
have λ = −a0(p). The equation a0(p) = 0 defines a hypersurface in the parameter
space.

If λ0 is a double eigenvalue, then according to (4.1) its behavior near the point
p0 is described by the quadratic equation

(λ− λ0)
2 + a1(p)(λ− λ0) + a0(p) = 0.(4.6)

It follows from (4.6) that the eigenvalue λ(p) remains double in the neighborhood of
the point p0 if p belongs to the hypersurface a2

1(p) − 4a0(p) = 0.
It is clear that the stability of the system in a neighborhood of the point p0

belonging to these hypersurfaces depends on the behavior of the zero or the double
eigenvalues due to change of parameters if all other eigenvalues at the point p0 are
positive and semisimple. According to (3.8) and (3.13), where we should put k = 1
or k = 2, the behavior of the simple zero eigenvalue is described by the formula

λ = ε〈f1, e〉 + o(ε),(4.7)

and the splitting of the real double λ0 is governed by the expression

λ = λ0 ±
√
ε〈f2, e〉 + o(ε1/2).(4.8)

The inequality 〈f1, e〉 > 0 defines a set of directions e such that the curves p = p(ε)
emitted along these vectors lie in the stability domain, i.e., a tangent cone to the
stability domain. The eigenvalue λ becomes negative for 〈f1, e〉 < 0. Consequently,
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this inequality gives a tangent cone to the static instability (divergence) domain. The
eigenvalue remains zero up to the terms of order ε2 on the curves, emitted in the
directions e, such that 〈f1, e〉 = 0. Thus, the equation 〈f1,p − p0〉 = 0 defines a
tangent plane to the surface, where the operator L has a simple zero eigenvalue. If
other eigenvalues remain simple and positive on this surface, then it forms a boundary
between stability and divergence domains. The vector f1 is the normal vector to the
boundary and is directed to the stability domain.

Analyzing splitting of the double eigenvalue with the formula (4.8) we see that
the points of the parameter space, corresponding to the real double eigenvalue with
the Keldysh chain of length 2, belong to the smooth parts of the boundary between
the flutter domain and the stability domain if λ0 > 0 or the divergence domain if
λ0 < 0. In this case the vector f2 is the normal vector to the flutter boundary looking
at the stability or divergence domains, respectively.

Finally, we assume that at the point p0 there exists a double positive semisimple
eigenvalue λ0 with the two linearly independent eigenfunctions u1

0 and u2
0. We choose

them, satisfying orthonormality condition (3.30). The splitting of this eigenvalue with
a change of parameters is governed by (3.32), which for k = 2 takes the form

λ2
1 − λ1〈f11 + f22, e〉 + 〈f11, e〉〈f22, e〉 − 〈f12, e〉〈f21, e〉 = 0,(4.9)

where the real vectors f11, f12, f21, and f22 are defined in (3.31). The stability of the
circulatory system near the point p0 depends on the sign of the discriminant D of
quadratic equation (4.9), which can be written as

D = 〈f11 − f22, e〉2 + 〈f12 + f21, e〉2 − 〈f12 − f21, e〉2.(4.10)

The stability condition implies D > 0, while the flutter condition yields D < 0. The
boundary between the flutter and stability domains in the parameter space is defined
by the equality D = 0. It is easy to see from (4.10) that the equality D = 0 describes
a circular cone z2 = x2 + y2 in the space of three coordinates x = 〈f11 − f22, e〉,
y = 〈f12 + f21, e〉, z = 〈f12 − f21, e〉, the flutter domain z2 > x2 + y2 being inside
the cone and the stability domain z2 < x2 + y2 outside. The apex of the cone
(x = 0, y = 0, z = 0) corresponds to the double semisimple positive eigenvalue, while
the skirts of the cone correspond to the double positive eigenvalues with the Keldysh
chain.

Therefore, a double eigenvalue λ0 defines a smooth surface of codimension 1 or
the singularity of codimension 3 in the space of parameters (p1, . . . , pn) depending
on the number of linearly independent eigenfunctions at λ0. This result for matrices
was established in [13]. Note that eigenvalue problems with the self-adjoint operators
which are widely known in physics may have only semisimple multiple eigenvalues.

Eigenvalues of multiplicity higher than 2 are also responsible for the appearance
of singularities on the stability boundaries, as is seen directly from (3.13) and Fig-
ure 3.1. Indeed, the eigenvalue with multiplicity k > 1 splits in the nondegenerate
case into k distinct complex eigenvalues implying flutter instability of the system as
it was discussed in the beginning of this section. This was also shown for the discrete
circulatory systems in [16].

In aeroelasticity a condition of onset of flutter, which can be easily verified, is of
major importance. For circulatory systems such a condition was derived by Plaut [22]
in a form (u0, v0) = 0, where u0 and v0 are eigenfunctions of the adjoint problems. His
derivation was based on the idea that the first derivative of the nonconservative load
with respect to the spectral parameter λ becomes zero at the onset of flutter. This
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question attracts current interest; see [23] and comments in [24]. However, Plaut’s
derivation is restricted by the assumptions that the flutter instability takes place due
to interaction of only two eigenvalues in a one-parameter system and the nonconserva-
tive load parameter is a smooth function of λ. In our approach the “flutter condition”
(u0, v0) = 0 is just a simple consequence of existence at a multiple eigenvalue λ0 the
Keldysh chain of length k ≥ 2. Thus, this condition is satisfied at the flutter boundary
of a multiparameter circulatory system.

5. Stability boundaries of the extended Beck problem. As an example
of a continuous nonconservative mechanical system we consider stability of a uniform
elastic cantilevered column of length Lc, loaded by a nonconservative force P ; see
Figure 5.1. It is assumed that the force P , which can be represented as the sum
of a tangential follower force and a potential load, is acting at the free end of the
column. The parameter η ∈ [0, 1] measures the nonconservativity of the force P .
The case η = 1 means that the column is loaded by purely tangential follower force
(Beck’s problem [25]). If η = 0, then the force P is potential (conservative). This
problem was first considered by Dzhanelidze [26] and Kordas and Zyczkowski [27].
Note that the force P models the jet thrust acting on the free end of the column.
Recent experiments on stability of such a column were carried out by Sugiyama; see
[6]. We will investigate properties of the stability boundary in this problem.

Consider the transverse vibrations of the column in the plane OXY as in Fig-
ure 5.1. In the nondimensional variables

x = X/Lc, y = Y/Lc, τ = t/
√
ρAL4

c/EI, q = PL2
c/EI,

the differential equation describing small in-plane vibrations of the column and the
appropriate boundary conditions have the form

y′′′′(x, τ) + qy′′(x, τ) + ÿ(x, τ) = 0,

y(0, τ) = y′(0, τ) = y′′(1, τ) = y′′′(1, τ) + (1 − η)qy′(1, τ) = 0.

Dots mean differentiation with respect to time τ , and primes denote differentiation
with respect to coordinate x.

Separating time by y(x, τ) = u(x) exp(i
√
λτ), we get the eigenvalue problem [27]

l(u) ≡ u′′′′ + qu′′ = λu,(5.1)

U1(u) ≡ u(0) = 0, U3(u) ≡ u′′(1) = 0,
U2(u) ≡ u′(0) = 0, U4(u) ≡ u′′′(1) + (1 − η)qu′(1) = 0.

(5.2)

The corresponding adjoint eigenvalue problem looks like

l∗(v) ≡ v′′′′ + qv′′ = λv,(5.3)

V 1(v) ≡ −v(0) = 0, V 3(v) ≡ v′′(1) + ηqv(1) = 0,
V 2(v) ≡ v′(0) = 0, V 4(v) ≡ −v′′′(1) − qv′(1) = 0,

(5.4)

and for the forms V 5, . . . , V 8 we have



COLLAPSE OF THE KELDYSH CHAINS 1395

Fig. 5.1. The extended Beck’s problem and its stability diagram.

V 5≡v(1), V 6≡− v′(1), V 7≡− v′′(0) − qv(0), V 8≡v′′′(0) + qv′(0).(5.5)

Substituting the general solution of differential equation (5.1)

u(x) = C1 cosh(ax) + C2 sinh(ax) + C3 cos(bx) + C4 sin(bx),

a =

√
−q

2
+

√
q2

4
+ λ, b =

√
q

2
+

√
q2

4
+ λ, λ �= −q

2

4
,

into boundary conditions (5.2) we obtain the condition of the existence of a nontrivial
solution u(x) to eigenvalue problem (5.1), (5.2) in the form [27]

∆(λ, η, q) = 0,(5.6)

∆≡(2λ+ (1 − η)q2)(1 + cosh(a) cos(b)) + q(2η − 1)(q + ab sinh(a) sin(b)).

Equation (5.6) gives eigenvalues λ, depending on the parameters η and q.
The vertical equilibrium of the column is stable if all the eigenvalues λ are positive

and semisimple; i.e., each eigenvalue has the same number of eigenfunctions as its
algebraic multiplicity. After substitution λ = 0 in (5.6), it gives possible values of the
parameters η and q at which the system loses stability statically [26], [27],

η(q) =
cos(

√
q)

cos(
√
q) − 1

.(5.7)

Equation (5.7) defines the curve of simple zero eigenvalues, the part of which forms
the boundary between stability and divergence domains on the plane of parameters
(η, q). The smooth parts of the flutter boundary consist of such points (η, q) that
λ(η, q) is a double real eigenvalue with the Keldysh chain. Calculation of the roots
of characteristic equation (5.6) for different values of the load parameter q (at a fixed
value of the parameter η) gives approximately the point where two simple eigenvalues
form a double. Finding such points for different values of the parameter η we get the
curve of double real eigenvalues.
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The curves found subdivide the plane of the parameters (η, q) into stability (S),
flutter (F), and divergence (D) domains; see Figure 5.1. The boundaries between
these domains are shown in Figure 5.1 by the firm thick lines, while the dashed thick
line shows the part of the curve of zero eigenvalues, which belongs to the divergence
domain. Note that the boundary of stability domain has a singular point where the
smoothness of the boundary is broken. The divergence boundary has two points with
the vertical tangents. One can see that when the influence of the nonconservative
part of the load q is small (η < 0.5), the column loses stability by divergence. Mainly
nonconservative loads (η > 0.5) cause dynamical instability.

Our goal here is to demonstrate the advantages of the theory developed in the
previous sections on the example of this stability problem. It will be applied for finding
linear and quadratic approximations of the stability and instability domains both at
singular and regular points of their boundaries. The explicit expression describing
the overlapping of the frequency curves near the flutter boundary will be obtained
and compared with the numerical results, given in [28]. Finally, we will obtain the
exact coordinates of the singular point of the stability boundary, show that this point
corresponds to the double zero eigenvalue with the Keldysh chain of length 2, and
investigate the splitting of this eigenvalue in the vicinity of the singularity.

5.1. Bifurcation of eigenvalues in the vicinity of the flutter boundary.
Consider a point p0 = (η0, q0) of the flutter boundary, where the spectrum of the
operator L contains double eigenvalue λ0 with the Keldysh chain of length 2. Bifur-
cation of this eigenvalue is described by (4.8). Substituting the differential expression
l(u) from (5.1), the forms U1, . . . , U4 and V 5, . . . , V 8 from (5.2) and (5.5) into formula
(3.14), we get the normal vector to the boundary,

f2 =

(
q0u

′
0(1)v0(1)∫ 1

0
u0v1dx

,

∫ 1

0
u′′0v0dx− (1 − η0)u

′
0(1)v0(1)∫ 1

0
u0v1dx

)
.(5.8)

For evaluation of the vector f2 it is essential to know the eigenfunctions u0, v0 as
well as the associated functions u1, v1 at the double eigenvalue λ0. The solution of
eigenvalue problems (5.1), (5.2) and (5.3), (5.4) yields [5]

u0(x) = cosh(ax) − cos(bx) + F (a sin(bx) − b sinh(ax)),(5.9)

v0(x) = cosh(ax) − cos(bx) +G(a sin(bx) − b sinh(ax)),(5.10)

where the coefficients F and G depend on the parameters η and q:

F =
a2 cosh(a) + b2 cos(b)

ab(a sinh(a) + b sin(b))
, G =

(a2 + ηq) cosh(a) + (b2 − ηq) cos(b)

b(a2 + ηq) sinh(a) + a(b2 − ηq) sin(b)
.(5.11)

Associated function u1 is a solution of the boundary value problem (3.4), where
we should put k = 2 and take the differential expression and the boundary forms from
(5.1) and (5.2). A particular solution of the ordinary linear differential equation with
constant coefficients

u′′′′1 + qu′′1 − λ0u1 = u0,

whose right-hand side is the linear combination of trigonometric and hyperbolic func-
tions (5.9), has the form

û1 = x(C1 sin(bx) + C2 cos(bx) + C3 sinh(ax) + C4 cosh(ax)).
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Substitution of û1 into the second of equations (3.4) allows one to determine the
coefficients C1, . . . , C4. After these coefficients are found one tries the solution of
boundary value problem (3.4) in the form

u1 = û1 +D1 sin(bx) +D2 cos(bx) +D3 sinh(ax) +D4 cosh(ax).

The unknown constants D1, . . . , D4 can be found from the boundary conditions (3.4).
After all necessary manipulations we arrive at the associated function u1,

u1(x) =
a sin(bx) + b sinh(ax) + F (a2 cos(bx) − b2 cosh(ax))

2ab(a2 + b2)
x(5.12)

+
A1 sinh(ax) −B1 sin(bx)

2ab(a2 + b2)(a sinh(a) + b sin(b))2
,

where the coefficient F is taken from (5.11), while for the coefficients A1, B1 we have
the expressions

A1=
sin(b)(b2 cos(b)−a2 cosh(a))+2ab cos(b) sinh(a)

a2
q+b(a2 +b2)(1+cosh(a)cos(b)),

B1=
sinh(a)(b2 cos(b)−a2 cosh(a))−2ab cosh(a)sin(b)

b2
q+a(a2+b2)(1+cosh(a)cos(b)).

Similarly, solving boundary value problem (3.5) with the differential expression
and boundary forms from (5.1) and (5.2) we get the associated function v1,

v1(x) =
a sin(bx) + b sinh(ax) +G(a2 cos(bx) − b2 cosh(ax))

2ab(a2 + b2)
x(5.13)

+
A2 sinh(ax) −B2 sin(bx)

2ab(a2 + b2)(b(a2 + ηq) sinh(a) + a(b2 − ηq) sin(b))2
,

where the coefficient G is defined in (5.11) and the coefficients A2, B2 are

A2 = q sin(b)[[−a2b2+η((a2 + b2)2−ηq2)] cosh(a)+cos(b)(b2−ηq)2]
+2qab3(1−2η)sinh(a)cos(b)+b(a2+b2)[a2b2+η2q2+(a2b2+η(1−η)q2)cos(b)cosh(a)];

B2 = q sinh(a)[[a2b2−η((a2+b2)2−ηq2)] cos(b)−cosh(a)(a2+ηq)2]

−2qba3(1−2η)sin(b)cosh(a)+a(a2+b2)[a2b2+η2q2+(a2b2+η(1−η)q2)cos(b)cosh(a)].

A possibility of appearance of associated functions at the critical values of the
nonconservative load in Beck’s problem was noticed earlier in [29]. Nevertheless,
the explicit expressions for the associated functions seem to be obtained first in the
present paper. Note that although the eigenfunctions u0, v0 are defined up to arbitrary
multipliers and associated functions u1, v1 are defined up to the addends C1u0 and
C2v0, respectively, the vector f2 does not depend on these uncertainties.

Consider now the point p0 = (1, 20.0509536), corresponding to the double eigen-
value λ0 = 121.347049. This point is known as critical for the column subjected
to a purely tangential follower force [25]. Substituting the values of λ0 and p0 into
(5.9)–(5.13) we obtain the functions u0, v0, u1, v1; see Figure 5.2.

Notice that for the case of tangential force (η = 1), the eigenfunction v0 of the
adjoint eigenvalue problem has a physical meaning. It is the vibrational mode for the
loss of stability of a column loaded by a force with a fixed line of action; see [1] for
the theory and [6] for the experiments.
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Fig. 5.2. The eigenfunctions, associated functions, and functions ŵ2(x) at the points
(1, 20.0509536) and (0.35431330, 17.0695748), the left and right columns, respectively.

With the use of these functions, (5.8) gives the normal vector to the flutter bound-
ary at the point p0 = (1, 20.0509536),

f2 = (35458.3181,−2296.10536).

Let us look at the splitting of the double eigenvalue λ0 due to change of parameters
in different directions e on the parameter plane. Consider, for example, the vertical
direction e = (0, 1). Taking into account that ∆p=(0, q − q0) we get from (4.8)

λ = 121.347049 ± 47.9176936
√
q0 − q.(5.14)

For the horizontal variation ∆p = (η − η0, 0) corresponding to the vector e = (1, 0)
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Table 5.1

Splitting of the double eigenvalue near the point p0 = (1, 20.0509536).

(∆η,∆q) λ : Eqs. (5.14), (5.15), (5.19). λ : Eq. (5.6)

(0, 2·10−5) 121.347049 ± i0.21429444 121.342379 ± i0.21422599

(0,−2·10−5) 121.132755 121.128319

121.561343 121.556963

( 2·10−5, 0) 122.189169 122.188528

120.504929 120.504432

(−2·10−5, 0) 121.347049 ± i0.84212016 121.338540 ± i0.84201129

2·10−3e∗ 120.762103 120.755389

121.542851 121.540824

we have

λ = 121.347049 ± 188.303792
√
η − η0.(5.15)

The results of probing of a small neighborhood of the point p0 in different di-
rections are summarized in Table 5.1. Thus, for example, for q = q0 + 0.00002,
i.e., when the new point is situated above the initial point p0, splitting yields λ =
121.347049± i0.21429444, and thus the point p0 + ∆p belongs to the flutter domain;
see Figure 5.1. Characteristic equation (5.6) gives for the same values of parameters
two complex conjugate eigenvalues, which differ from those found with the use of
(5.14) only in a sixth digit; see Table 5.1.

Degeneration condition (3.15) defines the vector e∗ = (−1,−15.4428097) tangent
to the flutter boundary at the point p0 = (1, 20.0509536). The double eigenvalue λ0

splits in the tangent direction in accordance with (3.21),

λ = λ0 − a1

2
ε± ε

2

√
a2
1 − 4a2 + o(ε).(5.16)

Substitution of the differential expression l(u) from (5.1) and the forms U1, . . . , U4,
V 5, . . . , V 8 from (5.2) and (5.5) into (3.22) and (3.23) gives the coefficients a1 and a2

in the form

a1 =
e∗2
∫ 1

0
(u′0v

′
1 + v′0u

′
1)dx− (e∗2η0 + e∗1q0)(v1(1)u′0(1) + v0(1)u′1(1))∫ 1

0
u0v1dx

,(5.17)

a2 =
e∗2
∫ 1

0
v′0ŵ

′
2dx− (e∗2η0 + e∗1q0)v0(1)ŵ′

2(1) − e∗1e
∗
2v0(1)u′0(1)∫ 1

0
u0v1dx

.

The functions u0, v0, u1, v1 are presented by (5.9), (5.10), (5.12), and (5.13). The
function ŵ2(x) (Figure 5.2) is a solution of boundary value problem (3.20), where the
differential expressions l0, l1 and forms Us0 , Us1 are derived from differential expression
(5.1) and boundary forms (5.2) according to (3.2) and (3.3):

ŵ2(x) =
b sin(bx) − a sinh(ax) + Fab(cos(bx) + cosh(ax))

2(a2 + b2)
e∗2x(5.18)

+
A3 sin(bx) −B3 sinh(ax)

2ab(a2 + b2)(b sin(b) + a sinh(a))2
e∗2.
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The coefficient F in (5.18) is defined in (5.11), and for the coefficients A3 and B3 we
have

A3 = − a(a2 + b2)(q + ab sin(b) sinh(a)) + 2a2b(b sinh(a) cos(b) − a cosh(a) sin(b))

− 2a3 cosh(a)(a sinh(a) + b sin(b)),

B3 = − b(a2 + b2)(q + ab sin(b) sinh(a)) + 2b2a(b sinh(a) cos(b) − a cosh(a) sin(b))

+ 2b3 cos(b)(a sinh(a) + b sin(b)).

With the use of the eigenfunctions, associated functions, and the function ŵ2 we find
from (5.17) the coefficients a1 = 194.571965, a2 = −28633.4466. Substitution of
these coefficients into (5.16) gives approximate expressions for two simple eigenvalues
which result from the splitting of the double λ0 in the tangent direction to the stability
boundary

λ1 = 121.347049 − 292.473089ε, λ2 = 121.347049 + 97.9011324ε.(5.19)

For example, take ε = 0.002; then the double eigenvalue λ0 splits into two positive
eigenvalues (Table 5.1). This means that the tangent vector e∗ = (−1,−15.4428097)
lies in the stability domain, whence it follows that the flutter domain is convex at
the point p0; see Figure 5.1. At the same values of the parameters, the characteristic
equation has very close solutions (Table 5.1), showing thereby that formulas (5.19)
give a good approximation to the directly computed eigenvalues.

Consider now the point p0 = (0.32112653, 19.4220703) on the boundary between
the flutter and divergence domains; see Figure 5.1. In this point there exists the
negative double eigenvalue λ0 = −46.4046486 with Keldysh chain of length 2. The
normal vector to the flutter boundary evaluated at this point by formula (5.8) is

f2 = (−53123.691, 0).

The corresponding tangent vector to the boundary follows from degeneration condi-
tion (3.15),

e∗ = (0, 1).

One can see that the normal vector is parallel to the η-axis and is situated in the
divergence domain, so the flutter boundary has a vertical tangent at the point p0 =
(0.32112653, 19.4220703); see Figure 5.1.

We are interested now in behavior of the frequency curves ω(q), where ω=
√
λ is

a frequency of oscillations, in the vicinity of the point p0 of the boundary between
the flutter and divergence domains. From the formula (3.21) it follows that along the
curves p = p0 + εe∗ + ε2d + o(ε2) the double eigenvalue splits according to

(λ− λ0)
2 + 〈h, e∗〉(λ− λ0)ε+ 〈He∗, e∗〉ε2 = ε2〈f2,d〉 + o(ε2);(5.20)

see [30]. Taking into account that along the curve p(ε) tangent to the flutter boundary
at the point p0,

q − q0 = εeq∗ + o(ε), η − η0 = εeη∗ + ε2dη + o(ε2),

we convert expression (5.20) into(
λ− λ0 +

hq

2
(q − q0)

)2

−
(

(hq)2

4
−Hqq

)
(q − q0)

2 = f1
2 (η − η0).(5.21)
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Fig. 5.3. The frequency curves (from left to right) by (5.21) and by the work of [28].

Formulas (3.22)–(3.25) give the components of the vector h and matrix H,

hη = 686267882692882, hq = 32.1039479,

Hηη = 0, Hηq = 1917.18297, Hqq = 93.4817323.

The double eigenvalue λ0 does not split in the first approximation if the discrim-
inant of (5.21) is zero. This condition gives us the quadratic approximation of the
flutter boundary near the point p0 = (0.32112653, 19.4220703),

η = 0.32112653 + 0.0030906(q − 19.4220703)2.(5.22)

Equation (5.22) shows that the flutter domain is convex at the point p0; see
Figure 5.1. Formula (5.21) approximates in the vicinity of the point q0, λ0 the family
of frequency curves ω(q) =

√
λ(q), parameterized by η. At η = η0, (5.21) disintegrates

into two parts:

q = 0.30878129(Im
√
λ)2+5.09318321, q = 0.03464354(Im

√
λ)2+17.814449.(5.23)

Parabolas (5.23) are symmetrical with respect to the axis q and are situated on
the plane (q, Im

√
λ). At the points (19.4220703,±6.81209576) corresponding to two

purely imaginary eigenfrequencies ω = ±i6.81209576 these parabolas intersect.
In the left picture of Figure 5.3, the behavior of frequency curves described by

(5.21) near one of the intersecting points is shown. One can see that at η < η0 there
exist two purely imaginary frequencies, meaning static instability. With the increase
of η, frequency curves come closer together, overlap, and at η > η0 move apart,
forming a zone of complex eigenvalues (flutter). In the right picture of Figure 5.3, the
dependence of the two lowest eigenfrequencies ω =

√
λ on the load q at the different

values of the parameter η ∈ [0.3, 1.5], obtained earlier in [28] by numerical solution of
characteristic equation (5.6), is shown. Comparing the two pictures of Figure 5.3 we
note a good qualitative and quantitative agreement in behavior of frequency curves
calculated by two different methods in the range η ∈ [0.3, 0.4].

5.2. Behavior of eigenvalues near the stability-divergence boundary.
Consider a point p0 = (η0, q0) on the boundary between the stability and divergence
domains, where the spectrum of the eigenvalue problem (5.1), (5.2) contains a simple
eigenvalue λ0 = 0. Due to variation of parameters, a simple eigenvalue changes
according to formula (4.7). Substituting the differential expression l(u) from (5.1)
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Fig. 5.4. The eigenfunctions of the zero eigenvalue at the point p0 = (0.5, 9.86960440).

Table 5.2

Changing of zero eigenvalue near the point p0 = (0.5, 9.86960440).

(∆η,∆q) λ : Eq. (5.27) λ : Eq. (5.6)

( 10−4, 0) 0.00789568 0.00789498

(−10−4, 0) −0.00789568 −0.00789639

and the forms U1, . . . , U4 and V 5, . . . , V 8 from (5.2) and (5.5) into (3.14), we get the
normal vector f1,

f1 =

(
q0u

′
0(1)v0(1)∫ 1

0
u0v0dx

,

∫ 1

0
u′′0v0dx− (1 − η0)u

′
0(1)v0(1)∫ 1

0
u0v0dx

)
.(5.24)

The eigenfunctions u0 and v0 at the simple zero eigenvalue have the form

u0 = sin(b) − xb cos(b) − sin(b) cos(bx) + cos(b) sin(bx),(5.25)

v0 = 1 − cos(bx), b =
√
q0.(5.26)

These eigenfunctions are solutions of eigenvalue problems (5.1)–(5.4) at λ0 = 0 and
are presented in Figure 5.4.

Consider the point p0 = (0.5, 9.86960440) on the divergence boundary described
by (5.7). Substituting eigenfunctions (5.25) and (5.26) evaluated at this point into
(5.24), we get the normal vector to the divergence boundary,

f1 = (78.9568352, 0).

Hence, the divergence boundary has the vertical tangent at the point p0; see
Figure 5.1. Variation of the parameters ∆p = (η− η0, 0) changes the zero eigenvalue.
According to (4.7) we have

λ = 78.956835(η − η0).(5.27)

One can see that for η − η0 < 0 the eigenvalue λ0 = 0 becomes negative. Therefore,
the point p0 + ∆p is inside the divergence domain; see Figure 5.1. If η − η0 > 0, we
come to the stability domain; see Table 5.2.
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5.3. The singularity 02 of the stability boundary. Figure 5.1 clearly shows
that the flutter domain has a common boundary with the domains of stability and
divergence. Recall that at the points of the boundary between flutter and stability
domains, the spectrum of the differential operator contains positive double eigenval-
ues, while at the points of the boundary between the flutter and divergence domains,
double eigenvalues are negative.

Thus, the double eigenvalue becomes double zero at such point of the flutter
boundary that separates stability and divergence domains. At the same time the
point with double zero eigenvalue should belong to the curve of zero eigenvalues (5.7).

Besides, due to (3.6) the orthogonality condition
∫ 1

0
u0v0dx = 0 must be true at the

points of the flutter boundary. It is clear that this integral evaluated at the points of
curve (5.7) becomes zero only at the point corresponding to the double zero eigenvalue.

Integrating the product of the eigenfunctions u0(x) and v0(x) from (5.25) and
(5.26) over the range [0, 1], we come to the transcendental equation for the ordinate
of the desired point,

q0 = (
√
q0 − 2 sin(

√
q0))(

√
q0(1 + 2 cos(

√
q0)) − 4 sin(

√
q0)).(5.28)

The minimal element of the set of solutions of (5.28) at q0 > 0 is q0 = 17.0695748.
Substituting this solution into (5.7), we find the corresponding value of the second
parameter η0 = 0.35431330.

Note that an equation similar to (5.28) was derived first in [27] from the analy-
sis of characteristic equation (5.6) and without use of the eigenfunctions. However,
formula (3.23) of [27] contains a misprint: the first term k2

2l
2 cos2 k2l should be read

as k2
2l

2 cos k2l. Nevertheless, the coordinates of the singular point found in [27] are
correct and coincide with those obtained from (5.28).

Thus, at the point p0 = (0.35431330, 17.0695748) there exists the double eigen-
value λ0 = 0 with the Keldysh chain of length 2. Following Arnold [13] we denote
this point by the symbol 02, where the upper index means the length of the Keldysh
chain corresponding to the double zero eigenvalue.

The bifurcation of a double eigenvalue is described by formula (4.8). To evaluate
the normal vector f2 at this point, one needs to know the associated functions u1, v1
at the double zero eigenvalue along with the eigenfunctions u0, v0. Solving at k = 2
and λ = 0 boundary value problems (3.4) and (3.5) with the differential expressions
and boundary forms from (5.1)–(5.4) we get

u1 = −cot(b)

6b
x3 +

1

2b2
x2 +

cot(b)(cos(bx) − 1) + sin(bx)

2b3
x(5.29)

+
(bx− sin(bx))(b+ 2b cos(b) − 2 sin(b))

2b4 sin2(b)
,

v1 =
x+ x2

2b2
+
x− 1

2b3
sin(bx) +

b2 cos(b) − sin2(b)

b4(b cos(b) − sin(b))
(sin(bx) − bx),(5.30)

where b =
√
q0.

Substituting eigenfunctions (5.25) and (5.26) and associated function (5.30) into
expression (5.8), we find the normal vector to the flutter boundary at the point p0

= (0.35431330, 17.0695748),

f2 = (−24288.8139,−1024.49949).(5.31)
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Table 5.3

Splitting of the double zero near the singular point p0 = (0.35431330, 17.0695748).

(∆η,∆q) λ : Eqs. (5.32), (5.33) λ : Eq. (5.6)

(0, 10−4) ±i0.32007804 −0.00151188 ± i0.32007586

(0,−10−4) 0.32007804 0.32159210

−0.32007804 −0.31856833

( 10−4, 0) ±i1.55848689 0.02668744 ± i1.55823291

(−10−4, 0) 1.55848689 1.53205170

−1.55848689 −1.58543004

−10−5e∗ −0.01207531 −0.01207543

−0.00043108 −0.00043108

10−5e∗ 0.01207531 0.01207520

0.00043108 0.00043108

Knowing the normal vector allows us to study the neighborhood of the point of the
flutter boundary in any direction e such that 〈f2, e〉 �= 0. In particular, for two
orthogonal directions e = (1, 0) and e = (0, 1), we get

λ = ±155.848689
√
η0 − η, λ = ±32.0078037

√
q0 − q,(5.32)

appropriately. It is easy to see that in the typical situation the double zero eigenvalue
splits either into a complex conjugate pair or into two real eigenvalues, one of which
is negative; see Table 5.3. Thus, the normal vector f2 at the point p0 is directed into
the divergence domain. The inequality 〈f2, e〉 > 0 defines the tangent cone to this
domain, and 〈f2, e〉 < 0 defines the tangent cone to the flutter domain; see Figure 5.1.
Only curves, emitted in the tangent direction to the boundary, can reach the stability
domain from the singular point.

Using the degeneration condition 〈f2, e∗〉 = 0, we find the tangent vector e∗ =
(1,−23.7079804). To examine whether this vector points to the stability domain,
we should consider bifurcation of a double zero eigenvalue in the degenerate case.
Substituting eigenfunctions (5.25) and (5.26), associated functions (5.29) and (5.30),
and the function ŵ2, which according to (5.18) takes the form

ŵ2 = e∗2x
cot(b)(cos(bx) − 1) + sin(bx)

2b
+ e∗2

bx− sin(bx)

2b sin2(b)
, b =

√
q0,

into expressions (5.17) we find the coefficients of (5.16),

a1 = 1250.63981, a2 = 52054.6889.

In accordance with (5.16) in the first approximation we have

λ1 = 1207.53146ε, λ2 = 43.1083501ε.(5.33)

It follows from (5.33) that the double zero eigenvalue splits into two positive sim-
ple eigenvalues (stability) only if the parameters change in the direction specified by
the vector e∗ = (1,−23.7079804); see Table 5.3. Changing the parameters in the
opposite direction results in the splitting of the double λ0 = 0 into two negative
simple eigenvalues, which means static instability (divergence). Note that the ap-
proximate expressions for the eigenvalues are in a good agreement with the solutions
of characteristic equation (5.6); see Table 5.3.
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One can see that the tangent cone to the stability domain at the singular point
is a ray on the plane of parameters. Stability domain in the vicinity of this point is
a long narrow tongue (Figure 5.1). Our technique allows us to find the quadratic ap-
proximation of the flutter and divergence domains and therefore the stability domain
near the singular point.

It is easy to see that (5.20), describing splitting of the double eigenvalue λ0 = 0
along smooth curves tangent to the flutter boundary at the point p = p0, can be
rewritten as follows [30]:

λ2 + 〈h,∆p〉λ+ 〈H∆p,∆p〉 = 〈f2,∆p〉 + o(||∆p||2).(5.34)

Components of the real vector h and real symmetrical matrix H are determined by
formulas (3.22)–(3.25). Their evaluation at the singular point gives

hη = −917.197355, hq = 14.0645660,(5.35)

Hηη = 0, Hηq = −690.854898, Hqq = 34.3323737.

Equation (5.34) provided that λ = 0 gives the quadratic approximation of the diver-
gence boundary near the singular point,

fη2 (η − η0) + fq2 (q − q0) = 2Hηq(η − η0)(q − q0) +Hqq(q − q0)
2.(5.36)

The equality of the discriminant of (5.34) to zero guarantees the nonsplitting
of the double zero eigenvalue and therefore defines the approximation of the flutter
boundary

fη2 (η − η0) + fq2 (q − q0)(5.37)

= (hη(η − η0) + hq(q − q0))
2/4 − (2Hηq(η − η0)(q − q0) +Hqq(q − q0)

2).

Substitution of the components of the normal vector f2 from (5.31) and the vec-
tor h and matrix H from (5.35) into (5.36) and (5.37) gives the quadratic approx-
imations of the flutter and divergence domains in the vicinity of the point p0 =
(0.35431330, 17.0695748). These approximations are shown in Figure 5.1 by the thin
solid lines. One can see that the approximation of the divergence domain is very good
at far distances from the singular point while the approximation of the flutter domain
is good only in the neighborhood of the point p0.

6. Conclusion. A new approach to obtain explicit formulas for the bifurcation
of multiple eigenvalues of non-self-adjoint differential operators smoothly dependent
on a vector of real parameters is presented. The formulas found use the derivatives of
the differential expression and the boundary forms with respect to parameters as well
as the functions of the Keldysh chain evaluated at the point of the parameter space
corresponding to a multiple eigenvalue.

The results obtained let us study the splitting of the multiple eigenvalues in
both regular and degenerate cases and serve as a basis for the sensitivity analysis of
continuous nonconservative systems. This allows one to avoid the variational calcu-
lus in every specific problem to find sensitivities of eigenvalues or critical values of
parameters.

Then the multiparameter stability problems of continuous circulatory systems
are studied. It is found that the stability boundaries of these systems are smooth
surfaces in the parameter space corresponding to simple zero (divergence) or double



1406 OLEG N. KIRILLOV AND ALEXANDER P. SEYRANIAN

real eigenvalues with Keldysh chain of length 2 (flutter). It is shown that the flutter
condition for the circulatory systems is a simple consequence of the existence of the
Keldysh chain of length k ≥ 2.

The advantages of the proposed approach are illustrated by the mechanical ex-
ample known as the extended Beck problem. With the use of the bifurcation analy-
sis of eigenvalues, stability boundaries in this problem are investigated. Linear and
quadratic approximations to the stability and instability domains at both regular and
singular points of their boundaries are found and compared with the exact numerical
values.
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DISCRETIZATION OF CONTINUOUS SPECTRA BASED ON
PERFECTLY MATCHED LAYERS∗
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Abstract. As a tool of analysis in physics, wavefields are often expanded in a set of eigensolu-
tions obtained from a Sturm–Liouville problem. For singular Sturm–Liouville problems subject to
radiation boundary conditions, i.e., problems defined on an infinite domain, this set of eigensolutions
has continuous parts. In this paper we will show that it is possible to approximate this continuous
set of eigensolutions by a discrete set of eigensolutions of the same Sturm–Liouville operator but
subject to Dirichlet boundary conditions in complex space. The idea of Dirichlet boundary condi-
tions in complex space stems from the perfectly matched layer (PML) absorbing boundary condition.
The PML was introduced in 1994 [J. P. Bérenger, J. Comput. Phys., 114 (1994), pp. 185–200] as
an absorbing termination of a finite difference time domain grid. These complex space Dirichlet
boundary conditions have been used recently to close open electromagnetic waveguide structures.
In the present paper we aim at developing a mathematical basis for the wavefields existing in such
structures. On the one hand, this yields a better understanding of the properties of such waveguides
and their applications in electromagnetic field problems. On the other hand, this opens the road for
applications in other wavefields such as elastodynamics and quantum mechanics.

Key words. eigenfunction expansion, Green functions, waveguides, boundary value problems
on infinite intervals, absorbing boundary conditions

AMS subject classifications. 34B24, 34B27, 34B40, 34L10, 78M25, 78A50
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1. Introduction. In 1994, Bérenger published [1] a new absorbing boundary
condition for the finite difference time domain (FDTD) technique to solve electro-
magnetic field problems. That absorbing boundary condition, also called the per-
fectly matched layer (PML), has shown to be extremely useful in FDTD and finite
element techniques. A PML is capable of absorbing without reflection the incident
waves arriving from almost any direction and for all frequencies; i.e., it mimics infinite
space. Originally Bérenger presented the PML in FDTD as a split field formalism.
Later other formulations for a PML were given by interpreting a PML as an artificial
uniaxial anisotropic medium [2] or as a layer with a complex thickness backed by a
perfect electric conductor [3].

Originally, PMLs were used only in numerical, finite difference, or finite element–
based techniques. Later it turned out that PMLs are also useful in semianalytical
techniques. The first such application of PMLs aimed at the study of open waveguide
discontinuities with the mode matching technique [4], [5]. An open waveguide is not
bounded in the transverse plane orthogonal to the propagation direction. This means
that the eigenmodes are solutions of a singular Sturm–Liouville problem over an in-
finite domain, subject to radiation boundary conditions. Hence, the modal spectrum
of an open waveguide contains continuous parts corresponding to so-called radiation
modes. These continuous parts impede the application of the mode matching tech-
nique. With the addition of a PML around the waveguide, the waveguide becomes a
closed waveguide described by a Sturm–Liouville problem over a finite domain, having
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only a discrete spectrum. Since the PML absorbs all incident waves without reflec-
tions, it is to be expected that this discrete spectrum is a good representation of the
continuous spectrum of the open waveguide. In the subsequent years the usage of
PMLs for mode matching techniques has shown to be very successful, especially in
the study of optics; see, e.g., [6], [7].

Another semianalytical application of PMLs is intended for the determination of
Green functions for electromagnetic fields in two and three dimensions in open layered
media [8], [9]. To determine the Green function of a layered structure one usually first
solves for the spectral Green function in the spatial Fourier domain with respect to
the coordinates parallel to the layers. This spectral Green function is usually easily
obtained in closed form. Its inverse Fourier transform cannot, in general, be evaluated
in closed form and often relies on quite delicate numerical techniques. For the three-
dimensional case these inverse Fourier transforms are known as Sommerfeld integrals.
An expansion of the Green function in the eigenmodes of the waveguide consisting of
the layered medium does not allow us to escape the numerical evaluation of an integral
because the spectrum is again continuous due to the open nature of the structure. The
spectral Green function has branch-cuts, corresponding to the continuous spectrum,
apart from some discrete poles. With the addition of a PML, the layered medium
again becomes closed, and the Green function can be expanded in a series of the
discrete eigenmodes of the closed layered waveguide. The spectral Green function
now has only discrete poles. By invoking Cauchy’s residue theorem, this allows an
expansion of the inverse Fourier transform in a series of residues in the discrete poles.
This yields the modal expansion of the Green function.

In both these applications one could say that the addition of PMLs results in a
discretization of continuous spectra.

All studies so far on semianalytical techniques mainly focussed on numerical ac-
curacy and did not particularly explore the underlying mathematics. In the present
paper we want to fill this gap and prove that field solutions in structures with PMLs
converge to the field solutions in the original structures without a PML. At the same
time, we will investigate the convergence properties of the discrete eigenmode series.

The usage of the PML technique to discretize continuous spectra is not restricted
to electromagnetic field problems but can be applied to other and more general wave
problems in physics and elsewhere. Our feeling is that this technique has advantageous
applications in other branches of physics and especially in quantum physics, where one
is often confronted with unbounded spaces, i.e., open structures, yielding continuous
spectra of states. In order to avoid these continuous spectra, one often adds a box
which again yields discrete spectra. The PML technique provides an alternative by
adding a box with PML walls. We remark that this is easily implemented because
the PML can be formulated as a Dirichlet boundary condition in complex rather than
real space. By providing more mathematical rigor, it is hoped that the present paper
will pave the way for the application of PMLs in semianalytical techniques outside the
electromagnetic community. Noteworthy is a recent application of PMLs in economics
for the prediction of the evolution of stock options [10].

In this paper we will treat the PML as a Dirichlet boundary condition placed at
complex space coordinates. We will focus on the Green function problem; i.e., we
will consider linear wave equations with Dirac distributions at the right-hand side.
This poses no restriction, since arbitrary right-hand sides can be dealt with by con-
sidering convolutions with the Green functions. Our aim is to investigate when the
Green function of a wave equation subject to radiation boundary conditions con-
verges to the Green function of the same wave equation subject to Dirichlet boundary
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conditions at points in complex space. First we will consider the Green function of
a two-dimensional Helmholtz wave equation. This allows a simple treatment, and a
closed form expression of the Green function is available, i.e., the Hankel function.
By adding the Dirichlet boundary conditions, we obtain a new series representa-
tion for the Hankel function. It is shown that this series can be made as accurate
as required by adjusting the position in complex space of the Dirichlet boundary
conditions. Some of the results concerning this new series for the Hankel function
were announced in [11]. We also investigate the conditions under which the series
converges. In a second step this is generalized to the Green function of an inhomoge-
neous two-dimensional Helmholtz equation. In this case the Green function subject
to radiation conditions is not expressible in closed form. However, the Green func-
tion subject to Dirichlet boundary conditions in complex space can be expanded in
a series. For one particular case the convergence properties of the series are inves-
tigated. Last, some further generalizations are treated, such as Green functions of
the homogeneous and inhomogeneous three-dimensional Helmholtz operator and of
some vectorial Helmholtz wave equations. In all these cases the Green function is
expanded in the discrete eigenfunctions of a wave operator, i.e., of a Sturm–Liouville
problem, bounded by the Dirichlet boundary conditions. This wave operator is the
spatial Fourier transform in one or more directions of the original wave equation.
Along these directions the radiation condition is still imposed. In the last section
we consider the situation in which the domain of the wave operator is subject to a
Dirichlet boundary condition in all directions. The proofs of the various theorems
are concentrated in Appendix A, and in Appendix B the asymptotic solutions of a
transcendental equation are derived. A few numerical experiments illustrate some of
our findings.

2. The basic problem. Consider the Green function that satisfies the two-
dimensional Helmholtz equation

∇2
xyg(x, y) + g(x, y) = δ(x)δ(y)(1)

over the entire xy-plane, i.e., x, y ∈ R. To obtain a unique solution we demand that
g(x, y) represent outgoing waves when a ejωt time-dependence is assumed. This can
be translated in the radiation condition [12]

lim
ρ→+∞

[
∂

∂ρ
g(x, y) + jg(x, y)

]
= 0,(2)

with ρ =
√
x2 + y2, which automatically selects the correct solution. It is well known

that this solution is given by

g(x, y) = g(ρ) =
j

4
H

(2)
0 (ρ),(3)

with H
(2)
0 (ρ) the Hankel function of zeroth order and second kind.

Consider the spatial Fourier transform G(λ, y) with respect to x of g(ρ)

G(λ, y) =

∫ +∞

−∞
g(ρ)ejλxdx.(4)

The spectral Green function G(λ, y) is a solution of

d2

dy2
G(λ, y) + (1 − λ2)G(λ, y) = δ(y)(5)
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Fig. 1. The complex λ-plane.

and is given by

G(λ, y) =
je−j

√
1−λ2|y|

2
√

1 − λ2
.(6)

Writing the inverse transform yields

j

4
H

(2)
0 (ρ) =

1

2π

∫ +∞

−∞

je−j
√

1−λ2|y|

2
√

1 − λ2
e−jλxdλ.(7)

If we choose the branch-cut of
√
ζ along arg(ζ) = 0+, then the integrand has branch-

cuts, emanating from λ = ±1, as indicated in the complex λ-plane in Figure 1. For
x > 0 (x < 0) the integral along the real λ-axis can be replaced by an integral along
the branch-cut in the lower (upper) half-plane, since the semicircle at infinity will not
contribute. So far, this is a well known trivial matter.

Consider another Green function g̃(x, y), a solution of (1) but subject to the
boundary condition

g̃(x, y = ±d) = 0,(8)

d ∈ R that represents outgoing waves for x → ±∞. The spectral Green function
G̃(λ, y) is readily found,

G̃(λ, y) =
sin[

√
1 − λ2(|y| − d)]

2
√

1 − λ2 cos[
√

1 − λ2d]
,(9)

and hence

g̃(x, y) =
1

2π

∫ +∞

−∞

sin[
√

1 − λ2(|y| − d)]

2
√

1 − λ2 cos[
√

1 − λ2d]
e−jλxdλ.(10)

Let us extend d in (10) to the complex plane; i.e., assume that d = γe−jα. Now
we conjecture for all x, y ∈ R that

∀ε > 0, ∃δ(ε) > 0 : γ > δ(ε) > 0 ⇒ |g(x, y) − g̃(x, y)| < ε(11)
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Fig. 2. Complex λ-plane.

when 0 < α < π
2 . This can be seen from

g(x, y) − g̃(x, y) = − 1

π

∫ +∞

0

[
sinh[

√
λ2 − 1(|y| − d)]√

λ2 − 1 cosh[
√
λ2 − 1d]

+
e−

√
λ2−1|y|

√
λ2 − 1

]
cos(λx)dλ

=
1

π

∫ +∞

0

tanh(
√
λ2 − 1γe−jα) − 1√
λ2 − 1

cosh(
√
λ2 − 1|y|) cos(λx)dλ,(12)

where the branch-cut of
√
ζ now is along arg(ζ) = π+. The proof of (11) is an

immediate consequence of Theorem A.4 in Appendix A. This means that we can use
g̃(x, y) as an approximation for g(x, y), provided that γ is chosen large enough and
that 0 < α < π

2 .
Now consider the integral (10). The integrand has no branch-cuts but simple

poles at

λ±n = ±
√

1 − (2n+ 1)2π2

4d2
,(13)

n = 0, 1, 2, . . . . Figure 2 shows a typical distribution of these poles in the complex
λ-plane. Let us assume that x > 0. Using Cauchy’s theorem, the integral along the
real axis can be replaced by a sum of the residues at the poles in the lower half-
plane and an integral along the semicircle C−∞ at infinity in the lower half-plane. If
the contribution of C−∞ vanishes, then (10) allows the following series representa-
tion:

g̃(x, y) = − j

2d

+∞∑
n=0

cos
(2n+ 1)πy

2d

e−j
√

1− (2n+1)2π2

4d2 x√
1 − (2n+1)2π2

4d2

.(14)

Let us investigate when the contribution from C−∞ vanishes. At a semicircle with
radius R in the lower half-plane, the spectral Green function G̃(λ, y), with λ = Rejφ,
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−π ≤ φ ≤ 0, can be written as

G̃(λ, y) ≈ −e
−jφ

2R

eRe
jφ(|y|−γe−jα) − e−Re

jφ(|y|−γe−jα)

eRejφγe−jα + e−Rejφγe−jα e−jλx,(15)

where we have assumed that R is large enough such that
√

1 − λ2 ≈ jRejφ.
We distinguish two cases as follows.

1. Assume first that cos(φ−α) > 0; this will be the case if −π
2 +α ≤ φ ≤ 0. In

this case we can write (15) as

G̃(λ, y) ≈ −e
−jφ

2R

eR|y|ejφe−2Rγej(φ−α) − e−Re
jφ|y|

1 + e−2Rγej(φ−α)
e−jRxe

jφ

.(16)

This function decays exponentially for increasing R if

|y| cosφ− 2γ cos(φ− α) + x sinφ ≤ 0,(17)

|y| cosφ+ x sinφ ≤ 0.(18)

Writing x = ρ cos τ and |y| = ρ sin τ , with 0 ≤ τ ≤ π
2 , this becomes

ρ sin(φ+ τ) − 2γ cos(φ− α) ≤ 0,(19)

ρ sin(φ− τ) ≤ 0.(20)

For the considered ranges of φ and τ the condition (20) is always satisfied. For the
condition (19) it is easily checked that it is satisfied for −π

2 +α ≤ φ ≤ 0 if it is satisfied
for φ = 0, i.e., if ρ sin τ − 2γ cosα ≤ 0. This can always be assured by taking γ large
enough.

2. Now assume that cos(φ− α) < 0, i.e., that −π ≤ φ ≤ −π
2 + α. We can cast

(15) as

G̃(λ, y) = −e
−jφ

2R

eR|y|ejφ − e−Re
jφ|y|e2Rγe

j(φ−α)

e2Rγej(φ−α) + 1
e−jRxe

jφ

.(21)

Exponential decay now demands that

ρ sin(φ+ τ) ≤ 0,(22)

ρ sin(φ− τ) + 2γ cos(φ− α) ≤ 0.(23)

The condition (23) can be assured by taking γ large enough. Indeed, one again
checks that (23) is satisfied for all φ when it is satisfied for φ = −π, i.e., when
ρ sin τ − 2γ cosα ≤ 0. Condition (22) is a different matter. That condition is only
satisfied for −π ≤ φ ≤ −π

2 + α when τ ≤ π
2 − α.

By taking the limit for R → +∞, we have shown that the contribution of C−∞
will not vanish for x and y values for which τ > π

2 − α. One could imagine closing
the contour by a semicircle C+∞ at infinity in the upper half-plane to resolve this
problem, but also the contribution of C+∞ will not vanish.

The previous steps can be repeated for x < 0 by closing the contour in the upper
half-plane with C+∞ and considering the residues of the poles in the upper half-
plane. The result is that a series representation of the integral (10) is possible in
the nonhatched region of the xy-plane indicated in Figure 3. As a confirmation of
this result one can check that the terms in the series (14) diverge exponentially in
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Fig. 3. Region of convergence of the series (14).

the hatched region of Figure 3. Outside the hatched region we have found a series
approximation for the Green function (3), i.e., the Hankel function, that becomes
more accurate if γ increases. In particular, we have that

H
(2)
0 (x) ≈ −2

d

+∞∑
n=0

e−j
√

1− (2n+1)2π2

4d2 x√
1 − (2n+1)2π2

4d2

(24)

for x > 0.
It is unnecessary to keep y real. One could as well analytically extend (14) to

the complex plane with respect to y. Let us consider one particular example where
we take y = ỹe−jα with ỹ ∈ R. With this choice it is obvious that the series (14) is
convergent for all x > 0 and for all ỹ. It is then verified that g̃(x, y = ±d) = 0 with d
complex. Hence, we could say that g̃(x, y) is the solution of (1) subject to Dirichlet
boundary conditions in the complex y-plane. As was already the case on the real axis,
the series (14) will not converge in the entire complex y-plane.

Applying Cauchy’s theorem on the right-hand side of (7) allows us to write g(x, y)
for x > 0 as

g(x, y) =
1

2π

∫
Cb

je−j
√

1−λ2|y|

2
√

1 − λ2
e−jλxdλ

= − 1

2π

∫ 1

0

e−jλx cos(|√1 − λ2||y|)
|√1 − λ2| dλ+

1

2π

∫ +∞

0

e−κx cos(|√1 + κ2||y|)
|√1 + κ2| dκ,(25)

where we have closed the contour with C−∞ and an integration along the branch-cut
Cb as indicated on Figure 1. The right-hand side is nothing but an expansion of the
Green function g(x, y) in the continuous spectrum of eigenfunctions of the operator

d2

dy2
+ 1(26)

along the entire y-axis. The spectrum is continuous because the domain of the opera-
tor is infinite in the y-direction. The first term on the right-hand side represents prop-
agating plane waves, and the second term on the right-hand side represents evanescent
or inhomogeneous plane waves. The series (14) is also an expansion in eigenfunctions
of the operator (26) but now subject to the Dirichlet boundary conditions at y = ±d.
These eigenfunctions constitute a discrete set. Physically we can thus say that we
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have constructed a discrete spectrum representation of the continuous spectrum. In
the analysis we considered the Green function problem, but it is clear that one could
as well consider the field due to a general source (i.e., an arbitrary function s(x, y) on
the right-hand side in (1)) by taking the convolution with the Green function.

The expression (14) for the Green function g̃(x, y) can also be obtained by a
different route. Let us, for the moment, assume that the resolution

δ(y) =
1

d

+∞∑
n=0

cos
(2n+ 1)πy

2d
(27)

of the δ(y) distribution remains valid for complex d. It then follows that the solution
of (5) for G̃(λ, y) can be written as

G̃(λ, y) =
1

d

+∞∑
n=0

cos (2n+1)πy
2d

1 − λ2 − (2n+1)2π2

4d2

,(28)

and its inverse Fourier transform as

g̃(x, y) =
1

2πd

+∞∑
n=0

cos
(2n+ 1)πy

2d

∫ +∞

−∞

e−jλx

1 − λ2 − (2n+1)2π2

4d2

dλ.(29)

The integral is easily evaluated in closed form by again invoking Cauchy’s theorem
and closing, for x > 0, the contour along C−∞, the contribution of which always
vanishes. The result is again (14). Since we know that (14) is invalid in the hatched
region of Figure 3, we find that the resolution (27) of the Dirac distribution is invalid
for real y. This is in agreement with [13]. However, for y = ỹe−jα with ỹ ∈ R, (27)
is a good resolution of the Dirac distribution in −γ < ỹ < γ since (14) is then valid
for all x. This means that∫ +d

−d
h(y)

1

d

+∞∑
n=0

cos
(2n+ 1)πy

2d
dy = h(0),(30)

where h(y) is holomorphic and where the path connecting −d and d in the complex
y-plane is arbitrary.

In Figure 4 the number of digits of accuracy of the series (24) is shown for three
different distances x as a function of the parameter q = log10(γ). It is seen that
the accuracy increases with γ and that γ has to increase for a given accuracy when x
increases in agreement with the aforementioned conclusion. In Figure 5 the number of
terms needed in the series is shown to approximate the series sum with an accuracy of
10−7. The results are plotted for the same distances x as a function of the parameter q.

3. A more general problem. Consider the Green function satisfying the in-
homogeneous two-dimensional Helmholtz equation

∇2
xyg(x, y) + k2(y)g(x, y) = δ(x)δ(y − y′),(31)

where we assume that y′ ≤ 0, that k2(y) ∈ R+, and that k2(y) = 1 for y > 0. We
also assume that g(x, y) satisfies the radiation condition (2) in the half-plane y > 0.
The spectral Green function G(λ, y) satisfies

d2

dy2
G(λ, y) + [k2(y) − λ2]G(λ, y) = δ(y − y′).(32)
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Fig. 4. Number of digits of accuracy of (24) as a function of q = log10(γ) for x = 1, 10, 100.

Fig. 5. Number of terms needed in (24) as a function of q = log10(γ) for an accuracy of 10−7

for x = 1, 10, 100.

Note that G(λ, y) is an even function of λ since g(x, y) is an even function of x. In
the region y > 0 we can write

G(λ, y) = G(λ, 0)e−j
√

1−λ2y.(33)

Consider another Green function g̃(x, y) that also satisfies (31) but subject to the
boundary condition g̃(x, y = d) = 0. If R(λ) is the reflection coefficient for an incident

wave ej
√

1−λ2y on the structure at y = 0, then we can expand G̃(λ, y) in the region
y > 0 as a series of waves

G̃(λ, y) = G(λ, 0)

+∞∑
n=0

[−R(λ)e−2jd
√

1−λ2
]n(e−j

√
1−λ2y − ej

√
1−λ2(y−2d))

= G(λ, 0)
e−j

√
1−λ2y − ej

√
1−λ2(y−2d)

1 +R(λ)e−2jd
√

1−λ2
.(34)

The term n = 0 corresponds to the wave G(λ, y) and the down-propagating reflected
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wave at y = d,

G1(λ, y) = −G(λ, 0)ej
√

1−λ2(y−2d),(35)

with inverse Fourier transform

g1(x, y) = − 1

π

∫ +∞

0

G(λ, 0)e−
√
λ2−1(2d−y) cos(λx)dλ.(36)

From Theorem A.5 in Appendix A it follows, with d = γe−jα for all x, that

∀ε > 0, ∃δ(ε) > 0 : γ > δ(ε) > 0 ⇒ |g1(x, 0)| < ε.(37)

This means that γ can be chosen such that g1(x, 0) becomes negligibly small. This in
turn means that the waves generated by the incidence of g1(x, y) on the region y < 0
will be negligible compared to g(x, y). In other words, for all x,

∀ε > 0, ∃δ(ε) > 0 : γ > δ(ε) > 0 ⇒ |g(x, y) − g̃(x, y)| < ε(38)

for y < 0.
Return to problem (31) and assume that k2(y) takes constant values (k+)2 for

y > a+ and (k−)2 for y < a−, and assume that g(x, y) represents outgoing waves in
the regions y > a+ and y < a−; then this Green function can be approximated by
another Green function g̃(x, y) that satisfies (31) with a− ≤ y′ ≤ a+ but subject to

the boundary conditions g̃(x, a+ + d+) = g̃(x, a− − d−) = 0 with d± = γ±e−jα
±
. If

0 < α± < π/2, then the difference |g(x, y)− g̃(x, y)| can be made as small as required
by taking γ± sufficiently large.

The spectral Green function G(λ, y) will have branch-cuts emanating from ±k+

and ±k−, together with some discrete poles [14], [15]. The discrete poles and the
branch-cuts constitute the spectrum of the operator

d2

dy2
+ k2(y),(39)

where the continuous part, i.e., the branch-cuts, are again due to the infinite domain.
Due to the Dirichlet boundary conditions in the y-direction, the spectral Green func-
tion G̃(λ, y) will have only discrete poles and no branch-cuts; i.e., the operator (39)
has a discrete spectrum. This means that g̃(x, y) can be written as a sum of residues
of a number of these discrete poles if the contributions from semicircles at infinity
vanish. This series will approximate g(x, y).

Let us consider one particular example where we look for solutions of (31) with
k2(y) = 1 for y > y′ > 0 and k2(y) = k2 for y < y′. We bound the domain at y = 0
by imposing g(x, y = 0) = 0. The spectral Green function G(λ, y) is readily given by

G(λ, y) = − sin[κ1(λ)y]

jκ2(λ) sin[κ1(λ)y′] + κ1(λ) cos[κ1(λ)y′]
(40)

for 0 < y < y′ and by

G(λ, y) = − ejκ2(λ)y′e−jκ2(λ)y sin[κ1(λ)y′]
jκ2(λ) sin[κ1(λ)y′] + κ1(λ) cos[κ1(λ)y′]

(41)
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for y > y′ with κ1(λ) =
√
k2 − λ2 and κ2(λ) =

√
1 − λ2. These functions clearly have

branch-cuts emanating from λ = ±1, and their inverse Fourier transforms are not
available in closed form. The spectral Green function G̃(λ, y), on the other hand, is
given by

G̃(λ, y) = − sin[κ2(λ)d] sin[κ1(λ)y]

N(λ)
(42)

for 0 < y < y′ and by

G̃(λ, y) = − sin[κ1(λ)y′] sin[κ2(λ)(y′ + d− y)]

N(λ)
(43)

for y > y′ with N(λ) = κ2(λ) sin[κ1(λ)y′] cos[κ2(λ)d] + κ1(λ) cos[κ1(λ)y′] sin[κ2(λ)d].
This spectral Green function has no branch cuts but only poles at the zeroes of N(λ).

Let us examine the case y > y′. The space domain Green function g̃(x, y) can be
calculated using Cauchy’s theorem by closing the contour with C−∞ for x > 0. The
result is

g̃(x, y) = − 1

2π

∫ +∞

−∞

sin[κ2(λ)(y′ + d− y)] sin[κ1(λ)y′]e−jλx

N(λ)
dλ

= j
+∞∑
i=0

sin[κ2(λi)(y
′ + d− y)] sin[κ1(λi)y

′]e−jλix

N ′(λi)
,(44)

with N(λi) = 0 and N ′(λ) = d
dλN(λ). In (44) it is assumed that the contribution of

C−∞ vanishes. Let us prove that this assumption is correct by showing that the series
in (44) converges for x > 0. To do so we look at the asymptotic form of the terms
in the series (44). For this we need the asymptotic roots of the equation N(λi) = 0.
This is discussed in Appendix B. It turns out that there are two branches of solutions.

The asymptotic solutions corresponding to the first branch can be approximated
by the solutions of the equation

κ2(λ) cosh(λd) + κ1(λ) sinh(λd) = 0;(45)

i.e., these solutions are independent of the value of y′. According to Appendix B, an
asymptotic expression for the solutions of this equation is given by

λi ≈ −1

d
log

[
2(iπ + α)√
k2 − 1γ

]
− iπ + α

d
j.(46)

These values of λi allow us to approximate the terms in the series (44) for large values
of i as

j
sin[κ2(λi)(y

′ + d− y)] sin[κ1(λi)y
′]e−jλix

N ′(λi)
≈ aie

− iπx
d e−j

iπ∆y
d ,(47)

with ∆y = y − y′ and ai such that limi→+∞ aie
−εi = 0 for all ε > 0. For real

values of y these terms are exponentially decaying if x > ∆y tanα, which gives us the
convergence region of the part of the series corresponding to the first branch. This
region corresponds again to the nonhatched region of Figure 3 when we replace the
y-parameter by ∆y. In [9] the solutions corresponding to this first branch are called
PML surface waves.
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The solutions of the second branch asymptotically satisfy the equation

κ2(λ) sinh(λy′) − κ1(λ) cosh(λy′) = 0,(48)

which shows that these solutions are independent of d. An asymptotic expression for
the solutions of (48) is given by

λi ≈ 1

y′
log

[
(2i+ 1)π

y′
√
k2 − 1

]
− (2i+ 1)π

2y′
j.(49)

For these values of λi the terms in the series (44) asymptotically behave as

j
sin[κ2(λi)(y

′ + d− y)] sin[κ1(λi)y
′]e−jλix

N ′(λi)
≈ bie

− (2i+1)πx

2y′ e−j
(2i+1)π∆y

2y′ ,(50)

with limi→+∞ bie
−εi = 0 for all ε > 0. For real values of y these terms are always

decaying exponentially for x > 0, proving the convergence of the part of the series
corresponding to the second branch. In [9] the solutions corresponding to the second
branch are called pseudoleaky surface waves.

It can be shown that the corresponding series for 0 < y < y′,

g̃(x, y) = j

+∞∑
i=0

sin[κ2(λi)d] sin[κ1(λi)y]e
−jλix

N ′(λi)
,(51)

is convergent for all x > 0. Note also that for ∆y = ∆ỹe−jα and 0 < ∆ỹ < γ both
terms (47) and (50) decay exponentially for all x > 0.

Remarkable is that previous convergence analysis breaks down when k = 1. For
k = 1 the conclusions regarding the convergence of (44) and (51) are invalid. This
finds its origin in the fact that the asymptotic solutions do not separate anymore into
two independent parts where one part depends only on d and the other only on y′.
We will not pursue the case k = 1.

We can also construct a resolution of the δ(y−y′) distribution in the eigenfunctions
of the operator (39). Let us write for 0 < y < y′

δ(y − y′) =

+∞∑
i=0

αi sin[κ1(λi)y],(52)

with yet unknown expansion coefficients αi. From (32) it then follows that

G̃(λ, y) =

+∞∑
i=0

αi
λ2
i − λ2

sin[κ1(λi)y].(53)

Inverse Fourier transformation and identification with the series expansion (51) yields
that

αi = −λi sin[κ2(λi)d]

πN ′(λi)
.(54)

As a numerical example, assume that k = 1.75, that y′ = 2, and that d = γe−jπ/8,
i.e., that α = π/8. Figure 6 shows the solutions of N(λ) = 0 by large dots when
γ = 10. There is a solution that is almost located on the real axis; its value is given
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Table 1

Shift of the pole on the real axis to the complex plane as a function of γ.

γ λ

10 1.34274364519737586140 − 9.16986697792 10−9j

20 1.34274365934371669251 − 9.9180 10−16j

∞ 1.34274365934371713609

Fig. 6. Solutions of N(λ) = 0 when d = 10e−jπ/8, k = 1.75, y′ = 2.

in Table 1. For γ = 20 this solution slightly shifts, as is also shown in Table 1. This
solution corresponds to a zero of the denominator of (40) or (41) shown on the last row
of Table 1 and indicated on Figure 6 by a circle. This is the only pole of the spectral
Green function G(λ, y). The asymptotic solutions (46) and (49) are also indicated on
Figure 6 by small dots. For higher order solutions these asymptotic solutions better
approximate the exact solutions. These asymptotic solutions allow for a very efficient
determination of the exact solutions. One first calculates the asymptotic solutions
(46) for i = n, i = n + 1, and i = n + 2, with n sufficiently large. Then one uses
a Newton iteration technique starting from these asymptotic solutions to find the
exact solutions. A quadratic extrapolation from these three exact solutions yields an
approximate solution with index n− 1. The Newton technique is then used again to
polish this solution to the exact solution. This process of quadratic extrapolation is
repeated for decreasing index solutions. The same can be done starting from (49). The
process breaks down at the very low index solutions. These low index solutions can be
found by using a combined contour integration [9] and Newton technique. The solution
that is located almost on the real axis can be found by first determining the real zero of
the denominator of (40) and then polishing this solution to the corresponding solution
of N(λ) = 0.

Assume that y = y′ = 2 and γ = 10. Figure 7 shows the number of terms needed
in the series (51) to approximate the series with a relative accuracy of 0.01, 0.0001,
and 0.000001 as a function of the distance s = log10(x). We have ordered the poles
λi by decreasing imaginary part. Evidently, when x becomes larger, fewer terms are
needed. When γ increases, the spacing between the poles decreases (cf. (46)), and
hence more poles are needed to approximate the series to a given accuracy.

Finally, Figure 8 shows the absolute accuracy a = |g(x, y′)− g̃(x, y′)| as a function
of s = log10(x) for γ = 10 and 20. In the series (51) we limited the sum to poles with
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Fig. 7. Number of terms in (51) as a function of s = log10(x) for a relative accuracy of
10−2, 10−4, 10−6.

Fig. 8. Absolute accuracy a = |g(x, y) − g̃(x, y)| as a function of s = log10(x) for γ = 10, 20.

an imaginary part larger than −30. This explains the loss of accuracy for small x.
As expected, when γ increases, the accuracy increases. The small ripple on the curve
for γ = 20 is due to numerical noise in the evaluation of g(x, y′). The Green function
g(x, y′) has been evaluated by a careful numerical integration of the inverse Fourier
transformation of (40). For larger values of x we note a decrease in the accuracy. This
is consistent with the results in section 2. However, for even larger values of x the
accuracy increases again. In this regime it is only the pole of Table 1 that contributes
to the series. In this regime, g(x, y′) is also approximated by the residue of (40) or
(41) in this pole for y = y′. This residue is shown by a dotted line on the figure.
For even larger values of x, not shown on Figure 8, the accuracy will decrease again
because the small imaginary part of the pole close to the real axis will start to create
significant exponential decay. Indeed, limx→+∞ g̃(x, y′) = 0!

4. Further generalizations. The Green function of the three-dimensional
Helmholtz-equation

∇2
xyzg(x, y, z) + g(x, y, z) = δ(x)δ(y)δ(z)(55)
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satisfying the Sommerfeld radiation condition is obviously

g(x, y, z) = g(r) = −e
−jr

4πr
,(56)

with r =
√
x2 + y2 + z2. Expressing this as an inverse Fourier transform in the x-

and y-direction of the spectral Green function yields

g(x, y, z) =
1

2π

∫ +∞

0

je−j
√

1−λ2|z|

2
√

1 − λ2
J0(λ

√
x2 + y2)λdλ

=
1

4π

∫ +∞

+∞e−jπ

je−j
√

1−λ2|z|

2
√

1 − λ2
H

(2)
0 (λ

√
x2 + y2)λdλ,(57)

where λ =
√
λ2
x + λ2

y, with λx and λy the spectral variables in the x- and y-direction.
This inverse Fourier transform is a Sommerfeld type of integral, which for this simple
case can be evaluated in closed form. The spectral Green function has branch-cuts
corresponding to the continuous set of eigenfunctions of ∇xy + 1 consisting of propa-
gating and evanescent cylindrical waves. For this simple case only the angular inde-
pendent cylindrical waves are involved.

Consider another Green function g̃(x, y, z) satisfying (55) but subject to the con-
dition g̃(x, y, z = ±d) = 0. The corresponding spectral Green function is

G̃(λ, z) =
sin[

√
1 − λ2(|z| − d)]

2
√

1 − λ2 cos[
√

1 − λ2d]
,(58)

which obviously only has poles. Using Cauchy’s theorem it is possible to expand
g̃(x, y, z) as the following series:

g̃(x, y, z) = − j

4d

+∞∑
n=0

cos

[
(2n+ 1)πz

2d

]
H

(2)
0

[√
1 − (2n+ 1)2π2

4d2

√
x2 + y2

]
.(59)

Since for large arguments the function H
(2)
0 (ζ) behaves as

√
2j
πζ e

−jζ , it follows, by

comparison with (14), that the series is convergent in the nonhatched region of Fig-
ure 3 if we replace y by z and x by ρ. From Theorem A.7 in Appendix A it follows
again for a complex d = γe−jα and for all x, y, z ∈ R that

∀ε > 0, ∃δ(ε) > 0 : γ > δ(ε) > 0 ⇒ |g(x, y, z) − g̃(x, y, z)| < ε,(60)

with 0 < α < π
2 . This can obviously be generalized to Green functions satisfying

equations of the form

∇2
xyzg(x, y, z) + k2(z)g(x, y, z) = δ(x)δ(y)δ(z − z′).(61)

In this case the Sommerfeld integrals cannot be evaluated in closed form. Numerical
evaluation of Sommerfeld integrals is not always easy because the integrands are of-
ten highly oscillatory and have poles and branch-cuts. With the technique outlined
here, a series representation is obtained for these Sommerfeld integrals. There are
other discrete representations for Sommerfeld integrals, but those rely on rational
approximations, i.e., Padé approximations [16]. To obtain these rational approxima-
tions Prony’s techniques, or equivalents, are needed. Here, the series representation
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follows in a natural way and requires only the determination of the complex zeroes
of a transcendental function. In our series the x, y, z, and z′-dependence is available
in explicit form, making this series representation especially attractive if the Green
function is needed for many values of x, y, z, or z′ and for further analytic manipula-
tions. Other series representations [17] for Sommerfeld integrals can be obtained by
transforming the integral to its steepest descent path and adding integral contribu-
tions from the branch-cuts and discrete contributions from the residues in the poles.
The steepest descent integral and branch-cut integrals can then be approximated by
Gaussian quadrature sums yielding a series representation. This technique is based
on a pure numerical evaluation of the integrals and becomes complicated when poles,
branch-cuts, and/or the steepest descent path come into each other’s neighborhood.
More on the evaluation of Sommerfeld integrals can be found in [18].

We can also derive another approximate series representation for the Green func-
tion g(x, y, z) by considering a Green function ĝ(x, y, z) that also satisfies (55) but now

subject to the condition ĝ(ρ =
√
x2 + y2 = d, z) = 0. By using a Fourier transform

along the z-axis, we can express ĝ(x, y, z) as

ĝ(x, y, z) =
j

4d

+∞∑
n=1

√
1 − λ2

nJ0(
√

1 − λ2
nρ)Y0(

√
1 − λ2

nd)

λnJ1(
√

1 − λ2
nd)

e−jλnz(62)

with λn =
√

1−α2
n

d2
, n = 1, 2, . . . , where αn ∈ R are the zeroes of J0. With d = γe−jα,

0 < α < π
2 , and γ sufficiently large, the function ĝ(x, y, z) will again approximate

g(x, y, z). The condition ĝ(ρ = d, z) = 0 is equivalent to adding a curvilinear PML
[19].

Still another approximation ǧ(x, y, z) can be obtained by imposing that ǧ(x =
±d, y = ±d, z) = 0. The result is

ǧ(x, y, z) = − j

2d2

+∞∑
n,m=0

cos
(2n+ 1)πx

2d
cos

(2m+ 1)πy

2d

e−jκnm|z|

κnm
,(63)

with

κnm =

√
1 − (2n+ 1)2π2

4d2
− (2m+ 1)2π2

4d2
.(64)

In analogy with section 2, this series will converge when |z| ≤ |x| tanα and |z| ≤
|y| tanα.

Also Green functions satisfying equations of the form

∇2
xyzg(x, y, z) + k2(x, y)g(x, y, z) = δ(x− x′)δ(y − y′)δ(z)(65)

can be treated in the same way as ĝ(x, y, z) or ǧ(x, y, z).
Further generalizations include Green functions of other more complex wave op-

erators such as

∇xyz ·A(z) · ∇xyzg(x, y, z) + b(z) · ∇xyzg(x, y, z) + k2(z)g(x, y, z)

= δ(x)δ(y)δ(z − z′),(66)

or higher order operators. Equations of this form are obtained when considering
electromagnetic field problems in anisotropic media (see [20] and references therein).
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However, for that type of problems the present analysis needs to be adapted and
further investigated; it will not just suffice to place a Dirichlet boundary condition
in complex space. Indeed, adding PMLs to anisotropic media can cause problems, as
has been reported in [21]. For an overview of some closed form Green functions of
wave equations in infinite homogeneous space, i.e., of wave equations with constant
coefficients, we refer the reader to [22].

In [9] series representations were derived for the Green tensor g(x, y, z) of a vec-
torial wave equation of the form

∇xyz × [α(z)∇xyz × g(x, y, z)] − k2(z)g(x, y, z) = δ(x)δ(y)δ(z − z′)I,(67)

with I the unit tensor. The study in [9] focussed on a numerical investigation of the
accuracy of the series.

5. Further remarks. In the previous sections we considered Green functions
of wave equations with coefficients that were independent of at least one coordi-
nate along which the outgoing wave condition was imposed. Along this direction
we could apply a spatial Fourier transformation and write the result as a series of
eigenfunctions.

Let us now consider cases where there is no such direction. As a simplest possible
case consider

d2

dx2
g(x) + g(x) = δ(x),(68)

where g(x) represents outgoing waves. The solution obviously is

g(x) = −e
−j|x|

2j
.(69)

If we consider another Green function g̃(x) satisfying (68) but subject to g̃(x = ±d) =
0, then there is no invariant direction. Obviously g̃(x) is given by

g̃(x) =
1

2

sin(|x| − d)

cos d
= − 1

2j

e−j|x| − ej|x|−2jd

1 + e−2jd
.(70)

If d = γe−jα with 0 < α < π/2, then one easily verifies for all x ∈ R that

|g̃(x) − g(x)| ≤ e−2γ sinα,(71)

proving the convergence of g̃(x) to g(x) when γ increases. Using the result (28) for
λ = 0, we can formally write

g̃(x) =
1

d

+∞∑
n=0

cos (2n+1)πx
2d

1 − (2n+1)2π2

4d2

.(72)

For x �= 0 this series diverges again, illustrating that the resolution (27) is invalid on
the real axis.

Another case is the Green function (56) of the three-dimensional Helmholtz equa-
tion (55). We approximate this Green function by another Green function g̃(x, y, z)
that satisfies g̃(x = ±d, y = ±d, z = ±d) = 0. Using the result (63), one can show
that this Green function can be written as

g̃(x, y, z) =
1

2d2

+∞∑
n=0

+∞∑
m=0

cos
(2n+ 1)πx

2d
cos

(2m+ 1)πy

2d

sin[κnm(|z| − d)]

κnm cos[κnmd]
,(73)
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with κnm defined in (64). This series is still another approximation for the Green
function (56) which converges if |z| ≤ |x| tanα and |z| ≤ |y| tanα. Evidently more
approximations for that Green function can be found by, e.g., imposing Dirichlet
boundary conditions on a spherical or a finite cylindrical surface in complex space.

6. Conclusions. We have shown that the continuous spectrum of a singular
Sturm–Liouville eigenvalue problem subject to radiation boundary conditions can be
approximated by the discrete spectrum of the same Sturm–Liouville problem but now
subject to Dirichlet boundary conditions at points in complex space. This allows new
approximate series expansions for Green functions. The conditions under which these
series converge were investigated.

Appendix A. Theorems and lemmas.
Lemma A.1.

∀ζ ∈ C, ξ = �(ζ) > 1 ⇒ | tanh ζ − 1| < 4e−2ξ.(74)

Proof. From

| tanh ζ − 1| =

∣∣∣∣ 2e−2ζ

1 + e−2ζ

∣∣∣∣ = 2e−2ξ

|1 + e−2ζ | ,(75)

it follows that

| tanh ζ − 1| < 2e−2ξ

1 − e−2ξ
=

2

e2ξ − 1
<

2
e2ξ

2

= 4e−2ξ(76)

if ξ > 1, since e2ξ − 1 > e2ξ/2 when ξ > 1.
Theorem A.2. If 0 < α < π/2 and x ∈ R, then

∀ε > 0, ∃δ(ε)> 0 : γ > δ(ε)⇒
∣∣∣∣∣
∫ +∞

0

tanh(
√
λ2 − 1γe−jα) − 1√
λ2 − 1

cos(λx)dλ

∣∣∣∣∣< ε,(77)

where the branch-cut of
√
ζ is along arg(ζ) = π+.

Fig. 9. Deformed contour in the complex λ-plane.

Proof. With the choice of the branch-cut the integrand in (77) is holomorphic
in the first quadrant of the complex λ-plane. This means that we can deform the
integration path as indicated in Figure 9. The part of the integration on the real λ
axis from λ = 1 − τ to λ = 1 + τ , with 0 < τ < 1, is replaced by a semicircle cτ , as
shown in Figure 9. Hence we have∣∣∣∣

∫ +∞

0

. . . dλ

∣∣∣∣ ≤
∣∣∣∣
∫ 1−τ

0

. . . dλ

∣∣∣∣+
∣∣∣∣
∫
cτ

. . . dλ

∣∣∣∣+
∣∣∣∣
∫ +∞

1+τ

. . . dλ

∣∣∣∣ .(78)
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Using Lemma A.1, | cosλx| ≤ 1, and |λ2 − 1| ≥ −τ2 + 2τ , we find for the first
term on the right-hand side that∣∣∣∣

∫ 1−τ

0

. . . dλ

∣∣∣∣ <
∫ 1−τ

0

4e−2
√

1−λ2γ sinα

√−τ2 + 2τ
dλ <

4(1 − τ)√−τ2 + 2τ
e−2

√−τ2+2τγ sinα(79)

if

γ >
1√−τ2 + 2τ sinα

.(80)

The second term on the right-hand side of (78) can be written as

∣∣∣∣
∫
cτ

. . . dλ

∣∣∣∣=
∣∣∣∣∣
∫ π

0

tanh(
√
τ2e−2jφ− 2τe−jφγe−jα)− 1√
τ2e−2jφ− 2τe−jφ

cos[(1− τe−jφ)x]τe−jφdφ

∣∣∣∣∣ .
(81)

For 0 ≤ φ ≤ π we have that

|
√
τ2e−2jφ − 2τe−jφ| >

√
−τ2 + 2τ ,(82)

that

�(
√
τ2e−2jφ − 2τe−jφe−jα) > σ = min[

√
−2τ + τ2 sinα,

√
τ2 + 2τ cosα] > 0,(83)

and also that

| cos[(1 − τe−jφ)x]| < 2eτ |x|.(84)

Using Lemma A.1, this all allows us to write for the second term on the right-hand
side of (78) that ∣∣∣∣

∫
cτ

. . . dλ

∣∣∣∣ < 8πτ√−τ2 + 2τ
e−2σγ+τ |x|(85)

if

γ >
1

σ
.(86)

Using Lemma A.1, | cosλx| ≤ 1, and |λ2 − 1| ≥ τ2 + 2τ , we find for the third term on
the right-hand side of (78) that∣∣∣∣

∫ +∞

1+τ

. . . dλ

∣∣∣∣ <
∫ +∞

1+τ

4e−2
√
λ2−1γ cosα

√
τ2 + 2τ

dλ(87)

if

γ >
1√

τ2 + 2τ cosα
.(88)

If we now restrict τ further such that (2 −√
3)/

√
3 < τ < 1, then λ/2 <

√
λ2 − 1 for

λ > 1 + τ . Now we find∫ +∞

1+τ

4e−2
√
λ2−1γ cosα

√
τ2 + 2τ

dλ <
4√

τ2 + 2τ

∫ +∞

1+τ

e−λγ cosαdλ =
4e−(1+τ)γ cosα

√
τ2 + 2τγ cosα

.(89)
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Taking (79), (85), and (89) together allows us to write that∣∣∣∣
∫ +∞

0

. . . dλ

∣∣∣∣ < f(γ),(90)

with

f(γ)=
4(1 − τ)√−τ2 + 2τ

e−2
√−τ2+2τγ sinα +

8πτ√−τ2 + 2τ
e−2σγ+τ |x| +

4e−(1+τ)γ cosα

√
τ2 + 2τγ cosα

(91)

if

γ > max

[
1√−τ2 + 2τ sinα

,
1√

τ2 + 2τ cosα

]
.(92)

Note that the condition (92) also implies that γ > 1/σ. Since f(γ) is a monotonic
decreasing function of γ, we have shown that∣∣∣∣

∫ +∞

0

. . . dλ

∣∣∣∣ < ε(93)

if

γ > max

[
f−1(ε),

1

sinα
√−τ2 + 2τ

,
1

cosα
√
τ2 + 2τ

]
.(94)

From the proof it follows that, for a given ε, γ needs to be taken larger when |x|
increases. γ also needs to be taken large when α comes close to 0 or π/2.

Lemma A.3.

∀ζ ∈ C, ξ = �(ζ) > 0 ⇒ | cosh ζ| < eξ.(95)

Proof. The proof is trivial.
Theorem A.4. If 0 < α < π/2 and x, y ∈ R, then

∀ε > 0, ∃δ(ε) > 0 :

γ > δ(ε) ⇒
∣∣∣∣∣
∫ +∞

0

tanh(
√
λ2 − 1γe−jα) − 1√
λ2 − 1

cosh(
√
λ2 − 1|y|) cos(λx)dλ

∣∣∣∣∣ < ε,

(96)

where the branch-cut of
√
ζ is along arg(ζ) = π+.

Proof. This can be proven in the same manner as Theorem A.2. Let us settle for
mentioning the differences.

From Lemma A.3 it follows for the first term on the right-hand side of (78) that

| cosh(
√
λ2 − 1|y|)| < e

√−τ2+2τ |y|,(97)

for the second term on the right-hand side of (78) that

| cosh(
√
λ2 − 1|y|)| < e

√
τ2+2τ |y|,(98)
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and for the third term on the right-hand side of (78) that

| cosh(
√
λ2 − 1|y|)| < e

√
λ2−1|y|,(99)

which means that in (89) we have to replace γ cosα by γ cosα− |y|/2. We also have
to impose that

γ >
|y|

2 cosα
,(100)

in order to assure that the integrals in (89) remain convergent.
Taking all this together, the function f(γ) now becomes

f(γ) =
4(1 − τ)√−τ2 + 2τ

e−
√−τ2+2τ(2γ sinα−|y|) +

8πτ√−τ2 + 2τ
e−2σγ+τ |x|+√

τ2+2τ |y|

+
4e−(1+τ)(γ cosα−|y|/2)

√
τ2 + 2τ(γ cosα− |y|/2)

,(101)

which still is a monotonic decreasing function of γ. Hence, the proof is complete by
adding the condition (100) to (94).

From the proof it now also follows that, for a given ε, γ needs to be taken larger
when |y| increases.

Theorem A.5. If 0 < α < π/2, if F (λ) is holomorphic along the contour of

Figure 9, and if
∫ +∞
0

F (λ) cos(λx)dλ exists for all x > 0, then

∀ε > 0, ∃δ(ε) > 0 : γ > δ(ε) ⇒
∣∣∣∣
∫ +∞

0

F (λ)e−
√
λ2−12d cos(λx)dλ

∣∣∣∣ < ε,(102)

where the branch-cut of
√
ζ is along arg(ζ) = π+.

Proof. Let us deform the integration path and split the integration as in Theo-
rem A.2. The first contribution is∣∣∣∣

∫ 1−τ

0

. . . dλ

∣∣∣∣ =
∣∣∣∣
∫ 1−τ

0

F (λ)ej
√

1−λ22γ cosαe−
√

1−λ22γ sinα cos(λx)dλ

∣∣∣∣
< e−

√
2τ−τ22γ sinα

∫ 1−τ

0

|F (λ) cos(λx)| dλ.(103)

Using the definition of σ from Theorem A.2, the second contribution obeys∣∣∣∣
∫
cτ

. . . dλ

∣∣∣∣ <
∫
cτ

|F (λ) cos(λx)| e−σγdλ

< e−σγ
∫
cτ

|F (λ) cos(λx)| dλ.(104)

For the third term we have∣∣∣∣
∫ +∞

1+τ

. . . dλ

∣∣∣∣ <
∫ +∞

1+τ

|F (λ)|e−
√
λ2−12γ cosαdλ.(105)
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Since
∫ +∞
0

F (λ) cos(λx)dλ exists for all x > 0, the limit limλ→+∞ F (λ) exists. Be-
cause F (λ) is holomorphic, there exists a number M such that |F (λ)| < M for
λ ≥ 1 + τ . Hence, we can proceed as in (89) and write∣∣∣∣

∫ +∞

1+τ

. . . dλ

∣∣∣∣ <
∫ +∞

1+τ

|F (λ)|e−
√
λ2−12γ cosαdλ =

Me−(1+τ)γ cosα

γ cosα
(106)

when (2 −√
3)/

√
3 < τ < 1.

The three parts of the integration are, as in previous theorems, again bounded
by an exponential decreasing function of γ. This completes the proof. Note that the
proof remains valid if F (λ) has simple poles along the real axis. These poles can be
avoided in a similar way as the branch-point.

Lemma A.6.

∀ζ ∈ C, |J0(ζ)| ≤ e|ζ|.(107)

Proof. Because

e|ζ| =
[
e|ζ|/2

]2
=

[
+∞∑
n=0

|ζ|n
n!2n

]2

≥
+∞∑
n=0

|ζ|2n
(n!)222n

,(108)

we prove that

|J0(ζ)| =

∣∣∣∣∣
+∞∑
n=0

(−1)nζ2n

(n!)222n

∣∣∣∣∣ ≤
+∞∑
n=0

|ζ|2n
(n!)222n

≤ e|ζ|.(109)

Theorem A.7. If 0 < α < π/2, z ∈ R, and ρ > 0, then

∀ε > 0, ∃δ(ε) > 0 :

γ > δ(ε) ⇒
∣∣∣∣∣
∫ +∞

0

tanh(
√
λ2 − 1γe−jα) − 1√
λ2 − 1

cosh(
√
λ2 − 1|z|)J0(λρ)λdλ

∣∣∣∣∣ < ε,(110)

where the branch-cut of
√
ζ is along arg(ζ) = π+.

Proof. This can be proven in the same manner as Theorems A.2 and A.4 by
replacing cos(λx) by λJ0(λρ) and y by z. Let us simply mention the changes.

Using the fact that |J0(λρ)| ≤ 1, we now find that first term on the right-hand
side of (78) as ∣∣∣∣

∫ 1−τ

0

. . . dλ

∣∣∣∣ < 4(1 − τ)2√−τ2 + 2τ
e−

√−τ2+2τ(2γ sinα−|ρ|).(111)

Along the second part of the integration cτ it follows from Lemma A.6 that

|J0[(1 − τejφ)ρ]| < e|1−τe
jφ||ρ| ≤ e(1+τ)|ρ|.(112)

This allows us to bound the second term in (78) as∣∣∣∣
∫
cτ

. . . dλ

∣∣∣∣ < 4πτ2

√−τ2 + 2τ
e−2σγ+(1+τ)|ρ|+√

τ2+2τ |z|.(113)
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For the third term in (78) we can again use the fact that |J0(λρ)| ≤ 1, resulting in∣∣∣∣
∫ +∞

1+τ

. . . dλ

∣∣∣∣ < 4√
τ2 + 2τ

∫ +∞

1+τ

e−λ(γ cosα−|z|/2)λdλ

=
4[(γ cosα− |z|/2)(1 + τ) + 1]e−(1+τ)(γ cosα−|z|/2)

√
τ2 + 2τ(γ cosα− |z|/2)2

.(114)

Summing the results (111), (113), and (114) results in a new function f(γ) that is
still monotonic decreasing. This completes the proof.

Appendix B. Asymptotic expressions. In this appendix we derive asymp-
totic expressions for the solutions of the equation

κ2(λ) sin[κ1(λ)d1] cos[κ2(λ)d2] + κ1(λ) cos[κ1(λ)d1] sin[κ2(λ)d2] = 0(115)

for large values of |λ|. In (115), κi =
√
k2
i − λ2, i = 1, 2, and we assume that k1 > k2.

Here also d1 and d2 can be complex and satisfy 0 ≥ arg(d1) > arg(d2) > −π/2. In
this appendix the argument function arg has its branch-cut along the negative real
axis. Since (115) is a quadratic equation in λ, we restrict the analysis to �(λ) < 0.
For large values of |λ| one can approximate

κi ≈ jλ.(116)

This allows us to write (115) as

κ2(λ) sinh(λd1) cosh(λd2) + κ1(λ) cosh(λd1) sinh(λd2) = 0(117)

for large values of |λ|. It will become clear further on why we did not approximate κi
in front of the hyperbolic functions. If lim|λ|→+∞ arg(λdi) �= −π/2, then

| sinh(λdi)| ≈ | cosh(λdi)| ≈ e|�(λdi)|

2
.(118)

If lim|λ|→+∞ arg(λdi) = −π/2, then

lim
|λ|→+∞

�(λdi)

�(λdi)
= 0,(119)

but not necessarily lim|λ|→+∞ �(λdi) = 0. Note that lim|λ|→+∞ arg(λdi) = π/2 is
impossible with the argument constraints on di and λ. We have to distinguish three
different cases.

In the first case we assume that

lim
|λ|→+∞

arg(λd1) = −π
2
.(120)

This means that

lim
|λ|→+∞

�(λd2) = −∞.(121)

Hence, for large |λ| we can approximate

− sinh(λd2) ≈ cosh(λd2) ≈ e−λd2

2
(122)
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and reduce (117) to

κ2(λ) sinh(λd1) − κ1(λ) cosh(λd1) = 0(123)

or

e2λd1 =
κ2(λ) + κ1(λ)

κ2(λ) − κ1(λ)
.(124)

In the denominator on the right-hand side we cannot use the approximation (116),
but we have to take an extra term into account, i.e.,

κi(λ) ≈ jλ

(
1 − k2

i

2λ2

)
.(125)

This allows us to recast (124) as

ep1 = ± p1√
k2
1 − k2

2d1

,(126)

with p1 = λd1. From (126) it follows that

e�(p1) =
2|p1|√

k2
1 − k2

2|d1|
.(127)

In view of (119) we can approximate |p1| ≈ |�(p1)| such that

�(p1) = log

[
2|�(p1)|√
k2
1 − k2

2|d1|

]
,(128)

and also

ej�(p1) = ± p1|d1|
d1|�(p1)| ≈ ±�(p1)|d1|

d1|�(p1)| ,(129)

which gives

�(p1,i) = − arg(d1) − (2i+ 1)
π

2
.(130)

Hence, asymptotically the equation has a first infinite set of solutions of the form

λi =
1

d1
log

2[arg d1 + (2i+ 1)π2 ]√
k2
1 − k2

2|d1|
− j[arg d1 + (2i+ 1)π2 ]

d1
.(131)

In the second case we assume that

lim
|λ|→+∞

arg(λd2) = −π
2
.(132)

This means that

lim
|λ|→+∞

�(λd1) = +∞,(133)
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resulting in the approximate equation

κ2(λ) cosh(λd2) + κ1(λ) cosh(λd2) = 0,(134)

or, proceeding as above,

ep2 = ±j
√
k2
1 − k2

2d2

p2
,(135)

with p2 = λd2. This equation can be solved in the same way as (127). The result is

λi = − 1

d2
log

[
2(iπ − arg d2)√
k2
1 − k2

2|d2|

]
− j(iπ − arg d2)

d2
.(136)

In the remaining case neither (120) nor (132) is valid. In this case (117) reduces
to

[κ1(λ) ± κ2(λ)]e2[|�(λd1)|+|�(λd2)|] = 0,(137)

which has no solutions.
In [23] a similar analysis was given. However, (123) and (134) were derived on

physical grounds without proof of the nonexistence of other possible solutions. The
solutions (131) and (136) were also derived indirectly as asymptotic approximations
of a special function, and the initial conditions were not taken as general as considered
here.
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A DIFFUSIONAL-THERMAL THEORY OF
NEAR-STOICHIOMETRIC PREMIXED FLAMES∗
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Abstract. In this paper we present a diffusional-thermal theory of premixed flames for near-
stoichiometric conditions. Our theory exhibits an explicit dependence on the equivalence ratio as
well as on two distinct Lewis numbers which correspond to the fuel and the oxidizer. Normally, the
deficient component in the mixture is totally depleted in the reaction zone. However, for curved
or strained flames, it is possible for the initially excess reactant to be consumed at the reaction
zone if it is the less mobile of the two species, while the initially deficient species leaks through.
The form of the derived jump conditions for temperature and enthalpy gradients across the reaction
sheet depends on which of the two species is consumed. This can have important implications on
predicted flame dynamics. For example, we show that, as a result of preferential diffusion, portions
of a corrugated flame may burn rich while neighboring regions burn lean. This results in leakage
of fuel and oxidizer through the premixed flame which are then consumed downstream by trailing
diffusion flame tongues. Furthermore, the extinction characteristics of strained flames are found to
depend on whether fuel or oxidizer is ultimately depleted.
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1. Introduction. Many technologies employ combustion as a source of energy,
for example, engines, furnaces, and jets, and important issues regarding efficiency and
pollutants depend significantly on the mixture composition. The mixture composition
is known to have a significant effect on flame shape and dynamics. For example, flames
in light hydrocarbon mixtures are observed to propagate with a smooth surface when
the mixture is rich, while the flame surface can take on a cellular appearance when
the mixture is lean [1]. Similarly, a great deal of soot formation typically occurs in
rich mixtures, while substantially less is produced when the mixture is lean [2].

Despite the recognized importance of mixture strength in practical combustion
applications, most theoretical studies are based on single reactant models in which
the chemistry is represented by a one-step overall irreversible reaction and proceeds at
a rate that depends on the concentration of the deficient component in the mixture.
All other reactants appear in relatively large amounts, so only a minimal amount
is consumed. These models are therefore valid only when the mixture is far from
stoichiometry, i.e., very lean or very rich. They don’t exhibit any dependence on the
mixture strength, usually measured in terms of the equivalence ratio, which is the
ratio of the mass of fuel to oxidizer in the fresh mixture. Many practical combustion
systems operate in a regime closer to stoichiometry, and, as noted above, this is a
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transition regime where the composition may have an effect on flame dynamics. The
objective of this paper is to examine these effects within the context of a diffusional-
thermal model accounting for the entire spectrum of mixture compositions, from lean
to rich, including the near-stoichiometric regime.

As noted, most earlier theories considered the mixture to be far removed from
stoichiometry. As such, all results depend on a single Lewis number, the ratio of
thermal diffusivity of the mixture to mass diffusivity of the deficient reactant. It has
been shown, for example, that an initially smooth flame will lose stability to a cellular
surface when this Lewis number is less than a critical value, slightly less than unity [3].
It has also been observed that a flame in a nonuniform flow can be extinguished by
stretch when the Lewis number is greater than one but not otherwise [4, 5]. Therefore,
predicted behavior in a given mixture can be quite different depending on whether
conditions are lean or rich, but single-reactant models cannot describe the transition
from one burning regime to another as stoichiometry is crossed. For conditions close
to stoichiometry, both fuel and oxidizer can be expected to play a role in flame char-
acteristics, and a scheme that depends on both reactants must be used. In this case,
two Lewis numbers, one associated with the fuel and the other with the oxidizer, as
well as the equivalence ratio are all important parameters affecting flame response.

Theoretical investigations of stoichiometric, or near-stoichiometric, flames have
mostly been limited to planar or perturbed planar flames. Expressions for the flame
speed and temperature, illustrating their dependence on the equivalence ratio, were
given by Sen and Ludford [6] and by Mitani [7]. In the context of a diffusional-thermal
model, Joulin and Mitani [8] showed that conclusions from the stability analyses of
off-stoichiometric flames remain valid under near-stoichiometric conditions, with an
average Lewis number replacing the one based on the deficient reactant. In that
study, the initially deficient reactant is always consumed by the flame, while a small
amount of the abundant species leaks through. Similar conclusions were reached
by Jackson [9], who included the effect of thermal expansion in the linear stability
analysis, and by Sivashinsky [10], who presented a weakly nonlinear analysis of the
problem at exact stoichiometric conditions. Matalon, Cui, and Bechtold [11] have
recently shown that hydrodynamic models of flames of arbitrary shape in general flows
are modified in a similar way. Although their model can be used to treat nonplanar
flames, the flame structure remains quasi–one-dimensional. Since these theories all
consider the flame structure to be planar or nearly planar, with the Lewis numbers
close to unity, the initially deficient reactant is nearly always consumed at the reaction
front, and since temperature perturbations behind the flame are generally weak, the
burning characteristics are only slightly modified. However, when the two species
diffuse at unequal rates, that is, when the associated Lewis numbers are distinct,
and when the flame structure is nonplanar, flame behavior is expected to be quite
different. Recently, Bechtold and Matalon [12] derived a slowly-varying-flame model
for two-reactant flames in near-stoichiometric mixtures and found that, for strained
or curved flames, it is possible for a less mobile reactant that is initially in excess in
the mixture to be locally deficient, and hence consumed, at the reaction zone. This
can have important consequences on the flame temperature, and hence the burning
characteristics. The asymptotic structure of premixed flames has also been analyzed
for moderately rich methane-air flames using a four-step kinetic scheme [13]; these
authors also find that the response of strained flames depends on the Lewis numbers
of both fuel and oxygen.

Still lacking is a diffusional-thermal model of near-stoichiometric flames; the main
goal of this paper is to fill that void. The model is derived in a formal asymptotic
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way from the full system of equations governing premixed flames in a two-reactant
mixture. The analysis is carried out considering the limit of large activation energy,
which enables an analytical resolution of the nonlinear reaction rate terms, and the
assumption of near-unity Lewis numbers, which is required to obtain a consistent
closed model. The model differs from the corresponding single-reactant model in two
significant ways. First, it consists of two equations governing the transport of the
two reactants, and second, the form of the derived jump conditions for the gradients
across the reaction sheet depends on which of the two species is ultimately consumed
by the reaction. This can lead to quantitative and qualitative differences in flame
structure and in predicted dynamic behaviors. We show that it is possible along a
corrugated flame to have regions burning fuel-lean while neighboring regions burn fuel-
rich. The excess oxidizer leaking through the first region and fuel leaking through the
other both burn along diffusion flame tongues that trail behind the premixed flame.
For strained flames we provide a description of the extinction characteristics, showing
that the flame response depends significantly on which of the two species is ultimately
consumed at the reaction zone.

2. Formulation. Consider a premixed combustible mixture, consisting of an
excess (E) and deficient (D) reactant, in which reaction proceeds according to

νEME + νDMD → Products,

where Mi are the chemical symbols for species i, and νi are the stoichiometric coef-
ficients. An important parameter in this analysis is the equivalence ratio

φ =
YF /νFWF

YO/νOWO
,

which is the ratio of the mass fraction of the fuel to oxidizer in the fresh mixture to
their stoichiometric ratio. Here Yi denote the mass fractions of species i and Wi their
molecular weights. Values of φ larger than unity correspond to fuel-rich mixtures,
and values of φ less than one correspond to lean mixtures. To avoid discussing lean
and rich mixtures separately it is convenient to introduce the parameter

Φ =
YE/νEWE

YD/νDWD
,

based on the ratio of the mass fractions of excess to deficient reactants. As defined, Φ
is always greater than one; it is equal to φ for rich mixtures and 1/φ for lean mixtures.

The governing equations are made dimensionless by using the adiabatic flame
speed, S0

f , and thermal thickness, lD = λ/ρ̂cpS
0
f , as the characteristic velocity and

length, respectively, where λ is the thermal conductivity, cp the specific heat, and ρ̂ the
density of the fresh mixture. The time scale is chosen to be lD/S

0
f . All other variables

are made dimensionless by their values in the fresh mixture, which are denoted by the
subscript u. The governing equations for temperature and species mass fractions are

DT

Dt
−∇2T =

q

YD,u
Ω,(2.1)

DYD
Dt

− Le−1
D ∇2YD = −Ω,(2.2)
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DYE
Dt

− Le−1
E ∇2YE = −νΩ.(2.3)

These are coupled to the equations of hydrodynamics, which we avoid writing here
since our objective is a diffusional-thermal model. The two sets of equations de-
couple by considering weak thermal expansion. Here D/Dt = ∂/∂t + V · ∇ is
the convective derivative with V the prescribed velocity field. The parameters ap-
pearing in these equations include the Lewis numbers Lei = λ/ρ̂cpDi, the heat re-

lease q = QYD,u/cpT̂uνDWD, and the mass-weighted stoichiometric coefficient ratio
ν = νEWE/νDWD. The reaction rate term on the right-hand side of (2.1)–(2.3) has
the form

Ω = DYEYD exp

{
βT 2

a

q

(
1

Ta
− 1

T

)}
,(2.4)

where D is the Damköhler number, a ratio of the flow time to the chemical time,
given by

D =
λ

cp(S0
f )

2

νDB

WE
e−

βTa
q .(2.5)

Here β = E(T̂a−T̂u)/RT̂ 2
a is the Zeldovich number, and T̂a is the adiabatic flame tem-

perature, which in dimensionless form is expressed as Ta = 1+ q. In the limit of large
activation energy and considering near unity Lewis numbers and near-stoichiometric
conditions,

Le−1
i = 1 − β−1li, Φ = 1 + β−1ϕ,(2.6)

the flame speed is given by

S0
f =

[
2λνDB

cpWE
β−3(ϕ+ 2)νYD,u

]1/2
e−βTa/2q,(2.7)

and thus the Damköhler number can be written D = β3/[2(ϕ+ 2)νYD,u].
It is convenient in our formulation to introduce the enthalpy functions

HD = T + q
YD
YD,u

, HE = T +
q

ν

YE
YD,u

.(2.8)

Temperature gradients behind the flame are assumed small, i.e., O(β−1), and corre-
spondingly only an O(β−1) amount of reactants can leak through. Thus, the enthalpy
variables can be expanded as

HD = 1 + q + β−1qhD + · · · , HE = 1 + qΦ + β−1qhE + · · · ,(2.9)

and equations for the enthalpy perturbations, hi, which follow from (2.1)–(2.3), are
given by

DhD
Dt

−∇2hD =
lD
q
∇2T,(2.10)

DhE
Dt

−∇2hE =
lE
q
∇2T.(2.11)
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2.1. Reaction zone analysis. In the asymptotic limit β → ∞, the reaction
rate is negligible everywhere except where T ∼ Ta, i.e., along the reaction sheet given
by x = f(y, z, t) (to fix ideas, we will let x > f(y, z, t) correspond to the burned
region). We expand all variables, on either side of the sheet, in the form

T = T (0) + β−1T (1) + · · · .

To leading order, the temperature is continuous across the sheet, while its gradient
suffers a jump which is determined from the internal structure of the reaction zone.
Integration of (2.10) and (2.11) determines that, to leading order, the two enthalpy
variables are also continuous across the flame sheet, and that

h∗D =
1

q
T (1) +

Y
(1)
D

YD,u
,(2.12)

h∗E =
1

q
T (1) +

Y
(1)
E

νYD,u
− ϕ.(2.13)

Here the right-hand side is to be evaluated at n = 0+ or n = 0−, where n denotes
the distance normal to the sheet. In the following, we will evaluate these quantities
at n = 0+ unless otherwise noted. Stretching the normal coordinate, integrating the
temperature equation, and then matching with the solution outside the sheet yields

∂T (0)

∂n

∣∣∣∣
n=0−

=
q√

2 + ϕ

√
2 +

(
Y

(1)
D +

1

ν
Y

(1)
E

)
/YD,u eT

(1)

b
/2q,(2.14)

where T
(1)
b = T (1) evaluated at n = 0+. This condition can also be written as

∂T (0)

∂n

∣∣∣∣
n=0−

=
q√

2 + ϕ

√
2 + YLE/YD,u eT

(1)

b
/2q,(2.15)

where YLE denotes the reactant which is locally in excess. For a planar flame, the

initially deficient reactant is always consumed at the reaction sheet, i.e., Y
(1)
D = 0, and

thus YLE = Y
(1)
E /ν. In general, however, it is possible, due to disparate diffusivities,

for the initially excess species to be locally deficient, and hence, totally consumed
by the reaction. In this case, a small amount of the initially deficient reactant leaks

through and YLE = Y
(1)
D . The condition (2.15) on the temperature gradient depends

on the temperature perturbation behind the flame and the amount of reactant that
leaks through the sheet. Both of these quantities can be expressed in terms of the
enthalpy perturbations.

To determine which species is consumed and which leaks through, we subtract
(2.12) from (2.13), which gives(

1

ν
Y

(1)
E − Y

(1)
D

)
/YD,u = ϕ+ h∗E − h∗D.(2.16)

Recognizing that the mass fractions cannot be negative, the sign of the right-hand
side of (2.16) provides the necessary information. If the right-hand side is positive,

then Y
(1)
D = 0, T

(1)
b /q = h∗D, and (2.16) determines the amount of initially excess
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reactant that leaks through. On the other hand, if the right-hand side of (2.16) is

negative, then Y
(1)
E = 0, T

(1)
b /q = h∗E + ϕ, and (2.16) determines the amount of

initially deficient reactant that leaks through. When these are inserted into (2.15),
we obtain

∂T (0)

∂n

∣∣∣∣
n=0−

= q

√
2 + |ϕ+ h∗E − h∗D|

2 + ϕ

× exp

{
ϕ+ h∗E + h∗D − |ϕ+ h∗E − h∗D|

4

}
.(2.17)

To summarize, in the limit β → ∞, the problem reduces to solving the reaction-
free equation for the leading order temperature, T (0), together with the equations for
the enthalpies, hE and hD, on either side of the reaction sheet. Solutions must satisfy
the derived jump conditions as well as appropriate initial and boundary conditions.
Our objective is a diffusional-thermal model, accounting for the entire spectrum of
mixture composition, that is free of hydrodynamic disturbances. It is therefore com-
monplace to consider weak thermal expansion (q � 1), formally done by expanding
the temperature as T (0) = 1 + qτ + · · · , to obtain

Dτ

Dt
−∇2τ = 0, x < f(y, z, t),(2.18)

τ = 1, x > f(y, z, t),(2.19)

Dhi
Dt

−∇2hi = li∇2τ, x �= f(y, x, t).(2.20)

The jump conditions at the reaction sheet x = f(y, x, t) are

[τ ] = 0, [hi] = 0,(2.21)

[
∂hi
∂n

]
+ li

[
∂τ

∂n

]
= 0,(2.22)

[
∂τ

∂n

]
= −

√
2 + |ϕ+ h∗E − h∗D|

2 + ϕ
exp

{
ϕ+ h∗E + h∗D − |ϕ+ h∗E − h∗D|

4

}
,(2.23)

where we have used the notation [τ ] = τ(burned) − τ(unburned).
The above system is seen to differ from the single-reactant theory [14] in several

ways. First, two species are accounted for, and thus the model has an explicit depen-
dence on both Lewis numbers as well as the equivalence ratio. Second, the jump in
the temperature gradient is sensitive not only to the temperature perturbation behind
the flame but also to the local species concentrations. Note that for off-stoichiometric
mixtures, ϕ → ∞, the inequality ϕ+ h∗E − h∗D > 0 is always satisfied, and the right-
hand side of (2.23) reduces to −eh∗

D/2, in agreement with single-reactant theory. Our
model appropriately describes the flame behavior for conditions far removed from
stoichiometry as well, and thus spans the whole range from lean to rich conditions.
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3. Weakly corrugated flames. In this section we examine the spontaneous
self-corrugation of a planar near-stoichiometric flame using linear and weakly non-
linear stability results. Although in general the flame behaves similarly to that in a
mixture far from stoichiometry, there are some differences in the details, as we shall
see.

The stability of a planar flame in a near-stoichiometric mixture has been studied
previously by Joulin and Mitani [8] and Sivashinsky [10], and their results are readily
obtained from our model. When small disturbances are introduced and the linearized
equations are solved for the perturbed variables, the following dispersion relation is
found for the growth rate ω:

64ω3 + ω2(192k2 + 32 + 8l − l2) + 2ω(12k2 + 1)(8k2 + l + 2)(3.1)

+ k2(8k2 + l + 2)2 = 0,

where k is the wavenumber and l is an effective (reduced) Lewis number defined by

l =
lE + lD + lDϕ

2 + ϕ
.(3.2)

This is identical to the result of the single-reactant theory with l appearing in the
place of lD, and, in fact, l → lD as ϕ→ ∞.

When conditions are stoichiometric or very close to stoichiometric, the perturbed
flame may burn rich along some portions and lean along others, depending on the rel-
ative magnitudes of the enthalpy perturbations. From the linear theory, the difference
in the enthalpy perturbations on the burned side of the flame is found to be

h∗E − h∗D = −A(lE − lD)

2(1 + 4k2)
[1 −

√
1 + 4(ω + k2)]eiky+ωt,(3.3)

where A is the amplitude of the disturbance. Because of the sinusoidal nature of
the perturbations, the difference in enthalpy variables, h∗E − h∗D, changes sign along
the front provided there exists preferential diffusion (lE �= lD). Thus both forms of
the jump relation for the temperature gradient (2.23) are applied along different seg-
ments of the corrugated flame. The two conditions, when linearized, are equivalent,
and therefore the stability characteristics are not modified despite the local differ-
ences in mixture composition along the front. However, the structure of the resulting
corrugated front beyond the instability threshold may be affected by these differences.

A weakly nonlinear analysis can be performed for l + 2 � 1. Upon introducing
the appropriate scalings, we find that the species that leaks through is determined by
the sign of the quantity

E = ϕ+ (lD − lE)
∂2f

∂y2
,(3.4)

where y is the transverse coordinate. Although the concentrations along the cor-
rugated front vary in concave/convex segments, the overall flame dynamics remain
governed by the Kuramoto–Sivashinsky equation as envisaged by Sivashinsky [10]
under exact stoichiometric conditions. Thus, the curvature of the front plays a role
in determining which species leaks through. However, the jump conditions remain
identical to all orders considered, and the Kuramoto–Sivashinsky equation is found
to govern the flame dynamics regardless of whether a particular region burns rich or
lean.
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3.1. Trailing diffusion flames. The excess of fuel and oxidizer leaking along
neighboring regions of the premixed flame front burns in trailing diffusion flame
tongues attached at the stoichiometric points. Here we analyze the diffusion flame
structure. The system we investigate is reminiscent of the classical Burke–Schumann
flame [15], but with several important differences. First, the inlet boundary is a
corrugated premixed flame as opposed to a burner rim. Second, the distribution of
species on either side of the diffusion flame is not uniform. Third, the temperature is
everywhere within O(β−1) of its adiabatic value and species concentrations are small
(O(β−1)). Finally, the Damköhler number is not a free controlled parameter; its value
is fixed by the presence of the premixed flame.

To analyze the region behind the premixed flame, we introduce the expansions

T = Ta + β−1qθ, Yi = β−1Zi,

which are inserted into the governing equations (2.1)–(2.3) to yield the system

∂θ

∂x
− ∂2θ

∂x2
− ∂2θ

∂y2
=

β2

2(ϕ+ 2)νY 2
D,u

ZDZE e
θ,(3.5)

∂ZD
∂x

− ∂2ZD
∂x2

− ∂2ZD
∂y2

= − β2

2(ϕ+ 2)νYD,u
ZDZE e

θ,(3.6)

∂ZE
∂x

− ∂2ZE
∂x2

− ∂2ZE
∂y2

= − β2ν

2(ϕ+ 2)νYD,u
ZDZE e

θ.(3.7)

We assume a steady corrugated premixed flame front at x = A cos(ky), where
A, k are the amplitude and wavenumber, respectively. From the linear analysis the
temperature and concentration perturbations along the premixed flame front are given
by

θ = lDB cos(ky), ZD = 0,

ZE = νYD,u[(lE − lD)B cos(ky) + ϕ] for E > 0,(3.8)

and

θ = lEB cos(ky) + ϕ, ZE = 0,

ZD = −YD,u[(lE − lD)B cos(ky) + ϕ] for E < 0,(3.9)

where B = A[
√

1 + 4k2−1]/2(1+4k2). These are the appropriate boundary conditions
to be applied for the determination of the solution in the burned region.

We rescale y → yπ/k and introduce the variable W = 1
νZE − ZD, which satisfies

the system

dW

dx
− d2W

dx2
− k2

π2

d2W

dy2
= 0,(3.10)

W = YD,u[(lE − lD)B cos(πy) + ϕ] at x = A cos(πy).(3.11)
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Recall that the amplitude of the perturbation, A, has been assumed small, and thus
we seek solutions in the form of a power series in A. We rescale B → AB, ϕ →
Aϕ, W → AW and at leading order we find

W = YD,uϕ+ YD,u(lE − lD)Be−rx cosπy,(3.12)

where r = 1
2 [
√

1 + 4k2−1]. We now restrict our attention to 0 < y < 1 and determine
the diffusion flame sheet location by setting W = 0, which yields the expression

y =
1

π
arccos

(
−a0

a1
erx
)
,

where

a0 = YD,uϕ, a1 = YD,u(lE − lD)B.

Under exact stoichiometric conditions, ϕ = 0 (a0 = 0), the diffusion flame location
is y = 1/2 and extends to infinity, parallel to the x-axis. When conditions are not
exactly stoichiometric, the location of attachment depends on the relative magnitude
of the two Lewis numbers. When lE > lD, the flame is attached to the premixed flame
on the interval y = [1/2, 1] and extends downstream to a length x∗ = 1

r ln(a1/a0).
Alternatively, when lE < lD, the diffusion flame is attached to the premixed flame
on the interval y = [0, 1/2] and its length is x∗ = 1

r ln(−a1/a0). By increasing ϕ,
the diffusion flames shorten and disappear when ϕ is sufficiently large. The entire
structure is shown schematically in Figure 3.1.

l  > l
DE

l  < l
E D

x

y

DIFFUSION FLAME

PREMIXED FLAME

Fig. 3.1. Schematic of diffusion flames trailing a segment of the perturbed premixed flame.

Solutions for the temperature and species distribution on either side of the diffu-
sion flame sheet are now found to be

θ = lDBe
−rx cos(πy), zD = 0, zE = νW for W > 0,(3.13)

and

θ = lEBe
−rx cos(ky) + ϕ, zD = −W, zE = 0 for W < 0.(3.14)

The temperature is continuous across the flame sheet, where it assumes the value

θ∗ = − lDϕ

lE − lD
.
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Note that in the absence of preferential diffusion, lE = lD, there are no trailing dif-
fusion flames, since the deficient reactant is always depleted at the premixed reaction
zone and only the initially excess species leaks through.

To investigate the structure of the diffusion flame, we must perform a local anal-
ysis of the reaction zone. Thus we introduce the local coordinate

y = F (x) + β−2/3ζ, F (x) =
1

π
arccos

(
−a0

a1
erx
)
.

Note that this scaling suggests that the diffusion flame zone is broader than the
premixed flame zone. We now introduce the expansions

θ = θ∗ + β−2/3θ1, Zi = β−2/3zi,

and insert these into (3.5)–(3.7) to obtain

−∂
2θ1
∂ζ2

=
G(x)

νYD,u
zDzE ,(3.15)

∂2zD
∂ζ2

=
G(x)

ν
zDzE ,(3.16)

∂2zE
∂ζ2

= G(x)zDzE ,(3.17)

where

G(x) =
eθ

∗

2(ϕ+ 2)YD,u(1 + F 2
x )
.

Solutions to this system must match the outer solutions (3.13)–(3.14) which provide
the conditions

zE ∼
{

0, a1ζ > 0,
−νa1ζπ sin(πF )e−rx, a1ζ < 0,

(3.18)

zD ∼
{
a1ζπ sin(πF )e−rx, a1ζ > 0,

0, a1ζ < 0.
(3.19)

To solve the above system, we first sum (3.16) and (3.17) to determine zD in
terms of zE , i.e.,

zD =
1

ν
zE + ζα,

where α = a1π sin(πF (x))e−rx. Inserting this into (3.17) now results in a single
boundary value problem for zE . It is convenient to introduce the new variable U
as zE = ναU, which satisfies

∂2U

∂ζ2
= G(x)αU(U + ζ),(3.20)
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U ∼
{ −ζ, a1ζ → −∞,

0, a1ζ → ∞.
(3.21)

The transformation

U → (4Gα)−1/3V, ζ = (2/Gα)1/3ξ

now converts this system to the form

∂2V

∂ξ2
= (V + ξ)(V − ξ),(3.22)

V ∼
{ −ξ, ξ → −∞,

ξ, ξ → ∞.
(3.23)

This is identical to the diffusion flame structure for the infinite Damköhler number
[16, 17], i.e., the Burke–Schumann flame sheets. Solutions of this system indicate
that no reactants leak through the flame, and consequently no extinction is possible.
We note that these structures resemble tribrachial (triple) flames, which consist of
both lean and rich premixed flame segments with a diffusion flame attached to the
stoichiometric point and trailing downstream. The present analysis suggests that such
structures may form as a result of self-wrinkling of premixed flames when conditions
are close to stoichiometric.

4. Flames in counterflow. We now examine the response of a positively
stretched flame in a counterflow under near-stoichiometric conditions. As shown in
Figure 4.1, consider a flow originating at x = −∞ and impinging against an adiabatic
wall located at x = 0. This configuration supports a planar flame situated at x =
−d. Note that this geometry also corresponds to a twin flame configuration with a
symmetric flame located in the right half-plane at x = d. The flow remains potential
flow in the absence of density variations and is given by V = K(−x, y), where K is
the strain rate. This problem was considered previously by Buckmaster [4] using a
single-reactant model.

If the flame is planar, the solution is independent of y, and thus we seek steady
solutions to the governing equations

−Kxdτ
dx

=
d2τ

dx2
, x < −d,(4.1)

τ = 1, x > −d,(4.2)

−Kxdhi
dx

=
d2hi
dx2

+ li
d2τ

dx2
, x �= −d.(4.3)

These equations are to be solved subject to the following jump conditions evaluated
at x = −d:

[τ ] = 0, [hi] = 0,(4.4)

[
dhi
dx

]
+ li

[
dτ

dx

]
= 0,(4.5)
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V=K(-x, y)

x=0x=-d

Reaction Sheet

Fig. 4.1. Schematic of a premixed flame in stagnation point flow against an adiabatic wall.
The flame is situated at x = −d.

[
dτ

dx

]
=

⎧⎨
⎩ −

√
2+ϕ+h∗

E
−h∗

D

2+ϕ eh
∗
D/2 if ϕ+ h∗E − h∗D > 0,

−
√

2−ϕ+h∗
D
−h∗

E

2+ϕ e(h
∗
E+ϕ)/2 if ϕ+ h∗E − h∗D < 0,

(4.6)

where the boundary conditions are

τ → 0, hD → 0, hE → 0, as x→ −∞,(4.7)

dhD
dx

(0−) = 0,
dhE
dx

(0−) = 0.(4.8)

The solution to this system is

τ =

{
erfc

(
−
√

K
2 x
)
/erfc

(√
K
2 d
)
, x < −d,

1, x > −d,
(4.9)

hi =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−li
(1+Kd2)erfc

(
−x

√
K
2

)
2 erfc

(
d
√

K
2

) − li
√

K
2π

erfc
(
d
√

K
2

) x e−Kx2

2 , x < −d,

− li
2 (1 +Kd2) +

li
√

K
2π

erfc
(
d
√

K
2

) d e−Kd2

2 , −d < x < 0.

(4.10)

We note the nonzero enthalpy perturbations behind the flame, and, in particular, the
sign of the quantity

ϕ+ (lD − lE)

⎛
⎝1

2
(1 +Kd2) −

√
K

2π

de−Kd
2/2

erfc
(
d
√
K/2

)
⎞
⎠

determines which of the two conditions (4.6) is to be used to determine the location
of the flame, d. In particular, we find the following.
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ϕ+ (lD − lE)Γ > 0:

√
K =

√
π

2
erfc(γ) eγ

2

(1 + µΓ)
1
2 e

−lD
2 Γ,(4.11)

ϕ+ (lD − lE)Γ < 0:

√
K =

√
π

2
erfc(γ) eγ

2

(
2 − ϕ

2 + ϕ
− µΓ

) 1
2

e
−lE

2 Γ+ϕ
2 ,(4.12)

where

Γ =
1

2
+ γ2 − γe−γ

2

√
π erfc(γ)

, γ =

√
K

2
d,(4.13)

and

µ =
lD − lE
2 + ϕ

.(4.14)

For a given mixture, µ and ϕ are specified, and these expressions determine
the flame standoff distance, d, as a function of strain rate, K. Since γ > 0, the
response curve can be constructed by incrementing from γ = 0 and calculating K from
either (4.11) or (4.12), depending on the appropriate inequality that characterizes the
mixture. The standoff distance, d, is then found from the second equation in (4.13).
As is the case in the single-reactant theory, the dependence of d on K is found to
either be a monotonically decreasing function, reaching d = 0 at a sufficiently large
value of K, or to have a backward C-shape with a turning point at a critical value
of K. In the former case, the flame can be pushed all the way to the wall. In the
latter case, the turning point corresponds to an extinction point, a maximum strain
rate beyond which no steady solution exists.

While constructing the response curves, one must continually monitor the sign of
the inequality in (4.11) and (4.12) to decide which condition is the appropriate one
to apply. For the uniformly stretched flame considered here, i.e., for K constant, the
same equation determines the response along the entire flame surface. In other words,
for a given set of parameters, the same species leaks through along the entire flame
surface. This is in contrast to the corrugated flame discussed earlier, where it was
shown that some portions of the surface burn lean while neighboring regions burn
rich.

4.1. Flame response. To discuss the general features of the response curves,
we first consider the quantity ϕ + (lD − lE)Γ, whose sign determines whether (4.11)
or (4.12) is to be used. A plot of Γ as a function of γ is shown in Figure 4.2.
Clearly, Γ is always positive, it assumes its largest value of 1/2 at γ = 0, and then
decreases monotonically to zero as γ → ∞. Since ϕ, as defined, is also positive, we
can conclude that (4.11) determines the response in the following cases, for which,
clearly, ϕ+ (lD − lE)Γ > 0.

ϕ� 1:
When conditions are far removed from stoichiometry, the single-reactant theory is
recovered. In this limit, µ→ 0 and (4.11) reduces to Buckmaster’s result [4] in which
the flame response depends only on lD.
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Fig. 4.2. The quantity Γ as a function of γ, as determined by (4.13).

K � 1:
When the flame is weakly strained, such that γ � 1, the flame retreats and stands far
from the stagnation plane, i.e., d → ∞. The structure of these flames is essentially
that of a planar flame in a uniform flow field.
lD > lE :
When the initially deficient reactant is the less mobile of the two, for example, propane
in a lean propane/air mixture, it will always be consumed at the reaction sheet.

Equation (4.12) determines the response only when ϕ + (lD − lE)Γ < 0. This
occurs for moderately strained flames, in mixtures with lE > lD, and when conditions
are sufficiently close to stoichiometry. In such cases, the initially excess reactant is the
less mobile of the two, and its concentration in the reaction zone is consequently low.
It is ultimately consumed at the reaction sheet, with the initially deficient species
leaking through.

Typical response curves are shown in Figures 4.3–4.6. Figures 4.3 and 4.4 show the
standoff distance and flame speed, respectively, as a function of strain rate for several
different values of the Lewis number and conditions far removed from stoichiometry,
ϕ → ∞. This limit corresponds to the single-reactant theory of Buckmaster [4]. As
shown in Figure 4.3, when lD < l∗D = 4 the response is monotonic, suggesting that
the flame can be pushed all the way down to the wall before it is extinguished. When
lD > l∗D, the response curve becomes double-valued. The turning point observed in
the corresponding curves is regarded as the extinction point. When the strain rate
exceeds the critical value at the turning point, the system can no longer support
a planar flame and extinction occurs. The lower portion of the curve, below the
extinction point, is presumed to be unstable.

The flame speed, Sf , defined to be the speed of the flame relative to the underlying
flow field, is the normal velocity of the incoming flow evaluated at the reaction sheet,
i.e., Sf = Kd. Curves illustrating the dependence of Sf on K are shown in Figure 4.4.
Again we observe that for ϕ → ∞, l∗D = 4 is the critical condition determining the
form of the response. We also note that the flame speed of a weakly strained flame
can exceed the adiabatic flame speed, Sf = 1, when lD is sufficiently small. This is
consistent with previous studies of flame response to straining, cf. [18]. When the
flame is weakly strained, the flame retreats far from the stagnation plane and d→ ∞.
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Fig. 4.3. Standoff distance vs. strain rate for conditions far removed from stoichiometry.

10
−2

10
−1

10
0

10
1

0

0.2

0.4

0.6

0.8

1

1.2

K

S
f

l
D

=−5 

l
D

=−3.6 

l
D

=−2 

l
D

=1 

l
D

=4

l
D

=8.6 

l
D

=5.5 

Fig. 4.4. Standoff distance vs. strain rate for conditions far removed from stoichiometry.

In this case γ → ∞, and thus, again, the inequality ϕ+ (lD − lE)Γ > 0 holds for any
nonzero ϕ. Therefore (4.11) is always the appropriate condition to determine flame
behavior. For the weak strain rate, this condition determines the flame position to be

d =
1

K
+

(
µ− lD

2
− 1

)
+ o(1),
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Fig. 4.5. Standoff distance vs. strain rate for several values of lE with lD = 4.0 and ϕ = 0.2.
The solid portions of the curves are determined by (4.11), and the dashed portions by (4.12).

and the flame speed takes the form

Sf = 1 −
(

1 +
lD − µ

2

)
K + o(K).

We conclude that the flame speed will exceed its adiabatic value when lD − µ < −2,
which reduces to the single-reactant theory result, lD < −2, when conditions are far
removed from stoichiometry (µ→ 0).

The curves in Figures 4.5 and 4.6 are drawn for selected values of lE and conditions
close to stoichiometry, with ϕ = 0.2 and lD = 4.0. The solid portion of each curve
represents the segment determined by (4.11), while the dashed portions show where
(4.12) is valid.

Since smaller values of d result from larger values of Γ, (4.12) always becomes
relevant on the lower portion of the curves when lE sufficiently exceeds lD. When the
flame is near the wall, the low mobility of the initially excess reactant prevents it from
diffusing quickly enough across the strained flow field and it becomes locally deficient,
and hence consumed, at the reaction sheet. As the flame moves further away from
the wall and the strain weakens, (4.11) will eventually take over.

We note that in situations where the curve becomes double-valued, the transition
from a lean to a rich flame may occur either before or after the turning point, and
thus extinction conditions may be determined by either (4.11) or (4.12). When (4.11)
is valid, the strain rate at which the reaction sheet reaches the wall is given by

K =
π

2
(1 + µ/2)e−lD/2.(4.15)

When a turning point first develops, the slope at this point of intersection will be
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Fig. 4.6. Flame speed vs. strain rate for several values of lE with lD = 4.0 and ϕ = 0.2.

infinite, and upon differentiating (4.11) we find that this occurs at

lD +
2µ

2 + µ
= 4.

The response is single-valued when lD+ 2µ
2+µ < 4 and double-valued when lD+ 2µ

2+µ > 4.

When (4.12) is valid, the value of the strain rate when d = 0 is found to be

K =
π

2
(p− µ/2)e−lE/2+ϕ,(4.16)

and the response is single-valued when lE + 2µ
2p−µ < 4 and double-valued when lE +

2µ
2p−µ > 4, where p = (2 − ϕ)/(2 + ϕ).

Comparing Figures 4.3 and 4.5, we observe that the response curves showing d
vs. K with lD = 4 and ϕ = 0.2 may be either monotonic or double-valued, depending
on the values of lE . The single-reactant model predicts only a monotonic response;
see Figure 4.3. Similarly, the flame speed can be significantly modified when condi-
tions are close to stoichiometry, as shown in Figure 4.6. Whereas the single-reactant
theory predicts a monotonically decreasing response when lD = 4, the present theory
demonstrates that the response may be either single- or double-valued. Furthermore,
the flame speed can exceed its adiabatic value for sufficiently small lE , as can be seen
for the curve with lE = −15.

4.2. Effect of the equivalence ratio. Recall that the effects of stoichiometry
are measured in terms of ϕ, which is the deviation from unity of the ratio of the mass
fractions of the excess-to-deficient reactants. Also, as defined in (2.6), ϕ = β(Φ − 1)
is always positive. Note that the deviation from unity of the equivalence ratio, φ1 =
β(φ− 1), is related to ϕ in the following way:

ϕ =

{
φ1, rich mixtures,
−φ1, lean mixtures.
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For a given fuel mixture, the roles of lD and lE are reversed as stoichiometry
is crossed. That is, for lean mixtures lD and lE assume the values of lF and lO,
respectively. However, when the mixture composition is altered to become fuel-rich,
lD = lO and lE = lF . It follows from our discussion above that (4.11) will always
be valid on one side of stoichiometry while (4.12) will be valid on the other, at least
in the immediate vicinity of φ1 ≈ 0. This implies, for example, that a slightly rich
mixture can burn lean, with the fuel totally consumed at the reaction sheet, when the
Lewis number of the fuel exceeds that of the oxidizer. Of course, as conditions move
sufficiently far away from stoichiometry, (4.11) always takes over, indicating that a
sufficiently rich mixture will always burn rich. As discussed, Γ assumes its largest
value of 1/2 when d = 0, so that in order for (4.12) to play a role along some portion
of the response curve, the following inequality must be satisfied:

ϕ+ (lD − lE)/2 < 0.

4.2.1. Heavy fuels. To illustrate typical response curves over a range of equiv-
alence ratios, we will first consider a mixture with lF = 6.0, lO = 0.0. These are
representative values for mixtures of heavy hydrocarbons in air, for example. For
lean mixtures, lD = 6.0, lE = 0.0, and it follows that ϕ+ (lD − lE)/2 > 0. Therefore
the entire flame response is determined by (4.11), and the fuel is always consumed.
Furthermore, for these parameter values, lD + 2µ

2+µ > 4 so the response is always
double-valued. For rich mixtures, on the other hand, lD = 0.0, lE = 6.0, and we find
that (4.12) will determine the lower portion of the response curve when 0 < φ1 < 3.0;
(4.11) is valid otherwise. That is, up to φ1 = 3.0, the flame burns lean when the
flame is near the wall and rich when the flame is sufficiently far from the wall. Be-
yond φ1 = 3.0 the flame always burns rich. The above inequalities also determine
that the response is double-valued when 0 < φ1 < 2.0. Beyond φ1 = 2.0 the response
is single-valued.

In Figure 4.7 we show the standoff distance, strain rate, and flame temperature
at extinction as a function of the deviation from unity of the equivalence ratio. The
dashed lines on the rich side of stoichiometry indicate that the flame is actually
burning lean when it extinguishes. Beyond φ1 = 2.0 there is no turning point. In
this region Kext is taken to be the value of K at which the flame first touches the
wall, or when twin flames merge in counterflow. Analysis of the system when d ≈ 0,
presented below, reveals that the flame is indeed extinguished at precisely this value
of K, given explicitly by (4.15) and (4.16).

4.2.2. Light fuels. Now we consider a mixture for which the fuel is the lighter
species, such as methane/air or hydrogen/air. In Figure 4.8 we show extinction con-
ditions as a function of the equivalence ratio for lF = −2.0, lO = 6.0. The dashed
lines on the lean side, but close to stoichiometry, indicate that the flame burns rich
at extinction. Note that the trends are opposite of those for heavy fuels, as shown in
Figure 4.7.

Similar curves can be readily constructed for various parameter values. In gen-
eral when the Lewis number of the fuel sufficiently exceeds that of the oxidizer, the
response is monotonic when the mixture is sufficiently rich and double-valued oth-
erwise. The response is typical of heavy hydrocarbons such as propane and butane.
On the other hand, when the fuel Lewis number is less than that of the oxidizer, the
response is monotonic only if the mixture is sufficiently lean. The curves in Figure 4.8
showing dext as a function of the equivalence ratio are consistent with the theory
presented in [12], as well as with the experimental results of Yamaoka and Tsuji [19],
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Fig. 4.7. Standoff distance, strain rate, and (negative) flame temperature perturbation at ex-
tinction as a function of mixture strength for lF = 6.0 and lO = 0.0. The solid portions of the
curves indicate extinction is determined by (4.11) and dashed portions by (4.12).

where they measured the standoff distance as a function of the equivalence ratio for
methane/air flames. We also note that the flame temperature perturbation levels off
on the lean side for lighter fuels and on the rich side for heavier fuels. These regimes
correspond to smaller effective Lewis numbers and thus these trends are consistent
with the computations of Sato and Tsuji [20], who found that the flame temperature
at extinction remains essentially a constant for Lewis numbers below unity.

4.3. The merged flame. In this section, we consider the structure of the flame
for the case d ≈ 0, in order to determine more accurately the extinction criteria after
the flames have merged. An analysis of merged flames has been performed previously
by Vedarajan, Buckmaster, and Ronney [21] for a single-reactant mixture with unity
Lewis number. Here we consider a generalized two-reactant mixture with nonunity
Lewis number.

The governing equations are

−Kxdτ
dx

=
d2τ

dx2
+

β2

2(ϕ+ 2)νY 2
D,u

YDYEe
β(τ−1), x ≤ 0,(4.17)

−Kxdhi
dx

=
d2hi
dx2

+ li
d2τ

dx2
, x ≤ 0,(4.18)

and the mass fractions are given by

YD/YD,u = 1 − τ + β−1hD,(4.19)

YE/νYD,u = 1 − τ + β−1(ϕ+ hE).(4.20)
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Fig. 4.8. Standoff distance, strain rate, and (negative) flame temperature perturbation at ex-
tinction as a function of mixture strength for lF = −2.0 and lO = 6.0. The solid portions of the
curves indicate extinction is determined by (4.11) and dashed portions by (4.12).

Ahead of the flame, x < 0, the solutions are

τ = erfc(−
√
K/2x),(4.21)

hi = cierfc(−
√
K/2x) − li

√
K/2πxe−Kx

2/2,(4.22)

where the constants, ci, are determined by matching to the reaction zone near x = 0.
The appropriate variables to analyze the reaction zone are

x = β−1ξ, τ = 1 + β−1θ, hi = Si,0 + β−1Si,1.(4.23)

To leading order, Si,0 are found to remain constant throughout the reaction zone, and
θ satisfies the equation

d2θ

dξ2
= − 1

2(ϕ+ 2)
(SD,0 − θ)(ϕ+ SE,0 − θ)eθ.(4.24)

At the next order, matching the solution of the local enthalpy equation to the outer
solution determines a condition for the leading order outer gradients, namely,

dhi
dx

(0−) + li
dτ

dx
(0−) = 0.

This determines the constant ci to be ci = −li/2, and thus Si,0 = −li/2 throughout
the reaction zone. Equation (4.24) can now be integrated once, and matching to the
solution upstream yields the following formula for the temperature at the stagnation
point θ∗:

K

π
=

{
lD
2

(
lE
2

− ϕ

)
+

(
lD
2

+
lE
2

− ϕ

)
(θ∗ − 1) + (θ∗ − 1)2 + 1

}
eθ

∗

2(ϕ+ 2)
.(4.25)
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The requirement of nonnegative mass fractions provides the following restriction on
θ∗:

θ∗ ≤ min[−lD/2; ϕ− lE/2].

A typical plot of θ∗ vs. K is shown in Figure 4.9 for the parameter values ϕ =
1.0, lD = lE = 2.0. Only the solid portion of the curve, below θ∗ = −1, is valid, to
ensure nonnegative mass fractions. Extinction is seen to occur at the lower turning
point, where θ∗ = −1.
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Fig. 4.9. Flame temperature perturbation vs. strain rate for the merged flame, as determined
by (4.25). Parameter values are lD = lE = 2.0, ϕ = 1.0. Only the solid portion of the curve is
relevant, as the dotted portion corresponds to negative mass fractions.

In general, the resulting curves from (4.25) have turning points at θ∗ = −lD/2
and ϕ− lE/2. However, as we have just discussed, physically relevant solutions exist
only for θ∗ less than the smaller of these values. Inserting these into (4.25) determines
the strain rate at extinction to be

Kext =
π

2
(1 + µ/2)e−lD/2 when θ∗ = −lD/2

and

Kext =
π

2
(p− µ/2)e−lE/2+ϕ when θ∗ = ϕ− lE/2.

These are precisely the values of the strain rate at which the flame first touches the
stagnation plane, as predicted by the analysis of the separated flames; see (4.15) and
(4.16). The present analysis therefore shows that when flames merge, extinction will
occur immediately after the flames come into contact with one another (or with an
adiabatic wall in the case of stagnation point flow).
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5. Conclusions. We have derived a diffusional-thermal model of premixed flames
under near-stoichiometric conditions. Our model, (2.18)–(2.23), differs from the
single-reactant theory in several ways. First, it consists of an additional coupled
equation for the second species, and, consequently, it has an explicit dependence on
two Lewis numbers as well as the equivalence ratio. Second, the jump in temperature
gradient across the reaction sheet is sensitive not only to the temperature perturba-
tion but also to the local species concentrations. Finally, the derived jump conditions
for the gradients across the flame sheet can take one of two forms, depending on which
of the two species is ultimately consumed by the reaction. Although the derivation
of our model assumes conditions close to stoichiometry, the single-reactant theory
is recovered in the appropriate limit, indicating the validity of our model over the
complete range of mixture strengths.

In general, the form of the final jump condition (2.23) depends on the sign of the
quantity

ϕ+ h∗E − h∗D.

This is directly proportional to the difference between the mass fractions of the ini-
tially deficient and excess reactants. We have determined that when this quantity is
negative, the initially excess reactant is ultimately consumed by the reaction, while a
small amount of the initially deficient reactant leaks through. For a weakly strained
or curved flame, this quantity takes the form

ϕ+ (lD − lE)(κ+K),

where κ is the curvature and K the strain rate. Thus, when the two species diffuse
at unequal rates, which of the two is ultimately consumed depends on the magnitude
and sign of the flame stretch, i.e., the combined effects of curvature and strain. This
can have important implications on flame dynamics.

We employed our model to examine the behavior of corrugated flames using a
sinusoidal disturbance imposed on a planar flame. Although the stability characteris-
tics were found to be the same as those predicted by the single-reactant theory, albeit
with an effective Lewis number properly defined, the overall flame structure is dif-
ferent. Under conditions sufficiently close to stoichiometry, the perturbed flame was
found to burn rich along some portions and lean along others. The leakage of fuel and
oxidizer along neighboring segments of the premixed flame front resulted in trailing
diffusion flame tongues. Analysis of these flames showed them to be Burke–Schumann
flame sheets, characterized by complete combustion, that were broader than the pre-
mixed reaction zone. Despite these differences, the dynamics of the premixed flame
were shown to be unaffected by the local differences in mixture composition along the
front.

Our model was also used to investigate the extinction of premixed flames in
counterflow. We used our formulas to calculate critical values of strain rate and
standoff distance at extinction over a range of equivalence ratios for parameter values
typical of both heavy and light fuels. Our theory predicts that rich mixtures of heavy
fuels, say, rich propane, are more resistant to strain than lean mixtures; they can
withstand larger strain rates and can be pushed closer to the stagnation plane. The
opposite trends are predicted for light fuels such as methane or hydrogen. Indeed, our
results are consistent with the methane/air experiments reported by Yamaoka and
Tsuji [19].
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Abstract. This paper presents new transport equations to describe the kinetics of coupled
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1. Introduction. Among various classical and quantum mechanical models [7],
quasi-hydrodynamic transport equations are today’s standard method for simulating
the electrical behavior of semiconductor devices. This semiclassical and macroscopic
description is based on the semiconductor Boltzmann equation [4]. One of the main re-
quirements for the derivation of hydrodynamic equations, however, is the assumption
that the distribution functions are well approximated by equilibrium distributions
with time dependent parameters [13]. Since this condition is rarely met in ultra-
integrated devices, i.e., the system is far from equilibrium, the focus of modeling the
carrier transport must be shifted to directly solving the Boltzmann equation.

We consider a coupled system of semiclassical Boltzmann equations, the so-called
Bloch–Boltzmann–Peierls (BBP) equations, for the interacting system of electrons and
phonons. These transport equations have mainly been solved by means of ensemble
Monte Carlo simulations [6] to investigate the kinetics of far-from-equilibrium systems
[11, 18, 20]. Apart from the popular Monte Carlo technique, the discrete kinetic theory
offers an alternative way of treating such problems. For elastically and inelastically
interacting classical gases, the semicontinuous version of the Boltzmann equation is a
well-established method [2, 8, 9, 10, 15, 16, 17].

Here, we derive a conservative formulation of the BBP equations in the frame-
work of a semicontinuous kinetic theory. This formulation is based on a discretization
of the energy variables and a continuum of momentum directions. Since a general
class of dispersion relations of carriers and phonons is considered, some assumptions,
which are discussed in section 3.1, are made for the aim of a concise treatment. As
an application, we study numerically the relaxation of photo-excited electrons inter-
acting with the phonon system in the Γ-valley of gallium arsenide (GaAs). The relax-
ation process is found to be significantly influenced by reabsorption processes of polar
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optical phonons.
Our approach (combined with a PN -expansion) offers the possibility of solving

the BBP equations for general dispersion relations of electrons, holes, and phonons
with much less consumption of CPU-time than with Monte Carlo methods. It has
the advantage of providing a posteriori error estimates. Moreover, the results are
independent of random number generators. The derived model equations reflect all
major aspects of the continuous description, such as conservation laws, equilibrium
states, and stability theorems. A detailed mathematical proof of these properties is
deferred to a subsequent publication.

The derived semicontinuous equations are generally applicable to problems with-
out external fields. Such problems are of great interest in semiconductor device mod-
eling. The relaxation after laser photo-excitation, recombination, and the effect of
far-from-equilibrium phonon distributions on the electronic system can be studied
and provide important insight into the dynamical behavior of electron-phonon sys-
tems.

This paper is organized as follows. In section 2 we review the continuous trans-
port equations and discuss their interesting mathematical and physical features. The
semicontinuous formulation of the BBP equations for a general class of dispersion
relations for electrons and phonons is developed in section 3. In section 4 we sum-
marize the conservation laws and provide an H-theorem concerning the stability of
the equilibrium solution. Finally, we present some numerical results concerning hot
electrons in GaAs in section 5.

2. Kinetic model. We set up our kinetic model with the standard BBP equa-
tions [21],

∂f

∂t
+ v(k) · ∇rf =

nph∑
i=1

Celi (f, gi),(2.1)

∂gi
∂t

+ ci(q) · ∇rgi = Cphi (f, gi),(2.2)

with the phase space distribution functions f(k, r, t) for electrons and gi(q, r, t) for
different types i = 1, . . . , nph of phonons. The wave vectors k ∈ B, q ∈ B are elements
of the first Brillouin zone B, while r ∈ V ⊂ R

3 indicates the position and t ∈ R
+

denotes the time. Further, we introduce the mean velocity of electrons v(k) and ci(q)
for the phonon type i by

v(k) =
1

�
∇kE(k), ci(q) = ∇qωi(q),(2.3)

with � = h/2π, the reduced Planck constant, the electron energy E(k) in the consid-
ered band, and the dispersion relation ωi(q) of the ith phonon branch. The collision
operators

Celi (f, gi)=
V

8π3

∫
B
dk′
[
w+
i (k,k′, q+)κ1(g

+
i , f, f

′)+w−
i (k,k′, q−)κ2(g

−
i , f, f

′)
]
,(2.4)

Cphi (f, gi)=
V

4π3

∫
B
dk′ w+

i (k−,k′, q)κ1(gi, f
−, f ′)(2.5)

with the transition rates

w±
i (k,k′, q) = si(q) δ[E(k) − E(k′) ± �ωi(q)](2.6)
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and the functions

κ1(g, f, f
′) = (g + 1)f ′(1 − f) − gf(1 − f ′) = g(f ′ − f) + f ′(1 − f),(2.7)

κ2(g, f, f
′) = gf ′(1 − f) − (g + 1)f(1 − f ′) = g(f ′ − f) − f(1 − f ′)(2.8)

couple the electron equation with the phonon equations. We have omitted the argu-
ments r, t of the distribution functions and have used the abbreviations q±=±(k′−k),
k− = k′ − q, f = f(k), f ′ = f(k′), f− = f(k−), gi = gi(q), g

±
i = gi(q

±) in (2.4) and
(2.5) for brevity. The collision operators (2.4) and (2.5) with the transition rates (2.6)
take into account only normal processes due to the electron-phonon interaction. The
function si(q) introduced in (2.6) is determined by the absolute value of the matrix
element of the electron-phonon interaction Hamilton operator in the states |k〉, |k′〉
and, therefore, depends on the type of interaction. The delta distribution in the
transition rates ensures conservation of the total energy of the affected electron and
phonon in every scattering event. It should be noted that the wave vectors k,k′, q
do not appear independently from each other in the operators (2.4) and (2.5). If
we consider an electron that is scattered from the initial state k to the final state
k′ involving a phonon of the branch i with wave vector q, then the plus sign of w±

i

represents an absorption process and the minus sign represents an emission process
of the phonon.

The major aspects of the transport equations (2.1) and (2.2) with the collision
operators (2.4) and (2.5), such as conservation laws, equilibrium solutions and their
stability, as well as the initial value problem for the space homogeneous problem,
have been analyzed by Majorana [12] in the case of a constant phonon frequency, i.e.,
ωi(q) = ω0. A generalized kinetic theory for electrons and phonons, based on the
BBP equations, is presented in [19].

3. Semicontinuous model. In this section, we derive a semicontinuous version
of the kinetic equations (2.1) and (2.2) with the collision operators (2.4) and (2.5).
For this purpose, it is necessary to distinguish between two different types of phonons:
acoustic phonons, labeled with index i = 1, obeying the dispersion relation e1(q) =
�ω(q), and optical phonons, i = 2, with constant energy e2(q) = e0 = �ω0 (Einstein
model).

In the case of electrons interacting with acoustic phonons, we first introduce
the electron and phonon energy, E, e= �ω, as relevant variables of the distribution
functions f, g1 and reformulate the collision operators. This reformulation is possible
under mild assumptions on the dispersion relations. The energy variables are then
discretized in a second step.

Since optical phonons in the Einstein model cannot be characterized by their
energy, we split up the wave vector into its modulus and direction, i.e., q = qΩq,
and discretize the modulus q. After applying a special approximation procedure to
functions of the discretized variables, we obtain the semicontinuous BBP equations.

3.1. Interaction geometry and assumptions on the dispersion relations.
The semicontinuous model is based on an energy dependent formulation of the kinetic
equations. To introduce the electron and phonon energies as relevant variables, we
assume that the unique functions

|k| = k(E,Ωk), |q| = q(�ω,Ωq)(3.1)

exist for the given dispersion relations E(k), ω(k) if Ωk = k/|k| ∈ S
2, Ωq = q/|q| ∈ S

2

and E ∈ I1 ⊂ R
+, �ω ∈ I2 ⊂ R

+, respectively. The energy intervals I1 and I2 are
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chosen in such a way that the distribution functions f(k) and g1(k) vanish for energies
E(k), �ω(k) outside I1 and I2, respectively. It should be mentioned that for common
semiconductors the functions (3.1) usually exist in that region of the k-space, which
is relevant for the transport properties. In some cases, however, this region consists
of several isolated parts located around band extrema. Such situations can be treated
with multivalley models, where different species, one for each part of the Brillouin
zone, are introduced and described separately by appropriate distribution functions.
In the following we consider only one kind of electron.

In order to derive the semicontinuous BBP equations, we introduce suitable coor-
dinate systems. This often turns out to be very useful when approximating Boltzmann
collision operators [14]. We consider the orthonormal transformation matrix

T(Ω) =

⎛
⎝ cosϑ cosϕ − sinϕ sinϑ cosϕ

cosϑ sinϕ cosϕ sinϑ sinϕ
− sinϑ 0 cosϑ

⎞
⎠ , Ω =

⎛
⎝ sinϑ cosϕ

sinϑ sinϕ
cosϑ

⎞
⎠(3.2)

with ϑ ∈ [0, π], ϕ ∈ [0, 2π], and two coordinate systems Sj , j = 1, 2, whose basis

vectors a
(j)
i ∈ R

3, i = 1, 2, 3, should be given by

ai = T−1(Ωk)a
(1)
i = T−1(Ωq)a

(2)
i , i = 1, 2, 3,(3.3)

where ai are the basis vectors of an arbitrary but fixed basic coordinate system. It
should be pointed out that the third axis of the system S1 (S2) is aligned with the
vector k (q). If we represent the unit vector Ωk′ = k′/|k′| by

Ω
(j)
k′ =

⎛
⎝ sinϑj cosϕj

sinϑj sinϕj
cosϑj

⎞
⎠ , j = 1, 2,(3.4)

the quantity ϑj is the angle between k′ and k for j = 1 and between k′ and q for
j = 2, which is advantageous for the integration of the collision operators (2.4) and
(2.5).

The electron-phonon interaction processes considered in our kinetic model are
governed by the energy and momentum relations

k′ = k ± q, E(k′) = E(k) ± ei(q)(3.5)

of the affected electron and phonon of type i= 1, 2. Due to (3.4) the direction Ωk′

of k′ is parameterized by the angular variables ϑ1 and ϕ1. Now, we concentrate
on interaction processes between electrons and acoustic phonons. We consider fixed
values for the initial quasi momentum k=k(E,Ωk)Ωk, the electron energy after the
interaction E′, and the polar angle ϕ1. The solutions of (3.5), for the fixed parameters
E, Ωk, E

′, and ϕ1, determine the scattering angle ϑ1 as well as the phonon wave
vector q for allowed scattering events. For the following treatment, we assume that
such solutions, if they exist, are unique. In the case of optical phonons, we impose the
uniqueness of solutions to (3.5) for fixed parameters E, Ωk, q, and ϕ1. Concerning
the phonon collision operators, we additionally require that solutions to (3.5) with
respect to ϑ2 are unique for a fixed phonon wave vector q and fixed parameters E′

and ϕ2. These conditions are satisfied by dispersion relations which depend weakly on
the direction of the wave vector. It should be pointed out that the above mentioned
assumptions are made in order to ensure a clear formalism and notation.
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3.2. Integration of the collision operators. We reformulate the collision
operators by carrying out the variable transformation (k′1, k′2, k′3) → (E′, ϑ1, ϕ1) in
the integral of the electron collision operator (2.4) with the relation

k′(E′, ξ1, ϕ1,Ωk) = k[E′,u(ξ1, ϕ1,Ωk)] u(ξ1, ϕ1,Ωk),(3.6)

u(ξj , ϕj ,Ωk) = T(Ωk) Ω
(j)
k′ , j = 1, 2,(3.7)

where we split up the vector k′ into its modulus and direction unit vector. The latter
is expressed as a function of ϑ1, ϕ1 through the transformation (3.2) and we introduce
the abbreviation ξ1 = cosϑ1. The absolute value of the Jacobi determinant results in

|J(E′, ξ1, ϕ1,Ωk)| =

∣∣∣∣det

[
∂(k′1, k′2, k′3)
∂(E′, ξ1, ϕ1)

]∣∣∣∣ = k′2
∣∣∣∣ ∂k′∂E′

∣∣∣∣(3.8)

with k′ = k[E′,u(ξ1, ϕ1,Ωk)]. Concerning the integration limits, we can assume that
the relevant k-region, i.e., in which E(k) ∈ I1, is a subset of the first Brillouin zone
B and we obtain

k′ ∈ B −→ E′ ∈ I1, ξ1 ∈ [−1, 1], ϕ1 ∈ [0, 2π].(3.9)

Taking into account (2.6), the electron collision operators (2.4) can then be written
as

Celi (f, gi) =
V

8π3

∫
I1
dE′
∫ 2π

0

dϕ1

∫ 1

−1

dξ1 |J |
{
s+i κ1(g

+
i , f, f

′)δ(F+
i ) + s−i κ2(g

−
i , f, f

′)δ(F−
i )
}(3.10)

for i = 1, 2 with the functions

F±
i (E,E′, ξ1, ϕ1,Ωk) = E − E′ ± ei[q

±(E,E′, ξ1, ϕ1,Ωk)],(3.11)

q±(E,E′, ξ1, ϕ1,Ωk) = ±{k[E′,u(ξ1, ϕ1,Ωk)] u(ξ1, ϕ1,Ωk) − k(E,Ωk) Ωk}(3.12)

and the abbreviation s±i = si(q
±). At first sight the representation (3.6) seems

to result in needlessly complicated expressions for the integrand of the collision op-
erator (3.10). However, it has the advantage that we obtain convenient functions
q±(E,E′, ξ1, ϕ1,Ωk), representing the modulus of the phonon wave vector. For ex-
ample, if we consider dispersion relations, which depend on only the wave vector
moduli, then q± depends on only ξ1, i.e., the cosine of the angle between k and k′ for
given energies E,E′.

An analogous treatment of the phonon collision operators (2.5) leads to

Cphi (f, gi) =
V

4π3
si

∫
I1
dE′
∫ 2π

0

dϕ2

∫ 1

−1

dξ2 |J |κ1(gi, f
−, f ′)δ(Gi)(3.13)

for i = 1, 2, where we have introduced the functions

Gi(E
′, ξ2, ϕ2, q) = E[k−(E′, ξ2, ϕ2, q)] − E′ + ei(q),(3.14)

k−(E′, ξ2, ϕ2, q) = k[E′,u(ξ2, ϕ2,Ωq)] u(ξ2, ϕ2,Ωq) − q.(3.15)

We continue with the investigation of the poles ξ±1 of the delta distribution δ(F±
1 )

defined by

F±
1 (E,E′, ξ1, ϕ1,Ωk) = 0.(3.16)
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We consider solutions to (3.16) with respect to ξ1 for arbitrary, but fixed, parameters
E, E′, ϕ1, and Ωk. According to section 3.1 there exist unique solutions, and we
denote them with

ξ±1 = ζ±1 (E,E′, ϕ1,Ωk).(3.17)

It must be remembered that the functions (3.17) are subject to the condition

|ζ±1 (E,E′, ϕ1,Ωk)| ≤ 1(3.18)

because of ξ1 = cosϑ1. The arguments of the functions (3.17) will be omitted in the
following for brevity. If the solutions to (3.16) do not exist for the given parameters
E, E′, ϕ1, Ωk or if the solutions do not satisfy the condition (3.18), the collision term
(3.10) vanishes. Hence, the energies E′ can be restricted to the range

Da±(E,ϕ1,Ωk) =
{
E′ ∈ I1

∣∣ ∃ζ±1 ∧ |ζ±1 | ≤ 1
}
,(3.19)

which can be seen as a selection rule for the scattering processes. Now, we carry out
the integration with respect to ξ1 in the operator (3.10) to obtain

Cel1 (f, g1) =

∫ 2π

0

dϕ1

∫
I1
dE′

[
σ+

1 κ1(g
+
1 , f, f

′+) + σ−
1 κ2(g1

−, f, f ′−)
]
,(3.20)

where we use f ′± = f [k(E′,u±
1 )u±

1 ] and the functions u±
1 = u(ζ±1 , ϕ1,Ωk), g

±
1 =

g1[q
±(E,E′, ζ±1 , ϕ1,Ωk)] are evaluated at ξ1 = ζ±1 . The scattering rate is given by

σ±
1 (E,E′, ϕ1,Ωk) =

V

8π3

[
|J |s±1

(∣∣∣∣∂F±
1

∂ξ1

∣∣∣∣
)−1

]
ξ1=ζ

±
1

χDa±(E′),(3.21)

with the characteristic function χM of the set M. Further, we use (3.8), (3.11),
(3.19), and s±1 = s1(q

±), where q± is given in (3.12). It should be mentioned that
e[q±(ξ1 = ζ±1 )] = ±(E′ − E) and, therefore, we can write

q± = q[±(E′ − E), û±(E,E′, ζ±1 , ϕ1,Ωk)]û
±(E,E′, ζ±1 , ϕ1,Ωk),(3.22)

û±(E,E′, ξj , ϕj ,Ωk) =
q±(E,E′, ξj , ϕj ,Ωk)

|q±(E,E′, ξj , ϕj ,Ωk)| , j = 1, 2.(3.23)

Concerning the integration of the phonon collision operator (3.13) with respect to ξ2,
the pole ξ+2 is defined by

G1[e, E
′, ξ+2 , ϕ2,Ωq] = E[k−(E′, ξ+2 , ϕ2, q(e,Ωq)Ωq)] − E′ + e = 0,(3.24)

where we have introduced the phonon energy e = e1(q). The uniqueness of an existing
solution to (3.24) with respect to ξ2 for fixed e, E′, ϕ2, Ωq as postulated in section
3.1, i.e.,

ξ+2 = ζ2(e, E
′, ϕ2,Ωq),(3.25)

leads us to the relevant energy ranges

Da(e, ϕ2,Ωq) =
{
E′ ∈ I1

∣∣ ∃ζ2 ∧ |ζ2| ≤ 1
}

(3.26)
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by additionally exploiting the relation ξ2 = cosϑ2. Hence, the phonon collision oper-
ator can be written as

Cph1 (f, g1) =

∫ 2π

0

dϕ2

∫
I1
dE′σ1κ1(g1, f

−, f ′),(3.27)

with f ′ = f [k(E′,u2)u2] and f− = f(k−2 ). The functions u2 = u[ζ2, ϕ2, q(e,Ωq)Ωq]
and k−2 = k−(E′, ζ2, ϕ2,Ωq) are defined by (3.7), (3.15) and evaluated at ξ2 = ζ2.
The new scattering rate is given by

σ1(e, E
′, ϕ2,Ωq) =

V

4π3
s1

[
|J |
(∣∣∣∣∂G1

∂ξ2

∣∣∣∣
)−1

]
ξ2=ζ2

χDa(E′)(3.28)

with the relations (3.8), (3.24), and (3.26).
Next, we treat the collision operators in the case of optical phonons. This means

that we assume a constant phonon energy e2(q) = e0 = �ω0, which simplifies the ar-
gument F±

2 of the delta distribution (3.11) in the collision operator (3.10). Performing
the integration with respect to the electron energy E′ leads to

Cel2 (f, g2) =
V

8π3

∫ 2π

0

dϕ1

∫ 1

−1

dξ1

[
|J |+s+2 κ1(g

+
2 , f, f

′+
∗ ) χDo+(E)

+ |J |−s−2 κ2(g
−
2 , f, f

′−
∗ ) χDo−(E)

]
.(3.29)

The functions |J |±, s±2 , g±2 , f ′±∗ are evaluated at E′ = E ± e0. The insertion of the
characteristic functions χDo±(E) of the sets

Do+ = [min(I1),max(I1) − e0], Do− = [min(I1) + e0,max(I1)](3.30)

ensures that E± e0 = E′ ∈ I1. We introduce the modulus of the phonon wave vector
qo± = |q±| as the relevant variable instead of ξ1 with the relations

qo±(E, ξ1, ϕ1,Ωk) =
[
k2 + (k′±)2 − 2kk′±ξ1

] 1
2

(3.31)

for the triangle formed by k,k′±, q±. The vector

k′±(E, ξ1, ϕ1,Ωk) = k[E ± e0,u(ξ1, ϕ1,Ωk)] u(ξ1, ϕ1,Ωk)(3.32)

corresponds to energies E′ = E± e0. In section 3.1 we have imposed unique solutions
to the energy and momentum relations (3.5) for given parameters E, q, ϕ1, and Ωk.
In this case the inverse functions of q = qo± with respect to ξ1 exist, and we denote
them with

ξ1 = ζo±1 (E, q, ϕ1,Ωk).(3.33)

If we substitute q for ξ1 in the integral of (3.29), the collision operator results in

Cel2 (f, g2) =

∫ 2π

0

dϕ1

∫
I3
dq
[
σ+

2 κ1(g
+
2 , f, f̂

′+) + σ−
2 κ2(g

−
2 , f, f̂

′−)
]
.(3.34)

Here g±2 = g2[qû
±(E,E ± e0, ζ

o±
1 , ϕ1,Ωk)] and f̂ ′

±
= f(k′±) with the vectors û

introduced in (3.23) and k′± given in (3.32), which are computed at ξ1 = ζo±1 . The
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interval I3 is defined in such a way that the phonon distribution function g(q) vanishes
for q-values outside I3. The equations (3.31), (3.33) and the sets

D±(E,ϕ1,Ωk) =
{
q ∈ I3

∣∣ |k − k′±(ξ1 = 1)| ≤ q ≤ k + k′±(ξ1 = −1)
}

(3.35)

together with |J |± = |J(E′ = E ± e0)|, where (3.8) is used, yield the transition rates

σ±
2 (E, q, ϕ1,Ωk)=

V

8π3

[
|J |±s±2

(
∂qo±

∂ξ1

)−1
]
ξ1=ζ

o±
1

χD±(q)χDo±(E).(3.36)

The phonon collision operator for optical phonons can be obtained from the acous-
tic phonon operator (3.27) by setting e = e0, i.e.,

Cph2 (f, g2) =

∫ 2π

0

dϕ2

∫
I1
dE′σ2κ1(g2, f̂

−, f̂ ′)(3.37)

with f̂ ′ = f [k(E′,uo2)u
o
2] and f̂− = f(ko−2 ). The functions uo2 = u(ζo2 , ϕ2,Ωq) and

ko−2 = k−(E′, ζo2 , ϕ2,Ωq) are defined by (3.7), (3.15) and evaluated at ξ2 = ζo2 , which
is determined by

G2(E
′, ξ+2 , ϕ2, qΩq) = 0 ⇒ ξ+2 = ζo2 (q, E′, ϕ2,Ωq).(3.38)

The scattering rate results in

σ2(q, E
′, ϕ2,Ωq) =

V

4π3
s2

[
|J |
(∣∣∣∣∂G2

∂ξ2

∣∣∣∣
)−1

]
ξ2=ζo2

χDo(E′),(3.39)

with (3.8), (3.24), and the energy ranges

Do(q, ϕ2,Ωq) =
{
E′ ∈ I1

∣∣ ∃ζo2 ∧ |ζo2 | ≤ 1
}
.(3.40)

It should be pointed out that at this stage we have performed only a reformulation
of the collision operators and therefore no approximations have been made.

3.3. Discretization. The following discretization and approximation procedure
is similar to the discretizations presented in [17]. Here, we introduce discretizations of
the electron energy, the phonon energy, and the modulus of the optical phonon wave
vector. Starting with the electron energy variable, we choose n + 1 values Ei ∈ I1,
which form an arithmetic series Ei = E0 + i∆1, i ∈ S1 = [0, n] ⊂ N, with the energy
distance ∆1 > 0. Furthermore, we introduce a partition I1

i , i ∈ S1, of the interval I1,
so that Ei belongs to the interior of I1

i . It is convenient to use equidistant intervals
I1
i with length ∆1. Due to the energy conserving transition rates (2.6), the acoustic

phonon energy can always be expressed as electron energy difference, e = E′ − E,
in the collision operators (3.20) and (3.27). Thus, the discretization of the electron
energy determines the set of phonon energies ei = i∆2, with ∆2 = ∆1 = ∆ and
i ∈ S2 = [1, n] ⊂ N, if we assume that e > 0. As in the case of electrons, we define
a partition I2

i , i ∈ S2, of the interval I2, where ei is an element of the interior of
I2
i . Again, it is reasonable to assume equidistant intervals I2

i with length ∆. This
fragmentation of I1, I2 is possible if the basic phonon energy range is defined by
I2 = [E0 − min(I1), En − min(I1)].
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The state of the particles is characterized by a discrete set of energies Ei, ei
and arbitrary unit vectors Ω. The discretization has been constructed to ensure that
Ei ± ej = Ek with k = i ± j if k = (i ± j) ∈ S1. Hence, the relevant energy and
momentum relations are exactly fulfilled on the level of individual microscopic collision
processes. This is the main feature of a conservative semicontinuous model.

In the case of optical phonons, we discretize the modulus q of the wave vector q.
Since the phonon energy does not depend on the wave vector, the energy momentum
relations decouple and we can freely choose discrete values for q. To satisfy the relation
Ei±e0 = Ej with discrete energy values Ei, Ej , the phonon energy must be an integer
multiple of the discretization length, i.e., e0 = α∆, α ∈ S1. We introduce a partition
of I3 with m subintervals I3

i , i ∈ S3 = [1,m] ⊂ N, and a set of m values qi, i ∈ S3, in
such a way that qi is an element of I3

i . The length of the interval I3
i is denoted with

∆3
i .

Next, we approximate functions Φ(xj), j = 1, 2, 3, of the discretized variables
x1 = E, x2 = e, x3 = q by

Φ(xj) ≈
∑
i∈Sj

Θij(x
j)Φji , Φji = Φ(xji ), j = 1, 2, 3,(3.41)

with the shape function Θij(x
j), which is equal to 1 for xj ∈ Iji and zero otherwise

for j = 1, 2, 3. The approximation method applied to integrals of functions Φ(xj)
yields

∫
Ij

Φ(xj)dxj ≈
∑
i∈Sj

∆j
iΦ

j
i , j = 1, 2, 3.(3.42)

The approximation of functions of electron energy differences, e.g.,

Φ(E − E′) =
∑

i,j∈S1, i>j

Θi1(E)Θj1(E
′)Φ(Ei − Ej) =

∑
i∈S1

∑
k∈S2

Θi1(E)Θk2(e)Φ(ek)

(3.43)

with e = (E − E′) ∈ I2 and k = (i− j) ∈ S2, constitutes a special case.

3.4. Semicontinuous kinetic equations. We start to discretize the electron
equation (2.1) by integrating the equation over the interval I1

i with respect to the
variable E. The left-hand side can then be approximated by

∫
I1
i

[
∂f

∂t
+ v(k) · ∇rf

]
dE ≈ ∆

[
∂fi
∂t

+ vi · ∇rfi

]
(3.44)

with the abbreviations fi = f [k(Ei,Ωk)Ωk, r, t] and vi = v[k(Ei,Ωk)Ωk]. The ap-
plication of the approximation procedure (3.41) to the integral of Cel1 , (3.20), yields

∫
I1
i

Cel1 (f, g1)dE≈∆Cel1i = ∆

∫ 2π

0

dϕ1

∑
j∈S1

[
A+

1ijκ1(g
+
1ij , fi, f

′+
ij) +A−

1ijκ2(g
−
1ij , fi, f

′−
ij)
](3.45)
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for i ∈ S1 with the abbreviations

f ′±ij = f [k(Ej ,u
±
1ij)u

±
1ij , r, t],(3.46)

g±1ij = g±1 [q±(Ei, Ej , ζ
±
1ij , ϕ1,Ωk), r, t],(3.47)

A±
1ij = ∆σ±

1 (Ei, Ej , ϕ1,Ωk),(3.48)

u±
1ij = u(ζ±1ij , ϕ1,Ωk), ζ±1ij = ζ±1 (Ei, Ej , ϕ1,Ωk).(3.49)

We use the unit vector u± introduced in (3.7), and the function ζ±1 defined in (3.17)
is evaluated at Ei, Ej .

Now, we treat the second part of the electron collision operator involving the
optical phonons. We integrate the operator (3.34) over I1

i with respect to the electron
energy variable E. The approximation (3.41) of functions of E and q results in

∫
I1
i

Cel2 (f, g2)dE≈∆Cel2i = ∆

∫ 2π

0

dϕ1

∑
j∈S3

[
A+

2ijκ1(g
+
2ij , fi, f̂

′+
ij) +A−

2ijκ2(g
−
2ij , fi, f̂

′−
ij)
](3.50)

for i ∈ S1 with

f̂ ′
±
ij = f [k(Ei±α,uo±1ij)u

o±
1ij , r, t],(3.51)

g±2ij = g±2 [qjû
±(Ei, Ei±α, ζo±1ij , ϕ1,Ωk), r, t],(3.52)

A±
2ij = ∆3

jσ
±
2 (Ei, qj , ϕ1,Ωk),(3.53)

uo±1ij = u(ζo±1ij , ϕ1,Ωk), ζo±1ij = ζo±1 (Ei, qj , ϕ1,Ωk).(3.54)

We point out that e0 = α∆ holds as imposed in section 3.3. The function ζo±1ij has

been introduced in (3.33), and concerning the vectors u and û± we refer to (3.7) and
(3.23). Adding up the two scattering operators (3.45), (3.50) and equating this sum
with the approximation of the streaming part (3.44) gives a discretized version of the
electron Boltzmann equation (2.1).

In the next step, we approximate the integral of the left-hand sides of the phonon
equations (2.2). Starting with acoustic phonons, we obtain∫

I2
i

[
∂g1
∂t

+ c1(q) · ∇rg1

]
de ≈ ∆

[
∂g1i
∂t

+ c1i · ∇rg1i

]
(3.55)

for i ∈ S2 and with g1i = g[q(ei,Ωq)Ωq, r, t], c1i = c1[q(ei,Ωq)Ωq]. The approxima-
tion of the integrated optical phonon streaming operator yields∫

I3
i

∂g2
∂t

dq ≈ ∆3
i

∂g2i
∂t

(3.56)

for i ∈ S3 if we use the abbreviation g2i = g(qiΩq, r, t) and take into account that
the mean velocity c2(q) defined in (2.3) vanishes for the Einstein dispersion relation
e2(q) = e0. The collision operators (3.27) and (3.37) are discretized in the same way
as the streaming operators above. In the case of acoustic phonons, the approximation
(3.41) results in∫

I2
i

Cph1 (f, g1)de≈∆Cph1i = ∆

∫ 2π

0

dϕ2

∑
j∈S1

B1ijκ1(g1i, f
−
ij , f

′
ij)(3.57)
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for i ∈ S2 with

f ′ij = f [k(Ej ,u2ij)u2ij , r, t],(3.58)

f−ij = f [k−(Ej , ζ2ij , ϕ2, q(ei,Ωq) Ωq), r, t],(3.59)

B1ij = ∆σ1(ei, Ej , ϕ2,Ωq).(3.60)

The vectors u2ij = u(ζ2ij , ϕ2,Ωq), k
− are defined in (3.7), (3.15), and the function

ζ2ij = ζ2(ei, Ej , ϕ2,Ωq) is introduced in (3.25). The discretization of the modulus
of the phonon wave vector and the approximation of the optical phonon collision
operator yield∫

I3
i

Cph2 (f, g2)dq≈∆3
iC

ph
2i = ∆3

i

∫ 2π

0

dϕ2

∑
j∈S1

B2ijκ1(g2i, f̂
−
ij , f̂

′
ij)(3.61)

for i ∈ S3 with

f̂ ′ij = f [k(Ej ,u
o
2ij)u

o
2ij , r, t],(3.62)

f̂−ij = f [k−(Ej , ζ
o
2ij , ϕ2, qi Ωq), r, t],(3.63)

B2ij = ∆σ2(qi, Ej , ϕ2,Ωq).(3.64)

We define the unit vector uo2ij = u(ζo2ij , ϕ2,Ωq) by using (3.7) and the function
ζo2ij = ζo2 (qi, Ej , ϕ2,Ωq), where we evaluate (3.38) at q = qi, E

′ = Ej . The phonon
energy is given by e0 = α∆.

Equating the approximations (3.55) and (3.56) of the left-hand side of (2.2) to the
collision operators (3.57) and (3.61) yields discretized phonon Boltzmann equations.
Together with the streaming operator (3.44) and the collision operators of the electron
equation, (3.45) and (3.50), we obtain the semicontinuous BBP equations

∂fi
∂t

+ vi · ∇rfi = Cel1i + Cel2i, i ∈ S1,(3.65)

∂g1i
∂t

+ c1i · ∇rg1i = Cph1i , i ∈ S2,(3.66)

∂g2i
∂t

= Cph2i , i ∈ S3.(3.67)

3.5. Macroscopic quantities. For the introduction of macroscopic quantities
in the semicontinuous model, it is useful to define the vector function

Φ = [φ1
0(Ω), . . . , φ1

n(Ω), φ2
1(Ω), . . . , φ2

n(Ω), φ3
1(Ω), . . . , φ3

m(Ω)](3.68)

for Ω ∈ S
2. Its components are φ1

i (Ω) = Φ1[k(Ei,Ω)Ω], φ2
i (Ω) = Φ2[q(ei,Ω)Ω], and

φ3
i (Ω)=Φ3(qiΩ), where Φ1(k), Φ2(q), and Φ3(q) are arbitrary functions of k, q ∈ B.

In addition, we introduce the vector

f = (f1
0 , . . . , f

1
n, f

2
1 , . . . , f

2
n, f

3
1 , . . . , f

3
m) = (f0, . . . , fn, g11, . . . , g1n, g21, . . . , g2m),

(3.69)

consisting of the discretized distribution functions. Then, we consider the functional

〈Φ,f〉 =

3∑
i=1

∑
j∈Si

∆i
j

∫
S2

dΩDi
j(Ω)φij(Ω)f ij(Ω),(3.70)
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where ∆i
j=∆ for i = 1, 2, j ∈ Si, holds, and we use

D1
i (Ωk) = D1(Ei,Ωk) =

1

4π3

∣∣∣∣det

[
∂(k1, k2, k3)

∂(E, ξk, ϕk)

]∣∣∣∣
E=Ei

, i ∈ S1,(3.71)

D2
i (Ωq) = D2(ei,Ωq) =

1

8π3

∣∣∣∣det

[
∂(q1, q2, q3)

∂(e, ξq, ϕq)

]∣∣∣∣
e=ei

, i ∈ S2,(3.72)

D3
i (Ωq) = D3(qi,Ωq) =

1

8π3
q2i , i ∈ S3.(3.73)

The angular variables ξk = cosϑk, ϕk and ξq = cosϑq, ϕq represent the unit vectors Ωk

and Ωq as defined in (3.2). With the latter functional we can express the macroscopic
quantities in the semicontinuous formalism. The densities of the electron particle
number, the total quasi momentum, and the total energy are given by

nel(r, t) = 〈Φn,f〉, Φ1
n = 1,Φ2

n = Φ3
n = 0,(3.74)

ktotl (r, t) = 〈Φkl ,f〉, Φ1
kl

= kl,Φ
2
kl

= Φ3
kl

= ql, l = 1, 2, 3,(3.75)

etot(r, t) = 〈Φe,f〉, Φ1
e = E(k),Φ2

e = e(q),Φ3
e = e0.(3.76)

By defining the vectors

νβ = (v0βf0, . . . , vnβfn, c11βg11, . . . , c1nβg1n, c21βg21, . . . , c2mβg2m)(3.77)

for β = 1, 2, 3, we obtain the corresponding current densities of the particle number,
the total quasi momentum, and the total energy, uelβ (r, t) = 〈Φn,νβ〉, Ktot

βγ (r, t) =

〈Φkβ ,νγ〉, Qtotβ (r, t)=〈Φe,νβ〉 with β=1, 2, 3 and γ=1, 2, 3.

4. Conservation laws, stability, and equilibrium of the discretized model.
Here, we briefly summarize the interesting mathematical aspects of the semicontinu-
ous BBP equations and sketch their derivation, while the rigorous proofs are deferred
to a subsequent paper. To this end, we introduce the vector J formed by the semi-
continuous collision operators (3.45), (3.50), (3.57), and (3.61), i.e., J1

i = Cel1i + Cel2i
for i ∈ S1, J

2
i = Cph1i for i ∈ S2, and J3

i = Cph2i for i ∈ S3, and define the functional

〈Φ,J〉 =

3∑
i=1

∑
j∈Si

∆i
j

∫
S2

dΩDi
j(Ω)φij(Ω)J ij(Ω).(4.1)

In addition, we consider the space of collisional invariants C, which contains all triples
[Φ1(k),Φ2(q),Φ3(q)] satisfying 〈Φ,J〉 = 0. Moreover, we introduce the functions

Φ1
H(k) = log

[
f(k)

1 − f(k)

]
, Φ2

H(q) = log

[
g1(q)

1 + g1(q)

]
, Φ3

H(q) = log

[
g2(q)

1 + g2(q)

]
.

(4.2)

With the definitions above and the sets

S+
i (ϕ,Ω) =

{
j ∈ S1

∣∣Ej ∈ Da+(Ei, ϕ,Ω)
}
,(4.3)

Sqi (ϕ,Ω) =
{
j ∈ S3

∣∣qj ∈ D+(Ei, ϕ,Ω)
}
,(4.4)

we can state the basic theorem.
Theorem 4.1. The presented semicontinuous BBP equations (3.65)–(3.67) have

the following properties.
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1. They provide the continuity equations

∂nel(r, t)

∂t
+ ∇r · uel(r, t) = 0,

∂ktot(r, t)

∂t
+ ∇r · Ktot(r, t) = 0,

∂etot(r, t)

∂t
+ ∇r ·Qtot(r, t) = 0(4.5)

for the macroscopic quantities defined in section (3.5).
2. In the equilibrium state, the relation

J = 0 ⇔ [Φ1
H(k),Φ2

H(q),Φ3
H(q)] ∈ C(4.6)

holds, and these conditions are equivalent to

fi(Ω) =

[
exp

(
Ei − µ

kBT

)
+ 1

]−1

,

g+
1ij(ϕ1,Ω) =

[
exp

(
ej−i
kBT

)
− 1

]−1

,

g+
2ik(ϕ1,Ω) =

[
exp

(
e0
kBT

)
− 1

]−1

(4.7)

with i ∈ S1, j ∈ S+
i (ϕ1,Ω), k ∈ Sqi (ϕ1,Ω), ϕ1 ∈ [0, 2π], Ω ∈ S

2, if the total quasi
momentum ktot(r, t) vanishes identically.

3. A Lyapunov functional for the considered kinetic equations is given by

H =
3∑
i=1

∑
j∈Si

∆i
j

∫
S2

dΩDi
j(Ω)hij(Ω),(4.8)

h1
i = fi log(fi) + (1 − fi) log(1 − fi),

hj+1
i = gji log(gji) − (1 + gji) log(1 + gji), j = 1, 2,

with the distribution functions fi = f [k(Ei,Ω)Ω], g1i = g1[q(ei,Ω)Ω], g2i = g2(qiΩ),
and Di

j(Ω) defined in (3.71)–(3.73).
The integration of the continuity equations (4.5) over the crystal volume V with

respect to the local variable r shows that the electron particle number, the total
quasi momentum, and the total energy are preserved. It should be mentioned that
the conservation of the total quasi momentum is a consequence of neglecting umklapp
processes in the scattering operators.

From (4.7), we infer that the equilibrium solutions of the model equations are
discretized versions of the Fermi–Dirac distribution concerning the electrons and
Bose–Einstein distribution for the phonons. The restriction of the indices j, k of
the equilibrium phonon distributions results from the fact that the scattering rates
A+

1ij , A
+
2ik appearing in the electron collision operators (3.45) and (3.50) vanish for

j ∈ S+
i (ϕ1,Ω) and k ∈ Sqi (ϕ1,Ω).

The Boltzmann H-functional presented in Theorem 4.1 satisfies the relations

dH

dt
≤ 0, H −H∗ ≥ 0,(4.9)

where H∗ denotes the functional (4.8) evaluated with the equilibrium distributions
(4.7) and the equality signs hold if and only if the system is in the equilibrium state.
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4.1. Sketch of the proof. In order to derive the mathematical properties pre-
sented in Theorem 4.1, we reformulate the functional (4.1) by exploiting symmetries
of the integrated semicontinuous collision operators (3.45), (3.50), (3.57), and (3.61).

By introducing the abbreviations Φ1
i = Φ1[k(Ei,Ωk)Ωk], Φ′1

ij = Φ1[k(Ej ,u
+
1ij)u

+
1ij ],

and Φ̂′1
ij = Φ1[k(Ei+α,u

o+
1ij)u

o+
1ij ], as well as Φ2

ij = Φ2[q+(Ei, Ej , ζ
+
1ij , ϕ1,Ωk)] and

Φ3
ij = Φ3[qjû

+(Ei, Ei+α, ζ
o+
1ij , ϕ1,Ωk)], this reformulation results in

〈Φ,J〉 = ∆

∫
S2

dΩk

∫ 2π

0

dϕ1

∑
i∈S1

∑
j∈S1

[
Φ1
i − Φ′1

ij + Φ2
ij

]
D1
iA

+
1ijκ1(g

+
1ij , fi, f

′+
ij)

+ ∆

∫
S2

dΩk

∫ 2π

0

dϕ1

∑
i∈S1

∑
j∈S3

[
Φ1
i − Φ̂′1

ij + Φ3
ij

]
D1
iA

+
2ijκ1(g

+
2ij , fi, f̂

′+
ij).(4.10)

Starting from this expression, we can show that the macroscopic quantities (3.74)–
(3.76) are collisional invariants, and therefore, we can state the continuity equations
(4.5). The derivation of (4.10) also allows us to prove the equivalence (4.6). Expanding
the triple (4.2) evaluated at equilibrium [Φ1∗

H ,Φ
2∗
H ,Φ

3∗
H ] in terms of the natural basis

{Φin,Φik1 ,Φik2 ,Φik3 ,Φie}, i=1, 2, 3, of the space of collisional invariants C, leads us to
the equilibrium distribution functions (4.7). Moreover, we find the relations (4.9) by
inserting (4.2) into (4.10) and by considering the statement (4.6).

5. Numerical results. In this section, we present numerical results concerning
the relaxation of an interacting hot-electron hot-phonon system in GaAs. More pre-
cisely, we investigate the temporal evolution of the distribution functions of conduction
band electrons, longitudinal acoustic phonons, and polar optical phonons during and
after a photo-excitation with a laser pulse [5, 11].

We consider spherically symmetric dispersion relations and scattering probabili-
ties, i.e., E(k) = E(|k|), e1(q) = e1(|q|), and si(q) = si(|q|). This implies that the
distribution functions fi(Ωk, r, t), i ∈ S1, and gij(Ωq, r, t), i = 1, 2, j ∈ Si+1, do
not depend on the angular variables Ωk, Ωq during the time evolution determined by
the semicontinuous BBP equations (3.65)–(3.67) if the initial distributions f Ii (Ωk, r),
gIij(Ωq, r) are independent of Ωk and Ωq. Consequently, the integrations with respect
to ϕ1 and ϕ2 in the scattering operators (3.45), (3.50) and (3.57), (3.61) contribute
only the trivial factor 2π to the corresponding scattering rates. When we further
restrict our attention to space-homogeneous problems, the derived model equations
(3.65)–(3.67) simplify to a coupled system of first order ordinary differential equations,
which can be solved with standard numerical methods.

Since we choose excitation energies that are not too high, the relevant k-region
of the first Brillouin zone can be restricted to a small area near the Γ-point where
the conduction band shows an absolute minimum. Hence, we use a parabolic electron
dispersion relation E(k) = �

2|k|2/2m∗ with the effective mass m∗ and apply the
Debey model to the acoustic phonons, i.e., e1(q) = c|q|, where c denotes the sound
velocity (see [1]). The polar optical phonons are treated in the Einstein approximation,
i.e., �ω(q) = e0 as introduced in section 3. The scattering rate corresponding to the
electron-phonon interaction is given by (2.6) with

s1(q) =
2π

�

�
2Ξ2

1q
2

2V ρe1(q)
,(5.1)

s2(q) =
2π

�

�
2ε20

2V γe0

1

q2
,

1

γ
=
e20
�2

(
1

ε∞
− 1

ε0

)
(5.2)
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for acoustic and optical phonons. Here, ρ denotes the mass density, ε0 denotes the
elementary charge, and the quantities ε∞, ε0 represent the high-frequency and electro-
static dielectric functions. The interaction with acoustic phonons is modeled as first
order scattering [4] with the deformation potential Ξ1. Concerning the interaction
with the polar optical phonons, screening effects [4] are not taken into account. The
values of all relevant parameters are taken from [11] and summarized in Table 5.1.

Table 5.1

Material parameters of GaAs used in the calculations.

Effective electron mass: m∗/m0 0.063
Mass density: ρm (g/cm3) 5.32
Sound velocity: c (km/s) 5.12
Optical phonon energy: e0 (meV) 35.5
Static dielectric constant: ε0 12.9
High-frequency dielectric constant: ε∞ 10.9
Acoustic deformation potential: Ξ1 (eV) 7.0

As an initial condition we consider a thermal equilibrium at 77 K. Therefore, the
phonons are governed by Bose–Einstein distributions with the same temperature, and
we assume that the conduction band is empty at the beginning. As soon as the laser
pulse sets in, electrons from the valence bands are transferred to the conduction band.
We suppose that the transfer rate of electrons with energy Ei is given by

dneli (t)

dt
= αn

{[
1 +

(
Ei − E∗
αE

)2
]

cosh

(
t− t0
αt

)}−1

,(5.3)

where neli (t)∆1 represents the particle density of electrons with energies in the interval
I1
i , E∗ denotes the averaged injection energy, and at t = t0, the maximum of the

transfer rate is reached. Furthermore, the parameter αE characterizes the energetic
and αt the temporal width of the laser pulse, while αn determines the total number of
excited electrons nel or, equivalently, the intensity of the laser. We use E∗ = 250 meV,
αE = 10 meV, αt = 0.305 ps, where the energy scale is fixed in such a way that E = 0
at the conduction band minimum. The parameter t0 is chosen high enough so that
we can neglect the contributions of (5.3) for negative times t, and αn is determined by
fixing the total electron density to nel = 5 × 1015cm−3. The increase of the electron
density through the photo-excitation is modeled by an appropriate source term on
the right-hand side of (3.65) according to the rate (5.3).

It should be pointed out that the collision operators (3.45), (3.50), (3.57), and
(3.61) take into account only normal processes caused by the electron-phonon inter-
action. Since the electron density is very small, the electron-electron interaction plays
a minor role and is neglected. Due to the selection rules of the phonon-phonon inter-
action, the only important interaction process for the present problem is the decay
of optical phonons into two acoustic phonons and vice versa (see [21]). The energy
of the optical phonons is very high compared to the electronically active acoustic
phonons. Hence, the acoustic phonons resulting from a decay of an optical phonon do
not contribute to the electron-phonon interaction for the considered electron energy
range. The collision operator for the phonon-phonon interaction can then be treated
in the relaxation time approximation (see [11]), i.e.,[

∂g2i
∂t

]
pp

= Cpp2 = −g2i − g∗2(e0, T0)

τ0
(5.4)
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with the relaxation time τ0 and the Bose–Einstein distribution g∗2(e0, T0). If the
temperature T0 is fixed, we realize the coupling of the optical phonon system to a
heat bath, represented by acoustic phonons in equilibrium at T0, which do not affect
the electrons. The operator (5.4) is added to the right-hand side of (3.61), and we set
τ = 3.5 ps, T0 = 77 K.

Regarding the discretization parameters, we choose 800 discrete electron energy
values between E0 = 0.1 meV and E799 = 400.1 meV with the constant stepsize
∆ = 0.5 meV. Since the optical phonon energy is given by e0 = 35 meV, we take
α = 71. According to the choice of the electron energies, we obtain 11 relevant
values for the acoustic phonon energies in the range from e1 = 0.5 meV to e11 = 5.5
meV. Furthermore, we use an equidistant discretization for the modulus of the optical
phonon wave vector q with a discretization length ∆3 = 0.2 × 105 cm−1. The 800
discrete q-values belong to the interval [1.1, 160.9] × 105 cm−1.

The integration of the model equations (3.65)–(3.67) supplemented by the terms
for the laser excitation and the phonon-phonon interaction is performed with a stan-
dard solver based on an explicit Runge–Kutta scheme [3]. The results of the calcula-
tions are discussed in the following.
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Fig. 5.1. Electron density and its time derivative as a function of time on the left-hand side.
Time evolution of the electron energy and the optical phonon energy in the right-hand plot.

The left-hand plot of Figure 5.1 depicts the time dependence of the electron
particle number and the transfer rate due to the laser photo-excitation. We observe
that the electron density in the conduction band tends to the constant value nel =
5×1015cm−3, as soon as the laser intensity vanishes. Obviously, the electron density is
conserved during the subsequent relaxation process. The time evolution of the energy
densities of electrons and optical phonons is shown in the right-hand plot of Figure
5.1. For t < 0, the electron energy rises in concert with the laser intensity while the
energy of the optical phonons remains largely unaffected. Although the laser pulse
then fades away, the electron energy continues to increase. At the same time the
emission of optical phonons transfers energy to the phonon system. For times t � 3,
both electrons and optical phonons lose energy to the heat bath of acoustic phonons.

Our semicontinuous model provides further insight into the details of the relax-
ation process. The left-hand plot of Figure 5.2 shows neli , the electron particle density
per energy interval ∆ according to the energies Ei for different times τ = t − t0.
The mean energy E∗ of the photo-excited electrons is bigger than that of the equilib-
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Fig. 5.2. Particle density of electrons with energies Ei (left-hand plot) and phonon distribution
function (right-hand plot) for different times during and after the laser excitation.

rium distribution with the temperature of the phonon system. Therefore, we observe
a relaxation of the hot electron gas accompanied by the emission of mainly optical
phonons in accord with the much stronger interaction of electrons with polar optical
phonons compared to that with acoustic phonons. Since the emission of an optical
phonon always reduces the electron energy by the same constant phonon energy e0,
the electron density as a function of Ei shows a quasi-periodic structure with period
e0. The increase of optical phonons strongly depends on the modulus of the wave vec-
tor and leads to far-from-equilibrium distributions as can be seen in the right-hand
plot of Figure 5.2. The dependence of g2i(τ) on qi is mainly determined by the func-
tion s2(q) and the sets D±

q (E,ϕ1,Ωk) defined in (3.35), which reflect the conservation
laws for the involved collision processes.

Figure 5.3 displays the optical phonon distribution function for fixed values qi
and presents a comparison with data obtained from a Monte Carlo simulation [11].
Initially, the distribution functions increase due to the emission of phonons. Af-
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Fig. 5.3. Distribution functions of the polar optical phonons as a function of time for different
moduli of the wave vector q. The lines represent the results from the semicontinuous model equations,
and the markers +, ◦,×, ∗ display the Monte Carlo data taken from [11].
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terward, they decrease due to the phonon-phonon interaction and the reabsorp-
tion of polar optical phonons. The distribution functions for qi ≈ 6 × 105cm−1,
qi ≈ 20×105cm−1 show an exponential decay with the time constant τ0 as a result of
the relaxation time approximation of the phonon-phonon interaction. In the case of
qi ≈ 10 × 105cm−1 the reabsorption is very efficient and gives rise to a reinforced de-
crease of g2i(τ) as compared to that for smaller and higher q-values. A more detailed
discussion of the Monte Carlo results can be found in [11]. The results of our calcula-
tion are in good agreement with the Monte Carlo data. The dominant kinetic effect,
i.e., the strong reabsorption of polar optical phonons, shows up in both treatments.

As a consequence of the weak interaction of electrons with acoustic phonons,
the influence of such phonons on the electrons is negligible in the considered time
interval. Taking into account the acoustic phonons, however, prevents the occurrence
of decoupling effects of the kinetic equations (2.1) and (2.2) as treated in [12].

To summarize, we find that the semicontinuous model equations are able to ac-
curately describe the kinetics of far-from-equilibrium systems. Numerical results on
relaxation processes are obtained by standard methods. The calculations can be per-
formed on a PC with a small consumption of CPU-time. We find that the physical
conservation laws are satisfied within numerical roundoff errors. Our formulation is
quite general regarding dispersion relations and flexible concerning the modeling of
collision processes. It can be extended, e.g., by taking into account electron-electron
interaction, phonon-phonon interaction, or impurity scattering.
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Abstract. This paper addresses the problem of feature enhancement in noisy images when
the feature is known to be constrained to a manifold. As an example, we approach the direction
denoising problem in a general dimension via the geometric Beltrami framework for image processing.
The spatial-direction space is a fiber bundle in which the spatial part is the base manifold and the
direction space is the fiber. The feature (direction) field is represented accordingly as a section of the
spatial-feature fiber bundle. The resulting Beltrami flow is a selective smoothing process that respects
the bundle’s structure, i.e., the feature constraint. Direction diffusion is treated as a canonical
example of a non-Euclidean feature space. The structures of the fiber spaces of interest in this paper
are the unit circle S1, the unit sphere S2, and the unit hypersphere Sn. Applications to color analysis
are discussed, and numerical experiments demonstrate again the benefits of the Beltrami framework
in comparison to other feature enhancement schemes for nontrivial geometries in image processing.

Key words. anisotropic diffusion, constrained optimization, orientation diffusion, Beltrami
framework
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1. Introduction. Many objects of low-level vision are vector fields of various
types. This is the case for gray-value images, color images, movies, 3D (three-
dimensional) volumetric images, and disparity in stereo vision, to name just a few
examples. These vector fields are traditionally considered as taking values in R

n.
Operations on these fields such as denoising, enhancement, sharpening, and segmen-
tation are done using a variety of algorithms. Several types of vector fields are con-
strained in a nontrivial way. When the constraint can be expressed via the vanishing
of a smooth function, e.g., a polynomial, the vector fields take their values in a non-
Euclidean space. One notable example is the direction vector field which assigns a
local direction to each pixel in the image. These directions are unit length vectors
that span the unit n-dimensional sphere Sn. Other classes of non-Euclidean vector
fields are perceptually treated color images [20] and the regularization of frames [23].
We study in this paper the n-dimensional direction vector fields and spherically con-
strained color models via the Beltrami framework [19].

The basic objects in the Beltrami framework are embedding maps of Riemannian
manifolds. These maps embed the image manifold (a surface for a 2D image) in a
fiber bundle whose base is the spatial manifold, e.g., R

2, and the fiber is the feature
manifold, e.g., R

1, for the intensity feature alone. If we denote by F the feature
manifold and assume that the image is given on a flat surface, then the spatial-
feature manifold M is given locally as M = R

2 ⊗ F . In all the examples below, the
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fiber bundle is trivial, yet our local treatment extends to nontrivial bundles as well.
Global issues of nontrivial fiber bundles are beyond the scope of this paper.

Another important ingredient of the Beltrami framework is a geometrical func-
tional, known as the Polyakov action (or harmonic energy [1]), which is defined over
the space of embedding maps. The minimization of the Polyakov action is done by an
Euler–Lagrange operator that drives, through a gradient descent equation, the initial
noisy feature vector fields towards a minimum of the Polyakov action. The special
form of this functional favors piecewise smooth images. Jumps in the feature space
(feature edges) are consequently preserved [4, 5].

Almost all works that try to minimize a functional with respect to a constraint
quantity embed the constrained feature in a higher-dimensional Euclidean space and
perform the minimization for the coordinates of this unconstrained space. The com-
mon wisdom is to combine a minimization of an unconstrained function and a pro-
jection on the constraint variety/manifold. The treatment of direction diffusion was
recently addressed along these lines in the low-level vision community. These studies
follow the well established literature in the liquid crystal community [3]. The har-
monic energy functional and its minimization are subjects to intensive mathematical
study as well [6, 7]. Two approaches for this problem are known: in a paper that
first directly addresses this issue, Perona [13] uses a single parameter θ as an internal
coordinate in S1. The second approach [21, 22, 2] embeds the unit circle S1 in R

2 (the
sphere S2 in R

3) and works with the external coordinates; see also [24] for a related
effort. The first approach is problematic because of the periodicity of S1. Averaging
small angles around zero such as θ = ε and θ = 2π−ε leads to the erroneous conclusion
that the average angle is θ = π. Perona solved this problem by exponentiating the
angle so that V = eiθ. This is actually the embedding of S1 in C which is isometric
to R

2. This method is specific to a 2D embedding space where complex numbers can
be used. The problem in using only one internal coordinate manifests itself in the
numerical implementation of the PDE through the breaking of rotation invariance. In
the second approach we have to make sure that we always stay on S1 along the flow.
This problem is known as the projection problem. It is solved in the continuum by
adding a projection term. Tang, Sapiro, and Caselles [21, 22] propose the formalism
of p-harmonic maps applied to the case of direction and color diffusion, and present
experiments in the case p = 2, which corresponds to the Dirichlet integral. More-
over, they also present experiments for the case p = 1 as the immediate extension
of the Rudin–Osher–Fatemi total variation (TV) denoising algorithm [14] to the case
of general maps with values on manifolds. Nevertheless, they did not study in detail
the algorithm for the p = 1 case. The algorithmic study for the case p = 1 was done
by Chan and Shen [2], who also use external coordinates with a projection term and
a TV measure in order to better preserve discontinuities in the vector field. This
works well for the case where the codimension is one, like a circle. Yet it is difficult to
generalize this approach to higher codimensions like the sphere. Moreover, the flow
of the external coordinates is difficult to control numerically since numerical errors
should be projected onto S1 and since no well-defined projection exists. Recently an
implicit way to define manifolds has been used in this context [1]. We concentrate
in this paper on the explicit methods. A comparison between the implicit harmonic
energy method and the implicit Beltrami framework can be found in [16].

We propose to work directly on the constrained manifold and to avoid the projec-
tion problem altogether. Our solution produces an adaptive smoothing process, which
preserves direction discontinuities. The proposed solution works for all dimensions and
codimensions, and overcomes possible parameterization singularities by introducing
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several internal coordinates on different patches (charts) such that the union of the
patches is the feature manifold, i.e., Sn. Adaptive smoothness is achieved by the de-
scription of the vector field as a 2D section of the (n+ 2)-dimensional spatial-feature
fiber bundle manifold with Sn fibers.

The problem is formulated, in the Beltrami framework [19, 9], in terms of the
embedding map

Y : (Σ, g) → (M,h),

where Σ is the 2D image manifold and M , in this case, is R
n⊗S1 with n = 2 (n = 4)

for gray-level (color) images. The key point is the choice of local coordinate systems for
both manifolds,1 the image manifold Σ (with metric g) and the embedding manifold M
(with metric h). At the same time we should verify that the geometric filter (i.e., the
denoising PDE) does not depend on the specific choice of coordinates we make.

Once a local coordinate system is chosen for the embedding space and the opti-
mization is done directly in this local coordinate system, we can never leave M and
avoid the problem of projection. The difficulty represented in the problem of projec-
tion is transformed into the problem of the choice of a local coordinate system, as
we describe below. Other examples of enhancement by the Beltrami framework of
nonflat feature spaces, like the color perceptual space and the derivatives vector field,
can be found in [20, 17].

An important issue in this approach is the numerical consideration in the choice of
local coordinates. While all coordinates are equally good from analytic and geometric
points of view, they are different from a numeric standpoint. A comparative study on
the numerical and algorithmic accuracies of different schemes is presented here and
shows that, for a range of parameters, one can get a better numerical accuracy while
maintaining the edge preserving quality of the anisotropic diffusions.

This paper is organized as follows. We review the Beltrami framework and point
to the relation with harmonic maps in section 2. We analyze the case of the general
n-dimensional direction diffusion with hemispheric coordinate system in section 3.
A stereographic coordinate system is introduced in section 4, and the appropriate
equations are derived. Section 5 deals with the numerical implementation of the ideas
presented in the previous sections for color image processing. Section 6 presents results
on various vector fields and color images. We compare in section 7 different direction
diffusion schemes from numerical and algorithmic points of view. We summarize and
conclude in section 8.

2. The Beltrami framework. Let us briefly review the Beltrami geometric
framework for nonlinear diffusion in computer vision [19].

2.1. Representation and Riemannian structure. An image, and many other
quantities of interest in computer vision, are naturally represented via the concept of
a fiber bundle. The image domain is the base manifold. In the present study it is
taken as a subset of R

2 with the canonical Cartesian coordinate system (Y 1, Y 2). It
is denoted by Ω. At each point in the base manifold we attach a feature space—the
fiber. The fibers at different points of the base manifold are isomorphic. The fiber
space is denoted by F . The feature space, or fiber, may be a linear vector space or
more interestingly a Riemannian manifold. An image (or other quantity of interest)

1Note the difference between this approach and the one presented in [21, 22, 2], where the image
metric is flat.



1480 NIR A. SOCHEN, CHEN SAGIV, AND RON KIMMEL

is a choice of a particular point in the fiber for every point in the base manifold. Such
a particular choice is called a section of the (trivial) fiber bundle Ω ⊗ F .

In general an n-dimensional (Riemannian) manifold is defined by a collection of
maps from charts of the manifold to R

n. Each chart covers part of the manifold. Their
union covers the whole manifold, and the transformation of the coordinates on the
intersection between any two charts is smooth. The Riemannian structure transforms
in a proper way (as a tensor) under any change of the coordinate system. We denote
the coordinates on the 2D section by (x1, x2), the coordinates on a chart of the
embedding space (the fiber bundle) by (Y 1, . . . , Y n). The embedding space is a hybrid
spatial-feature space. The first two coordinates (Y 1, Y 2) are the spatial coordinates
on Ω (the base manifold), and the rest (Y 3, . . . , Y n) are the feature coordinates (the
fiber’s coordinates). The simplest example is a gray-value image which is represented
as a 2D surface embedded in R

3. We denote the map by Y : Σ → R
3, where Σ is a 2D

section. The map Y is given in our example by (Y 1 = x1, Y 2 = x2, Y 3 = I(x1, x2)).
We choose on this surface a Riemannian structure, namely a metric. Note that this
differs from the harmonic energy functional, where the metric is taken from the base
manifold and not from the section. The metric is a positive definite and a symmetric
2-tensor that may be defined through the local distance measurements

ds2 = g11(dx
1)2 + 2g12dx

1dx2 + g22(dx
2)2.(2.1)

We use the Einstein summation convention in which the above equation reads as
ds2 = gµνdx

µdxν , where repeated indices are summed over. We denote the inverse of
the metric by gµν .

2.2. Image metric selection: The induced metric. A reasonable assump-
tion is that distances measured in the embedding spatial-feature fiber bundle, such
as distances between pixels and differences between gray-levels, correspond directly
to distances measured on the image manifold, i.e., the section. This is the assump-
tion of isometric embedding under which we can calculate the image metric in terms
of the embedding maps Y i and the embedding space metric hij . This follows di-
rectly from the fact that the length of infinitesimal distances on the manifold can be
calculated on the manifold and on the embedding space with the same result. For-
mally, ds2 = gµνdx

µdxν = hijdY
idY j . By the chain rule, dY i = ∂µY

idxµ, we get
ds2 = gµνdx

µdxν = hij∂µY
i∂νY

idxµdxν , from which we have

gµν = hij∂µY
i∂νY

j .(2.2)

As an example we take the gray-level image as a 2D image manifold embedded
in the 3D Euclidean space R

3. The embedding maps are

(Y 1(x1, x2) = x1, Y 2(x1, x2) = x2, Y 3(x1, x2) = βI(x1, x2)).(2.3)

The scaling factor β defines the ratio between distances in gray-values and distances in
the spatial space. It is a free parameter of the framework that interpolates between the
Euclidean L2 and L1 types of flows, as we will see below. We choose to parameterize
the image manifold by the canonical coordinate system x1 = x and x2 = y. The
embedding, by abuse of notation, is (x, y, βI(x, y)). The induced metric element g11
is calculated as follows:

g11 = hij∂x1Y i∂x1Y j = δij∂xY
i∂xY

j = ∂xx∂xx+∂xy∂xy+∂xβI∂xβI = 1+β2I2
x.

(2.4)
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Other elements are calculated in the same manner. The result is

G = (gµν) =

(
1 + β2I2

x β2IxIy
β2IxIy 1 + β2I2

y

)
.(2.5)

2.3. Polyakov action: A measure on the space of embedding maps.
Denote by (Σ, g) the image manifold and its metric, and by (M,h) the space-feature
manifold and its metric. Then the functional S[·, ·, ·] attaches a real number to a map
Y : Σ →M ,

S[Y i, gµν , hij ] =

∫
dV ||∇�Y ||2h,g,(2.6)

where dV is a volume element and the integration is over the Riemannian Frobenius
norm2 of the tangent map dY . In a local coordinate system the volume element is
expressed by dV = dx1dx2√g and ||∇�Y ||2h,g = 〈∇Y i,∇Y j〉ghij = gµν∂µY

i∂νY
jhij .

The Polyakov action is expressed in this local system of coordinates as

S[Y i, gµν , hij ] =

∫
dx1dx2√ggµν∂µY i∂νY jhij .(2.7)

This functional, for m = 2 (a 2D image manifold) and hij = δij , was proposed by
Polyakov [12] in the context of high energy physics and the theory known as string
theory. It is important to note that the image metric and the feature coordinates—
i.e., intensity, color, direction, etc.—are independent variables. This functional is
the natural generalization of the L2 norm from Euclidean domains to Riemannian
manifolds. The minimization of the functional with respect to the image metric can
be solved analytically in the 2D case (see, for example, [18]). The minimizer is the
induced metric. If we choose, a priori, the image metric induced from the metric of
the embedding spatial-feature space M , then the Polyakov action is reduced to the
area (volume) of the image manifold:

S[Y i, hij ] = 2

∫
dV = 2

∫
dx1dx2√g = 2

∫
dx1dx2

√
det(∂µY i∂νY jhij).(2.8)

This follows from the form of the induced metric,

〈∇Y i,∇Y j〉ghij = gµν∂µY
i∂νY

jhij = gµνgµν

and the identity

gµνgµν = Tr(G−1GT ) = Tr(G−1G) = Tr(Id) = 2,(2.9)

where Tr(X) denotes the trace of the matrix X.
Using standard methods in the calculus of variations (see [18]), the Euler–Lagrange

equations with respect to the embedding are

− 1

2
√
g
hil

δS

δY l
=

1√
g
∂µ(

√
ggµν∂νY

i) + Γijk〈∇Y j ,∇Y k〉g.(2.10)

Since (gµν) is positive definite, g ≡ det(gµν) > 0 for all xµ. This factor is the simplest
one that does not change the minimization solution while giving a reparameterization

2By Riemannian Frobenius norm we mean that the square of the elements is with respect to the
Riemannian structures of the corresponding Riemannian manifolds.
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invariant expression. The operator that is acting on Y i in the first term is the natural
generalization of the Laplacian from flat spaces to manifolds and is called the second
order differential operator of Beltrami [10], or the Beltrami operator, and is denoted
by ∆g. The second term involves the Levi–Civita connection whose coefficients are the
Christoffel symbols. The coefficients are given in terms of the metric of the embedding
space

Γijk =
1

2
hil (∂jhlk + ∂khjl − ∂lhjk) .(2.11)

This is the term that takes into account the fact that the image surface flows in a
non-Euclidean manifold and not in R

n.
A map that satisfies the Euler–Lagrange equations − 1

2
√
gh

il δS
δY l = 0 is a harmonic

map. The 1D and 2D examples are a geodesic curve on a manifold and a minimal
surface.

The nonlinear diffusion or scale-space equation emerges as the gradient descent
minimization flow

Y it =
∂

∂t
Y i = − 1

2
√
g
hil

δS

δY l
= ∆gY

i + Γijk〈∇Y j ,∇Y k〉g.(2.12)

This flow evolves a given surface towards a minimal surface, and in general it contin-
uously changes a map towards a harmonic map.

Before closing this review of the Beltrami framework, we would like to point out a
few similarities and differences between this flow and those suggested in [14, 13, 21, 2]:

1. For flat fibers:
• We use the induced metric, while in other flows the image metric is flat.

The difference comes from the fact that in our framework the image
manifold is a section of the fiber bundle, while in the harmonic map
formulation it is the base manifold.

• In the case of flat and 1D fibers we get the “regularized total variation”
functional. In the limit of large β the evolution equation is identical (up
to

√
g) to the TV one. In the limit β → 0 we get the linear diffusion

case. In intermediate values we find a good compromise such that over-
smoothing, on the one hand, and stair-casing, on the other hand, can
be avoided. The Beltrami framework, in this case, is a one-parameter
generalization of the TV scheme.

• The multichannel functional, in the Beltrami framework, is another gen-
eralization of the TV functional. A term that depends on the direction
of the gradients is added to the term that depends on their magnitude
only. This provides a better adaptation of the process to the image
features.

• The Beltrami flow is degenerate (at ∇I → ∞). One can prove that
discontinuities are preserved for a finite time [5].

2. For nonflat fibers:
• The coordinates Y i are the local coordinates of the feature space, while

in the above-mentioned flows they are coordinates of a third manifold,
i.e., R

n+1, in which the feature space Sn is embedded. In other words,
the fiber in the harmonic map approach is embedded in R

n+1. This is
not possible in general (see the Nash embedding theorem [11]).

• The Polyakov functional is different in this case from the TV functional
due to the different weighting of the magnitude of the gradients.
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• The flow equation (2.12) has a clear geometric meaning. It is a mean
curvature flow projected (analytically) on the fiber. This projection is
an edge preserving operation [19]. It depends on ∇I in the general
multichannel case and not on |∇I| as in the harmonic map approach.

3. Hemispheric direction diffusion.

3.1. Fiber geometry. We are interested in the case where the fiber feature
space is the hypersurface Sn. We choose to represent the hypersphere Sn as an n-
dimensional manifold embedded in R

n+1, with Cartesian coordinate system {U i}n+3
i=3 ,

as the constrained hypersurface

n+3∑
i=3

(U i)2 = 1.(3.1)

We work in the chart, where {Y i}n+2
i=3 are local coordinates. On this chart, U i =

Y i, i = 3, . . . , n+ 2, and

Un+3 =

√√√√1 −
n+2∑
i=3

(Y i)2.

Denote the metric elements for the feature space only by h̃ij . The metric elements
and the inverse metric elements are given by

h̃ij = δij +
Y iY j

1 −∑n+2
k=3(Y k)2

,

(h̃−1)ij = δij − Y iY j .(3.2)

3.2. The induced metric. The induced metric and its inverse are accordingly

gµν = δµν +

n+2∑
i,j=3

h̃ij∂µY
i∂νY

j ,

gµν =
1

g

⎛
⎝δµν + εµσενρ

n+3∑
i,j=3

h̃ij∂σY
i∂ρY

j

⎞
⎠,

g = det(gµν),

= 1 +
n+3∑
i,j=3

h̃ij(Y
i
xY

j
x + Y iyY

j
y ),

+
1

2
εµσενρ

n+3∑
i,j,k,l=3

h̃ij h̃kl∂µY
i∂ρY

j∂νY
k∂σY

l,(3.3)

where (gµν) is the inverse of (gµν), g is the determinant, and εµν is the 2D antisym-
metric tensor

(εµν) =

(
0 1
−1 0

)
.

An implicit summation on all repeated Greek indices is assumed.
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3.3. The flow equations. The Levi–Civita coefficients are calculated in Ap-
pendix B with the simple result

Γijk = Y ih̃jk.(3.4)

The minimization of the Polyakov action leads to the following evolution equa-
tions:

Y it = ∆gY
i + 2Y i − Y iTr(gµν), i = 1, . . . , n.(3.5)

3.4. The 1D hemispheric direction diffusion.

3.4.1. The S1 Beltrami operator. The S1 manifold can be described as the
solution to U2 + V 2 = 1. We will work with two charts. One is (Y 1 = x, Y 2 = y,
Y 3 = βU), and the other is (Y 1 = x, Y 2 = y, Y 3 = βV ). By abuse of notation we
denote the map by (x, y, βY ). The parameter β is a scaling factor. Each one of the
charts will be used in the range Y 2 ≤ 1/2. The line element on each of the charts of
the image manifold is

ds2 = ds2
R2 + ds2S1 = dx2 + dy2 +

β2

1 − Y 2
dY 2.(3.6)

By using the chain rule we find

ds2 = (1 +A(Y )Y 2
x )dx2 + 2A(Y )YxYydxdy + (1 +A(Y )Y 2

y )dy2,(3.7)

where A(Y ) = β2

1−Y 2 .
The induced metric is therefore

(gµν) =

(
1 +A(Y )Y 2

x A(Y )YxYy
A(Y )YxYy 1 +A(Y )Y 2

y

)
,(3.8)

and the Beltrami operator acting on Y is ∆gY = 1√
g∂µ(

√
ggµν∂νY ), where g =

1 + A(Y )(Y 2
x + Y 2

y ) is the determinant of (gµν), and (gµν) is the inverse matrix of
(gµν).

3.4.2. The Levi–Civita connection. Since the embedding space is non-
Euclidean, we have to calculate the Levi–Civita connection. Remember that the
metric of the embedding space is

(hij) =

⎛
⎝ 1 0 0

0 1 0
0 0 A(Y )

⎞
⎠ .(3.9)

The Levi–Civita connection coefficients are given by the fundamental theorem of
Riemannian geometry in the following formula: Γijk = 1

2h
il (∂jhlk + ∂khjl − ∂lhjk),

where the derivatives are taken with respect to Y i for i = 1, 2, 3.
The only nonvanishing term is Γ3

33, which reads

Γ3
33 =

1

2A(Y )
∂Y (A(Y )) =

Y

1 − Y 2
= Y h33.(3.10)

The second term in the Euler–Lagrange equations in this case reads Y h33||∇Y ||2g.
We can rewrite this expression using the following identities:

h33||∇Y ||2g = (h11g
11 + h22g

22 + h33∂µY ∂νY g
µν) − (h11g

11 + h22g
22)

= gµνg
µν − (g11 + g22) = 2 − 1

g
(g11 + g22) = 2 − 1

g
(1 + g),(3.11)



STEREOGRAPHIC PORCUPINE 1485

where we used the induced metric identity (2.2), and the identity (2.9), in order to
rewrite

2 = Tr

(
1 0
0 1

)
= gµνg

µν = h11g
11 + h22g

22 + h33∂µY ∂νY g
µν .(3.12)

3.4.3. The flow and the switches. The Beltrami flow is

Y it = ∆gY
i + Γijk(Y

1, Y 2, Y 3)〈∇Y j ,∇Y k〉g(3.13)

for i = 3. Only modifying the fiber values while keeping the case manifold constant is
a projection in the direction of the fiber. This projection slows the diffusion around
edges. The Beltrami flow on the two charts reads finally as

Ut = ∆gU + U
g − 1

g
,

Vt = ∆gV + V
g − 1

g
.(3.14)

In the implementation we compute the diffusion for U and V simultaneously and take
the values (U, sign(V )

√
1 − U2) for the range U2 ≤ V 2, and (sign(U)

√
1 − V 2, V ) for

the range V 2 ≤ U2.

4. Stereographic direction diffusion.

4.1. Fiber geometry. The hemispheric parameterization requires more charts
as n increases. As a result we have to work closer and closer to the singularity. As a
cure for that we switch to stereographic parameterization, which demands only two
charts independent of the dimension of the sphere. Moreover, we always work on the
furthest point from the singularity, that is, on the equator.

Every hypersphere Sn can be isometrically embedded in R
n+1. The hyper-

sphere is realized as the place of all the points in R
n+1 that satisfy the constraint∑n+1

i=1 U
iU i = 1. We denote by Y i for i = 1, . . . , n the Cartesian coordinate system

on the subspace R
n that passes through the equator of Sn, i.e., {�U ∈ R

n+1|Un+1 = 0}.
The stereographic transformation gives the values of Y i as functions of the points on
the north (south) hemispheres of the hypersphere. Explicitly it is given (after shifting
the indices by two for notation consistent with the next sections) as

Y i =
U i

1 − Un+3
, i = 3, . . . , n+ 2.

Inverting these relations, we find

U i =
2Y i

1 +
∑n
i=1 Y

i
, i = 3, . . . , n+ 2,

Un+3 =
−1 +

∑n+2
i=3 Y

i

1 +
∑n+2
i=3 Y

i
.(4.1)

4.2. The induced metric. Now we can compute the induced metric of our
feature space

hij =

n+3∑
k=3

∂Uk∂Uk

∂Y i∂Y j
=

4

(1 +A)2
δij , i, j = 3, . . . , n+ 2,(4.2)

where A =
∑n+2
k=3(Y k)2.
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4.3. The flow equations. The Levi–Civita connection can be obtained using
(2.11) and (4.2). The result is

Γijk =
4

1 +A

(
Y iδjk − Y kδij − Y jδki

)
.

The resulting diffusion equations are

Y it = ∆gY
i +
∑
jk

4

1 +A

(
Y iδjk − Y kδij − Y jδki

)
∂µY

j∂νY
kgµν ,(4.3)

where i = 3, . . . , n+ 2. This can be rearranged to

Y it = ∆gY
i − 4gµν(∂µ log(1 +A))(∂νY

i) + (1 +A)(2 − g11 − g22)Y i.(4.4)

4.4. 1D and 2D directions. We denote our coordinate system by the sub-
scripts s (for south) and n (for north). The equations for the 1D case read

(Ys)t = ∆gYs − 4gµν(∂µ log(1 +A))(∂νYs) + (1 +A)(2 − g11 − g22)Ys,(4.5)

where A = Y 2
s and the induced metric is a function of Ys. A parallel equation is

written for Yn. We solve the north and south equations simultaneously for values
smaller than 1. At each iteration we update the values which are greater than 1 by
the simple relation Ys = 1/Yn. Note that the problematic zone(s), i.e., ±1, are as far
as possible from the singularities, i.e., the poles.

The 2D case is managed similarly via

(Y 1
s )t = ∆gY

1
s − 4gµν(∂µ log(1 +As))(∂νY

1
s ) + (1 +As)(2 − g11 − g22)Y 1

s ,

(Y 2
s )t = ∆gY

2
s − 4gµν(∂µ log(1 +As))(∂νY

2
s ) + (1 +As)(2 − g11 − g22)Y 2

s ,(4.6)

where As = (Y 1
s )2 + (Y 2

s )2 and the induced metric depends on Y 1
s and Y 2

s . As in the
1D case, we solve simultaneously for the south and north patches and work with Y i’s
which are smaller than 1. The update for values that are greater than 1 after the
diffusion (in each iteration) is done by Y is = AsY

i
n. Again the decision zone, i.e., the

equator, is the most numerically stable region since it is the furthest from the poles,
where singularities may appear.

5. Color diffusion. There are many coordinate systems and models of color
space which try to be as close as possible to human color perception. One of the pop-
ular coordinate systems is the HSV system [15]. In this system, color is characterized
by hue, saturation, and value. The saturation and value take their values in R

+, while
the hue is an angle that parameterizes S1.

In order to denoise and enhance color images by a nonlinear diffusion process
which is more adapted to human perception, we use here the HSV system. We need
a special treatment of the hue coordinate in section 3.

Let us represent the image as a mapping Y : Σ → R
4 × S1, where Σ is the 2D

image surface and R
4 × S1 is parameterized by the coordinates (x, y,H, S, V ). As

mentioned above, a diffusion process in this coordinate system is problematic. We
define therefore two coordinates,

U = cosH and W = sinH,
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and continue in a way similar to section 3. The metric of R
4 ×S1 on the patch where

U parameterizes S1 and W (U) is nonsingular is

hij =

⎛
⎜⎜⎜⎝

1 0 0 0 0
0 1 0 0 0
0 0 A(U) 0 0
0 0 0 1 0
0 0 0 0 1

⎞
⎟⎟⎟⎠ ,(5.1)

where A(U) = 1/(1 − U2).
The induced metric is therefore

ds2 = dx2 + dy2 +A(U)dU2 + dS2 + dV 2

= dx2 + dy2 +A(U)(Uxdx+ Uydy)
2 + (Sxdx+ Sydy)

2 + (Vxdx+ Vydy)
2

= (1 +A(U)U2
x + S2

x + V 2
x )dx2

+ 2(A(U)UxUy + SxSy + VxVy)dxdy + (1 +A(U)U2
y + S2

y + V 2
y )dy2.(5.2)

Similar expressions are obtained on the other dual patch.
The only nonvanishing Levi–Civita connection coefficient is Γ3

33 = Uh33. The
resulting flow is

Ut = ∆gU + 2U − U(g11 + g22),

Wt = ∆gW + 2W −W (g11 + g22),

St = ∆gS,

Vt = ∆gV.(5.3)

Note that the switch between U and W should be applied not only to the U and W
equations but also to the S and V evolution equations where, at each point, one needs
to work with the metric that is defined on one of the patches.

6. Experimental results. Our first example deals with the gradient direction
flow via the Beltrami framework. Figure 6.1 shows a vector field before and after the
application of the flow for a given evolution time. The normalized gradient vector
field extracted from the image is presented before and after the flow and shows the
way the field flows into a new smooth direction transactions field.

Our second example deals with color diffusion using different color spaces. We
use machine color space as our spectral model, where we first restrict the colors to one
quarter of the upper hemisphere defined around the black point in the RGB space,
as shown in Figure 6.2. In this example we use the hemispheric direction diffusion.
The intensity, or more accurately the magnitude, is handled separately. This is a
simple example since a single chart can be used as a parameterization, and indeed
this simplified version was often used by others as an example.

Next, we explore a popular model that captures some of our color perception. The
HSV (hue, saturation, value) model proposed in [15] is often used as a “user-oriented”
color model, rather than the RGB “machine-oriented” model.

Figure 6.3 shows the classical representation of the HSV color space, in which the
hue is measured as an angle, while the value (sometimes referred to as brightness) and
the color saturation are mapped onto finite nonperiodic intervals. This model lands
itself into a filter that operates on the spatial x, y coordinates, the value and saturation
coordinates, and the hue periodic variable. Our image is now embedded in R

4 × S1.
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Fig. 6.1. Two vector fields before (upper) and after (lower) the flow on S1.
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Fig. 6.2. The colors are restricted to one quarter of the upper hemisphere defined around the
black point in the RGB space.

V 

S H 

Fig. 6.3. The HSV color model captures human color perception better than the RGB model
which is the common way our machines represent colors. The original image (left), the noisy image
(middle), and the filtered image (right) demonstrate the effect of the flow as a denoising filter in the
HSV color space when using hemispheric coordinates.
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Fig. 6.4. An example of stereographic direction diffusion used in the HSV color space. The
original image (left), the noisy image (middle), and the filtered image (right) demonstrate the effect
of the flow as a denoising filter in the HSV color space when using stereographic coordinates.

We use the hemispheric direction diffusion for the results shown in Figure 6.3 and
the stereographic direction diffusion for the results shown in Figure 6.4. For the com-
plete set of full-size color images see http://www.math.tau.ac.il/∼sochen/Porcupine/
porcupine.html.

7. Comparison to other schemes. Several schemes have been suggested to
handle direction diffusion. The first to directly address this issue was Perona [13],
who uses a single parameter θ as an internal coordinate. However, the periodicity of
S1 leads to erroneous values of θ. Another approach, the linear approach, was offered
by Tang, Sapiro, and Caselles [21], in which the unit circle S1 is embedded in R2

and external coordinates are used. However, in this flow we have to actively keep our
coordinates on S1, which means that we have to project the results on the unit circle.
Chan and Shen [2] studied in detail another scheme in which the evolution equation
is derived according to the TV measure.

Kimmel and Sochen [8] have proposed an adaptive hemispheric smoothing scheme,
which is edge preserving, based on the Beltrami framework [19]. Throughout this
section this scheme is referred to as HP (hemispheric porcupine). The direction vector
field is described as a 2D manifold embedded in a higher-dimensional space M = R2×
S1. The key point in the HP scheme is the selection of local coordinate systems on the
manifold, so that their union is S1. On the other hand, the local coordinates selection
is done so that the numerical error is minimized. The advantage of this scheme is that
throughout the flow the coordinates are constrained to S1. Thus, there is no need
for a supplementary projection stage. We address in this work the issue of selecting
the right charts to cover S1, and an alternative stereographic coordinate system is
proposed. In this paper we refer to this scheme as SP (stereographic porcupine).

In this study we compare the numerical behavior of the above-mentioned schemes,
evaluate their algorithmic performance, and examine their edge preserving quality.

7.1. The evolution equations. In this subsection we mention the evolution
equations for each scheme. The interested reader is referred to the original articles.

As a first step, the direction θ is embedded in R2 via the map θ → ω =
[cos(θ), sin(θ)]. The plane is then diffused for some time t, and the result is pro-
jected back to the unit circle via the map ωt = [x, y] → arctan( yx ). This is if (x, y) is
still a one unit vector. If not, then the phase of the vector is used to determine the
appropriate projection; see Figure 7.1.
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Fig. 7.1. The projection error in the linear and TV schemes.

Tang, Sapiro, and Caselles [21] use the following flow for an L2 energy (which
results in a linear scheme),

ft = ∆f +
∥∥� f

∥∥2
f,(7.1)

where f stands for the pair (U, V ).
Chan and Shen [2] use the following flow for the TV energy:

ft = div

(
�f∥∥f∥∥

)
+
∥∥� f

∥∥f,(7.2)

where f stands for the pair (U, V ).
Kimmel and Sochen [8] use the following equation for the HP scheme:

ut = ∆gU + U · g − 1

g
,(7.3)

vt = ∆gV + V · g − 1

g
,(7.4)

where g = 1 + A(U)((Ux)
2 + (Uy)

2) and A(U) = 1
1−U2 . The SP scheme is given by

the following equation:

Zt = ∆gZ − 4gµν(∂µlog(1 +A))(∂νZ) + (1 +A)(2 − g11 − g22)Z,(7.5)

where a stereographic coordinate system is used. Here A = Z2, and Z stands for both
north and south coordinates.

We remark that in the HP and SP schemes, according to the Beltrami framework,
images are considered as surfaces rather than functions. The related diffusion scheme
minimizes the area of the image surface. Thus, a basic concept in the Beltrami frame-
work is the manifold’s metric. In order to construct a valuable geometric measure
for a direction image we have to combine the spatial coordinates with the direction
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information. The simplest combination is done by introducing a scaling parameter β,
so that

ds2 = dx2 + dy2 + β2 1

1 − U2
dU2.

The parameter β has dimensions [ distancedirection ], and it fixes the relative scale between
the size of direction information and spatial distances. The parameter β plays an
important role in this study. It is a measure of the degree of coupling between the
different channels in the diffusion flow. Higher values of β draw the scheme to a
behavior similar to that of the TV scheme [2], and smaller values of β cause a behavior
similar to that of the linear scheme [21].

Therefore, we expect both HP and SP schemes to have a numerical error and an
edge preserving quality which depend on this parameter β.

7.2. Evaluation of the direction diffusion schemes. The evaluation of the
different schemes offered for direction diffusion is based on two main attributes of these
schemes. The first is their numerical and algorithmic accuracy, which is presented by
their degree of error. The second is the edge preserving quality of the scheme. We use
direction information which is synthetic. Then, random noise chosen from a uniform
distribution on a predefined interval is added to the direction data, and each scheme
is used to denoise the image. The numerical error of each scheme is calculated. The
algorithmic error is also defined, as the deviation of the resultant direction from the
original noise-free direction data. The edge preserving quality of each algorithm is
examined on an artificial image which is composed of two different directions, and also
on an image which combines a slowly varying direction and a large direction edge.

7.3. Definition of the numerical error. The numerical error is differently
defined and calculated for each scheme. In the linear and TV schemes, the numerical
error is defined as the amount of the projection needed, so that the direction informa-
tion is on the unit circle. Thus, if the flow has resulted in some coordinates (U1, V 1)
which are not necessarily on the unit circle, we take as the projected coordinates the
intersection of the unit circle with the line connecting (U1, V 1) to the origin of axes;
see Figure 7.1. The point (U, V ) is given by

U =
U1√

U12 + V 12
, V =

V 1√
U12 + V 12

.(7.6)

Thus, the error is clearly

error =
√

(U1 − U)2 + (V 1 − V )2.(7.7)

In the HP and SP schemes, the evaluation of the error is not straightforward, as
there is no projection error; the evolving coordinates never leave the unit circle. The
numerical error is therefore defined relative to the results of a similar flow in which
there is no selection of a local coordinate system; thus, the coordinates (u, v) are not
coupled and are not constrained to the unit circle. For the HP we denote this error
by HEU1,V 1 and expect it to obtain a sharp maximum at (−π, −π2 , 0, π2 , π) because
one of the internal coordinates approaches 1 there and the denominator approaches
infinity (see Figure 7.2). It is important to notice that it is not an error of the
hemispheric scheme. In its minimum value, obtained between the sharp maximum
points, it provides a maximum bound on the error in the HP scheme.
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Fig. 7.2. Artificial error in the HP scheme. In regions 1 and 3 the U coordinate is selected,
and therefore the numerical error results from the difference between V 1, which is independently
calculated, and V , which is derived from the coordinate U . In regions 2 and 4 the V coordinate is
selected, and therefore the numerical error results from the difference between U1, which is indepen-
dently calculated, and U , which is derived from the coordinate V .

For SP the definition of an error is even more complicated. Not only is there no
projection error, but there are more variables for which an error term may be defined.
First, u and v are obtained using the embedding θ → (u, v) = [cos(θ), sin(θ)]. Next,
the stereographic coordinates Zn and Zs are derived, as the intersection of the line
between the north (south) pole and the south (north) hemisphere. Thus, we may look
at the error in Zs and Zn as well as in u and v. Following are the error terms used:

• SEzn and SEzs—Error terms for the stereographic coordinates.
We let Zn and Zs evolve independently. Then, we compare the stand-alone
Zn to the one calculated using the coupled Zn and Zs (where we select the
local appropriate chart according to the direction). We do the same for Zs
(see Figure 7.3). We expect the error for Zn to have a singularity at π

2 and
the error for Zs to have a singularity at −π

2 . Note that SEzn as defined is
expected to be zero in the range [−π, 0], and SEzs as defined is expected to
be zero in the range [0, π]. Since this is an error for the values of Zn and Zs,
we need another error definition which measures the degree of error in the
(u, v) coordinates.

• SEUV —Error terms for U and V . It is important to evaluate the error
for the (U, V ) variables. We define the error term as the distance between the
vector (U, V ) when evaluated using the coupled Zn and Zs, and the vector
(U, V ) when using the independently calculated Zn and Zs (see Figure 7.4).

It is important to note that SEz and SEUV are not errors of the Beltrami
porcupine methods. They give an indication of the actual error by noticing that
the minimum of SEz and SEUV is the upper bound for the Beltrami porcupine algo-
rithm. This is so since the most unreliable numeric regions are exactly the regions
where the minimum in the SEZ,UV is obtained. The actual error in other areas is
smaller since we do not trust one of the components that leads to a greater error.
Thus, a small value of an error may indicate that using the appropriate local chart
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(0,0) ZnZn(Zs)

SEzn

(0,0)

Zs(Zn) Zs

SEzs

Fig. 7.3. Artificial error in the Zn (upper) and Zs (lower) variables in the SP scheme.

is not as important as it is when the error is larger. The higher the error, the more
important it is to use the right local chart.

7.3.1. Definition of the algorithmic error. The definition of the algorithmic
error is the same for all schemes. It is simply the deviation of the direction following
diffusion from the noise-free direction, which is originally given. While the numerical
error gives an indication of the stability of the method, the algorithmic error deals with
performance: how close the resultant direction is to the actual one. The algorithmic
error is defined as follows:

E =
√

(cos(θ) − cos(θ1))2 + (sin(θ) − sin(θ1))2,

where θ is the original noise-free angle and θ1 is the resultant angle following the
diffusion scheme.

7.3.2. Definition of an edge preservation quality. An important quality of
any diffusion scheme is its edge preserving ability. The first test image used to examine
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Fig. 7.4. Artificial error in the (U, V ) coordinates in the SP scheme.
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Fig. 7.5. Algorithmic error for the linear, TV, HP, and SP schemes. Left: the four schemes
together, using a small time step, dt = 0.00001. Right: the HP, SP, and linear schemes, using a
larger time step, dt = 0.001.

edge preservation is composed of two different directions. We apply each tested scheme
to this image. We expect that the TV-based method will preserve edges better than
the linear-based approach. As for the porcupine methods, we expect edge preservation
quality to depend on the parameter β. The second test image is composed of two
significantly different directions, where each direction is slowly varying. Using this
test image, we may compare the edge preserving quality with the handling of the
slowly varying data.

7.4. Comparison results and discussion. In this section we present the re-
sults of the numerical errors, algorithmic errors, and edge preserving performance.

In the test we go over S1 from −π to π using an equal step size. For each angle,
random noise entries, chosen from a uniform distribution, are added to the vector field.

In Figure 7.5(left) we present the algorithmic error for the four schemes using
a time step dt = 0.00001. All errors lie within the same range. However, the best
performance is presented by the TV scheme, while the linear, HP, and SP approaches
seem to have the same performance. In Figure 7.5(right) we used a larger time step,
dt = 0.001, to observe the different behavior of the linear, HP, and SP schemes. The
linear scheme has the smallest algorithmic error among the three schemes, and the
HP and SP schemes seem to have the same algorithmic performance.
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Fig. 7.6. Numerical error for the TV, linear, and HP schemes. In this test we go over S1 from
−π to π using an equal step size of π
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Fig. 7.7. Left: numerical error for Zn. Here we go over S1 from −π to π using an equal step
size of π

8
. As expected, it has a singular point at π

2
. Right: numerical error for Zs. As expected,

it has a singular point at −π
2

.

Figure 7.6 compares the numerical errors of the HP, TV, and linear schemes. A
logarithmic scale is used, as the error of the TV scheme is two orders of magnitude
higher than the error of the linear and HP schemes! The HP error term has a periodic
behavior, and it is very large at the singular points, (−π, −π2 , 0, π2 , π). Away from the
singular points, the HP error is slightly smaller than the linear scheme error, and
the TV error is significantly higher than the HP error. However, as we approach the
singularities, the HP error increases, and there the linear scheme’s error is smaller.

In Figure 7.7 we show the numerical errors of Zn and Zs in the SP scheme. As
expected, the errors have sharp maxima at π

2 and −π
2 , respectively.

Another definition for the numerical error of the SP scheme was given, SEUV , in
which we refer to the (U, V ) variables rather than the (Zn, Zs) variables. In Figure 7.8
this error is presented: the differences between the values of (U, V ) when calculated
using a coupled scheme for (Zn, Zs) and when calculated using an independent scheme
for (Zn, Zs) are shown. It is interesting to note that this error has a periodic behavior,
with maximum values at (−π2 ,

π
2 ), as can be expected.
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Fig. 7.8. The differences between the values of (u, v) when calculated using the (Zn, Zs) coupled
scheme and when independently calculated using (Zn, Zs). Here we go over S1 from −π to π using
an equal step size of π
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Fig. 7.9. Numerical error for HP for β = 10 (left) and for β = 0 (right). Here we go over S1

from −π to π using an equal step size of π
32

.

The next step is to examine the dependence of the numerical error in the HP and
SP schemes on the scaling parameter β. Figure 7.9 shows the numerical error for the
HP scheme for a larger value of β (left) and for a smaller value of β (right). The scale
used for presenting these results is again logarithmic. Away from the singular points,
larger values of β produce smaller errors. In the vicinity of the singular points, the
error increases when β increases.

The same goes for the SP scheme. In Figures 7.10 and 7.11 we present the results
with respect to the three error measures we have defined for the SP scheme. The scale
used for presenting the results is logarithmic. In Figure 7.10 the results for a larger
value of β are presented, and in Figure 7.11 the results for a smaller value of β are
presented.

When β = 100, the values of SEzn in the range [0, π] and away from the singularity
at π

2 lie between the numerical errors of the linear and TV schemes. The error
decreases as we move away from π

2 and is even smaller than the linear scheme error as
we move closer to 0 and π. In the range [−π, 0], SEzn is equal to zero. SEzs presents
a mirror behavior. SEUV is smaller than the numerical errors of the TV and linear
schemes. It obtains maximum values at ±π

2 . When β = 0, the values of SEzn in the
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Fig. 7.10. Numerical errors of the SP scheme for a large value of β = 100. (a) The numerical
error of Zn. (b) The numerical error of Zs. (c) The numerical error of the (U, V ) variables.

range [0, π] and away from the singularity at π
2 are a little bigger than those obtained

for β = 100. Again, SEzs presents a mirror behavior. In this case, SEUV , away from
the singular points ±π

2 , is higher than the one obtained for β = 100. Note that the
error values in the vicinity of the singularities are much higher for the lower value
of β.

Next, we examine the edge preserving quality of each direction diffusion scheme.
The following synthetic data was generated so that there is a difference of π

2 radians
between the left and right sides of the noise-free image. Random noise entries, chosen
from a uniform distribution in the range [−π9 ,

π
9 ], are added to the noise-free data,

and each scheme is applied to the image. The noise-free and noisy initial images are
shown in Figure 7.12. The diffusion results are presented for all schemes, while for
the HP and SP approaches we show the results for both smaller and higher values of
the parameter β. In Figure 7.13 the results for the linear and the TV schemes are
presented. It is interesting to note that the linear scheme is less edge preserving than
the TV scheme, as can be expected. In Figures 7.14 and 7.15 the results for the HP
and SP schemes are also presented. Here, we note the dependence of the results on the
value of the parameter β. We can go from linear to TV behavior simply by adjusting
the value of β. If we examine the relationship between the numerical errors of the TV
and linear schemes (see Figure 7.6), and their edge preserving quality, we note that
while the linear scheme offers a low numerical error, it is less edge preserving, and
while the TV scheme better preserves edges, it has a significantly higher numerical
error. For the HP and SP schemes, both the numerical errors (see Figures 7.9, 7.10,
7.11) and the edge preserving quality depend on the parameter β. We may find a
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Fig. 7.11. Numerical errors for the SP scheme for a small value of β = 0. (a) The numerical
error of Zn. (b) The numerical error of Zs. (c) The numerical error of the (U, V ) variables.

Fig. 7.12. The original noise-free image (left) and the image after random noise was added
(right).

value of β in the HP and SP schemes so that we obtain a numerical error which
is in the order of the linear scheme’s error and an edge preserving quality which is
comparable to that of the TV scheme.

Another example for exploring the edge preserving quality of each scheme is the
direction fan example. The test image (Figure 7.15) is composed of a major gradient
in directions in the image’s center and a slowly varying angle as we move away from
the center. The direction information is presented both by arrows (Figure 7.16 (left))
and by a color image, representing the angles (Figure 7.16 (right)). Random noise
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Fig. 7.13. Left: the result of linear diffusion, with 10,000 iterations and a time step equal to
0.0001. Right: the result of TV diffusion, with 100,000 iterations and a time step equal to 0.00001.

Fig. 7.14. Left: the result of HP diffusion for β = 0. Right: the result of HP diffusion for
β = 10. These results were obtained following 10,000 iterations with time step equal to 0.001.

Fig. 7.15. Left: the result of SP diffusion for β = 0. Right: the result of SP diffusion for
β = 100. These results were obtained following 10,000 iterations with time step equal to 0.0001.

entries, chosen from a uniform distribution in the range [−π9 ,
π
9 ], are added to the

noise-free data, and a noisy direction image is obtained (Figure 7.17). Next, each
scheme is applied to the image with the time step, number of iterations, and value
of β (for the HP and SP schemes) that produce the best results. When applying
the linear scheme, the edge is blurred while the amount of noise is still significant
(Figure 7.18). The TV approach results in a sharper boundary relative to the linear
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Fig. 7.16. The noise-free direction fan image, represented by arrows (left) and as a color image
(right).

Fig. 7.17. The noisy direction fan image, represented by arrows (left) and as a color image
(right).

Fig. 7.18. The result of linear diffusion following 10,000 iterations with time step 0.0001,
represented by arrows (left) and as a color image (right).

scheme, but if we examine the smoothed direction, we note a stair-casing effect; thus
the smaller changes in direction are ignored (Figure 7.19).
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Fig. 7.19. The result of TV diffusion following 100,000 iterations with time step 0.00001,
represented by arrows (left) and as a color image (right).

Fig. 7.20. The result of HP diffusion following 1,000 iterations with time step 0.01. The value
of β is 1.5. Representation by arrows (left) and as a color image (right).

Fig. 7.21. The result of SP diffusion following 1,000 iterations with time step 0.01. The value
of β is 10. Representation by arrows (left) and as a color image (right).

The HP scheme produces good results, as it keeps a sharp boundary and restores
the original slowly changing behavior of the original direction data (Figure 7.20). The
SP scheme produces similar results to those for the HP scheme, but as can be seen,
some noise is still present (Figure 7.21).
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8. Concluding remarks. There are some important issues in the process of
denoising a constrained feature field. The first is to make the process compatible with
the constraint in such a way that the latter is never violated along the flow. The
second is the type of regularization which is applied in order to preserve significant
discontinuities of the feature field while removing noise. The third is the numeric and
algorithmic accuracy of the algorithms.

These issues are treated in this paper via the Beltrami framework. First a Rie-
mannian structure, i.e., a metric, is introduced on the feature manifold, and several
local coordinate systems are chosen to intrinsically describe the constrained feature
manifold. The diffusion process acts on these coordinates, and the compatibility with
the constraint is achieved through the intrinsic nature of the coordinate system. The
difficulty in working on a non-Euclidean space transforms itself to the need to locally
choose the best coordinate system to work with.

The preservation of significant discontinuities is dealt with by using the induced
metric and the corresponding Laplace–Beltrami operator acting on feature coordinates
only. This operation is in fact a projection of the mean curvature, in the normal(s)
direction(s) to the surface, to the feature direction(s). This projection slows the
diffusion process along significant (supported) discontinuities while letting the process
proceed in the homogeneous regions at a normal speed.

The result of this algorithm is an adaptive smoothing process for a constrained
feature space in every dimension and codimension. As an example we have shown
how our geometric model coupled with a proper choice of charts handles the direction
diffusion problem. This is a new application of the Beltrami framework, proposed
in [18]. We tested the new model on vector fields restricted to the unit circle S1, and
hybrid spaces like the HSV color space. The integration of the spatial coordinates
with the color coordinates yields a selective smoothing filter for images in which some
of the coordinates are restricted to a circle.

Moreover, it is shown that even when algorithms are analytically equivalent, they
may differ in their accuracy (numerical and algorithmic). It is shown that the hemi-
spheric and stereographic coordinate systems present an advantage in the sense that
a parameter β can be found, i.e., β = 10, or 100, respectively, such that the edge
preserving quality is as good as that for the TV algorithm, while the numerical error
is two orders of magnitude smaller!

Appendix A. The Levi–Civita method for S2. Using (3.9) and the general
formula

Γijk =
1

2
hil (∂jhlk + ∂khjl − ∂lhjk) ,(A.1)

we get, for example,

Γ3
33 =

1

2
h3l (2∂3hl3 − ∂lh33) =

1

2

(
h33∂3h33 + 2h34∂3h34 − h34∂4h33

)
=

1

2

[
(1 − U2)

∂

∂U

(
1 − V 2

1 − U2 − V 2

)
− 2UV

∂

∂U

(
UV

1 − U2 − V 2

)

+UV
∂

∂V

(
1 − V 2

1 − U2 − V 2

)]
,
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and a straightforward calculation gives

Γ3
33 =

U(1 − V 2)

1 − U2 − V 2
= Uh33.(A.2)

Appendix B. The Sn diffusion flow. The hypersphere Sn is presented as an
n-dimensional manifold embedded in R

n+1 as the constrained hypersurface

n+1∑
i=1

(U i)2 = 1.

We work in the chart where {U i}ni=1 are local coordinates. On this chart, Un+1 =√
1 −∑n

i=1(U
i)2.

Theorem B.1. The local Sn metric elements are

h̃ij = δij +
U iU j

1 −∑n
s=1(U

s)2
.

Proof. The hypersphere is embedded isometrically in R
n+1. We use the induced

metric technique as follows:

ds2 =

n∑
i=1

(dU i)2 + (dUn+1)2.(B.1)

The Un+1 coordinate is a function of all the others, and as such we can apply the
chain rule to get

dUn+1 =

n∑
i=1

∂Un+1

∂U i
dU i = −

n∑
i=1

U i√
1 −∑n

s=1(U
s)2

dU i.

Using this expression in (B.1), we get

ds2 =

n∑
i,j=1

h̃ijdU
idU j

=

n∑
i=1

(dU i)2 +

(
−

n∑
i=1

U i√
1 −∑n

s=1(U
s)2

dU i

)⎛
⎝−

n∑
j=1

U j√
1 −∑n

s=1(U
s)2

dU j

⎞
⎠

=
n∑

i,j=1

δijdU
idU j +

n∑
i,j=1

U iU j

1 −∑n
s=1(U

s)2
dU idU j

=

n∑
i,j=1

(
δij +

U iU j

1 −∑n
s=1(U

s)2

)
dU idU j ,(B.2)

from which the assertion follows.
Theorem B.2. The local Sn inverse metric elements are

h̃−1
ij = δij − U iU j .
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Proof. By direct calculation,

n∑
j=1

h̃ij h̃
−1
jk =

n∑
j=1

(
δij +

U iU j

1 −∑n
s=1(U

s)2

)(
δjk − U jUk

)

= δik − U iUk +
U iUk

1 −∑n
s=1(U

s)2
−

n∑
j=1

U i(U j)2Uk

1 −∑n
s=1(U

s)2

= δik.(B.3)

One can check similarly that

n∑
j=1

h̃−1
ij h̃jk = δik.

Theorem B.3. The induced metric, and its inverse, are accordingly

gµν = δµν +

n∑
i,j=1

h̃ijU
i
µU

j
ν ,

gµν =
1

g

⎛
⎝δµν + εµσενρ

n∑
i,j=1

h̃ijU
i
σU

j
ρ

⎞
⎠ ,

g = det(gµν)

= 1 +

n∑
i,j=1

h̃ij(U
i
xU

j
x + U iyU

j
y ) +

1

2
εµσενρ

n∑
i,j,k,l=1

h̃ij h̃klU
i
µU

j
νU

k
ρU

l
σ,(B.4)

where (gµν) is the inverse of (gµν), g is the determinant, and εµν is the 2D antisym-
metric tensor

(εµν) =

(
0 1
−1 0

)
.

An implicit summation on all repeated Greek indices is assumed.
Proof. The calculation of the metric element is done directly by the induced

metric identity

ds2 = gµνdx
µdxν = dx2 + dy2 +

n∑
i,j=1

h̃ijdU
idU j

= δµνdx
µdxν +

∑
ij

h̃ijU
i
µU

j
νdx

µdxν ,(B.5)

from which we extract the metric coefficients. The metric is a 2 × 2 matrix whose
determinant is g = g11g22 − g2

12 = εµνg1µg2ν . Using the explicit form of the metric,
we get
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g =

⎛
⎝1 +

∑
ij

h̃ijU
i
xU

j
x

⎞
⎠
(

1 +
∑
kl

h̃klU
k
yU

l
y

)
−
⎛
⎝∑

ij

h̃ijU
i
xU

j
y

⎞
⎠
(∑

kl

h̃klU
k
xU

l
y

)

= 1 +
∑
ij

h̃ij(U
i
xU

j
x + U iyU

j
y ) +

∑
ijkl

h̃ij h̃klU
i
x(U

j
xU

k
y − U jyU

k
x )U ly

= 1 +
∑
ij

h̃ij(U
i
xU

j
x + U iyU

j
y ) + εµν

∑
ijkl

h̃ij h̃klU
i
xU

j
µU

k
νU

l
y

= 1 +
∑
ij

h̃ij(U
i
xU

j
x + U iyU

j
y )

+
1

2
εµν
∑
ijkl

h̃ij h̃klU
i
xU

j
µU

k
νU

l
y −

1

2
εµν
∑
ijkl

h̃ij h̃klU
i
yU

j
µU

k
νU

l
x(B.6)

= 1 +
∑
ij

h̃ij(U
i
xU

j
x + U iyU

j
y ) +

1

2
εµνεσρ

∑
ijkl

h̃ij h̃klU
i
σU

j
µU

k
νU

l
ρ.

Finally, we prove the formula for the inverse metric

gµνgνλ =
1

g

⎛
⎝δµν + εµσενρ

n∑
i,j=1

h̃ijU
i
σU

j
ρ

⎞
⎠
⎛
⎝δνλ +

n∑
i,j=1

h̃ijU
i
νU

j
λ

⎞
⎠

=
1

g

⎛
⎝δµλ + εµσελρ

n∑
i,j=1

h̃ijU
i
σU

j
ρ +

n∑
k,l=1

h̃klU
k
µU

l
λ

+ εµσενρ
n∑

i,j,k,l=1

h̃ij h̃klU
i
σU

j
ρU

k
νU

l
λ

⎞
⎠(B.7)

=
1

g

⎛
⎝δµλ +

n∑
i,j=1

h̃ij(U
i
xU

j
x + U iyU

j
y )δ

µ
λ + εµσενρ

n∑
i,j,k,l=1

h̃ij h̃klU
i
σU

j
ρU

k
νU

l
λ

⎞
⎠ ,

where the last equality comes from a case-by-case analysis. Remember that λ, ν ∈
{1, 2}, and take, for example, µ = λ− 1 = 1. In this case we get

2∑
σ,ρ=1

ε1σε2ρ
n∑

i,j=1

h̃ijU
i
σU

j
ρ +

n∑
k,l=1

h̃klU
k
xU

l
y = ε12ε21

n∑
i,j=1

h̃ijU
i
yU

j
x +

n∑
i,j=1

h̃ijU
i
xU

a
y

= −
n∑

i,j=1

h̃ijU
i
yU

j
x +

n∑
i,j=1

h̃ijU
j
xU

i
y = 0,(B.8)

where we have used the fact that the metric is a symmetric tensor. Other cases are
analyzed in a similar manner. The third term is also analyzed on a case-by-case basis,
and the result, as the reader can verify, is

εµσενρ
n∑

i,j,k,l=1

h̃ij h̃klU
i
σU

j
ρU

k
νU

l
λ =

1

2
δµλε

αβενρ
n∑

i,j,k,l=1

h̃ij h̃klU
i
αU

j
νU

k
ρU

l
β .

The whole expression in the parentheses in B.7 is, therefore, δµλg, which completes
our proof.
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The last piece of information needed for our machinery is the explicit form of the
Levi–Civita coefficients.

Theorem B.4. The Levi–Civita coefficients are

Γijk = U ih̃jk.(B.9)

Proof. From the formula (2.11) we get

Γijk =
1

2

∑
l

h−1
il (∂jhlk + ∂khjl − ∂lhjk)

=
1

2

∑
l

(δil − U iU l)

(
∂j

(
U lUk

1 −∑s(U
s)2

)
+ ∂k

(
U jU l

1 −∑s(U
s)2

)
− ∂l

(
U jUk

1 −∑s(U
s)2

))
.

Let us compute the first term, for example,

∂j

(
U lUk

1 −∑s(U
s)2

)
=

δjlUk

1 −∑s(U
s)2

+
δjkU l

1 −∑s(U
s)2

+
2U jU lUk

(1 −∑s(U
s)2)2

.(B.10)

Summing up the three terms, we get

Γijk =
1

2

∑
l

(δil − U iU l)

(
δjlUk

1 −∑s(U
s)2

+
δkjU l

1 −∑s(U
s)2

+
2U jU lUk

(1 −∑s(U
s)2)2

+
δkjU l

1 −∑s(U
s)2

+
δlkU j

1 −∑s(U
s)2

+
2U jU lUk

(1 −∑s(U
s)2)2

− δlkU j

1 −∑s(U
s)2

− δjlUk

1 −∑s(U
s)2

− 2U jU lUk

(1 −∑s(U
s)2)2

)
.

Now simple algebra gives

Γijk =
1

1 −∑s(U
s)2

∑
l

(δil − U iU l)

(
δkjU l +

U jU lUk

1 −∑s(U
s)2

)

=
1

1 −∑s(U
s)2

(
U i − U i

∑
l

(U lU l)

)(
δkj +

U jUk

1 −∑s(U
s)2

)
= U ih̃jk.
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Abstract. A dispersive model equation is considered, which has been proposed by Whitham
[Linear and Nonlinear Waves, John Wiley & Sons, New York, 1974] as a shallow water model, and
which can also be seen as a caricature of two-species Euler–Poisson problems. A number of formal
properties as well as similarities to other dispersive equations are derived. A travelling wave analysis
and some numerical tests are carried out. The equation features wave breaking in finite time. A
local existence result for smooth solutions and a global existence result for weak entropy solutions
are proved. Finally, a small dispersion limit is carried out for situations where the solution of the
limiting equation is smooth.

Key words. dispersive models, entropy solutions, small dispersion limit
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1. Introduction and motivation. In this paper, a nonlinear dispersive model
problem is proposed, the Burgers–Poisson (BP)-system:

ut + uux = ϕx,(1.1)

ϕxx = ϕ+ u,(1.2)

where u and ϕ depend on (t, x) ∈ (0,∞)×R, and subscripts denote partial derivatives.
The Burgers equation (1.1) is driven by the right-hand side ϕx, which is determined
by solving the Poisson equation (1.2).

Using the Green’s function G(x) = − 1
2e

−|x| (of ∂2
x − 1) to define the convolution

operator

ϕ[u](x) = (G ∗ u)(x) =

∫
R

G(x− y)u(y) dy,(1.3)

the BP-system reduces to the single BP-equation

ut + uux = ϕx[u],(1.4)

with the obvious notation ϕx[u] := (ϕ[u])x.

A rescaled version of (1.4) was considered by Whitham in [30, section 13.14]
as a shallow water equation modelling unidirectional water waves subject to weaker
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dispersive effects than the Korteweg–de Vries (KdV)-equation. More precisely, the

rescaled kernel G̃(x) = π
4 e

−π
2 |x| was used as an approximation for the kernel

Gg(x) =
1

2π

∫
R

( g
κ

tanh(κh0)
) 1

2

eiκx dκ(1.5)

when g and h0 are normalized to 1. Equation (1.5) is the Fourier transform of the
dispersion relation of linearized (small amplitude, velocity potential) gravity (g is the
gravitational acceleration) water waves in an inviscid, incompressible, and irrotational
fluid of constant depth h0 [30]. In contrast to the KdV-equation, where the dispersion
kernel is singular, the above smooth kernels feature weaker dispersive effects and allow,
in particular, peaking and breaking of waves.

The present study of (1.1), (1.2) has been motivated by earlier work [10], [11] on
two-species-Euler–Poisson (2SEP)-systems modelling the dynamics of two oppositely
charged species of particles subject to Coulomb interaction. A simple version in
dimensionless form is given by

ρt + (ρu)x = 0,(1.6)

ut + uux +
ρx
ρ

= ϕx,(1.7)

εϕxx = ρ− e−ϕ.(1.8)

Here, the unknowns ρ, u, and ϕ depend on position x ∈ R and time t > 0. The
system (1.6), (1.7) comprises the isothermal Euler equations for the first species of
particle with density ρ and velocity u. In the Poisson equation (1.8) for the electro-
static potential ϕ, the density of the second species is modelled by the equilibrium
approximation e−ϕ, resulting from an equation like (1.7) with the first two terms
neglected and the opposite sign on the right-hand side. The dimensionless parameter
ε denotes the scaled Debye length.

In view of the formal similarities between the BP- and the 2SEP-system, we shall
use the terms position, time, velocity, and potential for the variables x, t, u, and ϕ,
respectively. Note that the velocity (instead of the density) appears on the right-
hand side of the Poisson equation. Nevertheless one can consider the BP-system
as a caricature of the 2SEP-system with the Burgers equation replacing the Euler
equations, and the potential terms in (1.2) coming from a linearization of the two-
species Poisson equation (1.8).

The BP-system has a number of interesting formal properties, collected in section
2. In particular, we mention its relation to the Camassa–Holm equation [4], [5] and
the Benjamin–Ono equation [2], [26], its Galilean invariance, and its Hamiltonian
structure, as well as the existence of an entropy.

In section 3, a general travelling wave analysis of the BP-system is performed,
recovering the result of Fornberg and Whitham [17] in the particular case of solitary
waves. It turns out that the travelling wave structure of the BP-system and several
versions of the 2SEP-system (see [10], [11]) are qualitatively equivalent. The section
is completed with some numerical experiments.

In section 4, existence and uniqueness of smooth solutions locally in time for
smooth initial data are proved. Recently, for three related problems—the Euler–
Poisson system [13], the Camassa–Holm equation [9], [27], and the Rosenau regular-
ization of viscous conservation laws [23], [28]—global existence of smooth solutions has
been shown under certain conditions on the initial data. The methods employed there
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do not apply to the BP-system. Also our numerical experiments with the BP-system
indicate that comparable results are not true.

A global existence and uniqueness result for weak entropy solutions with initial
data in BV (R) is also derived. Comparable results have been shown for Rosenau
regularized conservation laws [28], [21]. The Rosenau regularization is formally closely
related to the right-hand side of (1.4). It is obtained from the BP-system, replacing
u by −ux in the right-hand side of (1.2). As opposed to the dispersive nature of the
BP-system, it is dissipative.

The Rosenau regularization has several favorable properties (similar to hyperbolic
or viscous conservation laws, but different from the BP-system): It is L1-contracting,
TVD, and has a comparison principle [28]. For the BP-system we do not have uniform
(in time) L∞-bounds, and the total variation may grow with time.

Finally, the rescaling x → x/ε, t → t/ε, 0 < ε � 1, is introduced in (1.1), (1.2),
leading to

uεt + uεuεx = ϕεx,(1.9)

ε2ϕεxx = ϕε + uε.(1.10)

A Chapman–Enskog expansion of (1.9), (1.10) recovers the Burgers equation with
flux (uε + 1)2/2 and the leading order perturbation ε2uεxxx. For a rescaled system,
the KdV-equation is formally obtained in the limit ε→ 0.

The travelling wave analysis and numerical simulations suggest that the quasi-
neutral limit ε→ 0 in general is a weak limit, both for the 2SEP- and the BP-systems.
Here, a result is shown for the BP-system which has been proved for a 2SEP-system in
[12] and for the Rosenau regularization in [21]: convergence to smooth solutions of the
formal limit problem. In general this is only a local-in-time result since the limiting
inviscid Burgers equation can develop singularities in finite time. The situation is the
same for a 2SEP-system, but not for the Rosenau regularization, where the limiting
equation is the viscous Burgers equation with global smooth solutions.

2. Formal properties. First, we rewrite the BP-system as a single differential
equation for u. By applying 1−∂2

x to (1.1) and using (1.2) on the resulting right-hand
side, we calculate

ut − uxxt + ux + uux = 3uxuxx + uuxxx.(2.1)

The terms in (2.1) correspond to those in the Camassa–Holm equation [4]:

ut − uxxt + 2κux + 3uux = 2uxuxx + uuxxx,(2.2)

where the constant κ ≥ 0 is related to the critical shallow water wave speed. Con-
versely, the Camassa–Holm equation (2.2) can be written in “BP form”:

ut + uux = ϕx ,(2.3)

ϕxx = ϕ+ 2κu+ u2 +
1

2
u2
x .(2.4)

Note that for κ = 1/2 the BP-system is recovered by neglecting the two quadratic
terms in (2.4).

The Camassa–Holm equation was introduced by Fokas and Fuchssteiner [15] as a
formally integrable bi-Hamiltonian generalization of the KdV-equation. Camassa and
Holm [4] rediscovered it as a shallow water equation by approximating the Hamiltonian
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for the vertically averaged incompressible Euler equations. By the bi-Hamiltonian
property, they derived an infinite sequence of conservation laws and showed that the
associated flows of this hierarchy are isospectral and, thus, completely integrable.

Most commonly (cf. [5], [9], [8], [27]), the Camassa–Holm equation (2.2) is consid-
ered with κ = 0. Then the Camassa-Holm equation possesses peaked soliton solutions
(called peakons), attractive travelling waves of the form u(x, t) = c exp(−|x−ct|), and
other breaking phenomena, which is desirable for a shallow water equation and in con-
trast to the KdV-behavior.

For some initial data (e.g., with sufficiently large negative slope [8], [27]) the solu-
tion develops verticality within finite time. On the other hand, global well-posedness
was proved (see [9], [27]) for initial data u0 ∈ Hs(R) with s > 3/2, provided that∫ |u0| dx < ∞ and (1 − ∂2

x)u0 does not change sign. The Camassa–Holm equation is
remarkable since it combines complete integrability with the formation of singularities.

In the existence analysis of section 4, (1.4) will be considered, subject to the initial
conditions

u(x, 0) = u0(x), x ∈ R.(2.5)

Note that (1.4) contains additional information compared to (1.1), (1.2), since for
bounded u, (1.3) is the unique bounded solution of the Poisson equation (1.2). The
properties of the solution operator of the Poisson equation in a L2-setting will be
used, in particular the smoothing

‖ϕ[u]‖Hk+2(R) ≤ ‖u‖Hk(R), u ∈ Hk(R), k ≥ 0,(2.6)

and the symmetry ∫
R

ϕ[u]v dx =

∫
R

ϕ[v]u dx, u, v ∈ L2(R),(2.7)

following from the evenness of the Green’s function G.
The BP-equation (1.4) becomes the Benjamin–Ono equation when ϕ[u] is replaced

by −2H[ux], where H is the Hilbert transform

H[u] = p.v.
1

π

∫ ∞

−∞

u(y)

y − x
dy,

with p.v. denoting the Cauchy principle value. The Benjamin–Ono equation arises
in the study of long internal gravity waves in stratified fluids of great depth [2],
[26]. It is a completely integrable Hamiltonian system [19] possessing multisoliton
solutions [3], [6]. There exists also the analogue of the inverse scattering method
[1] and Bäcklund transformations [24]. Although the dispersive regularization by
the Hilbert transform is weak compared to KdV (cf. [20]), the dispersion is strong
enough that the Benjamin–Ono equation has globally smooth solutions for initial data
u0 ∈ Hk(R), k ≥ 3/2 (see [18], [25]), and even for sublinearly growing initial data
[16].

The BP-system (1.1), (1.2) is Galilean invariant, i.e., invariant under changes of
the reference frame of the form

x→ x+ x0 + u0t, u→ u+ u0, ϕ→ ϕ− u0.

Note that the potential transforms like a velocity. The Galilean invariance will simplify
the travelling wave analysis in section 3.
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The dispersion relation of the BP-equation (1.4) linearized at u = c is given by

ω

k
= c+

1

1 + k2
,(2.8)

with the frequency ω and the wave number k. The group velocities lie between c
and c + 1, the limits for large and small wave numbers, respectively. The existence
of a finite limit for large wave numbers indicates that (1.4) does not have smoothing
properties.

Finally, we look for conservation laws. Obviously, (1.4) can be written in conser-
vation form:

ut +

(
u2

2
− ϕ[u]

)
x

= 0.(2.9)

As a consequence,
∫

R
u dx is conserved for weak solutions with sufficiently strong decay

for x → ±∞. Moreover, for smooth convex functions Φ, multiplication of (1.4) with
Φ′ yields for smooth solutions

Φ(u)t + Ψ(u)x = ϕx[u]Φ
′(u),(2.10)

where Ψ is such that Ψ′(u) = uΦ′(u). In section 4, we prove that weak solutions
constructed via a vanishing viscosity approach satisfy, instead of (2.10), entropy in-
equalities with the equality sign replaced by ≤.

We remark that only the choice Φ′(u) = u = ϕxx − ϕ allows us to write the
right-hand side of (2.10) in conservation form. It leads, for smooth solutions, to the
second conservation law

(u2)t +

(
2

3
u3 + ϕ2 − ϕ2

x

)
x

= 0,(2.11)

while for weak solutions, the entropy
∫

R
u2 dx is nonincreasing.

The jump conditions for entropic shocks with velocity s are those of the Burgers
equation:

s =
1

2
(ul + ur) , ul > ur,(2.12)

where ul and ur denote the left-sided and, respectively, right-sided limit of u at the
shock.

The BP-equation has a Hamiltonian structure similar to the Benjamin–Ono equa-
tion. The bi-Hamiltonian structure of the Camassa–Holm equation is completely
destroyed by dropping the quadratic terms in (2.4). With the Hamiltonian

H(u) =
1

2

∫
R

(
−ϕ[u]u+

u3

3

)
dx,

equation (1.4) can be written as

ut +

(
δH

δu

)
x

= 0,
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where δH
δu = −ϕ[u] + u2

2 is the L2-representation of the Frechet-derivative of H. Note
that this relies on the symmetry property (2.7) of ϕ[·]. Conservation of the quantity∫

R
H(u) dx corresponds to the third local conservation law

(
−ϕu+

u3

3

)
t

+

(
ϕxϕt − ϕϕxt −

(
−ϕ+

u2

2

)2)
x

= 0,

which (as (2.11)) can be expected to hold only for smooth solutions.

3. Travelling wave analysis. The results of this section should be compared to
those of [10], [11] for different versions of the Euler–Poisson system. The qualitative
similarities of the results have been one of the main motivations for this work.

By the Galilean invariance it suffices to consider only travelling waves with ve-
locity 0, i.e., steady states. Travelling waves with velocity c are then found by adding
the constant c to the velocity u (and −c to the potential ϕ). After integration of the
steady state version of (1.1) and using the result in (1.2), the steady state equations
can be written as

uux = E,(3.1)

Ex =
u2

2
+ u− d,(3.2)

where we have used the notation ϕx = E and d is the constant of integration. The
system (3.1), (3.2) will be studied in the (u,E)-phase-plane. We shall also allow
shocks (of course with velocity s = 0) satisfying the jump conditions (2.12):

−ur = ul > 0.

By (3.2), E is continuous across shocks.

Also worth mentioning is the line of singularities u = 0. In general, trajectories
end (or begin) there with square root behavior. By (3.1), smooth trajectories can cross
u = 0 only through the origin of the (u,E)-plane. Our analysis will be restricted to
d > −1/2, whence there are two stationary points

P± =

(
E±
u±

)
=

(
0

−1 ±√
1 + 2d

)
.

It is easily seen that u− is always negative and a saddle. The second stationary point
u+ is negative and a center for −1/2 < d < 0. It becomes positive and a saddle for
d > 0. By separation of variables, a first integral of (3.1), (3.2) can be found:

A =
E2

2
− u4

8
− u3

3
+
du2

2
.(3.3)

Besides the stationary points, this family of curves (parametrized by A) has the
origin as a critical point. Only away from the line u = 0 can these curves be seen as
trajectories (with opposite orientation on opposite sides of u = 0).

Depending on the value of d, three generic cases of phase portraits occur as
follows.
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(b) Solitary wave.

Fig. 1. Solitary waves for − 1
2
< d ≤ − 4

9
.

Solitary waves for −1/2 < d ≤ −4/9. The phase portraits for −1/2 < d <
−4/9 are characterized by a homoclinic orbit (pulse, solitary wave) connecting P− to
itself (see Figure 1(a), (b)). Its interior is filled with periodic solutions around P+.
These features are reminiscent of the KdV-equation. By the singularity, the origin is
a point of nonuniqueness for the initial value problem. Taylor expansion shows a pair
of smooth trajectories passing through the origin. An implicit formula for the solitary
waves has already been calculated in [17], together with a numerical simulation of the
soliton-like interaction of two solitary waves.

In the critical case d = −4/9, the trajectories through the origin coincide with the
stable and unstable manifolds of P−. As a consequence of the nonuniqueness, we can
switch from the unstable to the stable manifold at the origin, producing a nonsmooth
solitary wave, reminiscent of the peakon solutions of the Camassa–Holm equation. It
can be computed explicitly:

u(x) =
4

3

(
e−|x|/2 − 1

)
.

Peaked periodic solutions for −4/9 < d < 0. In this case the solitary wave
disappears, and the trajectories passing through the origin connect to themselves
(see Figure 2(a)). This closed curve in the left half plane corresponds to a peaked
periodic solution (see Figure 2(b)). Again, these solutions can be computed explicitly.
Taking the derivative of (3.1) and using (3.3) for the evaluation of u2

x, we obtain (with
A = 0)

uxx =
u

4
+

1

3
.

The peaked periodic solution is given by

u(x) =
4

3

(
cosh(x/2)

cosh(p/2)
− 1

)
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(b) Peaked periodic solution.

Fig. 2. Periodic solutions for − 4
9
< d < 0.

for −p < x < p and by periodic continuation with period 2p. The length of the period
is connected to the parameter d by

cosh
(p

2

)
=

(
1 +

9

4
d

)−1/2

.

As d tends to zero, p tends to zero and the peaked periodic orbit shrinks to the origin
in the phase portrait.

Heteroclinic connections for d ≥ 0. For d > 0, the stationary points are
saddles and lie on opposite sides of the line u = 0 (see Figure 3(a)). A hetero-
clinic connection (front wave) between them can be constructed using an entropic
shock. There is a unique pair of points Pl = (ul, El) = (

√
1 + 2d,

√
11/12 + 2d),

Pr = (−ul, El), satisfying the jump conditions, with Pl lying on the unstable mani-
fold of P+, and Pr on the stable manifold of P−. The u-component of the heteroclinic
solution is depicted in Figure 3(b). Note that a solution with this qualitative behav-
ior also exists for d = 0. In this case, however, the convergence towards P+ is not
exponential, since for d = 0, P+ is a degenerate stationary point.

Remark 3.1. The question arises whether two arbitrary constant states u−∞, u∞
can be connected by a front wave. The answer is negative. The set of admissible
pairs (u−∞, u∞) is constructed by shifting pairs (u+(d), u−(d)), d ≥ 0 (exploiting the
Galilean invariance). This leads to the requirement u∞ − u−∞ ≥ 2.

Transient behavior, numerical experiments. We have studied the transient
behavior of solutions of the BP-equation (1.4) numerically. A MATLAB program was
written employing a straightforward explicit discretization: In a first step, the Poisson
equation is solved for given u at the old time step. A centered difference scheme is
used on a bounded interval with boundary conditions ϕ+ u = 0 at both ends.

The result is used for the evaluation of the right-hand side of (1.4). Alternatively,
we used an implicit spectral method (cf. [7, Part II, Chapter 8]) and obtained very
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Fig. 3. Shock solutions for d ≥ 0.
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(b) Numerical stationary solution.

Fig. 4. Initial ramp of height 3 : 0.5 ↘ −2.5.

similar results. This spectral method is between three and four times faster due to
the use of FFT, but it applies only for spatially periodic situations.

The Burgers flux term is discretized by the Lax–Friedrichs method. Time steps
are chosen according to the CFL-condition. As initial data, linear ramps connecting
two constant states are prescribed. Recalling Remark 3.1, we are interested in the
behavior depending on the difference between the asymptotic states at x = ±∞.

Our results for downward ramps of height larger than 2 suggest the conjecture that
the heteroclinic waves constructed above are attractive. For a typical example, see
Figure 4(a) and (b). For a ramp with height 3 and the constant states lying symmetric
with respect to u = −1, we observe numerical convergence to the stationary solution
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(d) Numerical solution at t = 120.

Fig. 5. Initial ramp of height 1 : −0.5 ↘ −1.5.

of the type of Figure 3(b). The development of shocks seems not to depend on the
steepness of the ramp.

A completely different behavior is observed for initial ramps with a height less
than 2: In this case, there exists no stationary solution connecting the asymptotic
states. For a typical example, Figure 5, the observed behavior is reminiscent of the
KdV-equation and shows typical dispersive effects with oscillations at the left side of
a smoothed ramp. This is in accordance with the dispersion relation (2.8) showing
that high frequency components travel with lower velocities.

4. Existence. In this section, the initial value problem

ut + uux = ϕx[u], u(x, 0) = u0(x)(4.1)

is considered, where the operator ϕ[·] is defined in (1.3).
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Theorem 4.1 (local strong solution). Assume u0 ∈ Hk(R) with k > 3
2 . Then

there exists a time T (‖u0‖Hk(R)) > 0 and a unique solution

u ∈ L∞((0, T );Hk(R)
) ∩ C([0, T ];Hk−1(R)

)
of (4.1) such that T (‖u0‖Hk(R)) depends only on ‖u0‖Hk(R).

Proof. The proof is based on a contraction argument similar to that of [29, section
16.1]. We define the iteration map ST as follows: For any function v ∈ BT with

BT :=

{
w ∈ L∞((0, T ), Hk(R)) ∩ C([0, T ];Hk−1(R)) :

sup
t∈[0,T ]

‖w(·, t)‖Hk(R) ≤ 2‖u0‖Hk(R)

}

the image ST (v) is the unique solution u of

ut + uux = ϕx[v], u(t = 0) = u0.(4.2)

First, we show that ST maps BT into itself for T small enough. We apply ∂αx to (4.2)
for α ≤ k and take the L2-scalar product with ∂αx u:

1

2

d

dt

∥∥∂αx u∥∥2

L2(R)
+

∫
R

∂αx (uux) ∂
α
x u dx︸ ︷︷ ︸ =

∫
R

ϕx[∂
α
x v] ∂

α
x u dx︸ ︷︷ ︸ .

A B

(4.3)

The first factor in the integrand of A is differentiated by the product rule:

∂αx (uux) = u ∂α+1
x u+

α∑
l=1

(
α

l

)
∂lxu ∂

α+1−l
x u.

Accordingly, A is split into two parts which are estimated separately:∣∣∣∣
∫

R

u (∂α+1
x u)(∂αx u) dx

∣∣∣∣ = 1

2

∣∣∣∣
∫

R

u ∂x(∂
α
x u)

2 dx

∣∣∣∣ ≤ 1

2
‖ux‖L∞(R)‖u‖2

Hk(R).(4.4)

For the second part of A, we use the Cauchy–Schwarz inequality and the interpolation
estimate∥∥(∂l−1

x fx
) (
∂α−lx gx

)∥∥
L2(R)

≤ c
(‖fx‖L∞(R)‖g‖Hα(R) + ‖f‖Hα(R)‖gx‖L∞(R)

)
(see [29, Chapter 13, Proposition 3.6]) to obtain∣∣∣∣∣

∫
R

∂αx u

α∑
l=1

(
α

l

)
∂l−1
x ux ∂

α−l
x ux dx

∣∣∣∣∣ ≤ c‖u‖2
Hk(R)‖ux‖L∞(R) ,

with some constant c depending only on k. By the Sobolev imbedding W 1,∞(R) ↪→
Hk(R) for k > 3/2, we calculate

|A| ≤ c‖u‖3
Hk(R).(4.5)

For B, we apply the Cauchy–Schwarz inequality and (2.6):

|B| ≤ ‖ϕx[∂αx v]‖L2(R)‖∂αx u‖L2(R) ≤ c‖v‖Hk(R)‖u‖Hk(R).(4.6)
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Using (4.5) and (4.6) in (4.3) gives

d

dt
‖u‖Hk(R) ≤ c

(
‖u‖2

Hk(R) + ‖v‖Hk(R)

)
.

For T small enough, a comparison principle shows ‖u(·, t)‖Hk(R) ≤ 2‖u0‖Hk(R)

for 0 ≤ t ≤ T . Since u ∈ C([0, T ];Hk−1(R)) is an obvious consequence of (4.2),
we conclude that ST : BT → BT . In a second step, we prove ST to be a strict
contraction. Therefore, we consider two functions v1 and v2 in BT and set u1 =
ST (v1), u2 = ST (v2), and u = u1 − u2, v = v1 − v2. The difference of the equations
for u1, u2 reads as

ut + u(u1)x + u2ux = ϕx[v], u(t = 0) = 0.

We proceed similarly to (4.2), using B from (4.3):

1

2

d

dt
‖∂αx u‖2

L2(R) +

∫
R

∂αx (u∂xu1) ∂
α
x u dx︸ ︷︷ ︸ +

∫
R

∂αx (u2ux) ∂
α
x u dx︸ ︷︷ ︸ = B.

A1 A2

In contrast to (4.4), the highest order term of A1 is not bounded in terms of
the Hα(R)-norm. Therefore, we are obliged to reduce the order of differentiation to
α ≤ k − 1 and estimate as above for the second part of A:

|A1| ≤ c‖u‖Hk−1(R)

(‖∂xu1‖L∞(R)‖u‖Hk−1(R) + ‖u‖L∞(R)‖u1‖Hk(R)

)
≤ c‖u‖2

Hk−1(R)‖u1‖Hk(R).

For A2, we proceed as in (4.4)–(4.5):

|A2| =

∣∣∣∣∣
∫

R

(
u2 ∂x(∂

α
x u)

2

2
+ ∂αx u

α∑
l=1

(
α

l

)
∂lxu2 ∂

α−l
x ux

)
dx

∣∣∣∣∣
≤ c‖u‖2

Hk−1(R)‖u2‖Hk(R).

Since ‖u1,2‖Hk(R) ≤ 2‖u0‖Hk(R), this leads to

d

dt
‖u‖Hk−1(R) ≤ c

(‖u‖Hk−1(R) + ‖v‖Hk−1(R)

)
,

and the Gronwall lemma implies that for T small enough, ST is a strict contraction
with respect to the topology in C([0, T ];Hk−1(R)).

Theorem 4.2 (global weak solution). Assume u0 ∈ BV (R). Then there exists
a unique global weak solution

u ∈ L∞
loc ([0,∞);BV (R))(4.7)

of (4.1), satisfying (in the distributional sense) the entropy inequalities

Φ(u)t + Ψ(u)x ≤ ϕx[u]Φ
′(u)(4.8)

for convex entropy densities Φ ∈ C1(R) and for Ψ such that Ψ′(u) = uΦ′(u).
Remark 4.1. For convex functions Φ ∈ W 1,∞(R), it is possible to establish gen-

eralizations of (4.8) in the sense that the right-hand side of (4.8) has to be interpreted
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as the limit of an approximating procedure. More precisely, considering a smooth-
ing Φδ → Φ in W 1,∞(R), the dominated convergence theorem and the upper bound
ϕx[u]‖Φ′‖L∞ imply that the limit δ → 0 of the right-hand side of (4.8) exists, although
it depends on the pointwise limit limδ→0 Φ′

δ since the level sets {u = α} may have
nonzero measure.

Such problems do not occur in the theory of scalar conservation laws with local
flux terms [29] where Kruzhkov’s entropy densities Φ = |u − α| ∈ W 1,∞(R) for all
α ∈ R are well defined and allow us, for instance, to show L1-contractivity (and
therefore uniqueness) of the entropy solutions. For the BP-equation (4.1), only L1-
stability can be shown using the above generalizations of (4.8), which is nevertheless
sufficient to show the uniqueness.

Proof. The proof is based on a viscosity method similar to that of [29, Chapter
16.6]. Instead of (4.1), we consider the regularized equation

ut + uux = ϕx[u] + νuxx(4.9)

with ν > 0. Local existence of a unique smooth solution of the initial value problem
for (4.9) with u(t = 0) = u0 ∈ BV (R) can be shown by standard arguments. The
next step is an L1-stability result for (4.9). Let u1, u2 denote solutions of (4.9) with
initial data f1, f2 ∈ L1(R). Then the difference v = u1 − u2 satisfies

vt + (wv)x = ϕx[v] + νvxx, v(t = 0) = f1 − f2,(4.10)

with w = (u1 + u2) /2. Let absδ(·) be a convex regularization of the modulus, uni-
formly converging to | · | as δ → 0, and satisfying |abs′δ(v)| ≤ 1. Multiplication of
(4.10) with abs′δ(v) and integration with respect to x leads to

d

dt

∫
R

absδ(v) dx =

∫
R

wv abs′′δ (v)vx dx−
∫

R

abs′δ(v)ϕx[v] dx

− ν

∫
R

abs′′δ (v) (vx)
2
dx.(4.11)

Since the function
∫ v
0
s abs′′δ (s) ds converges to zero uniformly as δ → 0, we have

for the first term on the right-hand side of (4.11)∫
R

wv abs′′δ (v)vx dx = −
∫

R

wx

∫ v

0

s abs′′δ (s) ds dx→ 0 as δ → 0.

Boundedness of the operator ϕx[·] : L1(R) → L1(R) can be shown easily. With the
properties of absδ, we obtain from (4.11) in the limit δ → 0

d

dt
‖v‖L1(R) ≤ c‖v‖L1(R).(4.12)

Analogously to [29, Lemma 6.1], it can be shown that

d

dt
‖v‖BV (R) ≤ c‖v‖BV (R)

holds for the solution of (4.9) as a consequence of (4.12). This is sufficient for proving
that the solution of (4.9) is global and bounded in L∞

loc([0,∞);BV (R)) uniformly in ν.
This again is sufficient to show that the solution converges pointwise a.e. on (0,∞)×R

as ν → 0. For the details of the vanishing viscosity limit we refer to [29].
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To show that the constructed solutions satisfy the entropy inequalities (4.8) we
first consider smooth convex entropy densities Φ and multiply (4.9) with Φ′(u(t, x)). In
the weak formulation with nonnegative testfunctions θ ∈ C∞

0 ((0,∞)×R), integration
by parts yields

−
∫

(0,∞)

∫
×R

(Φ θt + Ψ θx) dtdx =

∫
(0,∞)

∫
×R

(
ϕx[u]Φ

′(u) − νΦ′′u2
x + νΦxx

)
θ dtdx,

where Ψ is as smooth as Φ and satisfies Ψ′ = uΦ′. Now, in the vanishing viscosity
limit like above, Φ(u),Ψ(u), and ϕx[u]Φ

′(u) converge pointwise a.e. on (0,∞) × R as
ν → 0 by the smoothness of Φ and Ψ. Moreover (see [29]), νΦxx → 0 weakly, while
−νΦ′′u2

x ≤ 0 by the convexity of Φ, which implies the inequality sign (4.8). By an
approximation argument, (4.8) holds clearly for Φ ∈ C1(R).

For convex Φ ∈W 1,∞(R), Φ′ is defined a.e. and monotonically increasing and has
therefore at most a countable number of jumps. Hence, after defining Φ′ pointwise
everywhere in some way such that |Φ′|(x) ≤ ‖Φ′‖L∞ , there exist smooth approxi-
mations Φδ → Φ in W 1,∞(R) such that |Φ′

δ|(x) ≤ |Φ′|(x) and Φ′
δ → Φ′ pointwise

everywhere. Therefore, considering a particular smoothing Φδ, the limit δ → 0 in the
right-hand side of (4.8) is well defined by the dominated convergence theorem using
the common upper bound ϕx[u]‖Φ′‖L∞ .

To shown uniqueness of the entropy solution, we choose a particular smoothing
Φδ of Kruzhkov’s entropy densities Φ(u) = |u − α| for α ∈ R such that the limit
limδ→0 Φ′

δ(0) = sign(0) = 0. Moreover, we consider two solutions u(t, x) and ũ(s, y)
and sum, respectively, two generalizations of (4.8), where we set α = ũ(s, y) in the
first and α̃ = u(t, x) in the latter. Hence, after estimating |sign(u − α)| ≤ 1 on the
right-hand side, we obtain

−
∫∫∫∫

|u− ũ| (θt + θs) dtdxdsdy −
∫∫∫∫

Ψ(u, ũ)(θx + θy) dtdxdsdy

≤
∫∫∫∫

|ϕx[u] − ϕy[ũ]| θ dtdxdsdy,

where Ψ(u, ũ) = 1
2 (u+ũ)|u−ũ| and θ = θ(t, x, s, y), a nonnegative testfunction, which

we choose especially as

θ(t, x, s, y) = f(t) δε

(
t− s

2

)
g(x) δε

(
x− y

2

)
,

where f, δε, gε are nonnegative in C∞
0 (R) and δε(·) approximates the delta distribution

as ε → 0, while gε is a plateau-function with 0 ≤ gε ≤ 1 and gε ≡ 1 on (−ε−1, ε−1).
Since

θt + θs = f ′ δε

(
t− s

2

)
g δε

(
x− y

2

)
, θx + θy = f δε

(
t− s

2

)
g′ δε

(
x− y

2

)
,

we obtain in the limit ε→ 0

−
∫

(0,∞)

∫
×R

|u(t, x) − ũ(t, x)|f ′ dtdx ≤
∫

(0,∞)

∫
×R

|ϕx[u] − ϕx[ũ]| f dtdx.

Since obviously
∫

R
|ϕx[u− ũ]| dx ≤ ‖Gx‖∞

∫
R
|u−ũ| dx with ‖Gx‖∞ = 1

2 , we conclude
(after integration by parts and by the arbitrariness of f) that

d

dt

∫
R

|u− ũ| dx ≤ 1

2

∫
R

|u− ũ| dx,
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and the Gronwall lemma implies the uniqueness.

5. Asymptotics and the quasineutral limit. In this section, we investigate
the rescaled (x→ x/ε, t→ t/ε) BP-system

uεt + uεuεx = ϕεx,(5.1)

ε2ϕεxx = ϕε + uε,(5.2)

with ε� 1. In accordance with the terminology taken from the Euler–Poisson system,
the limit ε → 0 will be called the quasi-neutral limit. With the rescaled potential
operator

ϕε[u](x) = − 1

2ε

∫
R

exp

(
−|x− y|

2ε

)
u(y)dy,

the initial value problem

uεt + uεuεx = ϕεx[u
ε], uε(t = 0) = u0,(5.3)

will be compared to its formal limit

u0
t + (u0 + 1)u0

x = 0, u0(t = 0) = u0.(5.4)

The limit is the inviscid Burgers equation for the unknown u0 + 1. Even for smooth
initial data its solution can develop shocks in finite time. The travelling wave analysis
of section 3 can be seen as an attempt to approximate solution profiles in the neigh-
borhood of shocks of (5.4). The heteroclinic connections computed in section 3 are
such profiles connecting two states ul and ur satisfying the jump conditions

s =
1

2
(ul + ur + 2) , ul > ur.

However, these connections exist only for ul − ur > 2. For a better understanding of
the situation, we expand the potential operator

ϕε[u] = −u− ε2uxx +O(ε4) .

Thus, an O(ε4)-approximation of (5.3) is given by the KdV equation (for the unknown
u+ 1)

ut + (u+ 1)ux + ε2uxxx = 0.(5.5)

Actually, the KdV equation can be obtained as a formal limit of (5.3). If (5.3) is
rescaled by

t→ t

ε2
, uε → −1 + ε2U,

then the formal limit of the resulting equation for U is

Ut + UUx + Uxxx = 0.

In analogy to the well known results concerning the limit as ε→ 0 of (5.5) (e.g.,
[22], [14]), we expect that in general the limits of solutions of (5.3) are weak limits,
which do not satisfy the formal limiting equation (5.4). In our last result, however,
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we prove that—as long as the solution of the limiting equation remains smooth—it is
the strong limit of the solution of (5.3). For u0 ∈ C0,1(R), the space of all Lipschitz
continuous function on R, there exists a T > 0 such that the Burgers equation (5.4) has
a solution u0 ∈ C([0, T ]; C0,1(R)). Also, if u0 ∈ Hs(R), then u0 ∈ L∞((0, T ); Hs(R)).

Theorem 5.1. Assume u0 ∈ C0,1(R) ∩ Hs(R) with s > 1. Then, for a time
interval (0, T ) as mentioned above, the solutions of (5.3) and (5.4) satisfy

‖uε − u0‖L∞((0,T );L2(R)) = O (εr) , r = min{2, s− 1}.

Proof. Let v = uε − u0 with initial data v(t = 0) = 0. We subtract (5.4) from
(5.3) to obtain an equation for v:

vt +

(
v2

2
+ u0v

)
x

= u0
x + ϕε[u0

x] = ε2ϕεxx[u
0
x].

By taking the L2-scalar product with v and by integration by parts, we calculate

1

2

d

dt
‖v‖2

L2(R) +

∫
R

v2

2
u0
x dx = ε2

∫
R

v ϕεxx[u
0
x] dx,

which implies

d

dt
‖v‖L2(R) ≤ 1

2
‖u0

x‖L∞(R)‖v‖L2(R) + ‖ε2ϕεxx[u0
x]‖L2(R).(5.6)

With the Fourier transform û0(k, t) of u0(x, t), the last term can be estimated by

‖ε2ϕεxx[u0
x]‖L2(R) =

∥∥∥∥∥ε
2|k|3|û0|
1 + ε2k2

∥∥∥∥∥
L2(R)

≤ sup
k∈R

ε2|k|3
(1 + ε2k2)(1 + k2)s/2

‖u0‖Hs(R) .

The factor on the right-hand side is obviously O(ε2) for s ≥ 3. For s < 3, it can be
estimated by

ε2|k|3
(1 + ε2k2)|k|s = εs−1 |εk|3−s

1 + |εk|2 = O(εs−1) ,

and thus

‖ε2ϕεxx[u0
x]‖L2(R) ≤ cεr‖u0‖Hs(R) .

The statement of the theorem is now a direct consequence of the Gronwall lemma
applied to (5.6).
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Abstract. Charge transport in semiconductor superlattices can be described through a discrete
drift-diffusion model. In this model, we identify some small parameter h > 0, related to the ratio
between the length of a superlattice period and the observation length scale. Specifically, we inves-
tigate a regime where the length of the superlattice period is small while the doping profile is low.
In the limit h→ 0, we are led to a nonlinear drift-diffusion model, coupled to the Poisson equation.
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1. Introduction. A semiconductor superlattice (SL) is a periodic array of layers
of two different semiconductors whose lateral dimension is much larger than the length
of one period. These devices exhibit nonlinear charge transport phenomena due to
the existence of electric field domains. Depending on the charge density (produced
by doping or irradiating the SL) and on the applied voltage, different qualitative
responses of the current can be obtained, as shown, e.g., by Bonilla [6]. In experiments
at intermediate values of the charge density, stationary responses and self-sustained
oscillations are observed depending on the values of the voltage. There exist solutions
corresponding to low voltages which are stationary and typically develop low electric
fields. It is very important to understand the time evolution of the solutions toward
these stationary profiles (see [5] where relocation experiments are studied).

Electronic transport in such semiconductor devices can be described by a discrete
drift-diffusion model. Details on the modeling will be given in section 2, following
the works by Aguado, Platero, Moscoso, and Bonilla [1] and Bonilla, Platero, and
Sánchez [4] and review papers by Bonilla [6] and Wacker [15]. The model consists of
the Poisson equation coupled to charge continuity equations for the electron density n
and average electric field F at each SL period. Tunneling currents across barriers are
approximated by a discrete drift-diffusion (DDD) law, whose coefficients are them-
selves field dependent. We aim at investigating asymptotics regimes for this model.
To this end, we shall write the equations in dimensionless form. Hence, we are able to
identify some small parameter—denoted h > 0 in what follows—by means of physi-
cally relevant dimensionless parameters of the DDD system. Having set up this DDD
system, we prove that the solutions converge, in an appropriate weak setting, to solu-
tions of a continuous drift-diffusion-Poisson problem with field-dependent mobilities,
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as the parameter h tends to 0. The limit equation reads⎧⎨
⎩

∂tn+ ∂xJ(F, n) = 0 in (0, T ) × [−X,X],
J(F, n) = v(F )n−D(F )∂xn ,
∂xF = n−ND in (0, T ) × [−X,X].

(1.1)

These equations are completed by bias, boundary, and initial conditions⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∫ X

−X
F dx = V on (0, T ),

J(F, n)(X) = W (f)(F )n(X) on (0, T ),
J(F, n)(−X) = (j(e)(F ) −W (b)(F )n)(−X) on (0, T ),
n(t = 0, x) = n0(x) on [−X,X].

The techniques employed to prove the convergence are based on a priori estimates and
compactness properties. At this point, we have to remark that the solutions to the
DDD model are stepwise constant functions, which forces us to consider the solutions
in the framework of the bounded variation (BV) spaces.

Our main result admits a reversal lecture. Since the dimensionless system of
the DDD model coincides with a finite difference discretization of (1.1), the analysis
proposed can be read as a convergence analysis for numerical approximations of that
drift-diffusion continuous equation. In this direction our problem is related with other
works on approximation of field-dependent mobilities. System (1.1) is a monopolar
one-dimensional version of the drift-diffusion system analyzed by Gajewski and Gröger
[8] and Jerome [10]. Our DDD system is simpler than the general version studied
in those works, where different boundary conditions are considered. Here, we deal
with the time-dependent problem, while, to the best of our knowledge, the previous
analyses are devoted to approximate steady state solutions.

This paper is organized as follows. In section 2 we present in detail the DDD
model, recalling some aspects of its derivation. We also justify its well-posedness.
In section 3 we perform the dimension analysis of the system. Then, we derive the
dimensionless equations for which the analysis is actually performed and we state
precisely our main convergence result for the DDD model. Actually, our analysis
applies either when considering a Dirichlet boundary condition for the electric field or
with the bias condition. Section 4 is devoted to the crucial a priori estimates satisfied
by the solution. For the sake of simplicity, we start with the Dirichlet boundary
condition. Then, in section 5 we use these estimates to show the convergence to
the continuous model, through compactness arguments. Finally, section 6 sketches
the slight adaptation of the proof to treat the DDD system endowed with the bias
condition. The paper ends with two appendices: in the first one we deal with a
technical auxiliary result, and the latter investigates uniqueness of the limit system.

2. Discrete drift-diffusion model. Since the two semiconductors constituting
the SL have different energy gaps, the conduction band of an SL can be viewed as a
periodic array of potential wells and barriers, of widths w and d, respectively, with
� = d+w the length of one period. We assume that scattering times are shorter than
escape times from quantum wells, the latter being shorter than dielectric relaxation
times. In such a weakly coupled semiconductor SL, the dominant mechanism of charge
transport is sequential resonant tunneling. In the simplest situation, the center of each
quantum well is n-doped and the thermal energy is large compared to the energy of
the lowest miniband. Then, a description of charge transport in such devices has been
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proposed through a DDD model; see [1, 4, 6, 15]. This model has been extended by
taking into account stochastic effects by Bonilla, Sánchez, and Soler [5], in comparison
with the experimental results of Rogozia et al. [12].

In such a modeling, we consider an array of 2N + 1 consecutive cells, which are
well-barrier pairs, labeled by the index i ∈ {−N, . . . ,+N}. The barrier separating
the injecting contact from the first well of the SL is considered as the (−N − 1)th
barrier, while the barrier of the Nth SL period separates the Nth well from the
collector. The model assumes that the electrons are singularly concentrated on a
two-dimensional region located in the center of the quantum well. The unknowns
are the two-dimensional electron density ni (number of electrons per unit area of the
SL cross section at the center of the ith well) and the average electric field Fi in
each cell. These quantities are related through the following discrete Poisson equa-
tion:

Fi − Fi−1 =
e

ε
(ni −Nw

D), i ∈ {−N, . . . , N}.(2.1)

In (2.1), Nw
D stands for the two-dimensional doping in the wells, assumed to be con-

stant, while ε is the average permittivity in the SL and (−e) stands for the electron
charge. Notice that the set of relations (2.1) involves as an additional unknown
the electric field F−N−1 at the injecting contact. On the other hand, denoting by
eJi→i+1 the tunneling current density through the barrier separating the cells #i and
#(i + 1), the density in the ith cell satisfies the following charge continuity equa-
tion:

dni
dt

= Ji−1→i − Ji→i+1, i ∈ {−N, . . . , N}.(2.2)

Consequently, differentiating (2.1) and using (2.2), we notice that the quantity

ε

e

dFi
dt

+ Ji→i+1 = J(t), i ∈ {−N − 1, . . . , N}(2.3)

does not depend on the considered cell. This is the so-called Ampère’s law, where
eJ(t) stands for the total current density through the SL which does not depend on
the index i.

Then, the model is completed by a constitutive law which defines the current
density eJi→i+1 by means of the (nk, Fk)’s. The tunneling current density depends
on the electrochemical potentials at cells #i and #(i+ 1) and on the average electric
field Fi; see [6, 15]. The electrochemical potentials that “drive” the tunneling current
(a nonzero current is a consequence of unequal electrochemical potentials at cells #i
and #(i+1)) are functions of the electron densities and therefore, according to [6, 15],
we may consider that the tunneling current eJi→i+1 depends on ni, ni+1 and Fi. First-
principles calculations of eJi→i+1 are at best sketchy. In the literature, formulas have
been derived from quantum kinetic equations for Green’s functions (see [15], assuming
constant electric field across the SL, simplified hopping Hamiltonians, and scattering)
and from the transfer Hamiltonian formalism as in [1, 4, 6] (a many-body version of
the WKB method originally proposed by Bardeen [3]). At high (room) temperature,
all these formulas imply that the tunneling current is given by the difference of a drift
term and a diffusion term as follows:

Ji→i+1 =
niv(Fi)

�
− D(Fi)(ni+1 − ni)

�2
, i ∈ {−N, . . . , N − 1}.(2.4)
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The drift velocity and the diffusion coefficient are defined through functions v and D
of the electric field, which depend on the physical properties of the material used in
the SL; see [6] for more details. The special nature of the three-dimensional emitter
and collector layers (different from the essentially two-dimensional quantum wells that
form the SL) is considered in the calculation of the boundary tunneling current. By
using the transfer Hamiltonian formalism, the following approximate formulas can be
derived [4]:

J−N−1→−N = j(e)(F−N−1) − n−NW (b)(F−N−1)

�
,(2.5)

JN→N+1 =
nNW

(f)(FN )

�
.(2.6)

These equations involve the emitter current density ej(e), the emitter backward ve-
locity W (b), and the collector forward velocity W (f), which are given functions of the
electric field. All the coefficients v,D,W (b),W (f), j(e) are supposed to be nonnega-
tive and satisfy some regularity properties. Typical graphs for these functions can be
found in [5].

We remark that one equation is still missing since we have one more unknown
than we have equations. There are several ways to close the system. The simplest
way is to assume that the electric field at the emitter is prescribed as

F−N−1(t) = F−(t),(2.7)

the right-hand side being a given function F− : R
+ → R. This Dirichlet boundary

condition has been proposed when the number of periods considered in the SL is high
enough (infinite supperlattice). Therefore, this condition is well adapted to our work
since we shall deal with an asympotic problem where the number of cells goes to
infinity.

However, from a physical viewpoint, it is certainly more realistic to complete the
system by using the so-called voltage bias condition: the total voltage across the SL,

�

N∑
i=−N

Fi = V,(2.8)

remains equal to a given quantity V . In what follows we essentially deal with the
Dirichlet-like boundary condition (2.7) for the electric field. We will come back to the
voltage bias condition (2.8) at the end of the paper.

Relations (2.1), (2.2), and (2.7) form a closed system of equations for ni and Fi
with i ∈ {−N, . . . , N}, referred to in what follows as the DDD model. We remark
that the electric field in the cell #i can be expressed as a function of the incoming
field F− and the density in the previous cells as follows:

Fi(t) = F−(t) +
e

ε

i∑
j=−N

(nj(t) −Nw
D), i ∈ {−N, . . . , N} ∀t ∈ [0, T ].(2.9)

Consequently, we can rewrite the initial value problem associated to the DDD model
in terms of the densities

d�n

dt
= g(t, �n(t)) , �n(0) = �n0 ,(2.10)



1530 GOUDON, SÁNCHEZ, SOLER, AND BONILLA

where �n(t) = (n−N , . . . , nN )T ∈ R
2N+1, g : R

2N+1 → R
2N+1 is a smooth function,

and �n0 ∈ R
2N+1 is the initial condition.

Theorem 2.1. Let n0
i ≥ 0 for i ∈ {−N, . . . , N} be the initial data for the DDD

system. Let F− be a C1 function of time. Also let v,D,W (b,f), j(e) be C1 nonnegative
functions. Then, there exists a unique global solution associated with the initial value
problem (2.10). The solution verifies ni(t) ≥ 0 for all i ∈ {−N, . . . , N}, t ≥ 0.

Proof. Local existence and uniqueness follow by a direct application of the
Cauchy–Lipschitz theorem for ODE, since the function g inherits the regularity prop-
erties of the coefficients. The estimates proved in section 4, especially in Lemma 4.1,
also provide a uniform bound on the solution which prevents a finite time blowup.
Consequently, the solution is globally defined. There remains only to justify the
nonnegativeness of the solution. To this end, it is convenient to rewrite (2.2) as a
difference between a gain term and a loss term as follows:

dni
dt

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

v(Fi−1)
� ni−1 + D(Fi)

�2 ni+1 + D(Fi−1)
�2 ni−1 −

(
v(Fi)
� + D(Fi)

�2 + D(Fi−1)
�2

)
ni

for i ∈ {−N + 1, . . . , N − 1},
D(F−N )

�2 n−N+1 + j(e)(F−N−1)−
(
v(F−N )

� + D(F−N )
�2 + W (b)(F−N−1)

�

)
n−N

for i = −N,
v(FN−1)

� nN−1 + D(FN−1)
�2 nN−1 −

(
D(FN−1)

�2 + W (f)(FN )
�

)
nN

for i = N.

Let t ≥ 0 such that ni(t) ≥ 0 for any i ∈ {−N, . . . , N}. Suppose nj(t) = 0 for

some j ∈ {−N, . . . , N}. Thus, we notice that its time derivative
dnj

dt (t) is nonnegative
and, hence, we deduce the nonnegative character of the solution along the time evolu-
tion.

3. Dimensionless equations. The aim of this section is to write the system in
dimensionless form. Hence, we will identify some dimensionless physical parameters.
Next, we appropriately order these parameters in terms of a quantity h > 0 intended
to tend to 0. Studying the limit h→ 0 we obtain a nonlinear continuous drift-diffusion
model, as described in the introduction. This approach relating discrete to continuous
models is reminiscent of hydrodynamic limits in kinetic theory (see [9]). Actually, it
has been used for models of phase transition, for example, in [7].

Let us introduce time and length units, respectively, denoted by T and L. They
correspond to observation scales. We also need characteristic values for the electron
density and for the electric field, respectively, denoted by N and F . For instance, it
is quite natural to define N from the doping profile Nw

D and F from the emitter field
F−. Then, using the convention that overlined quantities are dimensionless, we set⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

N ni(t) = ni(T t), N ND = Nw
D ,

F Fi(t) = Fi(T t), F F−(t) = F−(T t),
L
T v(F ) = v(FF ),

L
T W (b,f)(F ) = W (b,f)(FF ),

L2

T D(F ) = D(FF ),
εF
e

1

T j(e)(F ) = j(e)(FF ).

Note that the emitter current density has been scaled with respect to the density
ε
eF instead of with respect to N (the other choice is also possible; the proof adapts
immediately and the emitter current density disappears as h → 0 in that case).
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Therefore, we are led to the continuity equations in the following dimensionless form:

dni
dt

=
L
�

(
v(F i−1)ni−1 − v(F i)ni − L

�
D(F i−1)(ni−1 − ni) +

L
�
D(F i)(ni − ni+1)

)
for i ∈ {−N + 1, . . . , N − 1} and

dn−N
dt

=
L
�

( �
L
εF
εN j

(e)
(F−N−1) − n−NW

(b)
(F−N−1)

−v(F−N )n−N − L
�
D(F−N )(n−N − n−N+1)

)
,

dnN
dt

=
L
�

(
v(FN−1)nN−1 +

L
�
D(FN−1)(nN−1 − nN ) − n−NW

(f)
(FN )

)
.

On the other hand, the Poisson equation reads

εF
eN (F i − F i−1) = (ni −ND)

for i ∈ {−N, . . . , N}.
In these expressions, we identify two dimensionless parameters

α =
εF
eN , β =

L
�
.

Roughly speaking, we go from the discrete equations to a continuous description by
interpreting the difference between consecutive cells as differential quotients. It means
that we shall consider the situation

α = β =
1

h
� 1,

where h is a positive quantity intended to tend to 0. (Actually, we might suppose,
with some obvious adaptations in the proofs, that α = 1

h � 1, and α
β has a finite

positive limit.) Coming back to the physical meaning, the ordering for β means that
the size of the cells is small compared to the observation length scale � � L, while
the ordering for α is an assumption about the data; the doping profile Nw

D is small
compared to the density ε

eF− associated with the electric field at the injecting contact

(N � ε
eF). Furthermore, we shall assume that the total length of the SL is given

and is equal to 2X, so that the number of cells in the SL also should be appropriately
rescaled. Namely, the number of cells is defined in terms of the parameter h > 0 by

Nh = X/h.

The limit performed in this paper is motivated by the comparison between the
profiles of the drift velocity and of the diffusion coefficient. Figure 3.1 shows these
profiles for a 9nm/4nm GaAs/AlAs SL at 5K, while the inset picture enlarges these co-
efficients in the low-field range. In this region the diffusion coefficient is larger than the
drift velocity, which is close to zero; i.e., v(F ) � D(F )/� holds. This implies that the
diffusion coefficient is large (order h−2) in comparison to the drift velocity (order h−1).
Accordingly, we call this asymptotic approach low-field limit. A continuum limit also
can be performed in a regime in which v(F ) ≈ D(F )/�; this high-field regime will be
investigated in a forthcoming work. A complementary interpretation of our asymp-
totic analysis can be given in terms of a parameter (the so-called Lorentzian half-
width) defining the Lorentzian functions involved in the expression of the coefficients
of the DDD model; see [4]. The smaller the Lorentzian half-width, the lower the field.

A stationary solution for the DDD model can be obtained in the low-field range
as shown by the dotted line in Figure 3.1 (right). In this experiment, we have applied
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Fig. 3.1. Left: Drift velocity versus diffusion coefficient for a 9nm/4nm GaAs/AlAs SL. Inset:
Detailed low-field range. Right: Electric field distribution for a stationary solution of 40 periods
9nm/4nm GaAs/AlAs SL (dots) and numerical approach to the continuum drift-diffusion model
(dashed line) with bias constraint V = 0.52 V.

voltage 0.52 V, Nw
D = 0.05 × 1011 cm−2 and contact doping ND = 0.2 × 1018 cm−3.

The Lorentzian half-width involved in the computation of the coefficients of the DDD
model is 1 eV and the other parameters are equal to those used in [5]. Thus, N = Nw

D ,
F ≈ 0.3 104 V/cm, v ≈ 0.001 103 cm/s, and D/� ≈ 0.076 103 cm/s. This leads to the
values α = 3.29 and β = 7.67; a sequence of values of the same order can be obtained
(low-field limit) by modifying V.

Let us summarize the low-field problem we are interested in as follows. We drop
the overlines and emphasize the dependence of the solution (n, F ) with respect to the
parameter h by a superscript. Hence, we consider the system

dnhi
dt

=
1

h
(Jhi−1→i − Jhi→i+1), i ∈ {−Nh, . . . , Nh},(3.1)

coupled to

Fhi − Fhi−1 = h(nhi −ND), i ∈ {−Nh, . . . , Nh},(3.2)

with Fh−Nh−1 = F− given. Note that, coming back to (2.9), we also have

Fhi (t) = F−(t) + h

i∑
j=−Nh

(nhj (t) −ND) , i ∈ {−Nh, . . . , Nh}.(3.3)

Here, we used the following definition for the tunneling currents:

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

Jhi→i+1 = nhi v
h
i − 1

h
D(Fhi )(nhi+1 − nhi ), i ∈ {−Nh, . . . , Nh − 1},

Jh−Nh−1→−Nh = j(e)(F−) − nh−NhW
(b)(F−),

JhNh→Nh+1 = nNhW (f)(FhNh).

The idea is to investigate the limit as h→ 0.
To this end, we set I = (−X,+X) = (−Nhh,Nhh) and we associate to the

unknowns (nh−Nh , . . . , n
h
Nh−1) ∈ R

2Nh

and (Fh−Nh , . . . , F
h
Nh−1) ∈ R

2Nh

, the stepwise
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constant functions nh(t, x) and Fh(t, x) defined almost everywhere on [0,∞) × I by
saying

nh(t, x) = nhi (t), Fh(t, x) = Fhi (t), ih < x < (i+ 1)h, i ∈ {−Nh, . . . , Nh − 1}.
Note that it is not relevant to define these functions on the negligible set of points
{ih, i ∈ {−Nh, . . . , Nh}}; note also that F−, nhNh , F

h
Nh

seem to play no role in these
definitions. However, they will be used in the definition of traces in the limit h → 0.
As a consequence of these definitions, we shall use that sums of nhi or Fhi can be
considered as integrals: for example, for any function ψ : R → R we have

∫ +X

−X
ψ(nh) dx = h

Nh−1∑
i=−Nh

ψ(nhi ) ,

because nhi is constant on ih < x < (i+ 1)h. Then, passing to a continuous variable,
it is tempting to interpret finite differences as differential quotients. Following this
rough idea, we formally guess that the limiting problem corresponding to h → 0
consists of the following nonlinear drift-diffusion equation:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tn+ ∂xJ(F, n) = 0 in (0, T ) × I,
J(F, n) = v(F )n−D(F )∂xn,
∂xF = n−ND in (0, T ) × I,
F (−X) = F− on (0, T ),
J(F, n)(X) = W (f)(F )n(X) on (0, T ),
J(F, n)(−X) = (j(e)(F ) −W (b)(F )n)(−X) on (0, T ),
n(t = 0, x) = n0(x) on I.

(3.4)

Thus, the main result of the paper is the following.
Theorem 3.1. Let v,D,W (b,f), j(e) : R → R be continuous and nonnegative

functions. Suppose that D(F ) > 0 and W (b,f)(F ) > 0 for any F ∈ R. Let F− ∈
C1(R+). Let nh,0 = (nh,0−Nh , . . . , n

h,0
Nh) ∈ R

2Nh+1 be the initial data for the rescaled

problem. We suppose that nh,0i ≥ 0 satisfy

sup
h>0

(
h

Nh∑
i=−Nh

|nh,0i |2
)

≤ C0 <∞.(3.5)

Let (nh, Fh) be the associated solution of (3.1), (3.2). Then, up to a subsequence, we
have {

nh → n strongly in L2((0, T ) × I) and in C0([0, T ]; L2(I) − weak),
Fh → F uniformly in [0, T ] × I.

Furthermore, the limits satisfy n ∈ L2(0, T ; H1(I)), F ∈ C0([0, T ] × I) and solve the
nonlinear problem (3.4) in the sense that

d

dt

∫ X

−X
nφdx =

∫ X

−X
J(F, n)φ′ dx+W (f)(F )nφ(X) + (j(e)(F ) −W (b)(F )n)φ(−X)

holds in D′(0, T ) for any test function φ ∈ C∞(I), coupled to the Poisson equation

∂xF = n−ND, F (−X) = F−
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also considered in the sense of the distributions.

This kind of nonlinear parabolic equation, coupled to the Poisson equation, has
been investigated by Liang [11]. Actually, in [11] the diffusion coefficient is constant
and the boundary conditions are slightly different. In the convergence proof, we need
only to assume the continuity of the coefficients; however, using locally Lipschitz
properties of the coefficients, we can prove the uniqueness of solution for (3.4); see
Appendix B. Consequently, assuming the convergence of the initial data, in Theo-
rem 3.1 the entire sequence converges.

A stationary solution (continuous line) for the continuous drift-diffusion model
(CDD) has been obtained in Figure 3.1 (right). The corresponding stationary solution
for the DDD model, with the same voltage, can be seen now as a numerical approach
to that of the CDD model with h ∈ [ 1

7.67 ,
1

3.29 ]. We can observe that the agreement
between the solutions to the discrete model and the continuous one is better at the
inner periods, where the low-field hypothesis plays a determinant role. The difference
between both profiles in the emitter region comes from the fact that the simulations
have been done under bias constraint.

4. A priori estimates. This section is devoted to the derivation of the crucial
estimates on the solutions (nh, Fh) that will lead us to rigorously perform the limit

h→ 0. We assume that the initial data nh,0i ≥ 0 satisfies (3.5). This implies that the
L1[−X,X]-norm is bounded as follows:

h

Nh∑
i=−Nh

nh,0i ≤
(
h

Nh∑
i=−Nh

|nh,0i |2
)1/2 √

(2Nh + 1)h

is bounded independently of h ∈ (0, 1). We recall that

⎧⎨
⎩

D,W (b,f), j(e), v ∈ C0(R),
v(F ) ≥ 0, j(e) ≥ 0,
W (b,f)(F ) > 0, D(F ) > 0.

(4.1)

We split our argument into several steps. We shall use the convention that CT stands
for a constant possibly depending on T and on the data F−, j(e),W (b,f), or on the
estimates (3.5), but not on h. Also, we denote as usual by M(I) the set of Radon
measures on the open interval I. Elements of M(I) identify with distributions Φ on I
satisfying |〈Φ, ϕ〉| ≤ C‖ϕ‖L∞(I) for all ϕ ∈ C∞

c (I) for some C > 0 being independent
of the support of the test function (see, e.g., [13]). As usual we denote by BV(I) the
set of bounded variation functions, i.e., functions which are in L1(I) and such that
their distributional derivative belongs to M(I).

Lemma 4.1 (L1 estimate on the density). The sequence nh is bounded in L∞(0, T ;
L1(I)).

Proof. Summing up the equations in (3.1), we obtain

h
d

dt

Nh∑
i=−Nh

nhi =

Nh∑
i=−Nh

(Jhi−1→i − Jhi→i+1) = Jh−Nh−1→−Nh − JhNh→Nh+1

= j(e)(F−) − nh−NhW
(b)(F−) − nhNhW

(f)(FhNh).
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Therefore, integrating with respect to time and using nhi ≥ 0 and W (b,f) ≥ 0, we find

h
Nh∑

i=−Nh

nhi (t) +

∫ t

0

nh−NhW
(b)(F−(s)) ds+

∫ t

0

nhNhW
(f)(FhNh)(s) ds

= h
Nh∑

i=−Nh

nh,0i +

∫ t

0

j(e)(F−(s)) ds ≤ C0 + ‖j(e)(F−)‖L1(0,T ) ≤ CT ,

(4.2)

which concludes the proof.

Lemma 4.2 (estimates on the electric field). The sequence Fh is bounded in
L∞((0, T ) × I) and in L∞(0, T ; BV(I)), while FhNh

is bounded in L∞(0, T ).

Proof. We combine the estimate in Lemma 4.1 with the identity (3.3) to yield

|Fhi (t)| =

∣∣∣∣∣F−(t) + h

i∑
j=−Nh

(nhj (t) −ND)

∣∣∣∣∣
≤ |F−(t)| + h

i∑
j=−Nh

nhj (t) + h(i+Nh + 1)ND

≤ |F−(t)| + h

Nh∑
j=−Nh

nhj (t) + (2X + h)ND ≤ CT ,

which proves that Fh is bounded in L∞((0, T )× I) and implies the estimate on FhNh .

Next, let φ ∈ C∞
0 (I) be a test function. We have

〈∂xFh, φ〉 = −
∫ X

−X
Fh(t, x)φ′(x) dx = −

Nh−1∑
i=−Nh

Fhi

∫ (i+1)h

ih

φ′(x) dx

=

Nh−1∑
i=−Nh

Fhi (φ(ih) − φ((i+ 1)h))

=

Nh∑
i=−Nh

(
(Fhi − Fhi−1) φ(ih)

)
+ Fh−Nh−1φ(−Nhh) − FhNhφ(Nhh)

= h

Nh∑
i=−Nh

(
(nhi −ND) φ(ih)

)
+ F−φ(−X) − FhNhφ(X),

where we have used (3.2). Hence, by using the above bounds we deduce that the
following estimate,

|〈∂xFh, φ〉| ≤ ‖φ‖L∞(I)

⎛
⎝h Nh∑

i=−Nh

nhi + (2X + h)ND

⎞
⎠ ≤ ‖φ‖L∞(I) CT ,

holds. This proves that ∂xF
h is bounded in L∞(0, T ;M(I)).
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Remark 4.3. Since the functions W (b,f) and D are continuous and positive in R,
the uniform bound on Fhi guarantees that

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

inf
h>0,i∈{−Nh,...,Nh},0≤t≤T

D(Fhi (t)) ≥ δ > 0,

inf
h>0,0≤t≤T

W (f)(FhNh(t)) ≥ δ > 0,

inf
0≤t≤T

W (b)(F−(t)) ≥ δ > 0

for some δ > 0. Coming back to (4.2), we deduce that the boundary terms n±Nh are
bounded in L1(0, T ). Similarly, there exists 0 < M <∞ such that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

sup
h>0,i∈{−Nh,...,Nh},0≤t≤T

|D(Fhi )| ≤M,

sup
h>0,i∈{−Nh,...,Nh},0≤t≤T

|v(Fhi )| ≤M,

sup
h>0,0≤t≤T

|W (f)(FhNh
)| ≤M,

sup
h>0,0≤t≤T

|W (b)(Fh−)| ≤M,

sup
0≤t≤T

|j(e)(F−)| ≤M.

Lemma 4.4 (L2 estimate on the density). The sequence nh is bounded in L∞(0, T ;
L2(I)). The “boundary terms” nh±Nh are bounded in L2(0, T ). Moreover, we have

∫ T

0

Nh−1∑
i=−Nh

|nhi+1 − nhi |2
h

ds ≤ CT .

Proof. Multiplying (3.1) by nhi and summing over i, we obtain

h

2

d

dt

Nh∑
i=−Nh

|nhi |2 =

Nh∑
i=−Nh

(Jhi−1→i − Jhi→i+1)n
h
i

=

Nh−1∑
i=−Nh

Jhi→i+1(n
h
i+1 − nhi ) + Jh−Nh−1→−Nhn

h
−Nh − JhNh→Nh+1n

h
Nh

=

Nh−1∑
i=−Nh

(
nhi v(F

h
i ) − 1

h
D(Fhi )(nhi+1 − nhi )

)
(nhi+1 − nhi )

+j(e)(F−)nh−Nh − |nh−Nh |2W (b)(F−) − |nNh |2W (f)(FhNh).
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By using Remark 4.3, we deduce the inequality

h

2

Nh∑
i=−Nh

|nhi (t)|2 + δ

∫ t

0

⎛
⎝ Nh−1∑
i=−Nh

|nhi+1 − nhi |2
h

+ |nh−Nh |2 + |nNh |2
⎞
⎠ ds

≤ h

2

Nh∑
i=−Nh

|nhi (0)|2 +M

∫ t

0

⎛
⎝ Nh−1∑
i=−Nh

nhi |nhi+1 − nhi | + nh−Nh

⎞
⎠ ds .

Now, by using the Young inequality we estimate

∫ t

0

Nh−1∑
i=−Nh

nhi |nhi+1 − nhi | ds ≤
2Mh

δ

∫ t

0

Nh∑
i=−Nh

|nhi |2 ds+
δ

2M

∫ t

0

Nh−1∑
i=−Nh

|nhi+1 − nhi |2
h

ds.

It follows that

h

2

Nh∑
i=−Nh

|nhi (t)|2 +
δ

2

∫ t

0

Nh−1∑
i=−Nh

|nhi+1 − nhi |2
h

ds+ δ

∫ t

0

(|nh−Nh |2 + |nNh |2) ds

≤ h

2

Nh∑
i=−Nh

|nhi (0)|2 +
2M2

δ

∫ t

0

⎛
⎝h Nh∑

i=−Nh

|nhi |2
⎞
⎠ ds+M

∫ t

0

nh−Nh ds.

We conclude the proof by applying the Gronwall inequality and by taking into account
that nh−Nh is bounded in L1(0, T ) (see Remark 4.3).

In order to study the limit in boundary terms we consider the next statement.

Lemma 4.5 (H1 estimate of the electric field at the boundary). The sequence
FhNh is bounded in H1(0, T ).

Proof. We have proved that FhNh is bounded in L∞(0, T ). There remains to
bound its time derivative in L2(0, T ). This is a consequence of (3.3) together with
the estimates in Lemma 4.2 and 4.4. Indeed, we get (see the argument given in
Lemma 4.1)

∣∣∣∣ ddtFhNh(t)

∣∣∣∣ =

∣∣∣∣∣∣
d

dt
F− +

d

dt

⎛
⎝h Nh∑

i=−Nh

(nhi −ND)

⎞
⎠
∣∣∣∣∣∣

=

∣∣∣∣ ddtF− + j(e)(F−) − nh−NhW
(b)(F−) − nhNhW

(f)(FhNh)

∣∣∣∣
≤

∥∥∥∥ ddtF−

∥∥∥∥
L∞(0,T )

+M(1 + nh−Nh + nhNh).

By Lemma 4.4 the right-hand side is bounded in L2(0, T ), which ends the proof.

Lemma 4.6 (BV estimate on the density). The sequence nh is bounded in
L2(0, T ; BV(I)).

Proof. Once the L2 estimate on nh is known, we derive some bounds for ∂xn
h.
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Consider φ ∈ C∞
0 (I). We have

|〈∂xnh, φ〉| =

∣∣∣∣∣−
∫ X

−X
nhφ′ dx

∣∣∣∣∣ =
∣∣∣∣∣∣−

Nh−1∑
i=−Nh

nhi

∫ (i+1)h

ih

φ′ dx

∣∣∣∣∣∣
=

∣∣∣∣∣∣−
Nh−1∑
i=−Nh

nhi (φ((i+ 1)h) − φ(ih))

∣∣∣∣∣∣
=

∣∣∣∣∣∣
Nh∑

i=−Nh+1

(nhi − nhi−1) φ(ih) + nh−Nhφ(−Nhh) − nhNhφ(Nhh)

∣∣∣∣∣∣
≤
⎛
⎝h Nh∑

i=−Nh+1

|φ(ih)|2
⎞
⎠

1/2⎛
⎝ 1

h

Nh∑
i=−Nh+1

|nhi − nhi−1|2
⎞
⎠

1/2

≤ ‖φ‖L∞(I) (2X)1/2

⎛
⎝ Nh−1∑
i=−Nh

|nhi+1 − nhi |2
h

⎞
⎠

1/2

.(4.3)

Lemma 4.4 implies that the L2(0, T )-norm of the right-hand side of (4.3) is bounded
uniformly with respect to h. Hence, we conclude that ∂xn

h is in L2(0, T ;M(I)).
Lemma 4.7 (estimate on the time derivative). The sequences ∂tn

h and ∂tF
h are

bounded in L2(0, T ;M(I)) + L2(0, T ; W−1,1(I)) and in L2(0, T ;M(I)), respectively.
Proof. Let φ ∈ C∞

0 (I) and denote

Γhi =

∫ (i+1)h

ih

φ(x) dx

for i ∈ {−Nh, . . . , Nh− 1}. Since the support of φ is included in I, we can extend Γhi
by 0 for i ≥ Nh. We shall use the following basic estimates:{ |Γhi | ≤ h ‖φ‖L∞(I),

|Γhi+1 − Γhi | ≤ h2 C‖φ′‖L∞(I).

Now we estimate the time derivative of the electric field by using the Ampère equations
(2.3). We have

〈∂tFh, φ〉 =

Nh−1∑
i=−Nh

d

dt
Fhi

∫ (i+1)h

ih

φ(x) dx

= Jh
Nh−1∑
i=−Nh

Γhi −
Nh−1∑
i=−Nh

Jhi→i+1Γ
h
i = I1 + I2,

(4.4)

where Jh(t) stands for the total current density, which is defined by the (−Nh− 1)th
Ampère equation,

Jh(t) =
d

dt
F− + Jh−Nh−1→−Nh =

d

dt
F− + j(e)(F−) −W (b)(F−)nh−Nh .
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By Lemma 4.4, this quantity is bounded in L2(0, T ). Therefore, the first term of the
right-hand side of (4.4) is bounded by

|I1| ≤ ‖ϕ‖L∞(I) 2hNh |Jh| = ‖ϕ‖L∞(I) 2X |Jh|,

which belongs to a bounded set in L2(0, T ). Next, I2 is estimated as follows:

|I2| ≤
∣∣∣∣∣∣
Nh−1∑
i=−Nh

nhi v(F
h
i ) Γhi

∣∣∣∣∣∣+
∣∣∣∣∣∣
Nh−1∑
i=−Nh

1

h
D(Fhi )(nhi − nhi+1) Γhi

∣∣∣∣∣∣
≤M ‖φ‖L∞(I) h

⎛
⎝ Nh−1∑
i=−Nh

nhi +

Nh−1∑
i=−Nh

|nhi − nhi+1|
h

⎞
⎠

≤M ‖φ‖L∞(I)

⎛
⎜⎝h Nh−1∑

i=−Nh

nhi +

√√√√√2hNh

Nh−1∑
i=−Nh

|nhi − nhi+1|2
h

⎞
⎟⎠ .

We conclude that ∂tF
h is bounded in L2(0, T ;M1(I)).

Similarly, we deal with the time derivative of nh. We have

|〈∂tnh, ϕ〉| =

∣∣∣∣∣∣
Nh−1∑
i=−Nh

dnhi
dt

∫ (i+1)h

ih

φ(x) dx

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1

h

Nh−1∑
i=−Nh

(Jhi−1→i − Jhi→i+1) Γhi

∣∣∣∣∣∣
=

1

h

∣∣∣∣∣∣
Nh−1∑
i=−Nh

Jhi→i+1 (Γhi+1 − Γhi ) + Jh−Nh−1→−NhΓh−Nh − JhNh−1→NhΓhNh

∣∣∣∣∣∣
≤ 1

h

∣∣∣∣∣∣
Nh−1∑
i=−Nh

v(Fhi )nhi (Γhi+1 − Γhi )

∣∣∣∣∣∣+
1

h2

∣∣∣∣∣∣
Nh−1∑
i=−Nh

D(Fhi )(nhi − nhi+1)(Γ
h
i+1 − Γhi )

∣∣∣∣∣∣
+

1

h
|j(e)(F−) − nh−NhW

(b)(F−)| |Γh−Nh |

≤ C h2 ‖φ′‖L∞(I)

⎛
⎝M
h

Nh−1∑
i=−Nh

nhi +
M

h2

Nh−1∑
i=−Nh

|nhi − nhi+1|
⎞
⎠

+h ‖φ‖L∞(I)
M

h
(1 + nh−Nh)

≤ C ‖φ′‖L∞(I)

⎛
⎜⎝h Nh−1∑

i=−Nh

nhi +

√√√√√2hNh

Nh−1∑
i=−Nh

|nhi − nhi+1|2
h

⎞
⎟⎠

+‖φ‖L∞(I) M(1 + nh−Nh) ,

which proves the estimate on ∂tn
h.

5. Continuous model. Let us combine the estimates discussed in the previous
section with the following classical compactness result (see, e.g., [2], [14]).
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Proposition 5.1. Consider Banach spaces B,X, and Y . We suppose that
X ⊂ B ⊂ Y , the first embedding being compact. Let C be a bounded set in Lp(0, T ;X),
1 ≤ p ≤ ∞. Assume that ∂tC = {∂tf, f ∈ C} is a bounded set in Lr(0, T ;Y ). Then,
C is relatively compact in Lp(0, T ;B) if 1 ≤ p < ∞ and r ≥ 1, or in C0([0, T ];B) if
p = ∞ and r > 1.

Hence, from the previous estimates we have, possibly at the cost of extracting
subsequences, that⎧⎪⎪⎨

⎪⎪⎩
nh → n strongly in L2((0, T ) × I) and in C0([0, T ];L2(I) − weak),

∂xn
h ⇀ ∂xn weakly−∗ in L2(0, T ;M(I)),

Fh → F strongly in C0([0, T ];Lp(I)) for any 1 ≤ p <∞,

(5.1)

as h goes to 0. Notice in particular that the convergence of traces in time makes sense
and

nh(t, x)|t=0 = nh,0(x) ⇀ n0(x) = n(t, x)|t=0 weakly in L2(I)

holds, with nh,0(x) = nhi for ih < x < (i+1)h, i ∈ {−Nh, . . . , Nh−1}. In other words,
we recover the initial condition in the limit h → 0. Finally, we can also guarantee
from Lemmas 4.4 and 4.5 the following properties:{

nh±Nh ⇀ n± weakly in L2(0, T ),

FhNh → F+ uniformly in C0([0, T ]).
(5.2)

We first get the continuous Poisson equation.
Proposition 5.2. The electric field limit F and the density limit n satisfy the

continuous Poisson equation

∂xF = n−ND, F|x=−X = F−

in a weak sense.
Remark 5.3. The Poisson relation with n ∈ L2((0, T )×I) implies, by the Sobolev

embedding, that F is in L2(0, T ; C0(I)) so that the traces of F are well defined.
Proof. Let φ ∈ C∞(I) and φhi = φ(ih) for i ∈ {−Nh, . . . , Nh}. We denote by

φh the associated stepwise constant function. For the sake of simplicity it will be

convenient to also introduce the stepwise constant function ∇h(φ)(x) =
φh
i+1−φh

i

h for
x ∈ (ih, (i+ 1)h). Multiplying (3.2) by φhi , we get

h

Nh∑
i=−Nh

Fhi − Fhi−1

h
φhi = h

Nh∑
i=−Nh

(nhi −ND) φhi

=

∫ X

−X
(nh −ND) φh dx+ h (nhNh −ND) φ(X)

= h

Nh−1∑
i=−Nh

Fhi
φhi − φhi+1

h
+ FhNhφ(X) − F−φ(−X)

= −
∫ X

−X
Fh ∇h(φ) dx+ FhNhφ(X) − F−φ(−X).
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Since ∇h(φ) converges uniformly to φ′(x) on I, we have

∫ X

−X
(nh −ND) φh dx→ −

∫ X

−X
F φ′(x) dx+ F+φ(X) − F−φ(−X)

as h→ 0.
We conclude that ∂xF = n − ND ∈ L2((0, T ) × I) and, by the Sobolev embed-

ding, F lies in L2(0, T ; C0(I)) and the traces of F are well defined and are given by
F (t,±X) = F±(t).

Let us now show that the limit n is more regular than nh is. In fact, we will
prove that n ∈ L2(0, T ; H1(I)), which guarantees that n ∈ L2(0, T ; C0(I)) due to the
Sobolev embedding, so that the traces of the limit n with respect to the space variable
are also well defined.

Proposition 5.4. The density limit n of nh belongs to L2(0, T ; H1(I)).
Proof. Let φ ∈ C∞

c (I). We have seen in the proof of Lemma 4.6 that the estimate

‖〈∂xnh, φ〉‖L2(0,T ) ≤ CT

⎛
⎝h Nh∑

i=−Nh+1

|φ(ih)|2
⎞
⎠

1/2

= CT ‖φh‖L2(I)

holds. We also readily check that φh tends to φ in L2(I). Hence, letting h→ 0 leads
to

‖〈∂xn, φ〉‖L2(0,T ) ≤ CT ‖φ‖L2(I).

By a density argument the estimate can be extended for any function φ ∈ L2(I). We
conclude that ∂xn ∈ L2((0, T ) × I).

Convergence properties stronger than (5.1) will be necessary due to the nonlinear
term. The idea is that the estimate in Lemma 4.4 is close to an L2(0, T ; H1(I))
estimate on nh. To this end we introduce the following P1 approximation: for x ∈
(ih, (i+ 1)h), i ∈ {−Nh, . . . , Nh − 1}, we set⎧⎪⎪⎨

⎪⎪⎩
mh(t, x) =

nhi+1 − nhi
h

(x− ih) + nhi ,

Gh(t, x) =
Fhi+1 − Fhi

h
(x− ih) + Fhi .

(5.3)

Then, the sequences (mh, Gh) are close to the original quantities (nh, Fh) and enjoy
better compactness properties as shown in the following lemma.

Lemma 5.5. The following estimates are verified:{ ‖nh −mh‖L2((0,T )×I) ≤ CT h,

‖Fh −Gh‖L∞((0,T )×I) ≤ CT
√
h.

Furthermore,
(
mh
)
h>0

is relatively compact in L2(0, T ; C0(I)) and
(
Gh
)
h>0

is rela-

tively compact in C0([0, T ] × I).
Proof. By taking into account the definition of the P1 approximations, we have

mh(t, x) − nh(t, x) =
nhi+1 − nhi

h
(x− ih)
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in the interval (ih, (i+ 1)h), i ∈ {−Nh, . . . , Nh − 1}. Hence, by using Lemma 4.4 we
get

‖mh − nh‖2
L2((0,T )×I) =

∫ T

0

Nh−1∑
i=−Nh

∣∣∣nhi+1 − nhi
h

∣∣∣2 ∫ (i+1)h

ih

(x− ih)2 dx ds

=
h2

3

∫ T

0

Nh−1∑
i=−Nh

|nhi+1 − nhi |2
h

ds ≤ CT h2 .

On the other hand, (3.2) yields

|Gh(t, x) − Fh(t, x)| =

∣∣∣∣∣F
h
i+1 − Fhi

h
(x− ih)

∣∣∣∣∣
= |nhi+1 −ND| (x− ih) ≤ |nhi+1 −ND| h

for x ∈ (ih, (i + 1)h), i ∈ {−Nh, . . . , Nh − 1}. Therefore, Lemma 4.4 allows us to
control this quantity as follows:

|Gh(t, x) − Fh(t, x)| ≤ √
h
√
h (nhi+1 +ND)

≤ √
h

((
h|nhi+1|2

)1/2

+
√
hND

)

≤ √
h

⎛
⎜⎝
⎛
⎝h Nh∑

j=−Nh

|nhj |2
⎞
⎠

1/2

+
√
hND

⎞
⎟⎠ ≤ CT

√
h.

This proves the first part of the result.
Note that mh and Gh are bounded in L2(0, T ; H1(I)) and L∞(0, T ; H1(I)), re-

spectively. Indeed, we have ∂xm
h = (nhi+1 − nhi )/h on (ih, (i + 1)h), and the bound

for ∂xm
h in L2 follows directly from Lemma 4.4. For the approximate electric field

we have ∂xG
h = (Fhi+1 − Fhi )/h = nhi+1 −ND, so that

‖∂xGh‖2
L2(I) =

Nh∑
i=−Nh

|nhi+1 −ND|2
∫ (i+1)h

ih

dx ≤ 2

Nh∑
i=−Nh

(
|nhi+1|2 +N2

D

)
h

≤ 2

⎛
⎝h Nh∑

i=−Nh

|nhi+1|2 + (2X + h)N2
D

⎞
⎠ ≤ CT .

Hence, to justify the compactness properties there remains to obtain some estimates
on the time derivatives. We check that (see Appendix A)

∂t(G
h − Fh) is bounded in L2(0, T ;M(I)),

∂t(m
h − nh) is bounded in L2(0, T ;M(I)) + L2(0, T ; W−1,1(I)).

(5.4)

Then, combining this information with Lemma 4.7, we deduce the asserted compact-
ness by application of Proposition 5.1.

As a consequence of the compactness property, and by identifying limits, we can
assure that ⎧⎪⎨

⎪⎩
Gh → F uniformly on [0, T ] × I,

mh → n strongly in L2(0, T ;C0(I)),

∂xm
h ⇀ ∂xn weakly in L2((0, T ) × I).

(5.5)
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Since Gh is
√
h-close to Fh in the L∞-norm, we can improve the convergence in (5.1).

Actually, we have

Fh → F uniformly on [0, T ] × I.(5.6)

Notice also in (5.5) that the traces are well defined and the following convergences{
mh(±X) = nh±Nh → n(±X) = n± strongly in L2(0, T ),

Gh(±X) = Fh±Nh → F (±X) = F± strongly in L2(0, T ),

hold. In particular, the traces of n at ±X can be identified with the limits n±,
respectively, which were defined in (5.2).

In order to pass to the limit in the equation, we write a discrete weak formulation.
Let φ ∈ C∞(I). We denote φhi = φ(ih), and φh stands for the associated piecewise
constant approximation. Then, we get

h

Nh∑
i=−Nh

d

dt
nhi φ

h
i =

Nh∑
i=−Nh

(Jhi−1→i − Jhi→i+1) φ
h
i

=

Nh−1∑
i=−Nh

Jhi→i+1 (φhi+1 − φhi ) − JhNh→Nh+1φ
h
Nh + Jh−Nh−1→−Nhφ

h
−Nh

=

Nh−1∑
i=−Nh

v(Fhi )nhi (φhi+1 − φhi ) −
Nh−1∑
i=−Nh

D(Fhi )
1

h
(nhi+1 − nhi ) (φhi+1 − φhi )

−W (f)(FhNh)nhNhφ
h
Nh + (j(e)(F−) −W (b)(F−)nh−Nh)φh−Nh .

(5.7)

Let us rewrite the discrete sums as integrals as follows:

d

dt

∫ X

−X
nh φh dx+ h

d

dt
nhNh φ(X)

=

∫ X

−X
v(Fh)nh ∇hφdx−

∫ X

−X
D(Fh)∂xm

h ∇hφdx

−W (f)(FhNh)nhNhφ(X) + (j(e)(F−) −W (b)(F−)nh−Nh)φ(−X),

(5.8)

following the notation ∇hφ(x) = (φhi+1 − φhi )/h, for x ∈ (ih, (i + 1)h). We can now
pass to the limit h→ 0.

We check that φh → φ and ∇hφ → φ′ uniformly on I. Let us pass to the limit
in each term of (5.8). Taking into account that nh → n in C0([0, T ]; L2(I) − weak),

we have
∫X
−X n

hφh dx → ∫X
−X nφdx in C0([0, T ]). Since nhNh is bounded in L2(0, T ),

the second term in the left-hand side of (5.8) vanishes as h→ 0 in D′(0, T ). Next, by
using (5.6), v(Fh)∇hφ → v(F )φ′ and D(Fh)∇hφ → D(F )φ′ uniformly on [0, T ] × I.
To do that we combine the strong convergence nh → n and the weak convergence
∂xm

h → ∂xn in L2((0, T )×I) so that the integrals in the right-hand side of (5.8) tend
to ∫ X

X

v(F )n φ′, dx−
∫ X

X

D(F )∂xn φ
′ dx

as h → 0 in D′(0, T ). Finally, for the boundary terms we combine the convergence
properties in (5.2) to find as the limit as h→ 0 the expression

−W (f)(F )nφ(X) +
(
j(e)(F ) −W (b)(F )n

)
φ(−X) .
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Therefore, letting h→ 0 in (5.8), we have

d

dt

∫ X

X

n φ, dx =

∫ X

X

v(F )n φ′, dx−
∫ X

X

D(F )∂xnφ
′ dx

+W (f)(F )nφ(X) +
(
j(e)(F ) −W (b)(F )n

)
φ(−X)

in D′(0, T ). This ends the proof of Theorem 3.1.

Remark 5.6. The proof adapts readily if instead of assuming a constant doping
density ND, we deal with a sequence {Nh

D,i, i ∈ {−Nh, . . . , Nh}} verifying

h

Nh∑
i=−Nh

|Nh
D,i|2 <∞.

Accordingly, we obtain in the continuous limit a (possibly nonconstant) L2(−X,X)
doping density.

6. The bias constraint. In this section we reconsider the bias condition (2.8)
as an alternative to the prescription of the emitter electric field (2.7). The arguments
are exactly those of the previous section and we point out only the main differences
in the proof. In rescaled form the condition is

h
Nh∑

i=−Nh

Fhi = V,(6.1)

which is added to the system (3.1), (3.2). This scaling means that the ratio LF
V

has order 1, V being a characteristic value for the total voltage. Of course, the L1

estimate in Lemma 4.1 still holds, provided that j(e) is a bounded function. Then,
the key point in the previous analysis is to establish a uniform estimate (with respect
to h) on the electric field Fh−Nh−1.

Lemma 6.1. The quantity Fh−Nh−1 is bounded in L∞((0, T )).

Proof. Let us sum the relations (3.3). We get

h

Nh∑
i=−Nh

Fhi = V = h

Nh∑
i=−Nh

⎛
⎝Fh−Nh−1 + h

i∑
j=−Nh

(nhj −ND)

⎞
⎠

= (2Nh + 1)h Fh−Nh−1 + h2

Nh∑
j=−Nh

⎛
⎝(nhj −ND)

Nh∑
i=j

1

⎞
⎠

= (2Nh + 1)h Fh−Nh−1 + h2

Nh∑
j=−Nh

(nhj −ND)(Nh − j + 1).

Consequently, the electric field at the emitter is given by

Fh−Nh−1 =
V

(2Nh + 1)h
− h

2Nh + 1

Nh∑
j=−Nh

(nhj −ND)(Nh − j + 1).(6.2)
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It follows that

|Fh−Nh−1| ≤ |V |
(2Nh + 1)h

+
h2

(2Nh + 1)h

Nh∑
j=−Nh

|nhj −ND| |Nh − j + 1|

≤ |V |
2X

+
h

(2Nh + 1)h

⎛
⎝h Nh∑

j=−Nh

nhj + (2Nh + 1)hND

⎞
⎠ (2Nh + 1)

≤ |V |
2X

+ h

Nh∑
j=−Nh

nhj + (2X + h)ND.

This leads to the estimate of Fh−Nh−1 in L∞((0, T )).
Once we have this estimate, we can justify the bounds in Lemmas 4.2 and 4.4.

We also need some control on the time derivative of Fh−Nh−1.

Lemma 6.2. The quantity Fh−Nh−1 is bounded in H1((0, T )).
Proof. Differentiating (6.2), we find

d

dt
Fh−Nh−1 =

h

2Nh + 1

Nh∑
i=−Nh

⎛
⎝ i∑
j=−Nh

d

dt
nhj

⎞
⎠

=
1

2Nh + 1

Nh∑
i=−Nh

⎛
⎝ i∑
j=−Nh

(Jhj−1→j − Jhj→j+1)

⎞
⎠

=
1

2Nh + 1

Nh∑
i=−Nh

(Jh−Nh−1→−Nh − Jhi→i+1)

= Jh−Nh−1→−Nh − 1

2Nh + 1
JNh→Nh+1

+
1

2Nh + 1

Nh−1∑
i=−Nh

(
v(Fhi )nhi −D(Fhi )

nhi+1 − nhi
h

)
.

Using the bounds of Lemmas 6.1 and 4.2, we can bound v(Fhi ), D(Fhi ), j(e)(Fh−Nh−1),

W (b)(Fh−Nh−1), and W (f)(FhNh) by some constant 0 < M < ∞. Hence, we deduce
that ∣∣∣ d

dt
Fh−Nh−1

∣∣∣ ≤ M(1 + nh−Nh + nhNh)

+
M

(2Nh + 1)h

⎛
⎝h Nh∑

i=−Nh

nhi +

Nh∑
i=−Nh

|nhi+1 − nhi |
⎞
⎠

≤ M(1 + nh−Nh + nhNh) +
M

2X
h

Nh∑
i=−Nh

nhi

+
M√
2X

⎛
⎝ Nh∑
i=−Nh

|nhi+1 − nhi |2
h

⎞
⎠

1/2

.

We conclude by applying the estimates of Lemma 4.4.
By using these estimates, we can reproduce mutatis mutandis the arguments of

the previous section. We conclude with the following result.



1546 GOUDON, SÁNCHEZ, SOLER, AND BONILLA

Theorem 6.3. Assume that j(e) is a bounded function. Then, the conclusions
of Theorem 3.1 are still valid by replacing the condition (2.7) by (6.1). Accordingly,
in the limit problem the electric field satisfies the Poisson equation ∂xF = n − ND
coupled to the constraint

∫X
−X F dx = V.

Appendix A. Proof of (5.4). We write mh = νh + nh, Gh = Φh + Fh. Recall
that νh,Φh are defined on (0, T ) × (ih, (i+ 1)h), i ∈ {−Nh, . . . , Nh − 1}, by

νh(t, x) =
1

h
(nhi+1 − nhi ), Φh(t, x) =

1

h
(Fhi+1 − Fhi ) = nhi+1 −ND ,

where we have used (3.2) in the second relation. As in the proof of Lemma 4.7, we

consider a test function φ ∈ C∞
0 (I) and set Γhi =

∫ (i+1)h

ih
(x−ih)φ(x) dx, which verifies

|Γhi | ≤ ‖φ‖L∞(I)h
2/2. We have

〈∂tΦh, φ〉 =

Nh−1∑
i=−Nh

dnhi+1

dt

∫
ih

(i+ 1)h(x− ih)φ(x) dx

=
Nh−1∑
i=−Nh

1

h
(Jhi→i+1 − Jhi+1→i+2) Γhi

=

Nh−1∑
i=−Nh

Jhi→i+1

1

h
(Γhi − Γhi−1) −

1

h
JhNh→Nh+1Γ

h
Nh−1 .

We can bound this expression as follows:

|〈∂tΦh, φ〉| ≤ ‖φ‖L∞(I)h

⎛
⎝ Nh−1∑

i=−Nh

∣∣∣∣v(Fhi )nhi +
1

h
D(Fhi )(nhi+1 − nhi )

∣∣∣∣
⎞
⎠

+‖φ‖L∞(I)h |W (f)(FhNh)nhNh |

≤ ‖φ‖L∞(I) M

⎛
⎜⎝h Nh−1∑

i=−Nh

nhi +

⎛
⎝ Nh−1∑
i=−Nh

|nhi+1 − nhi |2
h

⎞
⎠

1/2

√
2X + nhNh

⎞
⎟⎠ .

Thus, from Lemma 4.4 we deduce that ∂tΦ
h is bounded in L2(0, T ;M(I)).

We proceed with νh in a similar way. Indeed, we can write

〈∂tνh, φ〉 =
1

h

Nh−1∑
i=−Nh

(
dnhi+1

dt
− dnhi

dt

) ∫
ih

(i+ 1)h(x− ih)φ(x) dx

=
1

h2

Nh−1∑
i=−Nh

(−Jhi+1→i+2 + 2Jhi→i+1 − Jhi−1→i) Γhi

=
1

h2

Nh−1∑
i=−Nh

Jhi→i+1 (−Γhi+1 + 2Γhi − Γhi−1)

− 1

h2
JhNh→Nh+1Γ

h
Nh−1 −

1

h2
Jh−Nh−1→−NhΓh−Nh .

(A.1)
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The boundary terms in (A.1) are bounded by

M(1 + nh−Nh + nhNh)‖φ‖L∞(I),

which belongs to a bounded set of L2(0, T ). Next, we have the bound

1

h2
| − Γhi+1 + 2Γhi − Γhi−1| ≤ C‖φ′‖L∞(I) h.

Therefore, the sum in the right-hand side of (A.1) can be estimated by

C‖φ′‖L∞(I) h

Nh−1∑
i=−Nh

|Jhi→i+1| ≤ CM‖φ′‖L∞(I)

⎛
⎝h Nh−1∑

i=−Nh

nhi

+

⎛
⎝ Nh−1∑
i=−Nh

|nhi+1 − nhi |2
h

⎞
⎠

1/2

√
2X

⎞
⎟⎠ ,

as we did in the previous proof for Φh. We conclude that ∂tν
h is bounded in

L2(0, T ;M(I)) + L2(0, T ; W−1,1(I)). This ends the proof of (5.4).

Appendix B. Uniqueness for the limit problem. In this section, we show
the uniqueness of the solution of (3.4). Let us consider two solutions (n1, F1) and
(n2, F2) of (3.4) with ni ∈ C0([0, T ]; L2(I)) ∩ L2(0, T ; H1(I)). For the difference, we
have

∂t(n1−n2) + ∂xJ(F1, n1−n2) + ∂x

(
(v(F1)−v(F2))n2 − (D(F1)−D(F2))∂xn2

)
= 0,

where J(F, n) = v(F )n−D(F )∂xn. The boundary conditions read⎧⎨
⎩

J(F1, n1 − n2)(X) = W (f)(F1)(n1 − n2) + (W (f)(F1) −W (f)(F2))n2,
J(F1, n1 − n2)(X) = j(e)(F1) − j(e)(F2) −W (b)(F1)(n1 − n2)

−(W (b)(F1) −W (b)(F2))n2.

Thus, we are left with only the task of evaluating

d

dt

∫ X

−X

|n1 − n2|2
2

dx+

∫ X

−X
D(F1)|∂x(n1 − n2)|2 dx

=

∫ X

−X
v(F1)(n1 − n2)∂x(n1 − n2) dx+

∫ X

−X
(v(F1) − v(F2))n2∂x(n1 − n2) dx

−
∫ X

−X
(D(F1) −D(F2))∂xn2∂x(n1 − n2) dx(B.1)

+J(F1, n1 − n2)(n1 − n2)(−X) − J(F1, n1 − n2)(n1 − n2)(X).

Denote by A,B,C,D, and E the five terms in the right-hand side of (B.1). Recall
that Fi belongs to L∞, so that the coefficients are lying in a bounded set. Also denote
by Λ a Lipschitz constant for the functions v,D, j(e) and W (b,f) in the range of values
of F1 and F2. Let ν > 0 be a parameter to be specified later on. By using the
Cauchy–Schwarz and Young inequalities, we can estimate

|A| ≤ Cν

∫ X

−X
|n1 − n2|2 dx+ ν

∫ X

−X
|∂x(n1 − n2)|2 dx.
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Next, we have

|B| ≤ Λ‖F1 − F2‖L∞(I)

∫ X

−X
|n2| |∂x(n1 − n2)| dx

≤ CνΛ
2

∫ X

−X
|n2|2 dx ‖F1 − F2‖2

L∞(I) + ν

∫ X

−X
|∂x(n1 − n2)|2 dx.

The Poisson equations yield to

(F1 − F2)(t, x) = F−,1 − F−,2 +

∫ x

−X
(n1 − n2)(t, y) dy,

which provides the bound

‖F1 − F2‖2
L∞(I) ≤ 2|F−,1 − F−,2|2 + 4X

∫ X

−X
|n1 − n2|2 dx.

Hence, we get (changing the value of Cν)

|B| ≤ Cν

∫ X

−X
|n2|2 dx

(
|F−,1 − F−,2|2 +

∫ X

−X
|n1 − n2|2 dx

)
+ ν

∫ X

−X
|∂x(n1 − n2)|2 dx.

A similar reasoning for C leads to

|C| ≤ Cν

∫ X

−X
|∂xn2|2dx

(
|F−,1 − F−,2|2 +

∫ X

−X
|n1 − n2|2dx

)
+ν

∫ X

−X
|∂x(n1 − n2)|2dx.

For the boundary terms, we get rid of the terms −W (b,f)(F1)|n1 − n2|2 which are
nonnegative and get

D + E ≤ Λ
(
(1 + n2) |F1 − F2| |n1 − n2|(−X) + n2 |F1 − F2| |n1 − n2|(+X)

)
.

Then, we use the Sobolev embedding to control the traces of n1−n2 with the H1-norm.
Finally, we obtain

D + E ≤ Cν(1 + |n2(−X)|2 + |n2(X)|2)
(
|F−,1 − F−,2|2 +

∫ X

−X
|n1 − n2|2

)

+ν

(∫ X

−X
|n1 − n2|2 dx+

∫ X

−X
|∂x(n1 − n2)|2 dx

)
.

Having disposed of these preliminaries, we recall that D(F1) is bounded from below by
some δ > 0. Then, we put all the pieces together and choose ν = ν(δ) appropriately
so that we finally find

d

dt

∫ X

−X
|n1 − n2|2 dx+

δ

2

∫ X

−X
|∂x(n1 − n2)|2 dx

≤ f(t)

∫ X

−X
|n1 − n2|2 dx+ g(t)|F−,1 − F−,2|2,
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where the nonnegative functions f, g ∈ L1(0, T ) depend on Λ, δ and
∫X
−X(n2

2 +

|∂xn2|2) dx. The Gronwall lemma provides the inequality

∫ X

−X
|n1 − n2|2(t, x) dx

≤ e

∫ t

0
f(s) ds

(∫ X

−X
|n1 − n2|2(0, x) dx+

∫ t

0

g(s)|F−,1 − F−,2|2(s) ds
)
.

This proves the continuity of the solution with respect to the data and, consequently,
the uniqueness of the solution. We skip the adaptation of the proof to the bias
condition.
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Abstract. Image registration methods may be designed as solutions of minimization problems on
a set of geometric deformations. In the nonrigid case, solving these problems often means computing
the steady state of a system of evolution equations involving the “gradient” of the error criterion,
defined from the Euler–Lagrange equations of the corresponding minimization problem. The well-
posedness of the registration method requires showing the existence of a solution to the minimization
problem, as well as that of a stable solution of the evolution equations derived from it. We provide
such proofs in the case where the error criterion is derived from two different statistical similarity
measures: global mutual information and local cross-covariance. We also describe our numerical
implementation for solving the corresponding evolution equations and show examples of registrations
of real 2D and 3D images achieved with these algorithms. The proofs are quite general and can be
applied to most of the known nonrigid image registration methods.

Key words. multimodal image matching, variational methods, image registration, mutual in-
formation, cross-covariance, Euler–Lagrange equations, initial-value problems, analytical semigroups
of linear operators

AMS subject classifications. 34G20, 35B65, 35D10, 35K55, 35K90, 35Q80, 47D03, 47D06,
47H06, 47H07, 47J35, 47N60
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1. Introduction. The problem of estimating the geometric deformation between
two images has a long history. Most of the existing methods have been developed for
images acquired with the same sensor or at least the same modality (e.g., in the
visible spectrum). They often rely on the minimization of an error criterion which
takes into account two sources of a priori knowledge: (a) the properties of the images’
intensities that characterize their similarity and (b) the constraints on the possible
geometric deformations.

For the first point, the basic idea is that the intensities at corresponding points
should be “similar,” i.e., equal as in the case of the optical flow problem [28]. This is,
of course, too strict a requirement in many cases, and it has been relaxed to an average
intensity similarity in the neighborhoods of the corresponding points, as in the case
of local image differences [29] or more general block matching strategies [51, 41]. One
more step and one can characterize similarity as a large score of a nonlocal similarity
measure such as the cross-correlation [20, 21, 11, 39], the correlation ratio [49], or
mutual information [55, 58, 56, 32], among several others [59, 26, 45, 31].

As for the second point, the possible geometric deformations, a first idea is
to restrict the search to sets of low-dimensional parametric transformations (e.g.,
Euclidean, affine, quadratic, or spline-interpolation between a set of control points
[36, 50]). Another example of a constrained deformation is the stereo case, in which
knowledge of the fundamental matrix allows one to restrict the search for the matching
point along the epipolar line [1, 60]. If the deformation is not defined parametrically,
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the constraint may consist of requiring some smoothness of the displacement field,
possibly preserving discontinuities [53, 1, 47, 2, 34, 35, 4, 3, 18]. Concerning this
regularization, we can distinguish the approaches based on explicit smoothing of the
field, as in Thirion’s deamons algorithm [53] (we refer to [44] for a variational in-
terpretation of this algorithm), from those considering an additive term in the error
criterion, yielding (possibly anisotropic) diffusion terms [5, 57]. For a comparison of
these two approaches, we refer to the work of Cachier and Ayache [9, 10]. Approaches
relying on a regularization functional induce a certain amount of competition between
the similarity of the images and the smoothness of the deformation. Fluid methods
do not impose this competition, although they still require a parameter that fixes the
amount of desired smoothness or fluidness of the result [13, 54, 12].

Many of the previous methods are “differential” and are mostly valid for small
displacements. Special techniques are required in order to recover large deformations.
For instance, Alvarez, Weickert, and Sánchez [2] use a scale-space focusing strategy.
Christensen, Miller, and Vannier [13] adopt a different approach. They look for a
continuously invertible mapping which is obtained by the composition of small dis-
placements. Each small displacement is calculated as the solution of an elliptic partial
differential equation describing the nonlinear kinematics of fluid-elastic materials un-
der deforming forces given by the matching term (in their case the image differences).
Trouvé [54] has generalized this approach using Lie group ideas on sets of diffeomor-
phisms. Under a similar formalism, a very general framework which also allows for
changes in the intensity values is proposed by Miller and Younes [37].

In the case of multimodal image registration (e.g., visible and infrared, anatom-
ical and functional magnetic resonance images, etc.) the similarity in the intensities
is “weak” and one has to rely on statistical definitions. Such definitions have been
widely used in the case of low-dimensional parametric transformations. Mutual in-
formation was introduced by Viola and colleagues [55, 58, 56] and independently by
Maes et al. [32]. The correlation ratio was first proposed as a similarity measure for
image matching by Roche et al. [49]. Other statistical approaches rely on learning
the joint distribution of intensities, as done, for instance, by Leventon and Grim-
son [31]. Extensions to more complex (nonrigid) transformations using statistical
similarity measures include approaches relying on more complex parametric trans-
formations [36, 50], block matching strategies [33, 24, 22], and parametric intensity
corrections [48]. Some recent approaches rely on the computation of the gradient of
the local cross correlation [11, 39].

Several papers have discussed the theoretical well-posedness of similar registra-
tion problems in the monomodal case as, for instance, [27, 14]. However, none of
those treating the multimodal case has dealt significantly with the problem of the
existence and uniqueness of a solution of the registration problem. Our work is an
attempt to improve this situation. We consider the problem of multimodal image
registration and use statistical considerations to define similarity. In order to be able
to deal with strongly nonstationary variations in the intensity we extend the usual
statistical framework to act locally instead of globally in the images. Since most of the
geometric deformations that occur in practice are nonparametric, we model them as
dense deformation fields that are constrained to belong to some reasonable functional
spaces, e.g., Sobolev spaces. We then classically define the problem as a variational
one and show that it is well posed.

In detail, we consider the problem of dense matching between two images using
statistical dissimilarity criteria, which are well adapted to the case of multimodal im-



1552 O. FAUGERAS AND G. HERMOSILLO

age data often encountered, e.g., in medical imaging. The minimization of the sum
of the dissimilarity term and the regularization term defines, through the associated
Euler–Lagrange equations, a set of coupled functional evolution equations. The con-
ditions under which this type of evolution equation is well posed are known. We show
that the matching functions that we obtain satisfy these conditions in the case where
the error functional is derived from two different statistical similarity measures: global
mutual information and local cross-covariance.

1.1. A generic registration problem. At a conceptual level, images are inte-
grable real bounded functions defined on R

n (we restrict ourselves to n = 2, 3). These
abstract images are not directly observable because of the physics of acquisition. What
we call an image is the convolution of such a function with a C∞ mollifier. We there-
fore view the images as belonging to the space of infinitely differentiable functions,
C∞(Rn). They are bounded and Lipschitz continuous, as well as all their derivatives.
These assumptions are not central to this article and can be greatly weakened. The
reader will verify that the first image is required only to be C2 while the second is
required to be C1 with a Lipschitz continuous first order derivative. This asymmetry
is due to the fact that the two images do not play the same role in the registration
problem. Weaker conditions may be possible but we have not investigated this specific
problem. The range of the values of an image is the interval [0,A], A > 0.

Let I1 and I2 be two images. Let Id be the identity mapping of R
n and h : Ω → R

n

a given vector field defined on a bounded and regular region of interest Ω ⊂ R
n. By

regular we mean C2. This technical assumption is required in the proofs of Lemma 2.3
and Proposition 2.4. Images are usually defined on a product of intervals. Ω is in
practice chosen as a C2 superset of this set (e.g., a disk). The image values are
smoothly extended outside the product of intervals to reach the value of 0 on the
boundary ∂Ω of Ω. The registration or matching problem may be defined as that
of finding a vector field h∗ minimizing an error criterion between I1 and the warped
image I2 ◦ (Id + h).

The search for this function is done within a set F of admissible functions such
that it minimizes an energy functional I : F → R of the form

I(h) = J (h) + R(h).

The term J (h) is designed to measure the “dissimilarity” between the reference image
(I1) and the h-warped second image (I2(Id + h)). The term R(h) is designed to
penalize fast variations of the function h. It is a regularization term introducing an a
priori preference for smoothly varying functions.

Generally speaking, the set F is a dense linear subspace of a Hilbert space H,
the scalar product of which is denoted by (·, ·)H . If I is sufficiently regular, its first
variation1 at h ∈ F in the direction of k ∈ H is defined by (see, e.g., [15])

δkI(h) = lim
ε→0

I(h + εk) − I(h)

ε
.(1.1)

If the mapping k → δkI(h) is linear and continuous, the Riesz representation theo-
rem [19] guarantees the existence of a unique vector, denoted by ∇HI(h), and called
the gradient of I, which satisfies the equality

δkI(h) = (∇HI(h),k)H

1Also called the Gâteaux derivative.
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for every k ∈ H. The gradient depends on the choice of the scalar product (·, ·)H
though, a fact which explains our notation. If a minimizer h∗ of I exists, then the
set of equations δkI(h∗) = 0 must hold for every k ∈ H, which is equivalent to
∇HI(h∗) = 0. These equations are called the Euler–Lagrange equations associated
with the energy functional I. They give necessary conditions for the existence of a
minimizer, but they are not sufficient since they guarantee only the existence of a
critical point of the functional I. These critical points can be found in many ways,
including methods for nonlinear equations. Rather than solving them directly, the
search for a minimizer of I is done using a “gradient descent” strategy. Given an
initial estimate h0 ∈ F , a time-dependent differentiable function (also denoted by h)
from the interval [0,+∞[ into H is computed as the solution of the following initial
value problem: ⎧⎨

⎩
dh

dt
= −
(
∇HJ (h) + ∇HR(h)

)
,

h(0)(·) = h0(·).
(1.2)

The asymptotic state (i.e., when t→ ∞) of h(t) is then chosen as the solution of the
matching problem, provided that h(t) ∈ F ∀t > 0. We shall restrict ourselves to the
case when ∇HR is an unbounded linear operator from its domain into H, whereas
∇HJ may be a nonlinear function mapping H into H.

There are two (mostly theoretical) advantages in introducing the artificial time
variable. The first is that, as shown in Theorem 1.2, we are able to prove the well-
posedness of the initial value problem (1.2). The second is that, as shown in Propo-
sition 2.5, we are able to prove that the asymptotic state of the solution of (1.2) is
indeed a zero of the Euler–Lagrange equations and, in effect, a local minimum of I.
The third advantage is practical: our experiments (see section 6) have shown that
when we discretize (1.2) we converge toward a local minimum at a reasonable speed.

1.2. Existence of a classical solution of (1.2). Equation (1.2) may be viewed
as a first order ordinary differential equation with values in H. By borrowing tools
from functional analysis and the theory of semigroups generated by unbounded linear
operators on Hilbert spaces, we can prove the existence of a unique classical solution
of (1.2) under fairly general hypotheses. We refer to the books of Brezis [7], Pazy
[43], and Tanabe [52] for an in-depth study of these subjects. Because of our choice
of the regularization term R (described in section 2), it turns out that the mapping
A : h → −∇HR(h) is linear from its domain, a subset D(A) ofH, intoH. Similarly, we
denote by F the (nonlinear) mapping defined by h → −∇HJ . F is called the matching
function of the registration problem. The unknown of the initial-value problem (1.2)
is an H-valued function h : [0,+∞[ → H defined on R

+. We now establish the
properties required for A and F in order for (1.2), which is now written as a semilinear
abstract initial value problem of the form⎧⎨

⎩
dh

dt
−Ah(t) = F (h(t)), t > 0,

h(0) = h0 ∈ H,

(1.3)

to have a unique solution.
We first recall the following definition.
Definition 1.1. A function h : [0,+∞[ → H is a classical solution of (1.3) if

h ∈ C([0,+∞[;H) ∩ C1(]0,+∞[;H) ∩ C(]0,+∞[;D(A))
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and (1.3) is satisfied for t > 0.
As a consequence of known results we have the following.
Theorem 1.2. If in (1.3) the linear operator −A is strongly elliptic, invertible2

and the nonlinear function F is bounded and Lipschitz continuous, then there exists
a unique classical solution of (1.3). Moreover, the function t → dh/dt from ]0,+∞[
into Hα (defined in the proof) is Hölder continuous.

Proof. We use the notion of an analytical semigroup of operators on H defined,
e.g., in [52, 43]. Theorem 3.6.1 in [52] or Theorem 2.7 in Chapter 7 of [43] show
that if the operator −A is strongly elliptic, then A generates an analytical semigroup
SA(t), t ≥ 0, on H. It follows from [43, Chapter 2, section 2.6], that (−A)α can
be defined for 0 < α ≤ 1 and that (−A)α is a closed linear invertible operator with
domain D((−A)α) dense in H. It is invertible because −A is. The closedness of
(−A)α implies that D((−A)α) endowed with the graph norm of (−A)α, i.e., the norm
‖|h|‖ = ‖h‖H + ‖(−A)αh‖H , is a Banach space. Since (−A)α is invertible, its graph
norm is equivalent to the norm ‖h‖α = ‖(−A)αh‖H . Thus, D((−A)α) equipped
with the norm ‖ · ‖α is a Banach space, which we denote by Hα. The space Hα is
continuously embedded in H for all α’s, which implies

‖h‖H ≤ kα‖h‖Hα
∀h ∈ Hα,

for some kα > 0. Theorems 3.1 and 3.3 of [43] allow us to conclude.
The remainder of the paper is divided into five additional sections. Section 2

discusses the regularization part of the initial-value problem (1.3). Section 3 is de-
voted to the definition of the two statistical dissimilarity measures we have considered
and to the computations of the associated Euler–Lagrange equations. Section 4 con-
tains the proofs of the Lipschitz continuity of the corresponding matching functions.
Finally, sections 5 and 6 describe the implementation of the matching algorithms
and present experimental results with real two- and three-dimensional (2D and 3D)
images, respectively.

2. Regularization term. This section studies the regularization part of the
initial-value problem (1.2), i.e., the term ∇HR(h). A one-parameter family of regu-
larization operators is considered which encourages the preservation of edges of the
displacement field along the edges of the reference image. In view of the results of
the previous section, we choose concrete functional spaces F and H and specify the
domain of the regularization operators. We then show that these operators satisfy
the properties of A which are sufficient to assert the existence of a classical solution
of (1.2) according to the main result of the previous section.

2.1. Function spaces and boundary conditions. We begin with a brief de-
scription of the functional spaces that will be appropriate for our purposes. In doing
this, we will make reference to Sobolev spaces, denoted by W k,p(Ω). We refer to the
books of Evans [19] and Brezis [7] for formal definitions and in-depth studies of the
properties of these functional spaces.

For the definition of ∇HI, we use the Hilbert space

H = L2(Ω) = L2(Ω) × · · · × L2(Ω)︸ ︷︷ ︸
n terms

= (W 0,2(Ω))
n
.

2The invertibility of A is not required, as discussed in, e.g., [43, p. 195], but it makes the proofs
simpler.
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The regularization functionals that we consider are of the form

R(h) = κ

∫
Ω

ϕ(Dh(x)) dx,(2.1)

where Dh(x) is the Jacobian of h at x, ϕ is a quadratic form of the elements of
the matrix Dh(x), and κ > 0. Therefore the set of admissible functions F will be
contained in the space

H1(Ω) = (W 1,2(Ω))
n
.

Additionally, the boundary conditions for h will be specified in F . We consider
Dirichlet conditions of the form h = 0 almost everywhere on ∂Ω (in fact, because
of the regularity of h, proved in Proposition 2.4, this condition holds everywhere on
∂Ω), and set

F = H1
0(Ω) = (W 1,2

0 (Ω))
n
.

Because of the special form of R(h), the corresponding regularization operator is a
second order differential one, and we therefore will need the space

H2(Ω) = (W 2,2(Ω))
n

for the definition of its domain.

2.2. Image-driven anisotropic diffusion. The family that we consider is ob-
tained by defining ϕ in (2.1) by

ϕ(Dh) =
1

2
Tr
(
Dh TI1 DhT

)
,(2.2)

where TI1 is an n× n symmetric matrix defined at every point of Ω by the following
expression:

Tf =
(λ+ |∇f |2)Id −∇f∇fT

(n− 1)|∇f |2 + nλ
for f : R

n → R, regular.

This matrix is a regularized projector in the plane perpendicular to ∇f . It was first
proposed by Nagel and Enkelmann [38] for computing optical flow while preserving
the discontinuities of the deforming template. As pointed out by Alvarez, Weickert,
and Sánchez [2], applying the smoothness constraint to the reference image (here I1)
instead of the deforming one (here I2) allows us to avoid artifacts which appear when
recovering large displacements. The matrix Tf has one eigenvector equal to ∇f , while
the remaining eigenvectors span the plane perpendicular to ∇f . The eigenvalues λi
of this matrix are all positive and verify

∑
i λi = 1, independently of ∇f .

It is straightforward to verify that the Euler–Lagrange equation corresponding to
(2.1) in this case is

div(Dϕ(Dh)) =

⎛
⎜⎝

div(TI1∇h1)
...

div(TI1∇hn)

⎞
⎟⎠ = 0.

Thus, the regularization operator ∇HR(h) yields a linear diffusion term with TI1 as
diffusion tensor. In regions where ∇hi is small compared to the parameter λ in TI1 ,
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the diffusion tensor is almost isotropic and so is the regularization. At the edges of f ,
where |∇I1| � λ, the diffusion takes place mainly along these edges. This operator is
thus well suited for encouraging large variations of h along the edges of the reference
image I1.

We define the corresponding regularization operator as follows.
Definition 2.1. The linear operator A : D(A) → H is defined as

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

D(A) = H1
0(Ω) ∩ H2(Ω),

Ah =

⎛
⎜⎝

div(TI1∇h1)
...

div(TI1∇hn)

⎞
⎟⎠ .

We now check that −A is strongly elliptic (or, in functional analytic language, is
variational) by applying the standard variational approach [19].

Proposition 2.2. The operator −A defines a bilinear form B on the space
H1

0(Ω) which is continuous and coercive (strongly elliptic).
Proof. The proof is quite standard, and we only sketch it here.
Because of the form of the operator A, it is sufficient to work on one of the

coordinates, to consider the operator a : D(a) → L2(Ω) defined by

a u = div(TI1∇u),

and to show that the operator u→ −au defines a bilinear form b on the space H1
0 (Ω)

which is continuous and coercive. Continuity is obtained from the fact that the
coefficients of TI1 are bounded by integrating by parts the expression of b(u, v) and
applying the Cauchy–Schwarz inequality. Coercivity is obtained from the fact that
the eigenvalues of TI1 are strictly positive and by using Poincaré’s inequality.

Lemma 2.3. The linear operator −κA is invertible for all κ > 0.
Proof. It is sufficient to show that the equation −κAh = f has a unique solution

for all f ∈ L2(Ω). The proof of Proposition 2.2 shows that the bilinear form associated
with the operator −κA is continuous and coercive in H1(Ω); hence the Lax–Milgram
theorem tells us that the equation −κAh = f has a unique weak solution in H1

0(Ω)
for all f ∈ L2(Ω). Since Ω is regular (i.e., C2), the weak solution is in H1

0(Ω)∩H2(Ω)
and is a strong solution.

2.3. Existence of a regular solution of (1.2). Now that the domain of the
regularization operator is defined, we give a stronger result concerning the existence
of a solution of (1.2): because the domain of A is defined in terms of Sobolev spaces,
a classical solution of the abstract problem corresponds in fact to the notion of weak
solution in PDE theory. The existence of a regular solution in this context may be
shown, assuming regularity of the boundary ∂Ω of Ω. In effect we have the following
result.

Proposition 2.4. The functions (t,x) → h(t,x) and (t,x) → (∂/∂t)h(t,x) are
continuous on ]0,+∞[×Ω, and for each t > 0 the function x → h(t,x) is in C2(Ω).

Proof. It follows from a theorem due to Sobolev that H2(Ω) ⊂ C(Ω) for n = 2, 3;
hence D(A) ⊂ H2(Ω) ⊂ C(Ω) and, since h(t) ∈ D(A) for t > 0, this proves the
continuity of h on ]0,+∞[×Ω. Next, because of Theorem 1.2, t → dh/dt ∈ Hα is
Hölder continuous for t > 0. Moreover, a theorem due to Sobolev, which can be
found, e.g., in Theorem 8.4.3 of [43], shows that if α > 3/4 (n = 3) and α > 1/2
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(n = 2), Hα is a set of Hölder continuous functions, and we have the continuity of
dh/dt on ]0,+∞[×Ω.

It remains to show that h(t, ·) ∈ C2(Ω). First the function x → F (h(x)) from
Ω → R

n is Hölder continuous if h is (this is proved in Propositions 4.12 and 4.22).
Since h(t) ∈ H2(Ω) for t > 0 and (Sobolev) H2(Ω) ⊂ Cγ(Ω) (0 ≤ γ < 0.5 for n = 3
and 0 ≤ γ < 1 for n = 2), x → h(t,x) is Hölder continuous for t > 0. Finally, since
(∂/∂t)h(t, .) is Hölder continuous in Ω, it follows that −Ah = F (h)−dh/dt is Hölder
continuous in Ω, and by a classical regularity theorem for elliptic equations [16, 23], it
follows that h(t, ·) ∈ C2+δ(Ω) for some δ > 0, i.e., has second order Hölder continuous
derivatives in the space variable and is thus a regular solution.

2.4. Existence of minimizers. Having defined the regularization functional,
we discuss in this section the existence of minimizers of the global energy functional

I(h) = J (h) + κ

∫
Ω

ϕ(Dh(x)) dx.(2.3)

We assume that J (h) is continuous in h and bounded below. These properties are
shown for the statistical dissimilarity functionals J (h) that we study in Proposi-
tion 3.1 and Theorem 4.18. In this case, a classical result (see, e.g., Chapter 8, Theo-
rem 2, in [19]) shows that a minimizer exists if ϕ is convex and coercive. We readily
check that ϕ given in (2.2) satisfies these hypotheses. As pointed out in [2], because
of the smoothness of ∂iI1, TI1 has strictly positive eigenvalues and therefore, clearly,
the mapping ϕ : X ∈ R

n → XTI1X
T ∈ R

+ is convex. Then the functional R(h) =∫
Ω
ϕ(Dh(x)) dx satisfies the coercivity inequality, i.e., there exist c1 > 0, c2 ≥ 0 such

that ϕ(Dh(x)) ≥ c1|Dh|2 − c2, since we have ∇uTTI1∇u ≥ θ|∇u|2 for all x ∈ Ω,
where θ > 0 is the smallest eigenvalue of TI1 in Ω.

2.5. Existence of a limiting steady state solution. Theorem 1.2 proves the
existence of a solution of the initial-value problem (1.2) or (1.3). Proposition 2.4 gives
some regularity properties of this solution. We also have to show that it satisfies the
Euler–Lagrange equation in the limit. In order to see this, we introduce the function
L : R

+ → R defined by

L(t) = I(h(t)).(2.4)

The properties of L relevant to our goal are stated in the following.
Proposition 2.5. The function L is bounded below and differentiable. Its deriva-

tive is given by

dL

dt
= −
∥∥∥∥dh(t)

dt

∥∥∥∥
2

H

and hence is continuous.
Proof. The boundedness of L follows from Proposition 3.1 in the mutual informa-

tion case and from Theorem 4.18 in the local cross-covariance case. In order to prove
differentiability we consider

L(t+ ε) − L(t)

ε
=

I(h(t+ ε)) − I(h(t))

ε
.(2.5)

We then use the first order Taylor expansion with integral remainder of the C1 function
h,

h(t+ ε) = h(t) + ε

∫ 1

0

dh

dt
(t+ ζε)dζ,(2.6)
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and replace h(t+ε) by the right-hand side of the previous equation on the right-hand
side of (2.5). We denote by k(t, ε) the integral on the right-hand side of (2.6) and
obtain

L(t+ ε) − L(t)

ε
=

I(h(t) + εk(t, ε)) − I(h(t))

ε
.(2.7)

In the proof of Proposition 2.4 we have shown the continuity of dh/dt on ]0,+∞[×Ω;
hence on [t, t + ε] × Ω, t > 0. This shows that k(t, ε) ∈ C(Ω), t > 0. In fact, (2.5),
Theorem 1.2, and Proposition 2.4 show that k(t, ε) ∈ C2(Ω) ∩ D(A).

We would now like to take the limit of both sides when ε → 0. Because of the
similarity of the right-hand side of (2.7) with (1.1), we define

δ̃kI(h(t)) = lim
ε→0

I(h(t) + εk(t, ε)) − I(h(t))

ε
.(2.8)

The difference is that the function k here also depends upon ε, unlike in (1.1). We
prove that this limit is well defined and equal to δk(t,0)I(h(t)).

First we show that limε→0 k(t, ε) = k(t, 0) almost everywhere in Ω. Indeed,

‖k(t, ε) − k(t, 0)‖H ≤
∫ 1

0

∥∥∥∥dhdt (t+ ζε) − dh

dt
(t)

∥∥∥∥
H

dζ

≤ kα

∫ 1

0

∥∥∥∥dhdt (t+ ζε) − dh

dt
(t)

∥∥∥∥
Hα

dζ

for some α, 0 < α ≤ 1 (Theorem 1.2); kα is defined in the proof of the same theorem.
Because of the same theorem, the function t→ dh/dt from ]0,+∞[ into Hα is Hölder
continuous, say with exponent γ > 0. This proves that∫ 1

0

∥∥∥∥dhdt (t+ ζε) − dh

dt
(t)

∥∥∥∥
Hα

dζ ≤ Cεγ ,

where C is independent of ε and the convergence in H follows. Since H = L2(Ω)
and k(t, ε) is continuous in Ω, the L2 convergence implies the convergence almost
everywhere.

The proof that δ̃kI(h(t)) = δk(t,0)I(h(t)) follows from this result, the computa-
tions done in sections 3.1.2 and 3.2, the fact that k(t, ε) converges almost everywhere
toward k(t, 0), and the fact that each coordinate of k(t, ε) is bounded and hence in-
tegrable. The last two points guarantee that such integrals as

∫
Ω

k(t, ε)(x) · ∇I2(x+
h(t, x)) dx converge toward

∫
Ω

k(t, 0)(x) · ∇I2(x + h(t, x)) dx by applying the domi-
nated convergence theorem.

The boundedness of k(t, ε) follows from its continuity on the compact set Ω.
The continuity of dL/dt follows from the continuity of dh/dt (Theorem 1.2) and

the continuity of the norm in H.
We have therefore proved that our criterion I decreases along the “trajectory”

h(t), solution of the initial-value problem (1.3). In order to prove that the solution
asymptotically satisfies the Euler–Lagrange equations, we prove the following claim.

Proposition 2.6. If ‖dh(t)/dt‖H is bounded on ]0,+∞[, the limit when t→ +∞
of the derivative dL/dt of the function L(t) defined by (2.4) is equal to 0.

Proof. We assume the converse and prove a contradiction. We assume that dL/dt
does not go to zero when t goes to infinity. Therefore there exists ε > 0 such that for
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all T > 0 there exists t > T such that dL(t)/dt < −ε. We can therefore construct an
infinite, strictly increasing, sequence {tn}, n ≥ 0, tn > 0, such that dL(tn)/dt < −ε.
Let us assume that there exists η(tn) > 0 such that dL(tn + η(tn))/dt = −ε/2 and
dL(t)/dt < −ε/2 for all tn ≤ t < tn + η(tn). If there is no such tn, we are done;
otherwise we choose tn+1 > tn+η(tn). We prove that η(tn) is bounded below. Indeed
we write

ε/2 ≤
∣∣∣∣dL(tn + η(tn))

dt
− dL(tn)

dt

∣∣∣∣ =
∣∣∣∣∣
∥∥∥∥dhdt (tn + η(tn))

∥∥∥∥
2

H

−
∥∥∥∥dhdt (tn)

∥∥∥∥
2

H

∣∣∣∣∣
=

(∥∥∥∥dhdt (tn + η(tn))

∥∥∥∥
H

+

∥∥∥∥dhdt (tn)

∥∥∥∥
H

) ∣∣∣∣
∥∥∥∥dhdt (tn + η(tn))

∥∥∥∥
H

−
∥∥∥∥dhdt (tn)

∥∥∥∥
H

∣∣∣∣ .
Let A be an upper bound on ‖dh(t)/dt‖H ; then the rightmost term in the above
equation is less than or equal to

2A

∥∥∥∥dhdt (tn + η(tn)) − dh

dt
(tn))

∥∥∥∥
H

.

According to Theorem 1.2,∥∥∥∥dhdt (tn + η(tn)) − dh

dt
(tn))

∥∥∥∥
H

≤ kα

∥∥∥∥dhdt (tn + η(tn)) − dh

dt
(tn))

∥∥∥∥
Hα

≤ kα(η(tn))
γ ,

and therefore

η(tn) ≥
(

ε

4Akα

)1/γ

.

Consider now the sequence of intervals [tn, tn + η(tn)]. On each such interval we have
dL/dt ≤ −ε/2, and therefore

L(tn + η(tn)) ≤ L(tn) − η(tn)
ε

2
≤ L(tn) − ε

2

(
ε

4Akα

)1/γ

.

This contradicts the fact that L(t) is bounded below; hence we have

lim
t→+∞

dL

dt
= 0.

This result shows that, asymptotically, dL/dt = 0, therefore dh(t)/dt = 0, and
hence the solution of the initial-value problem (1.2) satisfies the Euler–Lagrange equa-
tions associated with the energy functional I.

3. Statistical similarity measures and their Euler–Lagrange equations.
Our approach to matching multimodal images relies on regarding the intensity values
of two different modalities as samples of two random processes. Within this proba-
bilistic framework, the link between the two modalities is characterized by their joint
probability density function (pdf). In this section, we compute the variational gra-
dient of two statistical dissimilarity functionals. Among many possible criteria, the
cross-covariance and the mutual information provide us with a convenient trade-off be-
tween robustness and generality. To be able to evaluate these criteria for a given field
h, we consider a nonparametric Parzen estimator [42] for the joint pdf as described
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below. This estimator can be either global, assuming that the unknown relationship
between the intensity values does not vary spatially, or local. We give only one exam-
ple of each case because they are the ones we found to work best in our applications.
However, the method and the proofs are quite generic. More examples can be found
in [25]. We denote by X the random variable associated with the intensity values of
I1 and by Yh that associated with the values of I2(Id + h). For conciseness, we will
use the notation i = (i1, i2) and Ih(x) = (I1(x), I2(x + h(x))).

3.1. Global mutual information. Our estimator is based on a one-dimensional
(1D) normalized Gaussian kernel of variance β,

gβ(i) =
1√
2πβ

exp

(−i2
2β

)
,

from which we construct Gβ(i) = gβ(i1) gβ(i2):

P (i,h) =
1

|Ω|
∫

Ω

Gβ(Ih(x) − i) dx.

Note that for each pair of intensities i ∈ R
2 the value of the estimated joint pdf is a

nonlinear functional of h. Also note that it is strictly positive. Its first variation is
obtained by applying (1.1):

P (i,h + εk) − P (i,h)

ε

=
1

ε|Ω|
∫

Ω

gβ(I1(x) − i1) (gβ(I2(x + h(x) + εk(x)) − i2) − gβ(I2(x + h(x)) − i2)) dx.

We use the first order Taylor expansion with integral remainder of the C1 function
gβ for the second factor within the integral:

P (i,h + εk) − P (i,h)

ε

=
1

|Ω|
∫

Ω

[
gβ(I1(x) − i1)

I2(x + h(x) + εk(x)) − I2(x + h(x))

ε

×
∫ 1

0

g′β(I2(x + h(x)) − i2 + ζ(I2(x + h(x) + εk(x)) − I2(x + h(x)))) dζ

]
dx.

Taking the limit when ε→ 0, we obtain

δkP (i,h) =
1

|Ω|
∫

Ω

∂2Gβ(Ih(x) − i)∇I2(x + h(x)) · k(x) dx,(3.1)

where ∂2 indicates the first order partial derivative with respect to the second variable.
Using this estimate, we first consider the maximization of mutual information, a

concept which is borrowed from information theory. Given two random variables X
and Y , their mutual information is defined as

MI(X,Y ) = H(X) + H(Y ) −H(X,Y ) ,

where H stands for the differential entropy. The mutual information is positive and
symmetric and measures how the intensity distributions of two images fail to be
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independent. It can be defined in terms of the joint pdf P and its marginals p(i1) =∫
R
P (i,h) di2 and p(i2,h) =

∫
R
P (i,h) di1. These last two functions are also strictly

positive. The following short notation will be useful:

EMI(i,h) = − log
P (i,h)

p(i1) p(i2,h)
.(3.2)

The dissimilarity functional based on mutual information is then defined as the ex-
pected value of the function EMI:

JMI(h) = −MI(X,Yh) =

∫
R2

P (i,h) EMI(i,h) di.

3.1.1. Continuity of JMI(h). Recall that the existence of minimizers for I(h)
was discussed by assuming the continuity and boundedness of J (h).

Proposition 3.1. Let hn, n = 1, . . . ,∞, be a sequence of functions of H such
that hn → h almost everywhere in Ω. Then JMI(hn) → JMI(h). Moreover, |JMI(h)|
is bounded.

Proof. Because I2 and gβ are continuous, Gβ(Ihn(x)− i) → Gβ(Ih(x)− i) almost
everyone in Ω for all i. Since Gβ(Ihn(x) − i) ≤ gβ(0)2, the dominated convergence
theorem implies that P (i,hn) → P (i,h) for all i ∈ R

2. A similar reasoning shows
that p(i2,hn) → p(i2,h) for all i2 ∈ R. Hence, the logarithm being continuous, and
p(i1), P (i,hn), P (i,h), p(i2,hn), and p(i2,h) being > 0,

P (i,hn) log
P (i,hn)

p(i1)p(i2,hn)
→ P (i,h) log

P (i,h)

p(i1)p(i2,h)
∀i ∈ R

2.

We next consider three cases to find an upper bound for P (i,hn)
∣∣ log P (i,hn)

p(i1)p(i2,hn)

∣∣.
We detail only the first one: i2 ≤ 0 This is the case where

0 ≤ |i2| ≤ |i2 − I2(x + hn(x))| ≤ |i2 −A| n ≥ 1.

Hence

gβ(i2 −A) ≤ gβ(i2 − I2(x + hn(x))) ≤ gβ(i2) n ≥ 1.

This yields

gβ(i2 −A)

gβ(i2)
≤ P (i,hn)

p(i1)p(i2,hn)
≤ gβ(i2)

gβ(i2 −A)

and ∣∣∣∣log
P (i,hn)

p(i1)p(i2,hn)

∣∣∣∣ ≤ log
gβ(i2)

gβ(i2 −A)
,

and therefore

P (i,hn)

∣∣∣∣log
P (i,hn)

p(i1)p(i2,hn)

∣∣∣∣ ≤ gβ(i2)p(i1) log
gβ(i2)

gβ(i2 −A)
.

The function on the right-hand side is continuous and integrable in R×] −∞,A].
The next two cases, 0 ≤ i2 ≤ A and i2 ≥ A, are left to the reader. Combining

the three cases, the dominated convergence theorem implies that

JMI(hn) = −
∫

R2

P (i,hn) log
P (i,hn)

p(i1)p(i2,hn)
di → JMI(h) = −

∫
R2

Ph(i) log
Ph(i)

p(i1)ph(i2)
di.

The proof also shows that |JMI(h)| is bounded.
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3.1.2. Euler–Lagrange equation. We do an explicit computation of the first
variation of JMI by applying (1.1). First we obtain

δkE
MI(i,h) = −δkP (i,h)

P (i,h)
+
δkp(i2,h)

p(i2,h)
.

We then write

δkJMI(h) =

∫
R2

[δkP (i,h) EMI(i,h) + P (i,h) δk E
MI(i,h)] di

=

∫
R2

[
(EMI(i,h) − 1) δkP (i,h) +

P (i,h)

p(i2,h)
δkp(i2,h)

]
di.

Using the fact that∫
R2

P (i,h)

p(i2,h)
δkp(i2,h) di =

∫
R

δkp(i2,h) di2 = 0,

this yields

δkJMI(h) =

∫
R2

(EMI(i,h) − 1) δkP (i,h) di.

We then apply (3.1) to obtain

δkJMI(h) =
1

|Ω|
∫

R2

∫
Ω

(EMI(i,h) − 1) ∂2Gβ(Ih(x) − i)∇I2(x + h(x)) · k(x) dx di.

A convolution with respect to the intensity variable i appears in this expression. It
commutes with the derivative ∂2 with respect to the second intensity variable i2, and
therefore

δkJMI(h) =
1

|Ω|
∫

Ω

(Gβ � ∂2E
MI)
(
Ih(x),h

)∇I2(x + h(x)) · k(x) dx.

To simplify notation, we denote by LMI the function 1
|Ω|∂2E

MI. We then define the

function fMI : R
2 ×H → R:

fMI(i,h) = Gβ � LMI(i,h).(3.3)

It is easily verified that

LMI(i,h) = − 1

|Ω|
(
∂2 P

P
(i,h) − p′

p
(i2,h)

)
=

1

β
(r(i2,h) −R(i,h)),(3.4)

where

r(i2,h) =
1

p(i2,h)

1

β|Ω|
∫

Ω

I2(x + h(x)) gβ(I2(x + h(x)) − i2) dx,(3.5)

R(i,h) =
1

P (i,h)

1

β|Ω|
∫

Ω

I2(x + h(x)) Gβ(Ih(x) − i) dx.(3.6)
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Fig. 1. Effect on P (i,h) of minimizing JMI(h) with respect to h: the two images on the right
show the estimated joint pdf between the two images on the left before and after optimization. Notice
that the joint pdf has been clustered, but the final shape of its support remains nonfunctional.

Since I2(x + h(x)) ∈ [0, A] for all h ∈ H and for all x ∈ Ω, we have

0 ≤ r(i2,h), R(i,h) ≤ A
β

∀h ∈ H.(3.7)

For each h ∈ H, the mapping k → δkJMI(h) is clearly linear. To show that it is
continuous it is sufficient, according to Schwarz inequality, to show that the function
x → fMI(Ih(x),h)∇I2(x + h(x)) is bounded, and this is a consequence of Theo-
rem 4.11. The variational gradient ∇HJMI(h) of JMI can therefore be defined, and its
expression is given by

∇HJMI(h)(x) = fMI

(
Ih(x),h

) ∇I2(x + h(x)).

The function LMI plays the role of an intensity comparison function. Its first term
∂2P (i,h)/P (i,h) tends to cluster the joint pdf, while the term −p′(i2,h)/p(i2,h) tries
to prevent the marginal law p(i2,h) from becoming too clustered; i.e., it keeps the
intensities of I2(Id + h) as unpredictable as possible. For an example of the effect
on P (i,h) of minimizing JMI(h) with respect to h, see Figure 1. The reader will
notice that the resulting joint pdf is more localized than the original one but that
the minimization has not imposed a strong functional relation of the type i1 = f(i2),
unlike the method described in the next section.

According to the notation introduced in section 1.2, we define FMI : H → H by

FMI(h)(x) = −fMI

(
Ih(x),h

) ∇I2(x + h(x)).(3.8)

3.2. Local cross-covariance. An interesting generalization is to make the prob-
ability density estimator local, since it allows one to take into account nonstationarities
in the relation between intensities. To do this, we build an estimate in the neighbor-
hood of each point x0 in Ω. This is achieved by weighting our previous estimate with
a normalized spatial Gaussian of variance γ:

Gγ(x) =
1

2πγ
e−

|x|2
2γ .

This means that to each point x0 of Ω we associate a joint pdf defined by

P (i,h,x0) =
1

Gγ(x0)

∫
Ω

Gβ(Ih(x) − i)Gγ(x − x0) dx,

where Gγ(x0) =
∫
Ω
Gγ(x − x0) dx. This new pdf is along the line of the ideas

discussed in [30], except that we consider a bidimensional local histogram at each
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Table 3.1

Definitions of the local mean µ1 and variance v1 of X, the local mean µ2 and variance v2 of
Yh, and the local correlation v1,2 of X and Yh.

µ1(x) =
∫

R
i1 p(i1,x) di1 v1(x) =

∫
R
i21 p(i1,x) di1 − µ2

1(x)

µ2(h,x) =
∫

R
i2 p(i2,h,x) di2 v2(h,x) =

∫
R
i22 p(i2,h,x) di2 − µ2(h,x)2

v1,2(h,x) =
∫

R2 i1 i2 P (i,h,x) di − µ1(x) µ2(h,x)

point. Its marginals are now given by p(i1,x) =
∫

R
P (i,h,x) di2 and p(i2,h,x) =∫

R
P (i,h,x) di1. Using these local estimates, we consider the case of the cross-

covariance, which has been widely used as a robust comparison function for image
matching. Within recent energy-minimization approaches relying on the computa-
tion of its gradient, we can mention, for instance, the works of Faugeras and Keriven
[21], Cachier and Pennec [11], and Netsch et al. [39]. The cross-covariance, being a
measure of the affine dependency between the intensities, is more constraining than
the mutual information. A dissimilarity functional is obtained as a function of the
quantities defined in Table 3.1 by averaging the local cross-covariance

JCC(h) =

∫
Ω

JCC(h,x) dx = −
∫

Ω

v1,2(h,x)2

v1(x) v2(h,x)
dx.

The minus sign simply reflects the fact that we want to minimize the dissimilarity.
The continuity and boundedness of this criterion (needed for proving the existence
of a minimizer) are a consequence of Theorem 4.18. In a way similar to the case of
the mutual information, its first order variation is well defined and defines a gradient
given by

∇HJCC(h)(x) = fCC

(
Ih(x),h,x

) ∇I2(x + h(x)),

where

fCC(i,h,x) = Gγ � Gβ � LCC(i,h,x),

LCC(i,h,x) =
1

Gγ(x)
∂2E

CC(i,h,x),

and

ECC(i,h,x) = − 1

v1(x) v2(h,x)

(
2 v 1,2(h,x) i2 (i1 − µ1(x))

+ JCC(h,x) v1(x) i2 (i2 − 2µ2(h,x))
)
.

Hence

LCC(i,h,x) = − 2

Gγ(x)

(
v1,2(h,x)

v2(h,x)

(
i1 − µ1(x)

v1(x)

)
+ JCC(h,x)

(
i2 − µ2(h,x)

v2(h,x)

))
.

(3.9)
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Notice that LCC is an affine function of i, and therefore

Gβ � LCC(i,h,x) = LCC(i,h,x).

Thus

fCC(i,h,x) = Gγ � LCC(i,h,x)

= −Gγ � 2

Gγ(x)

(
v1,2(h,x)

v2(h,x)

(
i1 − µ1(x)

v1(x)

)
+ JCC(h,x)

(
i2 − µ2(h,x)

v2(h,x)

))
.

As in the mutual information case, the function LCC compares intensities in the
two images. It shows that minimizing JCC with respect to the field h amounts to
attempting to make the pair of intensities at corresponding pixels lie on a straight
line in R

2.
According to the notation introduced in section 1.1, we define FCC : H → H by

FCC(h)(x) = −fCC(Ih(x),h,x)∇I2(x + h(x)).(3.10)

For an example of the effect of minimizing JCC(h) with respect to h on P (i,h), see
Figure 2. The reader will notice that the resulting joint pdf is more localized than
the original one and that the minimization has imposed an affine relation between the
intensities i1 and i2, unlike the method described in the previous section.

Fig. 2. Effect on P (i,h) of minimizing JCC(h) with respect to h: the two images on the right
show the estimated joint pdf between the two images on the left before and after optimization. Notice
that the joint pdf has been clustered, and the final shape of its support approaches an affine function.
The global estimation of the cross-covariance has been used to illustrate this effect. In the local case,
each locally estimated pdf would undergo this effect.

4. Lipschitz continuity of the matching functions. This section is devoted
to proving that the functions FMI and FCC are Lipschitz continuous. We begin with
some elementary results on Lipschitz continuous functions that will be used very often
in what follows. We state them here without proof.

Proposition 4.1. Let H be a Banach space, and let us denote its norm by
‖.‖H. Let fi, i = 1, 2 : H → R, be two Lipschitz continuous functions. We have the
following:

1. f1 + f2 is Lipschitz continuous.
2. If f1 and f2 are bounded, then the product f1f2 is Lipschitz continuous.
3. If f2 > 0 and if f1 and f2 are bounded, then the ratio f1

f2
is Lipschitz contin-

uous.
In what follows, we will need the following definitions and notations.
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Definition 4.2. We denote by H1 = [0,A] × H and H2 = [0,A]2 × H the
Banach spaces equipped with the norms ‖(z,h)‖H1 = z + ‖h‖H and ‖(z1, z2,h)‖H2 =
z1 + z2 + ‖h‖H , respectively.

We will use several times the following (obvious) result.
Lemma 4.3. Let f : H2 → R be such that (z1, z2) → f(z1, z2,h) is Lipschitz

continuous for all h with a Lipschitz constant lf independent of h and such that
h → f(z1, z2,h) is Lipschitz continuous for all (z1, z2) with a Lipschitz constant Lf
independent of (z1, z2). Then f is Lipschitz continuous.

4.1. Global mutual information. In the following, we will use the function
LMI : [0,A]2 × H → R defined in (3.4)–(3.6) We then consider the result fMI of
convolving LMI with Gβ , i.e., the two functions s : H1 → R, defined as

s(z2,h) = (gβ � r)(z2,h) =

∫
R

gβ(z2 − i2)r(i2,h) di2,(4.1)

and S : H2 → R, defined as

S(z1, z2,h) = (Gβ � R)(z,h) =

∫
R2

Gβ(z − i)R(i,h) di.(4.2)

We prove a series of propositions.
Proposition 4.4. For each h ∈ H, the function [0,A] → R

+ defined by z2 →
s(z2,h) is Lipschitz continuous with a Lipschitz constant ls, which is independent of
h. Moreover, it is bounded by A

β .

Proof. The second part follows from (3.7). We then prove that the magnitude of
the derivative of the function is bounded independently of h. Indeed

|s′(z2,h)| =
1

β

∣∣∣∣
∫ +∞

−∞
(z2 − i2)gβ(z2 − i2)r(i2,h)di2

∣∣∣∣
≤ A
β

∫ +∞

−∞
|z2 − i2|gβ(z2 − i2)di2 = 2

A
β2
.

Proposition 4.5. For each z2 ∈ [0,A], the function h → s(z2,h) : H → R

is Lipschitz continuous on H with Lipschitz constant Ls, which is independent of
z2 ∈ [0,A].

Proof. We consider

s(z2,h1) − s(z2,h2) =

∫
R

gβ(z2 − i2) (r(i2,h1) − r(i2,h2)) di2.(4.3)

According to (3.5), r(i2,h) is proportional to the ratio N(i2,h)/p(i2,h) of the two
functions

N(i2,h) =

∫
Ω

I2(x + h(x))gβ(I2(x + h(x)) − i2) dx

and

p(i2,h) =

∫
Ω

gβ(I2(x + h(x)) − i2) dx.
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We write

(4.4) |s(z2,h1) − s(z2,h2)| ≤
∫

R

gβ(z2 − i2)
N(i2,h2) |p(i2,h2) − p(i2,h1)|

p(i2,h1)p(i2,h2)
di2

+

∫
R

gβ(z2 − i2)
p(i2,h2) |N(i2,h2) −N(i2,h1)|

p(i2,h1)p(i2,h2)
di2,

and consider the first term on the right-hand side:

p(i2,h2) − p(i2,h1) =

∫
Ω

(gβ(i2 − I2(x + h2(x)) ) − gβ(i2 − I2(x + h1(x)) )) dx.

We use the first order Taylor expansion with integral remainder of the C1 function
gβ :

gβ(i+ t) = gβ(i) + t

∫ 1

0

g′β(i+ tα) dα.

We can therefore write

gβ(i2 − I2(x + h2(x))) − gβ(i2 − I2(x + h1(x)))

= (I2(x + h1(x)) − I2(x + h2(x)))

∫ 1

0

g′β
(
i2 −
(
α I2(x + h2(x))

+(1 − α) I2(x + h1(x))
))
dα.

We use the fact that I2 is Lipschitz continuous and write

|p(i2,h2) − p(i2,h1)|

≤ Lip(I2)

∫
Ω

(
|h1(x) − h2(x)|

×
∣∣∣∣
∫ 1

0

g′β(i2 − (α I2(x + h2(x)) + (1 − α) I2(x + h1(x)) )) dα

∣∣∣∣
)
dx.

The Schwarz inequality implies

|p(i2,h2) − p(i2,h1)|

≤ Lip(I2)‖h1 − h2‖H
(∫

Ω

(∫ 1

0

g′β(i2 − (α I2(x + h2(x))

+ (1 − α) I2(x + h1(x)) )) dα

)2

dx

) 1
2

.

We introduce the function

c(i2,h1,h2) =

(∫
Ω

(∫ 1

0

∣∣∣i2 − (α I2(x + h2(x)) + (1 − α) I2(x + h1(x))
)∣∣∣

· gβ
(
i2 −
(
α I2(x + h2(x)) + (1 − α) I2(x + h1(x))

))
dα

)2

dx

) 1
2
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and notice that(∫
Ω

(∫ 1

0

g′β(i2 − (α I2(x + h2(x)) + (1 − α) I2(x + h1(x)) )) dα

)2

dx

) 1
2

≤ 1

β
c(i2,h1,h2).

So far we have

(4.5)

∫
R

gβ(z2 − i2)
N(i2,h2) |p(i2,h2) − p(i2,h1)|

p(i2,h1)p(i2,h2)
di2

≤ Lip(I2)

β
‖h1 − h2‖H

(∫
R

gβ(z2 − i2)
N(i2,h2) c(i2,h1,h2)

p(i2,h1)p(i2,h2)
di2

)
.

We study the function of z2 that is on the right-hand side of this inequality. First
we note that the function is well defined since no problems occur when i2 goes to
infinity because “there are three Gaussians in the numerator and two in the denomi-
nator.” We then show that this function is bounded independently of h1 and h2 for
all z2 ∈ [0,A].

As in the proof of Proposition 3.1, we consider three cases and detail only the
first one: i2 ≤ 0. This is the case where

0 ≤ |i2| ≤ |i2 − I2(x + hj(x))| ≤ |i2 −A|, j = 1, 2,

0 ≤ |i2| ≤ |i2 − (αI2(x + h2(x)) + (1 − α)I2(x + h1(x)))| ≤ |i2 −A|, 0 ≤ α ≤ 1.

Hence

gβ(i2 −A) ≤ gβ(i2 − I2(x + hj(x))) ≤ gβ(i2), j = 1, 2,

gβ(i2 −A) ≤ gβ(i2 − (αI2(x + h2(x)) + (1 − α)I2(x + h1(x)))) ≤ gβ(i2), 0 ≤ α ≤ 1.

This yields ∫ 0

−∞
gβ(z2 − i2)

N(i2,h2) c(i2,h1,h2)

p(i2,h1)p(i2,h2)
di2

≤ |Ω|1/2A
∫ 0

−∞
gβ(z2 − i2)|i2 −A|

(
gβ(i2)

gβ(i2 −A)

)2

di2.

The integral on the right-hand side is well defined and defines a continuous function
of z2.

The remaining two cases, 0 ≤ i2 ≤ A and i2 ≥ A, are left to the reader. In all three
cases, the functions of z2 appearing on the right-hand side are continuous, independent
of h1 and h2, and therefore upperbounded on [0,A] by a constant independent of h1

and h2. Returning to inequality (4.5), we have proved that there existed a positive
constant C independent of z2 such that∫

R

gβ(z2 − i2)
N(i2,h2) |p(i2,h2) − p(i2,h1)|

p(i2,h1)p(i2,h2)
di2 ≤ C‖h1 − h2‖H

∀z2 ∈ [0,A], ∀h1, h2 ∈ H.

A similar proof can be developed for the second term on the right-hand side of inequal-
ity (4.4). In conclusion, we have proved that there exists a constant Ls, independent
of z2, such that

|s(z2,h1) − s(z2,h2)| ≤ Ls‖h1 − h2‖H ∀z2 ∈ [0,A], ∀h1, h2 ∈ H.
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Thus, we can state the following.
Proposition 4.6. The function s : H1 → R is Lipschitz continuous.
Proof. The proof follows from Propositions 4.4 and 4.5 and Lemma 4.3.
We now proceed with showing the same kind of properties for the function S.
Proposition 4.7. For all h ∈ H, the function [0,A]2 → R

+ defined by (z1, z2) →
S(z1, z2,h) is Lipschitz continuous with a Lipschitz constant lS, which is independent
of h. Moreover, it is bounded by A

β .
Proof. The proof follows the same pattern as the proof of Proposition 4.4.
Proposition 4.8. For all (z1, z2) ∈ [0,A]2, the function h → S(z1, z2,h),

H → R is Lipschitz continuous with a Lipschitz constant LS, which is independent of
(z1, z2) ∈ [0,A]2.

Proof. The proof follows the same pattern as that of Proposition 4.5.
Therefore we can state the following result.
Proposition 4.9. The function S : H2 → R is Lipschitz continuous.
Proof. The proof follows those of Propositions 4.7 and 4.8 and Lemma 4.3.
From Propositions 4.6, 4.9, and 4.1 we obtain the following.
Corollary 4.10. The function fMI : H2 → R defined by (z1, z2,h) → s(z2,h)−

S(z1, z2,h) is Lipschitz continuous and bounded by 2A
β . We denote by Lip(fMI) the

corresponding Lipschitz constant.
We can now state the main result of this section, as follows.
Theorem 4.11. The function FMI : H → H, defined by

FMI(h) = −fMI(I1(Id), I2(Id + h),h)∇I2(Id + h)

= (S(I1(Id), I2(Id + h),h) − s(I2(Id + h),h))∇I2(Id + h),

is Lipschitz continuous and bounded.
Proof. Boundedness comes from Corollary 4.10 and the fact that |∇I2| is bounded.

This implies that FMI(h) ∈ H = L2(Ω) for all h ∈ H.
We consider the ith component F iMI of FMI:

F iMI(h1)(x) − F iMI(h2)(x) = U1T
i
1 − U2T

i
2, i = 1, . . . , n,

with

Uj = S(I1(x), I2(x + hj(x)),hj) − s(I2(x + hj(x)),hj),

T ij = ∂iI2(x + hj(x)), i = 1, . . . , n,

and j = 1, 2. We continue with

|F iMI(h1)(x) − F iMI(h2)(x)| ≤ |U1 − U2||T1| + |U2||T1 − T2|.

Because ∂iI2 is bounded, |T ij | ≤ ‖∂iI2‖∞. Because of Corollary 4.10, |U2| ≤ 2A
β .

Because ∂iI2 is Lipschitz continuous, |T1 − T2| ≤ Lip(∂iI2)|h1(x) − h2(x)|.
Finally, because of Corollary 4.10 and the fact that I2 is Lipschitz continuous,

|U1 − U2| ≤ Lip(fMI) (Lip(I2)|h1(x) − h2(x)| + ‖h1 − h2‖H) .

Collecting all terms, we obtain

|F iMI(h1)(x) − F iMI(h2)(x)| ≤ Ci(|h1(x) − h2(x)| + ‖h1 − h2‖H)
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for some positive constant Ci, i = 1, . . . , n. The last inequality yields, through the
application of the Cauchy–Schwarz method,

‖FMI(h1) − FMI(h2)‖H ≤ LF ‖h1 − h2‖H
for some positive constant LF , and this completes the proof.

The following proposition is needed in the proof of Proposition 2.4.
Proposition 4.12. The function Ω → R

n such that x → FMI(h)(x) satisfies

|FMI(h)(x) − FMI(h)(y)| ≤ K(|x − y| + |h(x) − h(y)|)
for some constant K > 0.

Proof. We write

FMI(h)(y) − FMI(h)(x) = fMI(h)(x)∇I2(x + h(x)) − fMI(h)(x)∇I2(y + h(y))

+ fMI(h)(x)∇I2(y + h(y)) − fMI(h)(y)∇I2(y + h(y)).

Hence

|FMI(h)(x) − FMI(h)(y)| ≤ +|fMI(h)(x)| |∇I2(x + h(x)) −∇I2(y + h(y))|
|∇I2(y + h(y))| |fMI(h)(x) − fMI(h)(y)|.

Corollary 4.10 and the fact that the functions I1, I2, and its first order derivative are
Lipschitz continuous imply

|FMI(h)(x) − FMI(h)(y)|
≤ 2

A
β
Lip(∇I2)(|x − y| + |h(x) − h(y)|) + ‖|∇I2|‖∞Lip(fMI)|h(x) − h(y)|,

and hence the result.

4.2. Local cross-covariance. In this section we prove the Lipschitz-continuity
of the mapping H → H defined by FCC(h) (see (3.10)). The reasoning is analogous
to that for the global case. We start with some estimates of the bounds of the means
and variances of the relevant random variables.

Lemma 4.13. Let diam(Ω) be the diameter of the open bounded set Ω:diam(Ω) =
supx ,y∈Ω ‖x−y‖. We denote by Gγ(diam(Ω)) the value infx ,y∈ΩGγ(x−y) and define

KΩ =
Gγ(0)

Gγ(diam(Ω))
.(4.6)

We have 1
Gγ(x0)

≥ |Ω|Gγ(diam(Ω)) > 0 and
∫
Ω
Gγ(x−x0)

1
Gγ(x0)

dx0 ≤ KΩ for all x ∈
Ω.

Proof. Since Gγ(x0) =
∫
Ω
Gγ(y − x0) dy, we have Gγ(x0) ≥ |Ω|Gγ(diam(Ω)).

Therefore∫
Ω

Gγ(x − x0)
1

Gγ(x0)
dx0 ≤ 1

|Ω|Gγ(diam(Ω))

∫
Ω

Gγ(x − x0)dx0

≤ 1

|Ω|Gγ(diam(Ω))
× |Ω|Gγ(0) = KΩ.

Lemma 4.14. For all x0 ∈ Ω, the following inequalities are verified:

0 ≤ µ1(x0) ≤ A and β ≤ v1(x0) ≤ β + A2.
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Proof. We have

µ1(x0) =

∫
R2

i1

(
1

Gγ(x0)

∫
Ω

Gβ(Ih(x) − i) Gγ(x − x0) dx

)
di1 di2(4.7)

=
1

Gγ(x0)

∫
Ω

I1(x) Gγ(x − x0) dx,

and the first inequalities follow from the fact that I1(x) ∈ [0,A]. Similarly, for v1(x0),
we have

(4.8) v1(x0) =

∫
R2

i21

(
1

Gγ(x0)

∫
Ω

Gβ(Ih(x) − i) Gγ(x − x0) dx

)
di1 di2 − µ2

1(x0)

= β +
1

Gγ(x0)

∫
Ω

I1(x)2 Gγ(x − x0) dx −
(

1

Gγ(x0)

∫
Ω

I1(x) Gγ(x − x0) dx

)2

,

from which the right-hand side of the second inequality follows. The application of
the Cauchy–Schwarz inequality to∫

Ω

I1(x) Gγ(x − x0) dx =

∫
Ω

(
I1(x)
√
Gγ(x − x0)

) √
Gγ(x − x0) dx

yields the left-hand side.
We then characterize the mean µ2(x0,h); see Table 3.1.
Lemma 4.15. The function Ω × H −→ R defined by (x0,h) −→ µ2(x0,h) is

bounded and Lipschitz continuous in H uniformly in Ω.
Proof. According to the definition of µ2 in Table 3.1 we have

µ2(x0,h) =
1

Gγ(x0)

∫
Ω

I2(x + h(x))Gγ(x − x0) dx.

We have immediately

µ2(x0,h) ≤ A.

Moreover,

|µ2(x0,h1) − µ2(x0,h2)| ≤ 1

Gγ(x0)

∫
Ω

|I2(x + h1(x)) − I2(x + h2(x))|Gγ(x − x0) dx.

Since I2 is Lipschitz, a combination of Lemma 4.13 and the Cauchy–Schwarz inequality
yields

|µ2(x0,h1) − µ2(x0,h2)| ≤ Lip(I2)KΩ‖h1 − h2‖H .

We have similar properties for the variance v2(x0,h); see Table 3.1.
Lemma 4.16. The function Ω × H −→ R defined by (x0,h) −→ v2(x0,h) is

strictly positive, bounded, and Lipschitz continuous in H uniformly in Ω.
Proof. According to the definition of v2 in Table 3.1 we have

v2(h,x0) =

∫
R2

i22
1

Gγ(x0)

(∫
Ω

gβ(I2(x + h(x)) − i2) Gγ(x − x0) dx

)
di2 − µ2(x0,h)2.
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Hence

v2(h,x0) = β +
1

Gγ(x0)

∫
Ω

I2(x + h(x))2 Gγ(x − x0) dx − µ2(h,x0)
2.

Therefore v2(h,x0) ≤ β + A2. To prove that it is strictly positive, we write

v2(h,x0) = β +
1

Gγ(x0)

∫
Ω

I2(x + h(x))2 Gγ(x − x0) dx

−
(

1

Gγ(x0)

∫
Ω

I2(x + h(x))Gγ(x − x0) dx

)2

,

and the same reasoning as in Lemma 4.14 shows that β ≤ v2(h,x0). For the
second part, since µ2(h,x0) is bounded and Lipschitz continuous uniformly in Ω
(Lemma 4.15), it suffices to show the Lipschitz continuity of the first term on the
right-hand side. For this term we have, using again a combination of Lemma 4.13 and
the Cauchy–Schwarz inequality,

1

Gγ(x0)

∣∣∣∣
∫

Ω

I2(x + h1(x))2Gγ(x − x0) dx −
∫

Ω

I2(x + h2(x))2Gγ(x − x0) dx

∣∣∣∣
≤ 1

Gγ(x0)

∫
Ω

(I2(x+h1(x))+I2(x+h2(x))) |I2(x+h1(x))−I2(x+h2(x))|Gγ(x−x0) dx

≤ 2A Lip(I2) KΩ‖h1 − h2‖H .
We now show the boundedness and Lipschitz continuity of the correlation v1,2(x0,h);

see Table 3.1.
Proposition 4.17. The function H ×Ω → R defined by (h,x0) → v1,2(h,x0) is

bounded and Lipschitz continuous in H, uniformly in Ω.
Proof. According to the definition of v1,2 in Table 3.1 we have

v1,2(h,x0) =

∫
R2

i1 i2
1

Gγ(x0)

(∫
Ω

Gβ(Ih(x) − i) Gγ(x − x0) dx

)
di1 di2

− µ1(x0)µ2(x0,h).

Hence

v1,2(h,x0) =
1

Gγ(x0)

∫
Ω

I1(x) I2(x + h(x)) Gγ(x − x0) dx − µ1(x0) µ2(h,x0).

Thus we have, for all x0 ∈ Ω, |v1,2(h,x0)| ≤ 2A2, which proves the first part of the
proposition. For the second part, since µ2(h,x0) is Lipschitz continuous uniformly in
Ω (Lemma 4.15) and µ1 is bounded, it suffices to show the Lipschitz continuity of the
first term on the right-hand side. For this term we have, using again a combination
of Lemma 4.13 and the Cauchy–Schwarz inequality,

1

Gγ(x0)

∣∣∣∣
∫

Ω

I1(x)I2(x+h1(x))Gγ(x−x0) dx −
∫

Ω

I1(x) I2(x+h2(x))Gγ(x−x0) dx

∣∣∣∣
≤ 1

Gγ(x0)

∫
Ω

|I1(x)| |I2(x + h1(x)) − I2(x + h2(x))|Gγ(x − x0) dx

≤ A Lip(I2) KΩ‖h1 − h2‖H .
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Theorem 4.18. The function H × Ω → R defined by (h,x) → JCC(h,x) is
bounded and Lipschitz continuous in H, uniformly in Ω.

Proof. Indeed, by definition we have −1 ≤ JCC(h,x) ≤ 0 for all h ∈ H. Moreover,
we have

JCC(h,x) = − v1,2(h,x)2

v1(x) v2(h,x)
,(4.9)

and the following properties hold true:
• v1,2(h,x) is bounded and Lipschitz-continuous in H uniformly in Ω (Propo-

sition 4.17).
• v2(h,x) is strictly positive, bounded, and Lipschitz-continuous in H, uni-

formly in Ω (Lemma 4.16).
• v1(x) is bounded and > 0 (Lemma 4.14).

We may therefore apply Proposition 4.1.
Theorem 4.19. The function H2 × Ω → R defined by

(z,h,x) → LCC(z,h,x)

is bounded and Lipschitz continuous in H2, uniformly in Ω.
Proof. We have

LCC(z,h,x) = − 2

Gγ(x)

[
v1,2(h,x)

v2(h,x)

(
z1 − µ1(x)

v1(x)

)
+ JCC(h,x)

(
z2 − µ2(h,x)

v2(h,x)

)]
.

This can be rewritten as

LCC(z,h,x) = f1(h,x) z1 + f2(h,x) z2 + f3(h,x).

The functions H × Ω → R, f1, f2, and f3, are bounded and Lipschitz continuous in
H uniformly in Ω because of Lemmas 4.13, 4.14, 4.15, 4.16, Proposition 4.17, and
Theorem 4.18. The result readily follows.

Theorem 4.20. The function fCC : H2 × Ω → R, defined by

fCC(z,h,x) = Gγ � LCC(z,h,x),

is bounded and Lipschitz continuous in H2 uniformly in Ω.
Proof. The fact that it is bounded follows from Theorem 4.19. To obtain the

Lipschitz continuity, we write

|fCC(z,h,x) − fCC(z′,h′,x)|
=

∣∣∣∣
∫

Ω

Gγ(x − x0) (LCC(z,h,x0) − LCC(z′,h′,x0)) dx0

∣∣∣∣
≤ Gγ(0) |Ω| Lip(LCC)

(|z − z′| + ‖h − h′‖H
)

and

|Gγ � f(z,h,x) −Gγ � f(z,h,y)|
≤
∫

Ω

|Gγ(x − x0) −Gγ(y − x0)||f(z,h,x0)| dx0 ≤ Bf Lip(Gγ)|Ω| |x − y|,

and hence obtain the result.
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Theorem 4.21. The function FCC : H → H defined by

FCC(h) = −fCC(I1(Id), I2(Id + h),h, Id)∇I2(Id + h)

is Lipschitz continuous and bounded.
Proof. Since fCC is bounded (Theorem 4.20) as well as ∇I2, so is FCC, which

therefore belongs to H. For the Lipschitz continuity, we write

FCC(h1)−FCC(h2) = fCC(I1(Id), I2(Id+h1),h1, Id) (∇I2(Id+h2)−∇I2(Id+h1))

+∇I2(Id + h2) (fCC(I1(Id), I2(Id + h2),h2, Id) − fCC(I1(Id), I2(Id + h1),h1, Id)) .

The Lipschitz continuity follows from that of ∇I2, of LCC (Theorem 4.20), and the
use of the Cauchy–Schwarz inequality as in the proof of Theorem 4.11.

Proposition 4.22. The function Ω → R
n such that x → FCC(h)(x) satisfies

|FCC(h)(x) − FCC(h)(y)| ≤ K(|x − y| + |h(x) − h(y)|),

for some constant K > 0.
Proof. The proof is similar to that of Proposition 4.12; it follows from The-

orem 4.20 and the fact that the functions I1, I2 and all the derivatives of I2 are
Lipschitz continuous.

5. Numerical implementation. The numerical implementation of the previ-
ously described continuous matching flows involves estimating the matching term,
which depends on one of the two intensity-comparison functions FMI and FCC and
the regularization operator, which is div(TI1Dh). For the discretization in time, we
adopt an explicit forward scheme. Implicit schemes are difficult to devise due to the
high nonlinearity of the matching functions. The way in which the time step is chosen
is discussed in the following section. Alvarez, Weickert, and Sánchez [2] propose a
very efficient scheme for discretizing the Nagel–Enkelmann divergence operator which
we adopt in our experiments. We use a schematic notation for the description of the
finite-difference schemes. For instance, let us denote by hi,jp and Li,jp the components
(p = 1, 2) of h and its Laplacian ∆h at the grid point (i, j) in the discrete image
domain. The voxel size in all directions is assumed to be equal to one. A possible
scheme for α∆h is

Li,jp = α
(
hi+1,j
p + hi−1,j

p + hi,j−1
p + hi,j+1

p − 4 hi,jp

)
,(5.1)

which we write schematically as

Li,jp = α ∗
1

1 −4 1

1

hp.

In this notation, the tables represent the discrete grid and contain the weights associ-
ated with each pixel (zero if none). The function to which the grid corresponds is writ-
ten at the bottom. The scheme proposed in [2] is the following. Let A = div(TI1Dh),
where

TI1 =

(
a b
b c

)
.
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Then, for p = 1, 2,

Ai,jp = 1
2 ∗ 1 1

a

∗ −1 1

hp

+ 1
2 ∗ 1 1

a

∗ 1 −1

hp

+ 1
2 ∗

1

1

c

∗
1

−1

hp

+ 1
2 ∗ 1

1

c

∗ −1

1

hp

+ 1
4 ∗ 1

1

b

∗ −1

1

hp

+ 1
4 ∗

1

1

b

∗
1

−1

hp

− 1
4 ∗

1

1

b

∗
1

−1

hp

− 1
4 ∗ 1

1

b

∗ −1

1

hp

.

The 3D case. This scheme generalizes readily to the 3D case. In order to write
the 3D scheme explicitly in a compact way, we take advantage of its very simple form
and introduce a more compact notation. We write

S 1
2
(a, x+) ≡ 1

2
∗ 1 1

a

∗ −1 1

hp

,

where x+ indicates the direction defined by the voxels with non-null weights, starting
at the center. With this notation, we write the 2D Nagel–Enkelmann operator above
as

Ai,jp = S 1
2
(a, x+) + S 1

2
(a, x−) + S 1

2
(c, y+) + S 1

2
(c, y−)

+ S 1
4
(b, x+y+) + S 1

4
(b, x−y−) − S 1

4
(b, x+y−) − S 1

4
(b, x−y+).

In the 3D case, we have

TI1 =

⎛
⎝ a b c

b d e
c e f

⎞
⎠ ,

and the corresponding scheme is, for p = 1, 2, 3,

Ai,j,kp = S 1
2
(a, x+) + S 1

2
(a, x−) + S 1

2
(d, y+) + S 1

2
(d, y−) + S 1

2
(f, z+)

+ S 1
2
(f, z−) + S 1

4
(b, x+y+) + S 1

4
(b, x−y−) − S 1

4
(b, x+y−) − S 1

4
(b, x−y+)

+ S 1
4
(c, x+z+) + S 1

4
(c, x−z−) − S 1

4
(c, x+z−) − S 1

4
(c, x−z+)

+ S 1
4
(e, y+z+) + S 1

4
(e, y−z−) − S 1

4
(e, y+z−) − S 1

4
(e, y−z+).
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5.1. Intensity comparison functions. Concerning the intensity comparison
functions, we approximate convolutions with a Gaussian kernel by recursive filtering
using the smoothing operator introduced in [17]. Terms of the form ∇I2(x+h(x)) and
I2(x+h(x)) are calculated by trilinear interpolation. The global function FMI is esti-
mated by explicitly computing the global density estimate P (i,h) through recursive
smoothing of the discrete joint histogram of intensities, as detailed in section 5.1.2.
For the local function FCC, a special implementation has been developed, as detailed
in section 5.1.4.

5.1.1. Convolutions. The convolutions by a Gaussian kernel are approximated
by recursive filtering using the smoothing operator introduced by Deriche [17]. Given
a discrete 1D input sequence x(n), n = 1, . . . ,M , its convolution by the smoothing
operator Sα(n) = k (α|n| + 1) e−α|n| is calculated efficiently as (see [17])

y(n) = (Sα � x)(n) = y1(n) + y2(n),

where ⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

y1(n) = k
(
x(n) + e−α (α− 1) x(n− 1)

)
+ 2 e−α y1(n− 1) − e−2α y1(n− 2),

y2(n) = k
(
e−α (α+ 1) x(n+ 1) − e−2α x(n+ 2)

)
+ 2 e−α y2(n+ 1) − e−2α y2(n+ 2).

The normalization constant k is chosen by requiring that
∫

R
Sα(t) dt = 1, which

yields k = α/4. This scheme is very efficient since the number of operations required
is independent of the smoothing parameter α. The smoothing filter can be readily
generalized to n dimensions by defining the separable filter Tα(x) =

∏n
i=1 Sα(xi).

5.1.2. Density estimation. Parzen density estimates are obtained by smooth-
ing the discrete joint histogram of intensities. We define the piecewise constant func-
tion v : Ω → [0, N ]2 ⊂ N

2 by quantification of Ih(x) into N + 1 intensity levels
(bins):

v(x) =

( �ζI1(x)�
�ζI2(x + h(x))�

)
=

⎧⎪⎨
⎪⎩

(0, 0)T on Ω0,0,
...
(N,N)T on ΩN,N ,

where ζ = N/A, �·� denotes the floor operator in R
+, i.e., the function R

+ → N such
that �x� = max{n ∈ N : n ≤ x} and {Ωk,l}(k,l)∈[0,N ]2 is a partition of Ω. We then
compute, setting β′ = ζ2β,

P (i,h)=
1

|Ω|
∫

Ω

Gβ(Ih(x) − i) dx =
ζ

|Ω|
∫

Ω

Gβ′
(
ζ (Ih(x) − i)

)
dx

� ζ

|Ω|
∫

Ω

Gβ′
(
v(x) − ζi

)
dx =

ζ

|Ω|
N∑
k=0

N∑
l=0

∫
Ωk,l

Gβ′(k − ζi1, l − ζi2) dx

= ζ

N∑
k=0

N∑
l=0

|Ωk,l|/|Ω|︸ ︷︷ ︸
H(k,l)

Gβ′(k − ζi1, l − ζi2) = ζ
(
H � Gβ′

)
(ζi),
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H being the discrete joint histogram. The convolution is performed by recursive filter-
ing, as described in the previous section. Note that this way of computing P is quite
efficient since only one pass on the images is required, followed by the convolution.

5.1.3. Implementation of the computation of FMI. The global mutual in-
formation function is then estimated as follows:

• Estimate P (i,h) and its marginals.
• Estimate LMI(i,h) (equation (3.4)) using centered finite-differences for the

derivatives.
• Estimate fMI(i,h) = Gβ � LMI(i,h) (equation (3.3)) by recursive smoothing.
• Estimate FMI(h)(x) = −fMI(Ih(x),h) ∇I2(x + h(x)) (equation (3.8)).

5.1.4. Implementation of the computation of FCC. The function fCC is
estimated as

LCC(i,x) = (Gγ � f1)(x) i1 + (Gγ � f2)(x) i2 + (Gγ � f3)(x),

where

f1(x) = −2 v1,2(h,x)/(Gγ(x) v1(x) v2(h,x)),

f2(x) = −2 JCC(h,x)/(Gγ(x) v2(h,x)),

and

f3(x) = −(f1(x) µ1(x) + f2(x) µ2(h,x)
)
.

All the required space dependent quantities like µ1(x) are computed through recursive
spatial smoothing. This algorithm is similar to the one proposed in [11].

5.2. Parameters. We now discuss the way in which the different parameters of
the algorithms are determined.

• γ: This is the variance of the spatial Gaussian for local density estimates. Its
value does not affect the computation time since the local statistics are calcu-
lated using the recursive smoothing filter. Thanks to this, we have conducted
some experiments with different values of this parameter, which have shown
that the algorithms are not very sensitive to it. Qualitatively speaking, the
local window has to be large enough for the statistics to be significant and
small enough to account for nonstationarities of the density. We set γ to 5 in
all our experiments.

• β: This is the variance of the Gaussian for the Parzen estimates. Unlike
γ, determining a good value for β is important for obtaining good results.
In our case, it is determined automatically as follows (we refer to [6] for
a recent comprehensive study on nonparametric density estimation). We
adopt a cross-validation technique based on an empirical maximum likelihood
method. We denote by {ik} a set of m intensity pair samples (k = 1, . . . ,m)
and take the value of β which maximizes the empirical likelihood:

L(β) =

m∏
k=1

P̂β,k(ik),

where

P̂β,k(ik) =
1

m− nk

∑
{s: is �=ik}

Gβ(ik − is)
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and nk is the number of data samples for which is = ik.
For the experiments shown in this paper, the optimal value of β varies in the
range 15–20.

• κ: This parameter determines the coefficient of the regularization term in
the energy functional. Since the range of the different matching functions
F varies considerably, we normalize it by dividing by the maximum value
κ0 = ‖F (h0)‖∞, h0 being the initial field. This is equivalent to replacing κ
by C such that

C = κκ0.

The behavior of the algorithms is much more stable with respect to C than
to κ. κ has been kept to the fixed value of 10 in all our experiments except
the one with the Eiffel tower, where the expected displacement is close to
a translation, a very smooth transformation indeed. In this experiment the
value of κ has been fixed to 100.

• ∆t: The time step is chosen such that the coefficient of the regularization
term (i.e., C∆t) is less than a specified value. It is known, for instance,
that the scheme (5.1) is stable for values of C∆t no larger than 0.25. In
our experiments, we fix C∆t to a value of 0.1. The resulting ∆t is different
at each resolution due to the fact that C is recomputed at the beginning
of each level. In some of the examples, we have computed the value of ∆t
by doing a line-search in the gradient direction, looking for the minimum of
the criterion. At each resolution, the line-search consistently produces values
which are asymptotically (a) almost constant for that particular resolution
and (b) close to a value such that C∆t is approximately 0.15–0.2. This is
true only asymptotically for each resolution. The first optimal steps are much
larger, and this has suggested to us to use the line-search in conjunction with
more sophisticated minimization algorithms such as the conjugate gradient.
We discuss this point in one of the examples of section 6.

• σ: This is the scale parameter. We adopt a multiresolution approach (see the
next section), smoothing the images at each stage by a small amount. Within
each stage of the multiresolution pyramid, the parameter σ is fixed to a small
value, typically 0.5 voxels/pixels.

One extra parameter is needed for the regularization operator.
• λ: This is the parameter controlling the anisotropic behavior of the Nagel–

Enkelmann tensor. We adopt the method proposed by Alvarez, Weickert,
and Sánchez [2]. Given q, which in practice is fixed to 0.1, we take the value
of λ such that

q =

∫ λ
0

H|∇I1|(z) dz,

where H|∇I1|(z) is the normalized histogram of |∇I1|.
6. Experimental results. We present results of experiments using the previ-

ously described algorithms. To recover large deformations, we use a multiresolution
approach by applying the gradient descent to a set of smoothed and subsampled im-
ages. Since the functionals considered are not convex, this coarse-to-fine strategy helps
avoid irrelevant extrema while reducing the computational cost of the algorithms. The
first stage of the multiresolution pyramid is initialized with h0 = 0. The field result-
ing from the computation at a coarse level is multiplied by two and resampled at the
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x-component y-component

256x256256x256

32x32 32x32

h0(0) = 0 h∗
0 = h0(N0 dt)

64x64 64x64

128x128 128x128

h1(0) = h∗
0 h∗

1 = h1(N1 dt)

h2(0) = h∗
1 h∗

2 = h2(N2 dt)

h3(0) = h∗
2 h∗

3 = h3(N3 dt) ≡ h∗

Fig. 3. Multiresolution strategy: the first stage of the multiresolution pyramid is initialized with
h0 = 0, and the resulting field from a coarse level is scaled by two and resampled at the next finer
scale (by (tri)-linear interpolation) at each step of the pyramid descent where it is used as the initial
value of the corresponding evolution equation. The left column shows the pyramid; the right shows
the computed deformation field at each level. This example illustrates the result of the experiment
in Figure 4.

finer scale (by (tri)-linear interpolation) at each step of the pyramid descent, where
it is used as the initial value of the corresponding evolution equation. The number of
iterations at each level is automatically determined based on the reduction of the cri-
terion. Iterations at each level are stopped when the criterion changes by an amount
less than a specified threshold. The number of resolution levels in the pyramid is
chosen so that at the coarsest level the image has approximately n pixels (voxels) in
its smallest dimension, n being manually fixed to a small value such as 8, 16, or 32.
(see Figure 3).

Experiment with synthetic data (Figure 4). In this example, we use the
mutual information criterion to compute the displacement field between two synthetic
images. Despite its simplicity, this example illustrates the main difficulties of the
problem we consider: the distortion is nonrigid, and we are unable to directly compare
intensities. Besides, this particular example is especially difficult since the discrete
histogram (i.e., before Gaussian smoothing) contains only six nonzero entries, which
underlines the importance of the Parzen-window regularization.

T2-PD registration (Figure 5). We use the mutual information criterion to
realign two slices from a proton density (PD) and a T2-weighted magnetic resonance
image (MRI) volume (same patient). A good introduction to medical image acquisi-
tion can be found in [8, 40]. An artificial geometric distortion has been applied to the
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Fig. 4. Mutual information criterion with a synthetic example. From left to right: I1 (256 ×
256), I2, I2(Id + h∗), and a plot of the estimated optimal displacement field h∗.
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Fig. 5. PD/T2 MRI registration using mutual information. First row, from left to right: I1,
I2, I2(Id + h∗), and the contours of I2(Id + h∗) superimposed on I1. The second row shows, from
left to right: an arrow-plot of h∗ (one every three pixels shown), the dense x and y components of
h∗, and the determinant of the Jacobian of the transformation Id + h∗.

original preregistered dataset. In order to evaluate the accuracy of the realignment,
we superimposed some contours of the T2 image (initial and recovered pose) over
the reference image (PD). It gives a good qualitative indication of the quality of the
registration. Most of the anatomical structures seem correctly realigned.

MRI-fMRI registration (Figure 6). This example shows an experiment with
MR data of the brain of a macaque monkey. The reference image is a T1-weighted
anatomical volume, and the image to register is a functional, mion (monocrystalline
iron oxide nanoparticle) contrast, MRI (fMRI). The contrast in this modality is related
to blood oxygenation level. This registration was obtained using mutual information.
Each image in this figure shows the intersection of the image volume with three
orthogonal planes. The crosses in each plane image show a point of interest. The
observation of these points shows that the correspondence has been improved by the
registration process.

Matching of anatomical versus diffusion-tensor–related MRI (Figure 7).
Our next experiment shows the results of an experiment with real 3D MR data of
a human brain. This registration was also obtained using mutual information. The
reference image is a T1-weighted anatomical MRI of a human brain. The target image
is a T2-weighted anatomical MRI from the same patient, which was acquired as part
of the process of obtaining an image of the water diffusion tensor at each voxel (dif-
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Fig. 6. MRI-fMRI registration using the mutual information. The first and second images in
each row show the reference anatomical MRI and the initial fMRI, respectively. The third image
shows the registered fMRI. The two rows show two different points of interest in the volume.

Fig. 7. Matching of anatomical vs. diffusion-tensor-related MRI, using mutual information
(see text).
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Fig. 8. Human face template matching. First row from left to right: I1 with some reference
points marked, I2, I2(Id + h∗), and I2 with the corresponding reference points according to the
estimated displacement field h∗. The second row shows, from left to right: an arrow-plot of h∗ (one
every five pixels shown), its dense x and y components, and the determinant of the Jacobian of the
transformation Id + h∗. The local cross-covariance was used as similarity criterion.

fusion MR). Notice that the intensities in this modality are related in a noninvertible
way, i.e., the correspondence i1 → i2 is not a monotonous function, thereby justifying
the use of mutual information. The estimated deformation field has a dominant y
component, a property which is physically coherent with the applied gradient. The
observation of the points pointed at by the crosses shows that the correspondence has
been improved by the registration process.

Face template matching (Figure 8). This experiment shows template match-
ing of human faces. The different albedos (fractions of incident light reflected by the
surfaces) of the two skins create a “multimodal” situation, and the transformation is
truly nonrigid due to the different shapes of the noses and mouths. Notice the ex-
cellent matching of the different features. This result was obtained using local cross-
covariance. The running time was approximately five minutes on a PC at 900MHz.
With the correspondences, one can interpolate the displacement field and the texture
to perform fully automatic morphing.

The Eiffel tower example (Figure 9). This last experiment shows matching
under varying illumination conditions. The Eiffel tower is taken at nearly one year
distance under very different weather conditions. The result was obtained using local
cross-covariance.

Conjugate gradient minimization. The explicit time discretization using a
fixed time step corresponds to a steepest descent method without line-search, which is
generally quite inefficient. In this section, we present results obtained with a modified
version of the algorithm, which performs line-searching and uses a Fletcher–Reeves
conjugate gradient minimization routine as described in [46]. Figure 10 shows plots of
the decrease of the functional for the face template matching experiment of Figure 8
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Fig. 9. Matching under varying illumination conditions. First row from left to right: I1, I2,
I2 superimposed to I1, and I2(Id + h∗) superimposed to I1. The second row shows, from left to
right: an arrow-plot of h∗ (one every three pixels shown), its dense x and y components, and the
determinant of the Jacobian of the transformation Id + h∗. The local cross-covariance was used as
similarity criterion.

using both the standard steepest descent and the modified conjugate gradient version.
Plots (b) and (c) show the advantage of the multiresolution approach over the single
resolution plot in (a), as a local minimum is avoided using a five-level multiresolution
pyramid (the three coarsest levels are shown in (b), the finest two in (c)). Plots (d)
and (e) show that the conjugate gradient method allows about one order of magni-
tude reduction in the total number of iterations required. In this example the gain
in speed is much higher since the number of iterations at the finest level in (e) is
very small, despite the fact that each iteration is slightly more costly. The result of
Figure 8 is obtained in less than two seconds on a PC at 2.4GHz using the conjugate
gradient version, instead of four minutes using the multiresolution approach. The
same criterion was used to stop iterations in every case.

7. Conclusion. Image registration is best posed as an optimization problem
defined over some functional space. The optimization functional is in general the sum
of two terms, a data term and a regularization term. When one deals with different
image modalities, the data term has to rely on image statistics rather than directly on
the image intensities. This has the effect of making the data term a bit complicated.
We have considered two such terms, a global and a local one. We have considered only
one regularization term, but it is in effect quite representative. In order to prove that
the registration problem is well posed, we have shown the existence of minimizers,
computed the Euler–Lagrange equations induced by our functionals, and shown that
the corresponding evolution functional equations had a unique and regular solution
for a given initial condition.

In order to prove this last point we have used well-known theorems in functional
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Fig. 10. Plots of the decrease of the functional for the face template matching experiment of
Figure 8 as a function of the number of iterations using both the standard steepest descent and the
modified conjugate gradient version. Plots (b) and (c) show the advantage of the multiresolution
approach over the single resolution plot in (a), as a local minimum is avoided by using a five-level
multiresolution pyramid (the three coarsest levels are shown in (b)). Plots (d) and (e) show that
the conjugate gradient method allows about one order of magnitude reduction in the total number of
iterations required. In this example the gain in speed is much higher since the number of iterations
at the finest level in (e) is very small. The same criterion was used to stop iterations in every case.



NONRIGID MULTIMODAL IMAGE REGISTRATION METHODS 1585

analysis. These theorems say that if the differential operator defined by the regulariza-
tion term is strictly elliptic and the gradient of the data term is Lipschitz continuous,
then the functional evolution equation has a unique classical solution. We have proved
that these hypotheses are satisfied in our two examples. Since they are “generic” in
image registration, this suggests that most of these problems are well posed. Our
numerical implementation for computing the solutions of the Euler–Lagrange equa-
tions has allowed us to demonstrate the power and the flexibility of the approach for
solving a wide range of difficult image registration problems.
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Abstract. Analytical and numerical solutions are presented for an interface problem that models
deformation in the local cell-matrix unit (chondron) of articular cartilage. The cell and its protective
pericellular matrix layer are modeled as isotropic biphasic continua deforming in small strain. A
spherical geometry with purely radial deformation is assumed. Enforcement of the boundary and
interface conditions results in an eigenvalue problem that is self-adjoint when the permeabilities of
the cell and the layer are the same. In this case, a series solution of the interface problem is presented
for a time-varying displacement prescribed at the boundary of the pericellular layer. The case of
nonuniform permeability is considered via a numerical finite difference solution. The analytical and
numerical solutions are used to conduct a parametric analysis of mechanical signal transmission due
to an applied sinusoidal displacement. The dual role of the pericellular matrix as a mechanical signal
transmitter and a protective layer is analyzed. For frequencies in the range 0-3Hz, transmission
of transient-free radial displacement, solid stress, and strain are evaluated with varying pericellular
stiffness and permeability in biphasic models of normal and osteoarthritic chondrons.
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1. Introduction. Articular cartilage is a hydrated biological soft tissue that
lines the surfaces of diarthroidal joints such as the knee, shoulder, and hip. The pri-
mary function of cartilage is to distribute stresses in load-bearing and to provide a
low friction surface for joint motion [15]. While cartilage can perform these functions
over a lifetime, the degeneration of cartilage, called osteoarthritis (OA), is a common
condition that progresses with age. The structure of cartilage arises from an extracel-
lular matrix (ECM) that consists predominantly of cross-linked type-II collagen fibers
and entrapped proteoglycan macromolecules. Embedded in the ECM are specialized
cells called chondrocytes (Figure 1.1). The metabolic activity of the chondrocytes
dictates maintenance and turnover of the ECM constituents and hence the structural
integrity of the tissue [22]. Within the ECM, the chondrocytes are locally isolated
and make up less than 10% of the tissue volume in adult cartilage [21]. Articular
cartilage is an avascular and aneural biological soft tissue. Consequently, chondrocyte
metabolism depends not only on inherent genetic and biochemical factors but also
on mechanical and physicochemical factors in the local environment of a single cell.
Such factors include matrix stress, fluid pressurization, fixed-charge density of the
ECM, and ionic composition of the interstitial fluid [8]. Describing the complex rela-
tionships between components of the local cell environment and external loading of a
joint requires the formulation and solution of biomechanical models at several scales.
Knowledge of these relationships is an important step in describing the sequence of
events that cause changes in the local cellular environment to alter the biochemical
response of a chondrocyte.
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Fig. 1.1. A photomicrograph of articular cartilage. The chondrocytes (black) are cellular in-
clusions that populate the extracellular matrix (grey). Reprinted from F. Guilak, A. Ratcliffe, and
V. C. Mow, Chondrocyte deformation and local tissue strain in articular cartilage: A confocal mi-
croscopy study, J. Orthop. Res., 13 (1995), pp. 410–421, with permission from Orthopaedic Research
Society[7].

The local mechanical environment of a single cell is strongly influenced by its peri-
cellular matrix (PCM). The PCM is a protective layer that encapsulates the chondro-
cyte and is believed to play a significant role in regulating transmission of mechanical
signals to the cell. Together, the cell and its PCM are termed a chondron. As a joint
undergoes loading, mechanical signals are transmitted via the ECM to each chondron
and, via the PCM, to each cell which, in response, can alter its metabolic activity. The
composition of the PCM differs from that of the ECM in that the PCM is dominated
by type-VI collagen and has a higher proteoglycan density. To quantify the effect
of the PCM on mechanical signal transmission using biomechanical models, material
parameter values are required for the chondrocyte and the PCM.

Using video microscopy, elastic parameter values for the chondrocyte are typically
obtained by employing solutions of static contact problems for an elastic half-space
[23] or sphere [9] that model micropipette aspiration testing of isolated cells. In a
study of human chondrocytes [12], cells extracted via enzymatic digestion were found
to be nearly incompressible, with a mean modulus on the order of 1kPa. No signif-
icant difference was observed between cells in the healthy and osteoarthritic sample
groups. Recently, the solution of a layered elastic contact problem was used to de-
termine elastic properties of the PCM via micropipette aspiration tests performed on
intact chondrons that were mechanically extracted from human articular cartilage [1].
The mean Young’s modulus of chondron PCM from healthy human articular cartilage
was found to be 66.5kPa, whereas a 38% decrease in the mean modulus to 41.2kPa
was observed in the osteoarthritic group [1]. In a multiscale finite element analysis [6],
the macroscopic solution for transient deformation of a cartilage layer under a step
load was computed and used to solve a separate microscale problem to determine
the mechanical environment of a single chondrocyte. In this study, the inclusion of
a PCM layer in the microscale model significantly altered the mechanical environ-
ment of a single cell. Together, these findings support the hypotheses that the PCM
acts as a stiff protective layer that strongly influences the local environment of a chon-
drocyte, and that the mechanical properties of the PCM can be altered significantly
with OA.

In the current study, analytical and numerical solutions are presented for an



1590 MANSOOR A. HAIDER

Fig. 1.2. Spherical model of a chondron. The chondrocyte is modeled as a biphasic sphere with
an attached biphasic layer that represents the pericellular matrix. Of primary interest is the effect
of the PCM layer on transmission of a mechanical signal I(t) from the chondron boundary to the
cell-PCM interface.

interface problem that models local transmission of mechanical signals in a single
chondron. The chondron is idealized to consist of a spherical chondrocyte with an
attached spherical layer that represents the PCM (Figure 1.2). Both regions are
assumed to be biphasic continua that are isotropic and deforming in small strain.
At present, experimental values are available for only the “drained” elastic moduli
associated with equilibrated deformation states (where fluid motion has ceased) of
isolated chondrocytes [12] and chondrons [1]. Hence, the primary focus of the cur-
rent study is the effect of the large PCM stiffness, relative to the cell, on mechanical
signal transmission through the PCM layer. Given the lack of direct measurements
of permeability in the chondron, ranges of permeability in the cell and PCM are
estimated (see section 4.2). Enforcement of the boundary and interface conditions
results in an eigenvalue problem that is self-adjoint when the permeability of the
chondron is assumed to be uniform (i.e., kC = kP ). The resulting characteristic
equation is analyzed in the limit of a very stiff PCM layer. Via Duhamel’s princi-
ple, a series solution is obtained for a time-varying displacement prescribed at the
boundary of the chondron. The case kC �= kP is considered using a numerical finite
difference solution. These solutions are evaluated for the case of an applied sinu-
soidal displacement and used to assess the dual role of the PCM as a mechanical
signal transmitter and a protective layer via a parametric analysis of radial displace-
ment, solid stress, and strain. Since dissipation time scales are rapid, the transient-
free oscillatory response is evaluated as a function of forcing frequency in a range
that is representative of dynamic human motion (0–3Hz). Scaled amplitudes of the
transient-free displacement and stress signals at the cell-PCM interface are computed
as functions of frequency for several values of the material and geometric parame-
ters. The analytical biphasic solution developed herein can also be used to verify
the accuracy of biphasic finite element methods that model deformation of soft tis-
sues with material interfaces via penalty methods (e.g., joint contact problems [5]).
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2. Reduction of biphasic theory for the case of radial deformation.

2.1. Biphasic governing equations. The modern mixture theories [3], [25]
provide a foundation for modeling the mechanics of articular cartilage and other bio-
logical soft tissues. In these mixture models, variations in structure and composition
within a tissue are quantified via material parameters. The biphasic model [18], [16],
based on Bowen’s theory of incompressible mixtures [3], has been widely employed in
modeling the mechanics of articular cartilage and other orthopedic tissues (e.g., in-
tervertebral disc [11], bone [14], meniscus [20]).

In biphasic models of articular cartilage, the ECM is idealized as a solid phase that
is saturated by a second phase of interstitial fluid. This continuum model is valid on
scales for which the two phases can be treated as superimposed continua with an inter-
phase drag mechanism [13]. Since the diameter of a chondrocyte is several orders of
magnitude larger than the characteristic length scale of the ECM constituents and the
cell cytoskeleton, this continuum approach is appropriate for modeling local biphasic
cell-matrix mechanics. While biphasic models of cartilage ignore physicochemical
effects, they capture essential load-bearing mechanisms including deformation of the
tissue matrix, pressurization of the interstitial fluid, and dissipation due to interphase
drag.

In this study, flow and deformation in the chondron are modeled using linear
biphasic theory [18]. The momentum balance laws for the solid and fluid phases are,
respectively,

∇ · σs + Π = 0, ∇ · σf − Π = 0,(2.1)

where σs and σf are partial Cauchy stress tensors that measure the force per unit
mixture area on each phase. The symbol Π denotes a momentum exchange vector
that accounts for the interphase drag force as fluid flows past solid in the mixture.
Note that, in biphasic models of cartilage, the contribution of inertial terms to the
momentum balance equations is negligible as the motion is dominated by elastic de-
formation and diffusive drag, and occurs at relatively low frequencies. The mixture
is assumed to be intrinsically incompressible and saturated, so that

φ∇ · (∂tu) + (1 − φ)(∇ · v) = 0,(2.2)

where u is the solid displacement, v is the fluid velocity, and φ is the solid volume
fraction, which is constant in the linear model and typically less than 20%. The solid
phase is assumed to be linear elastic and isotropic, the fluid phase is assumed to be
inviscid, and the momentum exchange is assumed to be due to Darcy’s Law. The
resulting constitutive laws are

σs = −φpI + λtr(e)I + 2µe, σf = −(1 − φ)pI, Π = K(v − ∂tu),(2.3)

where I is the identity tensor, p is a pore pressure used to enforce the incompressibility
constraint (2.2), e(= 1/2(∇u + ∇uT )) is the infinitesimal strain tensor, λ, µ are
Lamé coefficients for the solid phase, and K is a diffusive drag coefficient. The Lamé
coefficients λ, µ are associated with drained elastic equilibrium states that occur under
static loading when all fluid flow has ceased in the mixture. An alternate set of
elastic moduli are the Young’s modulus E and Poisson ratio ν (0 ≤ ν < 0.5), where
µ = E

2(1+ν) and λ = Eν
(1+ν)(1−2ν) .

By substituting (2.3) into (2.1), the governing equations (2.1) and (2.2) constitute
a system of seven equations in the seven unknowns u,v, p. The fluid velocity v is
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eliminated to yield the reduced system of four equations in the four unknowns u, p:

∂t(∇ · u) = k∇2p, µ

[
1

1 − 2ν
∇(∇ · u) + ∇2u

]
= ∇p,(2.4)

where k = (1−φ)2

K is the permeability. The fluid velocity is then given by

v = ∂tu − 1 − φ

K
∇p.(2.5)

Based on in situ testing of intact cartilage from knee joints, typical mean values for
the ECM material parameters in the linear biphasic model are known to vary with
both site and species. In [2], mean parameter values in normal human knees were
found to lie in the ranges HA ≡ λ+ 2µ = 0.53-0.70MPa, ν = 0.00-0.10 and k = 1.18-
2.17 × 10−15m4/N·s.

2.2. Boundary and interface conditions. On a bounded biphasic domain Ω,
a boundary value problem is obtained by solving (2.4) subject to boundary conditions
that prescribe values of the pore pressure p, and solid displacement u or mixture
traction vector t = (σs + σf ) · n on the boundary ∂Ω with unit outward normal n.
When Ω contains an internal interface Γ with unit outward normal n, the following
biphasic interface conditions are enforced on Γ [10]:

[[u]] = 0, [[p]] = 0, [[λtr(e)I + 2µe]] · n = 0, [[k∇p]] · n = 0,(2.6)

where [[•]] ≡ (•)+ − (•)−. Since the first two relations in (2.6) require continuous
displacement and pressure, respectively, the last two relations provide four equations
for the four unknown quantities on the interface Γ.

2.3. Reduced equations for the case of radial deformation. Let r =
(ρ, θ, φ) denote a spherical coordinate system. A radial biphasic model for chon-
dron deformation is developed by assuming that the displacement u(r, t) has only
a radial component and that the displacement and pressure p(r, t) vary only in the
radial direction ρ. Hence,

u(r, t) = (u(ρ, t), 0, 0), p(r, t) = p(ρ, t).(2.7)

Substituting into the first relation of (2.4) and integrating, we arrive at

∂ρp = k−1∂tu− ρ−2c(t),(2.8)

where c(t) is an arbitrary function of time. Substituting (2.7) into the second relation
of (2.4) and using (2.8) yield

∂tu = kHA
(
ρ−2∂ρ(ρ

2∂ρu) − 2ρ−2u
)

+ kρ−2c(t),(2.9)

where HA = λ+ 2µ is called the aggregate modulus. For the radial chondron model,
equations (2.8)–(2.9) are the reduced governing equations for the unknown displace-
ment u(ρ, t) and pore pressure p(ρ, t).

In order to integrate (2.8), first take the divergence of the second relation in (2.4)
to obtain

∇2p = HA∇2(∇ · u).(2.10)
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It then follows that p = HA(∇·u)+ψ, where ψ is harmonic. Substituting this relation
for p into (2.8) and using (2.9), one obtains

HA∂ρ(ρ
−2∂ρ(ρ

2u)) + ∂ρψ = HA
(
ρ−2∂ρ(ρ

2∂ρu) − 2ρ−2u
)

which simplifies to ∂ρψ = 0. Hence the pore pressure is given by

p = HA(2ρ−1u+ ∂ρu) + f(t),(2.11)

where f(t) is an arbitrary function of time.

3. Radial biphasic model of a chondron. A chondron consists of a single cell
(chondrocyte) that is encapsulated by a PCM layer. For this initial model of chondron
mechanics, a spherical geometry is assumed in which a biphasic cell is surrounded by
an attached biphasic layer that represents the PCM (Figure 1.2). The displacement u
and velocity v are assumed to be nonzero in only the radial direction and depend only
on the radial coordinate ρ and time t. Consequently, the reduced biphasic equations
of section 2.3 apply.

This study focuses on the use of biphasic solutions to model the effect of the
large PCM-to-cell modulus ratio on signal transmission from the ECM to the cell via
the PCM layer. Recent micropipette experiments on isolated chondrons indicated
that the PCM was much stiffer than the chondrocyte in healthy human cartilage
(mean HA

C /H
A
P = 0.044), but that the PCM stiffness decreased significantly in the

osteoarthritic group (mean HA
C /H

A
P = 0.071) [1]. The biphasic solutions considered

herein enable a parametric analysis that can provide insight into the effect of tissue
degradation, and subsequent loss of PCM stiffness, on mechanical signal transmission
in the chondron. A secondary benefit is that the analytical solution in the case
kC = kP can be used to verify the accuracy of biphasic finite element codes that
employ penalty methods (e.g., [5]) to enforce the interface conditions (2.6).

3.1. Governing equations. The radial biphasic interface problem for mechan-
ical signal transmission in a chondron is now formulated. In the cell (0 ≤ ρ ≤ a), the
requirement that the solid velocity ∂tu is bounded at ρ = 0 implies that c(t) ≡ 0 in
(2.9). In addition, the first relation in (2.6) implies that ∂tu is continuous at ρ = a.
By (2.8), the last relation in (2.6) will then be satisfied provided that c(t) ≡ 0 for
a < ρ ≤ b. Hence the reduced governing equations (2.9) and (2.11) are, respectively,

∂tu =

{
kCH

A
C

(
ρ−2∂ρ(ρ

2∂ρu) − 2ρ−2u
)
, 0 ≤ ρ ≤ a,

kPH
A
P

(
ρ−2∂ρ(ρ

2∂ρu) − 2ρ−2u
)
, a < ρ ≤ b,

t > 0,(3.1)

p =

{
HA
C (2ρ−1u+ ∂ρu) + fC(t), 0 ≤ ρ ≤ a,

HA
P (2ρ−1u+ ∂ρu) + fP (t), a < ρ ≤ b,

t > 0.(3.2)

The subscripts C and P denote quantities associated with the chondrocyte and PCM,
respectively.

At this point, it is observed that the pressure p(ρ, t) and displacement u(ρ, t)
are uncoupled in the reduced governing equations (3.1)–(3.2). The diffusion equation
(3.1) can be solved on 0 ≤ ρ ≤ b subject to the first and third jump conditions of
(2.6) at ρ = a, and a time-varying displacement boundary condition at ρ = b. The
pressure is then obtained from (3.2), where fC(t) and fP (t) are used to satisfy the
second jump condition of (2.6) at ρ = a, and to satisfy a pressure boundary condition
at ρ = b. Note that satisfaction of the fourth jump condition in (2.6) follows from
(2.8) by displacement continuity at ρ = a and the fact that c(t) = 0 for 0 ≤ ρ ≤ b.
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3.2. Reduction to an eigenvalue problem in the case kC = kP . Consider
separable solutions u(ρ, t) = e−γtφ(ρ) of (3.1). Substitution and separation of vari-
ables leads to the following eigenvalue problem for the eigenvalue-eigenfunction pair
(γ, φ):

Lφ = γφ, where L ≡
{

kCH
A
C ρ

−2
[
∂ρ(ρ

2∂ρ) − 2
]
, 0 ≤ ρ ≤ a,

kPH
A
P ρ

−2
[
∂ρ(ρ

2∂ρ) − 2
]
, a < ρ ≤ b.

(3.3)

In this study, the signal transmission problem is considered for a time-varying dis-
placement u(b, t) prescribed at the outer PCM boundary. The prescribed displace-
ment models the arrival of a mechanical signal from the ECM at the boundary of
the chondron. Since displacement is prescribed, a homogeneous boundary condition
is employed for the eigenfunction φ at ρ = b (time-dependence is incorporated via
Duhamel’s principle in section 3.3.1). Along with the homogeneous boundary condi-
tion, the first and third jump conditions in (2.6) give

φ(b) = 0, φ(a+) = φ(a−), HA
P φ

′
(a+) −HA

Cφ
′
(a−) =

2(λC − λP )

a
φ(a).(3.4)

Note that the third relation in (3.4) has been obtained from the third condition in
(2.6) by employing the second relation in (3.4), where φ(a) ≡ φ(a+) = φ(a−).

It is straightforward to show that the operator L in (3.3) is self-adjoint in the
special case where the permeability of the cell kC is equal to the permeability of
the PCM kP (see Appendix A). In this case, all eigenvalues γj(j = 1, 2, . . . ) of the
eigenvalue problem (3.3)–(3.4) are real and distinct, the corresponding eigenfunctions
φj(j = 1, 2, . . . ) are orthogonal, and the common value of the permeability is denoted
by k.

Eigenfunctions for the eigenvalue problem (3.3)–(3.4) are constructed via the
following representation based on spherical Bessel functions that satisfy (3.3):

φj =

⎧⎪⎪⎨
⎪⎪⎩

kHA
C

γjρ2

[
sin

(√
γj
kHA

C

ρ

)
−
√

γj
kHA

C

ρ cos

(√
γj
kHA

C

ρ

)]
, 0 ≤ ρ ≤ a,

δjkH
A
P

γjρ2

[
sin

(√
γj
kHA

P

(ρ+ κj)

)
−
√

γj
kHA

P

ρ cos

(√
γj
kHA

P

(ρ+ κj)

)]
, a < ρ ≤ b.

(3.5)

In (3.5), κj and δj are constants that are used to satisfy the interface conditions (3.4).
Using (3.5) in the first condition of (3.4) gives

κj =

√
kHA

P

γj
tan−1

(√
γj
kHA

P

b

)
− b.(3.6)

The second condition in (3.4) gives

δj =
HA
C

HA
P

sin

(√
γj
kHA

C

a

)
−
√

γj
kHA

C

a cos

(√
γj
kHA

C

a

)

sin

(√
γj
kHA

P

(a+ κj)

)
−
√

γj
kHA

P

a cos

(√
γj
kHA

P

(a+ κj)

) .(3.7)
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Lastly, (3.5) is substituted into the last condition of (3.4). Using (3.6) and (3.7), the
constants κj and δj are eliminated and, after some manipulation, the following non-

dimensional characteristic equation for the scaled eigenvalues γ̄j =
γja

2

kHA
C

is obtained:

[
F̄1(γ̄) sin

(√
γ̄
)

+ F̄3(γ̄) cos
(√
γ̄
)]

sin

(
b− a

a

√
ε1γ̄

)

+
[
F̄2(γ̄) cos

(√
γ̄
)

+ F̄4(γ̄) sin
(√
γ̄
)]

cos

(
b− a

a

√
ε1γ̄

)
= 0,(3.8)

where

F̄1(γ̄) = −4ε1(βP − ε2) − 4b

a
γ̄ε21(βP − ε2) − b

a
γ̄2ε31,

F̄2(γ̄) = −4(b− a)

a
γ̄ε

3/2
1 (βP − ε2) +

b

a
γ̄2ε

5/2
1 ,

F̄3(γ̄) = 4γ̄1/2ε1(βP − ε2) +

(
4b

a
βP − 1

)
γ̄3/2ε21 −

4b

a
γ̄3/2ε21ε2,

F̄4(γ̄) =
4(b− a)

a
γ̄1/2ε

3/2
1 (βP − ε2) − γ̄3/2ε

5/2
1 ,

βP = µP

HA
P

, ε1 =
HA

C

HA
P

, and ε2 = µC

HA
P

.

Note that the eigenvalues have been scaled by the quantity tC ≡ a2/(kHA
C ), which

is the gel relaxation time [17] for the chondrocyte.

Given that the PCM is much stiffer than the chondrocyte, the characteristic
equation (3.8) is analyzed in the regime where ε1 � 1. Using (3.8), it is straight-

forward to show that, to leading-order, the eigenvalues γ̄(0) satisfy sin(
√
γ̄(0)) −√

γ̄(0) cos(
√
γ̄(0)) = 0. The eigenvalues γ̄

(0)
j are well separated (e.g., γ̄

(0)
1 ≈ 20.19,

γ̄
(0)
2 ≈ 59.68, γ̄

(0)
3 ≈ 118.90) and, as j → ∞, γ̄j ∼ (j + 1/2)2π2 with separation

∆γ̄j = γ̄j − γ̄j−1 ∼ 2jπ2. As the ratio ε1 increases up to 0.1, the separation of the
eigenvalues does not deviate far away from this asymptotic behavior. Hence, the first
N roots of the characteristic equation (3.8) are readily obtained in MAPLE using the
fsolve routine.

It is noted that the smallest leading-order eigenvalue γ̄
(0)
1 represents a charac-

teristic diffusion time tP for stress relaxation in the chondron. Comparison to the
biphasic gel relaxation time for the cell tC indicates that

tP =
1

γ 1

∼ 1

γ̄1

a2

kHA
C

≈ 0.04953
a2

kHA
C

= (0.04953)tC .(3.9)

Hence, the radial chondron model indicates that the presence of a stiff PCM layer
encapsulating the chondrocyte reduces the biphasic gel relaxation time by a factor of
20. This result is consistent with the functional role of the PCM as a mechanical signal
transmitter. Components of the transient deformation are dissipated on time scales
that are much faster than the typically lengthy relaxation times associated with stress
diffusion in the ECM of articular cartilage. Hence, in the context of forced dynamic
loading of a cartilage layer, it is likely that the transient-free oscillatory response is the
dominant component of the mechanical signal that is transmitted to the chondrocyte.
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3.3. Signal transmission model. The solution of (3.1)–(3.2) subject to a time-
dependent displacement boundary condition at ρ = b is now considered. At the
cell-PCM interface (ρ = a) the first and third jump conditions in (2.6) reduce to

u(a+, t) = u(a−, t), HA
P ∂ρu(a

+, t) −HA
C ∂ρu(a

−, t) =
2

a
(λC − λP )u(a, t), t > 0,

(3.10)

respectively. The displacement must be zero at ρ = 0, and a time-dependent displace-
ment signal is prescribed at the outer cell boundary:

u(0, t) = 0, u(b, t) = I(t), t > 0.(3.11)

The chondron is also assumed to be free of displacement at t = 0 so that u(ρ, 0) = 0
(0 ≤ ρ ≤ b). The second boundary condition in (3.11) models the arrival of a mechan-
ical signal at the interface between the chondron and ECM. Clearly, the assumption
of purely radial deformation is a simplification that facilitates a parametric analysis
of signal transmission in the chondron. In reality, the relationship between local me-
chanics at the cellular scale and external loading of a cartilage layer is highly complex,
requiring the solution of the three-dimensional biphasic equations at multiple length
scales. As such, the applied displacement signal I(t) is interpreted as a radial dis-
placement averaged over the surface of the interface between the chondron and the
extracellular matrix.

3.3.1. Series solution in the case kC = kP . The homogeneous differential
equation (3.1), subject to the time-dependent boundary condition in (3.11), is trans-
formed to a nonhomogeneous equation with a homogeneous boundary condition by
writing u(ρ, t) = v(ρ, t) + w(ρ, t), where

w(ρ, t) = I(t)

{
α3ρ

2, 0 ≤ ρ ≤ a,
α1ρ

2 + α2ρ, a < ρ ≤ b.
(3.12)

The coefficients α1, α2, α3 are chosen such that w(ρ, t) satisfies the interface conditions
(3.10) and boundary conditions (3.11). They are

α1 =
HA
P − 2HA

C − 2λC + 2λP
bχ

, α2 =
2a(HA

C −HA
P + λC − λP )

bχ
, α3 =

−HA
P

bχ
,

where χ = (b− 2a)HA
P +2(b−a)(−HA

C +λP −λC). The function v(ρ, t) then satisfies
the nonhomogeneous equation

∂tv =

{
kHA

C

(
ρ−2∂ρ(ρ

2∂ρv) − 2ρ−2v
)

+ hC(ρ, t), 0 ≤ ρ ≤ a,

kHA
P

(
ρ−2∂ρ(ρ

2∂ρv) − 2ρ−2v
)

+ hP (ρ, t), a < ρ ≤ b,
t > 0,(3.13)

where the functions hC(ρ, t), hP (ρ, t) are given by

hC(ρ, t) = 4kHA
Cα3I(t) − α3ρ

2I
′
(t), hP (ρ, t) = 4kHA

P α1I(t) − (α1ρ
2 + α2ρ)I

′
(t).

Equation (3.13) is solved subject to the interface conditions

v(a+, t) = v(a−, t), HA
P ∂ρv(a

+, t) −HA
C ∂ρv(a

−, t) =
2

a
(λC − λP )v(a, t), t > 0,

(3.14)



CELL-MATRIX MECHANICS IN ARTICULAR CARTILAGE 1597

the homogeneous boundary conditions

v(0, t) = 0, v(b, t) = 0, t > 0,(3.15)

and the modified initial condition

v(ρ, 0) = −w(ρ, 0), 0 ≤ ρ ≤ b.(3.16)

The solution of (3.13)–(3.16) is then obtained via Duhamel’s principle [4]. Let

v(ρ, t) =

∫ t

0

ṽ(ρ, t− s; s)ds,(3.17)

where the new function ṽ(ρ, t; s) satisfies the homogeneous equation

∂tṽ =

{
kHA

C

(
ρ−2∂ρ(ρ

2∂ρṽ) − 2ρ−2ṽ
)
, 0 ≤ ρ ≤ a,

kHA
P

(
ρ−2∂ρ(ρ

2∂ρṽ) − 2ρ−2ṽ
)
, a < ρ ≤ b,

t > 0(3.18)

subject to the interface conditions

ṽ(a+, t) = ṽ(a−, t), HA
P ∂ρṽ(a

+, t) −HA
C ∂ρṽ(a

−, t) =
2

a
(λC − λP )ṽ(a, t), t > 0,

(3.19)

the homogeneous boundary conditions

ṽ(0, t) = 0, ṽ(b, t) = 0, t > 0,(3.20)

and the initial condition

ṽ(ρ, 0; s) = −w(ρ, 0) +

{
hC(ρ, s), 0 ≤ ρ ≤ a,
hP (ρ, s), a < ρ ≤ b.

(3.21)

Assuming separable solutions, ṽ(ρ, t; s) = e−γtφ(ρ), the eigenfunctions φj(j =
1, 2, . . . ) and the eigenvalues γj(j = 1, 2, . . . ) are those of section 3.2. Hence, the
solution of the time-dependent mechanical signal transmission model (3.1), (3.11) is
given by

u(ρ, t) = w(ρ, t) +
∞∑
j=1

[∫ t

0

cj(s)e
γjsds

]
e−γjtφj(ρ),(3.22)

where w(ρ, t) is given by (3.12) and

cj(s) =
〈h(ρ, s), φj(ρ)〉
〈φj(ρ), φj(ρ)〉 , h(ρ, s) = −w(ρ, 0) +

{
hC(ρ, s), 0 ≤ ρ ≤ a,
hP (ρ, s), a < ρ ≤ b.

(3.23)

Recall that the inner product in (3.23) is defined as 〈f, g〉 =
∫ b
0
f(s)g(s)s2ds. Once

the displacement solution is known, a series solution for the pore pressure p(ρ, t) (see
(2.11)) is obtained by substitution of (3.22) into

p(ρ, t) =

{
HA
C

[
2ρ−1u(ρ, t) + ∂ρu(ρ, t)

]
+ fC(t), 0 ≤ ρ ≤ a,

HA
P

[
2ρ−1u(ρ, t) + ∂ρu(ρ, t)

]
+ fP (t), a < ρ ≤ b.

(3.24)



1598 MANSOOR A. HAIDER

The function fP (t) is used to match the pore pressure to a prescribed function p0(t)
at ρ = b, so that

fP (t) = p0(t) −HA
P

[
2b−1I(t) + ∂ρu(b, t)

]
.(3.25)

The function fC(t) is used to satisfy the second condition in (2.6) and is given by

fC(t) = fP (t) + 2a−1(HA
P −HA

C )u(a, t) +HA
P ∂ρu(a

+, t) −HA
C ∂ρu(a

−, t).(3.26)

From (3.22) and (3.24), series solutions for the partial stress components σs and σf

in (2.3) and the fluid-phase velocity, v, in (2.5) can also be obtained by substitution.

3.3.2. Finite difference solution in the case kC �= kP . The governing dis-
placement equation (3.1) is rewritten as

∂tu = r
(
∂2
ρu+ 2ρ−1∂ρu− 2ρ−2u

)
, 0 < ρ < b, where r =

{
kCH

A
C 0 < ρ < a,

kPH
A
P a < ρ < b.

(3.27)

Equation (3.27) was solved numerically using a finite difference method on a regular
spatial mesh subject to the boundary conditions (3.11) and the interface conditions
(3.10). In the discretization, backward and centered finite difference approximations
were employed in time and space, respectively, at all interior mesh points except
those immediately to the left and right of the interface at ρ = a, where the interface
conditions (3.10) were enforced. The details of the numerical scheme employed to
obtain the displacement solution are presented in Appendix B. Via first-order finite
difference approximations of the spatial derivative of displacement, the radial strain
∂ρu, pore pressure (3.24), and solid stress (2.3) were evaluated once the displacement
solution was obtained. The accuracy of the finite difference scheme was verified in
the case kC = kP by comparison to the analytical solution presented in section 3.3.1.

4. Application: Parametric analysis for a sinusoidal displacement.

4.1. Transient-free displacement solution. Deformation of the chondron
was simulated for a prescribed sinusoidal displacement with amplitude u0 and fre-
quency ω at the outer PCM boundary:

u(b, t) = I(t) = u0 sin(ωt), t > 0.(4.1)

This boundary condition models the arrival of a mechanical signal at the PCM-ECM
interface under conditions of dynamic external loading of a joint.

In the case kC = kP = k, the function h(ρ, s) in (3.23) reduces to

h(ρ, s) = u0 [h1(ρ) sin(ωs) + h2(ρ) cos(ωs)],

where

h1(ρ) =

{
4kHA

Cα3, 0 ≤ ρ ≤ a,
4kHA

P α1, a < ρ ≤ b,
h2(ρ) =

{ −α3ωρ
2, 0 ≤ ρ ≤ a,

−ω(α1ρ
2 + α2ρ), a < ρ ≤ b.

Hence, the coefficients cj(s) in (3.22)–(3.23) are given by

cj(s) =
u0

Aj

[
A

(1)
j sin(ωs) +A

(2)
j cos(ωs)

]
,(4.2)
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where

A
(1)
j = 〈h1(ρ), φj(ρ)〉, A(2)

j = 〈h2(ρ), φj(ρ)〉, Aj = 〈φj(ρ), φj(ρ)〉.(4.3)

Substituting these relations into (3.22), the following series solution is obtained for
the case of a prescribed sinusoidal displacement:

u(ρ, t)

u0
= vtr(ρ, t) + v∞(ρ, t) + sin(ωt)

{
α3ρ

2, 0 ≤ ρ ≤ a,
α1ρ

2 + α2ρ, a < ρ ≤ b,
(4.4)

where

vtr(ρ, t) =

∞∑
j=1

ωA
(1)
j − γjA

(2)
j

Aj(γ2
j + ω2)

e−γjtφj(ρ),(4.5)

v∞(ρ, t) =

∞∑
j=1

[
γjA

(1)
j + ωA

(2)
j

Aj(γ2
j + ω2)

sin(ωt) +
−ωA(1)

j + γjA
(2)
j

Aj(γ2
j + ω2)

cos(ωt)

]
φj(ρ).(4.6)

In (4.4), vtr(ρ, t) is the scaled transient displacement that, for a stiff PCM layer,
tends to zero rapidly as t→ ∞. Consequently, the parametric analysis was based on
evaluation of the steady displacement in a range of frequencies (0–3Hz) that is typical
of human joint motion.

In the case kC �= kP , the finite difference solution of section 3.3.2 was employed to
evaluate transient-free deformation in the chondron. The time-marching method was
allowed to run until a steady state deformation signal was obtained with amplitude
that changed by less than 1%. Via a mesh refinement analysis in the case kC = kP ,
it was established that a spatial mesh resolution of M = 300 and a time step of
∆t = 1/300 were sufficient for obtaining graphs in the parametric analysis that were
indistinguishable in the two cases.

4.2. Parametric analysis. We employed the analytical and finite difference
solutions in a parametric analysis of mechanical signal transmission through the PCM
layer. Transient-free radial displacement, solid stress, and radial strain were used
to assess the functional role of the PCM as a layer that facilitates transmission of
mechanical signals to the chondrocyte and, simultaneously, protects the cell from
excessive forces. In the parametric analysis, the PCM Young’s modulus was varied in
the range EP = 10–100kPa, with particular attention to the mean measured values
for normal (EP = 66.5kPa) and OA (EP = 41.3kPa) human chondrons obtained in a
recent micropipette aspiration study [1]. Values of the Young’s modulus for the cell,
and the Poisson ratio for the cell and PCM were taken as EC = 1kPa, νC = 0.43
and νP = 0.04, respectively [1]. Reference values for the radii of the chondrocyte and
chondron were taken as a = 10µm and b = 12.5µm, respectively, and the solid volume
fraction was φC = φP = 0.17 [6]. The amplitude of the prescribed displacement signal
was chosen as u0 = (b− a)/10.

To date, only limited estimates of permeability in the chondrocyte and PCM are
available. In a micropipette analysis of creep deformation of isolated normal and OA
human chondrocytes using a viscoelastic half-space model [24], a rough estimate of
chondrocyte permeability on the order of 10−15m4/N·s was obtained using a char-
acteristic creep time based on the biphasic gel relaxation time [18]. A more direct
measurement of cellular permeability for osteoblast-like cells, via cytoindentation,
found a much larger permeability on the order of 10−10m4/N·s [19]. While no direct
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Fig. 4.1. Scaled amplitude, A(ω), of the transient-free displacement at the cell-PCM interface
(4.7) for frequencies in the range 0–3Hz in the case kC = kP . (a) kC = kP = 10−14m4/N·s; (b)
kC = kP = 10−15m4/N·s.

measurements of PCM permeability are currently available, given its composition, it
is reasonable to assume that kP should not deviate by more than a few orders of
magnitude from the permeability of cartilage ECM (i.e., ∼ 10−15m4/N·s). Based on
these observations, the range of permeability for the parametric analysis was chosen
as (kC , kP ) = (10−15–10−12, 10−16–10−14)m4/N·s.

4.2.1. Transmission of displacement. To assess the role of the PCM as a
transmissive layer that encapsulates the chondrocyte, the scaled amplitude of the
transient-free displacement at the cell-PCM interface

A(ω) =
Amp(u∞(a, t))

u0
(4.7)

was evaluated. In the case kC = kP , A(ω) is given by the following series obtained
from (4.4):

A(ω) ≈

√√√√√
⎛
⎝α3a2 +

N∑
j=1

γjA
(1)
j + ωA

(2)
j

Aj(γ2
j + ω2)

φj(a)

⎞
⎠

2

+

⎛
⎝ N∑
j=1

−ωA(1)
j + γjA

(2)
j

Aj(γ2
j + ω2)

φj(a)

⎞
⎠

2

,

where the infinite series was truncated at N terms. The decay in series coefficients
is governed by the magnitude of the eigenvalues γj with increasing j. Given that

the eigenfunctions φj(ρ) are O(γ
−1/2
j ) as j → ∞, it is straightforward to show that

terms in the sums of A(ω) are O(γ−1
j ) as j → ∞. The scaled amplitude A(ω) was

evaluated in MAPLE for 30 frequencies in the range 0–3Hz, which is typical of human
joint motion. Numerical convergence of A(ω) to a tolerance of 10−3 was achieved with
N = 100 terms of the series. In the case kC �= kP , A(ω) was computed by allowing the
finite difference method to proceed until the amplitude of the displacement changed
by less than 1% between successive periods of the oscillation.

In the case kC = kP , plots of scaled amplitude A(ω) versus forcing frequency
f = ω/(2π), for the range of parameters considered, are shown in Figure 4.1. When
plotted on the same graph, curves obtained using the numerical solution were indis-
tinguishable from those obtained using the analytical series solution. It is observed
that a highly stiff PCM layer preserves transmission of a transient-free time-varying
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Table 4.1

Intervals of the scaled amplitude A(ω) for frequencies in the range 0–3Hz with varying perme-
ability in normal and OA chondron models.

[k in m4/N·s] kC = 10−12 kC = 10−13 kC = 10−14 kC = 10−15

kP = 10−14 Normal (0.95, 0.95) (0.95, 0.95) (0.92, 0.95) (0.82, 0.94)
OA (0.93, 0.94) (0.93, 0.94) (0.88, 0.94) (0.75, 0.92)

kP = 10−15 Normal (0.81, 0.95) (0.81, 0.95) (0.78, 0.95) (0.70, 0.94)
OA (0.68, 0.94) (0.67, 0.94) (0.64, 0.94) (0.55, 0.92)

kP = 10−16 Normal (0.12, 0.94) (0.12, 0.94) (0.12, 0.93) (0.11, 0.92)
OA (0.05, 0.90) (0.05, 0.90) (0.05, 0.90) (0.05, 0.88)

mechanical signal to the chondrocyte. Transmission is excellent for a permeability
of 10−14m4/N·s in that over 90% signal amplitude is retained in the normal model
(Figure 4.1(a)), with a slight decrease in transmission for the OA model and little
sensitivity to frequency. As the permeability is decreased by one order of magni-
tude, transmission is moderately reduced, decreases with increasing frequency, and
is more sensitive to the reduction in EP observed for OA human chondrons (Figure
4.1(b)). An analysis of A(ω), over the full range of permeabilities under consider-
ation, was conducted and is summarized via range intervals for A(ω) in Table 4.1.
In the normal chondron model, it is observed that A(ω) is in excess of 75% in the
range (kC , kP ) = (10−14–10−12, 10−15–10−14)m4/N·s, and drops significantly as kP
is reduced to 10−16m4/N·s. In this regime, ranges of A(ω) are more sensitive to kP
than to kC . In the range (kC , kP ) = (10−13–10−12, 10−14)m4/N·s, the displacement
is almost fully transmitted through the PCM and there are no differences in A(ω) for
the OA model. By contrast, when kP is reduced to 10−15m4/N·s, a significant drop in
A(ω) is observed for the OA model. These simulations suggest that a PCM permeabil-
ity that is 1–10 times the permeability of cartilage ECM is consistent with excellent
displacement signal transmission through the PCM for normal human chondrons.

4.2.2. Transmission of solid stress. In regimes where displacement signals
are well transmitted through the PCM, it is important to evaluate the magnitude of
forces on the chondrocyte. A parametric analysis of stress amplitude can indicate
the extent to which the PCM serves as a protective layer for the cell. To this end,
the displacement solution and resulting pore pressure (3.24) were substituted into the
first relation of (2.3) to evaluate the solid stress at the chondron boundary and at the
cell-PCM interface. These stress values were used to compute the transient-free solid
stress amplitude ratio

S(ω) =
Amp(σs∞(a, t))

Amp(σs∞(b, t))
.(4.8)

The independently prescribed part of the pore pressure at the chondron boundary,
which would result from transmission of mechanical signals via the ECM to the chon-
dron, was taken to be zero (i.e., p0(t) ≡ 0) in both the numerator and denominator of
(4.8). The ratio S(ω) provides a measure of the extent to which a stress signal that
arrives at the chondron is dissipated as it is transmitted through the PCM. The solid
stress was chosen as the measure since it is an indicator of forces that are transmitted
to intracellular components (e.g., cytoskeleton, nucleus, organelles), which could be
adversely affected by excessive forces.



1602 MANSOOR A. HAIDER

Fig. 4.2. The solid stress amplitude ratio, S(ω), for frequencies in the range 0–3Hz in the case
kC = kP : (a) kC = kP = 10−14,m4/N·s; (b) kC = kP = 10−15m4/N·s.

Table 4.2

Intervals of the stress amplitude ratio S(ω) for frequencies in the range 0–3Hz with varying
permeability in normal and OA chondron models.

[k in m4/N·s] kC = 10−12 kC = 10−13 kC = 10−14 kC = 10−15

kP = 10−14 Normal (0.23, 0.26) (0.26, 0.28) (0.27, 0.49) (0.47, 0.84)
OA (0.25, 0.38) (0.30, 0.38) (0.39, 0.56) (0.64, 0.92)

kP = 10−15 Normal (0.20, 0.25) (0.21, 0.25) (0.23, 0.28) (0.30, 0.50)
OA (0.20, 0.33) (0.21, 0.33) (0.22, 0.35) (0.28, 0.56)

kP = 10−16 Normal (0.18, 0.21) (0.18, 0.21) (0.18, 0.21) (0.18, 0.26)
OA (0.18, 0.21) (0.18, 0.21) (0.18, 0.21) (0.18, 0.26)

In the case kC = kP , evaluation of S(ω) involves first-order derivatives of the

displacement, and it can be shown that the terms in the sums of S(ω) are O(γ
−1/2
j )

as j → ∞. In contrast to the computation of A(ω), evaluation of S(ω) required a
larger number of terms (N = 1000) to guarantee numerical convergence to a tol-
erance of 10−3. Plots of the stress amplitude ratio S(ω) versus forcing frequency,
corresponding to those of Figure 4.1, are shown in Figure 4.2. When plotted on
the same graph, curves obtained using the analytical and numerical solutions were
indistinguishable.

When the chondron permeability is equal to that of cartilage ECM, it is observed
that the stress amplitude in the normal chondron model has been reduced to less than
50% of its prescribed value at ρ = b (Figure 4.2(b)). In this case, S(ω) exhibits only
a slight change in the OA chondron model and is rather insensitive to EP . As the
chondron permeability is increased by an order of magnitude, S(ω) remains less than
0.5 in the normal model but increases significantly in the OA model (Figure 4.2(a)).
In this case of higher permeability, further increases in PCM stiffness reduce the stress
amplitude ratio. An analysis of S(ω) corresponding to Table 4.1 was conducted and
is summarized in Table 4.2. Our attention is focused on the range (kC , kP ) = (10−14–
10−12, 10−15–10−14)m4/N·s, where A(ω) was in excess of 0.75 in the normal chondron
model. In this regime, it is observed that, if the case (kC , kP ) = (10−14, 10−14)m4/N·s
is excluded, then S(ω) is less than 0.30 for all frequencies, with increases up to 0.38
in the corresponding OA models. As kP is decreased to 10−16m4/N·s, S(ω) exhibits
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almost no sensitivity to varying kC . In the range of permeabilities considered, intervals
of S(ω) are more sensitive to kP than to kC , though this is less pronounced than was
the case for A(ω).

The transient-free analyses using A(ω) and S(ω) indicate that retention of the dis-
placement amplitude at a level of at least 75% occurs in conjunction with transmission
of the solid stress amplitude at a level of at most 30% in the ranges of chondron per-
meability given by (kC , kP ) = (10−14–10−12, 10−15)m4/N·s and (kC , kP ) = (10−13–
10−12, 10−14)m4/N·s. In the range (kC , kP ) = (10−13–10−12, 10−14)m4/N·s, there are
only slight differences in the normal and OA models, whereas these differences are
more significant in the range (kC , kP ) = (10−14–10−12, 10−15)m4/N·s, particularly for
displacement transmission. Overall, the chondron model suggests that the functional
role of the PCM as both a transmissive and a protective layer is enhanced in cases
where kC is at least one order of magnitude larger than kP .

4.2.3. Strain in the chondron. It is known that mechanical loading of a carti-
lage layer strongly influences the metabolic activity of the chondrocytes [8]. However,
little is known regarding the specific components of the local cellular environment that
correlate with observed alterations in cell metabolic activity. Based on the hypothesis
that strain may play a significant role in this process, the radial strain distribution
in the chondron was evaluated. PCM permeability was taken on the order of car-
tilage ECM permeability (i.e., kP = 10−15m4/N·s) and, based on the analyses of
sections 4.2.1 and 4.2.2, two values of chondrocyte permeability, kC = 10−13m4/N·s
and kC = 10−14m4/N·s, were considered.

The amplitude of the transient-free radial strain in the chondron is shown in
Figure 4.3 for both the normal and OA models. The case kC = kP = 10−15m4/N·s was
also included for comparison. In the regime where kC is at least one order of magnitude
greater than kP (Figures 4.3(a)–4.3(d)), strain amplitudes are consistent with the
small strain assumption of linear biphasic theory. As kC is increased to 10−15m4/N·s,
large strains are present in the cell, near the cell-PCM interface, and the linear biphasic
model may be inaccurate. In the normal chondron model, when kC is at least one
order of magnitude larger than kP (Figures 4.3(a) and 4.3(c)), peak strain amplitudes
in the chondrocyte increase with frequency and occur near the interface with the
PCM. Strain amplitudes decrease rapidly towards the center of the cell to less than
0.02 and reduce further with increasing frequency. As kC is increased to 10−13m4/N·s,
strain amplitudes in the entire cell are less than 0.04 and there is less sensitivity to
frequency (Figure 4.3(a)), although predictions inside the cell do not accurately reflect
the nonhomogeneous nature of the chondrocyte. Strain amplitudes in the PCM are
insensitive to kC , decrease linearly in the direction of the cell, and increase significantly
with frequency. In the case kC = 10−14m4/N·s (Figure 4.3(c)), there is peak-to-
peak amplification of the strain amplitude from the PCM boundary to the cell-PCM
interface, indicating excellent transmission of radial strain and potential significance
as a signalling mechanism. In contrast, for kC = 10−13m4/N·s (Figure 4.3(a)), the
strain amplitude is significantly diminished, particularly at higher frequencies. In
the OA chondron model (Figures 4.3(b) and 4.3(d)), where EP is roughly 38% lower,
strain amplitudes are increased in the PCM. In the case kC = 10−14m4/N·s, the peak-
to-peak strain amplitude in the OA model drops significantly for higher frequencies,
indicating alteration of strain signal transmission with the decreased PCM stiffness
associated with OA chondrons (Figure 4.3(d)). As kC is increased to 10−13m4/N·s,
strain amplitudes in the cell are greatly diminshed and there is little difference between
the normal and OA models (Figures 4.3(a) and 4.3(b)).
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Fig. 4.3. Amplitude of the transient-free radial strain component in the normal (a), (c), (e)
and OA (b), (d), (f) chondron models. Strain amplitudes, as distributed in the chondron, are
shown at four frequencies in the range 0–3Hz in the cases (a) (kC , kP ) = (10−13, 10−15)m4/N·s,
EP = 66.5kPa, (b) (kC , kP ) = (10−13, 10−15)m4/N·s, EP = 41.2kPa, (c) (kC , kP ) = (10−14,
10−15)m4/N·s, EP = 66.5kPa, (d) (kC , kP ) = (10−14, 10−15)m4/N·s, EP = 41.2kPa, (e) (kC ,
kP ) = (10−15, 10−15)m4/N·s, EP = 66.5kPa, (f) (kC , kP ) = (10−15, 10−15)m4/N·s, EP = 41.2kPa.
The cell and chondron radii are a = 10µm and b = 12.5µm, respectively.

This analysis of strain amplitude in the chondron suggests that while the PCM
serves to significantly reduce transmission of solid stress to the cell, transmission of
radial strain is excellent in normal chondrons when kC is one order of magnitude larger
than a value of kP similar to that of cartilage ECM. For these values of permeability,
the analysis also suggests that transmission of radial strain decreases in the presence
of the lower PCM stiffness associated with OA, particularly at higher frequencies.
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Fig. 4.4. Pore pressure amplitude ratio for the normal (a) and OA (b) chondron models in the
case (kC , kP ) = (10−14, 10−15)m4/N·s for frequencies in the range 0− 3Hz. The cell and chondron
radii are a = 10µm and b = 12.5µm, respectively.

Fluid stress in the chondron was evaluated for (kC , kP ) = (10−14, 10−15)m4/N·s,
via the pore pressure amplitude ratio Amp(p∞(a, t))/Amp(σs∞(b, t)) (Figure 4.4). It is
observed that this ratio is nearly uniform inside the cell, as was the pore pressure itself
(not shown), and does not change significantly in the OA model, or with increasing
frequency. The pore pressure amplitude ratio indicates that the transient-free fluid
stress σf∞ = −(1−φ)p inside the cell is roughly on the same scale as the solid stress at
the outer PCM boundary. The large difference in spatial gradients of the pore pressure
amplitude ratio between the cell and PCM has a less pronounced effect on fluid flow
in the chondron since kC is one order of magnitude larger than kP (see (2.5)). The
isolated effects of fluid stress on chondrocyte metabolic activity are not known. How-
ever, given that forces and deformation of the intracellular organelles are determined
by the solid stress and strain in the biphasic model, these solid phase variables are
more likely to serve as predictors of mechanical effects on chondrocyte metabolism.

5. Summary. The presence of a thin, highly stiff and less permeable PCM layer
surrounding an articular chondrocyte enhances the transmission of displacement and
strain signals from the ECM to the cell while simultaneously protecting the cell from
excessive solid stress. The amplitude of these mechanical signals is rather sensitive to
decreasing stiffness of the PCM, indicating that mechanical signal transmission may be
significantly altered in the presence of OA. The optimal mechanical environment of a
healthy chondrocyte is a complex function of the geometric and material properties of
the cell, the PCM, and the biomechanical interface between these two regions. A more
realistic chondron model would incorporate effects of the lipid bilayer and mechanical
connections between the cell and PCM. Such a model would require measurements of
material parameters for these subcomponents of the cell and its interface, and once
such measurements are available, model predictions could provide a more precise
picture of mechanical signal transduction to the cell. A triphasic model of chondron
mechanics, incorporating physicochemical effects such as the fixed-charge density in
the PCM, can also be considered. Ultimately, chondron mechanics should be coupled
to multiphasic macroscopic models for deformation of the ECM. Such models will
enable a description of relationships between external dynamic loading of a tissue
layer and mechanical signals at the cellular scale. This modeling will be facilitated by
further experimental studies that aim to determine geometric and material properties
of the chondron, and variations in these properties with site, species, and disease.
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Appendix A. Demonstration that L is self-adjoint in the case kC = kP .

Define the inner product 〈F,G〉 ≡ ∫ b
0
F (ρ)G(ρ)ρ2dρ. It is shown that when kC =

kP and the interface conditions (3.4) are satisfied, then 〈Lφ, φ〉 = 〈φ,Lφ〉 (i.e., the
operator L is self-adjoint).

Consider

〈Lφ, φ〉 =

∫ a

0

[
kCH

A
C (∂ρ(ρ

2∂ρφ) − 2φ)
]
φdρ+

∫ b

a

[
kPH

A
P (∂ρ(ρ

2∂ρφ) − 2φ)
]
φdρ.

Integrating once by parts,

〈Lφ, φ〉 = a2φ(a)(kCH
A
Cφ

′
(a−) − kPH

A
P φ

′
(a+)) − kCH

A
C

∫ a

0

ρ2∂ρφ∂ρφdρ

−kPHA
P

∫ b

a

ρ2∂ρφ∂ρφdρ− 2kCH
A
C

∫ a

0

φφdρ− 2kPH
A
P

∫ b

a

φφdρ,

where the first relation in (3.4) has been employed along with the assumptions that
φ and φ

′
are bounded at ρ = 0. A second integration-by-parts yields

〈Lφ, φ〉 =

a2φ(a)(kCH
A
Cφ

′
(a−) − kPH

A
P φ

′
(a+)) + a2φ(a)(kPH

A
P φ

′
(a+) − kCH

A
Cφ

′
(a−))

+kCH
A
C

∫ a

0

φ(ρ)(∂ρ(ρ
2∂ρφ) − 2φ)dρ+ kPH

A
P

∫ b

a

φ(ρ)(∂ρ(ρ
2∂ρφ) − 2φ)dρ,

which simplifies to

〈Lφ, φ〉 = 〈φ,Lφ〉 + a2φ(a)(kCH
A
Cφ

′
(a−) − kPH

A
P φ

′
(a+))

+a2φ(a)(kPH
A
P φ

′
(a+) − kCH

A
Cφ

′
(a−)).

Using the last relation of (3.4), φ
′
(a+) can be eliminated and the expression reduces

to

〈Lφ, φ〉 = 〈φ,Lφ〉 + a2HA
C (kC − kP )(φ(a)φ

′
(a−) − φ(a)φ

′
(a−)).

Since kC = kP , 〈Lφ, φ〉 = 〈φ,Lφ〉 and the operator L is self-adjoint.

Appendix B. Finite difference scheme. Let uji = u(ρi, tj), where ρi = i∆ρ,
tj = j∆t, and ∆ρ = b/M . Let K denote the index of the mesh point to the immediate
left of the cell-PCM interface at ρ = a. Equation (3.27) was discretized using a first-
order finite difference in time and second-order finite differences in space to obtain
the following implicit scheme at time step j. For i = 1, . . . ,K − 1,K + 2, . . . ,M − 1,

uj+1
i − uji

∆t
= r

(
uj+1
i+1 − 2uj+1

i + uj+1
i−1

(∆ρ)2
+

2

ρi

uj+1
i+1 − uj+1

i−1

2∆ρ
− 2

ρ2
i

uj+1
i

)
.(B.1)

For i = K, the first condition in (3.10) was enforced via uj+1
K+1 = uj+1

K . For i =
K+1, the second condition in (3.10) was discretized using first-order finite difference
approximations in space to obtain

HA
P

(
uj+1
K+2 − uj+1

K+1

∆ρ

)
−HA

C

(
uj+1
K − uj+1

K−1

∆ρ

)
=

2

a

(
λCu

j+1
K − λPu

j+1
K+1

)
.(B.2)
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At i = 0 and i = M the boundary conditions at (3.11) were enforced. Marching
in time via j, the finite difference equations were assembled at each time step into a
linear algebraic system that was solved for each set of parameters using MATLAB 6.5.
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Abstract. Spatial patterns of neuronal activity arise in a variety of experimental studies. Pre-
vious theoretical work has demonstrated that a synaptic architecture featuring recurrent excitation
and long-range inhibition can support sustained, spatially patterned solutions in integrodifferential
equation models for activity in neuronal populations. However, this architecture is absent in some
areas of the brain where persistent activity patterns are observed. Here we show that sustained, spa-
tially localized activity patterns, or bumps, can exist and be linearly stable in neuronal population
models without recurrent excitation. These models support at most one bump for each background
input level, in contrast to the pairs of bumps found with recurrent excitation. We explore the shape
of this bump as well as the mechanisms by which this bump is born and destroyed as background
input level changes. Further, we introduce spatial inhomogeneity in coupling and show that this
induces bump pinning: for a given starting position, bumps can exist only for a small, discrete set
of background input levels, each with a unique corresponding bump width.

Key words. neuronal population, spatial pattern, localized activity bump, off-center coupling,
bifurcation, spatial inhomogeneity
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1. Introduction. Evidence suggests that sustained, spatially patterned neu-
ronal activity may play a role in short-term encoding of information. For example,
localized persistent activity, or bumps, may provide the basis for a working memory
of external stimulus features [14, 7, 18] or a representation of internal states such as
head direction (reviewed in [25, 21]). Previous theoretical works have explored the
ways in which a network of spiking neurons with short-range recurrent excitation (i.e.,
positive local coupling) and long-range inhibition can support sustained, spatially or-
ganized activity [28, 1, 15, 13, 8, 17, 16, 4, 5]. These studies focus on various forms of
rate or activity models, in which a single equation encapsulates the temporal evolu-
tion of some measure of the activity level of an entire population of spiking neurons
(i.e., neurons firing regularly with some average spike rate). A related result shows
that when timescales of synaptic dynamics are taken into account in a conductance-
based network model, sustained, localized activity can arise in a two-layer network
of bursting thalamic cells that lacks recurrent excitation [20]. This leads naturally to
the fundamental question of just how crucial the presence of recurrent excitation is
for the existence of sustained spatial patterns of activity in rate or activity models
of populations of spiking neurons. This paper shows that spatially localized activ-
ity can be sustained in a neuronal network without recurrent excitation or bursting
mechanisms.

We consider a rate model of the form

∂u(x, t)

∂t
= −σu(x, t) +

∫ ∞

−∞
w(x− y)f(u(y, t)) dy + h.(1.1)
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w(x)

x

Fig. 1. Off-center coupling function for an excitatory population. Cells at any position x with
w(x) > 0 receive excitatory input from cells at position x = 0, while cells at x with w(x) < 0 receive
inhibitory input.

Equation (1.1) models a single population of spiking neurons. The function u(x, t)
encodes the activity level, or average voltage, of a neuronal subgroup at position
x ∈ (−∞,∞) and time t ≥ 0. The connection function w(x) determines the coupling
between subgroups, and the nonnegative, nondecreasing function f(u) denotes the
neuronal firing rate, or average rate at which spikes are generated, corresponding to
an activity level u. Neurons at a point x are said to be active if f(u(x, t)) > 0. Finally,
the parameter h encodes a constant external stimulus applied uniformly to the entire
neural field [1], such as an average background input level received from other areas
of the brain, and the parameter σ denotes a positive rate constant; the ratio h/σ
represents the baseline level of activity in the population without coupling. Without
loss of generality, we set σ = 1.

In this paper, we take f(u(x, t)) = H(u(x, t)), the Heaviside step function, which
gives

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− y)H(u(y, t)) dy + h.(1.2)

For the Heaviside form of firing rate function, the activity level u = 0 represents an
absolute threshold for synaptic input required to drive spiking activity. This form of
(1.1) was considered in [1] and by many subsequent authors. Further, it was shown in
[15] that results for (1.2) are crucial in determining solution structure for (1.1) with
more general nondecreasing f .

After we detail additional assumptions on the model, we prove that recurrent
excitation is not necessary for the existence of stable stationary, spatially localized
solutions (i.e., bumps) in populations of spiking cells. The synaptic architecture that
we consider, as an alternative to recurrent excitation, takes the form shown in Figure
1. Such an off-center architecture may be relevant in several different contexts. For
example, consider a network featuring interconnected excitatory (E) and inhibitory
(I) populations of cells, in which E-cells are intrinsically capable of spiking and I-cells
inhibit both E-cells and other I-cells. In such a network, activity of E-cells leads
to activity of corresponding I-cells. This may lead to feedback inhibition onto the
active E-cells as well as inhibition of nearby I-cells. This I-I inhibition can in turn
disinhibit nearby E-cells, effectively acting as an off-center form of excitation onto
E-cells, as portrayed in Figure 1. This form of architecture may arise in interactions
of the subthalamic nucleus (E) and external segment of the globus pallidus (I) in the
primate basal ganglia [22, 26]. It also may occur in interactions of thalamocortical
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relay cells (E) and thalamic reticular cells (I) in the thalamus in awake states, where
activity bumps in certain subpopulations of cells can encode head direction [23, 24].
Long-range inhibitory connections have been found in the thalamus [9, 10], but no
thalamic recurrent excitatory connections are known to exist. In the first subsection
of the appendix, we discuss the derivation of the effective coupling shown in Figure 1
from coupled E and I populations modelled by a pair of equations of the form (1.1),
as in [28, 1, 19] but without recurrent excitation, although a rigorous mathematical
derivation, or a complete mathematical treatment of the coupled equations, remains
for future research. Alternatively, this form of suppression of recurrent excitation by
localized inhibitory feedback may be generated by inhibitory interneurons in a variety
of cortical areas, or in the CA1 region of the hippocampus, which features at most
sparse recurrent excitatory connections [6, 27].

We consider this coupling architecture in section 2. Under certain assumptions,
we prove the existence of a bump solution u(x) to (1.2) such that u(x) > 0 if and only
if x ∈ (0, a) for a fixed constant a. We also show that this bump solution is linearly
stable when it exists. Our proof method for existence generalizes that given by Amari
[1] for bumps in (1.2) with lateral inhibition. However, details become much more
subtle due to the more complicated synaptic architecture that we consider.

Unlike the case with recurrent excitation, where two bump solutions exist [1], the
bump of localized positive activity that we find is unique for each fixed h in some
finite interval. We show how the shape of a bump depends on its size, which in turn
depends on h, relative to certain features of the coupling function w(x). Further, as
h varies, bump solutions (parametrized by h) are created and destroyed by atypical
mechanisms that do not involve saddle-node bifurcations (since only a single solution
exists for each h) or the entire bump collapsing to 0, and we explain the possible
mechanisms and how they are selected.

For consideration of stability, we deviate from [1] to give a rigorous linear stability
calculation. A simplified version of the calculation shows that a spatially uniform state
can also be stable, such that the system exhibits bistability, consistent with [20, 24].

It has been argued that coupling strengths between neurons should not be purely
distance dependent but rather should allow for spatial variation [2, 3]. In section 3, we
introduce spatial inhomogeneity in coupling, replacing w(x−y) by w(x−y)p(y) under
the integral in equation (1.2). We set up equations relevant to bump existence in this
case, which we treat through a combination of analysis and numerics. The presence
of spatial inhomogeneity naturally destroys the translation invariance of bumps. In
fact, we find that it induces a form of bump pinning, such that for a given starting
position, bumps exist for only a small, discrete set of background input levels, each
with a unique corresponding bump width. Interestingly, in our primary numerical
example, we find that there is a special bump width which is possible for any starting
position. We comment on possible functional implications of these results in the
discussion in section 4.

2. Spatially homogeneous coupling.

2.1. Assumptions. In this section, we consider (1.2)

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− y)H(u(y, t)) dy + h

with a coupling function w(x) satisfying the hypothesis
(H1) w(x) is continuous and integrable on R and is symmetric; i.e., w(−x) = w(x)

for all x ∈ R.
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Moreover, we assume that there exist constants x∗ > x1 > x∗ > x0 > 0 such that
(H2) w(x) < 0 on (−x0, x0) and on (x1,∞), with w(x0) = w(x1) = 0;
(H3) w(x) is increasing on (0, x∗) and on (x∗,∞);
(H4) w(x) > 0 on (x0, x1);
(H5) w(x) is decreasing on (x∗, x∗).

Coupling functions that satisfy (H2) and (H4) are sometimes called off-center cou-
pling functions.

To simplify notation, we will also assume the following symmetry hypothesis in
certain cases noted below

(H6) there exists δ > 0 such that x1 = x∗ + δ and x0 = x∗ − δ, and w(x∗ + η) =
w(x∗ − η) for all η ∈ [0, δ].

We will comment further on the role of this hypothesis in Remark 2.8 after the
proof of Theorem 2.5. A coupling function w(x) satisfying (H1)–(H6) appears in
Figure 2.

w(x)

x

δ δ

x

W(x)

−h

a1 2

x
ax1

0

w(x  )
*

0x x x x1
*

*

Fig. 2. Off-center coupling function w(x), together with antiderivative W (x). From the plot of
W (x), we can visualize the necessary condition (2.3), W (a) + h = 0, for bump existence.

2.2. Existence of a unique bump. Following Amari [1], we seek stationary
bump solutions u(x) to (1.2), for which u(x) > 0 if and only if x ∈ (0, a) for some
constant a. Note that this is equivalent to the existence of a bump on any other
interval of length a; that is, the system is translation invariant. Such solutions satisfy
the condition

u(x) =

∫ a

0

w(x− y) dy + h .(2.1)

Since limx→∞ w(x) = 0, the fact that limx→∞ u(x) ≤ 0 for such a solution requires
that h ≤ 0. Thus, we impose the existence condition that

(E1) the constant h ≤ 0.
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Let W (x) =
∫ x
0
w(t) dt, which is an odd function. Then (2.1) becomes

u(x) = W (x) −W (x− a) + h.(2.2)

From (2.2), the conditions u(0) = 0 and u(a) = 0 both give

W (a) + h = 0.(2.3)

Figure 2 displays a graphical representation of equation (2.3). Note that for fixed
h < 0, there exist either zero or two solutions of (2.1), unless −h = W (x1).

We will require a second existence condition, namely, that
(E2) W (x) + h > 0 for some x ∈ R

+ and limx→∞W (x) < −h.
For fixed h such that conditions (E1) and (E2) hold, there exist two nonzero solutions
of (2.3). We label these solutions as a1 and a2, where a2 > x1 > a1 > 0. Note that a2

could fail to exist without (E2), if limx→∞W (x) > −h > 0. Let u1(x), u2(x) denote
the corresponding functions defined by ui(x) = W (x) −W (x − ai) + h. Note that
ui(x) = W (x) −W (x− ai) + h = W (ai − x) +W (x) + h = u(ai − x) for all x. This
yields the following symmetry statement.

Proposition 2.1. Each solution ui(x) of (2.3) is symmetric about x = ai/2.
With these definitions, we state one final hypothesis, as an alternative to (H6),

that will be assumed when noted below:
(H6′) W (x0) −W (a2) +W (a2 − a1) > 0.
Proposition 2.2. Assume (H1)–(H5). Fix h such that (E1)–(E2) hold and

a1 < x1 such that W (a1) + h = 0. The function u1(x) defined by (2.1) with a = a1

does not represent a valid bump solution to (1.2). In fact, if we assume (H6) as well,
then u1(x) < 0 on all of (0, a1).

Proof. By construction, u1(0) = 0 and x0 < a1 < x1. Note that u′1(x) =
w(x) − w(a1 − x). Since a1 < x1, it follows that w(a1) > w(0). Thus, u′1(0) =
w(0) − w(a1) < 0. This establishes that u1(x) is not a valid bump.

Further, note that u′1(x) = 0 requires w(x) = w(a1−x). This occurs at x = a1/2,
consistent with the symmetry of u1(x) about x = a1/2. However, we shall see that
when (H6) holds, the equation u′1(x) = 0 has no other solutions in (0, a1), proving
the proposition. To see this, note that by (H6), if there exists x �= a1/2 in (0, a1)
such that u′1(x) = 0, then (a1 − x) − x∗ = x∗ − x, or, equivalently, a1 = 2x∗. But
a1 < x1 < x1 + x0 = 2x∗, so this is not possible.

Remark 2.3. Proposition 2.2 implies that a bump can only possibly exist when
there exists a2 > x1 for which (2.3) holds. Thus, if limx→∞W (x) > −h, in violation
of (E2), then no bump exists.

Now, define the constant A as the smallest positive x value for which W (x) = 0,
guaranteed to exist by (E2) since h ≤ 0.

Proposition 2.4. Assume (H1)–(H5). Fix h such that (E1)–(E2) hold. If
0 < a2 − a1 < A, then the function u2(x), defined by (2.1) with a = a2, does not
represent a valid bump solution to (1.2).

Proof. We compute directly from equation (2.2) that

u2(a1) = W (a1) +W (a2 − a1) −W (a1) = W (a2 − a1) .

If a2 − a1 < A, then u2(a1) < 0. But a1 ∈ (0, a2), so u2(x) is not a bump.
Next we establish some results showing the existence of a valid bump in various

cases. Note that if limx→∞W (x) = 0 (see Figure 2), then we can make a2 arbitrarily
large by choosing h sufficiently close to 0. If a2/2 > x1, then a2 − a1 > 2x1 − a1 >
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a1 > A. Thus, when a2/2 > x1, Proposition 2.4 does not apply, and u2(a1) > 0. In
fact, in this case, we can establish the existence of a bump without hypothesis (H6)
or (H6′), as addressed below in Theorem 2.5. However, as we shall see in subsection
2.4, a2 can also become too large for a bump to exist. This motivates a final existence
condition,

(E3) w(a2 ± x0) < w(0).
As we make h more negative, such that −h grows toward the peak of W , we will also
need to impose (H6) or (H6′) to ensure the existence of a bump.

Theorem 2.5. Assume that (H1)–(H5) hold. Fix h such that (E1)–(E3) hold
and assume that a2/2 > x1. Then the function u2(x) defined by (2.1) with a = a2,
such that −W (a2) = h, is a bump solution to (1.2), with u2(x) > 0 if and only if
x ∈ (0, a2).

Proof. First, recall that a2 > x1, since W (a2) = −h > 0 and W ′(a2) = w(a2) < 0
(see Figure 2). Further, since w(0) < 0 and w(x1) = 0, the hypotheses of the theorem
together with (H2)–(H5) imply that there exist exactly two positive values x′′ > x′ >
x1 such that w(0) = w(x′) = w(x′′), and a2 ∈ (x′ + x0, x

′′ − x0); see Figure 3. This
gives w(0) > w(a2) and a2/2 > x0.

We now show that u2(x) > 0 for x ∈ (0, a2). First, we consider x ∈ (0, x0]. Note
that

u′2(x) = w(x) − w(a2 − x)(2.4)

from (2.2). In particular, u′2(0) = w(0) − w(a2) > 0. Since a2 > x′ + x0, we have
a2−x > x′ for all x ∈ (0, x0]. Thus, w(a2−x) < w(x) and u′2(x) > 0 for all x ∈ (0, x0].

Next, suppose that a2/2 > x1. Now, u′2(x) = w(x) − w(a2 − x) > 0 on (x0, x1]
as well. This holds because on (x0, x1], w(x) ≥ 0, while a2 − x > a2 − x1 > x1, such
that w(a2 − x) < 0 by (H2). It remains to show that u2(x) > 0 for all x ∈ (x1, a2).
To do this, it suffices to show that u2(x) > 0 for all x ∈ (x1, a2/2], since symmetry
(Proposition 2.1) then gives u2(x) > 0 for all x ∈ (0, a2).

Equation (2.2) can be rewritten for u = u2(x) as

u2(x) = (W (x) −W (a2)) +W (a2 − x),(2.5)

using equation (2.3) and the fact that W (x) is odd. We will show that u2(x) in (2.5)
is the sum of two positive terms for x ∈ (x1, a2/2]. When x1 < x ≤ a2/2, it follows
that a2 − x1 > a2 − x ≥ a2/2 > x1. By construction, W (x) > 0 on [x1, a2]. Hence,
W (a2 − x) > 0 for all x ∈ (x1, a2/2]. Now, consider the first term in u2(x) in (2.5),
namely, W (x) −W (a2), for x ∈ (x1, a2/2]. Since W ′(x) = w(x) < 0 on (x1,∞) by
(H2), and x1 < x ≤ a2/2 < a2, we have W (x) > W (a2) for all x ∈ (x1, a2/2]. Thus,
u2(x) is the sum of two positive terms, and hence is positive, on (x1, a2/2], as claimed.
This gives u2(x) > 0 on (0, a2), as desired.

Finally, to complete the proof, we confirm that u2(x) < 0 for all x ∈ (a2,∞). Note
that since W (a2) = −h > 0, u2(x) < 0 is equivalent to W (x) < W (a2)+W (x−a2) by
equation (2.3). Since W (a2) > 0, we have u2(x) < 0 for all x such that W (x− a2) ≥
W (x). Since W (x) decreases on (x1,∞), this implies that u2(x) < 0 for x− a2 ≥ x1,
namely, x ∈ [a2 + x1,∞). Thus, it remains to consider x ∈ (a2, a2 + x1). We will
show that u′2(x) < 0 on (a2, a2 +x1), for u′2(x) given in (2.4), such that u2(x) remains
negative there. Since w(x− a2) > 0 on (a2 + x0, a2 + x1) by (H4), while w(x) < 0 on
this interval by (H2), it is obvious from (2.4) that u′2(x) < 0 on (a2 + x0, a2 + x1).
It remains only to consider x ∈ (a2, a2 + x0]. Condition (E3) gives w(a2) < w(0), so
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Fig. 3. Graphical representation of Theorems 2.5, 2.7, 2.9, and 2.13. Here, a denotes a2 from
the theorems. (a) Illustration of the hypotheses of the theorems. (b) The relation of w(x), w(a2 −x)
resulting from the proof of Theorem 2.9, if a2/2 ≤ x1. (c) The relation of w(x), w(a2 − x) shown
in Theorem 2.13 if a2/2 ∈ (x1, x∗]. (d) The relation of w(x), w(a2 − x) shown in Theorem 2.13 if
a2/2 > x∗.
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u′2(a2) < 0. For x ∈ (a2, a2+x0], we have w(x) < w(0) by (E3), while w(x−a2) > w(0)
by (H3). Thus, u′2(x) remains negative, as desired.

Theorem 2.5 establishes the existence of a bump u2(x) when a2/2 > x1. Next,
we consider the case of a2/2 ≤ x1, corresponding to more negative choices of h.
In this situation, we will prove two different theorems that invoke (H6′) and (H6),
respectively. Note that it is natural to interpret (H6′) as an assumption on the value
of h, for fixed w. On the other hand, (H6) is an assumption about the shape of w,
independent of h. When we assume (H6) below, we restrict the class of w considered,
and we correspondingly restrict the shape of the bump produced (see Theorem 2.9).

Remark 2.6. Note that the proof that u2(x) < 0 for all x ∈ (a2,∞) does not
require a2/2 > x1. Thus, in the proofs of Theorems 2.7 and 2.9 below, we will not
repeat the corresponding arguments.

Theorem 2.7. Assume that w and h are chosen such that (H1)–(H5), (E1)–
(E3), and (H6′) hold and such that a2/2 ≤ x1. Then the function u2(x) defined by
(2.1) with a = a2, such that −W (a2) = h, is a bump solution to (1.2), with u2(x) > 0
if and only if x ∈ (0, a2).

Proof. By symmetry (Proposition 2.1), it suffices to show that u2(x) > 0 on
(0, a2/2]. From the proof of Theorem 2.5, we already have u′2(x) > 0 on (0, x0].
We will first consider x ∈ (a1, a2/2] and then x ∈ (x0, a1]. Note that by (H6′),
W (a2 − a1) > W (a2), so a2 − a1 > a1, and thus the interval (a1, a2/2] is nonempty.
For x ∈ (a1, a2/2], we have a2 − x ∈ (a1, a2), since

a1 < x < a2/2 ≤ a2 − x < a2 .

Thus, W (a2 − x) > −h > 0, with a similar inequality for W (x). Equation (2.2),
together with the fact that W is odd, therefore gives

u(x) = W (x) +W (a2 − x) + h > W (a2 − x) > −h > 0

for x ∈ (a1, a2/2].
Next, suppose x ∈ (x0, a1]. Note that over the range of positive x-values, the

minimum value of W occurs at x = x0, so

u(x) > W (x0) +W (a2 − x) + h =: F (x) forx ∈ (x0, a1] .(2.6)

F (x0) = u(x0) by comparison of (2.2) and (2.6), and u′(x) > 0 on (0, x0] gives u(x0) >
0, so F (x0) > 0. Next, note that F ′(x) = −w(a2−x), so since w(a2−x0) < w(0) < 0,
it follows that F ′(x0) > 0.

Suppose that for some xf ∈ (x0, a1], F
′(xf ) = 0. Then w(a2 − xf ) = 0, so either

a2 − xf = x0 or a2 − xf = x1 (see Figure 2). In the former case, we would have
xf = a2 − x0 > x1 > a1, however, so this cannot occur, and a2 − xf = x1. Thus,
F ′′(xf ) = w′(a2 − xf ) = w′(x1) < 0. Since F (a1) > 0 by (H6′), the maximum
principle implies that F > 0 on the entire interval [x0, a1].

In summary, u(x) > F (x) > 0 on (x0, a1]. Thus, the proof is complete.
Remark 2.8. Note that hypothesis (H6′) requires a2 − a1 > A. That is, if

a2 − a1 < A, then W (x0),−W (a2), and W (a2 − a1) are all negative terms, and (H6′)
cannot hold. Thus (H6′) ensures that we are in a regime in which Proposition 2.4
does not apply.

To conclude this subsection, we show that under the symmetry hypothesis (H6),
there exists a bump u2(x) that is monotone increasing on [0, a2/2) and monotone
decreasing on (a2/2, a2], for a2/2 ≤ x1.
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Theorem 2.9. Assume that (H1)–(H6) hold. Fix h such that (E1)–(E3) hold
and such that a2/2 ≤ x1. Then the function u2(x) defined by (2.1) with a = a2,
such that −W (a2) = h, is a bump solution to (1.2), with u2(x) > 0 if and only if
x ∈ (0, a2). Moreover, u′2(x) > 0 on [0, a2/2) and u′2(x) < 0 on (a2/2, a2].

Proof. Again, from the proof of Theorem 2.5, we have u′2(x) > 0 on (0, x0].
Now, suppose that a2/2 ≤ x1. By the assumption of the theorem, a2 − x0 > x′ >
x1. Therefore, a2/2 > (x0 + x1)/2 = x∗. Together with (H6), this implies that
w(a2 − x) < w(x) remains true on (0, x∗], that w(a2 − x) = w(x) precisely at x =
a2/2 ∈ (x∗, a2 − x∗), and w(a2 − x) > w(x) on (a2/2, a2] (see Figures 2 and 3(a) and
(b)). Thus, u2(x) > 0 for all x ∈ (0, a2), with u2(a2) = 0, if a2/2 ≤ x1.

Corollary 2.10. Let w = w(x, µ) be continuous in µ ∈ R and set W (x, µ) =∫ x
0
w(t, µ) dt. Assume that w satisfies (H1)–(H5) for all µ in a neighborhood of µ = 0

and that w(x, 0) satisfies (H6). Then there exist µ1 < 0 < µ2 and a function a(µ),
with a(0) = a2 given by −W (a2, 0) = h, such that a bump solution uµ(x) of (1.2)
exists, with uµ(x) > 0 if and only if x ∈ (0, a(µ)), for all µ ∈ (µ1, µ2).

Proof. By the implicit function theorem, since Wx(a2, 0) �= 0, a unique function
a(µ) satisfying W (a(µ), µ) + h = 0 exists near µ = 0, with a(0) = a2. The existence
of the bump solution uµ(x) then follows immediately from the proof of Theorem 2.5,
for |µ| sufficiently small.

Remark 2.11. Without hypothesis (H6), or some other restriction on the behavior
of w(x), there could be an unlimited variety of zeros of u′2(x) on (0, a2), depending
on the relative rates of change of w to the left and right of x∗. In fact, without some
hypothesis such as (H6) or (H6′), u2(x) could become negative inside (0, a2), and the
bump could fail to exist, as seen in Proposition 2.4. This issue is explored further in
subsection 2.4.

Remark 2.12. The condition (H6) as stated may seem to represent somewhat
restrictive conditions to be achieved as an architecture of synaptic connections in
a biological neuronal network. However, suppose we consider bumps as a form of
memory. It is possible that for a given pattern of past experiences, only certain sub-
networks within a coupled E-I network should be able to form bumps, corresponding
to the particular memories stored in the network. The learning process could consist
of the scaling of synaptic connections and their associated weights to develop particu-
lar architectural patterns. From this viewpoint, restrictions on synaptic architectures
required for the appearance of bumps might be an essential feature of E-I networks,
to prevent spurious overactivity. See the discussion in section 4 for consideration of
related ideas.

2.3. The shape of the bump without (H6) or (H6′). We have already seen
that hypothesis (H6) gives certain monotonicity properties for the bump u2(x) when
a2/2 ≤ x1. We next characterize more generally how the shape of u2(x) depends on
the position of a2, without assuming (H6) or (H6′), when a2/2 > x1.

Theorem 2.13. If a2/2 ∈ (x1, x∗], then u2 has a unique global maximum at
x = a2/2. If a2/2 > x∗, then u′2(x) has at least three zeroes on (0, a2), including a
local minimum of u2(x) at x = a2/2.

Proof. Suppose that a2/2 > x1. We look for zeroes of u′2(x), as given in equation
(2.4). From the proof of Theorem 2.5, we already know that u′2(x) > 0 on (0, x0].
The condition a2/2 > x1 implies that

w(x1) = 0 > w(a2 − x1),(2.7)
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so in fact w(x) ≥ 0 > w(a2−x) for all x ∈ (x0, x1] and u′2(x) > 0 on (x0, x1]. Suppose
that a2/2 ≤ x∗, the point where w(x) has its minimum (see Figure 3(a)), and define
x̄ by a2 − x̄ = x∗. Then x̄ = a2 − x∗ ≤ x∗. Thus, w(a2 − x) = w(x) at exactly one
value x ∈ (x̄, x∗], namely, at x = a2/2, and this is the only zero of u′2(x) in (0, a2).
As in the previous case, this is a global maximum for u2(x) (see Figure 3(d)).

We now show that if a2/2 > x∗, then in fact u′2(x) = w(a2 − x) − w(x) has at
least three zeroes (see Figure 3(c)). To see this, first note that inequality (2.7) still
holds, since we still have a2/2 > x1. However, w(x∗) < w(a2−x∗), since a2−x∗ > x∗
and w(x) has its minimum at x = x∗. Thus, u′2(x) has at least one zero on (x1, x∗).
For x > x∗, w(x) is increasing by (H3), while w(a2 − x) decreases until x = a2 − x∗,
at which point w(x) > w(a2 − x). Thus, exactly one additional zero of u′2(x) occurs
on (x∗, a2 − x∗). Since a2/2 > x∗, we have a2 − x∗ > a2/2. As noted earlier, u′2(x)
has a zero at x = a2/2 from the form of (2.4); hence, this second zero must occur at
x = a2/2, and u′2(x) has at least one more zero for x > a2 − x∗, by symmetry.

From (2.4), it follows that u′′2(x) = w′(x) + w′(a2 − x), such that u′′2(a2/2) =
2w′(a2/2). When a2/2 > x∗, we have w′(a2/2) > 0 by (H3), such that u′′2(a2/2) > 0;
that is, u2 has a local minimum at a2/2, completing the proof.

Remark 2.14. Examples of bump solutions u2(x) of (2.1) with a2/2 < x∗ and
a2/2 > x∗, respectively, are shown in Figure 4. These plots were generated by solving
(2.1) numerically with a coupling function w(x) defined in a piecewise manner on
[0,∞) as

w(x) =

{ −Kx(x− 1) − ε, x ∈ [0, 1),

−(x− 1 + ε)e−b(x−1), x ∈ [1,∞)
(2.8)

for K, b > 0 and 0 < ε < min{K/4, 1/b}, and then extended to be even on (−∞,∞).
This function satisfies (H1). It also satisfies (H2) and (H4), with x0 = 1

2 [1 −√
1 − 4ε/K] and x1 = 1

2 [1 +
√

1 − 4ε/K] < 1. Assumptions (H3) and (H5) hold
for this w(x) as well, with x∗ = 1/2 and x∗ = 1 + 1/b− ε. Finally, w(x) is symmetric
about x∗ = 1/2 on (x0, x1), satisfying (H6).

From (2.4), no matter what the value of a2, we have u′2(a2/2) = 0. Thus, it is of
interest to estimate u2(a2/2).

Proposition 2.15. If a2/2 > a1 and u2(x) > 0 on (0, a2), then u2(a2/2) > −h.
Proof. If a2/2 > a1, then a2/2 ∈ (a1, a2), so W (a2/2) > −h (see Figure 2). From

(2.2), this implies

u2(a2/2) = 2W (a2/2) + h > W (a2/2) > −h .

Combining Theorem 2.13 and Proposition 2.15 yields the following result.
Corollary 2.16. If a bump u2(x) exists with a2/2 ∈ (x1, x∗], then the activity

level u2(x) attains a maximum value greater than −h. If a bump u2(x) exists with
a2/2 > x∗, then at the local activity minimum a2/2, the activity level is bounded below
by −h.

2.4. Birth and death of bumps. We have seen that the function u2(x) is
a bump for some values of a2, but may fail to be a bump in some cases, such as
a2 − a1 < A, as in Proposition 2.2. In fact, since limx→∞ w(x) = 0, we will see
below that the interval of a values on which u2(x) is a valid bump is finite. Thus,
a family of bump solutions, parametrized by bump length a, must be born at some
finite value of a and must die at some larger finite value of a. In this subsection,
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Fig. 4. Bump solutions of (2.1) for the coupling function w(x) given in (2.8) and extended in
an even manner. Parameters used are K = 10.0, ε = 0.1, b = 1.0, such that x∗ = 1.9. Left: A bump
with no local minimum, found with h = −0.85, such that a2 = 3.15 < 2x∗. Right: A bump with a
local minimum at a2/2 > x∗, found with h = −0.57, such that a2 = 4.90 > 2x∗. Dashed lines show
the levels of h.

we discuss possible mechanisms by which bumps may be created or destroyed as a
varies (which can be achieved by varying h). We shall see that this does not occur
through a “usual” bifurcation mechanism, such as a saddle-node bifurcation, and
that when bumps arise, they do so with a finite amplitude. This contrasts with the
situation when the coupling function w(x) is derived from recurrent excitation and
lateral inhibition, in which case bump amplitudes and widths may go to zero as a
parameter varies.

In the following analysis, we will always assume a > x1, corresponding to the
possible bump solution u2(x), since u1(x) is never a valid bump. We will also assume
that W (a) > 0, also necessary for a to represent a bump length since h < 0 in (2.3).

In general, there are two types of transitions through which a bump u2(x) may
cease to exist as its size a varies, even without interaction with any other solutions.
One possibility is that a bump may go negative on its interior; that is, it may develop
a dip as in Figure 4, which may continue to drop until the minimum value of u2(x)
on (0, a) passes through 0. We refer to this as the internal tangency mechanism, since
right at the transitional a value, we have u2(x) = u′2(x) = 0 for some x ∈ (0, a). By
(2.5),

u2(a/2) = 2W (a/2) −W (a).(2.9)

We will use (2.9) to show that u2(a/2) = 0 can occur only at a unique value of a > x1.
Proposition 2.17. There is at most one value of a > x1 for which W (a) > 0

and u2(a/2) = 0.
Proof. Suppose u2(a0/2) = 0 and W (a0) > 0 for a0 > x1. Then W (a0) > 0

implies that W (a0/2) > 0, by (2.9). Thus, a0/2 > A, where A was defined as the
smallest positive value for which W (x) = 0. Moreover, W (a0) = 2W (a0/2) implies
that W (a0) > W (a0/2), so a0/2 < x1 (e.g., Figure 2).

Now, let z(a) = 2W (a/2) −W (a). For a/2 ∈ (A, x1), W
′(a/2) > 0, while a > x1

gives W ′(a) < 0. Thus, z′(a) > 0 and z can have at most one zero with a/2 ∈
(A, x1). Since a0/2 must lie in this interval whenever u2(a0/2) = 0, this concludes the
proof.
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Proposition 2.17 rules out the possibility that a family of bump solutions both
arises and dies by passage of u2(a/2) through 0. However, it does not rule out the
possibility that the birth and the death of the family are associated with dips on the
interior of (0, a) switching from negative to positive and from positive to negative,
respectively. Indeed, it is possible that u2(a/2 − δ) = 0 for some δ ∈ (0, a/2), with
u2(a/2+δ) = 0 as well by Proposition 2.1. Thus, there are infinitely many positions at
which interior zeros of u2 could develop, always occurring in groups of even numbers
of dips, placed symmetrically about a/2.

An alternative to the internal tangency mechanism for birth and death of bumps
is that u′2(0) (and by symmetry, u′2(a)) may become zero and then negative (positive)
as a varies. We refer to this transition as the boundary tangency mechanism. Note
that u′2(0) = w(0) − w(a), where a is the length of u2(x). Thus, u′2(0) < 0 for
a ∈ (x1, x

′), and, since limx→∞ w(x) = 0, u′2(0) < 0 for all a > x′′ (see Figure 3).
Hence, the boundary tangency mechanism ensures that the family of bumps can exist
only on a finite interval of positive a values.

Note further that u′′2(0) = w′(0) + w′(a) = w′(a). If u′2(0) = 0 for some a at
which a transition between bump existence and bump nonexistence occurs, then we
must have u′′2(0) > 0 (see Figure 8 below). This implies that the boundary tangency
mechanism can apply only for a values such that w′(a) > 0, corresponding to bump
death for large a as −h is lowered toward 0 (see Figures 2 and 3). However, as we have
noted, u′2(0) < 0 for a sufficiently close to (but above) x1. Thus, bumps must be born
through an internal transition from negativity to positivity (the internal tangency
mechanism discussed above) as a increases sufficiently beyond x1. We summarize the
above discussion in the following proposition, stated in terms of loss of existing bumps
as a decreases or increases.

Proposition 2.18. Suppose there exists a2 such that a bump solution u2(x)
exists, with u2(x) > 0 precisely for x ∈ (0, a2). Then as a decreases from a2, the
bump is lost through the internal tangency mechanism. As a increases from a2, the
bump is lost through either the internal tangency mechanism or the boundary tangency
mechanism. In the former case, at least one of the internal tangencies must be at
x �= a/2.

Remark 2.19. These birth and death mechanisms suggest that there may exist
multibump solutions that satisfy (1.2). The existence and stability of such solutions
remain open for future investigation. Note that the existence of multibumps cannot
be addressed using (2.1) directly, since multibumps are positive on multiple disjoint
regions.

We conclude this subsection by considering a numerical example of bump birth
and death. The example coupling function that we introduce here will also be con-
sidered in section 3. Define

w(x) = (x2 − c)w0(x) := (x2 − c)(De−dx
2 −Be−bx

2

).(2.10)

We will take c = 0.5, D = 11, d = 0.05, B = 6, and b = 0.035 as our parameter
values unless otherwise stated. This satisfies (H1)–(H5); the functions w0(x) and
w(x) for these parameters appear in Figure 5. We also show the corresponding func-
tion W (x) =

∫ x
0
w(t) dt on a range of positive x values. Note that in this example,

limx→∞W (x) > 0.
For this example, we gradually increase a. We plot u(a/2) versus a in Figure

6, where u satisfies equation (2.2) with h such that equation (2.3) holds. A bump
solution is formed when u(a/2) reaches 0, at about a = ab ≈ 7.14.
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Fig. 5. Coupling functions from (2.10). The left plot shows w(x), w0(x) with parameter values
as given in the text following (2.10). The right plot shows W (x) for these parameters. The dashed
lines correspond to W (x) = 0 and to two special values of −h for which bumps exist with spatially
inhomogeneous coupling, discussed in section 3.
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Fig. 6. The value of u at a/2 plotted versus a for w(x) from (2.10). Note that u(a/2) > 0 is
necessary but not sufficient for bump existence. In this example, a family of bumps is born, as h
(and thus a) is varied, as soon as a increases through ab, such that u(a/2) becomes positive. The
bumps must die by a different mechanism, since u(a/2) > 0 for all a > ab.
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Fig. 7. Solution u2(x) at birthpoint ab ≈ 7.14 (left), and blowup (right) showing internal
tangency of the solution with the x-axis.

In Figure 7, we plot the solution u2(x) with a = ab. As a increases from ab, the
bumps that are born persist for an interval of a values; those found for two values
of a appear in the top panels of Figure 8. Figure 8 also displays the death of the
family of bumps as a continues to increase. At a = ad ≈ 12.89, w(a) = w(0) such
that u′2(0) = u′2(a) = 0. For a > ad, bumps cannot exist; careful inspection shows
that a representative solution to equations (2.2), (2.3), shown in the lower right plot,
goes negative for small x > 0 and for x close to, but less than, a. This is not a valid
bump solution.

2.5. Linear stability of the bump and bistability. To analyze the linear
stability of the bump solution u2(x), we linearize (1.2) about u2(x). To compute the
correct form of linearized equation, substitute u = u2(x) + v(x, t) into (1.2). This
yields

∂u

∂t
=
∂v

∂t
= −u2(x) − v(x, t) +

∫ ∞

−∞
w(x− y)H(u2(y) − v(y, t)) dy + h.

Derivation of the linear equation satisfied to first order by v requires expansion of the
Heaviside function H about u2. The result of this expansion yields [29, 19]

∂v
∂t

= −v +
w(x)[v(0, t) − u2(0)]

|u′2(0)| +
w(x− a2)[v(a2, t) − u2(a2)]

|u′2(a2)|

= −v +
w(x)v(0, t)
u′2(0)

− w(x− a2)v(a2, t)
u′2(a2)

,

(2.11)

since u2(0) = u2(a2) = 0 by construction. Note that if v has its zeros in the same
place as those of u, that is, v(0) = v(a2) = 0, then v′ = −v and linear stability is
immediate.

More generally, for linear stability, we consider perturbations of the form v(x, t) =
eλtv(x). Substitution of this expression into (2.11) and cancellation of eλt terms yield
the algebraic eigenvalue equation

(λ+ 1)v(x) = w(x)v(0)/u′2(0) − w(x− a2)v(a2)/u
′
2(a2).(2.12)

Recall that u′2(x) = w(x) − w(x− a2). Thus, (2.12) is equivalent to

(λ+ 1)v(x) =
w(x)v(0) + w(x− a2)v(a2)

w(0) − w(a2)
.(2.13)
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Fig. 8. Solutions to equations (2.2), (2.3) at ε = 0 : a = 7.24 (upper left) just after bump birth,
a = 12 (upper right) just before bump death, a = 12.89 (lower left) where bump death occurs, and
a = 13 (lower right) just after bump death. Note that the solution shown in the lower right is not a
valid solution to (2.1).

Eigenvalues occur at those λ values for which (2.13) has a nontrivial solution
v(x). (Note that any such solution decays to 0 asymptotically, since w(x), w(x− a2)
do.) Substitution of x = 0 and x = a2 into (2.13) yields a pair of equations in the
unknowns v(0) and v(a2), namely,

(λ+ 1)v(0) =
w(0)v(0) + w(a2)v(a2)

w(0) − w(a2)
,(2.14)

(λ+ 1)v(a2) =
w(a2)v(0) + w(0)v(a2)

w(0) − w(a2)
.

If v(a2) = 0, then v(0) = 0, and only the trivial solution v ≡ 0 satisfies (2.13). We
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have already observed that perturbations with v(0) = v(a2) = 0 cannot cause an
instability, based on (2.11). Thus, assume that v(a2) �= 0. We use the first equation
in (2.14) to write v(0) as a function of v(a2). Upon substitution of this expression into
the second equation in (2.14), cancellation of the nonzero quantity v(a2) multiplying
each term, and algebraic manipulation, we obtain the following quadratic equation in
λ:

λ2 (w(0) − w(a2))
2

+ λ
(
(w(0) − w(a2))

2
+ w2(a2) − w2(0)

)
= 0.(2.15)

The solution λ = 0 of (2.15) corresponds to translation invariance of the bump. The
other solution of (2.15) satisfies

λ =
2w(a2) (w(0) − w(a2))

(w(0) − w(a2))
2 .(2.16)

Recall that w(a2) < w(0) < 0. Thus, the unique solution λ of equation (2.16) is real
and negative, and the bump solution is linearly stable.

Note from (1.2) that u = c := h+
∫∞
−∞ w(x) dx is a stationary, spatially uniform

solution, provided that c > 0. When this solution exists, the same linearization cal-
culation that yields (2.11) yields the linearized stability equation dv/dt = −v, since
for small perturbations c−v > 0, such that H(c−v) = 1. Thus, the spatially uniform
state is linearly stable, when it exists, which implies that (1.2) features bistability, at
least in terms of linear analysis. This is consistent with the findings of [20], in which a
network of bursting thalamic cells with an effectively off-center form of coupling dis-
played bistability between a spatially localized and a spatially uniform state. In [20],
however, the spatially uniform state corresponded to a complete absence of activity.

3. Spatially inhomogeneous coupling. It has been argued that the coupling
between cells should be spatially inhomogeneous, reflecting local structural variations
[2, 3]. In this section, we use analysis and numerics to consider how such a modification
affects properties of bump solutions of (1.2). To this end, we consider bump solutions
of the equation

∂u(x, t)

∂t
= −u(x, t) +

∫ ∞

−∞
w(x− y)p(y)H(u(y, t)) dy + h.(3.1)

To allow for concrete calculations and numerics, we mostly consider a spatial inho-
mogeneity used, for example, in [2], namely,

p(x) = 1 + ε(1 + cos(ρx+ φ)) .(3.2)

Without loss of generality, we take ρ = 1.
In subsection 3.1, we will consider the special case of φ = 0, restricting our

attention to bumps on (0, a). In subsection 3.2, we will address the general bump
existence question for p(x) given by (3.2). We shall see that, in contrast to the
spatially homogeneous case, the presence of inhomogeneity implies that for fixed p(x),
for each bump starting point, there is only a small, discrete set of background input
levels for which bumps can occur, each with a unique corresponding size. Based on
the mechanisms that we observe with p(x) given by (3.2), we expect qualitatively
similar results for nonperiodic p(x) = 1 + εp0(x) (see Remark 3.4 at the end of the
section). Further, at least for the case of p(x) given by (3.2) and w(x) given by (2.10),
we find that among the possible bump sizes, there is a certain invariant size selected
independent of φ and of bump starting position. Possible functional implications of
these results are considered in the discussion in section 4.
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3.1. Bumps on (0, a) with no phase shift (φ = 0). Note that spatial inho-
mogeneity in coupling may destroy spatial translation invariance of bump solutions.
For clarity, we first consider the special case of bumps on (0, a) with phase shift φ = 0.
We will illustrate the key observation that for a fixed spatial pattern of coupling (fixed
ρ and φ) and a fixed starting point of an activity bump (here x = 0), there is only
a small, discrete set of possible bump sizes that can be selected. That is, the spatial
inhomogeneity induces a form of bump pinning.

As previously, a bump must satisfy u(0) = u(a) = 0 and u(x) > 0 if and only if
x ∈ (0, a), for some positive number a. If a bump solution u(x) exists for some a, the
Heaviside function H in equation (3.1) implies that u(x) must satisfy

u(x) =

∫ a

0

w(x− η)p(η) dη + h(3.3)

for that a. Thus, to find a bump solution, we first seek a for which u(0) = u(a) = 0,
with u(x) specified by (3.3).

The corresponding equations are

0 =

∫ a

0

w(η)p(η) dη + h(3.4)

and

0 =

∫ a

0

w(a− η)p(η) dη + h.(3.5)

Subtracting these two equations, i.e., (3.5)−(3.4), yields

g(a) :=

∫ a

0

w(a− η)p(η) dη −
∫ a

0

w(η)p(η) dη = 0.(3.6)

To find candidate values of a, we first seek solutions of g(a) = 0, given by∫ a

0

w(η)p(η) dη =

∫ a

0

w(a− η)p(η) dη.(3.7)

Now, from the substitution y = a− η, note that∫ a

0

w(a− η)p(η) dη =

∫ a

0

w(y)p(a− y) dy.

But p(a − y) = 1 + ε(1 + cos(a − y)) = 1 + ε(1 + cos a cos y + sin a sin y). Hence, if
a = 2nπ for any integer n, then p(a− y) = p(y), and we find

g(2nπ) =

∫ a

0

w(y)p(y) dy −
∫ a

0

w(η)p(η) dη = 0.

Thus, a = 2nπ solves g(a) = 0 for any integer n (see Figures 9 and 11). However, we
also need (3.4), (3.5) to hold such that u(0) = 0 and u(a) = 0, which occurs only for

those special values of n such that −h =
∫ 2nπ

0
w(η)p(η) dη (=

∫ 2nπ

0
w(2nπ− η)p(η) dη

since g = 0), which may or may not be positive, as required.
Remark 3.1. This does not imply there is a special biological significance to bump

sizes that are even integer multiples of π. If ρ �= 1, then other zeros result here. The
point is that the nature of the spatial variation p(x) selects possible bump sizes.
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Fig. 9. The function g(a), defined in (3.6), for w(x) from (2.10) with our usual parameter
values. Note that g(0) = g(2π) = g(4π) = 0 and that there are other zeros of g that are not even
integer multiples of π.

There also may be other solutions of g(a) = 0. We seek these numerically. To do
so, we apply Matlab directly, and we also check our results by using XPPAUT [12]
to solve an ordinary differential equation for g(a), derived in the second subsection of
the appendix.

We consider now the coupling function w(x) defined in equation (2.10) in the
previous section and shown in Figure 5, namely,

w(x) = (x2 − c)w0(x) := (x2 − c)(De−dx
2 −Be−bx

2

),

with c = 0.5, D = 11, d = 0.05, B = 6, and b = 0.035 as usual.

The resulting g(a), for ε = 0.01, appears in Figure 9. Numerically, the zeros of
g(a) in the set of positive a are {2π, 7.25, 4π, 14.23, 6π, . . .}, where the zeros that are
not integer multiples of π form a single sequence in which the difference between sub-
sequent elements tends to 2π, since w(x) tends to 0 as x→ ∞. We find qualitatively
similar results, namely, a countable collection of isolated zeros with similar behavior
as a→ ∞, for a variety of other parameter sets for w(x) with ε > 0.

We note that in general, g′(0) = g′′(0) = g′′′(0) = 0 (see subsection 5.2 of the
appendix for a proof). Moreover, we find from (5.8) in the appendix that

g(4)(a) = −g′′(a) − 3w′′(a)p′(a) − 2w′(a)p′′(a) + w′′′(a)(p(0) − p(a)),
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so g(4)(0) = 0, while

g(5)(a) = −g′′′(a)− 4w′′′(a)p′(a)− 5w′′(a)p′′(a)− 2w′(a)p′′′(a) +w(4)(a)(p(0)− p(a)),

so g(5)(0) = −5w′′(0)p′′(0) = 5εw′′(0) > 0. This gives a sense of the behavior of g
near a = 0, which depends on ε.

Since p(x) = 1 +O(ε), it is obvious that the zeros of g do not depend on ε. More
explicitly, the function g(a) defined in (3.6) can be rewritten as

g(a) =

∫ a

0

w(η)p(a− η) dη −
∫ a

0

w(η)p(η) dη.

Upon substitution of definition (3.2) for p with ρ = 1 and φ = 0 and application of a
trigonometric identity for cos(a− η), this yields

g(a) = ε

[
(cos a− 1)

∫ a

0

w(η) cos(η) dη + sin a

∫ a

0

w(η) sin(η) dη

]
,(3.8)

which will also be useful below.
Once we have found the zeros of g for a particular choice of parameters (including

ε), it remains to check whether these really correspond to a values for which (3.4),
(3.5) hold, for some h < 0. Only in that case will a bump possibly exist. Note that
we restrict further to those a values such that

d

da

∫ a

0

w(η)p(η)dη = w(a)p(a) < 0,(3.9)

since only a2, but not a1, gives a valid bump in the ε = 0 case. In the example
shown, the zeros a ≈ 7.25 and a = 4π of g are the only ones which satisfy (3.4), (3.5),
and (3.9) for some h < 0. The corresponding h values for ε = 0 are h ≈ −76.09
and h ≈ −26.45, respectively, although these depend on ε. The intersections of these
values of h with W (x) for ε = 0 are displayed in Figure 5. In Figure 10, we plot the
corresponding bump solution for a ≈ 7.25 with ε = 0.1. Figure 11 shows the bump
solutions for a = 4π with ε = 0, 0.1, and 0.2, respectively. Note that the bump with
a ≈ 7.25 loses its symmetry for ε > 0, while the bump with a = 4π is symmetric
about a/2 = 2π for all ε by the 2π-periodicity of cos(x) and sin(x). Further, in both
cases, the bump widths are independent of ε.

3.2. General case: Bumps on (b1, b2) with arbitrary φ. In this section,
we will arrive at the following result: Given a spatial inhomogeneity of coupling of the
form (3.2), with φ fixed, for any bump starting point b1, there is a small, discrete set
of possible bump sizes. Moreover, there is a subset of these sizes (possibly empty, but
nonempty for the main example that we have been considering) which are possible
for all choices of b1 and φ.

In the general case, the bump existence equations become

0 =

∫ b2

b1

w(b2 − η)p(η) dη + h(3.10)

and

0 =

∫ b2

b1

w(b1 − η)p(η) dη + h,(3.11)
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Fig. 10. Solution at a ≈ 7.25 and ε = .1 (left) and blowup (right). Note that the solution is
not symmetric around x = a

2
when ε > 0 and a is not an even multiple of π.
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Fig. 11. Solutions at a = 4π and ε = 0 (solid curve), ε = .1 (dashed curve), and ε = .2 (long
dashed). Note that solutions are symmetric around x = a

2
when ε > 0 and a is an even multiple of

π.

where we use (b1, b2) to denote the interval on which the bump is positive to avoid
confusion with our earlier use of a1, a2. Again, we subtract to obtain

0 =

∫ b2

b1

w(b2 − η)p(η) dη −
∫ b2

b1

w(b1 − η)p(η) dη.(3.12)

We seek solutions of (3.12), which are exactly the solutions of the following equa-
tion, attained by change of variables and by setting zi = bi − φ for i = 1, 2:

0 = g(z1, z2) :=

∫ z2−z1

0

w(y)p(b2 − y) dy +

∫ z2−z1

0

w(y)p(b1 − y) dy.(3.13)

It is not apparent by inspection that g(z1, z2) as defined in (3.13) is a function of z1, z2
only. However, using the definition of p in (3.2) and trigonometric sum and difference
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Fig. 12. The function g(z1, z2) given in (3.14). Each single curve in each plot shows g(z1, z2)
versus z2−z1 for fixed z1. Different curves correspond to different z1 values. Note that z2−z1 ≈ 7.25
is a zero of g(z1, z2) for all z1. The right plot shows a closer view around z2 − z1 ≈ 7.25, with fewer
curves shown than on the left.

identities, one can calculate that

g(z1, z2) = ε

∫ z2−z1

0

w(y) [cos y(cos z2 − cos z1) + sin y(sin z2 + sin z1)] dy.(3.14)

Note that (3.8) corresponds to a special case of (3.14), with z1 = 0. Further, as noted
in subsection 3.1, the zeros of g(z1, z2) are independent of ε > 0.

Again, the realizable bump sizes, determined by (3.10), (3.11) with the restriction
h < 0, are a subset of the set of the zeros of g. For fixed φ, if we start with b1 = φ
(that is, z1 = 0), then we recover exactly the bump sizes found with φ = 0. As b1 is
varied from φ (or, equivalently, z1 is varied from 0), then we may pick out different
bump sizes. Some of these, however, may be invariant under changes in z1. Indeed,
Figure 12 shows plots of g(z1, z2) for w(x) from (2.10) and p(x) from (3.2). To produce
this figure, z1 was systematically varied (increasing from 0), and for each fixed z1, z2
was varied from z1 up to z1 + 10 to form an individual curve. The figure shows the
resulting g(z1, z2) values for each fixed z1 plotted versus z2 − z1; that is, each curve
has been translated so that it begins at z2 − z1 = 0, with g = 0 correspondingly. The
value z2 − z1 = z∗ ≈ 7.25 gives a zero of g, corresponding to the existence of a bump
solution with h < 0, for each starting position z1. The close-up in the right panel of
the figure shows how ∂g(z1, z1 + z∗)/∂z2 passes through 0 as z1 is varied. Note that
similar results were obtained with various other choices of parameter values in w(x).

Remark 3.2. Since the bump size z2 − z1 ≈ 7.25 is realized for all z1, and since
zi = bi − φ, this size is invariant under changes in φ. That is, for any choice of φ and
starting position b1, if b2 ≈ b1 + 7.25, then there is a bump solution u(x) of width
approximately equal to 7.25 such that u(x) > 0 precisely for x ∈ (b1, b2). Although
this solution retains its width, it will occur at different levels of h for different choices
of b1, b2, φ.
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Fig. 13. Components of (3.16) for w(x) given in (2.10) with usual parameter values. The left
plot shows I1(δ) + I2(δ) (middle curve, solid), I1(δ) (upper curve, dashed), and I2(δ) (lower curve,
dash-dotted), graphed versus δ. Note that zeros δ of I1(δ) that are not even multiples of π, such as
δ ≈ 7.25, are also zeros of I2(δ). Since the plot appearance suggests that I1(δ), I2(δ) might be shifted
translates of each other, we illustrate graphically in the right plot that this is not the case.

To understand why there is an invariant bump size, set δ = z2−z1 in (3.14), such
that g becomes

g(z1, δ) = ε

∫ δ

0

w(y) [ cos z1 (cos y(cos δ − 1) + sin y sin δ)(3.15)

+ sin z1 (sin y(cos δ + 1) − cos y sin δ)] dy.

The function g(z1, δ) has some obvious nontrivial zeros, such as (z1, δ) = ((4m +
3)π/4, (4n + 1)π/2) and (z1, δ) = ((4m + 1)π/4, (4n + 3)π/2) for any integers m,n,
but these do not give bumps, as they do not solve (3.10), (3.11).

Note that when z1 = 0, the definition of g(z1, δ) in (3.15) reduces to (3.8) for g(a)
in the φ = 0 case, which for w(x) given by (2.10) with our usual parameter values has
a zero at a = z∗ ≈ 7.25. Indeed, we can factor out cos z1 from the first term on the
right-hand side of equation (3.15) and sin z1 from the second term to write

g(z1, δ) = ε(cos z1I1(δ) + sin z1I2(δ)),(3.16)

where I1(δ) = 0 for δ = 2π, z∗, 4π, . . . . If there are zeros of I2(δ) within this set, then
these represent potential bump sizes that are independent of starting position and
phase (which were encoded in z1). Numerical experiments suggest that the zeros of
I1(δ) that are not even multiples of π are also zeros of I2(δ); see Figure 13.

Remark 3.3. Although we have not explored what happens with coupling func-
tions w(x) other than that given in (2.10), the form of (3.14), (3.15) strongly suggests
that the phenomena observed here do not depend on the exact form of w(x).

Remark 3.4. For general p(x) = 1 + εp0(x) with p0(x) not necessarily periodic,
(3.10), (3.11) still apply, with bumps occurring when both are satisfied. One can also
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solve (3.12) to find candidate bump endpoints b1, b2, with solutions independent of
ε as above. Thus, we expect that for each fixed p0(x) and bump starting position
b1, there will be a small number of possible bump sizes selected. We do not know
whether or not there will exist an invariant size, independent of starting position, for
general p0(x), however.

4. Discussion. In this paper, we consider localized, stationary activity bump
solutions of the rate model (1.1), which describes the evolution of activity in a neu-
ronal population. Following previous work stemming from [1], we take f(u(y, t)) =
H(u(y, t)), the Heaviside step function, which is an analytically tractable case that
has been shown to organize solution structure for some more general forms of f [15].
A key new feature in this paper is that the coupling function w(x) represents off-
center coupling. Off-center coupling models the effective pattern of synaptic inputs to
an excitatory population in an excitatory-inhibitory (E-I) network with no recurrent
excitation, but rather E to I, I to E, and I to I connections.

In this setting, under certain assumptions, we prove that for nonzero h, (1.1)
has exactly one time-independent, localized solution satisfying u(x) > 0 if and only
if x ∈ (0, a) for a positive, finite constant a. This shows that coupling need not
be locally positive to allow for the existence of such a sustained, localized solution.
Earlier results showed that the combination of recurrent excitation and long-range
inhibition yields the existence of a pair of bump solutions, a linearly stable wider one
and an unstable narrower one, to (1.1) [1, 13, 17, 4, 5]. Here we find that for off-center
coupling, the unstable bump does not exist, while the single bump that does exist
is linearly stable. The nonlinear stability of these bump solutions remains open for
investigation.

We show that the range of activity levels h over which bumps can exist, and
correspondingly the range of possible bump widths, is finite. Since there is at most
a single bump for each h, this brings up the question of how bumps are born and
disappear as h varies. We have discussed two types of mechanisms by which this may
occur. One mechanism, which can apply to bump birth or death, is the appearance of
a point or points inside (0, a) at which u becomes negative. This fits in well with our
results showing that a bump can develop an internal local minimum while remaining
a valid bump, with u > 0 on (0, a). The second mechanism, which can generate
only bump death, not bump birth, is a loss of positivity at the edges x = 0 and
x = a of u. Numerically, we observe bump birth via the former mechanism and bump
death via the latter. These mechanisms will not occur when the coupling function
w(x) is not off-center (i.e., when there is recurrent excitation). Further, we do not
consider temporally dynamic solutions. It is possible that there may be interactions
of time-dependent solutions with stationary bumps, which remain to be explored.

We also do not consider temporal details of synaptic dynamics. Our results require
sufficiently strong long-range inhibition for bumps to exist with off-center coupling.
Thus, our analysis supports the idea that when long-range inhibition is weak [10],
slow synaptic dynamics may be necessary to allow for localized activity [20]. Even
richer forms of pattern formation can be expected when models incorporating such
additional features are considered in future work.

In section 4, we allow for spatial variations in coupling strength, which may
correspond to regional structural variations in the brain [2]. Numerically, we observe
that this induces bump pinning, such that for each fixed starting position, bumps
exist for only a small, discrete set of background input levels h, each with a single
corresponding width. Moreover, a unique invariant width is selected, which is possible
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at all starting positions. The form of the relevant equations suggests that these results
do not depend on the exact form of the coupling function w(x) or on the fact that it is
off-center, although this remains to be thoroughly explored. We provide mathematical
insight into this size invariance (e.g., Figure 13), but we do not provide analytical proof
that this size invariance must occur.

Is it physiologically plausible that spatial inhomogeneities in coupling strength
could so severely limit the possible background input levels needed for bumps? We
can only speculate on this issue. Since it is believed that attention has significant
effects on neuronal activity across wide areas (for example, [11]), it seems possible
that the background input level to a brain region could be related to attention. We
know from experience that attention is needed to allow for effective working memory
or navigation, for example; one needs to first pay attention to a stimulus if one wishes
to remember it, and one needs to maintain focus on the memory of this stimulus to
keep it “in mind” until it is internalized. Perhaps attention is the process of bringing
overall network activity in an appropriate brain region to a level at which a bump can
form and subsequently maintaining this level to sustain the localized bump. Since
bump sizes are selected by integral conditions relating the spatially homogeneous and
inhomogeneous parts of the coupling pattern, perhaps some part of cognitive decline
with aging or disease could be associated with a loss of effectiveness of a subset of
synaptic connections, which could compromise the “orthogonality” of the system.

Similarly, while a severe limitation on the number of possible bump sizes might
initially seem computationally restrictive, there would be advantages to this limita-
tion. In particular, suppose that only a unique bump size were realizable in a certain
brain area and that bumps were always symmetric about their centers. If an activity
level u > 0 were observed from one cell in that area (e.g., by a neuron postsynaptic
to it from another area), this would immediately indicate the exact distance of the
presynaptic cell from the center of any bump to which it belonged, and activity levels
of two cells would suffice to indicate exactly which other cells were in the bump and
with which activity levels. This allows for highly efficient decoding by the postsy-
naptic cell. Note that we observe the development of asymmetric bumps when the
coupling is spatially inhomogeneous and the bump length is not an even integer mul-
tiple of 2π. Even without symmetry, inputs from a small number of cells in a bump
would effectively convey information about the entire bump. Of course, this requires
that the postsynaptic cell somehow “knows” that a bump exists in the presynaptic
area, and is highly speculative, but nonetheless it suggests that there might be some
computational relevance to the bump pinning phenomenon that we have observed.

5. Appendix.

5.1. Coupling profile. The activity levels uE(x, t) and uI(x, t) of coupled ex-
citatory and inhibitory populations satisfy the model equations [28, 1, 19]

∂uE

∂t = −uE + wEE ∗ fE(uE) − wIE ∗ fI(uI) + hE ,

τ ∂uI

∂t = −uI + wEI ∗ fE(uE) − wII ∗ fI(uI) + hI ,
(5.1)

where w ∗ f(u) denotes the convolution
∫∞
−∞ w(x− y)f(u(y, t)) dy, fi(u) is the firing

rate function for population i, and wij denotes the synaptic connection function from
population i to population j, which we take here to be nonnegative for all i, j. We
consider (1.1) to represent a reduction of (5.1), with wEE ≡ 0, to a single equation for
the activity level of the excitatory population. The connection function w(x) that we
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consider in (1.1), as shown in Figure 1, corresponds to the time-independent input to
the excitatory population that results when precisely those excitatory cells at x = 0
are active.

To derive the function shown in Figure 1, we therefore set the time derivatives in
system (5.1) to zero. This gives uE = hE − wIE ∗ fI(uI). We assume hE > 0 and
aim for an activity profile of uE which has the form of w(x) shown in Figure 1. This
will imply that the activity of cells at x = 0 has the desired effect on the activity
of the other cells in the excitatory population. For simplicity, assume that wIE(x)
has a simple profile; for example, suppose that each inhibitory cell inhibits only those
excitatory cells that share its x-coordinate. Then we seek an activity profile of uI
which has the qualitative form of −w(x), for w(x) shown in Figure 1.

Time-independence implies that uI = hI +wEI ∗ fE(uE)−wII ∗ fI(uI). Further,
the assumption that only those cells at x = 0 are active gives

uI(x) = hI + wEI(x) − wII ∗ fI(uI),(5.2)

although other positive coefficients of wEI may result from non-Heaviside choices of
fE . Thus, the mathematical justification of off-center coupling for (1.1), as in Figure
1, may be achieved by finding a consistent solution of (5.2) having the qualitative
form of −w(x), for an appropriate firing rate function fI . Note that (5.2) has a form
very similar to that of the steady state equation (2.1) analyzed in this paper, but
with a spatially varying input function, as studied, for example, in [1]. The desired
solution would be positive on (−∞,−b) ∪ (−a, a) ∪ (b,∞) for some b > a > 0. The
proof of the existence of such a solution remains open.

5.2. Derivation of ODE. Recall that for p(x) = 1 + ε(1 + cosx), we define

g(a) =

∫ a

0

w(a− η)p(η) dη −
∫ a

0

w(η)p(η) dη .(5.3)

Thus, using integration by parts, the fact that w(x) is even, and the fact that w′(0) =
0, we have

g′(a) = p(a)(w(0) − w(a)) +
∫ a
0
w′(a− η)p(η) dη

= w(a)(p(0) − p(a)) +
∫ a
0
w(a− η)p′(η) dη.

(5.4)

Similarly,

g′′(a) = −w(a)p′(a) + w′(a)(p(0) − p(a)) +

∫ a

0

w(η − a)p′′(η) dη(5.5)

and

g′′′(a) = − 2w′(a)p′(a) − w(a)p′′(a) + w′′(a)(p(0) − p(a)) + w(a)p′′(0)(5.6)

+

∫ a

0

w(η − a)p′′′(η) dη .

But since

p′′′(η) = −p′(η),
(5.6) and (5.4) can be combined to give

g′′′ + g′ = w(a)[p(0)−p(a)+p′′(0)−p′′(a)]− 2w′(a)p′(a)+w′′(a)(p(0)−p(a)) .(5.7)
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Finally, the fact that

p′′(x) = −ε cosx

yields p(x) + p′′(x) = 1 + ε for any x, such that p(0) + p′′(0) − (p(a) + p′′(a)) = 0.
Thus, the ODE (5.7) simplifies to

g′′′+g′ = −2w′(a)p′(a)+w′′(a)(p(0)−p(a)) = ε(2w′(a) sin a+w′′(a)(1−cos a)).(5.8)

Note that from (5.3), (5.4), (5.5), (5.6), it follows that

g(0) = g′(0) = g′′(0) = g′′′(0) = 0 .
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Abstract. We introduce a degenerate nonlinear parabolic system that describes the chemical
aggression of calcium carbonate stones under the attack of sulphur dioxide. For this system, we
present some finite element and finite difference schemes to approximate its solutions. Numerical
stability is given under suitable CFL conditions. Finally, by means of a formal scaling, the qualitative
behavior of the solutions for large times is investigated, and a numerical verification of this asymp-
totics is given. Our results are in qualitative agreement with the experimental behavior observed in
the chemical literature.
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1. Introduction. In this paper we introduce and investigate a differential model
to describe the evolution of the chemical action of SO2 (sulphur dioxide) in CaCO3

(calcium carbonate) stones. Let Ω be a given region in R
n, with n = 1, 2, 3, namely,

our stone specimen. Our basic equations read, in their adimensional form, as⎧⎨
⎩

∂t(ϕ(c)s) −∇ · (ϕ(c)∇s) = −ϕ(c)sc,

∂tc = −ϕ(c)sc,
(1.1)

for x ∈ Ω and t ∈ R. Here c and s are both nonnegative, since c stands for the local
density of CaCO3 and s for the porous concentration of SO2, namely, the concentra-
tion taken with respect to the volume of the pores; here the porosity ϕ is a linear
function of the density c. For this problem we also have to specify the initial and
boundary conditions, according to the problem under examination.

There is an extensive chemical literature about the deterioration mechanisms of
natural building stones [22, 23, 14, 26, 18, 8] in connection with problems concerning
both modern and historical buildings. Acidity in the air is essentially caused by pol-
lutants, such as sulphur and nitrogen oxides, which are emitted into the atmosphere
by sources related to industry, transportation, and heating. These species are trans-
formed, through complex reaction pathways, into gaseous nitric and nitrous acids and
into acidic sulphates as suspended particles. Although in recent years the levels of
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pollution in the urban areas of Europe have decreased, levels of HNO3 and other ag-
gressive pollutants such as sulphur dioxide and ozone have remained consistent. As is
well known, SO2 and NO3 react with calcium carbonate stones to form sulphates and
nitrates, which, due to their solubility in water, may be drained away or, if protected
from the rain, may form crusts, which eventually exfoliate; see [8, 5]. Observe that the
chemical deterioration is mainly expected to occur when the surface is wet. There is
in fact a strong experimental relationship between deterioration and time of wetness
[14].

Effective simulation tools seem to be crucial in considering the fine-scale evolution
of reaction pathways, possibly in complex geometries, as requested by an improved
policy of prevention and monitoring of chemical damage on historical monuments. For
instance, it should be important to assist stakeholders to assign a degree of priority
for an optimal scheduling of cleaning operations, also taking into account the local
geometry and the exposure of the concerned stones. Actually, the standard methods
used for studying the evolution of this kind of damage have been the development
of models of atmospheric corrosion; they are based on the statistic determination on
the ratio of dose and response of the materials. For instance, the Lipfert formula
[19] was applied, using an extended database containing values taken in the field (i.e.,
meteorological value and pollution of the air). If this procedure could be meaningful
for the determination of corrosion for civil uses, this approach is clearly insufficient
for artistic and historical artwork.

In this paper we introduce a different approach in the framework of hydrody-
namic models by using some basic physical relations, the balance laws of the chemical
reactions, and the Fick law, and by neglecting the permeability of the medium. As a
particular feature, the model takes into account the effects of sulphation on carbon-
ate rocks, by assuming a direct (linear) dependence of porosity and diffusivity on the
density of calcium carbonate. The main issue of our model will be a proper determi-
nation of the thickness of the gypsum crust (CaSO4 · 2H2O) formed as a product of
the reaction of SO2 with calcium carbonate stones. There are two main advantages
in this approach: it is possible to solve numerically the equations by finite element or
finite difference methods, and also in several space dimensions and for geometrically
complex domains; time asymptotic analysis in one space dimension yields a precise
characterization of the behavior of the limit solutions, which are expressed in terms
of a simple free boundary problem.

Global existence of smooth solutions for this system is considered in a separate
work [12]. A more general model, which includes convective effects due to the pressure
gradient, for stones with a greater permeability, will be introduced and studied in [1].

The paper is organized as follows. In section 2, we introduce in some detail a
basic model starting from the main ideas of macroscopic modeling of filtration in
porous media [3, 21]. Next, we propose some different numerical approximations, to
both finite element and finite difference schemes, for the one-dimensional case, by
proving some rigorous nonlinear stability and positivity results, under some proper
CFL conditions. Numerical tests are given for comparison of the accuracy of different
schemes. Finally, we investigate the asymptotic behavior of solutions and assess the
agreement of the model with experimental tests. By scaling arguments, it is possible
to show that the limit profile of solutions, for the case of the half-line x > 0 and with
Dirichlet boundary conditions for s at x = 0, is given by the solution of a simple
one-phase Stefan problem [20]. This approach is inspired by a related paper [15],
where a similar model was considered, but with constant porosity and diffusivity.
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The analytical verification of this asymptotic behavior will be considered in a future
work. Here we just give a numerical verification, which actually yields quite precise
information on the propagation of the main front and on the rate of convergence of
the solution toward its limit profile.

In particular, it is worth mentioning that the limit profile has a free boundary ζ(t)
which gives the right limit of the gypsum crust and evolves according to a diffusive
law:

ζ(t) = C
√
t.(1.2)

This behavior is in good qualitative agreement with experimental data (see [22, 23, 18])
and in particular with the results of the new laboratory tests performed in [10], and
the possibility of a successful calibration of the model against laboratory and in situ
tests is shown.

2. Derivation of the model. In [18, 8] the authors conducted experimental
studies involving the exposure of different types of marble to 10 and 300 ppm SO2

atmospheres. It was then possible to estimate practically the extent of damage to
marble due to an industrial environment. Analogous experiments were conducted
with dolomite rocks [26]. Other laboratory tests and in situ measurements can be
found in [22, 23, 6, 5].

Considering the mathematical description of the time evolution of the sulphation
process, some models were proposed in [18] to give some measurements of the main
physicochemical parameters. The different regions and time regimes were described
by different parameters and then matched to fit the experimental behavior of the
reaction. Here we develop a single mathematical model that in principle can take into
account the full behavior of the solutions.

The path of reaction of SO2 with calcite is revealed by the X-ray diffraction
counts, which suggest that the reaction occurs in the following manner [2, 18]:

CaCO3 + SO2 +
1

2
H2O → CaSO3 · 1

2
H2O + CO2,(2.1)

CaSO3 · 1

2
H2O +

1

2
O2 +

3

2
H2O → CaSO4 · 2H2O(2.2)

(see also [6, 9, 7, 26, 25]). The CaSO3 (calcium sulphite) reaches equilibrium soon
after the initial reaction, and then the amount of gypsum continues to increase with
the progress of the reaction. Therefore we can assume a simplified one-step reaction:

CaCO3 + SO2 +
1

2
O2 + 2H2O → CaSO4 · 2H2O + CO2.(2.3)

We neglect all heat effects and assume the air contains enough water to give rise to
the reaction. Moreover, we assume that the change in concentrations of oxygen (O2),
water (H2O), and carbon dioxide (CO2) does not affect the reaction.

Let Ω be the domain occupied by the specimen of calcite under consideration
and set ρs for the concentration of SO2; c for the density of CaCO3; and g for the
density of CaSO4 · 2H2O. All quantities are defined with respect to the whole volume,
incorporating both solid and gaseous material, and depend on the position x ∈ Ω and
on time t. Since we are including the bulk volume in the definition of c, g, ρs,
we will call them total concentrations or densities. We will define later the porous
concentrations for SO2.
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Following [3], we assume that the total concentrations ρs and c satisfy the balance
laws,

∂tρs + ∇ · (ρsVs) = ṙs,(2.4)

∂tc = ṙc,(2.5)

where Vs is the sulphur dioxide “fluid” velocity and ṙs, ṙc are rates of production (or
consumption) of sulphur dioxide and calcite.

Following the usual model for the rate of production, we have

ṙs = −msω, ṙc = −mcω.(2.6)

Here, ms, mc are the masses of single molecules of sulphur dioxide and calcite, and, to
complete the notations, let us set mg for the molecular mass of gypsum. The quantity
ω > 0 measures the rate of reaction and according to [18] is given by

ω = A

(
ρs
ms

)(
c

mc

)
.(2.7)

In general, the constant A depends on the temperature and on the activation energy.
In the present paper we shall neglect this dependence.

Assuming initial densities c0 and g0, for calcite and gypsum, we have the relation

c+
mc

mg
g = c0 +

mc

mg
g0,(2.8)

which expresses the density of gypsum as a function of calcite.
Next, we introduce the porosity of the calcite specimen ϕ, which cannot be as-

sumed constant, since the transformation of calcite in gypsum alters the volume of
void (occupied by air and sulphur dioxide). Therefore, following [24], it is reasonable
to regard it as a function of the amount of gypsum or, equivalently, as a function of
the amount of calcite, that is, ϕ = ϕ(c).

Let ϕ0 be the porosity of the pure calcite specimen, i.e., for c = c0, g = 0, and ϕg̃
the porosity of the final sulphate product, when all the calcium carbonate has been
converted in gypsum, namely, when c = 0, g̃ =

mg

mc
c0. Then, according to the rigorous

derivation in [1], we can express the porosity of the specimen during the reaction as
a linear combination of these porosities:

ϕ(c) = ϕg̃ + (ϕ0 − ϕg̃)
c

c0
.(2.9)

We denote by s the porous concentration of SO2, which is defined as the concen-
tration taken with respect to the volume of the pores, which is related to the total
concentration by

ρs = ϕ(c)s.(2.10)

The seepage velocity vs is related to the fluid velocity Vs by the classical Dupuit–
Forchheimer relation

vs = ϕ(c)Vs.(2.11)
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The balance laws for ρs and c become

∂t(ϕ(c)s) + ∇ · (svs) = −
(
A

mc

)
ϕ(c)sc,(2.12)

∂tc = −
(
A

ms

)
ϕ(c)sc.(2.13)

To close the system (2.12)–(2.13), we need an expression for the seepage velocity
vs. In the following we make the main assumption of our model, namely, that all the
contributions given by the pressure gradient to the seepage velocity can be neglected.
As shown in [1], this corresponds to a zero permeability limit, which is a realistic
assumption for many species of marble.

Therefore, we shall express vs by the classical Fick law [21],

svs = −D(c)∇s,(2.14)

where D(c) = dϕ(c), and d is the (scalar) effective molecular diffusive coefficient. This
yields

∂t(ϕ(c)s) = −
(
A

mc

)
ϕ(c)sc+ d∇ · (ϕ(c)∇s),(2.15)

∂tc = −
(
A

ms

)
ϕ(c)sc.(2.16)

System (2.15)–(2.16) forms a closed set of nonlinear degenerate parabolic differential
equations which have to be supplemented by initial conditions at time t = 0 for s and
c, and by Dirichlet or Neumann boundary conditions for s. Let us also notice that
in general we do not expect to give any boundary condition for c. Clearly, it is also
possible to consider system (2.15)–(2.16) as a one parabolic equation coupled with an
ordinary differential equation. Unfortunately, it is difficult to use this remark, since
we have to take into account the strong coupling between s and c into the divergence
term.

It is easy to see that we can recover the scaled model (1.1) just by taking the new
variables

y =

√
A

dmc
x, τ =

A

mc
t, s̃ =

mc

ms
s.(2.17)

To improve the physical accuracy of our model, it should be possible to consider
three main modifications. The first is to assume the dependence of the reaction rate
A on the internal temperature and degree of wetness by introducing two supplemen-
tary equations related to the evolution of these quantities for some given initial and
boundary conditions.

Another important modification arises if, according to [13], we consider a more
general nonlinear Fick law,

svs(Bs |vs| + 1) = −D∇s,(2.18)

where B is the high concentration coefficient. The form (2.18) of the Fick law is best
suited when the gradient of the concentration is very high.

Finally, let us mention that a more accurate model, which takes into account both
the pressure gradient effects due to the Darcy law and the diffusivity given by the
Fick law, will be considered in [1].
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3. Numerical approximation in one space dimension. In this section we
construct numerical schemes for the one-dimensional version of model (1.1),{

∂tρs − ∂x(ϕ(c)∂xs) = −ρsc,
∂tc = −ρsc(3.1)

for x ∈ [0, 1], t ≥ 0 and where we recall that ρs = ϕ(c)s and ϕ(c) is given by (2.9). In
the following, we shall assume that the initial calcite density c0 is a positive constant.
Then, setting α = 1

c0
(ϕ0 − ϕg̃) and β = ϕg̃, we can rewrite the function ϕ(c) in the

following form:

ϕ(c) = αc+ β.(3.2)

In what follows, we shall assume that

ϕ0 > ϕg̃,(3.3)

with α, β > 0 and 0 < β ≤ ϕ(c) ≤ αc0 + β < 1. The case ϕ0 < ϕg̃ is similar and can
be considered by using the same arguments.

As initial conditions we have {
ρs(x, 0) = 0,
c(x, 0) = c0,

(3.4)

where c0 is a positive constant, and we impose the boundary conditions,{
ρs(0, t) = ρs0,
∂ρs
∂x

(1, t) = 0.
(3.5)

Here ρs0 is a positive constant. The case where ρs0 is a bounded measurable positive
function can be treated in the same way.

It is easy to see that s satisfies the same initial condition as ρs, and the boundary
conditions read as ⎧⎪⎨

⎪⎩
s(0, t) =

ρs0
ϕ(c(0, t))

,

∂s

∂x
(1, t) = 0

(3.6)

with

c(0, t) = c0e
−ρs0t.(3.7)

Two methods of solving this problem are under consideration. First, we use a finite
element method, looking for s as a continuous piecewise linear function and c as a
piecewise constant function. The second method is a finite difference scheme, where
the main unknowns are ρs and c. For some problems in one space dimension, finite
element methods have an interpretation in terms of finite differences via mass lumping
and staggered variables. However, the philosophies are quite different, and our aim
is to study afterward two- or three-dimensional systems, with possibly complicated
geometries. On the other hand, for the methods presented in this paper it is easier
to modify the time discretization for the finite difference schemes. We compare these
approaches and analyze the effect of time discretization modifications.
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3.1. A finite element method. Following [12], we look for a smooth solution
(s, c) of (3.1), (3.4), (3.6).

3.1.1. The scheme. To deal with the nonhomogeneous Dirichlet condition,
we introduce the unknown σ(x, t) = s(x, t) − s(0, t), and we denote H = {u ∈
H1(]0, 1[), u(0) = 0}. The first equation of (3.1) can be written as

∂t(ϕσ) − ∂x(ϕ(c)∂xσ) = F (σ, c, t),

and a variational formulation of the problem is as follows: find (σ, c) ∈ C1([0,+∞[, H×
L2(]0, 1[)) such that for all (p, q) ∈ H × L2(]0, 1[),⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t

∫
]0,1[

ϕσpdx+

∫
]0,1[

ϕ∂xσ∂xpdx =

∫
]0,1[

pFdx,

∂t

∫
]0,1[

cqdx = −
∫

]0,1[

ϕ(σ + s(0, .))cqdx.

(3.8)

Let us define a regular mesh

[0, 1] = ∪1≤i≤N [xi, xi+1], xi = (i− 1)∆x, ∆x = 1/N.

We denote by {pi, i = 1, . . . , N + 1} the classical P1 basis functions:

pi(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

x−xi−1

∆x if x ∈ [xi−1, xi],

xi+1−x
∆x if x ∈ [xi, xi+1],

0 else.

For i = 1, . . . , N , we denote by qi the characteristic function of [xi, xi+1[.
The solution (s, c) is approximated by

sh(x, t) =

N+1∑
i=1

ξi(t)pi(x), ch(x, t) =

N∑
k=1

ηk(t)qk(x).

Moreover, we define ρs,h(x, t) = ϕ(ch(x, t))sh(x, t).
The unknowns for sh are located on the nodes, while the ones for ch can be

considered as approximations of the mean value of c on each cell [xi, xi+1]. The
Dirichlet boundary condition at x = 0 is taken into account by putting ξ1(t) =
ρs0/ϕ(η1(t)), according to (3.6), so that σh = sh−ξ1p1 and (σh, ch) ∈ C1([0,+∞[, V ×
W ), where V = lin{pi, i = 2, . . . , N + 1} and W = lin{qi, i = 1, . . . , N}.

In practice, as usual for this kind of problem we write a (false) variational approach
formulation with N + 1 basis functions {p1, . . . , pN+1}, and we put the Dirichlet
condition a posteriori: for all i = 1, . . . , N + 1, for all k = 1, . . . , N ,⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂t

∫
]0,1[

ϕhshpidx+

∫
]0,1[

ϕh∂xsh∂xpidx = −
∫

]0,1[

ϕhshchpidx,

∂t

∫
]0,1[

chqkdx = −
∫

]0,1[

ϕhshchqkdx.

(3.9)
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In this formula, ϕh is defined by

ϕh = ϕ(ch).

The first set of equations in (3.9) is a differential system which is linear with respect
to ξ:

∂t

N+1∑
j=1

ξj

∫
]0,1[

ϕhpjpidx+

N+1∑
j=1

ξj

∫
]0,1[

ϕh∂xpj∂xpidx

= −
N+1∑
j=1

ξj

∫
]0,1[

ϕhchpjpidx, i = 1, . . . , N + 1.

As ϕh =
∑N
k=1 ϕ(ηk)qk, it can be summarized as

∂t(M(η)ξ) +K(η)ξ = 0.(3.10)

Denoting ϕ(ηk) = ϕk, the matrix M(η) is defined by

M(η) =
∆x

6

⎛
⎜⎜⎜⎜⎝

2ϕ1 ϕ1 0 . . . 0
ϕ1 2(ϕ1 + ϕ2) ϕ2 . . . 0
. . . . . . . . . . . . . . .
0 . . . ϕN−1 2(ϕN−1 + ϕN ) ϕN
0 . . . 0 ϕN 2ϕN

⎞
⎟⎟⎟⎟⎠ ,

and the matrix K(η) is defined by

K(η) = 1
∆x

⎛
⎜⎜⎜⎜⎝

ϕ1 −ϕ1 0 . . . 0
−ϕ1 ϕ1 + ϕ2 −ϕ2 . . . 0
. . . . . . . . . . . . . . .
0 . . . −ϕN−1 ϕN−1 + ϕN −ϕN
0 . . . 0 −ϕN ϕN

⎞
⎟⎟⎟⎟⎠

+ ∆x
6

⎛
⎜⎜⎜⎜⎝

2ϕ1η1 ϕ1η1 0 . . . 0
ϕ1η1 2(ϕ1η1 + ϕ2η2) ϕ2η2 . . . 0
. . . . . . . . . . . . . . .
0 . . . ϕN−1ηN−1 2(ϕN−1ηN−1 + ϕNηN ) ϕNηN
0 . . . 0 ϕNηN 2ϕNηN

⎞
⎟⎟⎟⎟⎠ .

The second equation of problem (3.9) can be written as

∆x ∂tηk = −ηk(αηk + β)

N+1∑
j=1

ξj(t)

∫
]xk,xk+1[

pj(x)dx, k = 1, . . . , N

or, equivalently,

∂tηk = − (ξk + ξk+1)

2
ηk(αηk + β) = −γkηk(αηk + β), k = 1, . . . , N.(3.11)

We now discretize in time. The approximated quantities at time tn = n∆t are denoted
with a superscript n, and for t ∈ [tn, tn+1[ we put sh(x, t) = snh(x), ch(x, t) = cnh(x).
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In view of initial and boundary data we take⎧⎪⎨
⎪⎩

ξ01 =
ρs0
ϕ(c0)

, ξ0j = 0 for j = 2, . . . , N + 1,

η0
k = c0 for k = 1, . . . , N.

We first discretize (3.11) by fixing ξ = ξn and solving exactly the equation. As α and
β are positive, if the ξnj and ηnk are nonnegative, without any time step restriction,

we obtain the intermediate value η
n+1/2
k :

η
n+1/2
k = βηnk

e−γkβ∆t

αηnk + β − αηnk e−γkβ∆t
.(3.12)

Then, we solve the differential system (3.10) by the θ method (θ ∈ [0, 1]):

M(ηn+1/2)ξn+1 −M(ηn)ξn

∆t
+ (1 − θ)K(ηn)ξn + θK(ηn+1/2)ξn+1 = 0.(3.13)

This is a linear tridiagonal system UX = G.

The boundary condition is taken into account by replacing g1 by ρs0/ϕ(η
n+1/2
1 ),

g2 by g2−u21ρs0/ϕ(η
n+1/2
1 ), u1j by δ1j , and ui1 by δi1. This modified linear system is

symmetric and positive and can be easily solved, for example, by a Choleski method.
This method is first order in time, even if θ = 1/2, because the matrices M and

K depend on η(t). When ξn+1 is computed we can set

ηn+1
k = η

n+1/2
k

or improve the approximation with the second order Heun method: we solve exactly

(3.11) with ξ = ξn+1 and initial value η
n+1/2
k . We obtain a second intermediate value

η
n+1/2,1
k , and, finally, we set

ηn+1
k =

ηnk + η
n+1/2,1
k

2
.(3.14)

In the following, we call this finite element method FE-θ.

3.1.2. Stability. It is well known that the discrete maximum principle does not
always hold in the finite element method. We have the following stability results.

Proposition 3.1. Suppose that θ ∈]1/3, 1] and ∆x2 < 3(3θ−1)
c0

. If the time step
satisfies the condition

∆x2

θ(6 − c0∆x2)
< ∆t ≤ ∆x2

(1 − θ)(3 + c0∆x2)
,(3.15)

then for all x ∈ [0, 1], ch(x, .) is a nonincreasing function of t and for all t ≥ 0,

ρs,h(x, t) ≥ 0, ch(x, t) ∈]0, c0].

Moreover, the condition (3.15) is not empty.
Proof. The result is true for t ∈ [0, t1[. Suppose that for all j = 1, . . . , N + 1

and all k = 1, . . . , N we have ξnj ≥ 0 and ηnk ∈]0, c0]. In view of (3.11) and (3.12),

0 < η
n+1/2
k ≤ ηnk , and thus 0 < ϕ

n+1/2
k ≤ ϕnk .



SO2 AGGRESSION TO CALCIUM CARBONATE STONES 1645

After the modifications due to boundary conditions, the system (3.13) has an
N×N symmetric irreducibly diagonally dominant matrix, still denoted U = Mn+1/2+
∆t θ Kn+1/2. Hence, U−1 is positive if uij < 0 for j = i± 1 and uii > 0 for all i [27].

In the right-hand side, we have for i ≥ 2,

gi =

i+1∑
j=i−1

(
mn
ij − (1 − θ)∆tknij

)
ξnj , ξn1 = ρs0/ϕ

n
1 ,

and

g2,modified = g2 − u21ρs0

ϕ
n+1/2
1

=

3∑
j=2

(
mn

2j − (1 − θ)∆tkn2j
)
ξnj

+
∆t

∆x

[
1 − ∆x2

6
ηn1 + θ

∆x2

6
(ηn1 − η

n+1/2
1 )

]
ρs0.(3.16)

Due to the condition on ∆x and the fact that η is nonincreasing, the third line is
nonnegative. Consequently, the positivity is preserved if the following requirements
are fulfilled:

m
n+1/2
ij + θ∆tk

n+1/2
ij < 0 for j = i± 1, i ≥ 2,

m
n+1/2
ii + θ∆tk

n+1/2
ii > 0 for all i ≥ 2,

mn
ij − (1 − θ)∆tknij ≥ 0 for all i ≥ 2, j.

(3.17)

For j 	= i, we have to consider j = i− 1:

kij = −ϕi−1

∆x
+

∆x

6
ϕi−1ηi−1 ≤ 0.

Moreover, kii is positive. Hence, the second requirement of (3.17) is fulfilled. So is
the third for i 	= j.

Consequently, we have to satisfy for all i and j = i± 1,

−m
n+1/2
ij

θk
n+1/2
ij

< ∆t ≤ mn
ii

(1 − θ)knii
.(3.18)

We have for 2 ≤ i ≤ N ,

mii

(1 − θ)kii
=

∆x(ϕi−1 + ϕi)

3(1 − θ)

(
ϕi−1 + ϕi

∆x
+

∆x(ϕi−1ηi−1 + ϕiηi)

3

)

≥ ∆x2

(1 − θ) (3 + c0∆x2)
.(3.19)

For i = N + 1 the same lower estimate holds. For j = i− 1,

−mij

θkij
=

∆xϕi−1

6θ

(
ϕi−1

∆x
− ∆xϕi−1ηi−1

6

)

≤ ∆x2

θ (6 − c0∆x2)
.(3.20)
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The fact that condition (3.15) is not empty, i.e.,

∆x2

θ(6 − c0∆x2)
<

∆x2

(1 − θ)(3 + c0∆x2)
,

is ensured by the conditions ∆x2 < 3(3θ−1)
c0

and θ > 1/3.

As it is enough to consider the case ηn+1 = ηn+1/2, the proof is complete.
Remark 3.1. As usual, there is no upper limitation on ∆t in the fully implicit

case θ = 1.
As far as we are concerned by the lower limitation on ∆t, let us point out that,

as is well known, if the matrix M is lumped, this limitation disappears.
If the data are small enough, we can prove a uniform bound for ρs,h. We fix the

initial condition c0, and we determine for which values of ρs0 the bound exists.
In what follows, we denote ϕ0 = ϕ(c0).
Proposition 3.2. We make the same assumptions as in Proposition 3.1, and

we take ∆t satisfying condition (3.15). If, moreover, the two inequalities

(i) ∆t <
β2 − αϕ0ρs0

β2ρs0
,

(ii) ρs0 <
β2

αϕ0
,

are true, then the numerical solution has the additional bound

0 ≤ ρs,h(x, t) ≤ ϕ0

β
ρs0.(3.21)

Let us point out that condition (i) on ∆t does not restrict condition (3.15) if the space
step ∆x is small enough.

Proof. By Proposition 3.1 positivity is preserved, and for all n ≥ 0 and i ∈
{1, . . . , N} we have

0 < η
n+1/2
i ≤ ηni ≤ c0.(3.22)

Let us denote Xn = max{ξnj , 1 ≤ j ≤ N + 1}. For all (x, t) ∈ [xi, xi+1[×[tn, tn+1[

ρs,h(x, t) = ϕ(ηni )
[
ξni pi(x) + ξni+1pi+1(x)

]
.

Therefore,

0 ≤ ρs,h(x, t) ≤ ϕ0Xn,

and we have to show that

Xn ≤ ρs0
β
.(3.23)

This inequality is true for n = 0:

X0 = ξ01 =
ρs0
ϕ0

≤ ρs0
β
.

Consider n ≥ 0 and suppose that Xn satisfies (3.23). If Xn+1 = ξn+1
1 , then

Xn+1 =
ρs0

ϕ
n+1/2
1

≤ ρs0
β
.
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Suppose now thatXn+1 = ξn+1
i with 2 ≤ i ≤ N . Our goal is to show thatXn+1 ≤ Xn.

By (3.17), we have

i+1∑
j=i−1

(
m
n+1/2
ij + ∆tθk

n+1/2
ij

)
Xn+1 ≤

i+1∑
j=i−1

(
mn
ij − ∆t(1 − θ)knij

)
Xn.

This inequality reads as

Xn+1

[
(ϕ
n+1/2
i−1 + ϕ

n+1/2
i ) + ∆tθ

(
ϕ
n+1/2
i−1 η

n+1/2
i−1 + ϕ

n+1/2
i η

n+1/2
i

)]
(3.24)

≤ Xn

[
(ϕni−1 + ϕni ) − ∆t(1 − θ)

(
ϕni−1η

n
i−1 + ϕni η

n
i

)]
.

Using (3.22) and denoting

B =
2

∆x

i+1∑
j=i−1

(
m
n+1/2
ij + ∆tθk

n+1/2
ij

)
, ei = ηni − η

n+1/2
i ,

we obtain

BXn+1 ≤ Xn

[
B + α(ei−1 + ei) − ∆t

(
ϕ
n+1/2
i−1 η

n+1/2
i−1 + ϕ

n+1/2
i η

n+1/2
i

)]
.

Hence, Xn+1 ≤ Xn as soon as for all i = 1, . . . , N ,

αei − ∆tϕ
n+1/2
i η

n+1/2
i ≤ 0.(3.25)

By (3.12) we have

ei = ηni
ϕni (1 − e−γiβ∆t)

αηni + β − αηni e−γiβ∆t
,

and (3.25) can be written as

αϕni (1 − e−γiβ∆t) − ∆tϕ
n+1/2
i βe−γiβ∆t ≤ 0.

We are led to prove that g(∆t) ≤ 0 with g(τ) = αϕ0(1 − e−γiβτ ) − τβ2e−γiβτ .
We have g(0) = 0, and recalling that γi = 1

2 (ξni + ξni+1), it is easy to see that
g′(τ) < 0 as soon as conditions (i) and (ii) are satisfied.

The case where Xn+1 = ξn+1
N+1 is identical.

As it is enough to consider the case ηn+1 = ηn+1/2, the proof is complete.

3.2. Finite difference schemes. Here the main variables are u = (ρs, c). De-
noting S(u) = −ρsc we can write

⎧⎪⎪⎨
⎪⎪⎩

∂tρs − ∂x

(
ϕ(c)∂x

ρs
ϕ(c)

)
= S(u),

∂tc = S(u).

(3.26)
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3.2.1. The schemes. We again mesh [0, 1] with a step ∆x = 1/N , and we
denote

λ =
∆t

∆x
, µ =

∆t

∆x2
, xm−1/2 = m∆x, xm = (m− 0.5)∆x,X = (xm)1≤m≤N .

We look for unm, an approximation of 1
∆x

∫ xm+1/2

xm−1/2
u(x, tn)dx, and we set u(t) =

(u1(t), . . . ,um(t))T , a smooth function such that um(tn) = unm. We also denote by
un = (unm)1≤m≤N the approximation of u at the time tn.

It is clear that cnm plays the same role as ηnk in the finite element method, while
there is a staggering from vertices to cell centers between s and ρs.

The most simple, consistent approximation of ∂x (a(x)∂xr) by means of Taylor
expansions is the following first order one:

∆m(a, r) :=
(am + am+1)(rm+1 − rm) − (am−1 + am)(rm − rm−1)

2∆x2
.(3.27)

Hence, a scheme which is comparable to the finite element method FE-θ is the fol-
lowing: ρns,m being fixed, solve exactly the second equation of (3.26) and obtain

cn+1
m = cnme−∆tρns,m .

Then discretize the first equation of (3.26) as follows:

ρn+1
s,m − ρns,m

∆t
− ∆m

(
ϕn,

ρns
ϕn

)
= S((1 − θ)ρns,m + θρn+1

s,m , c
n+1
m )(3.28)

with θ ∈ [0, 1]. In the following, we call this scheme FD1. We should have put a
combination of explicit and implicit terms in the derivatives as well, but this leads
to solving a linear system to find ρs, and we want to avoid that because we lose the
simplicity of the approach. Let us remark, moreover, that considering the scheme

ρn+1
s,m − ρns,m

∆t
− (1 − θ)∆m

(
ϕn,

ρns
ϕn

)
− θ∆m

(
ϕn+1,

ρn+1
s

ϕn+1

)

= S((1 − θ)ρns,m + θρn+1
s,m , c

n+1
m )

leads us to solve a nonsymmetric linear system, while the finite element matrices are
symmetric.

A second semi-implicit approximation, which we call FD2, is the following:⎧⎪⎪⎨
⎪⎪⎩

ρn+1
s,m − ρns,m

∆t
− ∆m

(
ϕn,

ρns
ϕn

)
=

1

2

[
S(ρns,m, c

n+1
m ) + S(ρn+1

s,m , c
n
m)
]
,

cn+1
m − cnm

∆t
=

1

2

[
S(ρns,m, c

n+1
m ) + S(ρn+1

s,m , c
n
m)
]
.

(3.29)

Because the source term is quadratic, this scheme has an explicit representation:⎧⎪⎪⎨
⎪⎪⎩

ρn+1
s,m − ρns,m

∆t
=
S(ρns,m, c

n
m)

δ
+

(
1 − ∆t

cnm
2δ

)
∆m

(
ϕn,

ρns
ϕn

)
,

cn+1
m − cnm

∆t
=
S(ρns,m, c

n
m)

δ
− ∆t

cnm
2δ

∆m

(
ϕn,

ρns
ϕn

)(3.30)

with δ = 1 +
∆t

2

(
cnm + ρns,m

)
.
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This discretization takes the interaction into account in a symmetric way, without
computational cost. Notice also that for the single equation y′ = y2, the scheme
yn+1 = yn + ∆tyn+1yn is exact:

yn+1 =
yn

1 − ∆tyn
.

Finally, we construct another scheme by remarking that

∆m

(
ϕ,
ρs
ϕ

)
= ∆m (1, ρs)

− 1

2∆x

[(
ρs,i
ϕi

+
ρs,i+1

ϕi+1

)
ϕi+1 − ϕi

∆x
−
(
ρs,i−1

ϕi−1
+
ρs,i
ϕi

)
ϕi − ϕi−1

∆x

]
.

This is a consistent centered approximation of ∂x(ϕ∂x
ρs
ϕ ) = ∂xxρs − ∂x(

ρs
ϕ ∂xϕ).

More generally, we can put system (3.26) under the semiconservative form,⎧⎨
⎩

∂tρs + f(ρs, c, x, t)x = B(ρs, c)xx + S(ρs, c),

∂tc = S(c, ρs),
(3.31)

where

B(ρs, c) = ρs, f(ρs, c, x, t) = ρs
ϕ′(c)
ϕ(c)

cx.

In the expression of f , cx is considered as a known function of (x, t). In practice, a
difference formula is used to compute it. Hence in what follows we no longer mention
the (x, t) dependence in f . Let us denote f = (f, 0), B = (B, 0), S = (S, S). System
(3.31) can be written as

∂tu+ f(u)x = B(u)xx + S(u).(3.32)

Now the convective part may be approximated by any method for conservation law.
The particular form of our system allows the flux vector splitting,

f(u) = f+(u) − f−(u),

where sp(∂uf±(u)) ⊂ [0,+∞[ and ∂uf(u), ∂uf+(u) and ∂uf−(u) have a common basis
of eigenvectors. In fact we have

∂uf =

(
∂ρsf ∂cf

0 0

)
,

and it is sufficient to take

f+(u) =

(
f+(u)

0

)
, f−(u) =

(
f−(u)

0

)
,

where

f+(u) =

{
f(u) if ∂ρsf(u) > 0,
0 else

and f−(u) =

{ −f(u) if ∂ρsf(u) < 0,
0 else.
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Now, we can take the source term into account either like in FD1 or like in FD2. For
example, let us take the same method as for FD1. The numerical scheme FD3 is the
following:

(3.33)⎧⎪⎪⎨
⎪⎪⎩

ρn+1
s,m = ρns,m − λ

[−f−(unm+1) + f+(unm) + f−(unm) − f+(unm−1)
]

+µ
[
ρns,m−1 − 2ρns,m + ρns,m+1

]
+ ∆t S((1 − θ)ρns,m + θρn+1

s,m , c
n+1
m ),

cn+1
m = cnme−∆tρns,m .

To take into account the initial and boundary conditions in each of these numerical
schemes, we put {

ρ0
s,m = 0, c0m = c0 for 1 ≤ m ≤ N,
ρns,0 = ρs0, ρns,N+1 = ρns,N for n ≥ 0.

(3.34)

In the following, if ρs,m ≥ 0, we take

f±(um) = ρs,m

[
±ϕm+1 − ϕm−1

2ϕm∆x

]
+

.(3.35)

3.2.2. Higher order in time. To reach higher order in time for these three
schemes, we remark that they all can be written in the conservative form:

un+1
m − unm

∆t
= Gm(un+1, un,∆t).

Moreover, when ∆t tends to zero and un and ∆x are fixed, un+1 tends to un, and
Gm(un+1, un,∆t) has a limit Fm(un). We obtain the semidiscretized scheme:

u′
m(tn) = Fm(u(tn)), m = 1, . . . , N.

For FD1 and FD2, Fm is defined by

Fm(u) =

(
∆m

(
ϕ(c),

ρs
ϕ(c)

)
+ S(u),S(u)

)
.

For FD3, Fm is defined by

Fm(u) =
(
∆m + S(u),S(u)

)
with

∆m =
−f−(um+1) + f+(um) + f−(um) − f+(um−1)

∆x
+
ρs,m−1 − 2ρs,m + ρs,m+1

∆x2
.

This is a new starting point at which to apply a temporal scheme, solving on [tn, tn+1]
the ordinary differential system:

u′(t) = F (u(t)).

As a particular case, we may use an implicit method in order to have a large time
step, and this involves the resolution of a nonlinear system. As we already have an
implicit scheme with the finite element method, we prefer here to approximate u by
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means of the second order Heun method or by the optimal third order strong-stability
preserving (SSP) Runge–Kutta (RK) method given by

v(1) = un + ∆tF (un),

v(2) =
3

4
un +

1

4
v(1) +

1

4
∆tF (v(1)),

un+1 =
1

3
un +

2

3
v(2) +

2

3
∆tF (v(2))

(3.36)

introduced in [11].

3.2.3. Stability. The finite difference schemes FD1, FD3 preserve positivity
under a suitable time step restriction.

The choice of the third order RK scheme (3.36) was dictated by further stability
consideration. In fact, as shown by Gottlieb, Shu, and Tadmor in [11], it is possible
to relate the CFL condition for the temporal first order Euler scheme (3.33) to a
strong stability property verified by the temporal third order scheme (3.36), at least
for conservation laws. The rigorous extension of this property to the present case is
beyond the aims of this paper, but we can expect that this scheme works for the same
∆t used in the Euler time discretization, thanks to the dissipation induced by the
diffusion and by the source terms.

Proposition 3.3 (scheme FD1). For all n ≥ 0, all m = 1, . . . , N ,

ρns,m ≥ 0, cnm ∈ [0, c0](3.37)

under the time step restriction

∆t ≤ β∆x2

ϕ0 + β(1 + ∆x2c0(1 − θ))
.(3.38)

Proof. It is clear that we have to check only the first order in time. From the
expression of cn+1

m , it is clear that if ρns,m is nonnegative, then cn+1
m ∈ [0, cnm]. This is

true for n = 0. Let us suppose it is true for all k ≤ n. Then cn+1
m ∈ [0, c0] and

β ≤ ϕnm ≤ ϕ0.(3.39)

Now we can write

ρn+1
s,m (1 + ∆tθcn+1

m ) = ρns,m

[
1 − µ

(
1 +

ϕnm+1 + ϕnm−1

2ϕnm

)
− ∆t(1 − θ)cn+1

m

]

+ µρns,m−1

ϕnm + ϕnm−1

2ϕnm−1

+ µρns,m+1

ϕnm + ϕnm+1

2ϕnm+1

.(3.40)

Thus, positivity is ensured as soon as condition (3.38) is satisfied.
Proposition 3.4 (scheme FD3 with (3.35)). For all n ≥ 0, all m = 1, . . . , N ,

ρns,m ≥ 0, cnm ∈ [0, c0](3.41)

under the time step restriction

∆t ≤ 2β∆x2

ϕ0 + β(3 + 2∆x2(1 − θ))
.(3.42)
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Proof. In view of (3.35) we can write

ρn+1
s,m (1 + ∆t θcn+1

m ) = ρns,m

[
1 − µ

(∣∣∣∣ϕm+1 − ϕm−1

2ϕm

∣∣∣∣+ 2 + ∆x2(1 − θ)cn+1
m

)]
+ ρns,m−1 (λ[∂ρsf(um−1)]+ + µ)

+ ρns,m+1 (λ[−∂ρsf(um+1)]+ + µ) ,(3.43)

and condition (3.42) follows by a straightforward computation.
Remark 3.2. In practice, we update ∆t at each time step, and we use a less

restrictive condition. More precisely, we require that in (3.40) or (3.43), for all m =
1, . . . , N , the coefficient of ρns,m is nonnegative. By bounding cn+1

m by cnm we use the
numerical condition

∆tn ≤ ∆x2

max1≤m≤N
[
1 +

ϕn
m+1

+ϕn
m−1

2ϕn
m

+ ∆x2(1 − θ)cnm

]
instead of condition (3.38). Similarly, instead of condition (3.42) we impose that

∆tn ≤ ∆x2

max1≤m≤N
[∣∣∣ϕn

m+1
−ϕn

m−1

2ϕn
m

∣∣∣+ 2 + ∆x2(1 − θ)cnm

] .

4. Numerical experiments. This section is devoted to some numerical exper-
iments. It is more significant to perform our tests on the original unscaled model
(2.15)–(2.16), even if we observe that with the change of variable (2.17) the shape of
the solutions is not dependent on the given parameters. The data are fixed as follows:

ρs0 = 1, c0 = 10, α = 0.01, β = 0.1, mc = 100.09, ms = 64.06, d = 1.(4.1)

As shown in section 5, letting A go to infinity is equivalent to making the time go to
infinity. First we take A = 1 and the final time Tmax = 0.1; the last paragraph of this
section and section 5 are devoted to time asymptotics.

For θ = 1 and θ = 0.5, let us analyze the numerical order of accuracy γ defined
by

γ = log2

( ||ρ(h) − ρ(h/2)||1
||ρ(h/2) − ρ(h/4)||1

)

for each component of the solution at the final time Tmax. Here, h = ∆x. We recall
that schemes FD1 and FD3 are obtained by solving exactly the equation for c, and
FD2 is obtained by a semi-implicit method. We call FD4 the scheme obtained by
the same spatial discretization as for FD3, while the temporal resolution is the same
semi-implicit one as FD2.

We first put θ = 1 and for FE, ηn+1 = ηn+1/2. As there is no upper bound on
∆t for the finite element method in this case, we have chosen ∆t = ∆x. The scheme
is first order in time. We do not experiment with FD2 and FD4 here, because they
correspond to θ = 1/2. We obtain Tables 1–3.

Scheme FD1, that is, when the nonlinear diffusion is approximated by formula
(3.27), converges better than scheme FD3. For the finite element case, the choice of a
large time step prevents one from a fast convergence. Nevertheless, the convergence
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Table 1

The L1 errors for FD1, θ = 1.

h γs ||ρs(h) − ρs(h/2)||1 γc ||c(h) − c(h/2)||1
0.2 0.312985829 0.00834144243 1.87384348 0.000525266
0.1 2.40471333 0.00671464464 1.3467364 0.0001433165
0.05 1.33397634 0.00126803776 1.49975333 5.634925E-05
0.025 2.2831098 0.000502996885 3.1590019 1.9925875E-05
0.0125 1.67597534 0.000103342928 0.83185905 2.2308125E-06
0.00625 3.29717645 3.23416303E-05 4.7235384 1.25328125E-06
0.003125 —— 3.29012875E-06 —— 4.74375001E-08

Table 2

The L1 errors for FD3, θ = 1.

h γs ||ρs(h) − ρs(h/2)||1 γc ||c(h) − c(h/2)||1
0.2 1.58822799 0.045138069 2.35937874 0.000867266
0.1 0.215780607 0.0150120053 -0.396735465 0.0001690085
0.05 0.981610986 0.0129265394 1.01033173 0.000222504
0.025 1.13931055 0.00654617968 1.29691797 0.000110458125
0.0125 0.908544914 0.00297181158 0.833852008 4.4955875E-05
0.00625 1.02937252 0.00158314976 1.06622513 2.52215625E-05
0.003125 —— 0.000775621775 —— 1.20449844E-05

Table 3

The L1 errors for the finite element method, θ = 1.

h γs ||ρs(h) − ρs(h/2)||1 γc ||c(h) − c(h/2)||1
0.2 -2.25922932 0.00487514386 —– 0.
0.1 -0.71418536 0.023339053 3.10173338 0.001743642
0.05 -0.991921129 0.0382890373 -3.52219246 0.00020311525
0.025 1.33297029 0.0761504476 1.61661945 0.00233360913
0.0125 2.08378342 0.0302279307 1.38231411 0.000760986875
0.00625 -0.343775269 0.00713061687 -0.138516672 0.000291916844
0.003125 —— 0.00904927466 —— 0.000321334109
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Fig. 1. Comparison among finite element methods and finite difference methods, with �x =
0.003125 and θ = 1. Left: SO2 concentration; right: calcite density. Time t = 0.1.
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Fig. 2. Comparison among finite element methods and finite difference methods, with �x =
0.0015625 and θ = 1. Left: SO2 concentration; right: calcite density. Time t = 0.1.

Table 4

The L1 errors for FD1, θ = 1/2.

h γs ||ρs(h) − ρs(h/2)||1 γc ||c(h) − c(h/2)||1
0.2 1.17222647 0.0084354273 3.36048996 0.000529403
0.1 2.00077673 0.00374310282 2.001092 5.1544E-05
0.05 2.0139494 0.000935272028 2.0079489 1.287625E-05
0.025 2.0292682 0.000231568118 2.01466401 3.201375E-06
0.0125 2.05711582 5.67293969E-05 2.03945881 7.9225E-07
0.00625 2.09897113 1.36318438E-05 2.04442335 1.9271875E-07
0.003125 —— 3.18200844E-06 —— 4.67187501E-08

Table 5

The L1 errors for FD2, θ = 1/2.

h γs ||ρs(h) − ρs(h/2)||1 γc ||c(h) − c(h/2)||1
0.2 1.17179262 0.00843434345 1.12743968 0.000263196
0.1 2.0006973 0.00374374754 2.01027543 0.000120472
0.05 2.01389756 0.00093548462 2.00610367 2.990425E-05
0.025 2.02923763 0.000231629077 2.00869842 7.4445E-06
0.0125 2.05709045 5.67455331E-05 2.01474625 1.8499375E-06
0.00625 2.09895461 1.36359609E-05 2.03115964 4.5778125E-07
0.003125 —— 3.18300594E-06 —— 1.12E-07

holds, and as shown in Figures 1 and 2, the solution is close to the one computed by
FD1. Let us point out that a computation for ∆x = 0.0015625 and ∆t = ∆x is much
faster than a computation for ∆x = 0.00625 and ∆t = C∆x2.

Let us now make the same experiment with θ = 1/2. In that case, for the finite
element method, we choose the Heun method for ηn+1 with formula (3.14). Tables
4–8 show that numerically FD1, FD2, and FE-1/2 are second order accurate, while
FD3 and FD4 remain less than first order accurate. Let us recall that unless a is
a constant, the formula (3.27) used in FD1 and FD2 is only first order in space,
and that for FD1 the choice of θ affects only the source term and not the diffusion
term. Therefore, second order was not expected. This result can be explained by the
fact that here the variations of c and a = ϕ(c) are small in space and in time; see
Figure 1, for example. On the contrary, the semiconservative formulation (3.31) used
to construct schemes FD3 and FD4 does not allow such a gain.
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Table 6

The L1 errors for FD3, θ = 1/2.

h γs ||ρs(h) − ρs(h/2)||1 γc ||c(h) − c(h/2)||1
0.2 1.33149717 0.0452259789 1.7650704 0.000870125
0.1 0.743923424 0.0179707991 0.686674157 0.0002560015
0.05 0.884689522 0.0107306029 0.850347453 0.00015904975
0.025 0.945292297 0.00581173816 0.926766823 8.8217125E-05
0.0125 0.973358008 0.00301817698 0.963707356 4.6405375E-05
0.00625 0.986854034 0.00153721547 0.98201168 2.37937813E-05
0.003125 —— 0.00077564336 —— 1.20461563E-05

Table 7

The L1 errors for FD4, θ = 1/2.

h γs ||ρs(h) − ρs(h/2)||1 γc ||c(h) − c(h/2)||1
0.2 1.33151869 0.0452259099 1.79104267 0.000677384
0.1 0.743919588 0.0179705035 0.453029589 0.000195739
0.05 0.884682254 0.0107304549 0.766586208 0.00014298875
0.025 0.945286757 0.00581168729 0.890333851 8.404975E-05
0.0125 0.973354679 0.00301816215 0.946713033 4.53439375E-05
0.00625 0.986852184 0.00153721146 0.973711741 2.35250312E-05
0.003125 —— 0.000775642332 —— 1.19788125E-05

Table 8

The L1 errors for finite element, θ = 1/2.

h γs ||ρs(h) − ρs(h/2)||1 γc ||c(h) − c(h/2)||1
0.2 3.50066927 0.0545620474 6.44459105 0.001924897
0.1 1.99293298 0.00482041247 1.99127884 2.21E-05
0.05 2.00834819 0.00121102077 2.01460837 5.5585E-06
0.025 2.02053637 0.000301008351 2.03328576 1.375625E-06
0.0125 2.03989415 7.41884825E-05 2.07065766 3.360625E-07
0.00625 2.0685759 1.80412722E-05 2.14077583 8.E-08
0.003125 —— 4.30094375E-06 —— 1.8140625E-08

Table 9

The L1 errors for FD1, θ = 1/2, order 3 in time.

h γs ||ρs(h) − ρs(h/2)||1 γc ||c(h) − c(h/2)||1
0.2 2.34357642 0.0132414991 2.19330999 0.000390955
0.1 1.99675824 0.00260885747 2.01397425 8.5482E-05
0.05 2.01399821 0.000653681548 2.00827172 2.11645E-05
0.025 2.03298887 0.000161842415 2.0117367 5.260875E-06
0.0125 2.0516014 3.95459231E-05 2.02235917 1.3045625E-06
0.00625 2.05713482 9.53911656E-06 2.0462204 3.21125E-07
0.003125 —— 2.29218078E-06 —— 7.775E-08

Table 10

The L1 errors for FD2, θ = 1/2, order 3 in time.

h γs ||ρs(h) − ρs(h/2)||1 γc ||c(h) − c(h/2)||1
0.2 2.3431196 0.0132405316 -0.16126272 0.000139208
0.1 1.99663095 0.00260949301 2.01341207 0.0001556715
0.05 2.01393858 0.000653898483 2.00595212 3.855775E-05
0.025 2.03295263 0.000161902817 2.00708072 9.59975E-06
0.0125 2.05161953 3.95616763E-05 2.01087687 2.3881875E-06
0.00625 2.05719473 9.54279656E-06 2.02687804 5.925625E-07
0.003125 —— 2.29296984E-06 —— 1.4540625E-07
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Fig. 3. Comparison among finite element methods and finite difference methods, with �x =
0.00625 and θ = 0.5. Left: SO2 concentration; right: calcite density. Time t = 0.1.
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Fig. 4. Finite differences: comparison among θ = 0.5 and θ = 1, with �x = 0.00625. Left:
SO2 concentration; right: calcite density. Time t = 0.1.

To end this part of the tests, in Tables 9 and 10 we give the numerical order for
the third order time discretization applied to FD1 and FD2. The numerical order of
accuracy is not sensitive to time order increasing, but the error ‖u(h) − u(h/2)‖1 is
smaller. This is not surprising, since the spatial discretization remains unchanged.
We do not present graphical results for high order in time discretizations because
in all our experiments they coincide with what happens for first order. Taking into
account that high time order makes the computation longer, we conclude that one
should prefer first order schemes.

To complete these tests, we present some graphical results. In Figure 1, we
compare the results for finite element and finite difference FD1 methods, for θ = 1 and
∆x = 0.003125. Then in Figure 2 we make the same comparison for ∆x = 0.0015625,
where both results coincide. In Figure 3 we show that for θ = 0.5 finite element and
finite difference FD1 methods give very similar results for ∆x = 0.00625. This is
because in this case both time steps are comparable, while for θ = 1 we take ∆t = ∆x
in the finite element method. Hence, the figures confirm the observations made in
the tables. We also remark that for finite difference method FD1, the results do not
depend on the value of θ; see Figure 4. All these results are computed at time t = 0.1.
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Fig. 5. Solution from t = 0 to t = 0.5 with A = 1. Left: SO2 concentration; right: calcite density.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t=0
t=0.1
t=0.2
t=0.3
t=0.4
t=0.5

0

2

4

6

8

10

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t=0
t=0.1
t=0.2
t=0.3
t=0.4
t=0.5

Fig. 6. Solution from t = 0 to t = 0.5 with A = 10000. Left: SO2 concentration; right: calcite
density.

From now on, we take θ = 0.5, and we use the finite difference method FD1.
Figure 5 shows the solution for different times, from t = 0 to t = 0.5, with A = 1.

Finally, we put A = 10000, and we plot the solution from t = 0 to t = 0.5
(Figure 6). The solution has a very different qualitative aspect: the transition zone
is smaller as the interaction coefficient A increases, so that the calcite deterioration
is more important for the boundary of the sample, while the interior is not touched
by SO2. The next section is devoted to the study of such solutions.

5. Qualitative behavior of the solutions. In this section we discuss, by
means of a formal scaling, the qualitative behavior of the solutions for large times,
and we give a numerical verification of this asymptotics. These results will be very
useful in calibrating our model against experimental tests.

5.1. A scaling argument. Let us rewrite the system in the one-dimensional
case and in the scaled form⎧⎨

⎩
∂t(ϕ(c)s) − ∂x(ϕ(c)∂xs) = −ϕ(c)sc,

∂tc = −ϕ(c)sc.
(5.1)
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For simplicity we assume that the domain is the half-line x > 0. Therefore we have to
give the initial and boundary conditions. Here we consider the simple case of invariant
data

s(x, 0) = 0, c(x, 0) = c0,(5.2)

and

s(0, t) = ŝ(5.3)

for two positive constant values c0, ŝ.
Following [15], we make the scaling (kx, k2t) in the unknowns, which yields

sk(x, t) = s(kx, k2t), ck(x, t) = c(kx, k2t).(5.4)

Clearly, the new unknowns satisfy the scaled problem⎧⎨
⎩

∂t(ϕ(c)s) − ∂x(ϕ(c)∂xs) = −k2ϕ(c)sc,

∂tc = −k2ϕ(c)sc,
(5.5)

with the same initial boundary conditions.
Assume now that there exists the limit of the sequence (sk, ck) for k → ∞.

Namely, there exist (S,C), such that

(sk, ck) →k→∞ (S,C),(5.6)

in some suitable (strong) topology. Using the scaling properties of the sequence
(sk, ck), we have that (S,C) is a self-similar weak solution to the problem⎧⎨

⎩
∂t(ϕ(C)S − C) − ∂x(ϕ(C)∂xS) = 0,

CS = 0,
(5.7)

with the initial boundary conditions (5.2)–(5.3). Self-similarity is just a consequence
of the definition of the limit under the scaling (kx, k2t). Therefore we have that we
can write

S(x, t) = Σ

(
x√
t

)
, C(x, t) = Γ

(
x√
t

)
,(5.8)

where Σ, Γ are one-dimensional functions such that⎧⎨
⎩

1
2ξ (ϕ(Γ)Σ − Γ)

′
+ (ϕ(Γ)Σ′)′ = 0,

ΓΣ = 0,
(5.9)

and

Σ(0) = ŝ, lim
ξ→∞

Σ(ξ) = 0, lim
ξ→∞

Γ(ξ) = c0.(5.10)

Let us now give one explicit solution to problem (5.9)–(5.10). Since ŝ > 0, at least for
small values of ξ we have that Σ > 0 and Γ = 0. Let ξ0 > 0 be the supremum value
of the set {ξ > 0|Σ(ξ) > 0}. In the interval (0, ξ0), the function Σ satisfies

1

2
ξΣ′ + Σ′′ = 0,



SO2 AGGRESSION TO CALCIUM CARBONATE STONES 1659

which implies that, from the condition at infinity,

Σ(ξ) = ŝ− α

∫ ξ

0

e−
1
4η

2

dη(5.11)

for some α > 0. In particular, let ξ0 be a finite value, i.e., such that Σ(ξ0) = 0. Then,
clearly,

α =
ŝ∫ ξ0

0
e−

1
4η

2
dη
.(5.12)

Let us continue our solution by setting Σ ≡ 0 for ξ ≥ ξ0. Considering the unknowns
S and C, let us denote by ζ(t) the curve where S = 0, which is now given by the
equation

ζ(t) = ξ0
√
t,

which gives

ζ ′(t) =
ξ0

2
√
t
.

On the other side, we have to satisfy the Rankine–Hugoniot condition for the conser-
vation law (5.9)–(5.10), which yields

ζ ′(t) = − (∂xs)(ζ(t)−)

c0
.(5.13)

Now, by equating the right-hand side in the equations we obtain

α =
ξ0c0
2
e

1
4 ξ

2
0 .(5.14)

Therefore, by using (5.12), we obtain a relation for ξ0:

F (ξ0) := ξ0

∫ ξ0

0

e
1
4 (ξ20−η2)dη =

2ŝ

c0
.(5.15)

Since F (0) = 0 and limξ→∞ F (ξ) = ∞ and F ′ > 0, there exists G = F−1, the inverse
function of F , and we take as ξ0 the unique value ξ0 = G( 2ŝ

c0
).

Let us resume our situation. There exists a self-similar weak solution of problem
(5.9)–(5.10), which is given by

(S(x, t), C(x, t)) =

⎧⎪⎪⎨
⎪⎪⎩

S = ŝ− ξ0c0
2

∫ x√
t

0

e
1
4 (ξ20−η2)dη, C = 0, x ∈ (0, ξ0

√
t),

S = 0, C = c0, x > ξ0
√
t,

(5.16)

where ξ0 is the unique solution of (5.15). If we restrict our attention to the unknown
S, we find that it is just a weak solution to the one-phase Stefan problem,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂tS − ∂xxS = 0 for x ∈ (0, ζ(t)),

S(x, 0) = 0,

S(ζ(t), 0) = 0,

ζ ′(t) = − (∂xs)(ζ(t)−)
c0

.

(5.17)
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As is well known [20], this problem has a unique explicit solution. Therefore we can
find that the limit problem (5.8) also has a unique self-similar weak solution.

Let us now investigate the relation between this scaling and the asymptotic be-
havior of the solution (s, c) to (5.1), (5.2), (5.3). Assuming the limit (5.6), we have
that, fixing t = 1,

(s(kx, k2), c(kx, k2)) = (sk(x, 1), ck(x, 1)) → (S(x, 1), C(x, 1)) as k → ∞.

Now, setting y = kx and τ = k2, we find that(
s(y, τ) − S

(
y√
τ
, 1

)
, c(y, τ) − C

(
y√
τ
, 1

))
→ (0, 0) as τ → ∞.(5.18)

The rigorous proof of this result is beyond the aims of this paper and will be considered
in a future work. In the following we present a consistent numerical verification of
this asymptotic behavior.

5.2. A numerical study. Let us analyze numerically the asymptotic behavior
of the solution. The following questions are under consideration:

• Does the approximate solution have the correct asymptotic limit?
• How does the front appear?
• What is the convergence rate to the limit?

We consider the unscaled model (2.15)–(2.16) with the previous parameters (4.1) and

A = 100. Let us denote g(ξ) =
∫ ξ
0

e−x
2/4dx. The above results read

lim
t→+∞ s(x, t) − σ

(
x√
t

)
= 0, lim

t→+∞ c(x, t) − γ

(
x√
t

)
= 0

with ⎧⎨
⎩ σ(ξ) =

ρs0
ϕ(0)

[
1 − g(ξ)

g(ξ0)

]
if ξ < ξ0, 0 otherwise,

γ(ξ) = c0 if ξ > ξ0, 0 otherwise.

Here ξ0 is the unique solution of

ξeξ
2/4g(ξ) =

2ρs0mc

c0ms
.

By strict convexity, Newton’s method converges to solve this equation, and we find
ξ0 = 0.545 approximatively.

As mentioned in section 4, the fully implicit finite element method (θ = 1) is the
cheaper in terms of computation times, so we choose this method here. We compute
the solution on a rather large space interval—[0, 10]—to avoid the influence of the
right boundary condition. As the front position is x(t) = ξ0

√
t, this allows us to

compute the solution for t < 300. We take ∆x = 0.01 and ∆t
∆x = 0.5. To make

sure that this choice is correct, we first compared the solution at t = 10 with the
one obtained by explicit finite differences with ∆t

∆x2 = C. Both results coincide; see
Figure 7.

Figure 8 represents early times and the formation of the front. We have c(0, t) =
c0e

−At/ms . This gives c(0, 5) = 0.004, and 10−7 < c(0, 10) < 10−6 . In fact, after the
time t = 5, we already observe the asymptotic profile on the calcite density.
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Fig. 7. Comparison among implicit finite element methods and explicit finite difference meth-
ods. Left: SO2 concentration; right: calcite density. Time t = 10.
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Fig. 8. Front formation. Left: SO2 concentration; right: calcite density.

If we now compute the solution for large times and compare it to the theoretical
limit, we obtain qualitatively a good agreement with our prediction, as shown in
Figure 9, where we represent the solution with respect to an x/

√
t-scale, in order to

observe the convergence to the asymptotic state. Let us study the convergence more
carefully. As suggested by theoretical results [15], which were obtained for the case
with constant porosity and constant diffusion, we expect that s converges on R

+
x while

c converges out of the front. Let us denote

es(x, t) =

∣∣∣∣s(x, t) − σ

(
x√
t

)∣∣∣∣ , ec(x, t) =

∣∣∣∣c(x, t) − γ

(
x√
t

)∣∣∣∣
and for δ ≥ 0, t ≥ 0,

X(δ, t) =

{
x ∈ R

+,

∣∣∣∣ x√t − ξ0

∣∣∣∣ ≥ δ

}
.

For p ∈ [1,+∞], we study

Es(A, p, δ, t) = ‖es(., t)‖Lp(X(δ,t)), Ec(A, p, δ, t) = ‖ec(., t)‖Lp(X(δ,t)).
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Fig. 9. Large time behavior. Left: SO2 concentration; right: calcite density, with respect to the
x/

√
t-scale.

If (s, c) is a solution of system (2.15)–(2.16) with A = 1, then the scaled function
(sk, ck) defined in (5.4) is a solution of the same equations with A = k2. Therefore,
we have the following result.

Proposition 5.1. For any p ∈ [1,+∞], δ ≥ 0, t ≥ 0,

(5.19)

Es(A, p, δ, t) = A−1/2pEs(1, p, δ, At), Ec(A, p, δ, t) = A−1/2pEc(1, p, δ, At).

Suppose now that

Es(A, p, δ, t) = Cs(A, p, δ)t
−rs , Ec(A, p, δ, t) = Cc(A, p, δ)t

−rc .

Then

Es(1, p, δ, t) = Ars+1/2pCs(A, p, δ)t
−rs ,

Ec(1, p, δ, t) = Arc+1/2pCc(A, p, δ)t
−rc .

Consequently, the convergence rates rs, rc do not depend on A. The other parameters
are fixed by the physical properties of the calcite specimen and the SO2. From these
considerations, we conclude that these convergence rates may be considered as specific
to the problem. We have determined them experimentally for p = +∞, p = 1, p = 2.

As far as we are concerned with uniform convergence, the results are as expected—
the SO2 concentration converges uniformly on R

+ and the calcite density does not:

lim
t→+∞Es(A,∞, 0, t) = 0, lim

t→+∞Ec(A,∞, 0, t) 	= 0.

We have then computed the maximum difference between the asymptotic limit and the
computed solution, out of the front, for different values of δ in the range [0.01ξ0, 0.2ξ0].
For δ ≥ 0.05ξ0 we observe that

lim
t→+∞Ec(A,∞, δ, t) = 0.

These results are shown in Figure 10. In the legend we denoted d = δ/ξ0. The
convergence rates are shown in Figure 11. As we evaluate them at each time step,
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Fig. 11. Convergence rate in maximum norm, with respect to time. Left: SO2 concentration;
right: calcite density.

we obtain a function of time that is asymptotic to a constant value for large times.
For SO2, we show only the result for δ = 0: we find that rs is about 0.45. For the
second variable, the convergence rate rc is also about 0.4 for δ = 0.1ξ0. For the values
considered here, it is an increasing function of δ. Observe that the rates begin to
stabilize after the time t = 5, that is, the time for which we see the formation of the
front.

The analysis of L1 and L2 convergences leads to similar results. In Figures 12
and 13, we represented the L1 and L2 distances of the computed solution to the
theoretical limit, out of the front. As we already have uniform convergence of s on
R

+, it is clear that s converges also in Lp norm, and we actually observe it. With
regard to the calcite density, we do not find out L1 or L2 convergence, where uniform
convergence does not hold, although the curves for δ = 0.01ξ0 are slightly decreasing.
Finally, Figures 14 and 15 give the convergence rates, and they are similar to the ones
for the L∞ norm. We also remark that these numerical results are in sharp contrast to
the analytical results of [16, 4], where global strong convergence, i.e., up the front, of
the reactive unknown c was proven for the case α = 0, namely, in the constant porosity
case. Actually, this convergence is observed also at the numerical level by using our
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schemes. The main difference between the constant and the nonconstant porosity
case is in the singular nonlinear term αcxsx, which appears in the nonconstant case
by developing all the derivatives in (1.1). Actually, this is the main difficulty toward
obtaining a rigorous proof of (5.18).

5.3. Comparison with experimental results. The asymptotic profile (5.16)
of our solutions shows that there exists a clear front of gypsum, which evolves as a
linear function of

√
t. Let us notice here that this behavior has been experimentally

observed in many independent tests; see, for instance, [22, 23, 7, 8, 17]. In connection
with the present research, some new laboratory tests were performed in [10], and great
care was given to force the monoaxial symmetry of the experiment and to establish a
clear dependence of the speed of the front on the physical parameters.

Figure 16 presents on the left the numerical simulation of the evolution of the
front, plotted as a function of

√
t, while the right presents the gypsum thickness

values at different times, in the same scale, as given by the preliminary experimental
results given in [10].

It is possible to observe a good qualitative agreement between the numerical
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function of time reaction as obtained in the laboratory test in [10].
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prediction and the experimental data, which gives the possibility of a future calibration
of the parameters on a larger set of data. In this way it will be possible to quantify
the real damage phenomena on the stone materials.

6. Conclusion. We have considered a macroscopic hydrodynamic model for the
evolution of the gypsum fronts in calcium carbonate stones, for which we have designed
several finite element and finite difference discretizations. The finite element method
involves the resolution of one tridiagonal linear system per time step. All the finite
difference schemes have an explicit formulation and allow high order in time, but we
have noticed that in our context, first order seems to be sufficient.

Our numerical experiments show that the approximations FD3 and FD4 are less
efficient than the others. An interesting feature of the methods FE, FD1, and FD2
with θ = 1/2 is that for short times they are numerically second order accurate. We
have also observed that the implicit finite element method FE-1 can be used with a
hyperbolic like time step ∆t = C.∆x, which allows fast computations.

Numerical stability is established, and all those schemes give comparable shapes.
We have produced asymptotic solutions for the model, and they are retrieved by the
computational results. Moreover, this behavior is in qualitative agreement with the
experimental tests. This is an important step in the validation of the model. In
view of these encouraging facts, multidimensional computations on realistic complex
geometries are now under consideration.

Acknowledgments. The authors would like to thank G. I. Barenblatt for valu-
able discussions about this work. We thank Rein van der Hout, Gianni Royer, Carlo
Nitsch, and Maria Laura Santarelli, who read the first version of this manuscript and
made many interesting remarks. We also thank Micaela Incitti and Vidar Furuholt
for their active collaboration.

REFERENCES

[1] G. Al̀ı, V. Furuholt, R. Natalini, and I. Torcicollo, Numerical and Qualitative Analysis
of a Mathematical Model of Sulphite Chemical Aggression of Limestones with High Per-
meability, IAC report, Instituto per le Applicazioni del Calculo “Mauro Picone,” Rome,
Italy, 2004. Available online at http://www.iac.rm.cnr.it/∼natalini/ps/afnt.pdf.

[2] G. G. Amoroso and V. Fassina, Stone Decay and Conservation—Atmospheric Pollution,
Cleaning, Consolidation and Protection, Elsevier, Amsterdam, 1983.

[3] G. I. Barenblatt, V. M. Entonov, and V. M. Ryzhik, Theory of Fluid Flows through Natural
Rocks, Kluwer Academic Publishers, Dordrecht, The Netherlands, 1990.

[4] M. Belhadj, J.-F. Gerbeau, and B. Perthame, A multiscale colloid transport model with
anisotropic degenerate diffusion, Asymptot. Anal., 34 (2003), pp. 41–54.

[5] R. Bugini, M. Laurenzi Tabasso, and M. Realini, Rate of formation of black crusts on
marble. A case study, J. Cultural Heritage, 1 (2000), pp. 111–116.

[6] F. Garbassi, E. Mello, and M. Laurenzi Tabasso, In situ XPS observation of the first
stages of marble sulphation by atmospheric SO2, Durability Build. Mater., 3 (1985), pp.
51–58.

[7] K. L. Gauri and J. A. Gwinn, Deterioration of marble in air containing 5–10 ppm SO2 and
NO2, Durability Build. Mater., 1 (1982/83), pp. 217–223.

[8] K. L. Gauri, N. P. Kulshreshtha, A. R. Punuru, and A. N. Chowdhury, Rate of decay of
marble in laboratory and outdoor exposure, J. Mater. Civil Engrg., 1 (1989), pp. 73–85.

[9] K. L. Gauri, R. Popli, and A. C. Sarma, Effect of relative humidity and grain size on
the reaction rates of marble at high concentrations of SO2, Durability Build. Mater., 1
(1982/83), pp. 209–216.

[10] C. Giavarini, M. Incitti, M. L. Santarelli, R. Natalini, and V. Furuholt, A Non-
linear Model of Sulphation of Calcium Carbonate Stones: Numerical Simulations and
Preliminary Laboratory Assessments, IAC report 19, Instituto per le Applicazioni del



SO2 AGGRESSION TO CALCIUM CARBONATE STONES 1667

Calculo “Mauro Picone,” Rome, Italy, 2003. Available online at http://www.iac.rm.cnr.it/
∼natalini/ps/CIpre.pdf.

[11] S. Gottlieb, C.-W. Shu, and E. Tadmor, Strong stability-preserving high-order time dis-
cretization methods, SIAM Rev., 43 (2001), pp. 89–112.

[12] F. R. Guarguaglini and R. Natalini, Global Existence of Smooth Solutions to a Nonlinear
Model of Sulphation Phenomena in Calcium Carbonate Stones, IAC report 9, Instituto
per le Applicazioni del Calculo “Mauro Picone,” Rome, Italy, 2003. Available online at
http://www.iac.rm.cnr.it/∼natalini/postscript/solf4.pdf.

[13] S. M. Hassanizadeha and A. Leijnsea, A non-linear theory of high-concentration-gradient
dispersion in porous media, Adv. Water Res., 18 (1995), pp. 203–215.

[14] F. H. Haynie, Deterioration of marble, Durability Build. Mater., 1 (1982/83), pp. 241–254.
[15] D. Hilhorst, R. van der Hout, and L. A. Peletier, The fast reaction limit for a reaction-

diffusion system, J. Math. Anal. Appl., 199 (1996), pp. 349–373.
[16] D. Hilhorst, R. van der Hout, and L. A. Peletier, Nonlinear diffusion in the presence of

fast reaction, Nonlinear Anal., 41 (2000), pp. 803–823.
[17] B. G. D. Hoke and D. L. Turcotte, Weathering and damage, J. Geophys. Res., 107 (2002),

2210.
[18] N. P. Kulshreshtha, A. R. Punuru, and K. L. Gauri, Kinetics of reaction of SO2 with

marble, J. Mater. Civil Engrg., 1 (1989), pp. 60–72.
[19] W. T. Lipfert, Atmospheric damage to calcareous stones: Comparison and reconciliation of

recent experimental findings, Atmos. Environ., 23 (1989), pp. 415–429.
[20] A. M. Meirmananov, The Stefan Problem, de Gruyter, Berlin, 1992.
[21] D. A. Nield and A. Bejan, Convection in Porous Media, Springer, Berlin, 1992.
[22] Th. Skoulikidis and E. Papakonstantinou-Ziotis, Mechanism of sulphation by atmospheric

SO2 of the limestones and marbles of the ancient monuments and statues, I. Observations
in situ (Acropolis) and laboratory measurements, British Corrosion J., 16 (1981), pp. 63–69.

[23] Th. Skoulikidis and D. Charalambous, Mechanism of sulphation by atmospheric SO2 of the
limestones and marbles of the ancient monuments and statues, II. Hypothesis concerning
the rate determining step in the process of sulphation, and its experimental confirmation,
British Corrosion J., 16 (1981), pp. 70–76.

[24] I. Stakgold, Gas-solid reaction with porosity change, in Proceedings of the Conference on
Nonlinear Differential Equations, Electron. J. Differ. Equ. Conf. 5, Southwest Texas State
University, San Marcos, TX, 2000, pp. 247–252.

[25] J. Szekely, J. W. Evans, and H. Y. Sohn, Gas-Solid Reaction, Academic Press, New York,
1976.

[26] S. Tambe, K. L. Gauri, S. Li, and W. G. Cobourn, Kinetic study of SO2 reaction with
dolomite, Environ. Sci. Technol., 25 (1991), pp. 2071–2075.

[27] R. S. Varga, Matrix Iterative Analysis, Prentice–Hall, Englewood Cliffs, NJ, 1962.



EUCLIDEAN SHIFT-TWIST SYMMETRY IN
POPULATION MODELS OF SELF-ALIGNING OBJECTS∗

PAUL C. BRESSLOFF†

SIAM J. APPL. MATH. c© 2004 Society for Industrial and Applied Mathematics
Vol. 64, No. 5, pp. 1668–1690

Abstract. We consider the symmetry properties of a general class of nonlocal population models
describing the aggregation and alignment of oriented objects in two dimensions. Such objects could
be at the level of molecules, cells, or whole organisms. We show that the underlying interaction
kernel is invariant under the so-called shift-twist action of the Euclidean group acting on the space
R2 × S1. This group action was previously studied within the context of a continuum model of
primary visual cortex. We use perturbation methods to solve the eigenvalue problem arising from
linearization about a homogeneous state, and then use equivariant bifurcation theory to identify the
various types of doubly periodic patterns that are expected to arise when the homogeneous state
becomes unstable. We thus establish that two distinct forms of spatio-angular order can occur,
corresponding to scalar and pseudoscalar representations of the Euclidean group.
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1. Introduction. A wide variety of self-organizing biological systems exhibit
aggregation and alignment phenomena. These occur spontaneously due to mutual in-
teractions between the individual elements of a population, in which both the relative
position and the relative orientation of the individuals have a significant effect on the
nature of the interactions. The underlying population can consist of molecules, cells,
or whole organisms. A well-known example of the last category is the aggregation
of animal herds, fish schools, and flocks of birds, in which the members of the group
tend to align their bodies with each other and move in a common direction [14]. Such
behavior provides a defense against predators. Examples at the cellular and molecular
levels are the alignment of mammalian fibroblast cells within densely formed patches
[10] and the alignment of actin filaments forming a scaffolding structure within a cell
[22]. In order to investigate the important role of alignment in population survival
and in the properties of biological materials, a number of continuum models of in-
teracting oriented objects have been developed, with applications to animal social
groups [19, 14, 6], fibroblasts [16, 17, 8], and actin [7, 12, 21]. All of these models
are formulated in terms of integro-differential equations describing the evolution of
the distribution of oriented elements in space. It is typically assumed that the in-
teraction terms involve convolutions of the population distribution with some linear
kernel. Convolutions with respect to orientation are natural, since an individual can
interact with a neighboring cell having any relative orientation, whereas convolutions
with respect to spatial position can be justified by assuming that signaling between
individuals happens on a much faster time-scale than aggregation and alignment [15].

In this paper we investigate how symmetries of the interaction kernel determine
the types of spatio-angular patterns that can emerge through a Turing-like instability
of a homogeneous state. For concreteness, we focus on a diffusion-advection equation
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for a population of oriented objects distributed in the two-dimensional plane. This
corresponds to the second of three classes of model previously studied by Mogilner
and Edelstein-Keshet [18], in which nonlocal interactions induce a rotation about
the center of mass of each element as well as a linear drift of the center of mass in
the plane. (The other two models are less realistic in the sense that they treat the
alignment process as instantaneous, although they do exhibit the same qualitative
behavior since they have the same underlying symmetries.) Mogilner and Edelstein-
Keshet [18] solved the eigenvalue problem arising from a linear stability analysis of
the homogeneous state in the case of a separable interaction kernel, that is, one in
which variations in the strength of interaction with respect to relative orientation and
relative position are uncorrelated. Such a kernel is invariant under the action of the
product group E(2) × O(2), where E(2) denotes the Euclidean group of rigid body
motions in the plane R2 and O(2) consists of rotations and reflection on the circle
S1. However, it is often found that individuals with similar orientations have stronger
interactions when they are collinear in the plane, implying that the interaction kernel
is nonseparable [6]. (A specific example of a nonseparable kernel was briefly considered
in [18], but general symmetry properties were not addressed.) Here we show that these
more realistic kernels are invariant with respect to the so-called shift-twist action of
E(2) acting on the space R2 ×S1, and we explore the consequences of this symmetry
for pattern formation. Note that the same group action has recently been analyzed
within the context of continuum models of the visual cortex, where the nonlocal
interactions are mediated by axonal connections between neurons that are tuned to
respond to oriented visual stimuli [3, 4]. Shift-twist invariant kernels also play a
central role in a recently proposed computational algorithm for grouping and joining
edges that form the boundaries of objects in a visual image [24].

We begin by describing the nonlocal population model for the aggregation and
alignment of oriented objects in two dimensions and discussing its symmetry proper-
ties (section 2). We show that the resulting diffusion-advection equation is equivariant
with respect to the shift-twist action of the Euclidean group due to the invariance of
the underlying interaction kernel. We then use perturbation methods to solve the
eigenvalue problem arising from linearization about a homogeneous state and deter-
mine marginal stability conditions (section 3). Finally, we use equivariant bifurcation
theory to identify the various types of doubly periodic patterns that are expected
to arise when the homogeneous state becomes unstable, and thus establish that two
distinct forms of spatio-angular order can occur, corresponding to the so-called scalar
and pseudoscalar representations of the Euclidean group (section 4). Interestingly,
analogous results [5] have been obtained for the Landau–de Gennes model of a ne-
matic liquid crystal [9], where the oriented objects are rod-like molecules that interact
by electrostatic attraction or repulsion.

2. Description of the model and its symmetries. Let f(r, θ, t) denote the
distribution of oriented objects in a two-dimensional domain D ⊂ R2 at time t with
r ∈ D and −π < θ ≤ π. It is assumed that the total number of objects N is conserved;
that is, Ṅ = 0 with

N =

∫
D

∫ π

−π
f(r, θ, t)

dθ

2π
d2r.(2.1)

In cases where the population grows (due to cell proliferation, for example), N may
still be treated as a constant, provided that the growth process is adiabatic. The pop-
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ulation distribution f is taken to evolve according to the diffusion-advection equation

∂f

∂t
= D1

∂2f

∂θ2
+D2∇2f − ∂Jθ

∂θ
−∇ · Jr.(2.2)

Here D1 and D2 are angular and spatial diffusion constants, Jθ is the flux arising
from changes in the orientation of objects, and Jr is the flux arising from motion in
the plane:

Jθ = f
dθ

dt
, J = f

dr

dt
.(2.3)

Following Mogilner and Edelstein-Keshet [16, 18], we assume that inertial forces can
be neglected so that the velocities are simply proportional to the driving forces,

dθ

dt
= η1Fθ,

dr

dt
= η2Fr.(2.4)

The forces are taken to be conservative; that is, each can be expressed in terms of the
gradient of an underlying potential function V :

Fθ =
∂V

∂θ
, Fr = ∇V,(2.5)

where V is given by the integral of f with respect to a linear kernel W ,

V (r, θ) = W ∗ f(r, θ) ≡
∫
D

∫ π

−π
W (r, θ|r′, θ′)f(r′, θ′)

dθ

2π
d2r.(2.6)

(One could also consider a more general situation in which angular and planar motion
are generated by two distinct potentials [18].) Substituting (2.3), (2.4), (2.5), and (2.6)
into (2.2) leads to the following model equation:

∂f

∂t
= D1

∂2f

∂θ2
+D2∇2f − η1

∂

∂θ

(
f
∂(W ∗ f)

∂θ

)
− η2∇ · (f∇(W ∗ f)).(2.7)

2.1. The interaction kernel. We now specify the form of the interaction kernel
W . Consider a local patch of individuals at point r with orientation θ. These will
move in the plane and reorient as a result of the influence from other patches at
r′ with orientation θ′ (see Figure 2.1(a)). It is likely that the interactions depend
on three distinct factors [6, 18]: (i) the Euclidean distance |r − r′|, (ii) the relative
orientation θ − θ′, and (iii) the relative alignment in the plane ψ = arg(r − r′) − θ.
One way to understand the third factor is to consider the case of parallel objects that
are equidistant in the plane but are either collinear or flanking each other (see Figure
2.1(b)). Given the fact that each object is elongated, it is possible that collinear
objects tend to influence each other more strongly than flanking objects. In the
cellular or molecular case this would arise due to differences in the contact areas of
the individuals, whereas in animal social groups this would reflect differences in the
ability to sense individuals in different relative directions. In the latter case, the
influence of individuals behind a given animal would also tend to be weaker than
on the sides or front. If we assume that the three effects are independent, then the
interaction kernel can be decomposed into the product form (see [6])

W (r, θ|r′, θ′) = G(|r − r′|)H(θ − θ′)∆(arg(r − r′) − θ).(2.8)
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Fig. 2.1. (a) Two oriented objects in the plane. (b) Difference in the influence of collinear
(black) and flanking (gray) oriented objects.

We now discuss each of the terms appearing in (2.8).
The strength of interactions decreases as a function of spatial separation so that

G(r) is a monotonically decreasing function of r. For concreteness, we take G to be
a Gaussian

G(r) =
1

2πσ2
e−r

2/2σ2

,(2.9)

where σ denotes the effective range of interactions. We fix the spatial scale by setting
σ = 1. Throughout this paper we assume that the range of interactions is at least a
few orders of magnitude smaller than the size of the domain D. This allows us to treat
the spatial domain as infinite so that we can ignore boundary effects. The angular
contribution H(θ) is assumed to be an even function of θ with one or more maxima
whose locations are model-dependent. In the case of fibroblasts [18], interactions tend
to favor parallel alignment which may be “head-to-head” (θ = 0) or “head-to-tail”
(θ = π). This can be modeled by taking a bimodal function of the form

H(θ) = [cos 2θ − cos 2θ0]+ , θ0 <
π

4
,(2.10)

where [x]+ = x if x > 0 and [x]+ = 0 if x ≤ 0, and θ0 determines the width of the
two maxima. If only “head-to-head” alignment is favored, then H(θ) can be modeled
by the unimodal function

H(θ) = [cos θ − cos θ0]+ , θ0 <
π

2
.(2.11)

In the case of actin fibers [7], crosslinking proteins allow fibers to interact and bind
at different configurations that include both parallel and orthogonal alignment. An
example of an orthogonal interaction kernel is

H(θ) = [cos 2θ0 − cos 2θ]+ , θ0 >
π

4
.(2.12)

All three cases are illustrated in Figure 2.2. The final factor ∆ is expected to be a
positive function that is greater for coaligned elements than for flanking elements (at
least in the case of parallel alignment). One possibility is to take

∆(ψ) = 1 + β cos 2ψ, β < 1.(2.13)
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Fig. 2.2. Orientation kernel H(θ) for different favored alignments: (a) unimodal parallel align-
ment, (b) bimodal parallel alignment, (c) orthogonal alignment.

Note that as it stands the interaction kernel (2.8) is not symmetric under the inter-
change (r, θ) ↔ (r′, θ′). It is straightforward to modify the kernel so that it has such
an exchange symmetry by taking

W (r, θ|r′, θ′) =
1

2
H(θ − θ′) [J(r − r′, θ) + J(r − r′, θ′)] ,(2.14)

where

J(r, θ) = G(|r|)∆(arg(r) − θ).(2.15)

2.2. Euclidean symmetry. We now show that the nonseparable interaction
kernel W given by (2.8) is invariant under the action of the Euclidean group E(2),
which is composed of the (semidirect) product of O(2), the group of planar rotations
and reflections, with R2, the group of planar translations. The action of the Euclidean
group on R2 × S1 is generated by

s · (r, θ) = (r + s, θ), s ∈ R2,
ϕ · (r, θ) = (Rϕr, θ + ϕ), ϕ ∈ S1,
κ · (r, θ) = (κr,−θ),

(2.16)

where κ is the reflection (x1, x2) �→ (x1,−x2) and Rϕ is a rotation by ϕ. The corre-
sponding group action on a function a : R2 × S1 → R is given by

γ · a(P ) = a(γ−1 · P ) for all γ ∈ O(2)+̇R2,(2.17)

where P = (r, θ), and the action on W (P |P ′) is

γ ·W (P |P ′) = W (γ−1 · P |γ−1 · P ′).

The so-called shift-twist action in (2.16) reflects a crucial feature of the underlying
interactions, namely that they tend to favor collinear parallel elements. This correla-
tion between relative angular position and object orientation means that invariance
of W under E(2) requires a rotation in the plane according to the twist r → Rϕr and
a simultaneous rotation of object orientation according to the shift θ → θ + ϕ (see
Figure 2.3). A similar argument holds for reflections.

Translation invariance of W given by (2.8) follows immediately from the spatial
homogeneity of the interactions, which implies that

W (r − s, θ|r′ − s, θ′) = W (r, θ|r′, θ′).
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(r1,θ1)

(r2,θ2) (r'2,θ'2)

(r'1,θ'1)

rotate

Fig. 2.3. Action of a rotation by ϕ on two oriented objects located at planar positions
r1, r2 and with internal orientations θ1, θ2. The action is of the form (r, θ) → (r′, θ′) =
(Rϕr, ϕ + θ).

Invariance with respect to a rotation by ϕ follows from

W (R−ϕr, θ − ϕ|R−ϕr′, θ′ − ϕ)

= G(|R−ϕ(r − r′)|)H(θ − ϕ− θ′ + ϕ)∆(arg[R−ϕ(r − r′)] − θ + ϕ)

= G(|r − r′|)H(θ − θ′)∆(arg(r − r′) − θ)

= W (r, θ|r′, θ′).

We have used the conditions |Rϕr| = |r| and arg(R−ϕr) = arg(r) − ϕ. Finally,
invariance under a reflection κ about the x-axis holds since

W (κr,−θ|κr′,−θ′) = G(|κ(r − r′)|)H(−θ + θ′)∆(arg[κ(r − r′)] + θ)

= G(|r − r′|)H(θ − θ′)∆(− arg(r − r′) + θ)

= W (r, θ|r′, θ′).

We have used the conditions arg(κr) = − arg(r), H(−θ) = H(θ), and ∆(−ψ) = ∆(ψ).
Finally, using identical arguments, it is straightforward to show that the modified
kernel (2.14) is also invariant under the Euclidean group action (2.16).

Let us now determine how (2.7) transforms under the shift-twist action of the

Euclidean group. Introducing the transformed coordinates (r̃, θ̃) = γ−1(r, θ) and

setting f̃(r, θ) = f(r̃, θ̃), etc., we see that (2.7) becomes

∂f̃

∂t
= D1

∂2f̃

∂θ̃2
+D2∇̃2f̃ − η1

∂

∂θ̃

(
f̃
∂W̃ ∗ f
∂θ̃

)
− η2∇̃ · (f̃∇̃W̃ ∗ f).(2.18)

Invariance of the weight kernel W implies that W̃ ∗ f = W ∗ f̃ :

W ∗ f(γ−1P, t) =

∫
R2×S1

W (γ−1P |P ′)f(P ′, t)dP ′

=

∫
R2×S1

W (P |γP ′)f(P ′, t)dP ′

=

∫
R2×S1

W (P |P ′′)f(γ−1P ′′, t)dP ′′,

since d[γ−1P ] = ±dP and W is Euclidean invariant. It is also easy to establish that
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all of the quadratic differential operators are Euclidean invariant, that is,

∂

∂θ̃

(
a
∂

∂θ̃

)
=

∂

∂θ

(
a
∂

∂θ

)
, ∇̃ · (a∇̃) = ∇ · (a∇)(2.19)

for any scalar function a(r, θ). Hence,

∂f̃

∂t
= D1

∂2f̃

∂θ2
+D2∇2f̃ − η1

∂

∂θ

(
f̃
∂W ∗ f̃
∂θ̃

)
− η2∇ · (f̃∇W ∗ f̃).(2.20)

If we rewrite (2.7) as an operator equation, namely,

Ft[f ] ≡ df

dt
−F [f ] = 0,(2.21)

then it follows that γFt[f ] = Ft[γf ] = Ft[f̃ ]. Thus Ft commutes with γ ∈ E(2), and
Ft is said to be equivariant with respect to the symmetry group E(2) (see [13]). In
sections 3 and 4 we show how the equivariance of the operator Ft with respect to the
shift-twist action of E(2) has major implications for the nature of solutions bifurcating
from a homogeneous steady state solution. In particular, equivariance implies that
there exist two distinct forms of spatio-angular order, which are associated with scalar
and pseudoscalar representations of the Euclidean group. Further details concerning
the general approach used in this paper, as well as many illustrative examples, can
be found in the recent excellent book on the role of symmetry in nonlinear dynamical
systems by Golubitsky and Stewart [13].

3. Linear stability analysis. The first step in the analysis of pattern forming
instabilities is to linearize (2.7) about the homogeneous solution f(r, θ) = f , where

f =
N

2πA[D]
, A[D] =

∫
D
d2r,(3.1)

and to solve the resulting eigenvalue problem. In particular, we wish to find conditions
under which the homogeneous solution becomes marginally stable due to the vanishing
of one of the (degenerate) eigenvalues, and to identify the marginally stable modes.
In the following we will consider the modified version of the interaction kernel given
by (2.14).

3.1. Eigenvalue equation. Substitute

f(r, θ, t) = f + a(r, θ)eλt(3.2)

into (2.7) and expand to first order in a. This generates the linear eigenvalue equation

λa = L̂a

≡ D1
∂2a

∂θ2
+D2∇2a− η1f

∂2(W ∗ a)
∂θ2

− η2f∇2(W ∗ a).(3.3)

Since the homogeneous solution has full Euclidean symmetry, γf = f for all γ ∈ E(2),

it follows that the linear operator L̂ is equivariant with respect to the Euclidean group
action (2.16). This can be shown either by explicitly using (3.3) or by rewriting (2.7)
in the form (2.21) and exploiting the equivariance of F . In the latter case, linearizing
both sides of the equation γF [f ] = F [γf ] about f gives

γ
(F [f ] +DF [f ](f − f)

)
= F [γf ] +DF [γf ](γf − f),
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which implies that γL̂ = L̂γ for all γ ∈ E(2), where L̂ = DF [f ]. Equivariance of

L̂ determines the basic form of the eigenfunction solutions of (3.3); namely, they are
given by irreducible representations of the group action (2.16) on the space R2 × S1.
We show this following similar arguments to those of Bressloff et al. [3, 4]. First,
translation symmetry implies that the eigenfunctions can be expressed in the form

a(r, θ) = u(θ − ϕ)eik·r + c.c.,(3.4)

where c.c. denotes the complex conjugate, k = q(cosϕ, sinϕ), and

λu(θ) = D1
∂2u(θ)

∂θ2
−D2q

2u(θ)

− f

2

[
η1

∂2

∂θ2
− η2q

2

] ∫ π

−π
H(θ − θ′)

[
Ĵ(k, θ + ϕ) + Ĵ(k, θ′ + ϕ)

]
u(θ′)

dθ′

2π
.(3.5)

Here Ĵ(k, θ) is the Fourier transform of J(r, θ),

Ĵ(k, θ) =

∫
R2

e−ik·rJ(r, θ)d2r.(3.6)

Euclidean symmetry further restricts the structure of the eigensolutions u(θ) of (3.5)
as follows.

(i) The Fourier transform Ĵ(k, θ+ϕ) is independent of the direction ϕ = arg(k).
This is easy to establish as follows:

Ĵ(k, θ + ϕ) =

∫
R2

e−ik·rJ(r, θ + ϕ)d2r

=

∫ ∞

0

∫ π

−π
e−iqr cos(ψ−ϕ)G(r)∆(ψ − θ − ϕ)dψrdr

=

∫ ∞

0

∫ π

−π
e−iqr cos(ψ)G(r)∆(ψ − θ)dψrdr

= Ĵ(q, θ).(3.7)

Therefore, λ and u(θ) depend only on the magnitude q = |k| of the wavevector k, and
there is an infinite degeneracy due to rotational invariance. Note, however, that the
eigenfunction (3.4) depends on u(θ − ϕ), which reflects the shift-twist action of the
rotation group.

(ii) For each k the associated subspace of eigenfunctions

Vk = {u(θ − ϕ)eik·r + c.c.}(3.8)

decomposes into two invariant subspaces,

Vk = V +
k ⊕ V −

k ,(3.9)

corresponding to even and odd functions, respectively:

V +
k = {v ∈ Vk : u(−θ) = u(θ)} and V −

k = {v ∈ Vk : u(−θ) = −u(θ)}.(3.10)

This is a consequence of reflection invariance, as we now indicate. That is, let κk

denote reflections about the wavevector k so that κkk = k. Then κka(r, φ) =
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a(κkr, 2ϕ − φ) = u(ϕ − φ)eik·r+ c.c. Since κk is a reflection, any space that it acts
on decomposes into two subspaces—one on which it acts as the identity I and one
on which it acts as −I. The even and odd functions correspond to scalar and pseu-
doscalar representations of the Euclidean group studied in a more general context by
Vivancos, Chossat, and Melbourne [1].

A further reduction of (3.5) can be achieved by expanding the 2π-periodic function
u(θ) as a Fourier series with respect to θ:

u(θ) =
∑
n∈Z

Une
inθ.(3.11)

This then leads to the matrix eigenvalue equation

λ(q)Un = [L(q)U]n ≡ −An(q)Un +
1

2
Bn(q)

∑
m∈Z

Ĵn−m(q)[Hm +Hn]Um,(3.12)

where

An(q) = D1n
2 +D2q

2, Bn(q) = f(η1n
2 + η2q

2)(3.13)

and

Ĵn(q) =

∫ π

−π
e−inθĴ(q, θ)

dθ

2π
= ∆nĜn(q)(3.14)

with

Ĝn(q) =

∫ ∞

0

∫ π

−π
e−iqr cos(ψ)e−inψG(r)dψrdr.(3.15)

We have used (3.7) together with the Fourier series expansions

H(θ) =
∑
n∈Z

einθHn, ∆(ψ) =
∑
n∈Z

einψ∆n.(3.16)

Note that H∗
n = H−n = Hn and ∆∗

n = ∆−n = ∆n, since H(θ) and ∆(θ) are assumed
to be real even functions of θ. Equations (3.14) and (3.15) imply that

Ĵn(q)
∗ = (−1)nĴ−n(q), Ĵ−n(q) = Ĵn(q).(3.17)

Denote the set of solutions to (3.12) by {(λj(q),Uj(q)), j ∈ Z}. We now establish
conditions under which the eigenvalues λj(q) are real for all q ∈ R. The case q = 0 is

trivial because Ĵn(0) ∼ δn,0 so that

λn(0) = −An(0) +Bn(0)Hn.(3.18)

Therefore, we take q �= 0. Introduce the inner product of two periodic functions
V (θ), U(θ) according to

〈V |U〉 =

∫ π

−π
V ∗(θ)U(θ)

dθ

2π
=
∑
n∈Z

V ∗
nUn = 〈V|U〉,(3.19)
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where V ∗ denotes the complex conjugate of V . The adjoint matrix L(q)† is then given
by

[L(q)†V]n ≡ −An(q)Vn +
1

2

∑
m∈Z

Ĵm−n(q)∗Bm(q)[Hm +Hn]Vm.(3.20)

Equation (3.17) implies that L(q)† and L(q) have the same set of eigenvalues,

L(q)Uj(q) = λj(q)Uj(q), L(q)†Vj(q) = λj(q)Vj(q),(3.21)

with the corresponding eigenvectors related according to

Uj,n(q) = (−1)nBn(q)Vj,n(q).(3.22)

This relationship is invertible since Bn(q) > 0 for all n ∈ Z and q �= 0. It further
follows that

λj〈Vj′ |Uj〉 = 〈Vj′ |LUj〉
= 〈L†V|U〉
= λ∗j′〈Vj′ |Uj〉.(3.23)

Hence, if λj(q) �= λj′(q) for j �= j′, then the vectors Uj(q) and Vj(q) form a biorthog-
onal system with

〈Vj′(q)|Uj(q)〉 = χj(q)δj,j′(3.24)

and

χj(q) = 〈Vj(q)|Uj(q)〉 =
∑
n

(−1)nBn(q)|Vj,n(q)|2.(3.25)

It also follows that λj(q) = λ∗j (q) if χj(q) �= 0. The latter condition certainly holds
for all q �= 0 and j ∈ Z when ∆(ψ) is π-periodic,

∆(ψ) = ∆(ψ + π),(3.26)

corresponding to the situation in which collinear interactions are equally strong at the
front and at the back (see Figure 2.1(b)). In this case ∆n = 0 and Ĵn(q) = 0 for all odd
integers n, and L(q) becomes a real matrix that only couples together even-to-even
or odd-to-odd components Un. Hence, χj(q) = ±∑±

n Bn(q)|Vj,n(q)|2 �= 0, where∑±
n denotes the sum over even and odd integers, respectively. The corresponding

eigenfunctions satisfy either U(θ+ π) = U(θ) or U(θ+ π) = −U(θ) and can be taken
to be real-valued. If ∆(ψ) is not π-periodic, then the eigenvalues λj(q) are still real,
provided that χj(q) �= 0 except at isolated points, which follows from the observation
that λj(q) is a continuous function of q. In this more general situation, however, the
eigenfunctions U(θ) will be complex-valued.

3.2. Perturbation expansion. The calculation of the eigenvalues and eigen-
functions of the linearized equation (3.5), and hence the derivation of conditions for
the marginal stability of the homogeneous state, has been reduced to the problem of
solving the matrix equation (3.12). In general it is not possible to solve this equation
exactly. Here we will carry out a perturbation expansion under the assumption that
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the dependence of the interactions on relative direction in the plane is weak. In other
words, we write

∆(ψ) = 1 + βΨ(ψ), 0 ≤ β � 1, |Ψ(ψ)| ≤ 1 for all ψ,(3.27)

with Ψ0 =
∫ π
−π Ψ(ψ)dψ = 0. Equation (3.12) can then be rewritten in the form

[λ(q) −Wn(q)]Un = β
∑
n∈Z

Ŵnm(q)Um,(3.28)

where

Wn(q) = −An(q) +Bn(q)HnĜ0(q)(3.29)

and

Ŵnm(q) =
1

2
Bn(q)[Hm +Hn]Ψn−mĜn−m(q)(3.30)

with An(q), Bn(q), Ĝn(q) given by (3.13) and (3.15). Equation (3.28) can then be
solved by expanding as a power series in β and using degenerate perturbation theory.

Case β = 0. In the limiting case that the interaction kernel is independent of
relative direction in the plane, β = 0, (3.28) reduces to the result previously obtained
for separable kernels [18]: the eigenvalues are

λn(q) = Wn(q) = −(D1n
2 +D2q

2) + f(η1n
2 + η2q

2)Hne
−q2/2(3.31)

with corresponding eigenfunctions

an,k(r, θ) = einθeik·r, |k| = q.(3.32)

We have used the result Ĝ0(q) = e−q
2/2, which follows from substituting (2.9) into

(3.15) and evaluating the resulting Gaussian integral. Note that the full interaction
kernel W is invariant with respect to the group E(2)×O(2) so that the odd and even
modes an,k ± a−n,k are degenerate, that is, λ−n(q) = λn(q).

Case β > 0. For nonzero β, there is a q-dependent splitting of the pair of degener-
ate eigenvalues λ±n(q), n �= 0, which separates out odd and even solutions. Denoting
the characteristic size of such a splitting by δλ = O(β), we impose the condition that
δλ � ∆W , where ∆W = min{Wn −Wm,m �= ±n}. This ensures that the pertur-
bation does not excite states associated with other eigenvalues of the unperturbed
problem. We can then restrict ourselves to calculating perturbative corrections to the
degenerate eigenvalues λ±n and their associated eigenfunctions. Therefore, introduce
the power series expansions

λ±n = Wn + βλ
(1)
±n + β2λ

(2)
±n + · · ·(3.33)

and

U±n,m = z±nδm,±n + βU
(1)
±n,m + β2U

(2)
±n,m + · · · ,(3.34)

where δn,m is the Kronecker delta function. Here Un,m is the mth component of the
vector Un associated with the eigenvalue λn. Substitute these expansions into the
matrix eigenvalue equation (3.28) and systematically solve the resulting hierarchy of
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equations to successive orders in β using degenerate perturbation theory along similar
lines to [3]. This leads to the following results:

(i) the even (+) and odd (−) eigenvalues to O(β2) are

λ±n(q) = Wn(q) + β
[
Ŵnn(q) ± Ŵn,−n(q)

]

+ β2
∑

0≤m�=n

[
Ŵnm(q) ± Ŵ−n,m(q)

] [
Ŵmn(q) ± Ŵm,−n(q)

]
Wn −Wm

;(3.35)

(ii) the corresponding eigenfunctions to O(β) are

an,k(r, θ) =

⎡
⎣cos(nθ) + β

∑
0≤m�=n

U+
m(q) cos(mθ)

⎤
⎦ eik·r;(3.36)

a−n,k(r, θ) =

⎡
⎣sin(nθ) + β

∑
0<m�=n

U−
m(q) sin(mθ)

⎤
⎦ eik·r(3.37)

with |k| = q and

U+
0 (q) =

Ŵ0n(q)

Wn −W0
, U±

m(q) =
Ŵmn(q) ± Ŵm,−n(q)

Wn −Wm
, 0 < m �= n.(3.38)

It is important to stress that the splitting of even and odd branches for β > 0 is a
consequence of the underlying shift-twist symmetry and thus occurs beyond the small
β regime.

3.3. Marginal stability. We now determine the marginal stability boundaries
in parameter space that separate regions of stability from regions of instability. Cross-
ing one of these boundaries signals that one or more eigenvalues become positive and
their corresponding eigenfunctions start to grow, leading to the formation of a self-
organizing pattern. (Conservation of population number implies that there always
exists one neutrally stable mode q = 0, n = 0, that is, λ0(0) = 0.) For concreteness,
we treat the rescaled diffusion coefficients D1 → D1f,D2 → D2f as bifurcation pa-
rameters. An adiabatic increase in the mean density f due to a growth in population
number or a contraction in the area occupied by the population then corresponds to
a reduction in D1 and D2. This reduction can lead to one of four distinct types of
instability, depending on which eigenmodes are first excited:

(I) if q �= 0, n = 0, then a spatially periodic pattern forms without any angular
order (aggregation without orientation);

(II) if q = 0, n �= 0, then a pattern with angular order forms that is spatially
uniform (orientation without aggregation);

(IIIa,b) if q �= 0, n �= 0, then a pattern with spatio-angular order forms, in which
the angle of preferred orientation changes periodically in space even though the spa-
tial density remains homogeneous. The invariance of the interaction kernel under
Euclidean shift-twist symmetry implies that when β > 0, there are two kinds of
spatio-angular patterns, corresponding to (a) even and (b) odd eigenmodes, respec-
tively. Examples of such eigenmodes are shown in Figure 3.1 under the simplifying
assumption that a particular harmonic component n dominates. The crucial obser-
vation is that the direction of preferred orientation is correlated with the direction
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n = 1 (odd) n = 1 (even) n = 2 (even)n = 2 (odd)

Fig. 3.1. Examples of even (an,k = cos(nθ)eik·r + c.c.) and odd (an,k = sin(nθ)eik·r + c.c.)
eigenmodes with spatio-angular order in the case of a horizontal wavevector k = (q, 0). If n = 1,
then there is a unique direction of preferred orientation (indicated by an arrow). If n = 2, then
there are two preferred directions of motion (indicated by a bar). The width of each vertical strip is
π/q.

of the wavevector k, whereas there is no such correlation when β = 0 so that the
distinction between odd and even solutions disappears.

3.3.1. Separable interaction kernel (β = 0). Before determining the effects
of shift-twist symmetry on pattern forming instabilities of the homogeneous state, we
first discuss the separable case previously analyzed by Mogilner and Edelstein-Keshet
[18]. The eigenvalues for β = 0 are given by (3.31). In particular, when n = 0 we
have (on setting f = 1)

λ0(q) = q2
(−D2 + η2H0e

−q2/2).(3.39)

It is clear that λ0(q) < 0 for all q �= 0 if D2 > D2,0, where

D2,0 = η2H0.(3.40)

If D2 < D2,0, then the homogeneous state is unstable with respect to the excitation
of eigenmodes over a range of wavenumbers that includes the origin so that q ≈
0, n = 0. Although this is a type I instability, the emerging pattern tends to involve
long-wavelength spatial inhomogeneities. Therefore, the resulting stationary state
could be treated as homogeneous on shorter spatial scales and thus be susceptible
to secondary bifurcations associated with excitation of modes with q �= 0, n �= 0
(see below). Alternatively, the n = 0 modes could be stabilized by incorporating an
additional contribution to the interaction kernelW in the form of a repulsive hard-core
potential:

W (r, θ|r′, θ′) = G(r − r′)H(θ − θ′)∆(arg(r − r′) − θ) − Cδ(r − r′)(3.41)

with C > 0. This modifies the β = 0 contribution to λ0 according to

λ0(q) = q2
(−D2 + η2H0e

−q2/2 −H0C
)
,(3.42)

and the stability condition becomes D2 > D′
2,0 with

D′
2,0 = H0(η2 − C).(3.43)
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Now consider the branch of eigenmodes for a given n, n �= 0, such that Hn > 0
(otherwise λn(q) < 0 for all q). Differentiating (3.31) with respect to q gives

dλn(q)

dq
= q

[
−2D2 +Hn

(
2η2 − (η1n

2 + η2q
2)
)
e−q

2/2
]
.(3.44)

This implies that λn(q) has a maximum at q = 0 when D2 > D2,n and a maximum
at q = qc �= 0 when D2 < D2,n, where

D2,n = Hn(η2 − η1n
2/2).(3.45)

Since

λn(0) = n2[−D1 + η1Hn],(3.46)

it follows that λn(q) < 0 for all n �= 0 when D2 > D2,n and D1 > D1,n with

D1,n = η1Hn.(3.47)

On the other hand, if D2 > D2,n and D1 < D1,n, then there is a type II instability
due to excitation of the eigenmode at q = 0. Finally, if 0 < D2 < D2,n, then there is a
type III instability due to excitation of the eigenmodes with wavenumber q = qc �= 0.
This occurs at a critical value D1 = Fn(D2) with Fn a monotonically decreasing
function such that Fn(D2,n) = D1,n and Fn(0) = D′

1,n > D1,n. Note that this last
instability can occur only for integers n satisfying n2 < 2η2/η1.

In order to determine the stability of the homogeneous state one now has to com-
bine the stability conditions for all n. For concreteness, suppose the set of coefficients
{Hn, n �= 0} has a maximum at n = nc such that Dj,nc > Dj,n for all n �= 0, nc. This
leads to the stability diagram shown in Figure 3.2. In the absence of a repulsive con-
tribution to the interaction kernel, the region of stability is given by the dark shaded
region in Figure 3.2. Crossing the vertical boundary at D1 = D1,nc

induces a type II
instability, whereas crossing the horizontal boundary at D2 = D2,0 induces a type I
instability. A type III instability can occur only through a secondary bifurcation. On
the other hand, when there is a repulsive contribution to the potential, the stability
region extends to include both the dark and light shaded regions. A type II instability
now occurs on crossing the lower horizontal boundary at D2 = D′

2,0, so that there
is an additional curved boundary D1 = Fnc(D2) for D′

2,0 < D2 < D2,nc . Crossing
this boundary induces a type III instability, but there is no separation into even or
odd patterns, since the separable interaction kernel is invariant under the standard
Euclidean group action.

3.3.2. Nonseparable interaction kernel (β > 0). We now show that pat-
terns with even or odd spatio-angular order can occur when β > 0. We take D1

and D2 to be close to the curved boundary of the stability region shown in Figure
3.2, where the unperturbed system undergoes a type III instability, and consider O(β)
corrections to the eigenvalues λ±n(q) for n = nc. Using (3.30) and (3.35) with Ψ0 = 0,
we find that λ±n(q) = −D1n

2 + Λ±n(q) + O(β2), where

Λ±n(q) = −D2q
2 + (η1n

2 + η2q
2)Hn

[
e−q

2/2 ± βΨ2nĜ2n(q)
]
.(3.48)

Suppose that Λ±n(q) has a unique maximum at q = q± �= 0. If Λn(q+) > Λ−n(q−),
then the homogeneous state will become unstable at the critical pointD1 = Λn(q+)/n2
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D1D1,nc

D2,nc

D'2,0

III

I
II

I

Fig. 3.2. Stability diagram for the homogeneous state when β = 0. In the absence of a repulsive
contribution to the interaction kernel, the region of stability is given by the dark shaded region. This
extends to include the light shaded region when repulsion is included. The type of primary instability
induced by crossing each boundary of the stability region is also indicated. (See text for details.)

due to excitation of even eigenmodes with wavenumber q+, whereas if Λ−n(q−) >
Λn(q+), then the homogeneous state will become unstable at the critical point D1 =
Λ−n(q−)/n2 due to excitation of odd eigenmodes with wavenumber q−.

In order to determine whether an odd or even pattern arises, it is necessary to
evaluate the function Ĝ2n(q) for the given Gaussian kernel (2.9). Rewriting (3.15) for
even integers as

Ĝ2n(q) =

∫ π

0

e−2inψ

[∫ ∞

0

G(r) cos(rq cosψ)rdr

]
dψ

and using the Jacobi–Anger expansion

cos(sq cosψ) = J0(sq) + 2

∞∑
m=1

(−1)mJ2m(sq) cos(2mψ),

with Jn(x) the Bessel function of integer order n, we find that Ĝ2n is related to G
according to

Ĝ2n(q) = (−1)n
∫ ∞

0

G(r)J2n(rq)rdr.(3.49)

Substituting (2.9) into (3.49) and using standard properties of Bessel functions leads
to the result

Ĝ2n(q) =
qσ

√
2π

4
e−σ

2q2/4

[
In−1/2

(
σ2q2

4

)
− In+1/2

(
σ2q2

4

)]
,(3.50)

where Iν is a modified Bessel function.
In Figure 3.3 we plot Ĝ2n(q) as a function of wavenumber q for n = 0, 1, 2. Note

that Ĝ2n(q) alternates in sign with n, having a maximum for even n and a minimum
for odd n. It follows that if HnΨ2n > 0, then the homogeneous state destabilizes
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Fig. 3.3. Plot of Ĝ2n(q) as a function of wavenumber q for n = 0, 1, 2.

0 0.5 1 1.5 2

-0.8

-0.4

0

0.4

0.8

-0.5

0

0.5

1

0 0.5 1 1.5 2

odd

even

even

odd

q q

Λ±1(q) Λ±2(q)

Fig. 3.4. Plot of Λ±n(q) as a function of wavenumber q for n = 1, 2. Here D2 = 0.2, η1 =
0.3, η2 = 1, Hn = 1, and βΨ2n = 0.5. The dashed curve represents the coalescence of the even and
odd branches when β = 0.

due to excitation of even (odd) eigenmodes when n is even (odd); the opposite result
holds for HnΨ2n < 0. Example dispersion curves Λ±n(q) are plotted in Figure 3.4 for
n = 1, 2. Since maxq{Λ−1(q)} > maxq{Λ1(q),Λ±2(q)/4} > 0 for the given parameter
values, it follows that the critical eigenmodes are odd patterns with n = 1 (assuming
D2 > D′

2,0). Keeping the same parameters but setting H1 = 0 would change the
critical eigenmodes to even patterns with n = 2. For this particular example, the
splitting of the even and odd modes around the critical point is small.

4. Doubly periodic patterns. Rotation symmetry implies that in the case
of nonzero critical wavenumber qc, the space of marginally stable eigenfunctions is
infinite-dimensional, consisting of all solutions of the form u(θ− ϕ)eikϕ·r, where u(θ)
is either an even or odd function of θ, kϕ = qc(cosϕ, sinϕ), and 0 ≤ ϕ < 2π. However,
translation symmetry allows us to restrict the space of solutions of the original equa-
tion (2.7) to that of doubly periodic functions. This restriction is standard in many
treatments of spontaneous pattern formation, but as yet it has no formal justifica-
tion. However, there is a wealth of evidence from experiments on convecting fluids and
chemical reaction-diffusion systems [23] indicating that such systems tend to generate
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Table 4.1

Generators for the planar lattices and their dual lattices.

Lattice �1 �2 �̂1 �̂2

Square (1, 0) (0, 1) (1, 0) (0, 1)

Hexagonal (1, 1√
3
) (0, 2√

3
) (1, 0) 1

2
(−1,

√
3)

Rhombic (1,− cot η) (0, csc η) (1, 0) (cos η, sin η)

doubly periodic patterns in the plane when the homogeneous state is destabilized.
Given such a restriction, the associated space of marginally stable eigenfunctions is
finite-dimensional. A finite set of specific eigenfunctions can then be identified as can-
didate planforms, in the sense that they approximate time-independent solutions of
(2.7) sufficiently close to the critical point where the homogeneous state loses stability.

Let L be a planar lattice; that is, choose two linearly independent vectors �1 and
�2 and let

L = {2πd(m1�1 +m2�2) : m1,m2 ∈ Z},

where d is the lattice spacing. Note that L is a subgroup of the group of planar
translations. A function f : R2 × S1 → R is doubly periodic with respect to L if

f(r + �, θ) = f(r, θ)

for every � ∈ L. Let θ be the angle between the two basis vectors �1 and �2. We can
then distinguish three types of lattice according to the value of θ: square (θ = π/2),
rhombic (0 < θ < π/2, θ �= π/3), and hexagonal (θ = π/3). After rotation, the
generators of the planar lattices are given in Table 4.1 (for unit lattice spacing). Also
shown are the generators of the dual lattice

L̂ = {d−1(m1�̂1 +m2�̂2) : m1,m2 ∈ Z}

with �i · �̂j = δi,j . Restriction to double periodicity means that the original Euclidean
symmetry group is now restricted to the symmetry group of the lattice, Γ = HL+̇T2,
where HL is the holohedry of the lattice, the subgroup of O(2) that preserves the
lattice, and T2 is the two torus of planar translations modulo the lattice. Thus, the
holohedry of the rhombic lattice is D2, the holohedry of the square lattice is D4, and
the holohedry of the hexagonal lattice is D6.

Imposing double periodicity on the marginally stable eigenfunctions means re-
stricting the lattice spacing d so that the critical wavevector k lies on the dual lattice.
There are infinitely many choices for the lattice size that satisfy this constraint—
we select the one for which qc is the shortest length of a dual wavevector, that is,
qc = d−1. Linear combinations of eigenfunctions that generate doubly periodic solu-
tions corresponding to dual wavevectors of shortest length are given by

a(r, θ) =

N∑
j=1

zju(θ − ϕj)e
ikj ·r + c.c.,(4.1)

where the zj are complex amplitudes. Here N = 2 for the square lattice with k1 = kc
and k2 = Rπ/2kc, where Rξ denotes rotation through an angle ξ. Similarly, N = 3
for the hexagonal lattice with k1 = kc, k2 = R2π/3kc, and k3 = R4π/3kc = −k1 −k2.
It follows that the space of marginally stable eigenfunctions can be identified with
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the N -dimensional complex vector space spanned by the vectors (z1, . . . , zN ) ∈ CN ,
with N = 2 for square or rhombic lattices and N = 3 for hexagonal lattices. It can be
shown that these form Γ-irreducible representations. The actions of the group Γ on
CN can then be explicitly written down for both the odd and even cases [3, 4]. For
example, on a hexagonal lattice, a translation (r, θ) → (r + s, θ) induces the action

γ ◦ (z1, z2, z3) = (z1e
−iξ1 , z2e−iξ2 , z3ei(ξ1+ξ2)),(4.2)

where ξj = kj · s, a rotation (r, θ) → (R2π/3r, θ + 2π/3) induces the action

γ ◦ (z1, z2, z3) = (z3, z1, z2),(4.3)

and a reflection κ across the x-axis (assuming kc = qc(1, 0)) induces the action

γ ◦ (z1, z2, z3) = (z1, z3, z2).(4.4)

The next important observation is that, using weakly nonlinear analysis and per-
turbation methods, it is possible to reduce the infinite-dimensional system (2.7) to a
finite set of coupled ODEs constituting an amplitude equation for z,

dzj
dt

= Fj(z), j = 1, . . . , N,(4.5)

which is equivariant with respect to the induced shift-twist action of the group Γ on
CN . One can now use techniques from symmetric bifurcation theory to determine the
equilibrium solutions that are likely to bifurcate from the homogeneous fixed point
z = 0. This analysis has been carried out elsewhere within the context of a continuum
model of visual cortex [3, 4]. Since the population model (2.7) has the same Euclidean
shift-twist symmetry as the cortical model, it has the same restrictions regarding the
types of bifurcations from a homogeneous state that can occur. However, which
particular bifurcation scenario is realized in practice may differ in the two models.
That is, although symmetry considerations restrict the form of the nonlinear functions
Fj appearing in the amplitude equation (4.5) [3, 4], the values of the coefficients
multiplying terms at a particular order in zj will be model-dependent. Determining
these coefficients would require carrying out an explicit perturbation calculation. Here
we focus on general aspects of the bifurcating solutions that can be deduced from
symmetry principles. For completeness we briefly review a few basic definitions and
results from equivariant bifurcation theory [13].

Isotropy subgroups. The symmetries of any particular equilibrium solution z form
a subgroup called the isotropy subgroup of z defined by

Σz = {σ ∈ Γ : σz = z}.(4.6)

More generally, we say that Σ is an isotropy subgroup of Γ if Σ = Σz for some z ∈ V .
Isotropy subgroups are defined up to some conjugacy. A group Σ is conjugate to
a group Σ̂ if there exists σ ∈ Γ such that Σ̂ = σ−1Σσ. The fixed-point subspace of an
isotropy subgroup Σ, denoted by Fix(Σ), is the set of points z ∈ V that are invariant
under the action of Σ,

Fix(Σ) = {z ∈ V : σz = z ∀ σ ∈ Σ}.(4.7)

Finally, the group orbit through a point z is

Γz = {σz : σ ∈ Γ}.(4.8)
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Table 4.2

Even planforms with u(−θ) = u(θ). The hexagon solutions (0) and (π) have the same isotropy
subgroup, but they are not conjugate solutions.

Lattice Name Planform eigenfunction

Square Even square u(θ) cosx+ u
(
θ − π

2

)
cos y

Even roll u(θ) cosx
Rhombic Even rhombic u(θ) cos(k1 · r) + u(θ − η) cos(k2 · r)

Even roll u(θ) cos(k1 · r)
Hexagonal Even hexagon (0) u(θ) cos(k1 · r) + u

(
θ + π

3

)
cos(k2 · r) + u

(
θ − π

3

)
cos(k3 · r)

Even hexagon (π) u(θ) cos(k1 · r) + u
(
θ + π

3

)
cos(k2 · r) − u

(
θ − π

3

)
cos(k3 · r)

Even roll u(θ) cos(k1 · r)

If z is an equilibrium solution of (4.5), then so are all other points of the group orbit
(by equivariance). One can now adopt a strategy that restricts the search for solutions
of (4.5) to those that are fixed points of a particular isotropy subgroup. In general, if
a dynamical system is equivariant under some symmetry group Γ and has a solution
that is a fixed point of the full symmetry group, then we expect a loss of stability
to occur upon variation of one or more system parameters. Typically such a loss of
stability will be associated with the occurrence of new solution branches with isotropy
subgroups Σ smaller than Γ. One says that the solution has spontaneously broken
symmetry from Γ to Σ. Instead of a unique solution with the full set of symmetries Γ, a
set of symmetrically related solutions (orbits under Γ modulo Σ) each with symmetry
group (conjugate to) Σ is observed.

Equivariant branching lemma (see [13]). The system of equations (4.5) has a fixed
point z = 0 of the full symmetry group Γ. The equivariant branching lemma states
that generically there exists a (unique) equilibrium solution bifurcating from the fixed
point for each of the axial subgroups of Γ under the given group action—a subgroup
Σ ⊂ Γ is axial if dim Fix(Σ) = 1. The heuristic idea underlying this lemma is as
follows. Let Σ be an axial subgroup and z ∈ Fix(Σ). Equivariance of F then implies
that

σF (z) = F (σz) = F (z)(4.9)

for all σ ∈ Σ. Thus F (z) ∈ Fix(Σ) and the system of coupled ODEs (4.5) can be re-
duced to a single equation in the fixed-point space of Σ. Thus one can systematically
identify the various expected primary bifurcation branches by constructing the associ-
ated axial subgroups and finding their fixed points. The calculation of these subgroups
has been carried out elsewhere [3, 4], and the resulting even and odd planforms are
listed in Tables 4.2 and 4.3.

One way to represent the planforms graphically is to indicate the direction(s) of
preferred orientation at each point in space r, that is, the orientations that maximize
the state a(r, θ) for fixed r. This has been carried out elsewhere in the case of cortical
patterns, where the preferred orientation corresponds to the orientation of a local
visual stimulus that elicits the maximum response of a neuron at a particular location
in the cortex [3, 4]. From a mathematical rather than a physical viewpoint, the
only difference between the cortical patterns and those of the population model is
that in the former case the functions u(θ) are always restricted to be π-periodic, and
hence, the resulting spatio-angular patterns are line fields. As a simple example,
consider a square lattice with u(θ) = cos 2θ or u(θ) = sin 2θ and kc = 2π(1, 0). The
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Table 4.3

Odd planforms with u(−θ) = −u(θ).

Lattice Name Planform eigenfunction

Square Odd square u(θ) cosx− u
(
θ − π

2

)
cos y

Odd roll u(θ) cosx
Rhombic Odd rhombic u(θ) cos(k1 · r) + u(θ − η) cos(k2 · r)

Odd Roll u(θ) cos(k1 · r)
Hexagonal Odd hexagon u(θ) cos(k1 · r) + u

(
θ + π

3

)
cos(k2 · r) + u

(
θ − π

3

)
cos(k3 · r)

Triangle u(θ) sin(k1 · r) + u
(
θ + π

3

)
sin(k2 · r) + u

(
θ − π

3

)
sin(k3 · r)

Patchwork quilt u
(
θ + π

3

)
cos(k2 · r) − u

(
θ − π

3

)
cos(k3 · r)

Odd roll u(θ) cos(k1 · r)
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Fig. 4.1. Line fields for even patterns (u(θ) = cos 2θ) and odd patterns (u(θ) = sin 2θ) in a
fundamental domain of a square lattice. The domain is divided up into subregions where the preferred
orientation (mod π) is uniform. The direction of orientation within each subregion is indicated by the
small parallel bars, which could be interpreted as aligned objects at discretely sampled points within
the subregion. Dashed lines indicate line singularities separating regions of different orientation.

corresponding even and odd planforms (modulo an arbitrary translation) are

a+(r, θ) = cos 2θ(sin 2πx− sin 2πy),

a−(r, θ) = sin 2θ(sin 2πx− sin 2πy).(4.10)

In the case of the even eigenmode a+(r, θ), the preferred orientation (mod π) at
(x, y) is θ = 0 when sin 2πx > sin 2πy and θ = π/2 when sin 2πx < sin 2πy. The
corresponding preferred orientations of the odd eigenmode a−(r, θ) are θ = π/4, 3π/4.
Note that line singularities occur for sin 2πx = sin 2πy, across which there are jumps
in orientation preference. The resulting even and odd line fields are shown in Figure
4.1. Inclusion of higher harmonic contributions to the function u(θ) can lead to
point rather than line singularities as well as sites containing more than one preferred
orientation [4]. If there is no distinction between “head” and “tail,” then solutions
of the population model (2.7) will also be π-periodic. On the other hand, if there
is such a distinction, then generically the resulting patterns will be represented by
vector fields rather than line fields. In the case of a square lattice with u(θ) = cos θ
or u(θ) = sin θ and kc = 2π(1, 0), the corresponding even and odd planforms (modulo
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Fig. 4.2. Vector fields for even patterns (u(θ) = cos θ) and odd patterns (u(θ) = sin θ) in a
fundamental domain of a square lattice. The preferred orientation at a given point in the plane is
given by the direction tangential to the flow line passing through that point. There is no preferred
orientation at the singularities (indicated by filled circles).

an arbitrary translation) are

a+(r, θ) = cos θ sin 2πx+ sin θ sin 2πy = A(r) cos[θ − θ+(r)],

a−(r, θ) = sin θ sin 2πx− cos θ sin 2πy = A(r) cos[θ − θ−(r)],(4.11)

with A(r) =
√

sin2 2πx+ sin2 2πy and

θ+(r) = tan−1 sin 2πy

sin 2πx
, θ−(r) = tan−1 − sin 2πx

sin 2πy
.(4.12)

It follows that the preferred orientation at position r is θ(r), provided that A(r) �= 0;
otherwise there is no preferred orientation. Another way to state this is that the
preferred orientation is determined by the flow lines of the vector fields,

V+ = sin 2πx
∂

∂x
+ sin 2πy

∂

∂y
, V− = − sin 2πy

∂

∂x
+ sin 2πx

∂

∂y
,(4.13)

except at the singularities x = mπ, y = m′π for integers m,m′. The resulting vector
fields are shown in Figure 4.2. Note that if higher harmonics are included in the
function u(θ), then it is possible for the flow lines to intersect, indicating that there
can be more than one preferred orientation away from singularities.

5. Discussion. In this paper we have shown that a wide class of self-organizing
biological systems have interactions that are invariant with respect to the shift-twist
action of the Euclidean group, and that this has major implications for the types of
patterns that can arise in these systems. Our main prediction is that patterns with
spatio-angular order should exhibit correlations between the directions of preferred
orientation and the underlying spatial orientation of the pattern (as determined by
the wavevectors of the excited eigenmodes), and that there are two distinct types of
correlation corresponding to scalar and pseudoscalar representations of the Euclidean
group. In other words, given a spatially periodic variation in preferred orientation,
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there is a correlation between the preferred orientation within a patch and the orien-
tation of the boundaries of that patch. Whether or not such correlations are actually
observed in real systems remains to be seen, although the line fields shown in Figure
4.1 are very suggestive of certain arrangements of fibroblasts where the cells appear
to be oriented at approximately 45◦ to line singularities [18].

One of the simplifying assumptions in our analysis has been to restrict the spatial
domain to be two-dimensional. This is appropriate for cells grown in vitro on a flat
surface and for animal herds. On the other hand, cells in vivo and fish schools or
bird flocks [20] are better described by a three-dimensional domain. In the three-
dimensional case, the orientation of an individual is specified by points on a sphere
(φ, θ) with φ ∈ [0, π] and θ ∈ [0, 2π). This suggests that the underlying symmetry
group is E(3) × O(3) when the corresponding interaction kernel is separable with
respect to spatial and angular coordinates. An interesting problem that follows from
this is to determine the appropriate three-dimensional analogue of Euclidean shift-
twist symmetry when the kernel is taken to be nonseparable. Another factor that
would modify the symmetry group is the presence of an environmental gradient that
biases the selection of a direction with which to align. Examples include migrating
birds using the earth’s magnetic field as a directional cue and fibroblasts aligning
strongly with grooves on an artificial substrate.
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(BV) image model, which is global, clean and self-contained, and intrinsically combines dejittering
with denoising. The mathematical properties of the model are studied based on the direct method
of calculus of variations. We design one effective algorithm and present its computational imple-
mentation based on techniques from numerical partial differential equations (PDEs) and nonlinear
optimizations.
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1. Introduction. The best way to describe video jittering is to quote from the
recent remarkable monograph by Kokaram on motion picture restoration [20]:

Video signals must contain synchronization information to allow the video
display to properly locate lines and frames relative to each other in space
and time. Noise in the video signal, or degradation of the storage medium
on which the signal is stored (video tape) can cause the synchronization
signals to be corrupted. This can cause the loss of “lock” in video digitiz-
ing and playback apparatus. The loss of line synchronization pulses will
prevent the video manipulation device from locating the actual start and
end of each line thus yielding random line displacements (line jitter) in the
observed video images.

Figure 1.1 displays a typical jittered video frame, in which horizontal image lines
are randomly shuffled. In the current paper, we will not consider interframe correlation
and jittering. Therefore the dejittering problem, i.e., to recover the original ideal
image frame u from the observed jittered (and often noisy due to medium corruption)
image frame u0, is fundamentally a still image restoration problem.

For real analog videos, it is possible to recover the line synchronization information
by cleaning the nonpicture parts of the video signals. This is the method of time base
correctors [20]. It demands the availability of signal information that has nothing to
do with the video or image content.
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 A noisy jittered image frame  The ideal image frame 

Dejitter 

Fig. 1.1. A noisy jittered image frame and the goal of dejittering.

The idea of intrinsic video dejittering [21, 22], on the other hand, is to restore
the ideal image frames directly from the observed jittered data. That is, as in the
classical denoising or deblurring problems, one attempts to recover the ideal images
solely based on intrinsic image structures (i.e., image prior models).

Thus in comparison, the intrinsic approach is more flexible and is applicable
in more general settings. For instance, due to electromagnetic interference in the
environment (especially intentional interference, as in battle fields), wireless image
signals can experience very similar jittering problems, completely or partially. It is
impossible to reconstruct the random and dynamic process of environmental inter-
ference, but it is still feasible to recover the original images based on their intrinsic
structures.

In the pioneering works by Kokaram and colleagues [21, 22], intrinsic dejittering
models are developed based on autoregressive image models, line registration, image
interpolation, parameter estimation, and the filtering technique. The goal of the cur-
rent paper is to address the dejittering problem with the help of calculus of variations
and partial differential equations (PDEs), two novel modern tools in mathematical
image and vision analysis (Miva).

Our main contributions are highlighted as follows.

(a) Treating dejittering as an image restoration problem, we propose the first vari-
ational dejittering model in the literature. The rationale of this deterministic
model is the general statistical framework of Bayesian inference.

(b) The model is clean and self-contained, meaning that no other pre- or postprocess-
ing steps are needed. Furthermore, it intrinsically combines the two processes of
denoising and dejittering.

(c) We propose to apply the BV (bounded variation) image prior model for faithfully
recovering the regularity of the jittered boundaries of image objects. The BV
image model was first applied by Rudin and Osher [26] and Rudin, Osher, and
Fatemi [27] for image denoising and deblurring. The most beautiful attribute
of the BV image model is that it takes care of object boundaries automatically,
without the pain of separating them from the interior homogeneous regions, which
considerably eases the burden of both theory and computation.

(d) By applying the direct method of calculus of variations, we attempt to reveal some
important mathematical properties of the proposed dejittering model, including
uniqueness, existence, and convergence.
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(e) For the nonlinear and nonconvex objective of our model, we design an iterative
algorithm which alternately optimizes the image estimation and jittering esti-
mation. This algorithm is then numerically implemented by techniques from
computational PDEs and nonlinear optimization.
The organization of the paper is as follows. The statistical assumptions on the

jittering and intensity noisy models are stated in section 2. In section 3, the proposed
BV-based dejittering model is developed from the Bayesian rationale in decision and
inference theory. In section 4, we study the associated admissible conditions and
some fundamental properties of the model. The algorithm and its computational
implementation are detailed in section 5, and are followed by three typical numerical
examples. Section 6 concludes the paper with a brief summary.

2. The statistical jittering model. We begin with some necessary statistical
assumptions or models for the line jittering process. For convenience, the image
domain is assumed to be a horizontal stripe: Ω = R × (0, H), in which each point
(x, y) is called a pixel.

Let s = s(y) be a Gaussian homogeneous white noise on y ∈ (0, H). That is,
there exists no correlation between the jitters of two distinct horizontal lines:

E[s(y1)s(y2)] = σ2
sδy1,y2 ,

where δy1,y2 = 1 if y1 = y2 and 0 otherwise, and σ2
s denotes the shared jittering

variance. We shall always assume that s(y) has zero mean.
The model of an infinitely long stripe domain Ω is then theoretically consistent

with the assumption of Gaussian jitters, since the latter can be any real numbers.
Now suppose u(x, y), (x, y) ∈ Ω is the original ideal image to be displayed or

transmitted. The horizontal line jittering process is modeled by u→ us:

us(x, y) = u(x+ s(y), y), (x, y) ∈ Ω.

Thus generally us becomes a random field on Ω. In practice, due to electromagnetic
or medium noise, the jittered image us is further polluted in terms of grey levels to
u0:

u0(x, y) = us(x, y) + n(x, y), (x, y) ∈ Ω.

Here n denotes Gaussian homogenous white noise with mean 0 and variance σ2
n, and

has been assumed additive.
It shall be further assumed that the jittering s and intensity noise n are indepen-

dent, since their physical causes are often uncorrelated in applications.
The dejittering problem can then be stated as follows. Suppose only one single

observation u0 is made. Find a suitable way to restore the original image u (to certain
commercially acceptable standards, say).

This naturally falls into the scope of Bayesian inference: decision making or
feature (in our case u) extraction based on observed data. Thus the spirit of our
approach is tightly rooted in the Bayesian restoration framework.

3. Bayesian dejittering for BV images. The goal of dejittering is to esti-
mate both the original ideal image u and the particular jitter s involved in the given
single observation u0. In the Bayesian framework, we are to maximize the posterior
probability

p(u, s | u0) =
p(u0 | u, s)p(u, s)

p(u0)
.



1694 JIANHONG SHEN

Jittering is caused by the corruption of the synchronizing signatures and is therefore
independent of the image u, which leads to p(u, s) = p(u)p(s). In addition, once the
observation u0 is given, p(u0) is simply a normalization constant and has no influ-
ence in terms of probability maximization. Taking either the logarithmic likelihood
function, or formally in terms of statistical mechanics, the Gibbs’ ensemble energy
E[·] = − 1

β ln p(·) (β denoting the reciprocal of the absolute temperature), we are to
minimize the posterior “energy”

E[u, s | u0] = E[u0 | u, s] + E[s] + E[u].

The equality holds up to an additive “grounding” energy level. Throughout this
paper, the notation E[A|B] always denotes a functional of A, which depends on the
given B as well. Both A and B can contain multiple components.

The data model E[u0 | u, s] easily follows from the Gaussian assumption:

u0 = us + n = u(x+ s(y), y) + n(x, y).

That is,

E[u0 | u, s] = lim
R→∞

1

2σ2
n|ΩR|

∫
ΩR

(u0 − us)
2dxdy,(3.1)

where ΩR = (−R,R) × (0, H), and |ΩR| = 2RH denotes its Lebesgue measure.
We have two priors: the line jittering model E[s] and the image model E[u]. Since

the former has been assumed Gaussian, we must have

E[s] =
1

2σ2
sH

∫ H

0

s2(y)dy.(3.2)

Therefore, the key to the Bayesian dejittering approach is to adopt an appropriate
image prior E[u].

Identification of effective image priors is probably the most fundamental problem
in the entire field of Miva. See, for example, the author’s recent expository article in
SIAM News, in which this viewpoint was explicitly expressed and emphasized [28].
There are a number of valuable image priors in the literature, which can be coarsely
classified into two categories: stochastic and deterministic (see, e.g., the recent survey
paper by Chan, Shen, and Vese [10]).

Stochastic image priors are typically based on either the lattice model and Gibbs’
fields in statistical mechanics (Geman and Geman [14]), or statistical learning via tech-
niques like multiscale filtering and the maximum entropy principle (Zhu and Mumford
[32] and Zhu, Wu, and Mumford [33]).

Deterministic image priors emphasize more the property of regularities, in con-
trast to the focus on various spectral or multiscale statistical features in stochas-
tic priors. Well-known examples include (a) the Sobolev image model E2[u] =
α
∫
Ω
|∇u|2dxdy < ∞ in the classical linear filtering theory; (b) the BV [15] model

Etv[u] = α
∫
Ω
|Du| < ∞, first introduced to image restoration by Rudin, Osher, and

Fatemi [27]; and (c) the Mumford–Shah [25] object-edge free boundary model

Ems[u,Γ] = E[u|Γ] + E[Γ] = α

∫
Ω\Γ

|∇u|2dxdy + βH1(Γ) <∞,

where Γ denotes the jump set or the collection of “edges,” H1 the one-dimensional
Hausdorff measure, and α and β two tunable weights. Recently, motivated by the im-
age inpainting problem, we have also investigated high order geometric image models
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such as the elastica model (Chan, Kang, and Shen [5]) and the Mumford–Shah–Euler
image model (Esedoglu and Shen [13]), where high order geometric information such
as the mean curvature is also taken into account.

In the current paper, we choose to work with the Rudin–Osher–Fatemi BV image
model

Etv[u] = α

∫
Ω

|Du| < 0.(3.3)

Notice that here |Du| denotes the Radon measure of a BV function [15]. For the
more restricted Sobolev W 1,1 images, Etv[u] is simply the ordinary L1 norm of ∇u.
Numerous applications have demonstrated that the BV image model is well bal-
anced in terms of fidelity in approximating generic images (especially those mainly
containing man-made objects), theoretical tractability, and computational complex-
ity [1, 3, 4, 6, 7, 8, 11, 18, 26, 27, 29]. Such advantages can also be witnessed in the
rest of the paper. We refer to our most recent survey paper [9] for a concise overview
of the role of the BV image model in Miva.

It is worth pointing out that digitally the BV image model can be approximately
realized by certain adaptive (and thus nonlinear) autoregressive (AR) models (see,
e.g., [2, 6, 20]). However, in the continuum limit, the rich mathematical theory of BV
functions provides an independent, clean, and rigorous framework in both theory and
computation [15, 4, 9].

The combination of the three models (3.1), (3.2), (3.3) leads to the complete
Bayesian posterior “energy” to be minimized:

E[u, s | u0] = lim
R→∞

λR
2

∫
ΩR

(u0 − us)
2dxdy +

µ

2

∫ H

0

s2(y)dy + α

∫
Ω

|Du|,(3.4)

where λR = 1/(σ2
n|ΩR|) and µ = 1/(σ2

sH). Notice that the total variation weight α
is the only tunable parameter. The impossibility of having a universally working α is
closely connected to the undefinability of a scale-invariant probability measure over
“all” images (see the extraordinary recent work by Mumford and Gidas [24]).

The rest of the paper focuses on the properties and computation of this Bayesian
dejittering model. In what follows, we first argue that model (3.4) has to be modified
for allowing nontrivial solutions.

4. Properties of the model. So far the dejittering model (3.4) has been purely
inspired by the statistical jittering model and the Gibbs’ energy rationale. In this sec-
tion, we (a) first rigorously define its admissible space, (b) then argue that model (3.4)
has to be modified to yield meaningful solutions, and finally (c) study some important
properties of the modified model.

4.1. Admissible conditions and correcting model (3.4). From the squared
integration term in (3.4) defining the jittering variance s, it is necessary that s =
s(y) ∈ L2(0, H).

The BV prior naturally requires that u ∈ BV(Ω). By the Sobolev embedding
theorem [15] (and its extension to the BV space), BV(Ω) is embedded in L2(Ω),
implying that

∫
Ω
u2(x, y)dxdy <∞.

For any s ∈ L2(0, H), define the jittering transform Ts : Ω → Ω by

Ts : (x, y) → (x+ s(y), y).(4.1)
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Then T−1
s = T−s. We now show that Ts is a Lebesgue isomorphism. Let E ⊂ Ω be

any measurable set, and |E| its Lebesgue measure. Denote the characteristic function
or indicator of E by 1E(x, y). Then it is easy to see that

1TsE(x, y) = 1E ◦ T−s(x, y).
By Fubini’s theorem,

|TsE| =

∫
Ω

1E ◦ T−s(x, y)dxdy =

∫ H

0

dy

∫
R

1E(x− s(y), y)dx

=

∫ H

0

dy

∫
R

1E(x, y)dx =

∫
Ω

1E(x, y)dxdy = |E|.

The jittering transform Ts is therefore a Lebesgue isomorphism. In particular, for any
u ∈ BV(Ω) ⊂ L2(‖ · ‖,Ω),

us = u ◦ Ts ∈ L2(Ω) and ‖us‖ = ‖u‖.(4.2)

Finally, the data model in (3.4) has been formally motivated by the law of large
numbers:

σ2
n = lim

R→∞
1

|ΩR|
∫

ΩR

n2(x, y)dxdy.

Due to the averaging over the entire infinite domain, we now show that model (3.4)
leads to an unexpected dead end. The problem is fixed in the next subsection.

Theorem 4.1. Let u0 be a given noisy jittered image in L2
loc(Ω). Suppose that

there exists at least one w(x, y) ∈ BV(Ω) such that

lim
R→∞

1

|ΩR|
∫

ΩR

n2(x, y)dxdy = σ2
n

exists, with n = u0 − ws = u0 − w ◦ Ts. Then

(u = 0, s = 0) = argmin E[u, s | u0], E as in model (3.4).

Proof. The conclusion follows directly from

lim
R→∞

1

|ΩR|
∫

ΩR

(u0 − ws)
2dxdy = lim

R→∞
1

|ΩR|
∫

ΩR

(u0 − us)
2dxdy,

for any u ∈ BV(Ω), which we are now to prove. Define

〈f, g〉R =

∫
ΩR

f(x, y)g(x, y)dxdy, ‖f‖2
R = 〈f, f〉R.

Notice that

‖u0 − us‖2
R = ‖u0 − ws‖2

R − 2〈u0 − ws, us − ws〉R + ‖us − ws‖2
R.(4.3)

Now that u,w ∈ BV(Ω), we must have us − ws = (u− w)s ∈ L2(‖ · ‖,Ω). Therefore,

lim
R→∞

1

|ΩR| ‖us − ws‖2
R = lim

R→∞
1

|ΩR| ‖us − ws‖2 = 0.
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For the cross term in (4.3), by the Schwarz inequality,

1

|ΩR| |〈u0 − ws, us − ws〉R| ≤ 1

|ΩR| ‖u0 − ws‖R ‖us − ws‖R

=

[
1

|ΩR| ‖n‖
2
R

] 1
2
[

1

|ΩR| ‖us − ws‖2
R

] 1
2

.

As R → ∞, the first term converges to the standard deviation σn according to the
assumption, but the second term vanishes as just shown. Therefore,

lim
R→∞

1

|ΩR| 〈u0 − ws, us − ws〉R = 0.

In combination, we are able to conclude that

lim
R→∞

1

‖ΩR‖ ‖u0 − ws‖2
R = lim

R→∞
1

‖ΩR‖ ‖u0 − us‖2
R.

This completes the proof.

4.2. The corrected model and its properties. The problem is caused by
averaging near infinity. In applications, images are given only on a bounded domain
ΩR and can be extended over the infinite stripe domain Ω by zero-padding. Thus to
diminish the unnecessary role of the infinity, we propose to modify model (3.4) to

E[u, s | u0] =
λ

2

∫
Ω

(u0 − us)
2dxdy +

µ

2

∫ H

0

s2(y)dy + α

∫
Ω

|Du|,(4.4)

where µ = 1/(σ2
sH) and λ = β/σ2

n. Besides α, a new tunable parameter β is thus
introduced. It is now easy to collect all the admissible conditions:

(a) the given jittered image u0 ∈ L2(Ω) and
(b) u ∈ BV(Ω), and s ∈ L2(0, H).
As in the statistical framework, we define the corresponding “conditional” energies

for E[u, s | u0]:

E[u | u0, s] =
λ

2

∫
Ω

(u0 − us)
2dxdy + α

∫
Ω

|Du| when s is known,(4.5)

E[s | u0, u] =
λ

2

∫
Ω

(u0 − us)
2dxdy +

µ

2

∫ H

0

s2(y)dy when u is known.(4.6)

Since s ∈ L2(0, H) is to at least model the rapid oscillations of random jitter-
ing, differential constraints (such as Sobolev norms or the BV norm) are generally
inappropriate. (Of course, one is able to introduce them with small weights merely
for the sake of Tikhonov regularization in inverse problems.) This makes the en-
ergy E[u, s | u0] in (4.4) lack the necessary compactness properties for establishing a
general existence theorem. Uniqueness is jeopardized as well because of the lack of
convexity (especially in s).

However, it is indeed possible to say more about the two “conditional” energies
just defined, which will also be important for our algorithm in the next section.

Theorem 4.2. For any given jittering s, the minimizer in BV(Ω) for E[u | u0, s]
is unique. Furthermore if there exists a minimizing sequence which is bounded in
L1(Ω), then the minimizer indeed exists.
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We shall explain right after the proof why we need the extra boundedness condi-
tion for the existence part, which is often unnecessary for image processing problems
on finite domains (see Chambolle and Lions [4], for example).

Proof. The jittering operator is linear: (u+ v)s = us + vs for any u, v ∈ BV(Ω).
Therefore it is straightforward to establish the strict convexity of E[u | u0, s], which
leads to the uniqueness. We now prove the existence.

Let (un)n ⊂ BV(Ω) be a minimizing sequence of E[u | u0, s]:

lim
n→∞E[un | u0, s] = inf

u∈BV(Ω)
E[u | u0, s] <∞.

In addition, assume that the sequence is bounded in L1(Ω). There must exist an
upper bound M , so that en = E[un | u0, s] ≤M,n = 1, 2, . . . , and∫

Ω

|Dun| ≤ 1

α
en ≤ M

α
.

Therefore, (un)n is bounded in BV(Ω). By the weak compactness property, there exist
some w = w(x, y) ∈ BV(Ω) and a subsequence, still denoted by (un)n for convenience,
such that

un → w in L1(Ω) and

∫
Ω

|Dw| ≤ lim inf
n→∞

∫
Ω

|Dun|.

The second half follows from the L1 lower semicontinuity in BV(Ω).
Possibly with another step of subsequence refinement, we can assume that

un(x, y) → w(x, y), a.e. on Ω.

Since the jittering transform Ts : Ω → Ω is a Lebesgue isomorphism, we must have as
well

uns (x, y) → ws(x, y), a.e. on Ω.

Application of Fatou’s lemma to the nonnegative sequence gn = (u0 − uns )
2 leads to∫

Ω

(u0 − ws)
2dxdy ≤ lim inf

n→∞

∫
Ω

(u0 − uns )
2dxdy.

Eventually the above results enable us to conclude that

E[w|u0, s] ≤ lim inf
n→∞ E[un|u0, s] = inf

u∈BV(Ω)
E[u | u0, s].

Thus w has to be the (unique) minimizer of E[u | u0, s] in BV(Ω).
Remark. We now explain why the L1 boundedness condition seems to be neces-

sary. It is true that we can bound the L2 norms of any minimizing sequence similarly
to what has been done for the total variation norms in the proof:

‖un‖2 = ‖uns ‖2 ≤ 2‖u0‖2 +
4

λ
en ≤ 2‖u0‖2 +

4M

λ
, n = 1, 2, . . . .

If the domain Ω is finite, a Schwarz inequality immediately leads to a common bound
on the L1 norms: [∫

Ω

|u(x, y)|dxdy
]2

≤ ‖u‖2 |Ω|.
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However, in our case, Ω = R × (0, H) is an infinitely long stripe domain, for which
the L1 norms can indeed be unbounded. For example, define

un(x, y) =
1

(1 + x2)
n+1
2n

, n = 1, 2, . . . ,

which are translation invariant along the y direction. Then it is easy to show that
(a) the L2 norms are bounded: ‖un‖2 ≤ πH;
(b) all un ∈ BV(Ω) and their total variations are always 2H exactly; but
(c) their L1 norms diverge to ∞ by the monotone convergence theorem:∫

Ω

|un(x, y)|dxdy = H

∫
R

1

(1 + x2)
n+1
2n

dx→ H

∫
R

1

(1 + x2)
1
2

dx = ∞.

Thus it cannot be a Cauchy sequence in L1(Ω). By the monotone convergence theorem
again, it is not compact even in the topology of L1

loc(Ω).
One can say much less about the other conditional energy E[s | u0, u], due to the

lack of convexity (for uniqueness) and enough regularity (for existence).
One nice property of E[s | u0, u] is that it is separable in terms of the horizontal

and vertical directions. That is, it can be written as

E[s | u0, u] =

∫ H

0

e(s(y), y)dy, with

e(s(y), y) =
µ

2
s(y)2 +

λ

2

∫
R

(u0(x, y) − u(x+ s(y), y))2dx.

Having y fixed, we define f0(x) = u0(x, y), f(x) = u(x, y), and e(t) = e(t, y). Then
the minimization of E[s | u0, u] is reduced to the minimization of every such single
variable function e(t) associated to each y. Notice that

e(t) =
µ

2
t2 +

λ

2

∫
R

(f0(x) − f(x+ t))2dx,(4.7)

which is well defined for almost every y ∈ (0, H) following Fubini’s theorem. Notice
that e(t) is generally nonconvex, which leads to the uncertainty of uniqueness.

However, we are still able to establish the existence theorem and give an a priori
bound on the minimizers.

Theorem 4.3. Suppose that f0, f ∈ L2(R) in (4.7). Then
(a) e(t) is a continuous function. In particular, the minimizer exists.
(b) Suppose t = s is one minimizer of e(t). Then

|s| ≤
√
λ/µ (‖f0‖ + ‖f‖).

Proof. For (a), take the continuity at t = 0, for example. Notice that

| ‖f0(x) − f(x+ t)‖ − ‖f0(x) − f(x)‖ | ≤ ‖f(x+ t) − f(x)‖.

It is well known from Lebesgue integration theory that f(x+ t) converges to f(x) in
Lp(R) for any p ∈ [1,∞) (excluding L∞) as t→ 0. (p = 2 in our case.) Therefore e(t)
is indeed a continuous function. Since e(t) → +∞ as t→ ±∞, the global minima must
be attainable at some finite locations. (b) follows easily from µ

2 s
2 ≤ e(s) ≤ e(0).
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5. The algorithm and numerical results. In this section, we present an
iterative algorithm to minimize E[u, s | u0] in (4.4). As one of the referees has
kindly pointed out to us, such an algorithm generally falls into the category known
in computer sciences as ICM, iterated conditional models.

The plan is to alternately minimize the two conditional energies E[u | u0, s]
and E[s | u0, u] in (4.5) and (4.6), which were being studied above only in theory.
Starting from a pair of initial guesses (u0, s0), we generate (un+1, sn+1) from (un, sn),
n = 0, 1, . . . , by

un+1 = argminE[u | u0, sn], followed by(5.1)

sn+1 = argminE[s | u0, u
n+1].(5.2)

The motivation is clear: the current best jittering estimation sn leads to an improved
estimation of the target image un+1, which in return contributes to the updating of
the jittering itself.

Since the energy E[u, s | u0] may have many local minima, convergence to the
global minimum is generally unguaranteed. However, we are still able to show that
the sequence (un, sn)n is consistently “down-hill.”

Theorem 5.1. Let (un, sn)n be the sequence derived from the above iterative
algorithm. Then for n = 0, 1, . . . ,

E[un+1, sn+1 | u0] ≤ E[un, sn | u0].

Proof. From the energy definitions (3.2), (3.3), (4.4), (4.5), and (4.6), one has

E[u, s | u0] = Etv[u] + E[s | u0, u]

= E[s] + E[u | u0, s].

Based on these two relations as well as the iteration formulae (5.1) and (5.2), one
obtains

E[un+1, sn+1 | u0] = Etv[u
n+1] + E[sn+1 | u0, u

n+1]

≤ Etv[u
n+1] + E[sn | u0, u

n+1] by (5.2)

= E[un+1 | u0, sn] + E[sn]

≤ E[un | u0, sn] + E[sn] by (5.1)

= E[un, sn | u0].

This verifies the claim.
The convergence of the sequence (un, sn)n is still unclear, although our numerical

results always seem to confirm it. (That is, numerically, the sequence invariably
converges to some pair (u, s), which appears to be visually meaningful as judged by
human observers.) What we are able to establish is the following weak theorem on
convergence.

Theorem 5.2. Suppose the jittered image u0 ∈ L2(Ω) and u0(·, y) is a continuous
function in x for almost every y ∈ (0, H). Let (un, sn) be the sequence generated
by the iterative scheme (5.1) and (5.2). Suppose that (sn)n a.e. converges to some
s(y) ∈ L2(0, H) and that (‖un‖L1)n does not converge to ∞. Then there must exist a
subsequence (nk)k and some u ∈ BV(Ω) so that unk → u in L1(Ω) and

E[u, s | u0] ≤ lim
n→∞E[un, sn | u0].
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Proof. By the preceding theorem, for any n,

E[un | u0, sn] ≤ E[un, sn | u0] ≤ E[u0, s0 | u0].

Thus the bound on the total variations is immediate:∫
Ω

|Dun| ≤ 1

α
E[u0, s0 | u0], n = 1, 2, . . . .

Since (‖un‖L1)n does not converge to ∞, there must exist a subsequence (n′
k)k so that

(un
′
k)k is a bounded sequence in L1(Ω). Therefore, (un

′
k)k is bounded in BV(Ω). By

the properties of weak compactness and L1 lower semicontinuity, there must exist a
refined subsequence (nk)k and some u ∈ BV(Ω) so that unk → u in L1(Ω) as k → ∞
and ∫

Ω

|Du| ≤ lim inf
k→∞

∫
Ω

|Dunk |.(5.3)

Possibly with an extra step of subsequence refinement, we can also assume that unk →
u, a.e. on Ω.

Secondly, since sn(y) → s(y) a.e., by Fatou’s lemma,∫ H

0

s2(y)dy ≤ lim inf
k→∞

∫ H

0

s2nk
(y)dy.(5.4)

As discussed in section 4.1, the jittering transform

Ts : (x, y) → (x+ s(y), y), (x, y) ∈ Ω,

is a Lebesgue isomorphism, and T−1
s = T−s, which implies that∫

Ω

(u0 − un ◦ Tsn)2dxdy =

∫
Ω

(u0 ◦ T−sn − un)2dxdy.

Now that sn → s a.e. on (0, H), we must have, as n→ ∞,

T−sn(x, y) = (x− sn(y), y) → (x− s(y), y) = T−s(x, y), a.e. on Ω.

Since it is assumed that the observed data u0(·, y) is a continuous function in x for
almost every y ∈ (0, H), we must have

u0 ◦ T−sn → u0 ◦ T−s a.e. on Ω.

In combination with the a.e. convergence condition on (unk)k, this implies that

u0 ◦ T−snk
− unk → u0 ◦ T−s − u a.e. on Ω.

Therefore, Fatou’s lemma again leads to∫
Ω

(u0 ◦ T−s − u)2dxdy ≤ lim inf
k→∞

∫
Ω

(u0 ◦ T−snk
− unk)2dxdy,

or equivalently, ∫
Ω

(u0 − us)
2dxdy ≤ lim inf

k→∞

∫
Ω

(u0 − unk
snk

)2dxdy.(5.5)
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The combination of the three bounds (5.3), (5.4), and (5.5) eventually completes
the proof:

E[u, s | u0] ≤ lim inf
k→∞

E[unk , snk
| u0] = lim

n→∞E[un, sn | u0].

The last equality follows from the monotonicity in the preceding theorem.
Notice in the proof how the Lebesgue isomorphism property of the jittering trans-

form allows us to stay away from the touchy issue of the convergence of unsn to us.
From the proof it is clear that the condition “u0(·, y) is continuous in x” could be
relaxed to “u0(·, y) is continuous for almost every x ∈ R.”

Next we discuss the computational strategies for the two “conditional” optimiza-
tion problems (4.5) and (4.6).

5.1. Algorithm for minimizing E[u | u0, s]. Recall that, given u0 and the
current available jittering estimation s, the conditional energy for u is given by

E[u | u0, s] =
λ

2

∫
Ω

(u0 − us)
2dxdy + α

∫
Ω

|Du|,

which is similar to the classical total variation (TV) denoising model of Rudin, Osher,
and Fatemi [27], except that now the jittering us = u ◦ Ts is involved.

Formally, or assuming that u ∈ W 1,1(Ω) and
∫
Ω
|Du| =

∫
Ω
|∇u|dxdy, the first

order variation on total variation leads to the well-known curvature derivative (see
[27]) in the distributional sense:

−α∇ ·
[ ∇u
|∇u|

]
.

Secondly, the variation on the data model term gives

λT ∗
s (Tsu− u0),

where Tsu = u ◦ Ts and T ∗
s denotes the adjoint of Ts. Notice that T ∗

s = T−s = T−1
s .

Eventually we obtain the (formal) Euler–Lagrange equation

∂E

∂u
[u | u0, s] = λ(u− u0,−s) − α∇ ·

[ ∇u
|∇u|

]
= 0,(5.6)

where u0,−s = (u0)−s = u0 ◦ T−s, with the natural Neumann boundary condition
∂u
∂�n = 0.

Define v0 = u0,−s for a given jitter s. To our great surprise, the Euler–Lagrange
equation here is identical to that of the Rudin–Osher–Fatemi denoising model when
applied to v0.

Consequently, we are entitled to apply all computational techniques from the rich
literature of TV denoising. First, instead of solving the singular equation (5.6), we
solve its viscosity approximation:

λ(u− u0,−s) − α∇ ·
[ ∇u
|∇u|ε

]
= 0, |a|ε =

√
a2 + ε2,(5.7)

for some small regularizing positive parameter ε. Furthermore, this nonlinear elliptic
equation is solved by lagged diffusivity iterations [12], which is a natural linearization
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technique. Let un be the current estimation for (5.7). Then un is updated to un+1

by

λ(un+1 − u0,−s) − α∇ ·
[∇un+1

|∇un|ε

]
= 0,

with the associated Neumann boundary conditions. To un+1, the original “diffusivity
coefficient” 1/|∇un+1|ε is replaced by that from the previous step 1/|∇un|ε. Conver-
gence of the algorithm is well studied in [4, 12].

5.2. Algorithm for minimizing E[s | u0, u]. Given the current best image
estimation u, the “conditional” energy for the jittering s is given by

E[s | u0, u] =
λ

2

∫
Ω

(u0 − us)
2dxdy +

µ

2

∫ H

0

s2(y)dy.(5.8)

As in the last part of section 4, for almost every (in the Lebesgue sense) given y ∈
(0, H), define f0(x) = u0(x, y) and f(x) = u(x, y). Then the minimization of the
functional E[s | u0, u] is reducible to one-dimensional energy functions in the form of

e(s) =
µ

2
s2 +

λ

2

∫
R

(f0(x) − f(x+ s))2dx.(5.9)

This is a nonlinear function well defined for any given f0, f ∈ L2(R). From the vis-
cosity approximation, we can assume that u belongs to the Sobolev space H1(Ω) [15].
By Fubini’s theorem, for almost every y ∈ (0, H), f(x) = u(x, y) ∈ H1(R).

The optimal line jittering s must satisfy

e′(s) = µs− λ

∫
R

(f0(x) − f(x+ s))f ′(x+ s)dx = 0.

Notice that the integration is indeed well defined since f0, f(x + s), f ′(x + s) are all
square integrable. Let 〈f, g〉 denote the inner product in the Hilbert space L2(R).
Then we can rewrite it by

e′(s) = µs− λ〈f0 − f(x+ s), f ′(x+ s)〉.(5.10)

If, furthermore, we assume that the current estimation u ∈ H2(Ω), then Fubini’s
theorem again implies that f ′′ ∈ L2(R). We can then take the second order derivative
following (5.10):

e′′(s) = µ+ λ〈f ′(x+ s), f ′(x+ s)〉 − λ〈f0 − f(x+ s), f ′′(x+ s)〉.(5.11)

Assume either the Neumann condition or vanishing condition at ±∞ : ff ′(±∞) = 0.
Then integration by parts gives

〈−f(x+ s), f ′′(x+ s)〉 = 〈f ′(x+ s), f ′(x+ s)〉,
and eventually

e′′(s) = µ+ λ〈f0, −f ′′(x+ s)〉.(5.12)

Our algorithm for minimizing e(s) is then based on the Newton–Raphson method.
Starting from an initial guess s0, we update sn to sn+1 by

sn+1 = sn − e′(sn)
e′′(sn)

=
sn〈f0,−f ′′(x+ sn)〉 + 〈f0 − f(x+ sn), f

′(x+ sn)〉
〈f0,−f ′′(x+ sn)〉 + (µ/λ)

.(5.13)



1704 JIANHONG SHEN

Notice that λ ∝ 1/σ2
n (see section 2). In the absence of intensity noise (corresponding

to σn = 0), the ratio µ/λ = 0. Then we have a much simpler formula:

sn+1 = sn +
〈f0 − f(x+ sn), f

′(x+ sn)〉
〈f0,−f ′′(x+ sn)〉 .(5.14)

The feasibility of the algorithm relies on how robust the denominator e′′(s) stays
away from 0 (i.e., pure convexity or concavity), at least when s is close to the optimal
jittering. We now argue heuristically that indeed e′′(s) is reasonably well behaved,
which has been observed from our numerical implementation as well. Suppose that
the observed jittered one-dimensional image f0(x) has been generated from an image
g(x) ∈ H1(R) with a jittering t, i.e., f0(x) = g(x + t) + n(x), where n denotes the
Gaussian intensity white noise. Since n is independent of both g and f , or has rapid
oscillatory behavior [23], we have

〈f0(x),−f ′′(x+ s)〉 = 〈g(x+ t),−f ′′(x+ s)〉 = 〈g′(x+ t), f ′(x+ s)〉,
where the last equality follows from integration by parts and the vanishing conditions
at ±∞. Therefore, as the estimation pair (f, s) gets close to the genuine pair (g, t),
e′′(s) is in the order of

µ+ λ〈g′(x+ t), g′(x+ t)〉 = µ+ λ‖g′(x)‖2,

which certainly robustly stays away from the zero. As a byproduct, we also see that
the quantity ‖g′(x)‖ functions like an information measure: larger values mean richer
variations in the image and more clues for robustly recovering the jittering.

5.3. Numerical simulation and results. We now briefly discuss some issues
in the implementation of the above algorithms.

5.3.1. Neumann boundary jittering model. In numerical simulation and
real applications, images are given on a finite square domain ΩR = (−R,R)× (0, H).
We therefore need a boundary jittering model. In our simulation, we adopt what we
have called the Neumann boundary jittering model. For any s(y) and (x, y) ∈ ΩR: if
|x+s(y)| ≤ R, we define us(x, y) = u(x+s(y), y); otherwise, suppose ±(x+s(y)) > R,
then we define us(x, y) = u(±R, y) in the sense of traces for BV functions [15]. The
intensity noise model remains untouched:

u0(x, y) = us(x, y) + n(x, y), with Gaussian white noise n(x, y).(5.15)

5.3.2. Parameter tuning. On the fixed finite image domain ΩR, the data
model in both (3.4) and (4.4) bears the exact form following (5.15):

E[u0 | u, s] =
λR
2

∫
ΩR

(u0 − us)
2dxdy,

with λR = 1/(σ2
n|ΩR|). Therefore in terms of numerical simulation, the dejittering

model becomes

E[u, s | u0] =
λR
2

∫
Ω

(u0 − us)
2dxdy +

µ

2

∫ H

0

s(y)2dy + α

∫
Ω

|Du|.

It allows only one tunable parameter α, since both λR and µ are completely deter-
mined by the noise model (σ2

n) and the jittering model (σ2
s):

λR =
1

2σ2
nRH

, µ =
1

σ2
sH

.

Numerically the variances are obtained from any statistical estimators.
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Noisy jittered test image Initial jitter−free TV estimation TV dejittering

Fig. 5.1. TV-based Bayesian dejittering.

5.3.3. Random jittering generation. In analog media, in principle a jitter
s could be any real number. However in digital implementation, where the image
domain ΩR becomes a matrix of pixel dots, jitters can be restricted only to integers.
One could simulate such integer jitters by the continuous Gaussian noise followed by
a quantization step. In this paper, instead, we directly make use of the binomial noise
B(p,N) with an even integer N = 2n:

Prob(s = k) =

(
N

n+ k

)
pn+k(1 − p)n−k, k = −n,−n+ 1, . . . , n− 1, n.

From probability theory, one has

E(s) = N(1 − p) − n = n(1 − 2p), σ2
s = Np(1 − p).

Since it is assumed in section 2 that the jittering has zero mean, we must have p = 1/2
and σ2

s = N/4. The central limit theorem confirms that Gaussian is still a good
approximation. In our simulations, N is in the order of 100, which brings the standard
deviation σs close to 5 pixels. Jittering with a several-pixel magnitude is already severe
for real video tapes or television signals (see [20], for example).

5.3.4. Simulation examples. Finally, we present three numerical results de-
rived from the model and its algorithm detailed above, and discuss their implications.

In Figure 5.1, from left to right are the initial noisy jittered image u0, the first
image estimation u1 = argmin E[u | u0, s0] with zero jittering s0(y) ≡ 0, and the final
dejittered output.

Ideally, we would expect that the standard deviation std(sn) for each intermedi-
ate jittering estimation sn is exactly σs. But computationally there is always some
deviation, possibly due to the random number generator being used, the limited num-
ber of samples in digital implementation, and the Newton–Raphson algorithm itself.
Therefore, we could enforce std(sn) = σs by introducing an extra normalization step.
The quality of the output indeed improves in such circumstances (see Figure 5.2).

In Figure 5.2, from left to right are the initial noisy jittered image u0, the image
estimation after the fifth round u6 = argmin E[u | u0, s5], and the similar image
estimation based on the normalized jittering ŝ5 = s5/std(s5) × σs. (Here std de-
notes the statistical standard deviation.) If one compares the dejittered edges, the
normalization step clearly improves their qualities.

Figure 5.3 shows the output when the TV dejittering model is applied to an-
other standard test image. It is well known in the literature of variational methods
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Noisy jittered test image TV dejittering after 5 iterations TV dejittering using normalized jittering

Fig. 5.2. TV-based Bayesian dejittering with jittering normalization.

Noisy jittered image TV dejittering after 10 iterations

Fig. 5.3. TV-based Bayesian dejittering applied to another standard test image. Pay atten-
tion to thin vertical structures and nonsmooth hair textures, to which the BV image model is only
approximative.

[3, 4, 9, 23] that the BV image model is only approximative in modeling textures like
the hair region in the current image. Therefore, the smoothing effect (on highly os-
cillatory textures) in the dejittering output is intrinsic and unsurprising. Textures
always impose great challenges in a variety of image processing tasks such as denois-
ing, deblurring, inpainting, and segmentation [8, 16, 17, 23, 32, 33].

6. Conclusion. In this paper, based on the Bayesian rationale, we have pro-
posed a novel variational model for video dejittering. The image model of bounded
variations that we have applied, first introduced into image processing by Rudin and
Osher [26] and Rudin, Osher, and Fatemi [27], is a powerful tool for restoring the
regularity of randomly jittered objects.

We have studied the mathematical properties of the model based on the direct
method of calculus of variations, the theory of functions with bounded variations, and
various tools from analysis.

For the nonlinear and nonconvex energy functional, we have designed an algorithm
based on alternately optimizing the image and jittering estimations. The algorithm
is then numerically implemented by solving nonlinear PDEs (for image estimations)
and by Newton–Raphson iterations. Typical numerical results are demonstrated.

This work again demonstrates the power of a good image model in image analysis.
We expect that if the BV image model is replaced by the Mumford–Shah image model
[25], many results should remain similar. (For example, such exchange has been very
successful in image inpainting [13].)
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If the random jitterings are correlated among different video frames, we expect
that dynamic tools such as the Kalman filter [19, 30, 31] can play an important role
in the process of modeling and computation.

Finally, it must be made clear that the current work only attempts to model
some parts of the complex behavior of real jittering problems. For the sake of both
enlightenment and inspiring future work, the author would like to quote an elegant
paragraph from one of the referees (without editing):

In real systems, jitter is almost always the combination of a random dis-
placement and an underlying harmonic component. Any dejittering al-
gorithm is going to have to rely on vertical image structure in order to
realign the lines. All variants of single frame dejittering algorithms at-
tempt to shift lines so as to increase vertical image smoothness. The heart
of the dejittering problem is to tell the difference between vertical image
features that are not straight and the harmonic component of jitter. This
is extremely difficult to do, since there is (almost) no way to distinguish
between dejittered images containing wavy but smooth vertical structures,
and (those containing) straight and smooth structures. To add a further
complication to the mix, the jitter is invariably caused by noise on the
sync-tip signal. When that happens, not only is the line shifted, but the
reference grey level is wrong, and then the actual DC line level changes
from line to line.

As an intermediate stage between the current mathematical model and the real-
istic complexity elaborated in the preceding quotation, one could, for instance, study
the scenario when the jittering s consists of two components:

s(y) = sm(y) + sn(y), y ∈ (0, H),

where sm(y) denotes the mean-field or smooth jittering (with respect to the vertical
variable y), and sn(y) still the Gaussian white noise. Then the prior model for jittering
should be upgraded from (3.2) to

E[s] = E[sm] + E[sn] = γ

∫ H

0

|s′m(y)|pdy +
1

2σ2
sH

∫ H

0

s2n(y)dy,

where γ denotes some suitable regularity weight, p ≥ 1, and σ2
s the variance of the

random component sn. We leave further development along this line to interested
readers.
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in order to insure uniqueness. Due to the nonvanishing forces, the problem does not possess any
entropy. The existence and uniqueness issues are dealt with by supersolution techniques, while the
asymptotic behavior is analyzed by semiexplicit integration of the equations along the characteristics.
In the case of relaxation time approximation, a fast numerical method for computing the asymptotic
state method is presented and tested.
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1. Introduction. Macroscopic fluid models are usually obtained from kinetic
equations in collision dominated situations. Diffusion scalings are used when the
equilibrium states (for which collisions are transparent) carry no current. Depending
on the specific collision phenomena taken into account, asymptotics methods based
on scaling assumptions lead to various diffusion models like the drift-diffusion [29],
the energy-transport [8, 18], or the spherical harmonics expansion (SHE) model [32,
31, 4, 21, 17, 16].

When the driving forces are strong enough that their effect is of the same order
of magnitude as collisional effects, another scaling, called high field scaling, has to
be used. For the linear Boltzmann operator, the limit equation has been formally
shown by Poupaud [30] to be a linear convection equation with the convective term
depending on the force field. When the force field is the gradient of a potential coupled
through a mean field approximation, a nonlinear system is obtained with a first order
correction corresponding to augmented diffusion and transport [12, 13].

Kinetic high field models and associated macroscopic models have been consid-
ered in [13, 12, 34, 30, 5]. Recent comparisons between kinetic multiscale domain
decomposition and the Monte Carlo method were presented in [20, 1, 10].
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However, up to now, no analysis of the kinetic boundary layer problem to find the
correct boundary conditions for the fluid approximation has been performed. Such
an analysis is also required if one wants to solve the matching problem for kinetic
and macroscopic equations. Here, an interface region between the two equations has
to be considered. The matching problem has to be solved, for example, for domain
decomposition approaches simultaneously solving kinetic and macroscopic equations
in different regions of the computational domain.

Boundary and interface regions are described by a transition layer where a sta-
tionary kinetic equation is solved. A standard assumption is that the layer has a
slab symmetry, that is, the particle distribution is constant on surfaces parallel to the
interface. Rigorous analysis of boundary value problems for linear transport kinetic
equations in the absence of forces, known as the half space problem, and its corre-
sponding limiting behavior in a strong collisional regime and long time scaling linear,
as the length of the transition layer is comparable to the reference collision frequency,
known as the Milne problem, was initiated [6] by means of spectral methods and
semigroup theory.

For charged transport models, the force field gradient of the electrostatic potential
is bounded along flat boundaries where the potential either is prescribed or is a solu-
tion of the corresponding mean field equation. In both cases, the force field will become
a constant in the rescaled layer. In in the drift-diffusion regime due to weak force field
forces, the rescaled force field vanishes. The corresponding half space and Milne prob-
lem was studied in [28], and computations for the corresponding fluid kinetic interface
procedure for numerical implementations of hybrid methods were due to [35, 24].

For the case of strong force field regimes, one expects a slab symmetry whenever
the curvature of the interface is small compared to the reciprocal of the mean free
path and when the force field is normal to the interface. Consequently, the space
coordinate reduces to, say, x the distance to the boundary or interface. After scaling
it like x

ε , where ε is the order magnitude of the mean free path, one has to solve a
kinetic half space problem.

These strong force field scalings are characterized by nonstatistical equilibrium
states P = P (v); that is, they are L1

k(Rv) space homogeneous solutions to the layer
problem, with nonvanishing mean or first moment, which depend on the force field and
on the Maxwellian in the kernel of the collision operator and the scattering function.
This problem was treated by Trugman and Taylor [34] for the relaxation operator,
and by Poupaud [30] for the general linear operator in three dimensions.

The first part of this paper treats the existence and uniqueness results for half
space problems corresponding to strong force field scaling, both for positive and nega-
tive forces, and describes their corresponding asymptotic behavior, since from a prac-
tical point of view, the objects of great interest in obtaining boundary or matching
conditions are the asymptotic states and the outgoing distribution (Albedo operator).
The only assumption is that the boundary incoming data is a positive L1

k bounded
by a multiple of the state P .

In the case of positive forces, the force field accelerate the particles. Here we show
that the solution of the half space problem is determined only by the inflow data. In
fact, we prove that the unique solution f(x, v) of the half space problem satisfies the
condition that f∞/P belongs to L∞(R+

x × Rv). In addition limx→∞ f(x, ·)/P con-
verges to a proper factor n∞. This factor is uniquely determined by the quotient of the
mean of the solution, which is space independent, and the mean of the nonstatistical
equilibrium state P , and thus it depends on the boundary data. This result indicates
that under such strong forced scaling, the kinetic equation will admit an asymptotic
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non-Maxwellian homogeneous stationary state; that is, under strong acceleration, the
unscaled original kinetic solution should take a local stationary state which does not
correspond to statistical equilibrium, whose asymptotic limit is a singularly perturbed
augmented transport-diffusion converging to convective transport.

In contrast, for the case of strong negative forces, particles are slowed down, and
under the same conditions for existence, one needs to prescribe the behavior of f at
the right end of the layer in order to get uniqueness of the half space problem. In fact,
we prove that for any given constant parameter n∞, there exists a unique positive
solution f∞/P , belonging to L∞(R+

x ×Rv), to the stationary problem in the rescaled
layer, such that limx→∞ f(x, ·)/P = n∞. This essentially indicates that the behavior
at infinity does not depend on the inflow boundary data.

A way to see the difference between the positive and negative force is that, in the
former, the characteristic curves passing at x = 0 for the first order layer equation
grow to +∞ for v > 0 as x → ∞, and come from −∞ for v < 0. However, for the
negative forced equation, the characteristic curves passing at x = 0 for v > 0 will turn
back to intersect the axis x = 0 for v < 0. In particular for this second case, one may
prescribe the behavior at infinity.

This anisotropic nature of the problem has as a consequence the lack of a natural
entropy functional that controls the decay in space, such as it is possible to obtain
in the low field scaling case. This motivates us to introduce new analytical meth-
ods based on comparison techniques by super- and subsolutions, namely, a maximum
principle for solutions to kinetic stationary boundary value half space problems, ba-
sically introduced by Poupaud in [29] in order to treat boundary value problems for
the stationary Vlasov–Maxwell system.

We recall that in the low field scaling case, the characteristic curves passing at
x = 0 for the first order layer equation are all constant straight lines v = vo for all vo,
that is, all parallel to the x-axis. In particular, it has been shown that a corresponding
boundary layer problem has a solution to the Milne problem given by an asymptotic
behavior approaching a Maxwellian state, independent of forces [28]. In this case the
boundary layer problem is similar to the one for a kinetic equation in the absence of
forces, as treated in [6]. In both cases a diffusion limit arises, which may have a weak
drift proportional to the field, corresponding to low field scaling.

In the second part of the paper, we describe a numerical procedure which com-
putes n∞, depending on the initial data, for the case of positive forces and a relaxation
collision operator. It uses a classical Chapman–Enskog–type expansion to approxi-
mate the solution. We obtain a force field modified Marshak condition, which is a
higher order correction to prescription of incoming fluxes. Our calculation recovers
the classical Marshak condition for diffusion approximations as the force fields tends
to zero. The method is seen to converge very fast numerically. It seems to give accu-
rate results when compared to the available explicit solutions in some special cases.
For approaches to the numerical solution of the standard half space problem in gas
dynamics and semiconductor equations, we refer the reader to [2, 14, 22, 33], and for
a mathematical investigation, to [3, 15, 23]. We expect a future implementation of
very efficient hybrid computational schemes that will be able to link nonstatistical
equilibrium scales by their anisotropic diffusion convective limits, as well as to solve
the coupling of convective regions to diffusion regions by transition layer or interfaces,
as is steadily observed in strongly doped device simulation under hot-electron regimes.

The paper is organized as follows. In section 2 we present the strong force field
equations. Section 3 contains an analytical investigation of the half space problem for
both the negative and positive forces. In both cases, existence and uniqueness results
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with the asymptotic behavior at infinity are investigated. In section 4 the numerical
procedure and some numerical results are presented in the case of relaxation operators.

2. High field kinetic equations. The drift-collision balance regime. We
consider the semiclassical linear Boltzmann equation in dimensionless variables for an
electron gas for a semiconducting material in the parabolic band approximation, with
a strong force field scaling

η∂tf + v · ∇zf +
η

ε
E(z, t) · ∇vf =

1

ε
Q(f)(2.1)

with z, v ∈ R3. The general linear collision operator under consideration is

Q(f) =

∫
s(v, v′)[M(v)f(v′) −M(v′)f(v)] dv′ = Q+(f) − σ(v)f.(2.2)

The scattering function s(v, v′) is symmetric and satisfies

0 < s0 ≤ s(v, v′) ≤ s1 < +∞ and s(v, v′) = s(v′, v),(2.3)

and σ denotes the collision frequency

σ(v) =

∫
s(v, v′)M(v′) dv′,(2.4)

whereas

Q+(f) =

∫
s(v, v′)f(v′)M(v) dv′(2.5)

is the gain operator. Throughout this paper the notation 〈h〉 stands for
∫
h(v) dv.

Here we use the standard notation M(v) for the centered, reduced Maxwellian

M = (2π)−
3
2 exp(−v2

2 ).
As a motivation for this problem, we look at semiconductor modeling as the main

example of a transport phenomenon that exhibits stationary nonequilibrium statistical
states. Usually, the vector field E = E(z, t) = −∇zΦ denotes the scaled electric force,
which is determined by a Poisson equation for the potential Φ:

∇z · (∇zΦ) = γ

(
1

ηd

∫
R3

fdv − C(z)

)
,

where γ is the inverse to the scaled Debye length of the device and C(z), which
denotes the ion background, is bounded, measurable, and largely varying. It is worth
mentioning that strong force field scalings are present due to space inhomogeneities,
such as short base channel devices, under strong forward bias that produces a region
of positive charges inside the channel (i.e., γ−1 � 0). Such an effect is known as
hot-electron transport. Under these assumptions on C(z), classical potential theory
implies that the solution of the Poisson equation in a bounded channel-like region
yields a continuous bounded force field E(z).

Because of this effect, assume dimensionless parameters η and γ both of orderO(1)
and that ε, the scaled mean free path, is small. This scaling assumption corresponds
to the drift-collision balance scaling introduced in [30, 13]. Such a scaling is realized,
for instance, in the modeling of silicon doped diodes with 0.4µm channel [20, 1, 10]
under potential bias of 1eV. These simulations exhibit the formation of transition
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layers in the drain junction, with a clear jump from a close to convective state in
the channel region to a diffusion equilibrium at the contact. In addition, inside the
channel, there is a clear region where the numerical probability distribution function,
the solution to the approximated kinetic Poisson system, takes a definite state away
from statistical equilibrium. Such a configuration corresponds to a relatively strong
forced field scale with respect to collisions against a background. This may be the
case for other collisional plasma physics applications under strong force fields.

The problem we want to study is related to the solution and its asymptotic
behavior in a given layer of length ε. This layer is inversely proportional to the
drift-collision scale associated with the reciprocal of the scaled mean free path of o(ε)
for the kinetic problem under such a regime.

From now we focus on the problem of having a force field E(x, t) given in a
transition layer or boundary with a slab symmetry; that is, the particle distribution
is constant on surfaces parallel to the interface. For the case of strong force field
regimes, one expects such a slab symmetry whenever the curvature of the interface
is small compared to the reciprocal of the mean free path and when the force field is
normal to the interface.

In order to obtain the boundary or interface layer equations in a slab geometry, fix
a point ẑ on the boundary, assume that the electric force is orthogonal to the interface,
and rescale as usual the space coordinate in the layer normal to the boundary with
the mean free path ε, introducing the new coordinate x orthogonal to the boundary:

x =
(ẑ − z) · n

ε
.

Here, n denotes the outer normal to the boundary or interface. This transformation
yields the new coordinates (x, ẑ) instead of z in the slab layer. To O(1) one obtains,
after applying the transformation to (2.1),

v · n∂xf + ηE · ∇vf,= Q(f),

where, as ε → 0, the variable x ∈ [0,∞), and the field E = E(x = 0, ẑ, t) does not
depend on x and thus is constant. This problem has to be supplied with the ingoing
function at the boundary, i.e., at x = 0; that is, f(0, v), v · n > 0, with n the outer
normal to the boundary at x = 0. In order to have the force field E constant it is
enough that the potential Φ is regular enough so that ∇Φ is bounded at the slab
boundary.

To simplify the problem, we assume from now on that the z1-coordinate points in
the direction of the normal, so that that E = (E1, 0, 0) and that τ = 1, η = 1. Then
the above reduces to the following one-dimensional problem:

v1∂z1f + E1∂v1f = Q+(f) − σ(v)f,

with x ∈ [0,∞), v1 ∈ R, f = f(z1, v1). Then M(v) in the definition of Q+ and σ

reduces to the one-dimensional Maxwellian M(v1) = (2π)−
1
2 exp(−v21

2 ) for v1 ∈ R.
From now on, we use the notation (x, v) ∈ R+ × R rather than (z1, v1). The

Milne problem takes the following form:

v∂xf + E∂vf = Q(f) = Q+(f) − σ(v)f,(2.6)

ϕ(0, v) = k(v), v > 0,

with x ∈ [0,∞), v ∈ R, and an ingoing positive function k satisfying the conditions
stated below.
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Before announcing the main theorems, we define the homogeneous solution Pσ,E(v)
as the unique function which satisfies

E∂vP = Q(P ) = Q+(P ) − σ(v)P, with 〈P 〉 = 1,(2.7)

using the notation

〈P 〉 =

∫
P (v)dv.(2.8)

In addition, for any integrable solution f of (2.6),

j = 〈vf〉 is x-independent.(2.9)

The proof of this statement is trivial for any integrable solution.
Solvability of problem (2.7) in L∞ ∩L1 can be found in Trugman and Taylor [34]

for the relaxation-type operator in one dimension. It has also been discussed in Frosali,
Van der Mee, and Paveri-Fontana [19]. The most general result has been obtained by
Poupaud [30], who finds solutions to (2.7) in L1 for general linear collision operators
in higher dimensions, depending on the integrability of the collision frequency. In
addition he shows that the solution function P is unique and positive. Recently, this
result has been generalized to the collision operators with Pauli-exclusion terms [7].

For completeness we recall the Poupaud solution representation to problem (2.7),
obtained via spectral analysis [30] of the following linear integral operator:

PE(v) = LE(Q+(P ))(v)

=

∫ ∞

0

exp

(
−
∫ τ

0

σ(v − µE)dµ

)∫
R
s(v − τE,w)PE(w)dwM(v − τE)d τ(2.10)

for E 
= 0 such that 〈P 〉 = 1. The operator LE : L1 → L1
σ is the inversion operator

to E · ∇v + σ(v), defined by

LE(f)(v) =

∫ ∞

0

exp

(
−
∫ τ

0

σ(v − µE)dµ

)
f(v − τE)d τ.(2.11)

Poupaud proves that the integral equation (2.10) has a unique integrable (L1) positive
solution if and only if ∫ ∞

0

σ(v + µE)dµ = +∞ a.e.(2.12)

In addition, the solution satisfies the property

PE(v) = P−E(−v).(2.13)

It is clear that in our case, by (2.3), the scattering function s(v, v′) is bounded
above and below by positive constants, so that the collision frequency σ(v) function
as defined in (2.4) satisfies the infinite integrability compatibility condition (2.12).

Moreover, the unique solution P to problem (2.7) has all moments bounded.
Indeed by (2.2) and (2.3) the following moment recursion inequality holds:

〈vkP 〉 ≤ s1
s0

〈vkM〉 + E〈vk−1P 〉.(2.14)
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In the particular case of a relaxation collision operator, when s(v′, v) = τ−1,

Q(f)(v) =
1

τ

(
M(v)

∫
R3

f(v′)dv′ − f(v)

)
=

〈f〉M − f

τ
,(2.15)

with τ the relaxation time, one obtains an explicit formula for the dominant P state, as
the right-hand side of (2.10) is computable. Setting τ = 1, without loss of generality,
the probability distribution function P , a solution to (2.7) with the collisional form
(2.15), is explicitly given, as originally computed in [19], by

PE(v) =
1

2E
exp

(−λ
E

)
erfc

(
λ

√
1

2

)
(2.16)

with E > 0, λ = 2
E − v, and erfc(x) = 1

2 + 1√
π

∫ x
0
e−t

2

dt.

In addition, moments are explicitly computed by a recursion formula [13], and,
in the one-dimensional case, the first three satisfy

〈vPE〉 = E,

〈v2PE〉 = 1 + 2E2,

〈v3PE〉 = 3E + 6E3.

The main result for the first part of the paper, the Milne problem for strong force
fields, is stated as follows.

Theorem 1 (positive force field). Let E > 0 be a given positive real number. Let
Pσ,E (we shall also use the short notation P ) be the solution of the space homogeneous
equation (2.7). Assume that 0 ≤ k(v) ≤ KP (v) for some constant K. Then, (2.6)
has a unique positive solution such that f/P ∈ L∞(R+

x ×Rv). Moreover, there exists

a constant n∞ = 〈vf〉
〈vP 〉 such that

lim
x→+∞ f(x, v) = n∞P (v) pointwise.(2.17)

Theorem 2 (negative force field). Let E < 0 be a given negative real number. Let
Pσ,E (we shall also use the short notation P ) be the solution of the space homogeneous
equation (2.7). Assume that 0 ≤ k(v) ≤ KP (v) for some constant K. Then, for
any given n∞ ∈ R+, there exists a unique positive solution fn∞ of (2.6) such that
fn∞/P ∈ L∞(R+

x ×Rv) and

lim
x→+∞ fn∞(x, v) = n∞P (v) pointwise.

In both cases the integrability of f follows from the integrability of P .

3. Analysis of the Milne problem.

3.1. Properties independent of sgn(E). We first start by showing that the
current carried by the homogeneous solution P , that is 〈vP 〉, has the same sign as E.
Namely, we claim the following.

Lemma 1. The solution P of problem (2.7) with the linear collisional form (2.2)
satisfies E〈vP 〉 > 0 and 0 < E〈v3 P 〉 < K <∞ if E 
= 0.

Proof. In the case of relaxation the statement is trivial since, by (2.17), E〈vP 〉 =
E2 and E〈v3 P 〉 = E2 + 3E4.
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For the general linear case, the collision operator is self-adjoint in the weighted
space L2

M = {f ∈ L1
loc,

∫
R f2M−1 dv < +∞}, so that

〈gQ(f)M−1〉 = 〈fQ(g)M−1〉.(3.1)

Since, by symmetrization,∫
Q(f)g dv = −1

2

∫
sMM ′

(
f ′

M ′ −
f

M

)
(g′ − g) dv dv,(3.2)

it follows that for all monotone increasing H∫
Q(f)H

(
f

M

)
dv ≤ 0(3.3)

and ∫
Q(f)H

(
f

M

)
dv = 0 if and only if f(v) = cM(v)

for any constant c.
Now, taking H(τ) = ln τ , we obtain∫

Q(P ) ln

(
P

M

)
dv =

∫
Q(P )

(
lnP +

v2

2

)
dv ≤ 0.(3.4)

In addition, by (2.7), E ∂P
∂v = Q(P ); then

0 ≥
∫
Q(P )

(
lnP +

v2

2

)
dv =

∫
E
∂P

∂v

(
lnP +

v2

2

)
dv.

Since by integrability of P and P lnP the identity∫
lnP

∂P

∂v
dv =

∫
R

∂

∂v
(P lnP − P )dv = 0

holds, then

E

∫
v2

2

∂P

∂v
dv ≤ 0.

Thus, integrating by parts yields the first inequality

E

∫
vP dv ≥ 0.(3.5)

Next, we show that (3.5) cannot be zero if E is not zero. Indeed, if E
∫
vP dv = 0,

then, by (3.4),
∫
Q(P ) ln P

M dv = 0, which implies P = c M , and thus P is a multiple

of the Maxwellian. Therefore E ∂M
∂v = 0 and E 
= 0, which is a contradiction since

∂M/∂v does not vanish.
Finally, the finiteness of moments for all orders follows from the moments recur-

sion formula (2.14).
Theorem 3 (existence). Let E be a given real number. Let P be the solution

of the space homogeneous equation (2.7). Assume that K1P (v) ≤ k(v) ≤ K2P (v) for
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some positive constants K1 and K2. Then there exist two solutions (f, f) of (2.6)
called minimal and maximal solutions such that

K1P (v) ≤ f(x, v) ≤ f(x, v) ≤ K2P (x, v)

and such that any solution f of (2.6), such that K1P (v) ≤ f(x, v) ≤ K2P (v), is
trapped between f and f :

f(x, v) ≤ f(x, v) ≤ f(x, v).

To construct a solution on the half real line R+, we first solve the problem on the
interval [0, L] and then let L tend to +∞. To this end, we consider the problem⎧⎨

⎩
vϕx + Eϕv = Q(ϕ)(x, v),
ϕ(0, v) = k1(v) for v > 0,
ϕ(L, v) = k2(v) for v < 0.

(3.6)

Lemma 2. Assume that K1P (v) ≤ k1,2(v) ≤ K2P (v). Then (3.6) admits a
unique solution ϕ such that ϕ(x, v)/P (v) ∈ L∞([0, L] ×Rv). Moreover,

K1P (v) ≤ ϕ(x, v) ≤ K2P (x, v).

Proof. To prove the existence of a solution, we consider the mapping TL defined
by f = TL(g), where f is the unique solution of⎧⎨

⎩
σ(v)f + vfx + Efv = Q+(g)(x, v),
f(0, v) = k1(v) for v > 0,
f(L, v) = k2(v) for v < 0.

(3.7)

The function f exists by virtue of [29] and is unique since σ ≥ s0 > 0. Moreover,
the maximum principle insures that f ≥ K1P (v) if g ≥ K1P (v) (and f ≤ K2P (v)
if g ≤ K2P (v)). Starting from f1(x, v) = K1P (v), we proceed as in [29] and define
fn = TLf

n−1 and set ϕ = limn→+∞ 1
n

∑n
l=1 fl. It is then clear that K1P ≤ fn ≤ K2P

and ϕ is a solution of (3.7) which satisfies K1P ≤ ϕ ≤ K2P .
The uniqueness follows by an entropy argument developed in [9]. For the sake

of completeness, we detail this argument. We set h to be the difference between two
solutions. Then h is a solution of⎧⎨

⎩
vhx + Ehv = Q(h),
h(0, v) = 0 for v > 0,
h(L, v) = 0 for v < 0.

Using the inequality
∫
Q(h)sgn(h) dv ≤ 0 and the fact that equality holds if and only

if the sign of h(x, v) does not depend on v, we obtain∫ +∞

0

v|h(L, v)| dv −
∫ 0

−∞
v|h(0, v)| dv =

∫ L

0

∫
R
Q(h)sgn(h) dv dx,

which implies that h(0, v) = 0 and h(L, v) = 0 for v ∈ R and that the sign of h(x, v)
does not depend on v. Setting H = |h|, since the collisional form is linear, then
Q+(h)sgn(h) = Q+(H). Therefore,⎧⎨

⎩
σ(v)H + vHx + EHv = Q+(H),
H(0, v) = 0 for v ∈ R,
H(L, v) = 0 for v ∈ R.
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This implies that H = 0 after an integration along the characteristics.
Proof of existence Theorem 3. The maximal and minimal solutions are respec-

tively obtained by solving problem (3.6), with k1 = k and k2 = K2P (for the maximal
solution) and k1 = k and k2 = K1P (for the minimal solution). Indeed, define
f+ = T+

L (g) and f− = T−
L (g) as the unique solutions of⎧⎨

⎩
σ(v)f+ + vf+

x + Ef+
v = Q+(g)(x, v),

f+(0, v) = k(v) for v > 0,
f+(L, v) = K2P (v) for v < 0,

(3.8)

⎧⎨
⎩

σ(v)f− + vf−x + Ef−v = Q+(g)(x, v),
f−(0, v) = k(v) for v > 0,
f−(L, v) = K1P (v) for v < 0.

(3.9)

Then the maximal and minimal solutions are defined by fL = T+
L (fL) and f

L
=

T−
L (f

L
), and so

K1P (v) ≤ f
L
≤ fL ≤ K2P (v).

Moreover, fL = limn→+∞(T+
L )n(K2P ) (the sequence ((T+

L )n(K2P )) being pointwise
decreasing) and f

L
= limn→+∞(T−

L )n(K1P ) (the sequence being pointwise increas-
ing). The above constructed sequences satisfy the following monotonicity properties.

Lemma 3. If L1 ≤ L2, then fL1
≥ fL2

and f
L1

≤ f
L2

on [0, L1] ×R.

Proof. Let L1 ≤ L2 and H = fL1
− fL2

on [0, L1] ×Rv; then Hm is the solution
of ⎧⎨

⎩
vHx + EHv = Q(H),
H(0, v) = 0 for v > 0,

H(L1, v) = K2P (v) − fL2
(L1, v) ≥ 0 for v > 0.

Therefore H ≥ 0 by virtue of Lemma 2. The inequality for f
L

is obtained analogous-
ly.

Let us now pass to the limit L→ +∞. For this purpose, we notice that K1P (v) ≤
f
L
≤ fL ≤ K2P (v) and that f

L
is increasing with respect to L, while fL is decreasing

with respect to L. The pointwise limits f and f of f
L

and fL as L tends to +∞ are
obviously solutions of the problem (2.6) and satisfy

K1P ≤ f ≤ f ≤ K2P.

The only thing left to show now is that any solution f ∈ [K1P,K2P ] of (2.6) is trapped
between f and f . To this aim, set g = f − T−

L (f). Then g is the solution of⎧⎨
⎩

vgx + Egv + σg = 0,
g(0, v) = 0, v > 0,
g(L, v) = f(L, v) −K1P (v) ≥ 0, v < 0,

which implies g ≥ 0. Hence T−
L (f) ≤ f . The maximum principle insures that

T±
L (g1) ≤ T±

L (g2) whenever g1 ≤ g2. Therefore (T−
L )m(f) ≤ f . However, (T−

L )m(f) ≥
(T−
L )m(K1P ). Since f

L
= limm→+∞(T−

L )m(K1P ), we deduce from the above inequal-

ity that f ≥ f
L

on [0, L]×R, which leads to f ≥ f . The inequality f ≤ f is obtained
analogously. The proof of Theorem 3 is now complete.

Next, we study the uniqueness and the asymptotic behavior for the solutions.
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3.2. The Milne problem for strong positive forces. The aim of this section
is to complete the proof of Theorem 1. First, we show uniqueness, that is, f = f for
arbitrary K2. This proof, which is rather short, uses the asymptotic behavior to be
shown next. However, we leave the asymptotic behavior for last, since its proof does
not require uniqueness of the solutions.

Theorem 4 (uniqueness for the case of strong positive forces). Assume that
E > 0 and that 0 ≤ k ≤ KP . Then f and f coincide.

First we prove the following proposition.
Proposition 1. Let h = f − f . Then ∂xh ≥ 0, and there exists α ≥ 0 such that

lim
x→+∞h(x, v) = αP (v).

Proof. Take the function hL,a(x, v) = fL+a(x+a, v)−f
L+a

(x+a, v)−fL(x, v)+

f
L
(x, v) for a > 0. Then hL,a satisfies

v∂xhL,a + E∂vhL,a = Q(hL,a)

and hL,a(0, v) ≥ 0 for v > 0, while hL,a(L, v) = 0 for v < 0. Therefore hL,a ≥ 0
uniformly in L, which implies by passing to the limit L → +∞ that h(x + a, v) −
h(x, v) ≥ 0. Since a is arbitrary, then ∂xh ≥ 0.

Proof of Theorem 4. Let h = f − f . By construction, h ≥ 0.
However, because of the boundary condition at x = 0, h(0, v) = 0 for v > 0, and

consequently the associated first moment j, which is x-independent, is nonpositive

since j = 〈vh〉 =
∫ 0

−∞ vh ≤ 0.
On the other hand, by Proposition 1, on the one hand, limx→+∞ h(x, v) = αP (v)

for α ≥ 0, and on the other hand, by Lemma 1, α〈vP 〉 ≥ 0.
Now, since j = 〈vh〉 is x-independent due to is limit at infinity, 0 ≥ j = α〈vP 〉 ≥

0. This is only possible if α = 0.
Therefore, h is nonnegative, and by Proposition 1, increasing with respect to x

and tends to zero as x tends to +∞. Then h is identically equal to zero for all x ≥ 0,
for all v.

Asymptotic behavior at ∞: Completion of the proof of Theorem 1.
Without loss of generality, we renormalize the solution of (2.6) with respect to the
constant K of the data. This is equivalent to treating the case K = 1. Therefore f
solves ⎧⎨

⎩
v

E
fx + fv +

σ(v)

E
f =

1

E
Q+(f),

f(0, v) = k(v) ≤ P (v).

(3.10)

By (3.10), 0 ≤ f(x, v) ≤ P (v) for all v, and its first moment j =
∫
R vf(x, v) dv is

independent of x.
The strategy of the proof works as follows. First we shall prove a key statement

in Theorem 5, which shows that if the first moment of the solution f of (3.10) is a
proper fraction of the first moment of the homogeneous solution P , say by a factor
0 ≤ λ < 1, then the spatial asymptotic behavior of f at infinity is given by exactly
λP , which is the expected behavior for any solution of the initial value problem (3.10)
at infinity. This result is equivalent to an a priori estimate, which means control on
the spatial variation of the solutions by control on the variation of its first moment.

Second, we shall see that, in fact, the first moment of any solution to problem
(3.10) is always a proper fraction of the first moment of the homogeneous solution of
the problem; that is, λP (v) for some 0 ≤ λ < 1.



1720 N. BEN ABDALLAH, I. M. GAMBA, AND AXEL KLAR

Combining both results means that the spatial asymptotic behavior at infinite for
f is actually λP (v). That is, the quotient between the first moments of the solution f
and the homogeneous solution P and between the spatial asymptotic behavior solution
of f and the homogeneous solution P , to problems (3.10) and (2.7), respectively, are
both the same. In a sense, this is like a Harnack inequality for the kinetic problem.

In fact, these key estimates follow from Lemma 1, which states that if E is positive,
then the first moment of the homogeneous solution P is positive. Thus we can make
sense of a proper fraction of the first moment of the homogeneous state for a strong
force scaling as well as all estimates that follow.

Theorem 5. If j =
∫
vf dv = λ

∫
vP ≥ 0, with λ ∈ [0, 1), then

lim
x→+∞ f(x, v) = λP (v) =

j

〈vP 〉P (v).(3.11)

The proof of this theorem requires additional partial results that we write as
lemmas and corollaries.

Lemma 4 (initial control for the gain operator). Assume
∫
vf dv = 〈vf〉 =

λ〈vP 〉 > 0 for 0 ≤ λ < 1. Then

Q+(f) ≤ µ0Q
+(P ) for all x ≥ 0,(3.12)

where

0 < µ0 = 1 − s0
s1

1 − λ

2v0
〈vP 〉 < 1,(3.13)

where v0 satisfies

0 <

∫ ∞

v0

vP dv ≤ 1 − λ

2
〈vP 〉 ,(3.14)

and the quotient s0
s1

, as defined in (2.3), measures the oscillation of the scattering rate
function.

Proof. From the existence result, it follows that 0 ≤ f ≤ P . Since Q+ is a positive
linear operator,

Q+(f)(v) = Q+(P ) −Q+(P − f) ≤ Q+(P ) −M(v)

∫ +∞

0

s(v′, v) (P − f) dv′.

(3.15)

Then, it is enough to prove that

M(v)

∫ +∞

0

s(v′, v) (P − f) dv′ > β Q+(P )(v) for some β < 1.(3.16)

In order to estimate (3.16), we use the hypothesis on the first moment of f and
P , that is, if

〈vf〉 =

∫ +∞

−∞
vf dv = λ

∫ +∞

−∞
vP dv = λ〈vP 〉,

which yields the first moment flux estimate∫ +∞

0

vf dv = −
∫ 0

−∞
vf dv + λ〈vP 〉 ≤ −

∫ 0

−∞
vP dv + λ〈vP 〉;
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that subtracted from ∫ ∞

0

vP = −
∫ 0

−∞
vP + 〈vP 〉

leads to the lower bound estimate for the first moment fraction of the difference
between the stationary and homogeneous solution∫ +∞

0

v(P − f) dv ≥ (1 − λ)〈vP 〉 = α.(3.17)

The integrability of the first moment of the homogeneous solution P , and the fact
that λ < 1, imply that there exists a v0 > 0 such that∫ +∞

v0

vP dv ≤
(

1 − λ

2

)
〈vP 〉 =

α

2
,(3.18)

so that, since vf > 0 for v ≥ v0 > 0, also∫ +∞

v0

v(P − f) dv ≤ α

2
.(3.19)

Next, subtracting inequality (3.19) from inequality (3.17) leads to∫ v0

0

v(P − f) dv ≥ 1 − λ

2
〈vP 〉.(3.20)

Now, recalling that the scattering rate function s = s(v′, v) is bounded by 0 <
s0 ≤ s(v′, v) ≤ s1 < ∞, multiplying and dividing the integrand by s = s(v′, v) yield
a first moment flux fraction difference estimate by a fraction difference for the gain
operator ∫ v0

0

v(P − f) =

∫ v0

0

v
s

s
(P − f) dv ≤ v0

s0

∫ v0

0

s(v′, v)(P − f) dv,(3.21)

which combined with inequality (3.20) yields the following lower bound for the right-
hand side of (3.21):∫ v0

0

s(v′, v)(P − f) dv ≥ (1 − λ)

2v0
s0〈vP 〉 =

α

2

s0
v0
.(3.22)

In addition, since 〈P 〉 = 1, then s1 ≥ ∫ +∞
−∞ s(v′, v)P (v) dv ≥ s0. Thus the right-

hand side of (3.22) can be estimated as

α

2

s0
v0

≥ α

2v0

s0
s1

∫ +∞

−∞
s(v′, v)P (v′) dv′ =

α

2v0

s0
s1
Q+(P ),(3.23)

where the fraction s0
s1
< 1.

Since P − f > 0, inequalities (3.22) and (3.23) lead to

M(v)

∫ +∞

0

s(v′, v)(P − f) dv ≥M(v)

∫ v0

0

s(v′, v)(P − f) dv >
α

2v0

s0
s1
Q+(P )(v),

(3.24)
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which yields the inequality (3.16) with β = α
2v0

s0
s1

.
Therefore (3.12) holds with

0 < µ0 = 1 − α

2v0

s0
s1

< 1, α = (1 − λ)〈vP 〉 ,(3.25)

where v0 is such that
∫ +∞
v0

vP dv ≤ α
2 .

Remark. The choice of v0 actually depends on the fact that the first moment of
P is finite, that is, on the integrability properties of homogeneous solution P and its
corresponding behavior at infinity, and not necessarily on the explicit form of P . This
implies that these results can be extended to more general cases, as long as the first
moment of P is strictly positive and the corresponding collision frequency is bounded
below by a strictly positive constant and above by infinity.

Lemma 5 (local control of f). Let xk > 0 such that

Q+(f) ≤ µkQ
+(P )(3.26)

for any (x, v) ∈ Dk = {(x, v), x ≥ xk, v ≤√2E(x− xk)}; then

f ≤ µkP on Dk.(3.27)

Proof. Recall that E > 0. Now for any pair (x′, v′) ∈ Dk, then x′ ≥ xk and

x′ = v′2
2E + x′′, where x′′ > xk. Now let (x′, v′) be fixed (and so is x′′), and consider

the function g(v) = f
(
v2

2E+x′′, v
)
. The argument of the right-hand side of the previous

equation lies in Dk, and we have

E
∂g

∂v
+ σ(v)g = Q+(f)

(
v2

2E
+ x′′, v

)
,(3.28)

so that g(v) → 0 as v → −∞ (because f(x, v) ≤ P ).
Now since, by assumption, Q+(f) ≤ µkQ

+(P ) in Dk, then subtracting the differ-
ential inequality from the homogeneous equation satisfied by P , multiplied by µ0, the
difference g − µkP satisfies the differential inequality with the condition in velocity
at −∞

E
∂

∂v
(g − µkP ) + σ(v)(g − µkP ) ≤ 0,

lim
v→−∞ g(v) − µkP (v) = 0.

(3.29)

Since E > 0, it implies g ≤ µkP . In particular, taking v = v′, we get

f(x′, v′) ≤ µkP (v′) on Dk.(3.30)

The proof is completed.
The strategy in order to show (3.11), the expected behavior at infinity for f ,

consists of constructing pairs (µk+1, xk+1) for which the control of the gain operator
of f by that of P is improved (see (3.26)), and so by Lemma 5, the control of f by P
(see (3.27)) is also improved by the same factor µk+1 in such a way that the limit of
the sequence {µk} is equal to λ ≥ 0, while the limit for {xk} tends to +∞.

The construction of such sequences of pairs entails the following iterative proce-
dure. First, construct iteratively the sequence (µk, xk) starting from x0 = 0 and µ0

given by Lemma 4, for as long as f ≤ µkP and 0 ≤ λ < µk for k ≥ 0.
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Second, find a pair (µk+1, xk+1) such that (3.26) holds, that is, xk+1 > xk and
Q+(f) ≤ µk+1Q

+(P ) on Dk+1, where µk+1 ≤ µk, where the selection of (µk+1, xk+1)
depends on µk and λ in a control way so limk→∞ µk = λ as xk → ∞.

Finally, from Lemma 5, it follows that f ≤ µk+1P on Dk+1, for 0 ≤ λ < µk+1 <
µk < 1.

This next lemma proves this second step.
Lemma 6. Let f satisfy the conditions of Lemmas 4 and 5 for a given pair

(µk, xk), and the corresponding Dk for λ < µk, for k ≥ 0. Then there exists a
(µk+1, xk+1) such that

Q+(f) ≤ µk+1Q
+(P ), 0 < µk+1 < µk < 1 in Dk,(3.31)

with xk+1 ≥ xk. Moreover, µk+1 can be chosen so that

(µk − λ) < C(µk − µk+1)
2 , with C = 2

s1
s0

〈v3P 〉3
〈vP 〉1/2 .(3.32)

Before proving Lemma 6, we state a corollary which follows immediately from
Lemmas 5 and 6.

Corollary 1. Let Dk+1 be defined as in Lemma 5; then

f ≤ µk+1P, 0 < µk+1 < µk < 1 , on Dk+1.(3.33)

Proof of Lemma 6. In order to prove (3.31) due to the linearity of the collision
form, write

Q+(f) = µkQ
+(P ) −Q+(µkP − f).(3.34)

Since f ≤ µkP in Dk, then

M(v)

∫ 0

−∞
s(v, v′) (µkP (v′) − f(x, v′)) dv′ ≥ 0 for x ≥ xk,

with xk =
v2k
2E . Thus

Q+(µkP − f) ≥M(v)

∫ ∞

0

s(v, v′) (µkP (v′) − f(x, v′)) dv′, x ≥ xk.(3.35)

Our goal is to see that the right-hand side of (3.35) is bounded by a proper fraction
of µkQ

+(P ), that is,

M(v)

∫ ∞

0

s(v, v′) (µkP (v′) − f(x, v′)) dv′ ≥ µk+1Q
+(P )(3.36)

for µk+1 < µk and x ≥ xk+1 ≥ xk, where xk+1 is to be determined.
Now, we know from Lemma 5 that f ≤ µkP on Dk and that, by assumption,

〈vf〉 = λ〈vP 〉. Then, as in Lemma 4, since the set {x ≥ xk} × {v ≤ 0} is in Dk, this
implies

−
∫ 0

−∞
vf dv ≤ −µk

∫ 0

−∞
vP dv = −µk〈vP 〉 + µk

∫ +∞

0

vP
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for x ≥ xk, which yields∫ +∞

0

v(µkP − f) dv ≥ (µk − λ)〈vP 〉 = αk for x ≥ xk.(3.37)

Next, we need to choose the set Dk+1, which means choosing vk+1 and the
corresponding xk+1 such that we can control them, and Q+(f) ≤ µk+1, Q

+(P ) for
xk+1 > xk and for some µk+1 < µk.

In order to see this fact, first since we can do this construction, as done in
Lemma 4, for as long as µk > λ, and by the integrability properties of the first
moment of P , one can choose vk+1 such that

vk+1

∫ +∞

vk+1

P dv ≤
∫ +∞

vk+1

vP dv ≤ 1

2
(µk − λ)〈vP 〉.(3.38)

On the other hand, as a consequence of (2.14) and Lemma 1, the third moment of P
is bounded, and∫ +∞

vk+1

vP dv ≤ 1

v2
k+1

∫ ∞

0

v3P (v) dv ≤ 〈v3P 〉
v2
k+1

for all vk+1 ≥ 0 .

Then, choose vk+1 large enough such that both (3.38) and

vk+1 ≤ C√
µk − λ

, with C =
〈v3P 〉√
2〈vP 〉 ,(3.39)

are satisfied.

Hence, taking xk+1 =
v2k+1

2E + xk, it is clear that

{(x, v) : x ≥ xk+1, v ≤ vk+1} ⊂ Dk, so that f(x, v) ≤ µkP (v).(3.40)

Next, rewrite integral estimate (3.37) as∫ vk+1

0

v(µkP − f) dv +

∫ +∞

vk+1

v(µkP − f) dv ≥ (µk − λ)〈vP 〉.(3.41)

Also, since µk < 1 and f > 0, from the estimate from below in (3.38) it follows
that ∫ ∞

vk+1

(µkP − f) ≤
∫ ∞

vk+1

P ≤ 1

2vk+1
(µk − λ)〈vP 〉;(3.42)

then, combining (3.41) and (3.42) yields

vk+1

∫ vk+1

0

(µkP − f) ≥
∫ vk+1

0

v(µkP − f) ≥
(

1 − 1

2vk+1

)
(µk − λ)〈vP 〉.(3.43)

Finally, this last estimate (3.43) leads to the one involving a fraction of the gain
operator on the difference µkP − f , as follows. First, recalling 0 < s0 ≤ s(v′, v) ≤ s1
and s1 finite,∫ vk+1

0

s(v, v′) (µkP (v′) − f(x, v′)) dv′ ≥
(

1 − 1

2vk+1

)
s0
vk+1

(µk − λ)〈vP 〉.(3.44)
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Second, since f ≤ P and µk < 1, then∫ ∞

vk+1

s(v′, v) (µkP (v′) − f(x, v′)) dv′ ≥ − s1
vk+1

(1 − µk)

∫ ∞

vk+1

v′P (v′)dv′

≥ − s1
vk+1

(1 − µk)
1

2vk+1
(µk − λ)〈vP 〉

(3.45)

for any x > xk+1.
Therefore, gathering (3.44) and (3.45), we obtain the following lower estimate for

equation (3.35):

Q+(µkP − f) ≥M(v)

∫ +∞

0

s(v′, v) (µkP (v′) − f(x, v′)) dv′

≥M(v)

[(
1 − 1

2vk+1

)
s0 − 1

2vk+1
s1(1 − µk)

] 〈vP 〉
vk+1

(µk − λ)
(3.46)

= M(v)

[
s0 − 1

2vk+1
(s0 + s1) +

s1
2

µk
vk+1

] 〈vP 〉
vk+1

(µk − λ)

= M(v)

(
1 − 1

2vk+1

[s0 + s1
s0

]
+

1

2vk+1

s1
s0
µk

)
s0

〈vP 〉
vk+1

(µk − λ).

Now, we can choose vk+1 even larger than the choices in (3.38) and (3.40) such
that 1

2vk+1
[ s1s0µk − s0+s1

s0
] < 1

2 , and thus (3.46) leads to

Q+(µkP − f) ≥ s0
2

〈vP 〉
vk+1

(µk − λ)M(v) ≥ 1

2

s0
s1

〈vP 〉
vk+1

(µk − λ)Q+(P ),(3.47)

which, after combination with (3.34), leads to

Q+(f) ≤ µk+1Q
+(P ),(3.48)

where

µk+1 =

(
µk − 1

2

s0
s1

〈vP 〉
vk+1

(µk − λ)

)
.(3.49)

Finally, from (3.39), vk+1 is such that vk+1 ≤ C(µk−λ)−1/2; then combining this
with (3.49), we get

(µk − λ) < C(µk − µk+1)
2 with C = 2

s1
s0

〈v3P 〉
〈vP 〉1/2 .(3.50)

Hence, (3.32) holds as well, and thus the proof of Lemma 6 is now completed.
We can now complete the proof of Theorem 5.
Proof of Theorem 5. For as long as µk > λ, proceed constructing the sequence

{xk} as in Lemma 6. If µk ≤ λ, set xk+1 = xk. In particular, since µk − µk+1 → 0,
as k is large, inequality (3.32) implies

lim
k→∞

µk − λ = 0 with lim
k→∞

xk = +∞,

which implies

lim sup
k→∞

f(xk, v) ≤ lim
k→∞

µkP (v) ≤ λP (v).(3.51)
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Conversely, applying Lemma 6 and Corollary 1 to P − f , since we have assumed
0 ≤ λ < 1, then 0 ≤ 〈vP − vf〉 ≤ (1 − λ)〈vP 〉, and also

lim sup
k→∞

(P − f)(xx, v) ≤ (1 − λ)P (v) ≤ 0,

or equivalently,

lim inf
k→∞

f(xk, v) ≥ λP (v).(3.52)

Finally, from the construction of the sequence, for µk either larger or smaller than
λ, (3.51) and (3.52) imply that

lim
x→∞ f(x, v) = λP (v),

so (3.11) holds. The proof of Theorem 5 is now completed.

Finally, in order to complete the proof of the Theorem 1, we define n∞ = 〈vf〉
〈vP 〉 .

Then we need to show that n∞ is always a nonnegative proper fraction, since this has
been an assumption in Theorem 5.

Theorem 6. If 〈vf〉 = n∞〈vP 〉, then

0 ≤ n∞ ≤ 1.(3.53)

Proof. First, we recall from the existence construction, if the boundary data is
0 < k(v) ≤ P (v), for v > 0, then 0 < f < P for all x ≥ 0 and all v.

Now, argue by contradiction. If n∞ < 0, take g = f − n∞P . Clearly 〈vg〉 =
〈v(f − n∞P )〉 = 0.

Therefore, applying Theorem 5 to g with λ = 0,

lim
x→∞ g(x, v) ≤ 0

or equivalently,

lim
x→∞ f(x, v) ≤ n∞P < 0,

contradicting f > 0 for all (x, v), x ≥ 0.
Similarly, if n∞ > 1, then take g = n∞P − f . Then, g(x, v) < n∞P (v) and

〈vg〉 = 0. Hence,

lim
x→∞(n∞P − f) ≤ 0,(3.54)

or equivalently,

n∞P (v) ≤ lim
x→∞ f(x, v) ≤ P (v),

which implies n∞ ≤ 1, contradicting the assumption. Then (3.53) holds, so Theorem 6
is proven.

Completion of Theorem 1. If n∞ < 1, then, from Theorems 5 and 6,

lim
x→∞ f(x, v) = Kn∞P (v),
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where n∞ is the fraction of the first moment of f
K with respect to the first moment

of P . And, if n∞ = 1 or, equivalently, 〈v(K P − f)〉 = 0, one gets, as in (3.54),
0 ≤ limx→∞(K P − f) ≤ 0, since, by the existence, also 0 ≤ K P − f . Hence

lim
x→∞ f(x, v) = K P (v).

The proof of Theorem 1 is now completed.
As a corollary to Theorem 1 we have the following.
Corollary 2. Assume that E > 0 and that k(v) = n∞P (v). Then the unique

solution of (2.6) is n∞P (v).

3.3. The Milne problem for strong negative forces. The aim of this sub-
section is the proof of Theorem 2. In the negative electric field case, we have proven
that the upper and lower solutions coincide. This means that the solution of (2.6) can
be obtained by solving a truncated problem (3.6) with k1 = k and k2 arbitrary, the
limit as L tends to +∞ being only dependent on k. For positive electric fields, this
will not be the case, and the solution does depend on the boundary condition k2.

Proof of Theorem 2. We first proceed with the construction of a solution with the
given asymptotic behavior; that is, we construct a solution f of (2.6) which behaves
like n∞Pσ,E(v) as x tends to +∞. It is natural to consider the truncated problem⎧⎨

⎩
v∂xfL + E∂vfL = Q(fL)(x, v),
fL(0, v) = k(v) for v > 0,
fL(L, v) = n∞P (v) for v < 0.

(3.55)

Since 0 ≤ k(v) ≤ KP (v), the maximum principle insures that 0 ≤ fL ≤ K2P ,
where K2 = max(n∞,K). Therefore, up to the extraction of a subsequence, fL
converges in L∞

loc weak star towards a solution f of (2.6). Of course, since the conver-
gence is only local in x, we cannot say anything at the moment about the asymptotic
behavior of f . This is the purpose of the next step.

To analyze the asymptotic behavior, we consider the following truncated solutions:⎧⎨
⎩

v∂xf
1
L + E∂vf

1
L = Q(f1

L)(x, v),
f1
L(0, v) = 0 for v > 0,
f1
L(L, v) = n∞P (v) for v < 0,

(3.56)

⎧⎨
⎩

v∂xf
2
L + E∂vf

2
L = Q(f2

L)(x, v),
f2
L(0, v) = KP (v) for v > 0,
f2
L(L, v) = n∞P (v) for v < 0.

(3.57)

Obviously, f1
L ≤ fL ≤ f2

L. Considering the limits f1 and f2 of f1
L and f2

L, we have

f1 ≤ f ≤ f2.

Moreover,

f2 = KP +

(
1 − K

n ∞

)
f1.(3.58)

Besides, Proposition 1 insures that f1 is increasing with respect to x. This implies
the existence of α such that

lim
x→+∞ f1(x, v) = αPσ,E(v).
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It is enough to prove that α = n∞, because (3.58) implies that f2 also converges
towards n∞P . Since f is sandwiched between f1 and f2, this implies that

lim
x→+∞ f(x, v) = n∞Pσ,E(v).

Let us now prove that α = n∞. To this aim, we invert the x-axis direction by
setting

g1
L(x, v) = f1

L(L− x,−v).
This function satisfies the equation⎧⎨

⎩
v∂xg

1
L − E∂vg

1
L = Q̂(g1

L)(x, v),
g1
L(0, v) = n∞Pσ̂,−E for v > 0,
g1
L(L, v) = 0 for v < 0,

(3.59)

where

Q̂(g)(v) =

∫
σ̂(v, v′)(Mf ′ −M ′f)dv′, σ̂(v, v′) = σ(−v,−v′),

and where we have noticed that

Pσ̂,−E(v) = Pσ,E(−v).
With this transformation, we have replaced the electric field E by −E, and we are
back to the positive force case. We know from Corollary 2 that the limit of g1

L(x, v)
as L tends to +∞ is nothing but n∞Pσ̂,−E(v). Therefore, we can pass to the limit in
the current and get

lim
L→+∞

〈vg1
L〉 = n∞〈vPσ̂,−E〉 = −n∞〈vPσ,E〉.

On the other hand, 〈vgL〉 = −〈vf1
L〉, which leads to

lim
L→+∞

〈vg1
L〉 = −〈vf1〉 = −α〈vPσ,E〉.

As a consequence, α = n∞, which is the desired result.
The proof of uniqueness is identical to that of Lemma 2 where the truncated case

is considered. The details are left to the reader.
The proof of Theorem 2 is completed.

4. A numerical method. As explained in the introduction, for the purpose of
finding boundary or transition conditions we are interested only in the asymptotic
state n∞ and in the reflected density f(0, v), v < 0, of (2.6). In this section we
will describe an approximation procedure to compute these values in the case of a
relaxation collision operator.

Part of the motivation for studying this problem is that a direct discretization
method to solve the half space problem is, in general, costly. The idea behind the
method presented here is to solve the macroscopic equations associated with (2.6) and
its adjoint equation and to use a Chapman–Enskog–type expansion as an approximate
solution, which in the case of relaxation is an exact calculation where diffusion and
transport coefficients depend explicitly on the force field E, via the moments of the
distribution P , as shown in (2.17).
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4.1. Computation of the asymptotic states. We consider the half space
equation (2.6) in the relaxation case:

v∂xf + E∂vf = Q(f) = 〈f〉M − f,(4.1)

f(0, v) = k(v), v > 0,

with x ∈ [0,∞) and E > 0 a constant. Due to Theorem 1 we have a unique solution
f with limx→∞ f(x, v) = n∞P (v), where P is the solution of (2.7). Our aim is to
determine an accurate and efficient approximation of n∞.

In addition to (4.1) we consider the corresponding adjoint equation using the
weighted inner product 〈fgP−1〉. It is given by

−v∂xg − P∂v(EgP
−1) = Q(gP−1M)M−1P.(4.2)

Boundary conditions are

g(0, v) = 0, v < 0.

A change of variables v → −v gives the equivalent equation

v∂xg + EP̃∂v(gP̃
−1) = Q(gP̃−1M)M−1P̃ ,(4.3)

g(0, v) = 0, v > 0,

with P̃ (v) = P (−v).
This system is a particular case of the nonhomogeneous problem

v∂xg + EP̃∂v(gP̃
−1) = Q(gP̃−1M)M−1P̃ ,(4.4)

g(0, v) = k(v), v > 0.

For this problem, we can prove the following theorem.
Theorem 7. (i) If E < 0 and |k(v)| ≤ KP̃ (v) for some constant K, then

(4.4) has a unique solution such that g/P̃ ∈ L∞(R+
x × Rv). This solution satisfies

|g(x, v)| ≤ KP̃ (v).
(ii) If E > 0 and |k(v)| ≤ KP̃ (v) for some constant K, then, for any j ∈ R, there

exists a unique solution g of (4.4) such that gP̃ ∈ L∞(R+
x ×Rv) and

∫
R vg(x, v) dv =

j. This unique solution is also characterized by the condition

lim
x→+∞ g(x, v) =

j∫
vP̃ dv

P̃ ,

and g determines n∞ = 〈vf〉/〈vP 〉 by

n∞ =

∫
v>0

vk(v)g(0, v)P−1(v)dv,(4.5)

which is approximated by

n∞ =
〈vk〉+
〈vP 〉+

+
〈vP 〉−

〈vP 〉
〈

v
1+EvP

〉
+

(〈
v

1 + Ev

(
k − 〈vk〉+

〈vP 〉+P
)〉

+

)
.

(4.6)
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Proof. The proof of this theorem follows the same strategy as the proof of Theo-
rems 1 and 2. We shall not redo this proof since it relies on exactly the same strategy,
and we will give only some hints.

The first brick of the proof is the study of the homogeneous-in-x problem. It is
clear that P̃ is a solution of

EP̃∂v(gP̃
−1) = Q(gP̃−1M)M−1P̃ .(4.7)

Actually, any solution g such that g/P̃ ∈ L∞ is a multiple of P̃ . Indeed, it is
enough to prove that a solution g of (4.7) such that

∫
g dv = 0 is nothing but the

identically vanishing function: to this end, we consider a function h which solves
E∂vh+Q(h) = g. Such a solution exists since

∫
g dv = 0 (see [30]). Multiplying (4.7)

by h/P̃ and integrating leads to
∫
g2P̃−1 dv = 0.

The second property to be noticed is that
∫
vP̃ dv and E have opposite signs.

This is why the sign of E is inverted in Theorem 7. With these remarks, one can
reproduce the proofs of subsections 3.1 and 3.3 as well as the proof of Theorem 4
(subsection 3.2). We conjecture that the results of subsection 3.2 can be translated
to the adjoint problem (4.4). This would imply that, in the case E < 0, the unique
solution converges as x tends to +∞ towards a multiple of P̃ .

Let us now solve (4.3) approximately by proceeding similarly to the Chapman–
Enskog expansion method. We recall that E > 0 in this section, so that 〈vg〉 has to
be prescribed. Since the problem is linear, the solution is given up to a multiplication
factor, and we choose g such that

〈vg〉 = −1.

The first step of the approximate resolution of (4.3) is to introduce a diffusion
approximation: introducing an artificial small parameter δ, we consider

v∂xg + EP̃∂v(gP̃
−1) =

1

δ
Q(gP̃−1M)M−1P̃ .(4.8)

Using the series expansion

g = g0 + δg1 + · · ·

in (4.8) and collecting terms of equal order in δ gives to O(1)

Q(g0P̃−1M) = 0

or

g0 = ρP̃ .(4.9)

To O(δ) we have

g1 = M−1P̃Q−1
[
MP̃−1(v∂xg

0 + EP̃∂v(g
0P̃−1))

]
.

Using (4.9) and Q(vM) = −vM , one obtains

g1 = −vP̃∂xρ.
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The solvability conditions for the O(δ2)-equations give

∂x〈vg1MP̃−1〉 + E〈M∂v(g
1P̃−1)〉 = 0.

Using the special form of g1, this yields

∂2
x〈v2M〉ρ+ E∂x〈M〉ρ = 0

or the following equation for ρ:

∂2
xρ+ E∂xρ = 0.(4.10)

Equation (4.10) is the drift-diffusion equation associated to the kinetic half space
equation (4.2). We note that this is in contrast to (4.1). In this case the associated
drift-diffusion equation is ∂2

xρ− E∂xρ = 0. The solution of (4.10) can be determined
exactly up to two parameters:

ρ(x) = Ae−Ex +B, where A,B ∈ R.
Next we compute an approximation ĝ of g solving the following equation:

v∂xĝ + EP̃∂v(ĝP̃
−1) = ρP̃ − ĝ,(4.11)

ĝ(0, v) = 0, v > 0.

This equation has been obtained from (4.3) by substituting the first order approxima-
tion ρP̃ for g in 〈gP̃−1M〉 into (4.3), where ρ is determined from the drift-diffusion
equation (4.10). Notice that 〈vĝ〉 is no longer independent of x. Now (4.11) can
be further simplified by using the above approximation also in those terms in (4.11)
involving E. One obtains

v∂xĝ = ρ(x)P̃ − ĝ,(4.12)

ĝ(0, v) = 0, v > 0.

The solution of (4.12) can be given explicitly. Assuming boundedness at infinity of
the solution, we get

ĝ(x, v)P̃−1 =

⎧⎪⎪⎨
⎪⎪⎩

A

1 − Ev
(e−Ex − e−

x
v ) +B(1 − e−

x
v ), v > 0,

A

1 − Ev
e−Ex +B , v < 0.

In particular, g(∞, v) = BP̃ and

ĝ(0, v)P̃−1 =

{
0, v > 0,
A

1 − Ev
+B , v < 0.

We determine A and B by 〈
v

{
ĝ(∞, v)
ĝ(0, v)

}〉
= −1,

the closest analogue to 〈vg〉 = −1. This yields

B = − 1

〈vP̃ 〉 =
1

〈vP 〉
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and

A =
1

〈vP 〉
〈vP 〉−〈
v

1+EvP
〉
+

.

Here and in the following we use the notation

〈f〉+ =

∫
v>0

f(v)dv, 〈f〉− =

∫
v<0

f(v)dv.

We mention that the g- approximation can be iterated considering the equation for the
remaining term g− ĝ instead of (4.3) and proceeding as before. Now, one transforms
backwards, v → −v, to get the desired approximation of the solution g of (4.2).

The following observation is crucial for the whole scheme: if f is a solution of
(4.1) and g one of (4.2),

∂x(〈vf(x, v)g(x, v)P−1〉)
= 〈v(∂xf)(x, v)g(x, v)P−1〉 + 〈v(∂xg)(x, v)f(x, v)P−1〉
= 〈[Q(f) − E∂vf ]gP−1〉

+ 〈f [EgP−1∂vP − E∂vg −Q(gP−1M)M−1P ]P−1〉.

Since

〈Q(f)gP−1〉 = 〈Q(f)(gP−1M)M−1〉
= 〈fQ(gP−1M)M−1PP−1〉

and

〈E∂vfgP−1〉 = −〈Ef∂v(gP−1)〉
= −E〈f(∂vg)P

−1〉 + E〈fg∂vPP−2〉,
we get

∂x(〈vf(x, v)g(x, v)P−1〉) = 0.

In other words, 〈vϕgP−1〉 is an invariant in x. Using this invariant, we get

〈vf(∞, v)g(∞, v)P−1(v)〉 = 〈vf(0, v)g(0, v)P−1(v)〉,
and substituting gives

〈vn∞g(∞, v)〉 =

∫
v>0

vk(v)g(0, v)P−1(v)dv.

Or, with 〈vg(x, v)〉 = 1,

n∞ =

∫
v>0

vk(v)g(0, v)P−1(v)dv,

and thus (4.5) holds. In addition, since

g(0, v) ∼ ĝ(0, v),
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ĝ is given by

ĝ(0, v)P−1 =

⎧⎨
⎩

A

1 + Ev
+B, v > 0,

0, v < 0,

with A and B determined above.
Altogether, we obtain

n∞ =
〈vk〉+
〈vP 〉+

+
〈vP 〉−

〈vP 〉
〈

v
1+EvP

〉
+

(〈
v

1 + Ev

(
k − 〈vk〉+

〈vP 〉+P
)〉

+

)
,

(4.13)

and so (4.6) holds and the proof of the theorem is completed.
Remark. If k(v) = λP (v), we obtain from the above formula the correct value

n∞ = λ.
Remark. For E tending to 0 we have

1

1 + Ev
∼ 1 − Ev ∼ 1 − Ev +O(E2).

Moreover, P → M as E → 0. Thus, one obtains in the limit the same result as, for
example, in [22], namely,

n∞ =
〈vk〉+
〈vM〉+ +

〈
v2

(
k − 〈vk〉+

〈vM〉+M
)〉

+

.

4.2. Computation of the Albedo operator. The outgoing density f(0, v),
v < 0, of (4.1) can be computed as follows. We proceed in a similar same way as
before; however, now f(∞, v) = n∞ is known. We start directly with (4.1).

The drift-diffusion equation for this equation is determined by the same procedure
as above. One obtains ∂2

xρ − E∂xρ = 0. Looking for solutions bounded at infinity,
one obtains

ρ = B,

B a constant. Substituting as before ρP (v) for f in E∂vf and 〈f〉 in (4.1) gives

v∂xf̂ = ρP − f̂ ,

f̂(0, v) = k(v), v > 0.

The solution is

f̂(x, v) =

{
k(v)e−

x
v +B(1 − e−

x
v )P (v), v > 0,

BP (v), v < 0.

In particular, one obtains

f̂(∞, v) = BP (v)

and therefore B = n∞. Moreover, f̂(0, v) = n∞P (v), v < 0. Again, considering the

equation for the remainder term f − f̂ , one obtains a better approximation of the
outgoing function.
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Fig. 1. Asymptotic states for E ∈ [0, 3].

4.3. The Maxwell conditions. The following method was developed by Max-
well [27] and Marshak [26] (see also [6]) to derive approximate boundary conditions.
In order to determine n∞, one equalizes the half-fluxes at the boundary and at infinity,
i.e., ∫

v>0

vϕ(0, v)dv =

∫
v>0

vϕ(∞, v)dv,

which means in our context

n∞
∫
v>0

vP (v)dv =

∫
v>0

vk(v)dv

or

n∞ =
〈vk〉+
〈vP 〉+ .(4.14)

This equality provides correct orders of magnitude in many situations. We observe
that the value obtained by the procedure in section 4.1 obviously contains the term one
obtains from the Marshak approximation (4.14). However, additionally, a correction
term appears in (4.13). The Maxwell approximation of the outgoing distribution is
simply

ϕ(0, v) = ϕ(∞, v) = n∞P (v), v < 0,

with n∞ given by (4.14).

4.4. Numerical results. We used k(v) = vM(v) to get in Figure 1 the asymp-
totic values for different values of the electric field E > 0. We computed these values
by the approximations (4.14), labeled “marshak,” and (4.13), labeled “variational.”
As E tends to 0 one obtains the same results as, for example, in [11, 22]: n∞ = 1.2533
for the Maxwell–Marshak method and n∞ = 1.4245 for the above approximation pro-
cedure, which is in case E = 0 equivalent to the so-called variational method; see,
e.g., [25]. The true solution in this case is known: its numerical value is n∞ = 1.4371.
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Abstract. This work is concerned with multidimensional isentropic hydrodynamical models for
semiconductors with short momentum relaxation time. With the help of the Maxwell iteration, we
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1. Introduction. This work is concerned with the following scaled hydrody-
namical model for semiconductors or plasmas:

∂tn+
1

ε
div(nu) = 0,

∂t(nu) +
1

ε
div(nu⊗ u) +

1

ε
∇p(n) =

n∇φ
ε

− nu

ε2
,(1.1)

−∆φ = ñ(x) − n.

Here n > 0, u, and φ, as unknown functions of (x, t) ∈ Rd×[0,+∞) with d ≥ 1, denote
the electron density, velocity (d-vector), and electrostatic potential, respectively; p =
p(n) is a given strictly increasing function and denotes the pressure; ñ(x) is the
given background density of holes or ions; ε > 0 is a parameter for the momentum
relaxation time; and div, ∇, ∆, and ⊗ are the respective x-divergence operator,
gradient operator, Laplacian, and symbol for the tensor products of two vectors.
Note that the scaling

t = εt̃

converts (1.1) back into the original unipolar model in [1] with t̃ as its time variable.
The scaled-time variable t was first introduced in [14] to study the relation between
the hydrodynamical and drift-diffusion models [19, 18] (see (1.2) below).

It is known from [1, 16] that the hydrodynamical model describes some physical
phenomena not accounted for in the classical drift-diffusion model. However, based
on the previous results in [14, 6, 9] we expect that the two models give similar results
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when ε is small, which can be seen formally as follows. Applying the Maxwell iteration
to the momentum equation in (1.1) gives

nu = −ε∇p(n) + εn∇φ− εdiv(nu⊗ u) − ε2∂t(nu)

= −ε∇p(n) + εn∇φ+O(ε2).

Substituting the truncation nu = −ε∇p(n) + εn∇φ into the mass equation in (1.1),
we arrive at the unipolar drift-diffusion model

∂tn = ∆p(n) − div(n∇φ),
(1.2) −∆φ = ñ(x) − n.

This is a parabolic-elliptic system, since p(n) is strictly increasing.
The goal of this paper is to justify the above formal derivation of the drift-diffusion

model for periodic IVPs (initial-value problems) with an emphasis on several space
dimensions. For brevity, we deal with only the unipolar model (1.1). However, it is
trivial to see that our arguments and results hold true for the bipolar model in [1, 16]
and the hydrodynamical model for porous media discussed in [13].

In one space dimension, the above limit problem has been investigated by many
authors in the compactness frameworks for nonsmooth solutions of conservation laws
(see [14, 17, 6, 2, 3, 4]). However, the multidimensional limit problem is hardly studied
in the literature, and [9, 8] are the only papers known to the author. In [9, 8], the
authors considered (1.1) and the corresponding bipolar model with x in a bounded
domain, assumed the existence of L∞-solutions in an ε-independent time interval, and
justified the relaxation limit in a compactness framework [13] for nonsmooth solutions.

In this paper, we revise the approach in [20] to study the multidimensional limit
problem. Precisely, we assume that the drift-diffusion model (1.2) has a smooth
solution (n, φ) with initial data n(x, 0) = n0(x). Inspired by the Maxwell iteration
above, we construct a formal approximation

nε = n, nεuε = εn∇φ− ε∇p(n), φε = φ(1.3)

for the solution (nε, uε, φε) of (1.1) with initial data

n(x, 0) = n0(x), u(x, 0) = ε∇φ(x, 0) − ε∇p(n0)

n0
.(1.4)

(Note that these initial data are in equilibrium.) Then we use energy methods to
prove that (nε, uε, φε) exists in the finite time interval where n is well defined and can
be expressed as

(nε, uε, φε) = (nε, uε, φε) +O(ε2)(1.5)

in the Sobolev space Hs(Td) with s > d/2 + 1. Furthermore, our conclusion implies
that if the drift-diffusion model has a global smooth solution with n having a positive
lower bound, then for any T > 0 there exists ε0 > 0 such that the hydrodynamical
model has a unique smooth solution up to the time T when ε < ε0. See Theorem 4.1
in section 4 for details.

Regarding the above result, we make the following remarks. First, (1.5) is more
precise than the previous equations for weak solutions if the parabolic-elliptic system
(1.2) has a smooth solution with n having a positive lower bound. For this assumption
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about (1.2), the interested reader is referred to [5]. Second, it is not difficult to obtain
results of the form (1.5) for more general periodic initial data by using the matched
expansion method (see, e.g., [20, 10]) instead of the Maxwell iteration for the special
data (1.4).

On the other hand, it does not seem easy to extend the above result for nonperi-
odic IVPs or initial-boundary value problems. In fact, when the initial data are not
periodic, the Poisson equation for φ should be treated differently (see Proposition 2.1).
And when initial-boundary value problems are concerned, new ideas are required to
deal with the remaining (hyperbolic) part of the hydrodynamical model (1.1).

We note that, besides having the Poisson equation, the hydrodynamical models
are essentially different from the hyperbolic systems studied in [10]. In fact, once
the hydrodynamical models are rewritten as symmetrizable hyperbolic systems, the
coefficients multiplying the spatial derivatives depend on the unknown in a stronger
way than that in [10] (see Remark 2.1 in section 2). Because of this strong dependence,
some key estimates in [10] have to be reconsidered, and our analysis depends heavily
on the special nonlinear structure of the isentropic hydrodynamical models (see the
proofs of Lemmas 4.2 and 4.3 in section 4).

Finally, let us mention that this work can be regarded as a contribution to the
theory of diffusive limits for hyperbolic problems developed in [15]. Another limit
problem for the hydrodynamical models is the large time behavior of the solutions [11],
where stationary, instead of time-dependent, solutions of the drift-diffusion models are
involved.

This paper is organized as follows. In section 2 we rewrite the hydrodynamical
models as symmetrizable hyperbolic systems and review the convergence-stability
lemma from [21]. Section 3 is devoted to the formal approximation (1.3). In section 4
we prove the validity of the formal approximation and conclude the existence of the
solution to (1.1) in the time interval where n is well defined.

Notation. |U | denotes some norm of a vector or matrix U . L2 = L2(Td) is the
space of square integrable (vector- or matrix-valued) functions on the d-dimensional
unit torus Ω = (0, 1]d. For a nonnegative integer s, Hs = Hs(Td) is defined as
the space of functions whose distribution derivatives of order ≤ s are all in L2. We
use ‖U‖s to denote the standard norm of U ∈ Hs, and ‖U‖ ≡ ‖U‖0. When A is
a function of another variable t as well as x, we write ‖A(·, t)‖s to recall that the
norm is taken with respect to x while t is viewed as a parameter. In addition, we de-
note by C([0, T ],X) (resp., C1([0, T ],X)) the space of continuous (resp., continuously
differentiable) functions on [0, T ] with values in a Banach space X.

2. Preliminaries. In this section, we write the hydrodynamical models as sym-
metrizable hyperbolic systems and review the convergence-stability lemma from [21].
To begin with, we recall the following elementary fact, which can be easily proven by
using Fourier series.

Proposition 2.1. ∇∆−1 is a bounded linear operator on L2(Td).
It is this proposition that requires the initial data to be periodic.
Now we write (1.1) as a symmetric hyperbolic system. To do this, we introduce

the enthalpy h = h(n) > 0 defined for n > 0 and satisfying

h′(n) =
p′(n)

n
.

Since p(n) is strictly increasing, so is h(n). Thus, h(n) has an inverse n = n(h). Set

q(h) = p′(n(h)).
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Then, for smooth solutions, (1.1) is equivalent to

q(h)−1

(
∂th+

1

ε
u · ∇h

)
+

1

ε
div u = 0,

∂tu+
1

ε
u · ∇u+

1

ε
∇h =

∇φ
ε

− u

ε2
,(2.1)

− ∆φ = ñ(x) − n(h)

or

∂t

(
h
u

)
+

1

ε

d∑
j=1

Aj(h, u)∂xj

(
h
u

)
=

1

ε2

(
0

ε∇∆−1(n(h) − ñ) − u

)
.(2.2)

Here the coefficients have the following structure:

Aj(h, u) = A−1
0 (h)Cj + ujId+1,

A0(h) = diag

(
1

q(h)
, Id

)
,

(2.3)
each Cj is a constant symmetric matrix,

and the first element C11
j in the first row of Cj is zero,

where Ik denotes the unit matrix of order k and uj is the jth component of u. Thus,
(2.2) is a symmetrizable hyperbolic system with A0 the symmetrizer.

Remark 2.1. Although (2.2) is of the form of the systems studied in [10], it
is essentially different from them. In fact, a crucial assumption in [10] is that the
coefficients Aj and the symmetrizer A0 depend on the unknown W ≡ (h, u) only
through εW , that is, Aj = Aj(εW ) and A0 = A0(εW ). This assumption is obviously
not satisfied by our present system (2.2).

Thanks to Proposition 2.1, the local-in-time existence theory for periodic IVPs of
first-order symmetrizable hyperbolic systems can be well applied to (2.2). Moreover,
we recall the convergence-stability lemma in [21] for general singular limit problems
of IVPs for quasi-linear first-order symmetrizable hyperbolic systems depending (sin-
gularly) on parameters in several space variables:

Ut +

d∑
j=1

Aj(U, ε)Uxj
= Q(U, ε),

(2.4)
U(x, 0) = Ū(x, ε).

Here ε represents a parameter in a topological space, Aj(U, ε) (j = 1, 2, . . . , d) and
Q(U, ε) are sufficiently smooth functions of U ∈ G ⊂ Rn, and Ū(x, ε) is a given initial-
value function. For simplicity, we assume that Ū(x, ε) is periodic in x with period
(1, 1, . . . , 1) ∈ Rd.

Assume Ū(x, ε) ∈ G0 ⊂⊂ G for all (x, ε) and Ū(·, ε) ∈ Hs with s > d/2 + 1 an
integer. Fix ε. According to the local existence theory for IVPs of symmetrizable
hyperbolic systems (see Theorem 2.1 in [12]), there is a time interval [0, T ] so that
(2.4) has a unique Hs-solution

U ε ∈ C([0, T ], Hs).
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Define

Tε = sup{T > 0 : U ε ∈ C([0, T ], Hs)}.(2.5)

Namely, [0, Tε) is the maximal time interval of Hs existence. Note that Tε depends
on G and may tend to zero as ε goes to a certain singular point, say 0.

In order to show that limε→0Tε > 0, which means the stability (see [7, 12]), we
make the following assumption.

Convergence assumption. There exists T∗ > 0 and Uε ∈ L∞([0, T∗], Hs) for each
ε, satisfying ⋃

x,t,ε

{Uε(x, t)} ⊂⊂ G,

such that for t ∈ [0,min{T∗, Tε}),
sup
x,t

|U ε(x, t) − Uε(x, t)| = o(1),

sup
t

‖U ε(·, t) − Uε(·, t)‖s = O(1)

as ε tends to the singular point.
With such a convergence assumption, we are in a position to state the following

fact established in [21].
Lemma 2.2. Suppose Ū(x, ε) ∈ G0 ⊂⊂ G for all (x, ε), Ū(·, ε) ∈ Hs with an

integer s > d/2 + 1, and that the convergence assumption holds. Let [0, Tε) be the
maximal time interval such that (2.4) has a unique Hs-solution U ε ∈ C([0, Tε), H

s).
Then

Tε > T∗

for all ε in a neighborhood of the singular point.
Thanks to Lemma 2.2, our task is reduced to finding a Uε(x, t) such that the

convergence assumption holds. Below, we will use this lemma with G replaced by its
compact subsets.

3. Formal approximations. In this section we propose a construction of the
approximation Uε in the convergence assumption for the hydrodynamical model (2.2).
Let n solve the IVP of the unipolar drift-diffusion model (1.2) or

∂tn = ∆p(n) − div(n∇∆−1(n− ñ)),
(3.1)

n(x, 0) = n0(x).

Inspired by the Maxwell iteration, we take

nε = n,
(3.2)

uε = ε∇∆−1(n− ñ) − ε∇p(n)

n
.

Define

R =
∂tuε + uε · ∇uε/ε

ε
= ∂t(∇∆−1(n− ñ) −∇h)

(3.3)
+(∇∆−1(n− ñ) −∇h) · ∇(∇∆−1(n− ñ) −∇h).



1742 WEN-AN YONG

Then we have

∂tnε +
1

ε
div(nεuε) = 0,

∂t(nεuε) +
1

ε
div(nεuε ⊗ uε) +

1

ε
∇p(nε) =

nε∇∆−1(nε − ñ)

ε
− nεuε

ε2
+ εnεR,

or

q(hε)
−1

(
∂thε +

1

ε
uε · ∇hε

)
+

1

ε
div uε = 0,

(3.4)

∂tuε +
1

ε
uε · ∇uε +

1

ε
∇hε =

∇∆−1(nε − ñ)

ε
− uε
ε2

+ εR.

Regarding (nε, uε), we have the following regularity result.
Lemma 3.1. Let s > d/2 be an integer. Assume p ∈ C∞(0,∞) and p′(n) > 0.

If n ∈ C([0, T∗], Hs) ∩ C1([0, T∗], Hs−1) has a positive lower bound, then so does
h = h(n). Moreover, if ñ ∈ Hs−1, then uε ∈ C([0, T∗], Hs−1) ∩ C1([0, T∗], Hs−2) and
R ∈ C([0, T∗], Hs−2) in case s > d/2 + 1.

The proof of this lemma is based on the well-known calculus inequalities in Sobolev
spaces, which we state here for further reference and for the convenience of the reader.

Lemma 3.2 (see, e.g., [12]). Let s, s1, and s2 be three nonnegative integers and
s0 = [d/2] + 1.

1. If s3 = min{s1, s2, s1 + s2 − s0} ≥ 0, then Hs1Hs2 ⊂ Hs3 . Here the inclusion
symbol ⊂ implies the continuity of the embedding.

2. Suppose s ≥ s0 +1, A ∈ Hs, and U ∈ Hs−1. Then for all multi-indices α with
|α| ≤ s, ∂α(AU) −A∂αU ∈ L2 and

‖∂α(AU) −A∂αU‖ ≤ Cs‖A‖s‖U‖|α|−1.

3. Suppose s ≥ s0, A ∈ Csb (G), and V ∈ Hs(Ω, G). Then A(V (·)) ∈ Hs and

‖A(V (·))‖s ≤ Cs|A|s(1 + ‖V ‖ss).
Here and below, Cs denotes a generic constant depending only on s and d, and |A|s
stands for sup{U∈G,|α|≤s} |∂αUA(U)|.

4. The main result. Having constructed the formal approximation (nε, uε) for
the periodic IVP of the hydrodynamical model (2.2), we prove here the validity of the
approximation under some regularity assumptions on the given data and an existence
result for the IVP. The main result of this paper is stated as follows.

Theorem 4.1. Let s > d/2 + 1 be an integer. Suppose p ∈ C∞(0,+∞),
p′(n) > 0, ñ ∈ Hs(Rd), and that the drift-diffusion model (3.1) has a solution
n ∈ C([0, T∗], Hs+2) ∩ C1([0, T∗], Hs+1) with a positive lower bound.

Then, for ε sufficiently small, the hydrodynamical model (2.2) with periodic initial
data

h(x, 0) = h(n(x, 0)),
(4.1)

u(x, 0) = ε∇∆−1(n(x, 0) − ñ) − ε∇p(n(x, 0))

n(x, 0)

has a unique solution (nε, uε) ∈ C([0, T∗], Hs), and there exists a constant K > 0,
independent of ε but dependent on T∗ <∞, such that

sup
t∈[0,T∗]

‖(nε − nε, u
ε − uε)(·, t)‖s ≤ Kε2.(4.2)
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Proof. Since n ∈ C([0, T∗], Hs+1) has a positive lower bound, there are two
positive numbers a and b such that h(n) takes values in [2a, b]. Denote by [0, Tε)
the maximal time interval where the symmetrizable hyperbolic system (2.2) with the
initial data (4.1) has a unique Hs-solution (hε, uε) with values in (a, 2b) × Rd ≡
G. Thanks to Lemma 2.2, it suffices to prove the error estimate in (4.2) for t ∈
[0,min{T∗, Tε}).

To this end, we set

E =

(
hε − hε

uε − uε

)
≡
(
Eh

Eu

)
.

From the equations in (2.2) and (3.4) it follows that the error E satisfies

Et +
1

ε

d∑
j=1

Aj(h
ε, uε)Exj =

−1

ε2

(
0
Eu

)
+

1

ε

(
0

∇∆−1(n(hε) − n(hε)) + ε2R

)

+
1

ε

d∑
j=1

[Aj(h
ε, uε) −Aj(hε, uε)]

(
hεxj

uεxj

)
.

We differentiate this equation with ∂α (in x) for a multi-index α satisfying |α| ≤ s to
get

Eαt +
1

ε

d∑
j=1

Aj(h
ε, uε)Eαxj

=
−1

ε2

(
0
Euα

)
+ Fα1 + Fα2 ,(4.3)

where

Fα1 =
1

ε

(
0

∇∆−1(n(hε) − n(hε)) + ε2R

)
α

,

Fα2 =
1

ε

d∑
j=1

(
[Aj(h

ε, uε) −Aj(hε, uε)]

(
hεxj

uεxj

))
α

+
1

ε

d∑
j=1

(Aj(h
ε, uε)Eαxj − (Aj(h

ε, uε)Exj )α)

≡ fα1 + fα2 .

For the sake of clarity, we divide the following arguments into lemmas.

Lemma 4.2. Under the conditions of Theorem 4.1, we have

d

dt

∫
Ω

e(Eα)dx+
2

ε2
‖Euα‖2 ≤ 2‖Euα‖‖Fα1 ‖ +

C

ε

∫
Ω

|div uε||Eα|2dx+ C‖Eα‖‖Fα2 ‖.

Here e(Eα) = E∗
αA0(h

ε, uε)Eα, and C is a generic constant depending only on the
range [a, 2b] of hε.

Proof. Since matrices Aε0 ≡ A0(h
ε) and Aε0A

ε
j ≡ Aε0Aj(h

ε, uε) are symmetric, we



1744 WEN-AN YONG

multiply (4.3) by E∗
αA

ε
0 to obtain

e(Eα)t +
1

ε

d∑
j=1

(E∗
αA

ε
0A

ε
jEα)xj

=
−2

ε2
ReE∗

αA
ε
0

(
0
Euα

)
+ 2 ReE∗

αA
ε
0F

α
1

(4.4)

+ 2 ReE∗
αA

ε
0F

α
2 + E∗

α

⎧⎨
⎩ ∂

∂t
Aε0 +

1

ε

d∑
j=1

∂

∂xj
(Aε0A

ε
j)

⎫⎬
⎭Eα

≡ Iα1 + Iα2 + Iα3 + Iα4 .

Recall from (2.3) that

Aε0 = diag

(
1

q(hε)
, Id

)
.

It is obvious that

Iα1 = − 2

ε2
|Euα|2 and Iα2 ≤ 2|Euα||Fα1 |.

On the other hand, since hε takes values in the compact set [a, 2b], Iα3 is simply
estimated as

Iα3 ≤ C|Eα||Fα2 |.

Moreover, we use the relations in (2.3) and the h-equation in (2.1) to compute

∂tA0(h
ε) +

1

ε

d∑
j=1

∂xj
(A0(h

ε)Aj(h
ε, uε))

= A′
0(h

ε)

⎛
⎝∂thε +

1

ε

d∑
j=1

uεj∂xjh
ε

⎞
⎠+

1

ε

d∑
j=1

∂xjujA0(h
ε)

=
div uε

ε
(A0(h

ε) − q(hε)A′
0(h

ε)).

Thus, we have

Iα4 ≤ C|Eα|2|div uε|
ε

.

Now we integrate (4.3) with respect to x over Ω and use the periodicity of the data
to conclude the lemma.

For the right-hand side of the inequality in Lemma 4.2, we have the following
claim.

Lemma 4.3. Set

D = D(t) =
‖E(·, t)‖s

ε
.
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Then, for ε < 1,

|div uε| ≤ Cε+ CεD,

‖Euα‖‖Fα1 ‖ ≤ ‖Euα‖2

4ε2
+ Cε4 + C(1 +D2s)‖Eh‖2

|α|,

‖Fα2 ‖ ≤ C(1 +Ds)‖Eu‖|α|
ε

+ C(1 +Ds)‖E‖|α|.

Proof. Recall that

uε = ε∇∆−1(n− ñ) − ε∇p(n)

n
.(4.5)

Thus, for s > s0 = [d/2] + 1, we use the well-known embedding inequality to obtain

|div uε| ≤ C‖div uε‖s0 ≤ C‖div uε‖s0 + C‖div(uε − uε)‖s0 ≤ Cε+ εD.

Next we estimate ‖Euα‖‖Fα1 ‖. Since

n(hε) − n(hε) = Eh
∫ 1

0

n′(hε + σEh)dσ

and the convexity of [a, 2b] gives

hε(x, t) + σEh(x, t) = (1 − σ)hε + σhε ∈ [a, 2b]

for all (x, t, σ) ∈ Ω × [0,min{Tε, T∗}) × [0, 1] and ε > 0, it follows from Lemma 3.2
that

‖(n(hε + Eh) − n(hε))α‖ ≤ C‖Eh‖|α|
∥∥∥∥
∫ 1

0

n′(hε + σEh)dσ

∥∥∥∥
s

≤ C‖Eh‖|α|
∫ 1

0

‖n′(hε + σEh)‖sdσ
(4.6)

≤ C‖Eh‖|α|
∫ 1

0

(1 + ‖hε + σEh‖ss)dσ

≤ C‖Eh‖|α|(1 + ‖Eh‖ss) ≤ C‖Eh‖|α|(1 +Ds).

Here the last inequality has used hε + σEh = (σ− 1)Eh + hε and the boundedness of
‖hε‖s = ‖h(n)‖s indicated in Lemma 3.1. Thus, we deduce from Proposition 2.1 that

‖Euα‖‖Fα1 ‖ ≤ ‖Euα‖
ε

(ε2‖Rα‖ + ‖∇∆−1(n(hε) − n(hε))α‖)

≤ ‖Euα‖
ε

(Cε2 + C‖(n(hε) − n(hε))α‖)

≤ ‖Euα‖2

4ε2
+ Cε4 + C(1 +D2s)‖Eh‖2

|α|.

Now we turn to estimate ‖Fα2 ‖ ≤ ‖fα1 ‖ + ‖fα2 ‖ with the help of Lemma 3.2. For
fα1 , from (2.3) we have

Aεj −Aj(hε, uε) = (uεj − ujε)Id+1 + ((Aε0)
−1 −A−1

0 (hε))Cj .
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Since C11
j = 0 as in (2.3) and (Aε0)

−1 − A−1
0 (hε) = diag(q(hε) − q(hε), 0), it is clear

that

((Aε0)
−1 −A−1

0 (hε))Cj(hε, uε)
T = (q(hε) − q(hε))O(|uε|).

Note that

‖q(hε) − q(hε)‖|α| ≤ C‖Eh‖|α|(1 +Ds)

can be proved in the same fashion as that used for (4.6). Thus, we use Lemma 3.2,
the boundedness of ‖(hε, uε)(·, t)‖s+1 indicated in Lemma 3.1, and (4.5) to conclude
that

ε‖fα1 ‖ ≤ C
∑
j

‖(hε, uε)xj‖s‖uεj − ujε‖|α| + C
∑
j

‖q(hε) − q(hε)‖|α|‖uεxj‖s

≤ C‖Eu‖|α| + Cε(1 +Ds)‖Eh‖|α|.
In the similar spirit, we estimate fα2 . Since

εfα2 =

d∑
j=1

(uεjEαxj − (uεjExj )α) +

d∑
j=1

((Aε0)
−1CjEαxj − ((Aε0)

−1CjExj )α)

due to (2.3), fα2 can be bounded as

ε‖fα2 ‖ ≤ C

d∑
j=1

‖uεj‖s‖Exj‖|α|−1 + C

d∑
j=1

‖q(hε)‖s‖Euxj
‖|α|−1

≤ C(‖uε − uε‖s + ‖uε‖s)‖E‖|α| + C(1 + ‖hε‖ss)‖Eu‖|α|
≤ Cε(1 +D)‖E‖|α| + C(1 +Ds)‖Eu‖|α|.

Hence the estimate on ‖Fα2 ‖ is obtained by putting the above together. This completes
the proof.

Substituting the estimates in Lemma 4.3 into the inequality in Lemma 4.2 yields

d

dt

∫
Ω

e(Eα)dx+
1

ε2
‖Euα‖2 ≤ Cε4 + C(1 +D2s)‖E‖2

|α|.(4.7)

Note that C−1|Eα|2 ≤ e(Eα) ≤ C|Eα|2. We integrate (4.7) from 0 to T with [0, T ] ⊂
[0,min{Tε, T∗}) to obtain

‖Eα(T )‖2 +
1

ε2

∫ T

0

‖Euα(t)‖2dt ≤ CTε4 +

∫ T

0

C(1 +D2s)‖E(t)‖2
|α|dt.

Here we have used the fact that the initial data are in equilibrium. Summing up the
last inequality over all α satisfying |α| ≤ s, we get

‖E(T )‖2
s +

1

ε2

∫ T

0

‖Eu(t)‖2
sdt ≤ CT∗ε4 + C

∫ T

0

(1 +D2s)‖E(t)‖2
sdt.(4.8)

We apply Gronwall’s lemma to (4.8) to get

‖E(T )‖2
s ≤ CT∗ε4 exp

[
C

∫ T

0

(
1 +D2s

)
dt

]
.(4.9)
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Since ‖E‖s = εD, it follows from (4.9) that

D(T )2 ≤ CT∗ε2 exp

[
C

∫ T

0

(
1 +D2s

)
dt

]
≡ Φ(T ).(4.10)

Thus,

Φ′(t) = C(1 +D2s)Φ(t) ≤ CΦ(t) + CΦs+1(t).

Applying the nonlinear Gronwall-type inequality in [20] to the last inequality
yields

Φ(t) ≤ eCT∗

for t ∈ [0,min{Tε, T∗}) if we choose ε so small that

Φ(0) = CT∗ε2 < e−CT∗.

Because of (4.10), there exists a constant c, independent of ε, such that

D(T ) ≤ c(4.11)

for any T ∈ [0,min{Tε, T∗}). Finally, the theorem is concluded from (4.9) with (4.11).
This completes the proof.
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[6] A. Jüngel and Y.-J. Peng, A hierarchy of hydrodynamic models for plasmas zero-relaxation-

time limits, Comm. Partial Differential Equations, 24 (1999), pp. 1007–1033.
[7] S. Klainerman and A. Majda, Singular limits of quasilinear hyperbolic systems with large

parameters and the incompressible limit of compressible fluids, Comm. Pure Appl. Math.,
34 (1981), pp. 481–524.

[8] C. Lattanzio, On the 3-D bipolar isentropic Euler-Poisson model for semiconductors and the
drift-diffusion limit, Math. Models Methods Appl. Sci., 10 (2000), pp. 351–360.

[9] C. Lattanzio and P. Marcati, The relaxation to the drift-diffusion system for the 3-D
isentropic Euler-Poisson model for semiconductors, Discrete Contin. Dynam. Systems,
5 (1999), pp. 449–455.

[10] C. Lattanzio and W.-A. Yong, Hyperbolic-parabolic singular limits for first-order nonlinear
systems, Comm. Partial Differential Equations, 26 (2001), pp. 939–964.

[11] T. Luo, R. Natalini, and Z. Xin, Large time behavior of the solutions to a hydrodynamic
model for semiconductors, SIAM J. Appl. Math., 59 (1998), pp. 810–830.

[12] A. Majda, Compressible Fluid Flow and Systems of Conservation Laws in Several Space Vari-
ables, Springer-Verlag, New York, 1984.

[13] P. Marcati and A. Milani, The one-dimensional Darcy’s law as the limit of a compressible
Euler flow, J. Differential Equations, 84 (1990), pp. 129–147.

[14] P. Marcati and R. Natalini, Weak solutions to a hydrodynamic model for semiconductors and
relaxation to the drift-diffusion equation, Arch. Ration. Mech. Anal., 129 (1995), pp. 129–
145.



1748 WEN-AN YONG

[15] P. Marcati and B. Rubino, Hyperbolic to parabolic relaxation theory for quasilinear first
order systems, J. Differential Equations, 162 (2000), pp. 359–399.

[16] P. A. Markowich, C. Ringhofer, and C. Schmeiser, Semiconductor Equations, Springer-
Verlag, Vienna, 1990.

[17] R. Natalini, The bipolar hydrodynamic model for semiconductors and the drift-diffusion equa-
tions, J. Math. Anal. Appl., 198 (1996), pp. 262–281.

[18] F. Poupaud, Diffusion approximation of the linear semiconductor Boltzmann equation: Anal-
ysis of boundary layers, Asymptotic Anal., 4 (1991), pp. 293–317.

[19] W. van Roosbroeck, Theory of flow of electrons and holes in germanium and other semicon-
ductors, Bell System Tech. J., 29 (1950), pp. 560–607.

[20] W.-A. Yong, Singular perturbations of first-order hyperbolic systems with stiff source terms,
J. Differential Equations, 155 (1999), pp. 89–132.

[21] W.-A. Yong, Basic aspects of hyperbolic relaxation systems, in Advances in the Theory of
Shock Waves, H. Freistühler and A. Szepessy, eds., Progr. Nonlinear Differential Equations
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SINGULAR INTEGRALS, IMAGE SMOOTHNESS, AND THE
RECOVERY OF TEXTURE IN IMAGE DEBLURRING∗
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Abstract. Total variation (TV) image deblurring is a PDE-based technique that preserves
edges, but often eliminates vital small-scale information, or texture. This phenomenon reflects the
fact that most natural images are not of bounded variation. The present paper reconsiders the image
deblurring problem in Lipschitz spaces Λ(α, p, q), wherein a wide class of nonsmooth images can be
accommodated. A new and fast FFT-based deblurring method is developed that can recover texture
in cases where TV deblurring fails completely. Singular integrals, such as the Poisson kernel, are used
to create an effective new image analysis tool that can calibrate the lack of smoothness in an image.
It is found that a rich class of images ∈ Λ(α, 1,∞)∩Λ(β, 2,∞), with 0.2 < α, β < 0.7. The Poisson
kernel is then used to regularize the deblurring problem by appropriately constraining its solutions
in Λ(α, 2,∞) spaces, leading to new L2 error bounds that substantially improve on the Tikhonov–
Miller method. This so-called Poisson Singular Integral or PSI method is only one of an infinite
variety of singular integral deblurring methods that can be constructed. The method is found to be
well-behaved in both the L1 and L2 norms, producing results closely matching those obtained in the
theoretically optimal, but practically unrealizable, case of true Wiener filtering. Deblurring experi-
ments on synthetically defocused images illustrate the PSI method’s very significant improvements
over both the total variation and Tikhonov–Miller methods. In addition, successful reconstructions
with inexact prior Lipschitz space information, highlight the robustness and practicality of the PSI
method.

Key words. image deblurring, total variation, nonsmooth images, loss of texture, Lipschitz
spaces, Besov spaces, semigroup approximations, singular integrals, Poisson kernel, Gaussian ker-
nel, recovery of texture, Tikhonov–Miller method, true Wiener filtering, Poisson Singular Integral
method, PSI method
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1. Introduction. The space BV (R2) of functions of bounded variation, normed
by the “total variation” seminorm

∫
R2 |∇f |dxdy, plays an important role in much

recent work in image analysis. See, e.g., [11], [13], [14], [15], [16], [20], [21], [26], [33],
and [39]. In particular, highly successful applications of the total variation approach
to image denoising have been well-documented. In contrast, total variation image
deblurring is generally not well-behaved, and often results in unacceptable loss of
fine scale information. This phenomenon is now believed traceable to an improper
choice of function space [24]. The present paper reconsiders the image deblurring
problem in Lipschitz spaces Λ(α, p, q), wherein a wide class of nonsmooth images can
be accommodated. A new and fast FFT-based deblurring technique is developed
that can demonstrably recover texture in cases where total variation deblurring fails
completely. The approximation properties of certain singular integral operators are
intimately linked to such Lipschitz spaces [3], [4], [36]. Here, these properties are
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exploited in two distinct ways. In the first part of the paper, singular kernels are used
to create an effective new FFT-based image analysis tool that can calibrate the lack
of smoothness in an image. This tool can be used in contexts unrelated to deblurring,
e.g., as a sharpness analysis tool in performance evaluation of imaging systems or
image reconstruction software [38], or as a tool for detecting and quantifying “fine-
structure” content in images. In the second part of the paper, singular integrals are
used as regularization tools in the deblurring problem. Specifically, we show how to
stabilize ill-posedness by using the Poisson kernel to impose a priori constraints, in
appropriate Λ(α, p,∞) spaces, on the desired nonsmooth deblurred image. This so-
called Poisson Singular Integral or PSI method, is only one of an infinite variety of
singular integral deblurring methods that can be constructed. In particular, Gaussian
kernels may also be used, leading to the Gaussian Singular Integral or GSI method.
Restricting attention to the case of defocus blurs, we derive L2 error bounds for the PSI
method for images in Λ(α, 2,∞), and demonstrate robust recovery of fine structure
in synthetically blurred images. Similar results hold for other types of blurs.

Extensive numerical experiments with known exact solutions indicate that the
PSI method is remarkably well-behaved. In both the L1 and L2 norms, relative
errors in the PSI method are found to closely approximate those obtained in the
theoretically optimal, but practically unrealizable, case of true Wiener filtering. The
latter method requires prior knowledge of the exact power spectra of both the noise
and unknown desired sharp image, i.e., a total of 8N2 prior data values for a 2N ×
2N image. Since the PSI method requires only 4 prior data values, its ability to
closely track Wiener filtering is especially noteworthy. The availability of reliable
fast deblurring methods is of major significance in the case of nonsmooth images.
The true value of the Lipschitz exponent α in the desired sharp image is usually not
known in advance, although a plausible range of values for α can often be deduced.
In section 10, we document the practicality and robustness of the PSI method, by
showing that good quality reconstructions can often be obtained with inexact, but
plausible, Lipschitz space information. Such initial restorations can then be refined
interactively. Here, fast algorithms enable simultaneous computation and display of
large numbers of trial deblurred images, resulting from multiple choices for α and/or
some of the regularization parameters. We stress that the PSI method is exclusively
intended for deblurring and is not intended for denoising.

2. Lack of smoothness of images. In [27], a new analytical framework for
image processing is introduced, whereby a given image f(x, y) is conceptualized as
being the sum of three components, f(x, y) = u(x, y) + v(x, y) + w(x, y). Loosely
speaking, u(x, y) contains the edges and the other high-priority information that is
sufficient for object recognition, v(x, y) contains the fine-scale details and other low-
priority information that is often not necessary for recognition, and w(x, y) represents
noise. The v(x, y) component is called texture. One example of v(x, y) might be the
hair in a photograph of a person’s face. Another example of v(x, y) might be the heat-
shield tiles in an image of the Columbia space shuttle. The ability to resolve individual
hairs is generally not necessary for identification. In several image processing tasks,
such as compression, segmentation, or face recognition, this texture component can
often be neglected. However, there are numerous other situations, such as in the ill-
fated Columbia episode, where v(x, y) may be of paramount interest. It is shown in
[27] that only the u(x, y) component can generally be expected to lie in BV (R2). In
[24], it is proved that most natural images are not of bounded variation, because the
texture component v(x, y) generally has infinite total variation.
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Denoising and deblurring are two basic image processing tasks where total varia-
tion restoration has been extensively applied. Such restoration can be accomplished
most effectively by solving an initial value problem for an appropriate nonlinear
anisotropic diffusion equation, using the stepwise marching scheme described in [26].
In deblurring, one typically starts with a degraded image g(x, y) which differs from
the desired true image f(x, y) in that the u(x, y) component is blurred but recogniz-
able, the v(x, y) component is seriously attenuated and often not recognizable, and
the w(x, y) component is usually small. Reconstructing v(x, y) while keeping w(x, y)
small, is the prime objective in numerous medical, astronomical, industrial, and sci-
entific contexts [9], [10]. However, while total variation deblurring sharpens u(x, y)
and keeps w(x, y) small, the texture component v(x, y) is often eliminated due to the
“staircase effect” [13], [20], [29], [30], [39]. This is in accordance with the analyses in
[24], [27].

Let x = (x1, x2) ∈ R2. Postulating f(x) ∈ BV (R2) means that f(x) is con-
strained to satisfy, ∫

R2

|f(x+ h) − f(x)|dx ≤ Const |h|.(1)

However, from the standpoint of modeling texture, it is advantageous to consider
functions f(x) satisfying weaker constraints, such as

{∫
R2

|f(x+ h) − f(x)|pdx
}1/p

≤ Const |h|α, 0 < α < 1.(2)

Such an f lies in Λ(α, p,∞). With 0 < α < 1, 1 ≤ p < ∞, the Lipschitz (Besov)
spaces Λ(α, p, q) [36], [37], consist of the class of functions f(x) ∈ Lp(R2) with finite
seminorm ‖ f ‖αpq, where

‖ f ‖αpq =

{∫
R2

(|h|−α ‖ f(x+ h) − f(x) ‖p
)q
dh/|h|2

}1/q

, 1 ≤ q <∞,(3)

‖ f ‖αp∞ = sup
h∈R2

{|h|−α ‖ f(x+ h) − f(x) ‖p
}
, q = ∞.(4)

For given p and q, functions with larger values of α are better behaved, or “smoother”,
than functions with smaller values of α, and functions in Λ(α, p, q1) are smoother than
functions in Λ(α, p, q2) if q1 < q2. In fact, the following continuous embedding results
are proved in [37, Theorem 9]

Λ(α2, p, q1) ⊂ Λ(α1, p, q2), 0 < α1 ≤ α2 < 1; 1 ≤ q1 ≤ q2 ≤ ∞.(5)

Also, in R2,

Λ(α, p, q) ⊂ Λ(β, r, q), α− 2/p = β − 2/r, p ≤ r.(6)

Let r = 2, let the pair (α, p) satisfy 2/(1+α) < p ≤ 2, and let β = 1+α− 2/p. Then,
0 < β ≤ α, and it follows from (5) and (6) that

Λ(α, p, q) ⊂ Λ(β, 2, q) ⊂ Λ(β, 2,∞) ⊂ L2(R2).(7)

This result will be important in what follows.
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For given fixed p with 1 < p <∞ and q = 2p/(2+αp), a class of Lipschitz spaces
Λ(α, q, q) ⊂ Lp(R2) is considered in [18], [19], and shown to contain common types
of images. A method for empirically estimating image smoothness is developed in
[18], [19], based on analyzing the behavior of lossy wavelet compression of the image
f(x, y). In [12], the spaces Λ(α, q, q) ⊂ L2(R2), q = 2/(1 + α), are advocated as
being particularly appropriate for accommodating a rich variety of real images in an
L2 setting. Lossy wavelet compression is again used to estimate image smoothness,
and values of α in the range 0.4 < α < 0.75 are reported in [12] for a class of 24 test
images ∈ Λ(α, 2

1+α ,
2

1+α ). Such α values are an indication of true image smoothness
only when the image is largely noise free. If the noise component w(x, y) is not
sufficiently small, artificially low values of α must be expected. A basic limitation
of the above wavelet compression approach is the restriction on q, which precludes
consideration of the larger spaces Λ(α, p,∞) ⊃ Λ(α, p, q).

The present independent method of estimating image smoothness rests on an en-
tirely different analytical basis, and requires neither wavelet expansions nor image
compression. Instead, the method uses fast FFT algorithms to convolve the image
with a specific type of kernel, and then analyzes how well this convolved image ap-
proximates the original image as the kernel approaches the Dirac δ-function. This
simple direct approach permits consideration of the spaces Λ(α, p,∞), 1 ≤ p < ∞.
The results obtained here are compatible with those obtained in [18], [19], [12], and
[24]. We indeed find that most natural images are not of bounded variation, and that
a rich variety of images ∈ Λ(α, 1,∞) with 0.2 < α < 0.7.

Remark 1. We deal with high resolution images f(x, y) of size 512×512 or 1024×
1024 pixels. Such an f(x, y) may be viewed as a piecewise constant or trigonometric
polynomial approximation to the original intensity field f∞(x, y), or as some other
kind of finite dimensional representation of the infinite dimensional object f∞. All
norms are equivalent on a finite dimensional space. Hence, even if f∞(x, y) is not of
bounded variation, the discrete total variation norm for f(x, y) is always finite, though
it may be very large. To estimate smoothness properties of f∞(x, y) by examination
of the finite dimensional representation f(x, y) requires some sagacity. In [18, section
4B, section 5B], the authors stress that in their method of estimating the value of α by
monitoring the rate of convergence as a function of the number N of nonzero wavelet
coefficients, one must restrict attention to low values of N . At high values of N , the
fact that f(x, y) is actually piecewise constant causes the error to decrease much too
rapidly, resulting in an artificially high reading for α that diverges from true behavior
in f∞(x, y). This same finite dimensionality pitfall occurs in the present approach,
but wears a different guise. See Remark 2 and the discussion surrounding Figures 1
and 2 below.

We shall use the spaces Λ(α, 1,∞) and Λ(α, 2,∞) for examining and classifying
image smoothness. However, deblurring applications will be limited to the spaces
Λ(β, 2,∞) ⊂ L2(R2), wherein all spaces Λ(α, p, q), 2/(1 + α) < p ≤ 2, 1 ≤ q ≤ ∞,
are continuously embedded. The spaces Λ(α, 2,∞) will be shown to contain a rich
and significant class of images.

3. The spaces Λ(α, p, q) and the Poisson singular integral. Define the

Fourier transform ĥ(ξ, η) of h(x, y) ∈ L1(R2) by

F{h} = ĥ(ξ, η) ≡
∫
R2

h(x, y)e−2πi(ξx+ηy)dxdy.(8)
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For each fixed t > 0, consider the Poisson kernel in R2

ψ(x, y, t) =
t

2π(x2 + y2 + t2)3/2
, (x, y) ∈ R2.(9)

We have

ψ̂(ξ, η, t) = e−tρ, ρ =
√
ξ2 + η2.(10)

For each t > 0, define the linear operator U t on Lp(R2), 1 ≤ p <∞, by

U tf =

∫
R2

ψ(u, v, t)f(x− u, y − v)dudv.(11)

It can be shown that limt↓0 ‖ U tf−f ‖p= 0. Moreover, defining U0 to be the identity
operator, we have that for s, t ≥ 0, U tUs = U t+s. In fact, {U t}t≥0 is a holomorphic

contraction semigroup on Lp(R2). See [3]. We may write U t = e−tA, where −A is
the infinitesimal generator of U t. Here, A corresponds to the fractional differential
operator (−∆)1/2. Note that for t > 0, U t maps Lp(R2) into D(A), so that AU tf is
well-defined for arbitrary f ∈ Lp. In general, this is not the case for nonholomorphic
semigroups. The Gauss singular integral, where the two-dimensional Gaussian kernel
is used in lieu of ψ in (9), defines an analogous holomorphic semigroup W t, with
A = −∆. Many such singular integral semigroups St exist. A very rich variety
can be constructed by subordination [7], [40]. For small t > 0, St behaves as an
approximate identity on Lp. There is a large literature on how well Stf approximates
f as t ↓ 0. See [3], [4], [5], [35], [36], [37], and the references therein. As t ↓ 0,
we have ‖ Stf − f ‖p= o(1) for arbitrary f ∈ Lp, ‖ Stf − f ‖p= O(t) if and only
if f ∈ D(A), and ‖ Stf − f ‖p= o(t) if and only if Stf = f for all t ≥ 0. Thus,
the optimal rate is always O(t). Of particular interest in this paper is the case of
nonoptimal approximation, where f /∈ D(A) yet retains sufficient smoothness that
‖ Stf − f ‖p= O(tα), 0 < α < 1, as t ↓ 0. While complete theories exist for a
wide class of singular kernels, the simplest such theory revolves around the Poisson
semigroup U t in (11). We have from [37, Theorem 4], the following result.

Theorem 1. Let U t, t > 0, be the Poisson integral operator in (11), and let
0 < α < 1, 1 ≤ p, q <∞. Then, f ∈ Λ(α, p, q) if and only if

∫ ∞

0

(
t−α ‖ U tf − f ‖p

)q
dt/t < ∞.(12)

For q = ∞, we have f ∈ Λ(α, p,∞) if and only if

sup
t>0

t−α ‖ U tf − f ‖p < ∞.(13)

Using the embedding results in (7) together with (13) leads to the following corollary.
Theorem 2 (corollary). Let f ∈ Λ(α, p, q), with 2/(1 + α) < p ≤ 2, and let

β = 1 + α− 2/p. Then, in the L2 norm

sup
t>0

t−β ‖ U tf − f ‖2 < ∞.(14)
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4. Periodized problems, the Poisson summation formula, and FFT al-
gorithms. The above results can be used to fashion a practical image analysis tool.
Theoretically, given any image f(x, y) in L1(R2), one could use the Fourier transform
(8) to form

F {U tf} = e−tρf̂(ξ, η), ρ =
√
ξ2 + η2,(15)

for sequences of positive t-values tending to zero. Inverse transformation is always
possible on account of the factor e−tρ, and this can be used to produce an infinite
sequence of positive numbers µn = {‖ U tnf − f ‖1 / ‖ f ‖1} with tn ↓ 0. If every
such sequence (tn, µn), ultimately lies below the curve µ(t) = C tα, 0 < t ≤ t, for
suitably chosen constants C > 0 and 0 < α < 1, then ‖ U tf − f ‖1≤ C ‖ f ‖1 t

α, as
t ↓ 0, and f(x, y) ∈ Λ(α, 1,∞) by Theorem 1. However, this does not lead to a
practical procedure.

On the other hand, Theorems 1 and 2 remain valid in the periodic case [36], [37].
Here, the image f(x, y) and the kernel ψ(x, y, t) in (9) are now periodized [5], [6]. Let
Ω denote the unit square −1/2 < x, y ≤ 1/2 in R2. The image f(x, y) is now viewed
as originally defined on Ω from which it is extended by periodicity to all of R2. Let

f̂(ξ, η) =

∫
Ω

f(x, y)e−2πi(ξx+ηy)dxdy.(16)

Define the periodized Poisson kernel ψ∗(x, y, t) by

ψ∗(x, y, t) =

∞∑
k,m=−∞

ψ(x+ k, y +m, t), t > 0, (x, y) ∈ R2,(17)

and let

U tf =

∫
Ω

ψ∗(u, v, t)f(x− u, y − v)dudv, t > 0.(18)

The Poisson summation formula, [1], [5], [6], [22], [37], can be used to show that the
periodized Poisson kernel has a complex Fourier series with Fourier coefficients again
given by (10), but where ξ, η are now integers running from −∞ to +∞. Moreover,

U tf =

∞∑
ξ,η=−∞

e−tρf̂(ξ, η)e2πi(xξ+yη), t > 0, ρ =
√
ξ2 + η2.(19)

Again the factor e−tρ assures uniform convergence of the Fourier series in (19). Let

fN (x, y) =

N∑
ξ,η=−N

e−tρf̂(ξ, η)e2πi(xξ+yη), t > 0, ρ =
√
ξ2 + η2.(20)

Since Lp(Ω) ⊂ L1(Ω), p > 1, we may apply this approach to any f ∈ Lp, and
‖ U tf−fN ‖p can be made arbitrarily small by choosing N large enough in (20). Next,
given the 2J × 2J digitized image f(x, y) with J > N , the discrete Fourier transform
[2] is now the appropriate numerical tool for analyzing this periodized problem. One

can use FFT algorithms to form the Fourier coefficients f̂(ξ, η), − J ≤ ξ, η ≤ J , and
then apply the filter (e−tρ − 1) as in (15). An inverse FFT then yields an accurate
approximation to U tf − f at each of the 2J × 2J pixels, for each small t > 0. We
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may then examine the discrete Lp relative error in Poisson approximation as t ↓ 0,
and locate constants C and α such that ‖ U tf − f ‖p ≤ C‖ f ‖p tα, 0 < t ≤ t. In
summary, we have constructed an accurate numerical procedure, based on correct
mathematical analysis, for assessing membership in any Λ(α, p,∞) space. Equally
important, the values of C and α constitute a priori information that will be useful
in stabilizing the ill-posed deblurring problem.

Remark 2. Analogously to the case of lossy wavelet compression discussed in Re-
mark 1, there is a finite dimensionality pitfall in the above singular integral methodol-
ogy that necessitates the exclusion of very small values of t > 0. Let f∞(x, y) be the
original image intensity field as in Remark 1, and assume that f∞(x, y) ∈ Λ(0.5, p,∞),
so that ‖ U tf∞− f∞ ‖p= O(

√
t) as t ↓ 0, by Theorem 1. Let f(x, y) be the 2J × 2J

digitized image corresponding to f∞(x, y). We shall show that at very small values of
t > 0, the behavior of ‖ U tf − f ‖p diverges from true behavior in f∞(x, y), resulting
in a false reading for α. Let St = e−tA be any contraction semigroup on Lp(R2). As
already pointed out, if f ∈ D(A), ‖ Stf − f ‖p= O(t) as t ↓ 0. This follows from

Stf − f =

∫ t

0

d

du
(Suf)du = −

∫ t

0

SuAfdu,(21)

so that ‖ Stf − f ‖p ≤ t ‖ Af ‖p, for all t > 0. In addition, ‖ Stf − f ‖p ≈ t ‖ Af ‖p,
for all sufficiently small t > 0, because SuAf ≈ Af for all sufficiently small u. In
the above Poisson semigroup U t, the unbounded operator A is defined as follows in
Fourier space

F {Af} = ρf̂(ξ, η), ρ =
√
ξ2 + η2.(22)

Since the digitized 2J × 2J image f(x, y) is a trigonometric polynomial, it is always
∈ D(A) and ‖ Af ‖p is always finite, although it may be very large. Consequently,
with a possibly large positive constant K, we always have ‖ U tf − f ‖p≤ Kt for all
t > 0, as well as actual linear behavior ‖ U tf − f ‖p ≈ Kt for all sufficiently small
t, irrespective of the behavior of ‖ U tf∞ − f∞ ‖p at these same values of t. This
phenomenon is well-illustrated in Figures 1 and 2 below.

5. Application to real images. The following examples illustrate the use of
the Poisson singular integral approach. Our first example, in Figure 1, is the 512 ×
512 Mandrill image highlighted in [24] as an example of an image /∈ BV (R2). The
above FFT procedure was used to obtain the L1 and L2 relative errors in Poisson
approximation

µ(t) =‖ U tf − f ‖p / ‖ f ‖p, p = 1, 2,(23)

at 300 values of t given by tn = 0.5(0.95)n, n = 1, 300. For the L1 norm, a plot
of µ(t) versus t on a log-log scale produced the solid curve A in Figure 1. Least
squares fitting was used to find the two distinct majorizing dashed straight lines Γ
and Σ. For each dashed line, the y-axis intercept value obtained by least squares
was slightly increased so as to make each line lie visibly above the solid curve A;
however, the slope of each line remains the same as that obtained from least squares.
The line Γ, defined by logµ(t) = 3.2 + 0.994 log t, accurately captures the misleading
linear trend in (23) for very small values of t, while being grossly inaccurate at larger
values of t. It was obtained by excluding data corresponding to log t > −7 from
the least squares fit. The line Γ implies that ‖ U tf − f ‖1 < 24.53 ‖ f ‖1 t0.994
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A

Fig. 1. 512 × 512 Mandrill image was identified in [24] as not in BV (R2). This is confirmed
in above graphical use of Theorem 1, using FFT techniques discussed in section 4. Solid curve A is
a plot of µ(t) =‖ Utf − f ‖1 / ‖ f ‖1 versus t, on a log-log scale. Majorizing dashed straight line Γ,
defined by log µ(t) = 3.2+0.994 log t, accurately captures linear behavior in (23) for very small values
of t, but is grossly inaccurate at larger values of t. Linear behavior at very small t is misleading, and
falsely implies that image is of bounded variation. (See Remarks 1 and 2). Majorizing dashed straight
line Σ, defined by log µ(t) = −0.75+0.306 log t, accurately reflects behavior for −6 ≤ log t ≤ −1, while
being grossly inaccurate at very small t. Behavior along Σ is taken to be true behavior in Mandrill
image, implying image ∈ Λ(0.306, 1,∞) with ‖ Utf − f ‖1 ≤ 0.472 ‖ f ‖1 t0.306, 0 < t ≤ 0.1.

for all t > 0. As emphasized in Remark 2, this correct statement primarily reflects
the fact that the 512 × 512 Mandrill image lies in a finite dimensional space; it does
not describe the smoothness properties of the intensity field f∞(x, y) that gave rise
to the digitized Mandrill image. The majorizing dashed straight line Σ, defined by
logµ(t) = −0.75+0.306 log t, accurately reflects behavior of (23) for −6 ≤ log t ≤ −1,
while being grossly inaccurate at very small values of t. The line Σ was obtained
by excluding all data corresponding to log t < −6 from the least squares fit. Note
that this still leaves over 100 data points remaining. The behavior along Σ indicates
that ‖ U tf − f ‖1 ≤ 0.472 ‖ f ‖1 t0.306, 0 < t ≤ 0.1, and this is taken to be the
true behavior in the Mandrill image. From (13), this implies that the Mandrill image
∈ Λ(0.306, 1,∞), and hence, is not of bounded variation. The behavior in the L2

norm is strikingly similar, and indicates the image ∈ Λ(0.271, 2,∞). Estimates of
α in any other discrete Lp norm can be obtained similarly. All α estimates shown
in this paper were obtained using the above procedure of constructing the line Σ in
log-log plots of µ(t), after excluding all data corresponding to log t < −6. As in [18,
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section 5B], we have occasionally found contradictory examples where the value of α
in the L2 norm was greater than that in the L1 norm. When that happened, a new
Σ line was constructed for the L2 trace, based on excluding data corresponding to
log t < −5. It is recommended that data for very small values of t always be included
in log-log plots of µ(t), so as to enable clear identification of the spurious linear trend,
prior to rejecting that part of the data.

Our second example, in Figure 2(A), is a 1024 × 1024 Whirlpool galaxy image,
taken at the National Optical Astronomy Observatory, (NOAO/AURA/NSF), by T.
Rector and M. Ramirez. As in the case of Figure 1, Poisson integral approximation
in L1 was used to obtain the solid curve A, and the line ΣA was constructed using
least squares. This procedure was repeated for the L2 norm. The results indicate
that Figure 2(A) satisfies ‖ U tf − f ‖1 ≤ 0.6 ‖ f ‖1 t

0.530, 0 < t ≤ 0.1, and that
Figure 2(A) ∈ Λ(0.530, 1,∞) ∩ Λ(0.462, 2,∞). Interestingly, if we sharpen Figure
2(A) using the APEX method [9], we obtain the image in Figure 2(B). This enhanced
image displays significant fine scale detail not readily visible in the original image, and
strongly resembles a Whirlpool galaxy plate taken by Milton Humason in 1950 using
the 200 inch Mt. Palomar telescope. See [34, plate 26]. Here, L1 Poisson analysis
produced the solid curve B and the majorizing line ΣB . We find that Figure 2(B)
∈ Λ(0.239, 1,∞) ∩ Λ(0.230, 2,∞), and thus has substantially lower values of α than
does Figure 2(A). This result is highly plausible. Presumably, any low-pass blurring
process that may have affected Figure 2(A) would have attenuated fine scale features,
and thereby increased the values of α. The result also indicates that APEX processing
of image (A) produced relatively more sharpening in the L1 norm than in the L2 norm.

The nine images in Figure 3 and Table 1 form an interesting collection that
includes natural as well as man made objects, exhibiting a wide range of sizes. The
last row contains a nanoscale electron microscopy micrograph, a galactic scale object,
and a cosmological scale structure. Along with the three images in Figures 1 and
2, this paper has applied the Poisson integral method to 12 high resolution images,
and we have found that, in either Λ(α, 1,∞) or Λ(α, 2,∞), the values of α lie in the
range 0.2 < α < 0.7. This range of values is compatible with that found in [12],
[18], [19], using an entirely different method. Moreover, while Λ(α, 2,∞) are smaller
spaces than are Λ(α, 1,∞), they are evidently wide enough to contain each of these
12 images, albeit with smaller values of α. Notice also that the values of the constant
C in Table 1 are confined to a very narrow range in both L1 and L2.

Remark 3. Following [18], [19], the values of C and α reported in Table 1 and
elsewhere in this paper, are given to two and three decimal places. Such precision
must be viewed with skepticism. These values are based on the use of the Poisson
operator U t, together with the particular sequence tn = 0.5(0.95)n, n = 1, 300. Also,
the specific interval −6 ≤ log t ≤ 0 was chosen for the least squares fit to logµ(t).
However, different sequences tn tending to zero might be used, as well as slightly
larger or slightly smaller t-intervals for the least squares fit. In addition, the Gaussian
operator Gt may be used in place of U t, in which case the image Lipschitz exponent
α = 2δ, where δ is the slope of the corresponding Σ line. It is found that such
variations in the basic methodology result in slightly different values for C and α. For
this reason, all reported values of C and α should probably be rounded to one decimal
place. It may not be feasible to determine true image Lipschitz space parameters to
higher place accuracy.

The PSI deblurring method to be described in section 7 below requires prior
knowledge of the values of C and α in the desired unknown deblurred image. In
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A B

Fig. 2. Whirlpool galaxy M51. Original and enhanced images have noticeably different L1

Poisson traces µ(t) = ‖ Utf − f ‖1 / ‖ f ‖1, reflecting sharply distinct Lipschitz exponents. (A)
Original 1024 × 1024 image taken by T. Rector and M. Ramirez, National Optical Astronomy Ob-
servatory, (NOAO/AURA/NSF). L1 Poisson relative error µ(t), shown in solid trace A, is ma-
jorized by dashed straight line ΣA defined by log µ(t) = −0.5 + 0.530 log t. This implies that image
(A) ∈ Λ(0.530, 1,∞). (B) Blind deconvolution of (A) using APEX method [9], brings out signifi-
cant fine scale detail, and results in solid trace B, majorized by dashed straight line ΣB defined by
log µ(t) = −0.2 + 0.239 log t. This indicates that deblurred image (B) ∈ Λ(0.239, 1,∞). Image (B)
strongly resembles [34, plate 26] taken by Milton Humason using 200 inch Mt. Palomar telescope.
For log t < −7, solid traces A and B have identical slopes of 0.994. This confirms the observation in
Remark 2 that behavior at very small t is artificial and disconnected from true image smoothness.
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Fig. 3. A significant class of high-resolution 8-bit images have Lipschitz exponents α in the
range 0.2 < α < 0.7, in either L1 or L2, and are not of bounded variation.

general, these values will not be known. However, as shown in Figure 2, it is reasonable
to assume that α in the deblurred image will be lower than in the given blurred
image, provided that image is relatively noise free. Inspection of Table 1, or of other
more extensive tables pertaining to the types of images under consideration, may
indicate plausible initial estimates for (C,α). As will be shown in section 10, the
PSI method is sufficiently robust as to produce good quality reconstructions, even
with inexact Lipschitz data. Moreover, given a fast algorithm, because of the narrow
range of values involved in both C and α, it is feasible to refine such reconstructions
by simultaneous computation and display of multiple trial restorations, based on
neighboring values of (C,α). Efficient exploration in parameter space is usually the
key to the successful solution of inverse problems, when such problems can be solved.
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Table 1

Values of (C, α) in ‖ Utf − f ‖p ≤ C ‖ f ‖p tα, 0 < t ≤ 0.1, p = 1, 2, for each image f(x, y)
in Figure 3, when Ut is Poisson operator in (19). The (C,α) values shown below may be more
meaningful if rounded to one decimal place. See Remark 3.

Image Size (C, α) ∈ Λ(α, 1,∞) (C, α) ∈ Λ(α, 2,∞)

Marilyn Monroe 5122 C = 0.77, α = 0.565 C = 0.68, α = 0.474

Sagittal brain MRI 5122 C = 1.28, α = 0.590 C = 1.02, α = 0.520

Washington DC Landsat 5122 C = 0.45, α = 0.341 C = 0.55, α = 0.340

Mariner 5 spacecraft 5122 C = 0.90, α = 0.448 C = 0.99, α = 0.417

USS Eisenhower 5122 C = 0.47, α = 0.420 C = 0.50, α = 0.362

English village 5122 C = 0.49, α = 0.472 C = 0.55, α = 0.439

Nanoscale micrograph 10242 C = 0.45, α = 0.415 C = 0.55, α = 0.415

Spiral galaxy M81 10242 C = 0.68, α = 0.365 C = 0.78, α = 0.327

Cluster of galaxies 10242 C = 0.65, α = 0.222 C = 0.97, α = 0.216

6. Image deblurring in L2(R2). We now consider the image deconvolution
problem Pf = g with a known shift-invariant point spread function (psf) p(x, y),

Pf ≡ p(x, y) ⊗ f(x, y) = g(x, y), g(x, y) = ge(x, y) + n(x, y).(24)

Here, ⊗ denotes convolution, g(x, y) is the given recorded noisy blurred image, ge(x, y)
is the hypothetical exact blurred image that would have been recorded in the absence
of any noise, and n(x, y), presumed small, represents the cumulative effects of all noise
processes and other errors affecting final acquisition of the digitized array g(x, y). The
noise may be multiplicative. Neither ge(x, y) nor n(x, y) are known, only their sum
g(x, y). Denoting the unknown exact sharp image by fe(x, y), we have

Pfe = p(x, y) ⊗ fe(x, y) = ge(x, y).(25)

Given only (24), we seek a solution f(x, y) in (24) such that Pf ≈ g, and such that
‖ f − fe ‖2 is small. To achieve this goal, some a priori information about fe and
n is always necessary. Most real images fe(x, y) contain fine scale features, sharp
edges, and other kinds of nondifferentiable singularities. Deblurring techniques that
impose stabilizing constraints in the form of prescribed bounds on partial derivatives
of f(x, y) in (24), are generally inapplicable, although they are often used. Penalties
for such use include smoothing out of sharp features, and possible loss of vital diag-
nostic information. Indeed, the desire to accurately reconstruct edges and other sharp
singularities was the principal reason for developing total variation methods. In fact,
several deblurring methods actually exist that do not require prescribed bounds on
derivatives [8].

A wide variety of blurs can be used as illustrative examples in (24). Here, we
consider the case of uniform defocus blur, where the psf is proportional to the charac-
teristic function of a disc of radius R. This is the so-called “pillbox” model [17], [25],
[16], [31]. If R > 0 is the radius of the “circle of confusion”, the psf for defocus blur
is given by

p(x, y) =

{
(πR2)−1, x2 + y2 ≤ R2,
0, x2 + y2 > R2.

(26)

This has a Fourier transform given by the “sombrero function” [23, p. 72]

p̂(ξ, η) = 2J1(Rρ)/(Rρ), ρ =
√
ξ2 + η2,(27)



SINGULAR INTEGRALS AND RECOVERY OF IMAGE TEXTURE 1761

where J1(x) is the Bessel function of the first kind of order 1. In our numerical
experiments below on 2N × 2N images, the expression (27) is used to blur images by
Fourier domain multiplication with a preselected R > 0, and (ξ, η) are integers with
−N ≤ ξ, η ≤ N. Rather than interpret R as a radius, we simply observe that the
severity of such a blur is determined by the number of zeroes1 in |p̂(ρ)| on 0 < ρ ≤ N .

6.1. True Wiener filtering and the Tikhonov–Miller method. Wiener
filtering [32, p. 356], is an important example of a method that does not impose
differentiability constraints. It assumes instead that the power spectra |n̂(ξ, η)| and

|f̂e(ξ, η)| of each of n(x, y) and fe(x, y) are known. When this is the case, Wiener
filtering produces a solution fw(x, y) in (24) defined as follows in Fourier space

f̂w(ξ, η) =
p̂(ξ, η)ĝ(ξ, η)

|p̂(ξ, η)|2 + |n̂(ξ, η)|2/|f̂e(ξ, η)|2
,(28)

where z denotes the complex conjugate of z. Under some additional conditions, it
can be shown that fw(x, y) is an approximate solution of Pf = g that minimizes
the error ‖ f − fe ‖2 over all f ∈ L2. In practice, the power spectra |n̂(ξ, η)| and

|f̂e(ξ, η)| are very seldom known in advance, and true Wiener filtering is almost never
realizable. However, the solution (28) is of considerable theoretical interest because
of its optimality property. Note that numerous ad hoc versions of (28) exist, in
which more readily available quantities are substituted in place of the required, but
unavailable, true power spectra. Such versions are sometimes called Wiener filtering
by an abuse of terminology. However, these substitute versions do not satisfy the
Wiener optimality criterion, nor do they elicit the same degree of theoretical interest.

One of the best-known rigorously analyzable and feasible versions of Wiener filter-
ing is the Tikhonov–Miller method [28], now considered canonical in image deblurring
[25]. Significantly, this method makes no a priori assumptions regarding the statistical
character of the data noise. For nondifferentiable images, Tikhonov–Miller restoration
requires the following a priori information: an upper bound ε > 0 for the L2 norm
of the noise n(x, y) in the blurred image g(x, y), and an upper bound M for the L2

norm of the unblurred image fe

‖ n ‖2=‖ Pfe − g ‖2≤ ε, ‖ fe ‖2≤M, ε/M � 1.(29)

It is assumed that ε and M are compatible with the existence of an fe(x, y) ∈ L2

satisfying (29). Tikhonov–Miller restoration is defined as the unique function fτ (x, y)
such that

fτ (x, y) = Arg min
f∈L2(R2)

{‖ Pf − g ‖2
2 +(ε/M)2 ‖ f ‖2

2

}
.(30)

As will be seen from Theorem 3, where the Tikhonov–Miller method corresponds to
the special case Γt = 0, this minimum problem has a unique solution satisfying

Qτf
τ = P ∗g, Qτ = P ∗P + (ε/M)2I.(31)

Moreover, there holds the following best-possible error bound for Tikhonov–Miller
reconstruction

‖ fτ − fe ‖2 ≤ ε
√

2 ‖ Q−1/2
τ ‖2,(32)

1The first five positive zeroes of J1(x) are 3.83171, 7.01559, 10.17347, 13.32369, and 16.47063.
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where

‖ Q−1/2
τ ‖2 = sup

ξ,η

{|p̂(ξ, η)|2 + (ε/M)2
}−1/2

.(33)

Given the psf p(x, y), together with the a priori information ε,M, one can always find
the maximum value in the 2N × 2N array on the right of (33). As in (28) we may
implement (31) in Fourier space. We have

f̂τ (ξ, η) =
p̂(ξ, η)ĝ(ξ, η)

|p̂(ξ, η)|2 + (ε/M)2
.(34)

Moreover, from (29) and Parseval’s relation∫
R2

|n̂(ξ, η)|2dξdη ≤ ε2,

∫
R2

|f̂e(ξ, η)|2dξdη ≤M2.(35)

Therefore, the Tikhonov–Miller method can be viewed as an approximate version of
true Wiener filtering where the unavailable pointwise values of the spectra in (28) are
replaced by more readily available integrals of these quantities. However, it may be
anticipated that since true Wiener filtering requires prior knowledge in the form of
8N2 numbers for a 2N × 2N image, whereas the Tikhonov–Miller method requires
only 2, less accurate results must generally be expected from the latter method.

7. The Poisson Singular Integral (PSI) method for images ∈ Λ(α, 2,∞).
The preceding discussion was necessary to set the stage for the PSI method. Here, in
addition to the a priori constraints (29), the behavior of ‖ U tfe − fe ‖2 on 0 ≤ t ≤ t
is assumed known, as in the case of Table 1. The constants Ct and α are now used
to place a further constraint on fe(x, y). For any f ∈ L2(R2), we have on Fourier
transforming f − U tf and using (10),

F {f − U tf
}

=
(
1 − e−tρ

)
f̂(ξ, η), ρ =

√
ξ2 + η2.(36)

Therefore, from Parseval’s theorem,∫ t

0

‖ Usf − f ‖2
2 ds =

∫ t

0

ds

∫
R2

(
1 − e−sρ

)2 |f̂(ξ, η)|2dξdη.(37)

For fixed t > 0, define ẑ(ξ, η, t) ≥ 0 by

ẑ(ξ, η, t) =

{∫ t

0

(
1 − e−sρ

)2
ds

}1/2

=

{
t+

4e−tρ − e−2tρ − 3

2ρ

}1/2

.(38)

It follows directly from the integral definition in (38) that for any fixed t > 0, ẑ(ρ, t)
is a strictly increasing function of ρ, and that ẑ(0, 0, t) = 0. For fixed t > 0, define
the linear operator Z(t) in L2(R2) by

Z(t)f =

∫
R2

ẑ(ξ, η, t)f̂(ξ, η)e2πi(ξx+ηy)dξdη.(39)

Then, from (37), ∫ t

0

‖ Usf − f ‖2
2 ds = ‖ Z(t)f ‖2

2.(40)
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For any fe ∈ Λ(α, 2,∞), 0 < α < 1, we have ‖ Usfe − fe ‖2 ≤ Ct ‖ fe ‖2 s
α, 0 ≤

s ≤ t, where Ct is a positive constant depending on t, fe and α. Therefore, with
‖ fe ‖2≤M,

‖ Z(t)fe ‖2
2 ≤ C2

t
M2t

1+2α

1 + 2α
.(41)

Define

Γt =

{
1 + 2α

C2
t
t
1+2α

}1/2

.(42)

The exact image fe(x, y) satisfies the following a priori constraints:

‖ Pfe − g ‖2≤ ε, (ε/M) ‖ fe ‖2≤ ε, (ε/M) Γt ‖ Z(t)fe ‖2≤ ε.(43)

Fix t > 0, and consider the minimization problem

fψ(x, y) = Arg min
f∈L2(R2)

{‖ Pf − g ‖2
2 +(ε/M)2

(‖ f ‖2
2 +Γ2

t
‖ Z(t)f ‖2

2

)}
.(44)

As will be seen in Theorem 3 below, this minimum problem has a unique solution
satisfying

Qψf
ψ = P ∗g, Qψ = P ∗P + (ε/M)2

{
I + Γ2

t
Z(t)∗Z(t)

}
.(45)

The function fψ(x, y) in (44) is defined to be the PSI deblurred image. Moreover,
there holds the following error bound for PSI deblurring

‖ fψ − fe ‖2 ≤ ε
√

3 ‖ Q−1/2
ψ ‖2,(46)

where

‖ Q−1/2
ψ ‖2 = sup

ξ,η

{|p̂(ξ, η)|2 + (ε/M)2
(
1 + Γ2

t
|ẑ(ξ, η, t)|2)}−1/2

.(47)

Given the psf p(x, y), together with the a priori information ε,M , and Γt, one can
always find the maximum value in the 2N × 2N array on the right of (47). Again, as
in (28) and (34), fψ can be found explicitly in Fourier space. We have

f̂ψ(ξ, η) =
p̂(ξ, η)ĝ(ξ, η)

|p̂(ξ, η)|2 + (ε/M)2{1 + Γ2
t
|ẑ(ξ, η, t)|2} .(48)

Equations (45)–(48) should be compared with equations (31)–(34). Tikhonov–Miller
deblurring can then be seen as an extreme case of PSI deblurring, the case where
fe(x, y) is presumed no smoother than the most general L2 function, so that ‖ U tfe−
fe ‖2 = o(1) as t ↓ 0. This corresponds to Ct = ∞ in (41), and hence, Γt = 0 in
(48).

Theorem 3. Fix t > 0 and let the exact image fe(x, y) satisfy the a priori
constraints (43). Let fψ(x, y) minimize (44), and let Qψ be the positive self-adjoint
operator on L2(R2) given by

Qψ = P ∗P + (ε/M)2
{
I + Γ2

t
Z(t)∗Z(t)

}
.(49)
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Then fψ is the unique solution of Qψf
ψ = P ∗g, and fψ satisfies

‖ Pfψ − g ‖2
2 +(ε/M)2

{
‖ fψ ‖2

2 +Γ2
t
‖ Z(t)fψ ‖2

2

}
≤ 3ε2,

‖ P (fψ − fe) ‖2
2 +(ε/M)2

{
‖ fψ − fe ‖2

2 +Γ2
t
‖ Z(t)(fψ − fe) ‖2

2

}
≤ 3ε2.

(50)

This implies the L2 error bound

‖ fψ − fe ‖2 ≤ ε
√

3 ‖ Q−1/2
ψ ‖2,(51)

where

‖ Q−1/2
ψ ‖2 = sup

ξ,η

{|p̂(ξ, η)|2 + (ε/M)2
(
1 + Γ2

t
|ẑ(ξ, η, t)|2)}−1/2

.(52)

Proof. Let H denote the Hilbert space direct sum L2(R2)
⊕
L2(R2)

⊕
L2(R2)

with elements [u, v, w], scalar product ([u1, v1, w1], [u2, v2, w2]) ≡ 〈u1, u2〉 + 〈v1, v2〉 +
〈w1, w2〉, and norm ||| |||. Let P̃ : L2(R2) �→ H be defined by P̃ f = [Pf, ωf, ωΓtZ(t)f ],

where ω = (ε/M), and let g̃ = [g, 0, 0]. We seek to minimize |||P̃ f − g̃||| over all
f ∈ L2(R2). The normal equation P̃ ∗P̃ fψ = P̃ ∗g̃ gives Qψf

ψ = P ∗g with Q as in

(49). By hypothesis |||P̃ fe − g̃|||2 ≤ 3ε2. The minimizing element fψ is such that
P̃ fψ is the orthogonal projection in H of g̃ on the range of P̃ . By the Pythagorean
theorem

|||P̃ fψ − g̃|||2 + |||P̃ (fe − fψ)|||2 = |||P̃ fe − g̃|||2 ≤ 3ε2.(53)

This proves (50). We now establish (51). From (49), (50),

‖ Q1/2
ψ (fe − fψ) ‖2

2= 〈Qψ(fe − fψ), (fe − fψ)〉 = |||P̃ (fe − fψ)|||2 ≤ 3ε2.(54)

Hence,

‖ fe − fψ ‖2 = ‖ Q−1/2
ψ Q

1/2
ψ (fe − fψ) ‖2 ≤ ε

√
3 ‖ Q−1/2

ψ ‖2 .(55)

8. A preliminary deblurring experiment. In the following controlled exper-
iment, knowledge of the exact solution fe(x, y) is used to derive exact values for all
parameters that constitute a priori information in each of the above three methods.
Such exact knowledge is not available in practice. The experiment is primarily of
theoretical interest. It is designed to illustrate major differences in behavior, and to
properly locate the PSI method in relation to Wiener filtering and the Tikhonov–
Miller method. The PSI method with inexact information is discussed in section
10.

The 8-bit 512× 512 Marilyn Monroe image fe(x, y) in Figure 3 was synthetically
defocused by Fourier domain multiplication with the expression in (27) usingR = 0.06.
This produced the exact blurred image ge(x, y). Multiplicative noise n(x, y) was then
added to ge as follows. Each pixel value ge(x, y) was perturbed by adding to it
the quantity n(x, y) = 0.03σ(x, y)ge(x, y), where σ(x, y) is an array of uniformly
distributed random numbers in the range [−1, 1]. We term this process “adding 3%
noise”. With varying percentages, we shall use the same process in all our experiments.
Note that no noise is thereby added at points where ge(x, y) = 0. The resulting
g(x, y) = ge(x, y) + n(x, y) is shown in Figure 4(A). We find ‖ n ‖2= ε = 2.247, and
‖ fe ‖1= 107.59, ‖ fe ‖2= M = 131.13. Therefore ε/M = 0.01713. From Table
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A B

C D

Fig. 4. Instructive deblurring experiment with exact a priori information highlights significant
differences in behavior in above three FFT-based methods. (A) Defocused Marilyn Monroe image
with R = 0.06 and 3% multiplicative noise. (B) Tikhonov–Miller method with exact parameters ε and
M , brings out significant noise. (C) PSI method with exact parameters ε, M, α = 0.474, Ct = 0.68.

(D) True Wiener filtering with exact power spectra |n̂(ξ, η)|, |f̂e(ξ, η)|. Realizable PSI deblurring
closely matches unrealizable true Wiener filtering.

Table 2

Behavior in defocused Marilyn Monroe image in Figure 4.

Deblurring method L1 relative error L2 relative error
Tikhonov–Miller (B) 29.82% 34.17%

Poisson Singular Integral (C) 6.89% 9.04%
True Wiener filtering (D) 6.03% 7.88%
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1, we have ‖ U tfe − fe ‖2 ≤ 0.68 ‖ f ‖2 t0.474, 0 < t ≤ 0.1. With t = 0.1, (42)
gives Γt = 19.33. Next, using FFT algorithms, we obtain the exact power spectra

|n̂(ξ, η)|, |f̂e(ξ, η)|. We are now ready to compare these three FFT-based procedures
under optimal conditions for each method.

The Tikhonov–Miller reconstruction is shown in Figure 4(B). Significantly, this
reconstruction is quite noisy, despite the use of exact values for ε and M . While the
regularizing information in (29) prevents explosive noise amplification, it is obviously
insufficient to prevent serious noise contamination. This is generally the case in the
Tikhonov–Miller method. The PSI restoration is shown in Figure 4(C). Here, the
additional information that fe ∈ Λ(α, 2,∞), together with the values of the constants
Ct and α, were evidently decisive in eliminating noise. The Wiener filtered solution,
shown in Figure 4(D), appears only slightly better than the PSI solution. However,
the very major difference between true Wiener filtering and the approximate version
known as the Tikhonov–Miller method, is another significant result brought out by
this deblurring experiment.

It is instructive to study the L1 and L2 relative error pattern shown in Table 2.
It is widely assumed in practice that the L2 minimum error property of true Wiener
filtering remains valid for the more feasible, approximate versions of such filtering.
This is emphatically not the case. The Tikhonov–Miller relative errors are more than
four times larger than the true Wiener errors. On the other hand, relative errors in the
PSI method are only slightly larger than those for true Wiener filtering. Put another
way, the PSI method appears to be a feasible procedure that can very substantially
improve upon the Tikhonov–Miller method.

Insight into how this improvement comes about can be gained by an analysis of
the respective error bounds for each method. Notice that each of the denominators
on the right-hand sides of (34) and (48) are radially symmetric functions of (ξ, η),
while this is not the case in (28). These denominators play a dual role. They define
the actual regularization procedures in (34) and (48), and they define the resulting
error bounds in (33) and (47). Because of the radial symmetry, a one-dimensional
picture tells the whole story. Define the respective Tikhonov–Miller and PSI error
bound functions θτ (ξ), θψ(ξ) as follows

θτ (ξ) =
{|p̂(ξ, 0)|2 + (ε/M)2

}−1/2
,

θψ(ξ) =
{
|p̂(ξ, 0)|2 + (ε/M)2(1 + Γ2

t
|ẑ(ξ, 0, t)|2)

}−1/2

.
(56)

In Figure 5, we plot θτ (ξ) and θψ(ξ) as determined by the actual parameter val-
ues that entered the deblurring experiment in Figure 4. The significant differences in
these two curves translate into fundamental differences in the Fourier space regular-
ization that defines the corresponding procedures. From (27), we see that θτ (ξ) has
a maximum of M/ε = 58.36, at every point ξ > 0 where J1(0.06 ξ) = 0. There are
4 such points on 0 < ξ ≤ 256. The curve θψ(ξ) also develops maxima at these same
points, but these maxima are about five times smaller than those in θτ (ξ), owing
to the additional term involving ẑ(ξ, 0, t). Since the error estimate in each method
is proportional to the maximum along the corresponding curve, it is natural to find
substantially smaller errors in Figure 4(C) than in Figure 4(B).

9. Comparing total variation deblurring with PSI deblurring. The use of
initial value PDE methods in image processing and computer vision has mushroomed
into an important new branch of applied mathematics. The basic idea originates in
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Fig. 5. Plot of error bound functions θτ (ξ) (dashed curve), and θψ(ξ) (solid curve), as defined
in (56), for the deblurring experiment in Figure 4. Maximum value in θτ is more than five times
larger than in θψ. Qualitative difference in behavior in these two curves implies significant difference
in Fourier domain regularization in the PSI and Tikhonov–Miller methods. Difference in maximum
values explains large difference in L2 relative errors in Figures 4(B) and 4(C).

gradient descent methods for minimizing appropriate energy functionals. Instructive
surveys of this general set of ideas may be found in [11] and [39].

The total variation approach introduced in [33] is one of the most popular PDE
methods, and it is primarily designed to recover edges in the original image. Given
the deconvolution problem Pf = g as in (24), TV deblurring presupposes the exact
sharp image fe(x, y) ∈ BV (R2), and it produces an image f tv(x, y) defined by

f tv(x, y) = Arg min
f∈BV (R2)

{
(λ/2) ‖ Pf − g ‖2

2 +

∫
R2

|∇f |dxdy
}
.(57)

This means that f tv(x, y) is the solution of

P ∗Pf tv − λ−1∇.
( ∇f tv
|∇f tv|

)
= P ∗g.(58)

Here, λ > 0 is a regularization parameter that can be tuned. Provided the noise
level in g(x, y) is small, larger values of λ produce sharper images. Too large a value
of λ leads to computational instability. Unlike the cases in (31) and (45), (58) is a
nonlinear deconvolution problem that cannot be solved explicitly in Fourier space.
In fact, considerable effort is generally required to obtain f tv for large size imagery.
In pure denoising applications, where P = I, this effort is usually warranted by the
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quality of the resulting restoration. Recently, a new time dependent evolutionary
approach to (58) has been developed [26], whereby f tv(x, y) is obtained as the steady
state solution to the following nonlinear anisotropic diffusion problem{

ut = −λ|∇u| P ∗(Pu− g) + |∇u| ∇.
(
∇u/{√|∇u|2 + β}

)
,

u(x, y, 0) = g(x, y),
(59)

where the given blurred image g(x, y) is used as the initial value. In addition, u(x, y, t)
satisfies homogeneous Neumann conditions at the boundary of the unit square Ω. In
(59), β > 0 is a small constant designed to prevent division by zero. In [26, section
5], an efficient new explicit finite difference scheme for (59) is proposed. This scheme
has improved stability and edge-enhancing properties, and converges rapidly to the
desired steady state solution. Accordingly, we shall use that method in our total
variation deblurring experiments.

This paper has drawn attention to the fact that most images are not smooth. The
PSI method is predicated on locating fe(x, y) in the correct Lipschitz space, while TV
deblurring assumes fe(x, y) ∈ BV (R2). It may be argued that such refined smoothness
measures are primarily applicable to f∞(x, y), the original intensity field that gave
rise to the digitized finite dimensional object fe(x, y), but may not be meaningful for
fe(x, y) itself. Indeed, since all norms are equivalent in finite dimensional space, it
remains to be seen whether such abstruse function space notions are ultimately of any
computational significance.

Our first experiment involves a slightly defocused image with very little noise.
The original sharp USS Eisenhower image is shown in Figure 6(A). Fourier space
multiplication with (27) using R = 0.03, followed by the addition of 0.1% multiplica-
tive noise, produced the blurred Figure 6(B). Because of the low noise level, we chose
β small and λ large in (59), as recommended in [26]. With β = 0.0001, ∆t = 0.1(∆x)2

and λ = 300, we obtained Figure 6(C) at T = 100∆t. Higher values of λ were com-
putationally unstable. Moreover, the resulting TV image did not improve if more
time steps were taken. Figure 6(D) is the PSI deblurred image using exact values for
ε, M , and using α = 0.362, Ct = 0.50, from Table 1. Zooming on selected parts of
the image in Figures 6(E) and 6(F), clearly shows significant loss of structural detail
in the TV image, as compared with PSI deblurring. For completeness, the L1 relative
errors in this experiment were as follows: true Wiener filtering (not shown) 1.67%,
PSI method 2.18%, TV deblurring 6.83%, and Tikhonov–Miller (not shown) 4.71%.

In our second experiment, the sharp English village image in Figure 7(A) was
moderately defocused using R = 0.06, and 0.1% multiplicative noise was again added
to form Figure 7(B). With β and ∆t as in Figure 6(C), it was possible to choose
λ = 500, and obtain Figure 7(C) at T = 100∆t. Again, no improvement was noted
with more time steps. Figure 7(D) is the PSI deblurred image using the exact values
for ε, M , together with α = 0.439, Ct = 0.55, from Table 1. Because of the stronger
blur, more information is now lost in TV deblurring. Zooming in on the first three
houses in Figures 7(E) and 7(F), we see that the windows and roof shingles have
been virtually eliminated in the TV image. The L1 relative errors in this experiment
were as follows: true Wiener filtering (not shown) 1.98%, PSI method 3.05%, TV
deblurring 6.70%, and Tikhonov–Miller (not shown), 7.42%.

10. The PSI method with inexact Lipschitz data. The controlled exper-
iments in sections 8 and 9 were designed to illustrate important theoretical points,
and involved use of the PSI method with exact prior Lipschitz space data. In fact,
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Fig. 6. Comparison of total variation and PSI deblurring on mildly blurred image. Zooming on
selected parts of the image enables meaningful comparisons between the two methods. (A) Original
sharp USS Eisenhower image. (B) Mildly defocused image with R = 0.03 and 0.1% multiplicative
noise. (C) Total variation deblurring by applying finite difference scheme in [26, section 5] to (59),
with β = 0.0001, λ = 300, ∆t = 0.1(∆x)2, T = 100∆t. (D) PSI deblurring using exact a priori
parameters, ε, M, α = 0.362, Ct = 0.50. (E) Zooming in TV deblurred image reveals significant
loss of structural detail. (F) Zooming on same region in PSI image.
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E F

Fig. 7. Comparison of total variation and PSI methods on moderately blurred image. Zooming
now reveals unacceptable loss of content in TV deblurring. (A) Original sharp English village image.
(B) Moderately defocused image with R = 0.06 and 0.1% multiplicative noise. (C) Total variation
deblurring using scheme in [26, section 5] with β = 0.0001, λ = 500, ∆t = 0.1(∆x)2, T = 100∆t.
(D) PSI method with exact a priori parameters, ε, M, α = 0.439, Ct = 0.55. (E) Zooming in image
(C) reveals loss of windows and roof shingles. (F) Zooming on same region in PSI image.
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Fig. 8. Use of plausible guess. Robust PSI method can produce useful reconstructions, even
with inexact Lipschitz data. (A) Moderately defocused Ingrid Bergman image with R = 0.12 and
0.5% multiplicative noise. (B) Total variation deblurring using scheme in [26, section 5], with
λ = 400, β = 0.0001, ∆t = 0.1(∆x)2, and T = 150∆t, produces lifeless, mannequin-like appearance.
(C) PSI method using plausible guess α = 0.5, Ct = 0.5. (D) True Wiener filtering with exact

power spectra |n̂(ξ, η)|, |f̂e(ξ, η)|. Fast PSI deblurring, with fictitious Lipschitz data, produces good
first approximation to unrealizable optimal Wiener image.

Table 3

Behavior in moderately defocused Ingrid Bergman image in Figure 8.

Deblurring method L1 relative error L2 relative error
Tikhonov–Miller (not shown) 24.15% 27.33%

Total Variation (B) 5.79% 8.45%
PSI with plausible guess (C) 4.75% 5.76%

True Wiener filtering (D) 3.53% 4.40%
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Fig. 9. Use of substitute information. Robust PSI method produces remarkably good reconstruc-
tion using Lipschitz space data corresponding to image of “similar” object. (A) Strongly defocused
USAF satellite image with R = 0.25 and 0.5% multiplicative noise. (B) Total variation deblurring
using scheme in [26, section 5], with λ = 400, β = 0.0001, ∆t = 0.1(∆x)2, and T = 150∆t, results
in severe loss of texture. (C) PSI method using substitute Lipschitz data α = 0.417, Ct = 0.99,
obtained from Mariner 5 image in Figure 3. (D) True Wiener filtering with exact power spectra

|n̂(ξ, η)|, |f̂e(ξ, η)|. Fast PSI deblurring, using substitute data, closely matches unrealizable optimal
Wiener image.

Table 4

Behavior in strongly defocused USAF satellite image in Figure 9.

Deblurring method L1 relative error L2 relative error
Tikhonov–Miller (Not shown) 37.95% 33.56%

Total Variation (B) 32.91% 31.82%
PSI based on similar object (C) 20.69% 16.83%

True Wiener filtering (D) 17.50% 13.04%
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the PSI method is a robust method of great practical significance that can produce
useful reconstructions even with inexact Lipschitz data. Inspection of Table 1 shows
that the values of (C,α) are typically confined to a narrow range. Indeed, a plausible
guess for (C,α) might be (0.5, 0.5) in many cases. In other situations, a sharp image
of a similar object might provide useful values for (C,α). Such initial reconstructions
can then be interactively refined through fast simultaneous computation and display
of multiple trial PSI images, corresponding to neighboring (C,α) values. We now give
two examples that show how good such initial reconstructions can be.

Figure 8(A) is an 8-bit 512× 512 synthetically defocused Ingrid Bergman image,
obtained using (27) withR = 0.12, followed by adding 0.5% multiplicative noise. Total
variation deblurring using the scheme in [26, section 5], with λ = 400, β = 0.0001,
and T = 150∆t, produces the lifeless, mannequin-like appearance shown in Figure
8(B). However, the PSI method with the plausible guess α = 0.5, Ct = 0.5, produces
Figure 8(C). This initial reconstruction is already in good qualitative agreement with
the true Wiener image in Figure 8(D). The L1 and L2 relative errors in Table 3
indicate that the PSI method, even with such inexact data, significantly improves
upon the Tikhonov–Miller and total variation methods.

Our final experiment involves the strongly defocused USAF satellite image in
Figure 9(A), where R = 0.25 and 0.5% multiplicative noise was added. As may be
expected in such a severely blurred image, total variation deblurring, shown in Figure
9(B), results in severe loss of structural detail. Here, the Mariner 5 image shown
in Figure 3 may be considered a “similar” object, and the corresponding Λ(α, 2,∞)
information in Table 1, C = 0.99, α = 0.417, may be used in the PSI method.
Remarkably, this produces the reconstruction shown in Figure 9(C). While faint hon-
eycomb artifacts are visible against the dark background in Figure 9(C), this initial
PSI image is an excellent approximation to the optimal true Wiener image shown in
Figure 9(D). Relative errors in this experiment are shown in Table 4.

In Figure 4, the PSI method’s improvement over the Tikhonov–Miller method
can be traced to the fact that the constraints in (29) allowed the solution to be too
rough. In Figures 6 through 9, PSI’s improvement over the total variation method
stems from the fact that the minimum principle (57) forces the solution to be too
smooth. Apparently, the use of singular integrals to calibrate image smoothness,
together with the direct use of that information in constraining the solutions of the
deblurring problem, constitutes an important new idea in image deconvolution.
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Abstract. We study the Cauchy problem in R × R+ for one-dimensional 2mth-order, m > 1,
semilinear parabolic PDEs of the form (Dx = ∂/∂x)

ut = (−1)m+1D2m
x u+ |u|p−1u, where p > 1, and ut = (−1)m+1D2m

x u+ eu

with bounded initial data u0(x). Specifically, we are interested in those solutions that blow up at
the origin in a finite time T . We show that, in contrast to the solutions of the classical second-
order parabolic equations ut = uxx + up and ut = uxx + eu from combustion theory, the blow-up
in their higher-order counterparts is asymptotically self-similar. In particular, there exist exact
nontrivial self-similar blow-up solutions, u∗(x, t) = (T − t)−1/(p−1)f(y) in the case of the polynomial
nonlinearity and u(x, t) = − ln(T−t)+f(y) for the exponential nonlinearity, where y = x/(T−t)1/2m
is the backward higher-order heat kernel variable. The profiles f(y) satisfy related semilinear ODEs
that share the same non–self-adjoint higher-order linear differential operators. We show that there are
at least 2�m

2
� nontrivial self-similar solutions to the full PDEs. Numerical solution of the ODEs for

m = 2 and 3 supports this, and the time dependent solutions of the PDEs for m = 2 are then studied
by using a scale invariant adaptive numerical method. It is shown that those functions f(y), which
have the simplest spatial shape (e.g., a single maximum), correspond to stable self-similar solutions.
A further countable subset of nonsimilarity blow-up patterns can be constructed by linearization and
matching with similarity solutions of a first-order Hamilton–Jacobi equation.
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1. Introduction. Scaling and self-similarity have been known since the 1930s
to give a fundamental insight into many systems that develop singularities in finite
time. A general treatment of blow-up processes naturally occurred in the 1930s–1950s
in the context of N. N. Semenov’s chain reaction theory, adiabatic explosion, and
combustion theory (the first blow-up result was by O.M. Todes [43]); see [26, section
15] and [48]. On the other hand, in the same period there was a strong influence
from the study of blow-up singularities in gas dynamics; in particular, the intense
explosion (focusing) problem, admitting similarity solutions of the second kind, was
considered by Bechert, Guderley, and Sedov in the 1940s; see [4, p. 127] and [49].
Another classical area of blow-up processes in the 1960s was nonlinear optics, where
the main model is the nonlinear (cubic) Schrödinger equation defined in R

2 or R
3 that

admits blow-up self-focusing solutions; see the references in [42].

1.1. On second-order semilinear and quasi-linear heat equations from
combustion theory: Singularity formation. Because of their importance to many
applications, canonical equations from combustion theory such as the nonstationary
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semilinear one-dimensional Frank-Kamenetskii equation [19] (the solid fuel model
[48]),

ut = uxx + eu, x ∈ R, t > 0,(1.1)

and its counterpart with a power nonlinearity,

ut = uxx + up, x ∈ R, t > 0, with exponent p > 1 (u(x, t) ≥ 0),(1.2)

have been well studied for the past thirty years. It is known that these both exhibit
singularities in finite time. While exact self-similar solutions are known to exist for
the related second-order reaction-diffusion quasi-linear problems (see references to
Chapter 4 in [40] and [8])

ut = (|ux|σux)x + eu or ut = (uσux)x + up with σ > 0,(1.3)

it is somewhat paradoxical that none exist for the above semilinear problems. Instead,
the generic stable asymptotic blow-up behavior is described by approximate similarity
solutions satisfying first-order Hamilton–Jacobi equations; see the references in the
books [5, 40] and the surveys [35, 23]. For example, in the quasi-linear problem (1.3)
with the power nonlinearity up, for any p > 1 and σ > 0, there exists an exact
nontrivial self-similar solution of the form

uS(x, t) = (T − t)−1/(p−1)f(y), y =
x

(T − t)(p−1−σ)/2(p−1)
,(1.4)

where T is the finite blow-up time and f is not identically constant and solves a related
ODE; see [40, Chapter 4]. Other types of blow-up in quasi-linear heat equations via
Hamilton–Jacobi asymptotics are described in [24, Chapters 9, 10].

In comparison, for the semilinear equation (1.2), looking for the same similarity
solution

uS(x, t) = (T − t)−1/(p−1)f(y), y =
x

(T − t)1/2

yields that, for the corresponding ODE, the only nonzero similarity profile is the
trivial constant one f ≡ ββ , where β = 1

p−1 . Such nonexistence results are known

from the 1970s; see [31] (p = 3), [1] (p > 1), and [27] for the corresponding equation
in R

N with 1 < p ≤ N+2
(N−2)+

. This means that, for a wide “dense” subset of general

solutions u(x, t) blowing up at t = T at the origin x = 0, the similarity rescaling
satisfies (see [22, 28])

θ(y, t) ≡ (T − t)1/(p−1)u(x, t) → ββ as t→ T−

uniformly on compact subset in y. The spatial variation of the blow-up solutions can
be observed on larger subsets, and the generic asymptotic behavior is as follows:

u(x, t) = [(p− 1)(T − t)(1 + C∗η2)]−1/(p−1)(1 + o(1))(1.5)

uniformly on compact subsets in η = x/[(T − t)| ln(T − t)|]1/2, where the constant
C∗ = p−1

4p does not depend on initial data (nor, in fact, on the space dimension). The
non–scaling-invariant “hot-spot variable” η with an extra logarithmic factor was first
formally derived in 1972 (see [31]) and was rigorously established twenty years later
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(see [7, 18, 30, 37, 45, 46] and the survey [23]). The stable behavior (1.5) is essentially
equivalent to the fact that the ODE for the self-similar solutions, which is obtained by
a symmetry reduction of the original PDE, has no solution (other than the constant
one) with an appropriate decay rate at infinity. Comparing (1.4) and (1.5) shows that
nonexistence of nontrivial ODE similarity profiles implies a fundamental change of
the basic spatial scale of singularity formation phenomena. The observation that the
blow-up behavior of these second-order problems is only approximately self-similar
with a new logarithmically perturbed backward heat kernel variable is an essential
feature of many related reaction diffusion problems and the corresponding parabolic
equations under consideration.

1.2. Main higher-order semilinear models, results, and plan of the pa-
per. Higher-order semilinear parabolic equations arise in many physical applications
such as thin film theory, convection-explosion theory, lubrication theory, flame and
wave propagation (the Kuramoto–Sivashinsky equation and the extended Fisher–
Kolmogorov equation), phase transition at critical Lifschitz points, bistable systems,
and applications to structural mechanics. The effect of fourth-order terms on self-
focusing problems in nonlinear optics has also recently been considered in [17, 6].
Indeed, fourth- (and higher-) order terms are increasingly recognized as being signif-
icant in many physical models, which has led to the burgeoning literature including
the recent book [39], which lists a number of models and references. Therefore, it
is important to know whether higher-order semilinear equations exhibit singularity
behavior analogous to their classical second-order counterparts where the exact self-
similar behavior is unavailable.

In the present paper we show that the higher-order generalizations of the second-
order model (1.1), the extended Frank-Kamenetskii equation,

ut = (−1)m+1D2m
x u+ eu, x ∈ R, t > 0 (Dx = ∂/∂x),(1.6)

and of (1.2),

ut = (−1)m+1D2m
x u+ |u|p−1u, x ∈ R, t > 0,(1.7)

have self-similar blow-up solutions, and hence their evolution is somewhat simpler
than in the case m = 1, though, of course, for m > 1 the problem of rigorous
justification of the results becomes much more delicate. Fundamentally, we would like
to understand the importance of the semilinear structure in (1.6) and (1.7) and its role
in self-similarity. This study is an attempt to further mathematical understanding
of higher-order parabolic equations and, in particular, the corresponding singularity
formation phenomena, an area of increasing physical and mathematical importance.
In particular, a model, admitting blow-up, from convection-explosion theory has been
described in [33] and takes the form

ut = −uxxxx − [(2 − (ux)
2)ux]x − αu+ qesu.(1.8)

Here the formation of such finite time singularities was shown to be self-similar [25]
with a number of analogous properties to the generic equations (1.7) and (1.6).

In section 2 we introduce the relevant mathematical definitions, formulation of
similarity variables, and rescaled equations. In section 3 we present the properties of
the underlying linearized operator, which governs the “dynamics” of both equations
(1.6) and (1.7) near certain blow-up solutions.
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In section 4 we consider an extension of the linearized problem that makes clear
the structure of the subset of nonlinear evolution patterns. In particular, we analyze
bifurcation points associated with the linearized operator and present an argument
for the existence of self-similar solutions. This analytic argument is strengthened with
numerical and asymptotic evidence. Section 5 is devoted to the asymptotic behavior
of the solutions close to bifurcation points.

Lastly, in sections 6 and 7 we construct the blow-up profiles asymptotically and
compare them with numerical solutions of both the ODE for the self-similar profile
and rescaled profiles from simulations of the full PDEs. A number of our results
and techniques can be applied to the blow-up of radially symmetric solutions of the
N -dimensional semilinear equations

ut = −(−∆)mu+ |u|p−1u and ut = −(−∆)mu+ eu.

Spectral properties of the corresponding linearized operators in L2
ρ(R

N ) can be found
in [15, 20].

This paper is mainly devoted to the study of self-similar blow-up for higher-
order semilinear parabolic equations, though we discuss some related center manifold
structures. Countable spectra of other blow-up patterns that are approximately self-
similar and are constructed by matching of different asymptotic regions are studied
in [20]; see also [25] for (1.8).

2. Finite time blow-up solutions and similarity variables.

2.1. Blow-up solutions. Central to singularity formation phenomena for 2mth-
order reaction-diffusion equations is the concept of finite time blow-up, where the
solution of the Cauchy problem with uniformly bounded initial data u0(x) becomes
unbounded at some time T ∈ R+ in the sense that u(x, t) exists and is classical on
any time-interval [0, T ′] with T ′ ∈ (0, T ) and

sup
x∈R

|u(x, t)| → ∞ as t→ T−.(2.1)

Finite time blow-up for higher-order semilinear and quasi-linear parabolic equa-
tions is well known from the 1970s. There are several techniques for proving blow-up,
including the concavity methods [35], test functions methods [38] (see also [14] and ref-
erences therein), and an extension of Kaplan’s idea based on derivation of an ordinary
differential inequality for the first Fourier coefficient of the solutions [21, 10].

2.2. Similarity variables and rescaled PDEs. Finite time blow-up singu-
larities involve a delicate balance between the spatial and temporal derivatives and
the reaction terms driving the blow-up. This balance is made naturally apparent by
considering the scaling invariance of the underlying PDE. This scaling structure is
also important for the numerical methods employed in integrating the full PDE; see
section 5.

Because of their semilinear structure, the PDEs (1.6) and (1.7) have similar scaling
symmetries, so that (1.7) is invariant with respect to the scaling transformations

t �→ λt, x �→ λ1/2mx, u �→ λ−1/(p−1)u for all λ > 0,

while (1.6) is invariant under the group of transformations

t �→ λt, x �→ λ1/2mx, u �→ u− lnλ.
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Without loss of generality we may assume that the solution u(x, t) blows up at
finite time t = T in the sense of (2.1), and the blow-up set B[u0] defined by

B[u0] =
{
x ∈ I : ∃ {xk} → x, {tk} → T− such that u(xk, tk) → ∞}(2.2)

contains the origin, 0 ∈ B[u0]. Motivated by this assumption and looking for invari-
ants of the above groups of transformations, we introduce the following self-similar
spatial variable:

y =
x

(T − t)1/2m
: R → R, t ∈ [0, T ),

and the new time variable

τ = − ln(T − t) : (0, T ) → (τ0,∞) with τ0 = − lnT.

Then for the polynomial nonlinearity we define a new dependent variable (the rescaled
solution) θ(y, τ) by

u(x, t) = (T − t)−1/(p−1)θ(y, τ)(2.3)

and for the exponential nonlinearity by

u(x, t) = − ln(T − t) + θ(y, τ).(2.4)

Rescaling (1.7) in terms of the new variables by substituting (2.3), we obtain the
following PDE for the rescaled solution θ:

θτ = Lθ +Gp(θ), y ∈ R, τ > τ0, where Gp(θ) = |θ|p−1θ − 1

p− 1
θ,(2.5)

and the linear differential operator L is given by

L ≡ (−1)m+1D2m
y − y

2m
Dy.(2.6)

Similarly, rescaling (1.6) leads to the PDE

θτ = Lθ +Ge(θ), y ∈ R, τ > τ0, where Ge(θ) = eθ − 1.(2.7)

It is important that, unlike the well understood case m = 1, for any m > 1 the
operators on the right-hand sides are not potential, and (2.5) and (2.7) do not possess
Lyapunov functions.

2.3. Preliminaries: Local and asymptotic properties of self-similar so-
lutions. Exact (not just asymptotic) self-similar solutions are those that are invariant
under the group of transformations, i.e., correspond to suitable stationary solutions
θ(y) that are independent of the rescaled time τ . Any exact self-similar solution to
(1.7) takes the form

uS(x, t) = (T − t)−1/(p−1)f(y),(2.8)

where f(y) satisfies the ODE

Lf +Gp(f) = 0 in R.(2.9)
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It is natural to impose the symmetry conditions at the origin

f ′(0) = f ′′′(0) = · · · = f (2m−1)(0) = 0.(2.10)

Then a stable (generic) self-similar solution with a suitable similarity profile f in (2.8)
means that, for a sufficiently wide and dense subset of global symmetric nonstationary
solutions to (2.5), there holds

θ(y, τ) → f(y) as τ → ∞

in a suitable metric. For such a stable similarity solution (2.8) to have nonvanishing
trace in the limit t → T− and to rule out constant solutions, we need to impose a
special decay condition on f(y) as y → ∞. In particular, we will demand that there
exist a finite limit u(x, t) → u(x, T−) as t→ T− for arbitrarily small fixed |x| > 0.

2.3.1. Asymptotic behavior at infinity. First we need to describe possible
asymptotics of small solutions to (2.5) satisfying f(y) → 0 as y → +∞. Consider the
linearization of (2.9) about f = 0,

Lf − 1

p− 1
f = 0, y > 0.(2.11)

Setting z = yν with ν = 2m
2m−1 reduces it to

f (2m) − a1f
′ − a2z

−1f + B(z)f = 0,(2.12)

where a1 = (−1)m+1 1
2mν

1−2m, a2 = (−1)m+1 1
p−1ν

−2m, and

B(z)f =

2m−1∑
j=1

γjz
j−2mf (j)

is a linear operator with bounded coefficients as z → ∞, where the first coefficient of
derivative f ′ is of order O(z1−2m). By the perturbation theory of higher-order linear
ODEs (see Chapters III–V in [12]), we have that the leading terms of exponentially
decaying solutions are described by the operator in (2.12) with constant coefficients,

f (2m) − a1f
′ = 0.(2.13)

Setting f = epz, p 	= 0, gives the characteristic equation p2m − a1p = 0, whence

p2m−1 = a1 =
(−1)m+1

2mν2m−1
≡ ρ2m−1

0 (−1)m+1, where ρ0 > 0.(2.14)

For any m ≥ 1, there exist 2m− 1 roots {p0, p1, . . . , p2m−2} given by

pk = ρ0e
i(2k+1)π/(2m−1), m = 2l; pk = ρ0e

i2πk/(2m−1), m = 2l + 1,(2.15)

where m− 1 roots have negative real parts (Re pk < 0). These correspond to l ≤ k ≤
3l− 2 for even m = 2l and l+1 ≤ k ≤ 3l for odd m = 2l+1. The linearized equation
(2.11) has a κm-dimensional subspace of exponentially decaying solutions as y → ∞,
where κm = 2m− 3 for m even and κm = 2(m− 1) for m odd. For the second-order
case m = 1, it is empty.
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On the other hand, (2.12) admits a solution with algebraic decay (rather than
exponential) as z → ∞ described by the first-order operator

−a1f
′ − a2z

−1f = 0 =⇒ f(z) = c z−(2m−1)/(p−1).

Existence of solutions with such a decay for the perturbed equation (2.12) is estab-
lished by a standard expansion analysis by calculating solutions via Kummer-type
series converging uniformly for z � 1. For the linearized equation (2.11), the leading
order behavior is algebraic,

f(y) = C|y|2m/(p−1)(1 + o(1)) as y → ∞, with C 	= 0.(2.16)

In summary, these results yield that (2.11) admits a

(κm+1)-dimensional subset of admissible solutions as y → ∞.(2.17)

Actually, for the nonlinear equation (2.9) we are going to look for profiles f(y) having
the algebraic decay (2.16). Then for such similarity solutions (2.8), the limit-time
profile is bounded for any x 	= 0 and is given by

uS(x, T−) = C|x|−2m/(p−1).

Asymptotic and numerical computations suggest that the solutions of (2.9) which sat-
isfy (2.16) are isolated and that the constant C plays a role of a nonlinear eigenvalue.
In section 5 we give an asymptotic formula for one value of C valid in a certain limit.

Likewise for (1.6), the self-similar solution is given by

uS(x, t) = − ln(T − t) + f(y),(2.18)

where the function f(y) satisfies the ODE

Lf +Ge(f) = 0(2.19)

with the symmetry conditions (2.10). We look for similarity profiles f(y) → −∞
“slowly” as y → ∞. The limit limf→−∞Ge(f) = −1, so we first consider the “lin-
earized” equation

Lf = 1.(2.20)

Setting f(y) = −2m ln y + g(y) for y > 0, we obtain

Lg = 1 + 2mL ln y = 2m(−1)m+1D2m
y ln y = O(y−2m) as y → +∞.(2.21)

As above, the homogeneous equation Lg = 0 has a κm-dimensional subspace of
exponentially decaying solutions. The nonhomogeneous equation (2.21) has solu-
tions g(y) = C + o(1) as y → +∞, so that (2.17) holds for (2.20), admitting a
κm + 1-dimensional subset of solutions satisfying

f(y) = −2m ln |y| + C + o(1) as y → ∞.(2.22)

In this case the limit-time profile is given by

uS(x, T−) = −2m ln |x| + C,
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where again the constant C ∈ R is a certain isolated nonlinear eigenvalue which can
be approximated asymptotically.

Obviously, ODEs (2.9) and (2.19) admit constant solutions f∗p,e satisfying

Gp(f
∗
p ) = 0, f∗p = ββ , and Ge(0) = 0, f∗e = 0,

respectively. The trivial solution f = 0 also solves (2.9). The linearizations of the
operator L+Gp about ββ and L+Ge about 0 coincide and are equal to L+ I, where
I is the identity operator. The spectral properties of this nonsymmetric operator in
a weighted L2-space play an important part in our analysis and help to describe the
perturbation of the solutions from the constant state. They are essential to describe
the long time dynamics of both of the PDEs (2.5) and (2.7). We will describe the
properties of the linearized operator in the next section.

3. Spectral properties of L and its adjoint. In this section we study the
spectral properties of the linear differential operator L and its adjoint L∗ given by

L∗ = (−1)m+1D2m
y +

1

2m
y
d

dy
+

1

2m
I.(3.1)

Both operators are nonsymmetric and do not admit a self-adjoint extension. To
determine the nature of the stability of the constant solution and also to apply the
Fredholm alternative to computing asymptotic solutions of the ODEs, it is necessary
to determine the spectrum and corresponding eigenfunctions of both L and L∗. We
present some results from [15] and [20] which describe these.

3.1. The fundamental solution. We start by determining the spectrum and
the eigenfunctions of the adjoint operator L∗. In order to find the null eigenfunc-
tion, we begin with the fundamental solution of the corresponding linear 2mth-order
parabolic operator. Consider the linear equation

ut = (−1)m+1D2m
x u in R × R+.(3.2)

The fundamental solution of (3.2) has the standard self-similar form

b(x, t) = t−1/2mF (y), y =
x

t1/2m
.(3.3)

Substituting b(x, t) into (3.2) yields that the radially symmetric profile F (y) is the
unique even square integrable solution of the linear ODE

L∗F = 0 in R(3.4)

and is a null eigenfunction of L∗. Taking a Fourier transform leads to

F (y) = α

∫ ∞

0

e−s
2m

cos(sy)ds.(3.5)

The coefficient α is chosen to normalize
∫
F = 1, so that

α =

(∫ ∞

0

∫ ∞

0

e−s
2m

cos(sy) ds dη

)−1

.

The rescaled kernel F (η) then satisfies a standard pointwise estimate (see [16])

|F (y)| ≤ d1e
−d2|y|ν in R,
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where d1 and d2 are positive constants. Applying the Fourier transform to (3.2) and
performing the rescaling, we have

F(b(·, t))(ξ) = e−ξ
2mt and F̂ (ω) = F(F (·))(ω) = e−ω

2m

.(3.6)

3.2. The discrete real spectrum and eigenfunctions of the adjoint op-
erator L∗. We describe the spectrum σ(L∗) of the adjoint operator in the weighted
space L2

ρ∗(R) with the exponential weight

ρ∗(y) = ea|y|
ν

> 0 in R, ν =
2m

2m− 1
,(3.7)

where a < 2d2 is a sufficiently small positive constant. Denoting by 〈·, ·〉∗ and ‖·‖∗ the
corresponding inner product and induced norm, respectively, we introduce a Hilbert
space of functions H2m

ρ∗ (R) with the inner product and norm

〈v, w〉∗ =

∫
R

ρ∗(y)
2m∑
k=0

Dkv(y)Dkw(y) dy, ‖v‖2
∗ =

∫
R

ρ∗(y)
2m∑
k=0

|Dkv(y)|2 dy.

Then H2m
ρ∗ (R) ⊂ L2

ρ∗(R) ⊂ L2(R), and L∗ is a bounded linear operator from H2m
ρ∗ (R)

to L2
ρ∗(R). With these definitions, the spectral properties of the operator L are given

by the following lemma.
Lemma 3.1. (i) The spectrum of L∗ (and hence of L) comprises real simple

eigenvalues only,

σ(L∗) =

{
λk = − k

2m
, k = 0, 1, 2, . . .

}
.(3.8)

(ii) The eigenfunctions ψ∗
k(y) are given by

ψ∗
k(y) =

(−1)k√
k!

DkF (y)(3.9)

and form a complete subset in L2(R) and in L2
ρ∗(R). (Here F is as defined in (3.5).)

(iii) The resolvent (L∗−λI)−1 : L2
ρ∗(R) → L2

ρ∗(R) is a compact integral operator.
Most importantly, the operators L∗ and L have zero Morse index (no eigenvalues

have positive real part).

3.3. The polynomial eigenfunctions of the operator L. We now consider
the operator (2.6) in the weighted space L2

ρ(R) (〈·, ·〉 and ‖ · ‖ are the inner product
and the norm), with the exponentially decaying weight function

ρ(y) ≡ 1

ρ∗(y)
= e−a|y|

ν

> 0,(3.10)

and ascribe to L the domain H2m
ρ (R) that is dense in L2

ρ(R). Then L : H2m
ρ (R) →

L2
ρ(R) is a bounded linear operator, L∗ is adjoint to L, and, denoting by 〈·, ·〉 the

inner product on L2(R), we have

〈Lv, w〉 = 〈v,L∗w〉 for any v ∈ H2m
ρ (R), w ∈ H2m

ρ∗ (R).(3.11)

The eigenfunctions of L take a particularly simple polynomial form and are as follows.



1784 C. J. BUDD, V. A. GALAKTIONOV, AND J. F. WILLIAMS

Lemma 3.2. (i) The eigenfunctions ψk(y) of L are polynomials in y of order k
given by

ψk(y) =
1√
k!

�−λk�∑
j=0

(−1)mj

j!
D2mjyk, k = 0, 1, 2, . . . ,(3.12)

and form a complete subset in L2
ρ(R). (Here �·� denotes the integer part.)

(ii) L has compact resolvent (L− λI)−1 in L2
ρ(R).

Corollary 3.3. With the definition (3.9) of the adjoint basis, integrating by
parts, we have that the orthonormality condition holds

〈ψk, ψ∗
l 〉 = δk,l for any k, l ≥ 0,(3.13)

where δκ,l is the Kronecker delta.
Corollary 3.4. If m = 2, then there are coefficients αj (depending on k) such

that, for k = 4r + 2 and k = 4r,

ψ4r+2 = y2
r∑
j=0

αjy
4j and ψ4r =

r∑
j=0

αjy
4j , α0 	= 0.

For example, if m = 2 (a case we consider in detail first), then the first four even
eigenfunctions are

ψ0(y) = 1, ψ2(y) =
y2

√
2
, ψ4(y) =

(y4 + 24)√
24

, ψ6(y) =
y2(720 + y4)√

6!
,(3.14)

with corresponding eigenvalues 0,− 1
2 ,−1,− 3

2 .

4. Local asymptotic analysis: Invariant subspaces and bifurcation points.
In this section we use the spectral properties of the linearized operators to determine
the local stability of the constant solutions of the rescaled PDEs (2.5) and (2.7). We
begin with the linearized stability analysis and describe invariant subspaces.

4.1. Invariant eigenspaces. Since the nonlinearities under consideration sat-
isfy G′

p(β
β) = G′

e(0) = 1, let us consider solutions of (2.5) and (2.7) as perturbations
of the constant solution of the form

θ(y, τ) = f∗ + g(y, τ) with ‖g‖ � 1.

In both cases g satisfies a perturbed PDE

gτ = (L + I)g + Ḡ(g), where Ḡ(g) = G(f∗ + g) − g,(4.1)

with a quadratic nonlinear perturbation Ḡ,

Ḡ(g) = c2g
2 + c3g

3 + · · · as g → 0,(4.2)

and the coefficients depending on the nonlinearity, c2 = 1
2 , c3 = 1

6 , . . . for Ge and

c2 = 1
2p(p− 1)1/(p−1), c3 = 1

6p(p− 1)2/(p−1)(p− 2), . . . for Gp.
In what follows, we restrict our attention to symmetric in x solutions u = u(|x|, t)

and hence to symmetric in y rescaled solutions θ = θ(|y|, τ) and g = g(|y|, τ). In
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the space L2
0,ρ(R) of symmetric functions, it follows from (3.8) that L + I has the

spectrum

σ(L + I) =

{
λ̃k = 1 − k

2m
, k = 0, 2, 4, . . .

}
.(4.3)

Let L̃2
0,ρ ⊆ L2

0,ρ be the subspace of eigenfunction expansions, where {ψk} is closed,
obtained as the closure of the subset of finite sums {v =

∑
ckψk} in the norm ‖ · ‖

[15]. Then

L̃2
0,ρ(R) = Eu(0) ⊕ Ec(0) ⊕ Es(0),

where Eu(0), Ec(0), and Es(0) are the unstable, center, and stable subspaces of L+I
given by

Eu(0) = Span{ψ0, ψ2, . . . , ψ2m−2},
Ec(0) = Span{ψ2m},
Es(0) = Span{ψ2m+2, ψ2m+4, . . . }.

In particular, the dimension of the unstable subspace is precisely m.
Consider the two one-dimensional unstable subspaces corresponding to positive

eigenvalues of the operator L + I, namely

λ̃0 = 1, ψ0(y) = 1 and λ̃2 = 1 − 1

m
, ψ2(y) =

y2

√
2
.(4.4)

As is usual in blow-up problems, the first unstable mode with k = 0 corresponds
to the instability of blow-up behavior with respect to perturbations of the blow-up
time T .

In contrast, the second mode with k = 2 describes an actual instability of the
constant solution which is in the direction of ψ2(y) and is in the space of rescaled
solutions having the same fixed blow-up time T . From our asymptotic calculations
and numerical experiments we expect that the orbits that arise from the instability of
the constant solution in the PDEs (2.7) and (2.5) when m > 1 are uniformly bounded
and stabilize to one of the self-similar solutions. Namely, the first such unstable mode
with λ̃2 = 1 − 1

m > 0 gives a heteroclinic connection of f∗ with a nonconstant stable
(generic) similarity profile f1(y).

It is significant that when m = 1, there is no such unstable mode. In contrast,
the dimension of the unstable subspace is one corresponding only to the change in
the blow-up time. The eigenfunction ψ2 then has eigenvalue zero, and the behavior
of the perturbations of the constant solution must be studied on the center manifold.
It is this which leads to the approximate self-similar behavior (1.5) described in the
introduction.

Before performing some formal invariant manifold analysis for higher-order PDEs,
note that the main properties of connecting equilibria and transversality of intersec-
tions of the corresponding stable and unstable manifolds are known for the one-
dimensional second-order parabolic equations

ut = uxx + f(x, u) in (0, 1) × R+, u = 0 at x = 0, 1 for t > 0,

and were obtained in [29, 3] and [11] using Sturm’s theorem on the nonincrease of
the number of zeros (intersections) of solutions to linear second-order parabolic equa-
tions. This Sturmian property is not true for the fourth- and higher-order parabolic



1786 C. J. BUDD, V. A. GALAKTIONOV, AND J. F. WILLIAMS

equations (owing to the lack of a maximum principle in these cases), for which there
are some particular results (see references in [39]), and in general the structure of
connecting orbits remains an important open problem.

4.2. The center subspace. Consider the center subspace Ec(0) in the case of
general m. From Lemma 3.2, it follows that the null eigenfunction of the operator L
is given by ψ2m so that

λ̃2m = 0 and ψ2m(y) =
[y2m + (−1)m(2m)!]√

(2m)!
.(4.5)

We now present a simple calculation showing that the behavior on the center
manifold is semistable.

Proposition 4.1. Let g(·, τ) ∈ H2m
0,ρ (R) exhibit the center subspace dominance,

i.e.,

g(·, τ) = a2m(τ)ψ2m(·) + w(·, τ) for τ � 1,(4.6)

where w(·, τ) ∈ L⊥{ψ2m} and w(·, τ) = o(‖g(·, τ)‖) = o(|a2m(τ)|) as τ → ∞. Then

a2m(τ) = − 1

γ0τ
(1 + o(1)) as τ → ∞, where γ0 = c2〈(ψ2m)2, ψ∗

2m〉 	= 0.(4.7)

It follows from (4.7) that a2m(τ) cannot change sign in any neighborhood of
τ = ∞, meaning a one-sided instability of the center manifold behavior.

Proof. We look for a solution of (4.1) via a uniformly convergent eigenfunction
expansion

g(·, τ) =
∑

ak(τ)ψk(·).(4.8)

Substituting this expression into (4.1) and multiplying by ψ∗
k in L2(R), we arrive at

a dynamical system for the expansion coefficients

ȧk = λ̃kak + 〈Ḡ(g), ψ∗
k〉, k = 0, 2, . . . .(4.9)

Consider an equation for the coefficient a2m with λ̃2m = 0. In view of assumption
(4.6) and (4.2), assuming that |a2m(τ)| � 1, it follows that

ȧ2m = (γ0 + o(1))a2
2m for τ � 1.(4.10)

Calculating γ0 by using the adjoint eigenfunction ψ∗
2m = D2m

y F/
√

2m! and (4.5), we
obtain that

γ0 = c2(−1)m+1
√

(2m!)

(
(4m)!

[(2m)!]2
− 2

)
.(4.11)

Integrating (4.10) as a standard ODE, we deduce that any small solution for τ � 1
has the asymptotic behavior (4.7).

It follows from the quadratic “ODE” (4.10) that the center manifold behavior
exhibits a typical semistable (“saddle-node”) structure. Because the constant profile
ββ is only semistable, small perturbations in the unstable direction may evolve to
self-similar solutions. We present some evidence for this conjecture and the role of
the parity of m in sections 5 and 6.

In view of known spectral and sectorial properties of operators L and L∗ [15, 20],
we expect that the center (and stable; see section 7) manifold behavior can be justified
by the invariant manifold theory in interpolation spaces; see [36, Chapter 9].
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4.3. Bifurcation points. In this subsection we extend the ODEs (2.9) and
(2.19) for similarity profiles and consider the family of ODEs with a parameter µ ≥ 0:

(−1)m+1D2m
y f − µf ′y +G(f) = 0 for y > 0 with conditions (2.10).(4.12)

Recall that, for single-point blow-up, we need to impose an extra condition (of the
type (2.16) or (2.22) with 1

2m �→ µ) on the decay of f(y) at infinity.
If we take µ = 1

2m and the appropriate nonlinearity, G = Gp or Ge, then we
obtain the ODEs (2.9) and (2.19) for the rescaled self-similar profiles. More generally,
suitable solutions of (4.12) depend smoothly upon µ ≈ 1

2m and coincide with the self-
similar solutions when µ = 1

2m . In either case we define a corresponding linearized
operator Lµ by

Lµ = (−1)m+1D2m
y − µyDy + I ≡ L +

(
1 − µ+

1

2m

)
I.(4.13)

Changing the independent variable to

y =
z

(2mµ)1/2m
,(4.14)

we have

1

2mµ
Lµ = (−1)m+1D2m

z − 1

2m
z
d

dz
+

1

2mµ
I ≡ L +

1

2mµ
I.(4.15)

Hence Lµ : H2m
0,ρ (R) → L2

0,ρ(R) is a bounded linear operator (with a change in the
coefficient a in the weight function (3.10) if necessary). By Lemma 3.1, the spectrum
Lµ in the space L2

0,ρ(R) of radial functions is given by

σ(Lµ) ≡ 2mµσ

(
L +

1

2mµ
I

)
= {1 − 2µl, l = 0, 1, 2, . . . } ,(4.16)

with eigenfunctions ψ2l as before, rescaled according to the transformation (4.14).
We next compute bifurcation points from the constant solution f∗. Since the

weight function (3.10) is exponentially decaying as y → ∞, in general, the inclusion
f ∈ H2m

ρ does not imply the boundedness of f , unlike the adjoint case of the in-
creasing weight (3.7), where H2m

ρ ⊂ C. Nonlinearity G(f) is not uniformly Lipschitz
continuous on bounded subsets from H2m

ρ . Therefore, we truncate the nonlinearity
in (4.12) by replacing G by Gn, which satisfies

Gn(f) ≡ G(f) for |f | ≤ n, n = 1, 2, . . . ,

and Gn(f) is sufficiently smooth and uniformly Lipschitz continuous in R. For G =
Ge, we need only perform the truncation for f > n. We have

Gn(f) → G(f) as n→ ∞ uniformly on compact subsets.

Replacing the full problem by the truncated one

(−1)m+1D2m
y f − µyf ′ +Gn(f) = 0(4.17)

is permissible because we are interested in bounded solutions f , for which the nonlin-
earities Gp(f) and Ge(f) have finite range.
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Proposition 4.2. For any m ≥ 1, the values of µ for which the spectrum of Lµ

contains zero,

1 − 2µl = 0 =⇒ µl =
1

2l
, l = 1, 2, . . . ,(4.18)

are bifurcation points for problem (4.17).
Proof. Using rescaling (4.14) and setting f = f∗ + g, equation (4.17) takes the

form

(L− I)g = µ̃g + (1 + µ̃)Gn(g), where µ̃ = −1 − 1

2mµ
.(4.19)

Consider the Hammerstein operator (L − I)−1Gn. By Lemma 3.2, (L − I)−1 is a
compact operator in L2

0,ρ with simple eigenvalues {−1/(1+ l
m ) ≤ −1, l = 0, 1, 2, . . . }.

By construction, Gn is uniformly Lipschitz continuous, |Gn(g)| ≤ C1+C2|g| in R, and
hence Gn : L2

0,ρ → L2
0,ρ. Therefore, the product (L − I)−1Gn is a compact operator

in L2
0,ρ; see [34, Chapter V]. Hence, in the nonlinear integral equation written as a

fixed point problem

g = A(g, µ̃) ≡ µ̃(L− I)−1g + (1 + µ̃)(L− I)−1Gn(g),(4.20)

bifurcation from the origin occurs iff µ̃ coincides with characteristic values of (L−I)−1

(simple eigenvalues of L− I), i.e., at µ̃l = −1− l
m (see [34]). This yields (4.18).

Passing to the limit n → ∞, some of the bifurcation sub-branches (which are
not of physical interest) may disappear, so that we always need to check which sub-
branches are available for n = ∞. On the other hand, it is interesting to know for
which values of µ, less or greater than µl, there exist nonconstant solutions and how
many. Since the spectrum of the Frechet derivative A′(0, µ̃l),

σ(A′(0, µ̃l)) =

{
(1 + l

m )

(1 + k
m )

, k = 0, 1, 2, . . .

}
,(4.21)

always contains 1 (for k = l), the local asymptotic behavior of bifurcation branches
for µ ≈ µl is a delicate problem, and often there exist at least two solutions even in the
cases of analytic nonlinearities; see a general theory in [44]. Therefore we will need
an extra matching analysis to specify “correct” branches, which have the required
behavior at infinity and hence correspond to single-point blow-up similarity profiles.

It is important to mention the main reason for extending the operator (2.6) in
(2.9) and (2.19) to the operator in (4.12) parameterized by µ. Setting µ = 0, in the
case of the polynomial nonlinearity with G = Gp, we recover a well-studied Hamil-
tonian system (see [2] and the book [39]), and the solutions considered in this case
can, in principle, be followed as µ increases to the physically important value of 1

2m.
Alternatively, by setting µ close to the bifurcation points (4.18), we can construct
asymptotic descriptions of solutions that are local perturbations of the constant so-
lution. This calculation is presented in the next section. Once we have constructed
such solutions, we may again extend varying µ to determine branches of solutions
that persist until the value µm = 1

2m.
In other words, problem (4.12) for µ ∈ [0, 1

2m ] describes the transition phe-
nomenon between Hamiltonian systems for µ = 0, with a potential and leading self-
adjoint differential operators, and the singularity formation problem for µ = 1

2m , with
no potential structure or symmetry properties of operators involved.
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4.4. Conjecture on existence of self-similar solutions. For any m > 1, the
question of the solvability of problem (4.12) for µ = 1

2m (with the appropriate decay
of f(y) at infinity) and of the number of solutions seem to be very hard. Proving solv-
ability is a multidimensional problem of matching of the (κm+1)-dimensional bundle
of orbits as y → ∞ (see (2.17)) with the m-dimensional bundle at y ≈ 0 depending on
the parameters {f(0), f ′′(0), . . . , f (2m−2)(0)} (a multidimensional shooting problem
whose complexity increases dramatically as m increases). For m = 1, such a problem
for quasi-linear equations (1.3) is well understood in one dimension (see [40] and [8]),
though a complete proof of the number, finite or infinite, of solutions for equations in
R and in R

N is still missing.
We now use the above local bifurcation analysis to estimate the number of solu-

tions from below. In view of Proposition 4.2, there exist branches of solutions f(y;µ)
emanating at µ = 1

2l from constant solutions f = f∗ for each value of l = 1, . . . ,m−1
(though we still do not know which bifurcation branches correspond to single point
blow-up profiles with required decay at infinity). In particular, if we fix m, then a
self-similar solution occurs at µm = 1

2m . However, there are m− 1 bifurcation points
at µl = 1

2l > µm = 1
2m for l = 1, . . . ,m − 1. The numerical calculations of section 6

strongly imply that each such bifurcation leads to a branch of solutions f(y) with
far-field behavior of the type (2.16) or (2.22) persisting until µm, giving rise to a
self-similar solution. Furthermore, due to the semistability properties of the center
manifold patterns (see further comments in section 5), we expect from the observa-
tions of the previous section that there is an additional solution of the ODE when m
is even. This detail is also supported by both the asymptotic calculations presented in
section 5 and the numerical calculations of section 6. Combining these observations,
let us state the following conjecture suggested by our understanding of the dynam-
ics of the linearized operator, asymptotic constructions, and a number of numerical
experiments.

Conjecture 4.3. For all m > 1, the problems (2.19) and (2.9) have at least
2�m2 � (self-similar) solutions.

Hence, we conjecture that the nonexistence of exact self-similar blow-up solutions
is a feature only of the second-order semilinear equations, not of all the semilinear
equations of the forms (1.6) and (1.7). This conjecture is indeed a lower bound
and is based only on properties of the linear operator presented in this paper. In
fact, we expect that there are m(m − 1) solutions. This estimate is topological and
characterizes a typical matching of two multidimensional bundles at y = ∞ and y = 0,
respectively, in the presence of sufficiently strong oscillatory character of the ODE;
see further results below.

Further, we note that bifurcations in the limit problem (4.12) hold for arbitrary
L2

0,ρ-solutions of (4.19), not necessarily satisfying the appropriate decay conditions at
infinity. There may also exist nonconstant solutions that correspond to stabilization
as y → ∞ to another equilibrium,

f(y) → ββ for G = Gp and f(y) → 0 for G = Ge.(4.22)

One can see from (2.8) and (2.18) that these self-similar solutions create global blow-
up, where

u(x, t) → ∞ as t→ T− uniformly in R.(4.23)

Such behavior is unavailable for m = 1 as the dimension of the stable manifold about
f∗ is 2(m − 1) for m odd. For m > 1, no such solutions have yet been detected,
numerically or otherwise.
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5. The asymptotic behavior of the solutions close to the bifurcation
points. In this section we again consider µ to be a continuous parameter in (4.12)
and construct an asymptotic description of solutions f(y;µ) (with the appropriate
decay at infinity; see a precise statement below) for µ close to the bifurcation points
at µl = 1

2l . We set

µ = µl + σlε with 0 < ε� 1 and σ2
l = 1,(5.1)

and look for solutions to the ODEs in R+ for l = 1, 2, . . . ,

(−1)m+1f (2m) − (µl + σlε) yf
′ +Gp(f) = 0,(5.2)

(−1)m+1f (2m) − (µl + σlε) yf
′ +Ge(f) = 0.(5.3)

We seek solutions with symmetry conditions (2.10) satisfying the decay condition

f(y) = Cy−1/(p−1)µ(1 + o(1)) or f(y) = − 1

µ
ln y + C + o(1) as y → +∞.(5.4)

Here σl = ±1 indicates the direction that the branch departs from the constant solu-
tion, which we shall show depends upon l and m. Because of the polynomial structure
of the eigenfunctions of the linear operator L (and hence of Lµ), the asymptotic cal-
culations are similar in spirit for each bifurcation point, µ = 1

2l , although for each
order 2m of the differential operator there are m slightly different types of expan-
sion. As such, we will illustrate the calculations by first considering the case m = 2
close to arbitrary bifurcation points, then close to the particular bifurcation points
of interest to fourth-order PDEs, namely, µ1 = 1

2 and µ2 = 1
4 . Lastly, we construct

solutions close to the specific bifurcation points µm = 1
2m for the case of general m to

complement the calculations of the center manifold behavior described in the previous
section and our conjecture regarding the existence of self-similar solutions of the ODE
when µ = 1

2m .

5.1. The case of fourth-order ODEs: m = 2. We shall first consider the two
ordinary differential problems, namely finding the slowly growing/bounded solutions
of the fourth-order equations with l = 1, 2, . . . ,

− f ′′′′ − (µl + σlε) yf
′ + |f |p−1f − 1

p− 1
f = 0,(5.5)

− f ′′′′ − (µl + σlε) yf
′ + ef − 1 = 0.(5.6)

The calculation proceeds by identifying three key regions in which asymptotic solu-
tions of three different scalings of the above equations are derived. The three different
asymptotic descriptions of the solutions are then matched together. The first region
is given by considering solutions for which εγy is small and where

γ =

{
1
4l for l odd,
1
2l for l even.

(5.7)

Here the solution is near constant, and we can express the solution in terms of the
eigenfunctions of the linear operator Lµ in (4.13). Next is a midrange region, for
which ε−γ < y < e1/ε, where the appropriately rescaled differential equations reduce
to an integrable first-order equation. Lastly, there is the region {y > e1/ε}, where the
solution satisfies the far-field behavior (5.4).
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5.1.1. The behavior of f(y) for εγy � 1. We begin by seeking solutions
of (5.5) and (5.6), which are valid for small εγ |y| and which are close to the con-
stant solutions of the respective nonlinearities. Consider the corresponding equation
(4.20) for fixed points. Since, by (4.21), 1 is an eigenvalue of A′(0, µ̃l) with the one-
dimensional eigenspace El, according to the general branching theory [44, Chapter 5],
in this special case we seek solutions of the form of the rational series

f(y) = f0 + εqf1(y) + ε2qf2(y) + · · ·,(5.8)

where we define f0 = f∗. For convenience, we perform this equivalent expansion
analysis directly for the ODEs and avoid using the integral equation (4.20) with
compact operators. The exponent q = 1/n with an unknown integer n ≥ 1 is to
be determined from the solvability of the corresponding nonlinear systems on the
expansion coefficients (the branching equation). Since dim El = 1, the branching
equation is always one-dimensional. Note that, for analytic nonlinearities, i.e., (5.6)
with any odd p and (5.5), in the case of one- (or two-) dimensional eigenspace El,
finite solvability of such systems (existence of a finite number of solutions) implies
convergence of the series (5.8) for sufficiently small ε, although we can expect there
to be at least two different bifurcating branches of solutions; see [44, pp. 209–211].
We then determine the correct branch by matching to solutions with the appropriate
decay properties at infinity.

The rational power q of the order parameter depends on the coefficients of the
branching equation, which are different depending on whether l is even or odd. Sub-
stituting the expansion (5.8) into the ODEs leads, at lowest order, to an ODE for
f1(y) of the form

L1/2lf1 ≡ −f ′′′′1 − 1

2l
yf ′1 + f1 = 0.

Accordingly, the leading order approximation to f − f0 is given by a linear multiple
of the eigenfunction ψ2l((2/l)

1/4y); see (4.14). From the description of the spectrum
of the operator L given in Lemma 3.1, using Corollary 3.4, we know that (as m = 2)
the transformed operator L1/2l has null eigenfunctions ψ2l which are polynomials and
which take the form

ψ2l(y) = y2

(l−1)/2∑
j=0

αjy
4j for l odd and ψ2l(y) =

l/2∑
j=0

αjy
4j for l even,

as defined by (3.12) after the change of variable y �→ y(2/l)1/4.
The difference between the cases of l even and l odd is as follows. In the asymp-

totic expansion, the higher powers of f1(y) become forcing terms to equations involv-
ing the operator L1/2lfj . In the case of odd l, these terms will always be polynomials
in y4. These may have no contribution, which resonates with the null eigenfunction
ψ2l of L. In contrast, the powers of f1(y) for even l will always have contributions,
which resonate with ψ2l(y). As a consequence, the cases l even and l odd lead to dis-
tinctly different forms of asymptotic expansion, in particular q = 1

2 for odd l and q = 1
for even l. In other words, for l even and odd the branching equation changes its type.
Generically, there will be m distinct expansions in powers of εi/m, i = 1, 2, . . . ,m; see
a general classification in [44, section 12].

A. The case of m = 2 and l odd. We take l = 2r+1 so that the bifurcation point is
at µ = 1/(4r+ 2), r = 0, 1, . . . . We express f(y) as an asymptotic expansion (q = 1

2 )

f = f0 + ε1/2f1 + εf2 + ε3/2f3 + · · · .(5.9)
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This expansion corresponds to the case of the branching equation described in The-
orem 12.2 in [44], where there exist two solutions either for µ < µl or for µ > µl.
Substituting the expansion (5.9) into either (5.5) or (5.6) gives a sequence of ODE
problems of the form

O(ε1/2) : L1/2lf1 ≡ −f ′′′′1 − 1

4r + 2
yf ′1 + f1 = 0,(5.10)

O(ε) : L1/2lf2 = −c2f2
1 ,(5.11)

O(ε3/2) : L1/2lf3 = σlyf
′
1 − 2c2f1f2 − c3f

3
1 , . . . ,(5.12)

where c2, c3, . . . are as given in (4.2). In each case we seek solutions from H0,2m
ρ (R).

In view of asymptotic properties for linearized operators in section 2, the solutions
are assumed to grow slowly (at worst polynomially) as y increases and will ultimately
be matched to solutions of the ODEs (5.2) and (5.3) that have the correct behavior
at infinity, (5.4).

As observed above, it follows from (4.16) that the lowest-order equation (5.10)
can be solved in terms of a rescaling of the null eigenfunction ψ2l of L2l. Applying in
(3.12) the scaling y �→ (2/(2r+1))1/4y, it follows that there is a constant α such that

f1(y) = αf̃1(y), where f̃1(y) =

r∑
j=0

(
2r + 1

2

)j−r−1/2
1

j!
D4jy4r+2.(5.13)

For example, f1(y) = αy2 when r = 0 and µ = 1
2 . Here the constant α is unspecified

at this level of expansion and will be determined by a solvability condition for the
higher-order terms.

The Fredholm alternative gives the orthogonality condition for the second equa-
tion (5.11) at order ε to have a solution in H2m

0,ρ (R),

〈f2
1 , ψ

∗
2l〉 = 0,(5.14)

where ψ∗
2l = ψ∗

2l((2/l)
1/4y) defined in (3.9) is the eigenfunction of the adjoint operator

L∗
1/2l. If r = 0 and l = 1, then the first three even eigenfunctions of L1/2 are given

in (3.14). Since ψ∗
2 is the null eigenfunction of L∗

1/2l, it follows that 〈ψ∗
2 , ψ0〉 = 0 and

〈ψ∗
2 , ψ4〉 = 0. Hence 〈ψ∗

2 , y
4〉 = 〈ψ1, f

2
1 〉 = 0, so that the orthogonality (5.14) holds and

there exist solutions of (5.11) at this order. This is the lack of resonance condition,
which we described earlier.

For arbitrary r, by (5.13),

f2
1 (y) = α2

2r∑
j=0

ajy
4j+4,

and we find a particular polynomial solution of (5.11) in the form

α2f̃2(y) = −c2α2
2r∑

j=−1

bjy
4j+4.(5.15)

Substituting it into the equation and equating the coefficients gives

b2r = −a2r, b−1 = 4! b0 and(5.16)

bj =
2r + 1

2(r − j) − 1

[
aj + bj+1

(8 + 4j)!

(4 + 4j)!

]
for j = 2r − 1, . . . , 0.(5.17)
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Hence, the orthogonality condition (5.14) holds. The general solution of (5.11) is
given by

f2(y) = α2f̃2(y) + α1f̃1(y),(5.18)

where α1 is an extra real unknown.
The unknowns α and α1 are determined by applying the Fredholm alternative at

the next orders of expansion. In (5.12), similar to (5.14), the solvability condition is
given by 〈

σlyf
′
1 − 2c2f1f2 − c3f

3
1 , ψ

∗
2l

〉
= 0.(5.19)

Substituting (5.13) and (5.18) yields the algebraic equation

αA− α3B + αα1C = 0,(5.20)

where A = 〈σlyf ′1, ψ∗
2l〉, B = 〈c3f̃3

1 +2c2f̃1f̃2, ψ
∗
2l〉, and the third coefficient C vanishes

by the first solvability criterion (5.14),

C = −2C2〈f̃2
1 , ψ

∗
2l〉 = 0.(5.21)

Equation (5.20) is a cubic equation for the first unknown α only, α(α2 − σlγ) = 0,
where γ can be computed explicitly. The α = 0 case simply corresponds to the
constant solution (the trivial expansion (5.9)) and can be discarded. Hence, we have
two solutions

α = ±√
σlγ .(5.22)

The sign of σl is thus the same as that of γ, while the sign of α follows from matching
to the far field solution (see section 5.2). In general, the second unknown α1 (together
with an extra one α3 obtained from the homogeneous equation (5.12), etc.) is to be
determined from the solvability conditions of equations for the coefficients f4, f5, . . .
of higher-order perturbations. Although not presented, higher approximations follow
in a similar manner to those here.

Example 1. To illustrate this calculation, we now look at the two cases of l = 1
and l = 3 for the quadratic nonlinearity with p = 2, where Gp(f) = |f |f − f . These
are chosen so that the corresponding bifurcation points at µ = 1

2 and µ = 1
6 are on

either side of the “self-similar” value of µ2 = 1
4 , as indicated in Figure 1.

µ = 1/2
  l = 1  

µ = 1/6
  l = 3  

µ = 1/4 

f(0) ≡ 1 

Fig. 1. Sketch of the bifurcation points under consideration.

The first bifurcation point: µ1 = 1
2 (l = 1, r = 0). As observed above, when l = 1,

we have f0 = 1 and f1 = αy2. A simple calculation then gives f2 = α2(y4 + 24), and
expansion (5.9) takes the form

f(y) = 1 + αε1/2y2 + ε
[
α2(y4 + 24) + α1y

2
]
+ ε3/2f3(y) + · · · .(5.23)
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Observe that since c3 = 0, the solvability condition (5.19) for f3 is then given by

〈2σ1αy
2 − 2α3y2(y4 + 24), ψ∗

2〉 = 0, ψ∗
2 = ψ∗

2(21/4y).(5.24)

To calculate α, we exploit the fact that ψ̂∗
2(ω) = −ω2e−ω

4

/
√

2 by (3.6) and (3.9).

Recall also that if a function f(y) has Fourier transform f̂(ω), then

〈f, y2n〉 = (−1)nf̂ (2n)(0).(5.25)

Taking ψ∗
2 =ψ∗

2(21/4y) yields 〈ψ∗
2(21/4y), y2〉=1/21/4 and 〈ψ∗

2(21/4y), y6〉=−180/21/4,
the solvability condition (5.24) reduces to the cubic equation σ1α + 156α3 = 0, and
hence

σ1 = −1 and α = ± 1√
156

= ±
√

39

78
,(5.26)

so that (5.23) yields

f(y) = 1 ± ε1/2
y2

√
156

+ ε

(
1

156
(y4 + 24) + α1y

2

)
+ · · · .(5.27)

The sign of α will be determined by matching to the solution in the midrange. We
show presently that α < 0 so that

f(y) = 1 − ε1/2
y2

√
156

+ ε

(
1

156
(y4 + 24) + α1y

2

)
+ · · · ,

and, in particular, since ε > 0,

f(0) = 1 +
2

13
ε+ · · · > 1.(5.28)

The resulting branch thus bifurcates to the left and exists locally only for µ < 1
2 ;

there is no possible matching to a decaying solution for µ > 1
2 . The numerical

calculations reported in the next section indicate that the branch persists globally, so
that solutions exist at the self-similar value µ2 = 1

4 .
The third bifurcation point: µl = 1

6 (l = 3, r = 1). We again have f0 = 1, and

now f1(y) = α(y6 + 540y2) and f2 = α2(y12 − 32400y8 − 164170800y4 − 3940099200),
so that the expansion is

f = 1 + ε1/2α
(
y6 + 540y2

)
+ ε[α2

(
y12 − 32400y8 − 164170800y4 − 3940099200

)
+ α1f̃1] + · · · .

A similar (but much longer) analysis of the orthogonality condition (5.19) with
eigenfunction ψ6((2/3)1/4y) = (y6+540y2)/12

√
5 then indicates that the branch again

bifurcates to the left and exists locally for µ < 1
6 .

B. The case of m = 2 and l even. In the case l = 2r the bifurcation occurs at the
point µ2r = 1

4r . Because of the presence of a constant term in the eigenfunction ψ2l,
the effect of the “forcing terms” yf ′ comes in at lower order than in the previous case.
This leads to a standard asymptotic expansion for f(y) of the form (cf. Theorem 12.1
in [44])

f = f0 + εf1 + ε2f2 + · · · .(5.29)
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Substituting this expression for f into (5.5) or (5.6) gives

O(ε) : L1/2lf1 ≡ −f ′′′′1 − 1

4r
yf ′1 + f1 = 0,(5.30)

O(ε2) : L1/2lf2 = σlyf
′
1 − c2f

2
1 .(5.31)

As before, we express f1 as a multiple of the (scaled) eigenfunction ψ2l(r
−1/4y),

f1(y) = αf̃1(y) ≡ α

r∑
j=0

rj−r

j!
D4jy4r.(5.32)

The value of α is determined by considering the solvability condition for (5.31)
at O(ε2). From the analysis above, it follows that, for f2 to exist, we must have

〈σlyf ′1 − c2f
2
1 , ψ

∗
2l〉 = 0 with ψ∗

2l = ψ∗
2l

((
2

l

)1/4

y

)
.(5.33)

This leads to a quadratic equation in α of the form α(α− γ) = 0, where γ may again
be determined explicitly. This is the case of a unique nontrivial solution existing for
both µ > µl and µ < µl, and again we will need an extra matching argument to
determine the correct sub-branch.

To illustrate this calculation, we again take p = 2, Gp(f) = |f |f − f and now
consider the case of l = 2. This is an especially important value as it corresponds
to µ2 = 1

4 , at which the self-similar solution exists. In this case we have f0 = 1 and
f1 = α(y4 + 24). The solvability condition for α is now

〈σ2yf
′
1 − f2

1 , ψ
∗
4(y)〉 = 〈4σ2αy

4 − α2(y4 + 24)2, ψ∗
4(y)〉 = 0.

We have that ψ̂∗
4(ω) = ω4e−ω

4

/2
√

6, and it follows that the quadratic equation satis-
fied by α is given by

96σ2α+ 39168α2 = 0 =⇒ α = − 1

408
σ2.(5.34)

We show presently that, to match with the midrange, we have to have α < 0 so that
σ2 = 1. Hence

f(y) = 1 − ε

408

(
y4 + 24

)
+ ε2

[
f̃2(y) + α1f̃1(y)

]
+ · · · ,(5.35)

where the third term (actually we do not need to compute it) explains the spatial
nonmonotonicity of such a solution. If ε > 0, then

f(0) = 1 − 1

17
ε+O(ε2) < 1.(5.36)

5.1.2. The midrange εγ < y < e1/ε. The midrange behavior is governed
by the solutions of a first-order equation, which is different for each nonlinearity.
However, the calculation now takes the same form for both l even and odd and uses
a regular asymptotic expansion. To study the midrange, we rescale the underlying
ODEs in space according to the transformation

s = εγy ≥ 0 (γ as in (5.7)).(5.37)
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The outer limit of the inner region can be matched to the midrange region by taking
s to be small and y to be large.

A. The case Gp(f) = |f |p−1f− 1
p−1 f . Under the spatial rescaling (5.37), equation

(5.5) becomes

−ε4γf ′′′′ − (µl + σlε) sf
′ + |f |p−1f − 1

p− 1
f = 0, l = 1, 2, . . . ,(5.38)

where ′ = d/ds. To solve this, we pose a regular asymptotic expansion

f = f0 + ε4γf1 + ε8γf2 + · · · .(5.39)

To leading order we have simply the first-order ODE − 1
2lyf

′
0 + |f0|p−1f0 − 1

p−1f0 = 0,
which has a family of bounded positive exact solutions

f0(s) = [(p− 1) + κs2l]−1/(p−1),(5.40)

where κ > 0 is a positive constant.
Note that, for small s, we have

f0(s) = ββ
(

1 − κ

(p− 1)2
s2l +

pκ2

2(p− 1)4
s4l +O(s8l)

)
,(5.41)

while for large s,

f0(s) = κ−1/(p−1)s−2l/(p−1) + · · · .(5.42)

We now consider the next term in the asymptotic expansion, looking at the two
cases of small s and large s separately. The function f1 satisfies the equation

− 1

2l
sf ′1 +

[
p

(p− 1) + κs2l
− 1

(p− 1)

]
f1 = σlsf

′
0 + f ′′′′0 .

We consider for simplicity the case of p = 2, and look at the three cases of l = 1, 2,
and 3.

If l = 1, then 4γ = 1, and for small s we have f0(s) = 1−κs2 + 1
2κ

2s4 + · · · ; thus
the leading order contribution to σlsf

′
0 + f ′′′′0 is simply 12κ2, and hence we have, to

leading order as s→ 0,

f1(s) = 12κ2 + · · · .
If l = 2, then 4γ = 1, and for small s, f0(s) = 1−κs4 + 1

2κ
2s8 + · · · so that, to leading

order,

f1(s) = −24κ+ · · · .
If l = 3, then 4γ = 1/3, and for small s, f0(s) = 1 − κs6 + 1

2κ
2s12 + · · · so that, to

leading order, f ′′′′0 = −360κs2 and

f1(s) = −540κs2 + · · · .
We conclude that the small s limit of the midrange solution is

f = 1 − κs2 +
1

2
κ2s4 + · · · + ε(12κ2 + · · · ) if l = 1,(5.43)

f = 1 − κs4 +
1

2
κ2s8 + · · · − ε(24κ+ · · · ) if l = 2,(5.44)

f = 1 − κs6 +
1

2
κ2s12 + · · · − ε(540κ2s2 + · · · ) if l = 3.(5.45)
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In terms of the original variable y we have

f = 1 − ε1/2κy2 + εκ2

(
1

2
y4 + 12

)
+ · · · if l = 1,(5.46)

f = 1 − εκ(y4 + 24) +
1

2
ε2κ2y8 + · · · if l = 2,(5.47)

f = 1 − ε1/2κ(y6 + 540y2) +
1

2
εκ2y12 + · · · if l = 3.(5.48)

We can now consider matching the above expressions to the expansions given in the
last sections.

If l = 1, then comparing with (5.27), we have a perfect match, provided that
κ = −α. As κ > 0, it follows that α = −1/

√
156. Thus in the midrange when l = 1

we have

f0(y) =

(
1 +

ε1/2y2

√
156

)−1

.

As remarked earlier, this bifurcation branch exists only if µ < 1
2 .

If l = 2, then comparing with (5.35), we again have a perfect match if κ = −α > 0.
In the midrange when l = 2 there holds

f0(y) =

(
1 +

1

408
ε1/2y4

)−1

.

Note that this expression is only meaningful if ε > 0. As in this case σ2 = 1, it follows
that locally the branch of solutions that bifurcates from µ = 1

4 exists only if µ > 1
4 .

Numerically we observe that this curve continues globally for values of µ < 1
4 , and

hence there is a fold bifurcation at some point µ = µ∗ > 1
4 , with a nonzero solution

on the branch existing at µ = 1
4 . This corresponds to a self-similar solution distinct

from that lying on the branch bifurcating from the point µ = 1
2 . The existence of

such a solution is consistent with the semistability of the center manifold determined
in section 4.

If l = 3, then comparing with the inner expansion, we again have a match if
κ = −α > 0, and in the midrange

f0(y) = (1 − αε1/2y6)−1 (α < 0).

Now consider the behavior for s� 1 when p = 2. For these values of s, to leading
order, the function f1 satisfies the ODE −µlsf ′1 − f1 = −2lσl/κs

2l + · · · ; hence,

f1(s) =
4l2σl ln s

κs2l
+ · · · as s→ ∞ .

Or, returning to the original variable y,

f(y) =
1

κεl/2y2l

(
1 + 4l2σl ln y + · · ·) as y → ∞.(5.49)

B. The case of G = ef − 1. Under the same spatial rescaling as before, (5.6)
becomes

−εf ′′′′ − (µl + σlε) sf
′ + ef − 1 = 0, l = 1, 2, . . . .



1798 C. J. BUDD, V. A. GALAKTIONOV, AND J. F. WILLIAMS

Posing expansion (5.39), substituting into the ODE, and solving the leading order
equation gives

f0(s) = − ln(1 + κs2l).(5.50)

The analysis now proceeds as above, and again matching in the limit s → 0 fixes
κ > 0.

5.1.3. Far field behavior. The correct far field behavior is determined by as-
suming slow growth in both (5.2) and (5.3), f ′′′′(y) → 0 as y → ∞, and hence
|f |f � f for small f > 0 there in (5.5), while ef � 1 for f � −1 in (5.6). In the case
of (5.5), this gives

f = Cy−1/µ(1 + o(1)) ≡ Cy−2l/(1+2lσlε)(1 + o(1)) as y → ∞.

Expanding this for ε� 1, we have

f = Cy−2l(1 + 4l2σlε ln y) + · · · (ε| ln y| � 1).

This matches with (5.49) if C = 1/κεl/2 (note that κ = |α|/ε for l = 3).

5.2. Bifurcations from µm = 1
2m

for general m. As remarked, for m = 2
we can also postulate existence of the new profile f2 from the shape of the branch
associated with µ2 = 1

4 , as the branch leaves the bifurcation point to the right and
then is expected to fold back. In fact, this behavior can be understood for general m.

For all m, the bifurcation point µm = 1
2m is associated with a zero eigenvalue of

the linearized operator L+ I in the PDE (4.1). Further evidence for the existence of
a nonlinear pattern associated with this point comes from the local structure of the
bifurcation diagram. Looking for small solutions near this point, we solve

(−1)m+1D2m
y f − µmyDyf + f + σmεyDyf + Ḡ(f − f0) = 0,

where Ḡ is the quadratic perturbation (4.2). At µm = 1
2m we have the regular

expansion (5.29), and expanding as before gives

L1/2mf1 = 0 =⇒ f1 = α
[
y2m + (−1)m(2m)!

]
with unknown α ∈ R.

At the next order we have

L1/2mf2 = σmyf
′
1 − c2f

2
1 = 2mσmαy

2m − c2α
2
(
[(2m)!]2 + 2(−1)m(2m)!y2m + y4m

)
.

(5.51)

By the Fredholm alternative this can be solved only if〈
2mσmαy

2m − c2α
2
(
[(2m)!]2 + 2(−1)m(2m)!y2m + y4m

)
, ψ∗

2m(y)
〉

= 0.

By (3.9), ψ̂∗
2m(ω) = ω2me−2m/

√
(2m)! so that, after a little manipulation noting that

〈1, ψ∗
2m〉 = 0, 〈y2m, ψ∗

2m〉 = (2m)!, 〈y4m, ψ∗
2m〉 = (−1)m+1(2m)!,

the solvability condition becomes

2mσmα(2m)! − c2α
2(−1)m+1

(
(4m)! − 2[(2m)!]2

)
= 0.
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µ = 1/2m 

m even 
µ = 1/2m 

m odd 

Fig. 2. Schematic of the distinction between even and odd m.

Thus the solvability condition implies that

α = (−1)m+1σm
c2

2m(2m)!

(4m)! − 2[(2m)!]2
(5.52)

and hence

f(y) = f0 + (−1)m+1ε
σm
c2

2m(2m)!

(4m)! − 2[(2m)!]2
(
y2m + (−1)m(2m)!

)
+ · · · .

However, to match with the midrange, we require that f1 → −∞ as y → ∞, i.e.,
α < 0 in (5.52), which sets

σm = (−1)m for ε > 0.

Hence, by (5.1) for even m, the branches initially increase in µ and thus, if they have
folded back, contribute an extra similarity profile fm(y) at µ = 1

2m , whereas there
need be no such contribution for odd m; see Figure 2.

The existence of a second self-similar solution to the ODE in the case m = 2 is
suggested by the center manifold analysis in Proposition 4.1. More precisely, consider
the unstable center manifold behavior (4.6) for any even m,

g(y, τ) = − 1

γ0τ
ψ2m(y) + · · · → 0 as τ → −∞,(5.53)

where ψ2m > 0 is given by (4.5). We suppose that g(·, τ) becomes sufficiently large
as τ ≈ −0. Hence, g(y, τ) < 0 for τ � −1 on any compact subset in y, i.e., the
corresponding solution of the PDE (2.5) (or (2.7)) satisfies θ(y, τ) = ββ+g(y, τ) < ββ .
Such a solution can be extended as above to satisfy θ(y, τ) → 0 as y → ∞; see also
[20]. This shows that such an orbit cannot be a heteroclinic connection ββ → 0, since
for τ ≈ −0 this would mean that |θ(y, τ)| gets essentially smaller than the constant
blow-up profile ββ . Hence θ(y, τ) cannot correspond to a solution u(x, t) of the PDE
that blows up at the fixed t = T ; see L∞-estimates of the blow-up rate in [10] and [21].
Therefore, this θ(·, τ) can be assumed to describe an orbital connection ββ → fm(y) to
a new nontrivial similarity profile fm existing at µ = µm. Note that, by construction,
it is expected that a certain approximated order occurs, meaning that fm(y) � ββ in
R in a natural sense.

On the other hand, for odd m’s, ψ2m(y) in (4.5) changes sign and we do not have
such a contradiction. (One can see that an orbital connection ββ → 0 is possible; see
such a center manifold pattern in [25].)
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Continuation of solutions to −f(4) − µ y f’ − f + |f|f = 0 

µ

f(
0)

Branches bifurcating from f ≡ 1 at µ = 1/2l 

Other solution branches 

Fig. 3. Bifurcation diagram for m = 2.

6. Numerical calculations of the self-similar profiles. We next present a
numerical calculation of the solutions of the problem (4.12) parameterized by µ and
taking Gp(f) = |f |f − f for p = 2. (As indicated from the analysis of the previous
sections, the case Ge(f) = ef − 1 is fundamentally the same and is omitted for the
sake of brevity.) This calculation allows us to extend the asymptotic analysis of the
previous section, and, in particular, to study the global behavior of the branches that
bifurcate from the first two bifurcation points at µ1 = 1

2 and µ2 = 1
4 . The solutions

were obtained using a collocation code that guarantees a small residual tolerance [41].
The initial points on each curve were obtained by setting µ = 0. The continuation
of each solution was then done by using the pseudo arc-length routine in AUTO [13].
Symmetry conditions were imposed at the origin, and minimal growth was enforced
at the far field by solving the problem on the finite interval (0, 1000) and setting the
highest derivatives to zero at the right-hand boundary.

6.1. The fourth-order case m = 2. In Figure 3 we present the results of the
numerical calculations for different values of the parameter µ, looking at the fourth-
order differential equations given by taking m = 2. In this figure we use f(0) as
a measure of the size of the solution. The existence of branches bifurcating from
each of the points µl = 1

2l (displayed as solid lines) is clear. Also plotted in dashed
lines are other solutions obtained from continuing solutions from µ = 0 that do not
bifurcate from the constant solution f ≡ 1. In this format it is difficult to distinguish
the solutions that bifurcate from the linear spectrum from the additional “nonlinear”
solutions. To make this distinction clear we plot the same solutions in Figure 4 using
the L2

ρ-norm as the solution measure.

We observe first that the curve bifurcating from µ1 = 1
2 appears to exist for

all values of µ ∈ [0, 1
2 ] and, in particular, there is a nonconstant solution fs(y) (the

subscript s denotes stable; see section 7) of (4.12) for the value of µ2 = 1
4 . This
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Fig. 4. Bifurcation diagram for m = 2 in L2
ρ.
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Asymptotic and numerical primary profiles

Numerical solution 

Asymptotic construction  (ε = 1/4)

Fig. 5. Comparison of asymptotic and numeric solutions.

solution gives a self-similar solution of the underlying PDE (1.7). In Figure 5 we
compare the numerical solution to the boundary-value problem (2.9), (2.10) with the
asymptotic construction (5.27). In Figure 6 we present an enlargement of Figure 3
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Fig. 6. Detail of branches at µ = 1
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for m = 2 and p = 2.

close to the point µ = 1
2 , allowing a direct comparison with the asymptotic calculation

of f(0) given by (5.28).
In contrast, the curve bifurcating from µ = 1

4 appears to exist for all µ ∈ [0, 1
4 +δ],

where δ is a small positive constant. This behavior can be seen more clearly in the
enlargement of Figure 3 close to µ = 1

4 , which is presented in Figure 6. Again, we
can compare this figure to the asymptotic calculation of f(0) given by (5.36), and
the associated discussion on the unstable center manifold behavior in section 5, which
predicts the existence of the bifurcating curve for a range of values of ε > 1

4 . This
asymptotic calculation is clearly valid only for a small range of values of µ > 1

4 , and
the curve of solutions folds back at µ � 0.26841 . . . .

In particular, we observe a second nonzero solution fu(y) (the subscript u denotes
unstable; see section 7) of (4.12) at µ = 1

4 . The existence of this solution implies the
existence of a further self-similar solution of the PDE. As remarked earlier, this result
is consistent with the semistability of the center manifold when m = 2. The profiles
of the two distinct self-similar solutions fs(y) and fu(y) are given in Figure 7.

Observe that the form of fs(y) is qualitatively similar to the profile of the solution
computed close to µ = 1

2 and described asymptotically in the previous section. In
particular, it appears to be a monotone decreasing function of y. In contrast, the
self-similar solution fu(y) is increasing for small values of y and decreasing for larger
values. This possible small nonmonotonicity in the expansion (5.35) is described by
the terms O(ε2).
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Fig. 7. The two self-similar profiles fs, fu for m = 2.

We also present in Figure 6 a detail of the neighborhood of µ = 1
6 . Although

this branch does not lead to a self-similar solution, its local form is interesting. As
predicted by the asymptotic analysis, it bifurcates to the left but then folds back twice
locally before continuing backwards to µ = 0. Following these calculations, we make
the following conjecture.

Conjecture 6.1. If m = 2, then each of the curves bifurcating from the point
µl = 1

2l continues globally to include the point µ = 0 and has l− 1 fold bifurcations in
the vicinity of µl.

Such fold bifurcations can occur [34] if

0 ∈ σ(Lµ +G′(f)I).(6.1)

This equation determines a difficult eigenvalue problem for higher-order operators
with nonconstant coefficients. The eigenvalues of this problem correspond to the
turning points of the solution branches indicated in Figure 6.

Lastly, in Figure 6 we compare our asymptotic construction of the bifurcation
diagram with the numerical computations. Away from all folds, the agreement is
excellent even with only a linear approximation.

6.2. The sixth-order case m = 3. A bifurcation diagram similar to Figure 3,
and now for the case of the sixth order differential equations when m = 3, is presented
in Figure 8. The far-field boundary condition is (5.4).

This picture is qualitatively similar to Figure 3, with the solutions at µ3 = 1
6

being of interest. As before, the monotone decreasing (in a neighborhood of the
origin) solution bifurcating from µ = 1

2 extends backwards to µ3 = 1
6 , as does the

solution bifurcating from µ = 1
4 . This leads to two self-similar solutions fs and fu. A

detail of Figure 8 in the neighborhood of µ = 1
6 is given in Figure 9. As predicted by
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Fig. 9. Detail of bifurcation diagram for m = 3 near µ = 1
6
.

the asymptotic analysis of section 5, this curve bifurcates to the left, and there are no
nonzero (and hence no self-similar) solutions on this branch when µ = 1

4 . Consistent
with the previous analysis, we observe two self-similar solutions associated with the
unstable subspace and none associated with the center subspace.
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A plot of fs and fu is given in Figure 10. It is of special interest that, for this
value of m, we see four other self-similar solutions that arise from paths that start at
µ = 0. These are also plotted in Figure 9. Observe that 2 + 4 = 6 = m(m − 1) for
m = 3; cf. the last comment in section 4.

7. Numerical simulations of the solutions of the PDE. While the self-
similar solutions of (1.7) and (1.6) are important, they give only a partial picture of
the overall dynamical behavior of the solutions of these systems. For example, we
have not even established whether the self-similar solutions are stable. As we have
mentioned, for m > 1, the operators in (2.5) and (2.7) are not potentials and do not
generate gradient flows as in the second-order case. For m = 1, a Lyapunov function
exists and this essentially simplifies the asymptotic analysis; see the first results in
[22] for N = 1 and in [27, 28] for N ≥ 1. Moreover, compactness of the rescaled orbits
{θ(τ), τ > τ0} remains an open problem (the only known L∞-estimate for the blow-
up rate is a lower one [10, 21]). This makes the asymptotic stability for higher-order
equations extremely difficult.

In this section we investigate the dynamics of (1.7) in the case of m = 2 by using
a scale-invariant adaptive numerical method. A general description of the philosophy
and implementation of these methods is given in [32, 9, 47] and the references therein.
Scale-invariant methods are extremely well suited to computing the solution of systems
of PDEs, which have solutions blowing up in finite time and which are also invariant
under the action of scaling symmetries. In particular, the underlying PDE is semi-
discretized in space by using a collocation method on a moving grid. This leads to
a system of (stiff) ODEs, which are then solved by using an implicit method. The
spatial grid is chosen to equidistribute a monitor function M(u) chosen to be

M(u) = |u|p−1.(7.1)
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Fig. 11. The solution of (1.7) in the physical variables.

By doing this, mesh points are clustered where M(u), and hence u is large. The
particular choice of M(u) given above leads to a discrete system of equations that is
invariant to changes in the scale of the solution and gives relative truncation errors that
are independent of scale. This is the key to the accuracy of the numerical calculations
of this section.

Example 2. For the first calculation we consider the polynomial nonlinearity in
(1.7) with as initial data the function

u0(x) = 2e−x
2

.

First, we present the evolution of this data in the original variables in Figure 11;
here the formation of the singularity can be seen clearly. In Figure 12 we present
the same data, this time in the scaled variables θ and y. Here, the blow-up time T
is estimated by a least squares fit of u(0, t) = f0/(T − t)1/(p−1), with both f0 and
T unknown. The most significant aspect of this figure is that the solutions rapidly
converge (exponentially in τ) to the first monotone function fs(y). The solution of
the ODE (2.9) is plotted on Figure 12 for comparison and is indistinguishable from
the large τ solutions to the full PDE.

Example 3. For our final calculation, we take as initial data the second solution
to (2.9), the solution that extends from the bifurcation point µ2 = 1

4 ,

u(x, 0) = fu(x).

This is seen to be unstable. While remaining close to the initial data as the PDE
solution increases over several orders of magnitude, eventually the rescaled solution
converges to the primary profile as in Example 2; see Figure 13.

Calculations have also been done for the case of the exponential nonlinearity and
are fundamentally the same as those presented here; see also [25].
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8. Conclusions. It is clear from this study that the (self-similar) behavior of the
blow-up solutions of a relatively straightforward higher-order PDE is quite different,
and in a sense simpler, than that of related second-order equations. It is very likely
that similar behavior will be observed in a much wider class of higher-order equations.
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The numerical and asymptotic calculations presented in this paper have suggested a
number of open questions in analysis, which deserve further investigation, in particular
a fully rigorous proof of the existence of the self-similar solutions and the uniqueness
and stability of the “most” monotone stable profiles. We leave this as a subject for
future study.

Acknowledgments. The authors wish to thank J.F. Toland for several useful
discussions.
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Basel, Berlin, 1995.

[37] F. Merle and H. Zaag, Stability of the blow-up profile for equations of the type ut = ∆u +
|u|p−1u, Duke Math. J., 86 (1997), pp. 143–195.

[38] E. Mitidieri and S. I. Pohozaev, A priori estimates and blow-up of solutions to nonlinear
partial differential equations and inequalities, Proc. Steklov Inst. Math., 234 (2001), pp. 1–
362.

[39] L. Peletier and W. Troy, Spatial Patterns: Higher-order Models in Physics and Mechanics,
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Abstract. Refocusing for time reversed waves propagating in disordered media has recently
been observed experimentally and studied mathematically. This surprising effect has many potential
applications in domains such as medical imaging, underwater acoustics, and wireless communications.
Time refocusing for one-dimensional acoustic waves is now mathematically well understood. In this
paper the important case of one-dimensional dispersive waves is addressed. Time reversal is studied
in reflection and in transmission. In both cases we derive the self-averaging properties of time reversed
refocused pulses. An asymptotic analysis allows us to derive a precise description of the combined
effects of randomness and dispersion. In particular, we study an important regime in transmission,
where the coherent front wave is destroyed while time reversal of the incoherent transmitted wave
still enables refocusing.
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1. Introduction. Time reversal for ultrasound has been extensively studied by
Fink and his collaborators at the “Laboratoire Ondes et Acoustique” in Paris; for a
description of these experiments we refer, for instance, to the papers [11, 12]. A time
reversal mirror is, roughly speaking, a device which is capable of receiving an acoustic
signal in time, keeping it in memory, and sending it back into the medium in the
reversed direction of time. Time reversal refocusing properties are well understood
mathematically for one-dimensional acoustic waves propagating in random media [9]
and for three-dimensional waves in layered media [16] or in the paraxial regime [3, 6,
23, 5, 4].

In this paper we consider a case of dispersive waves, namely the Boussinesq model
derived in [20]. We first revisit time reversal for reflected signals generated by a pulse
sent in a random half-space. The main property of time reversal is the refocusing of the
pulse with a shape that depends only on the statistical properties of the medium, and
not on the particular realization. This has been mathematically studied in the high-
frequency regime for acoustic waves in [9]. We extend this result to the case of disper-
sive waves. In Theorem 6.1 we derive the deterministic shape of the refocused pulse,
which depends on the statistical properties of the medium and the strength of the
dispersion. This result is obtained in the regime of weak fluctuations of the medium, a
correlation length of the order of magnitude of the pulse carrier wavelength, and long
distances of propagation. The underlying asymptotic analysis is based on the tech-
niques of separation of scales presented, for instance, in [2]. In particular, we generalize
the system of transport equations that characterize the multiple scattering of the wave.
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Time reversal refocusing can also be obtained from transmitted waves generated
by a pulse propagating through a slab of random medium. For dispersive waves, in
contrast with acoustic waves, there is an interesting regime where the coherent front
wave is destroyed. We show in this paper that by time reversing the incoherent part
of the transmitted wave it is still possible to refocus at the source. We provide a
precise analysis of the interplay between randomness and dispersion. In particular,
Theorem 7.1 gives the precise description of the refocused pulse.

One potential application discussed in this paper is the characterization by wave-
form inversion for water waves of the initial sea surface displacement due to tsunami-
genic earthquakes [24]. In [24] an adjoint method is proposed. In the synthetic nu-
merical experiments presented there, a shallow water system in two space dimensions
is used for the forward propagation, while a linear adjoint method is adopted for the
backward identification of the tsunami source. The authors claim that, in principle,
the adjoint method can be applied to nonlinear hydrodynamic models. Their method
is also applied to real tide gauge series for the small Gorringe Tsunami of 1969, in-
dicating improvements over previous methods. Here we consider a one-dimensional
dispersive system, which is valid for longer propagation distances than the hyper-
bolic shallow water system. Recently we have produced the first analysis for the
time reversal of a nonlinear, one-dimensional hyperbolic shallow water system [13].
In particular, we have shown how randomness dramatically improves time reversal
experiments. In [13] we have shown that in the presence of randomness one can per-
form time reversal beyond the shock propagation distance. Randomness acts as an
apparent viscosity and regularizes the shock. Extension to linear hyperbolic systems
in higher dimensions has been accomplished, for example, in [16]. Hence time reversal
for more realistic models in higher dimensions is a promising technique.

Another important fact, regarding applications, is that we have accomplished a
mathematical theory for both the time reversal of dispersive waves (the present paper)
and also for weakly nonlinear hyperbolic waves [13]. These two papers are important
steps in obtaining a mathematical theory for the time reversal of weakly dispersive
weakly nonlinear waves, namely solitary waves. This might have a great impact on
other models supporting solitons. As a consequence of these two papers, numerical
experiments were performed for the time reversal of solitary waves [14].

The paper is organized as follows. In section 2 we introduce the Boussinesq
equation including randomness and dispersion, and we describe the different scales
arising in the problem. In section 3 we show how the wave can be decomposed into left-
and right-propagating modes in the dispersive nonrandom case. This decomposition
is crucial in the following sections where the analysis of the random case is performed.
In section 4 we establish the system satisfied by the right- and left-going waves in the
random case. We also give the integral representation of the transmitted and reflected
waves in terms of the mode transmission and reflection coefficients. In section 5 we
introduce the time reversal procedures in reflection (TRR) and in transmission (TRT)
and derive the corresponding integral representations for the time reversed waves. The
two subsequent sections are devoted to the asymptotic analysis of the refocused pulses
and comparisons with numerical simulations.

2. The terrain-following Boussinesq model. We consider the Boussinesq
equation that describes the evolution of surface waves in shallow channels [20]:

M(z)
∂η

∂t
+
∂u

∂z
= 0,(2.1)
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∂u

∂t
+
∂η

∂z
− β

∂3u

∂z2∂t
= 0,(2.2)

where η is the wave elevation, u is the depth-averaged velocity, and z and t are the
space and time coordinates, respectively. The spatial variations of the coefficient M
are imposed by the bottom profile

M(z) = 1 + εm(z),

where 1 stands for the constant mean depth and the dimensionless small parameter ε
characterizes the size of the relative fluctuations of the bottom modeled by the zero-
mean stationary random process m(z). The process m is assumed to be bounded
by a deterministic constant, differentiable, and to have strong mixing properties,
such as a rapidly decaying function [22]. We may think, for instance, that m(z) =
f(ν(z)), where f is a smooth bounded function and ν is a stationary Gaussian process
with Gaussian autocorrelation function and we assume that E[f(ν(0))] = 0. Note
that in that case the realizations of the process ν are of class C∞ almost surely.
This hypothesis is consistent with the terrain-following coordinate system adopted in
deriving (2.1)–(2.2) [20].

We consider the problem on the finite slab −L ≤ z ≤ 0, where boundary condi-
tions will be imposed at −L and 0 corresponding to a pulse entering the slab from
the right at z = 0. The quantities of interest, the transmitted and reflected waves,
will be observed in time at the extremities z = −L and z = 0, respectively.

The coefficient β measures the dispersion strength. In this paper we consider the
case where the dispersion parameter β is either of order 1 or small. We consider a
pulse whose support is comparable to the correlation length of the random medium,
that is, of order 1. In order to see the effect of the small random fluctuations, we
consider a long distance of propagation. As we shall see, the interesting regime arises
when the propagation distance is of order 1/ε2.

3. The propagating modes of the homogeneous Boussinesq equation.
Consider the homogeneous Boussinesq equation (with m ≡ 0):

∂η

∂t
+
∂u

∂z
= 0,(3.1)

∂u

∂t
+
∂η

∂z
− β

∂3u

∂z2∂t
= 0,(3.2)

with a smooth initial condition

u(t = 0, z) = u0(z), η(t = 0, z) = η0(z).

Taking the space Fourier transform

ǔ(t, k) =
1

2π

∫
u(t, z) exp(ikz)dz, η̌(t, k) =

1

2π

∫
η(t, z) exp(ikz)dz,

the Boussinesq equation (3.1)–(3.2) reduces to a set of ordinary differential equations:

∂η̌

∂t
= ikǔ,(3.3)

(
1 + βk2

) ∂ǔ
∂t

= ikη̌.(3.4)
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Introducing the pulsation corresponding to the wavenumber k through the dispersion
relation

ω(k) =
k√

1 + βk2
,(3.5)

we get closed form expressions for the solutions:

ǔ(t, k) =
1

2

(
ǔ0(k) +

ω

k
η̌0(k)

)
exp(iωt) +

1

2

(
ǔ0(k) − ω

k
η̌0(k)

)
exp(−iωt),

η̌(t, k) =
1

2

(
k

ω
ǔ0(k) + η̌0(k)

)
exp(iωt) − 1

2

(
k

ω
ǔ0(k) − η̌0(k)

)
exp(−iωt).

From these expressions we can conclude that any solution can be decomposed as
the superposition of left-propagating modes (u(l), η(l)) and right-propagating modes
(u(r), η(r)):

u(t, z) = u(r)(t, z) + u(l)(t, z),

η(t, z) = η(r)(t, z) + η(l)(t, z),

where

u(r)(t, z) =

∫
1

2

(
ǔ0(k) +

ω

k
η̌0(k)

)
exp (iω(k)t− ikz) dk,

η(r)(t, z) =

∫
k

2ω

(
ǔ0(k) +

ω

k
η̌0(k)

)
exp (iω(k)t− ikz) dk,

u(l)(t, z) =

∫
1

2

(
ǔ0(k) − ω

k
η̌0(k)

)
exp (−iω(k)t− ikz) dk,

η(l)(t, z) = −
∫

k

2ω

(
ǔ0(k) − ω

k
η̌0(k)

)
exp (−iω(k)t− ikz) dk.

This decomposition will be used in the nonhomogeneous case in the next section. In
[18] a hyperbolic mode decomposition was used as an approximation for the right- and
left-propagating modes. Here the mode decomposition is exact for dispersive waves.

4. Propagator formulation. In this section we first express the scattering
problem as a two-point boundary value problem in the frequency domain, and then
rewrite it as an initial value problem in terms of the propagator. This is the standard
approach for acoustic equations [2] that we generalize to the dispersive case using the
decomposition introduced in the previous section.

4.1. Mode propagation in the frequency domain. We consider the random
Boussinesq equation (2.1)–(2.2) and take the time Fourier transform

û(ω, z) =
1

2π

∫
u(t, z) exp(−iωt)dt, η̂(ω, z) =

1

2π

∫
η(t, z) exp(−iωt)dt,

so that the system reduces to a set of ordinary differential equations:

(
1 − βω2(1 + εm(z))

) ∂η̂
∂z

+ iωû− εβω2m′(z)η̂ = 0,(4.1)

∂û

∂z
+ iω (1 + εm(z)) η̂ = 0,(4.2)
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where m′ stands for the spatial derivative of m. We introduce the wavenumber k
corresponding to the pulsation ω,

k(ω) =
ω√

1 − βω2
,(4.3)

so that we can decompose the wave into right-going modes Aε and left-going modes
Bε over distances of propagation of order 1/ε2. We show explicitly the dependence
on the small parameter ε:

Aε(ω, z) =
1

2

(
η̂
(
ω,

z

ε2

)
+
k

ω
û
(
ω,

z

ε2

))
,(4.4)

Bε(ω, z) =
1

2

(
η̂
(
ω,

z

ε2

)
− k

ω
û
(
ω,

z

ε2

))
.(4.5)

The modes (Aε, Bε) satisfy

∂Aε

∂z
= − ik

ε2
Aε − ik

2ε
m
( z
ε2

)
(Aε +Bε) +

βk2

2ε
m′
( z
ε2

)
(Aε +Bε)

− iω2

2kε2

(
1

1 − βω2(1 + εm(z/ε2))
− 1

1 − βω2

)
(Aε −Bε)

+
βω2

2ε
m′
( z
ε2

)( 1

1 − βω2(1 + εm(z/ε2))
− 1

1 − βω2

)
(Aε +Bε),(4.6)

∂Bε

∂z
=
ik

ε2
Bε +

ik

2ε
m
( z
ε2

)
(Aε +Bε) +

βk2

2ε
m′
( z
ε2

)
(Aε +Bε)

− iω2

2kε2

(
1

1 − βω2(1 + εm(z/ε2))
− 1

1 − βω2

)
(Aε −Bε)

+
βω2

2ε
m′
( z
ε2

)( 1

1 − βω2(1 + εm(z/ε2))
− 1

1 − βω2

)
(Aε +Bε).(4.7)

We expand the last terms of the right-hand sides up to O(ε3) terms

ω2

1 − βω2(1 + εm(z/ε2))
− ω2

1 − βω2
= εβk4m

( z
ε2

)
+ ε2β2k6m2

( z
ε2

)
+O(ε3),(4.8)

where the O(ε3) is a term that can be bounded by ε3β3k8‖m‖3
∞/(1−εβk2‖m‖∞). We

now look at the waves along the frequency-dependent modified characteristics defined
by

aε(ω, z) = Aε(ω, z) exp

(
ikz

ε2

)
exp

(
−εβk

2

2
m
( z
ε2

)
− ε2β2k4

4
m
( z
ε2

)2
)
,(4.9)

bε(ω, z) = Bε(ω, z) exp

(
− ikz
ε2

)
exp

(
−εβk

2

2
m
( z
ε2

)
− ε2β2k4

4
m
( z
ε2

)2
)
,(4.10)

which satisfy the linear equation

∂

∂z

(
aε

bε

)
(ω, z) = Qε(ω, z)

(
aε

bε

)
(ω, z).(4.11)

The complex 2 × 2 matrix Qε is given by

Qε(ω, z) =

(
Qε1(ω, z) Qε2(ω, z)e

2ikz
ε2

Qε2(ω, z)e
− 2ikz

ε2 Qε1(ω, z)

)
(4.12)
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Fig. 4.1. Scattering problem.

with

Qε1(ω, z) = − ik
2ε

(
1 + βk2

)
m
( z
ε2

)
− iβ2k5

2
m2
( z
ε2

)
+O(ε),(4.13)

Qε2(ω, z) = − ik
2ε

(
1 − βk2

)
m
( z
ε2

)
+
βk2

2ε
m′
( z
ε2

)
+
iβ2k5

2
m2
( z
ε2

)
+
β2k4

2
m
( z
ε2

)
m′
( z
ε2

)
+O(ε).(4.14)

The small terms of order ε come from the O(ε3) term in the expansion (4.8).

4.2. Boundary values. We assume that a left-going pulse is incoming from
the right and is scattered into a reflected wave at z = 0 and a transmitted wave at
z = −L/ε2 (see Figure 4.1).

The incoming pulse shape is given by the elevation function f(t), where f is
assumed to be a L1 function compactly supported in the Fourier domain:

uinc(t, z = 0) = −
∫

ω

k(ω)
f̂(ω) exp(iωt)dω,(4.15)

ηinc(t, z = 0) =

∫
f̂(ω) exp(iωt)dω,(4.16)

with supp(f̂) ⊂ (−1/
√
β, 1/

√
β). We also impose a radiation condition at −L/ε2

corresponding to the absence of right-going waves at the left-hand side of the slab
[−L/ε2, 0]. The two-point boundary value problem consisting of the system (4.11) for
z ∈ [0, L], together with the conditions

bε(ω, z = 0) = f̂(ω), aε(ω, z = −L) = 0,

is then well posed.

4.3. Propagator. It is convenient to transform the two-point boundary value
problem into an initial value problem by introducing the propagator Y ε(ω,−L, z),
which is a complex 2 × 2 matrix solution of

∂Y ε

∂z
(ω,−L, z) = Qε(ω, z)Y ε(ω,−L, z), Y ε(ω,−L, z = −L) = IdC2

such that

Y ε(ω,−L, z)
(
aε(ω,−L)
bε(ω,−L)

)
=

(
aε(ω, z)
bε(ω, z)

)
.
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�
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ε(−L, z)
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Fig. 4.2. Reflection and transmission coefficients.

By the form (4.12) of the matrix Qε, if the column vector (aε1, b
ε
1)
T is solution of (4.11)

with the initial conditions

aε1(ω,−L) = 1, bε1(ω,−L) = 0,(4.17)

then the column vector (bε1, a
ε
1)
T is another solution linearly independent of the first

solution, so that the propagator matrix Y ε can be written as

Y ε(ω,−L, z) =

(
aε1 bε1
bε1 aε1

)
(ω, z).

Note also that the matrix Qε has zero trace because Qε1 = −Qε1. As a consequence,
the determinant of Y ε is conserved, and (aε1, b

ε
1) satisfies the relation

det Y ε = |aε1|2 − |bε1|2 = 1.(4.18)

We can now define the transmission and reflection coefficients T ε(ω,−L, z) and
Rε(ω,−L, z), respectively, for a slab [−L, z] by (see also Figure 4.2)

Y ε(ω,−L, z)
(

0
T ε(ω,−L, z)

)
=

(
Rε(ω,−L, z)

1

)
.

In terms of the propagator entries, they are given by

Rε(ω,−L, z) =
bε1
aε1

(ω, z), T ε(ω,−L, z) =
1

aε1
(ω, z),

and they satisfy the closed form nonlinear differential system

∂Rε

∂z
= 2Qε1(ω, z)R

ε − e−
2ikz
ε2 Qε2(ω, z)(R

ε)2 + e
2ikz
ε2 Qε2(ω, z),(4.19)

∂T ε

∂z
= −T ε

(
e−

2ikz
ε2 Qε2(ω, z)R

ε +Qε1(ω, z)
)
,(4.20)

with the initial conditions at z = −L
Rε(ω,−L, z = −L) = 0, T ε(ω,−L, z = −L) = 1.

Note that (4.18) implies the conservation of energy relation

|Rε|2 + |T ε|2 = 1(4.21)

and in turn the uniform boundedness of the transmission and reflection coefficients.
Note also that Rε and T ε are the reflection and transmission coefficients for the
modified characteristics (4.9)–(4.10). In terms of the real characteristics, the reflection
and transmission coefficients are Rε and T ε exp(−ikL/ε2), respectively.
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4.4. Quantities of interest. The transmitted wave at time t, denoted by
(uεtr, η

ε
tr), is the left-going wave, which admits the following integral representation in

terms of the transmission coefficients:

uεtr

(
t, z = − L

ε2

)
= −

∫
ω

k(ω)
f̂(ω)T ε(ω,−L, 0) exp

(
iωt− ik(ω)

L

ε2

)
dω,(4.22)

ηεtr

(
t, z = − L

ε2

)
=

∫
f̂(ω)T ε(ω,−L, 0) exp

(
iωt− ik(ω)

L

ε2

)
dω.(4.23)

Similarly, the reflected wave (uεref , η
ε
ref ) can be expressed in terms of the reflection

coefficients as

uεref (t, z = 0) =

∫
ω

k(ω)
f̂(ω)Rε(ω,−L, 0) exp (iωt) dω,(4.24)

ηεref (t, z = 0) =

∫
f̂(ω)Rε(ω,−L, 0) exp (iωt) dω.(4.25)

These are the quantities that we will use as new initial conditions for the time reversal
experiments.

5. Time reversal setups.

5.1. Time reversal in reflection (TRR). The first step of the time reversal
procedure consists of recording the reflected signal at z = 0 up to a certain time.
It turns out that as ε → 0 the interesting asymptotic regime arises when we record
the signal up to a large time of order 1/ε2, which we denote by t1/ε

2 with t1 > 0.
In the context of shallow water waves, one records only the elevation ηref . If the
recording were sufficiently long, one could deduce the depth-averaged velocity uref by
using (4.24), (4.25), but this is not usually the case. If the recording is done over an
approximately flat region, then, through (4.15), (4.16) and the proper zero-padding
for Fourier transforming the elevation data ηref ≡ f , the consistent incoming velocity
field for the time reversal experiment can be well approximated. The zero-padding is
due to the cut-off function of the recorded signal, as explained below.

In the second step of the time reversal procedure a piece of the recorded signal
is cut using a cut-off function s �→ Gt1(ε

2s), where the support of Gt1 is included in
[0, t1]:

ηεref,cut

(
t

ε2

)
= ηεref

(
t

ε2

)
Gt1(t).

One then time reverses that piece of signal and re-emits the corresponding elevation
field with a two-fold amplification. No velocity field is generated. This gives rise to a
new wave that can be decomposed as the sum of a right-going wave and a left-going
wave. The right-going wave propagates freely in the homogeneous right half-space,
and it can be forgotten. The left-going wave is the new incoming signal. Accordingly,
the elevation of the time reversed wave sent back into the medium is given by

ηεinc(TRR)

(
t

ε2
, z = 0

)
= ηεref

(
t1 − t

ε2

)
Gt1 (t1 − t)

=
1

ε2

∫ ∫
exp

(
iω(t1 − t)

ε2

)
η̂εref (ω

′)Ĝt1

(
ω − ω′

ε2

)
dω′dω

=
1

ε2

∫ ∫
exp

(
iω(t− t1)

ε2

)
η̂εref (ω

′)Ĝt1

(
ω − ω′

ε2

)
dω′dω,(5.1)
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where TRR stands for “time reversal in reflection.” Here we have used the fact that
ηεref is a real-valued signal, and also that k(−ω) = −k(ω), by (4.3), which is actually
a direct consequence of the time reversibility of the Boussinesq equation. The new
incoming (left-going) velocity is given by

uεinc(TRR)

(
t

ε2
, z = 0

)
= − 1

ε2

∫ ∫
ω

k(ω)
e

iω(t−t1)

ε2 η̂εref (ω
′)Ĝt1

(
ω − ω′

ε2

)
dω′dω.

(5.2)
A right-going velocity wave is also generated, but it propagates freely with the right-
going elevation wave mentioned above, and it can be forgotten as well. Note that the
reason why we have amplified the generated elevation field by a factor two is that it
gives rise to two counter-propagating waves which both contain half of the generated
energy.

The new incoming signal (5.1)–(5.2) repropagates into the same medium and
generates a new reflected signal which we observe at the time t2/ε

2 + t, that is,
around the time t2/ε

2 in the scale of the initial pulse f(t). In terms of the reflection
coefficients the observed reflected elevation signal is given by

ηεref(TRR)

(
t2
ε2

+ t, z = 0

)
=

∫
η̂εinc(TR)(ω)Rε(ω,−L, 0)e

iωt2
ε2

+iωtdω.

Substituting the expression of η̂εinc(TRR) into this equation yields the following repre-
sentation of the reflected signal:

ηεref(TRR)

(
t2
ε2

+ t, z = 0

)
=

1

ε2

∫ ∫
eiωte

iω(t2−t1)

ε2 f̂(ω′)Ĝt1

(
ω − ω′

ε2

)
×Rε(ω,−L, 0)Rε(ω′,−L, 0)dω′dω.

After the change of variable ω′ = ω − ε2h, the representation becomes

ηεref(TRR)

(
t2
ε2

+ t, z = 0

)
=

∫ ∫
eiωte

iω(t2−t1)

ε2 f̂(ω − ε2h)Ĝt1(h)

×Rε(ω,−L, 0)Rε(ω − ε2h,−L, 0)dh dω.(5.3)

Note that, by (4.21), the reflection coefficients are bounded, and we shall show in
section 6 that the rapid phase exp(iω(t2−t1)/ε2) averages out the integral except when
t2 = t1. This means that refocusing can be observed only at the time t2/ε

2 = t1/ε
2.

The precise description of the refocused pulse, taking into account the interaction
between randomness and dispersion, will be carried out in section 6.

5.2. Transmitted front wave. Before going into time reversal in transmission,
we give an integral representation for the coherent transmitted wavefront observed
at z = −L/ε2 around the effective arrival time L/ε2. By (4.23), the transmitted
elevation front is given by

ηεtr

(
L

ε2
+ t, z = − L

ε2

)
=

∫
eiωtei(ω−k(ω)) L

ε2 f̂(ω)T ε(ω,−L, 0)dω.(5.4)

Note that expressions like t+L arise because constants have been set to one, so that
the mean velocity is one. Due to dispersion, k(ω) is different from ω (see (4.3)). As
a consequence, if β = O(1), then the rapid phase exp(i(ω − k(ω))L/ε2) makes the
integral vanish as ε→ 0. This is in dramatic contrast with the hyperbolic case (β = 0),
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where the coherent transmitted wave persists in this regime as a manifestation of the
well known O’Doherty–Anstey theory studied in [8, 17, 25] in various situations.

In the dispersive case, the front will be present if the dispersion parameter β
is small enough. This has been characterized and observed numerically in [18]. In
particular, in the regime where β = ε2β0, we can derive the precise shape of the
front resulting from the interplay of randomness and dispersion. In that regime, by
expanding the dispersion relation ω �→ k(ω), we get that the front is given by

ηεtr

(
L

ε2
+ t, z = − L

ε2

)
=

∫
eiωte−iβ0ω

3Lf̂(ω)T ε(ω,−L, 0)dω +O(ε2).

The transmission coefficients are given by T ε(ω,−L, 0) = 1/aε1(ω, 0), where aε1 satisfies
(4.11) with the initial conditions (4.17). In the case β = ε2β0, the entries of the matrix
Qε can be expanded as

Qε1(ω, z)|β=β0ε2
= − ik

2ε
m
( z
ε2

)
+O(ε),

Qε2(ω, z)|β=β0ε2
= − ik

2ε
m
( z
ε2

)
+O(ε),

so that we get the same system as in the hyperbolic case up to terms of order ε.
The limit of ηεtr has been derived for the hyperbolic case with small fluctuations
[2, 25]. In our case the derivation of the limit follows the same lines except for the
deterministic phase exp(−iβ0ω

3L) due to the small dispersion. The process (ηεtr(
L
ε2 +

t, z = − L
ε2 ))t∈(−∞,+∞) converges in the space of the continuous and bounded functions

to

ηtr(t) =

∫
f̂(ω) exp

(
iω

(
t−

√
γ(0)√
2

BL

)
− ω2γ(ω)

4
L− iβ0ω

3L

)
dω,

where BL is a standard Brownian motion and γ is

γ(ω) =

∫ ∞

0

E[m(0)m(z)]e2iωzdz.(5.5)

Using convolution operators, the transmitted front can be written in a simpler form

ηtr(t) = f ∗K
(
t−

√
γ(0)√
2

BL

)
,(5.6)

which means that a random Gaussian centering appears through the Brownian motion
BL, while the pulse shape spreads in a deterministic way through the convolution by
the kernel K,

K(t) = Kr ∗Kd(t).

Here Kd is the scaled Airy function [1]

Kd(t) =
1

(3β0L)1/3
Ai

(
− t

(3β0L)1/3

)
,

and the Fourier transform of Kr is

K̂r(ω) = exp

(
−ω

2γ(ω)L

4

)
.
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Note that the kernel K depends both on randomness (through the function γ) and on
dispersion (through the parameter β0). This stochastic formulation is in agreement
with the formulation presented in [18] for small β and was validated numerically with
the same code used in this paper.

Observe that a dispersion parameter β = O(1) or even O(εp) with p < 2 leaves
a fast phase in the integral representation of the transmitted front, as can be seen in
(5.4). This implies a dramatic spreading of the pulse for a propagation distance of
order 1/ε2, so that no coherent front pulse can be observed at the output z = −L/ε2.
In that case we are led to perform time reversal using the coda of the transmitted
wave containing the incoherent fluctuations.

5.3. Time reversal in transmission (TRT). We now come back to the case
of a dispersion parameter β of order 1. The time reversal procedure consists of
recording the transmitted coda signal at z = −L/ε2 over the time interval [(L +
t0)/ε

2, (L + t1)/ε
2]. A piece of the recorded signal is cut using a cut-off function

s �→ Gt0,t1(ε
2s− L), where the support of Gt0,t1 is included in [t0, t1]:

ηεtr,cut

(
t

ε2

)
= ηεtr

(
L+ t

ε2
, z = − L

ε2

)
Gt0,t1(t).

One then time reverses that piece of signal and sends it back into the same medium.
As in section 5.1 one usually (only) records the elevation ηtr. Since the velocity
field is not recorded, one actually generates the time reversed elevation field with an
amplification by two, which in turn generates two counter-propagating waves with
equal energies. Numerically we can record both the wave elevation and the velocity
field. We will present examples comparing these two cases and show that the refocused
pulse is the same. The elevation of the wave sent back is given by

ηεinc(TRT )

(
t

ε2
, z = − L

ε2

)
= ηεtr

(
L+ t1 − t

ε2
, z = − L

ε2

)
Gt0,t1 (t1 − t)

=
1

ε2

∫ ∫
exp

(
iω(t1 − t)

ε2

)
η̂εtr(ω

′)Ĝt0,t1

(
ω − ω′

ε2

)
dω′dω,

where η̂εtr is the Fourier transform of the shifted received signal t �→ ηεtr(
L+t
ε2 , z = − L

ε2 ):

η̂εtr(ω) = ei(ω−k(ω)) L
ε2 f̂(ω)T ε(ω,−L, 0).

Also ηεinc(TRT ) reads as

ηεinc(TRT )

(
t

ε2
, z = − L

ε2

)
=

1

ε2

∫ ∫
exp

(
iω(t− t1)

ε2

)
η̂εtr(ω

′)Ĝt0,t1

(
ω − ω′

ε2

)
dω′dω.

Let us denote by R̃ε and T̃ ε the reflection and transmission coefficients for the
experiment corresponding to a right-going input wave incoming from the left (see
Figure 5.1). Using the propagator Y ε defined in section 4.3, R̃ε and T̃ ε obey the
relation

Y ε(ω,−L, 0)

(
1

R̃ε(ω,−L, 0)

)
=

(
T̃ ε(ω,−L, 0)

0

)
.

In terms of the propagator entries they are given by

R̃ε(ω,−L, 0) = − bε1
aε1

(ω, 0), T̃ ε(ω,−L, 0) =
1

aε1
(ω, 0),
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�
−L/ε2 0

�R̃
ε(−L, 0)

�1 � 0

�T̃ ε(−L, 0)

Fig. 5.1. Adjoint reflection and transmission coefficients for time reversal.

which shows that

T̃ ε(ω,−L, 0) = T ε(ω,−L, 0).

Accordingly, the new incoming signal repropagates into the same medium and gener-
ates a new transmitted signal, which we observe at the time t2/ε

2 + t, that is, around
the time t2/ε

2 in the scale of the initial pulse f(t). In terms of the transmission
coefficients, the observed transmitted elevation signal is given by

ηεtr(TRT )

(
t2
ε2

+ t, z = 0

)
=

∫
η̂εinc(TRT )(ω)T ε(ω,−L, 0)e

iωt2
ε2

+iωte−ik(ω) L
ε2 dω.

Substituting the expression of η̂εinc(TRT ) into this equation yields the following repre-
sentation of the new transmitted signal:

ηεtr(TRT )

(
t2
ε2

+ t, z = 0

)
=

1

ε2

∫ ∫
eiωte

iω(t2−t1−L)

ε2 f̂(ω′)Ĝt0,t1

(
ω − ω′

ε2

)

×ei(k(ω′)−k(ω)) L
ε2 e−i(ω

′−ω) L
ε2 T ε(ω,−L, 0)T ε(ω′,−L, 0)dω′dω.

After the change of variable ω′ = ω − ε2h, the representation becomes

ηεtr(TRT )

(
t2
ε2

+ t, z = 0

)
=

∫ ∫
eiωte

iω(t2−t1−L)

ε2 f̂(ω − ε2h)Ĝt0,t1(h)

×ei(k(ω−ε2h)−k(ω)) L
ε2 eihLT ε(ω,−L, 0)T ε(ω − ε2h,−L, 0)dh dω.(5.7)

The precise asymptotics of the transmitted wave will be carried out in section 7. It
is easily seen that the refocusing will only take place if t2 = L + t1 due to the fast
phase.

5.4. TRT in homogeneous medium. One application of TRT is source recon-
struction when the medium is known. This is motivated by the problem of waveform
inversion for water waves studied in [24], where the goal is to characterize the initial
sea surface displacement due to tsunamigenic earthquakes. Mathematically, in the
context of this paper, the source inversion problem consists of performing TRT. The
repropagation of the time reversed transmitted wave is performed by solving numeri-
cally the corresponding wave equation. In the case of the time reversal experiment for
a dispersive homogeneous medium, we observe a transmitted signal and would like to
recover both the location and the pulse shape of the source. This implies the recom-
pression of the dispersive oscillatory coda of the transmitted wave. Dispersion helps
with the source location identification. This is in contrast with (traveling) hyperbolic
waves in a homogeneous medium.
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Taking T ε = 1 in (5.7) gives the transmitted signal in homogeneous medium.
Observe that the quantities become independent of ε, so that ε can be taken to be
equal to 1. We then get

ηtr(TRT )(t1 + L+ t, z) =

∫ ∫
eiωt−ik(ω)z f̂(ω − h)Ĝt0,t1(h)e

i(k(ω−h)−k(ω))LeihLdh dω,

where we look at two cases, as follows.
(a) Hyperbolic case. If β = 0, then k(ω) = ω, and so the transmitted wave is

ηtr(TRT )(t1 + L+ t, z) =

∫ ∫
eiω(t−z)f̂(ω − h)Ĝt0,t1(h)dh dω,

which yields a traveling wave

ηtr(TRT )(t1 + L+ t, z) = (Gt0,t1f)(z − t).

On the one hand, it is impossible to retrieve the source location from this traveling
wave. On the other hand, as soon as the support of the cut-off function is larger than
the pulse width, then the reconstruction of the pulse shape is perfect.

(b) Dispersive case. If β 
= 0 and (βL)1/3 is much larger than the pulse width,
then

ηtr(TRT )(t1 + L+ t, z) = Kz,L ∗ f(z − t),

where the kernel Kz,L is given by

Kz,L(t) = Kz ∗KL(t),

Kz(t) =
1

(3βz)1/3
Ai

(
t

(3βz)1/3

)
,

K̂L(ω) = Gt0,t1

(
((1 + βk(ω)2)3/2 − 1)L

)
.

The Airy kernel Kz results from the action of dispersion on the refocused pulse around
the original source location. Let us define zc = T 3

w/(3β), where Tw is the pulse width.
If z < −zc, then pulse refocusing is not yet completed and the oscillatory tail is
not yet recompressed. If z > zc, then the pulse starts developing the dispersive tail
again. When z ∈ [−zc, zc], the oscillatory tail vanishes and the kernel Kzis close to a
Dirac mass. This shows that dispersion enhances the resolution of the source location
since zc decays with increasing β. However the reconstruction of the source shape is
blurred by dispersive effects since the cut-off function G deletes a frequency band that
becomes larger as β is larger.

6. Asymptotics of the refocused pulse in reflection. From now on we
assume that β is of order 1. The integral representation (5.3) of the reflected signal
shows that the autocorrelation function of the reflection coefficient at two nearby
frequencies will play an important role.

6.1. The frequency autocorrelation function of the reflection coeffi-
cient. We shall study the symmetric version

Uε1,1(ω, h, z) = Rε
(
ω +

ε2h

2
,−L, z

)
Rε
(
ω − ε2h

2
,−L, z

)
,
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and we shall extend the approach developed in [2, 7] to the dispersive case. It is
necessary to consider a family of moments so as to get a closed system of equations.
We thus introduce for n, p ∈ N

Uεn,p(ω, h, z) =

(
Rε
(
ω +

ε2h

2
,−L, z

))n(
Rε
(
ω − ε2h

2
,−L, z

))p
.

Denoting

k′(ω) =
∂k

∂ω
(ω) =

1

(1 − βω2)3/2
= (1 + βk2)3/2(6.1)

and using the Riccati equation (4.19) satisfied by Rε, we deduce

∂Uεn,p
∂z

= 2(n− p)Qε1U
ε
n,p +Qε2e

2ik(ω)z

ε2

(
neik

′(ω)hzUεn−1,p − pe−ik
′(ω)hzUεn,p+1

)
+Qε2e

− 2ik(ω)z

ε2

(
peik

′(ω)hzUεn,p−1 − ne−ik
′(ω)hzUεn+1,p

)
starting from

Uεn,p(ω, h, z = −L) = 10(n)10(p),

where 10(n) = 1 if n = 0 and 0 otherwise. Taking a shifted scaled Fourier transform
with respect to h,

V εn,p(ω, τ, z) =
k′(ω)

2π

∫
eihk

′(ω)(τ−(n+p)z)Uεn,p(ω, h, z)dh,

we get

∂V εn,p
∂z

= −(n+ p)
∂V εn,p
∂τ

+ 2(n− p)Qε1V
ε
n,p

+Qε2e
2ik(ω)z

ε2
(
nV εn−1,p − pV εn,p+1

)
+Qε2e

− 2ik(ω)z

ε2
(
pV εn,p−1 − nV εn+1,p

)
starting from

V εn,p(ω, τ, z = −L) = δ(τ)10(n)10(p).

Applying a diffusion-approximation theorem [2, section 3] establishes that the pro-
cesses V εn,p converge to diffusion processes as ε → 0. In particular, the expectations
E[V εn,n(ω, τ, z)], n ∈ N, converge to Wn(ω, τ, z), which obey the closed system of
transport equations

∂Wn

∂z
+ 2n

∂Wn

∂τ
=

1

2
αβ(ω)k(ω)2n2 (Wn+1 +Wn−1 − 2Wn) ,(6.2)

Wn(ω, τ, z = −L) = δ(τ)10(n),

where

αβ(ω) = α(k(ω))(1 + βk(ω)2)2 =
α(ω/

√
1 − βω2)

(1 − βω2)2
(6.3)

and α is proportional to the power spectral density of the random process m:

α(k) =

∫ ∞

0

E[m(0)m(z)] cos(2kz)dz.(6.4)
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Note that the limit transport equations (6.2) have the same form as those obtained
in the nondispersive case in [2]. The difference is contained in the rate coefficient
αβ(ω)k(ω)2, which is simply α0(ω)ω2 in the hyperbolic case. We then get the limit
of the autocorrelation function of the reflection coefficient:

E

[
Rε
(
ω +

ε2h

2
,−L, 0

)
Rε
(
ω − ε2h

2
,−L, 0

)]
ε→0−→

∫
ΛLref (ω, τ)e

−ihτdτ,(6.5)

ΛLref (ω, τ) = k′(ω)−1W1(ω, k
′(ω)−1τ, 0).(6.6)

The quantity W1(ω, τ, 0) is obtained through the system of transport equations (6.2),
which we study in the next section.

6.2. Analysis of the transport equations. We can interpret the transport
equation (6.2) in terms of a jump Markov process. Let us introduce the process
(Nt)t≥0 with state space N and infinitesimal generator

Lφ(N) =
1

2
αβ(ω)k(ω)2N2 (φ(N + 1) + φ(N − 1) − 2φ(N)) .

As in [2], we deduce

∫ τ1

τ0

W1(ω, τ, 0)dτ = P1

(∫ L

0

2Nsds ∈ [τ0, τ1], NL = 0

)
,

where Pp0 stands for the probability over the distribution of the jump process starting
from N0 = p0. Taking τ0 = 0 and τ1 = ∞ yields

E
[|Rε|2(ω,−L, 0)

] ε→0−→ P1(NL = 0).

It is remarkable that the generating function of the jump process can be expressed in
terms of the expectation of some functional of the diffusion process (θt)t≥0:

dθt =
√
αβ(ω)k(ω)dBt +

1

2
αβ(ω)k(ω)2 coth(θt)dt.(6.7)

We have

Ep0

[
zNt
]

= E

[
tanh

(
θt
2

)2p0 ∣∣∣ θ0 = 2 argtanh(
√
z)

]
,

where Ep0 stands for the expectation with respect to the distribution of the jump
process starting from N0 = p0. In particular,

E
[|Rε|2(ω,−L, 0)

] ε→0−→ P1(NL = 0) = E

[
tanh

(
θL
2

)2 ∣∣∣ θ0 = 0

]
.

As the probability density function of the diffusion process (θt) is known [21], we get

E
[|Rε|2(ω,−L, 0)

] ε→0−→ 1 − 4√
π

exp

(
− L

lβ(ω)

)∫ ∞

0

x2e−x
2

cosh
(
2
√
L/lβ(ω)x

)dx,
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where the localization length lβ(ω) of the mean transmittance is affected by the dis-
persion

lβ(ω) =
8

αβ(k(ω))k(ω)2
=

8(1 − βω2)3

α(ω/
√

1 − βω2))ω2
.(6.8)

If the power spectral density of the processm can be considered as constant α(k) ≡ α0,
that is to say, when the correlation length of the medium is smaller than the typical
wavelength of the pulse, then the above expression of the localization length shows
that dispersion enhances localization effects. The decay of the localization length as a
function of frequency is faster in the dispersive case than in the hyperbolic case. This
has been observed numerically in [18].

6.3. The refocused pulse. Choosing t2 = t1 in (5.3) shows that the refocused
pulse at z = 0 is given by the integral representation

ηεref(TRR)

(
t1
ε2

+ t, z = 0

)
=

∫ ∫
eiωtf̂(ω − ε2h)Ĝt1(h)

×Rε(ω,−L, 0)Rε(ω − ε2h,−L, 0)dh dω.(6.9)

The main result of this section is the self-averaging property of the refocused pulse.
This is shown in the following theorem, which gives the convergence of the refocused
pulse to a deterministic shape.

Theorem 6.1. For any T > 0, δ > 0,

P

(
sup

t∈[−T,T ]

∣∣∣∣ηεref(TRR)

(
t1
ε2

+ t, z = 0

)
− ηref(TRR)(t)

∣∣∣∣ > δ

)
ε→0−→ 0,

where ηref(TRR) is the deterministic pulse shape:

ηref(TRR)(t) = (f(− ·) ∗KTRR(·)) (t).(6.10)

The Fourier transform of the kernel KTRR is the convolution of the time-inverted
cut-off function Gt1 with the density τ �→ ΛLref (ω, τ) evaluated at 0:

K̂TRR(ω) =
(
Gt1(− ·) ∗ ΛLref (ω, ·)

)
(0) =

∫
Gt1(τ)Λ

L
ref (ω, τ)dτ.(6.11)

Proof. The first step consists of proving the tightness (i.e., the relative compact-
ness) in the space of continuous trajectories (equipped with the topology associated
to the sup norm over the compact subsets) of the family of continuous processes((

ηεref(TRR)

(
t1
ε2

+ t, z = 0

))
−∞<t<∞

)
ε>0

.

From (6.9) and the uniform bound |Rε| ≤ 1, it is easily seen that the quantity
|ηεref(TRR)(t1/ε

2 + t, z = 0)| is uniformly bounded by

∫
|Ĝ(h)|dh×

∫
|f̂(ω)|dω,
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which we assume finite. The modulus of continuity

Ωε(s) = sup
|s1−s2|≤s

∣∣∣∣ηεref(TRR)

(
t1
ε2

+ s1, z = 0

)
− ηεref(TRR)

(
t1
ε2

+ s2, z = 0

)∣∣∣∣
is bounded by

Ωε(s) ≤
∫

|Ĝ(h)|dh×
∫

sup
|s1−s2|≤s

|eiω(s2−s1) − 1||f̂(ω)|dω,

which goes to zero as s→ 0 uniformly with respect to ε, by Lebesgue’s theorem, and
ensures tightness.

Taking the expectation in (6.9) and using (6.5), we get the convergence of the
first moment:

lim
ε→0

E

[
ηεref(TRR)

(
t1
ε2

+ t, z = 0

)]
=

∫ ∫
eiωtf̂(ω)Ĝt1(h)

∫
e−ihτΛLref (ω, τ)dτdhdω

=

∫ ∫
eiωtf̂(ω)Gt1(τ)Λ

L
ref (ω, τ)dτdω

= (f(− .) ∗KTRR(.)) (t) = ηref(TRR(t).

In order to prove the convergence in probability of ηεref(TRR)(t1/ε
2 + t, z = 0) to the

deterministic refocused pulse ηref(TRR), we compute its second moment and show
that it converges to the square of the first moment obtained above. This computation
has been done in the acoustic case [9] using the moment analysis of the reflected
signal established in [7]. The second moment involves the moment of the product of
the reflection coefficients at four frequencies. The presence of the cut-off function Gt1
used in time reversal automatically pairs the frequencies. The moment analysis then
shows that the reflection coefficients for the two pairs become independent, which
proves the result. The same techniques apply to the dispersive case since the Riccati
equation (4.19) for the reflection coefficient has the same form as in the acoustic
case.

As for acoustic waves, the case of a large slab (L large) leads to explicit formulas
for the refocused pulse. This is developed in the following section.

6.4. Large slab. For acoustic waves the hyperbolicity of the equations makes
the reflected quantities of interest independent of L for L large enough. This leads
to explicit formulas for the power spectral density ΛLref . In our context of dispersive
waves, the velocities of the waves are still bounded as we consider a pulse with com-
pactly supported spectrum. For this reason, the power spectral density also becomes
independent of L for L large enough. Applying the same approach as in [2] (where
the case of acoustic waves was addressed), we get that the function ΛLref converges as
L grows to infinity to the limit density

Λ∞
ref (ω, τ) =

κβ(ω)ω2

(1 + κβ(ω)ω2τ)
2 ,(6.12)

where

κβ(ω) =
αβ(ω)k(ω)2

4ω2k′(ω)
=
α(ω/

√
1 − βω2)

4 (1 − βω2)
3/2

.
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Fig. 6.1. Fourier transform of the convolution kernel KTRR (a) and refocused pulse (b). We
consider a square cut-off function G(t) = 1[0,t1](t), and we assume α(ω) ≡ 4, t1 = 1. The initial

pulse has sinc shape f(t) = sin(t)/t, and its spectrum is f̂(ω) = (1/2)1[−1,1](ω). (Note that β = 1
corresponds to a very dispersive configuration.)

The deterministic refocused pulse is then given by (6.10) with the explicit Λ∞
ref derived

in this section. Taking, for instance, a square cut-off function Gt1(t) = 1[0,t1](t), the
kernel KTRR reads as a high-band filter because its Fourier transform is

K̂TRR(ω) =
κβ(ω)ω2t1

1 + κβ(ω)ω2t1
.(6.13)

An example is presented in Figure 6.1. The cut-off frequency of the filter K̂TRR

decays with increasing dispersion parameter β. This shows that time reversal focusing
in reflection is more efficient in the dispersive case than in the hyperbolic case. This is
consistent with the observation that localization effects are enhanced in the presence
of dispersion (see (6.8)).

7. Asymptotics of refocused pulse in transmission.

7.1. The frequency autocorrelation function of the transmission coef-
ficient. We study here the autocorrelation function of the transmission coefficient at
two nearby frequencies. We first define a new family of processes indexed by n, p ∈ N,

Ũεn,p(ω, h, z) = Uεn,p(ω, h, z)T
ε

(
ω +

ε2h

2
,−L, z

)
T ε
(
ω − ε2h

2
,−L, z

)
,

which satisfy

∂Ũεn,p
∂z

= 2(n− p)Qε1Ũ
ε
n,p +Qε2e

2ik(ω)z

ε2

(
neik

′(ω)hzŨεn−1,p − (p+ 1)e−ik
′(ω)hzŨεn,p+1

)
+Qε2e

− 2ik(ω)z

ε2

(
peik

′(ω)hzŨεn,p−1 − (n+ 1)e−ik
′(ω)hzŨεn+1,p

)
starting from

Ũεn,p(ω, h, z = −L) = 10(n)10(p).

Taking a shifted scaled Fourier transform with respect to h,

Ṽ εn,p(ω, τ, z) =
k′(ω)

2π

∫
eihk

′(ω)(τ−(n+p)z)Ũεn,p(ω, h, z)dh,
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we get

∂Ṽ εn,p
∂z

= −(n+ p)
∂Ṽ εn,p
∂τ

+ 2(n− p)Qε1Ṽ
ε
n,p

+Qε2e
2ik(ω)z

ε2

(
nṼ εn−1,p − (p+ 1)Ṽ εn,p+1

)
+Qε2e

− 2ik(ω)z

ε2

(
pṼ εn,p−1 − (n+ 1)Ṽ εn+1,p

)
starting from

Ṽ εn,p(ω, τ, z = −L) = δ(τ)10(n)10(p).

Applying a diffusion-approximation theorem [2, section 3.14] establishes that the pro-
cesses Ṽ εn,p converge to diffusion processes as ε → 0. In particular, the expectations

E[Ṽ εn,n(ω, τ, z)] converge to W̃n(ω, τ, z), which obey the closed system of transport
equations

∂W̃n

∂z
+ 2n

∂W̃n

∂τ
=

1

2
αβ(ω)k(ω)2

(
(n+ 1)2W̃n+1 + n2W̃n−1 − ((n+ 1)2 + n2)W̃n

)
,

W̃n(ω, τ, z = −L) = δ(τ)10(n).

We then get the limit of the autocorrelation function of the transmission coefficient:

E

[
T ε
(
ω +

ε2h

2
,−L, 0

)
T ε
(
ω − ε2h

2
,−L, 0

)]
ε→0−→

∫
ΛLtr(ω, τ)e

−ihτdτ,(7.1)

ΛLtr(ω, τ) = k′(ω)−1W̃0(ω, k
′(ω)−1τ, 0).(7.2)

7.2. Analysis of the transport equations. We can interpret the transport
equation in terms of a jump Markov process as in section 6.2. Let us introduce the
process (Ñt)t≥0 with state space N and infinitesimal generator:

L̃φ(Ñ) =
1

2
αβ(ω)k(ω)2

(
(Ñ + 1)2(φ(Ñ + 1) − φ(Ñ)) + Ñ2(φ(Ñ − 1) − φ(Ñ))

)
.

Note that L̃ is the adjoint of the generator L of the process (Nt)t≥0, which means

that (Ñt)t≥0 is the time reversed process of (Nt)t≥0. We have

∫ τ1

τ0

W̃0(ω, dτ, 0) = P̃0

(∫ L

0

2Ñsds ∈ [τ0, τ1], ÑL = 0

)
,(7.3)

where P̃p0 stands for the probability over the distribution of the jump process starting

from Ñ0 = p0. The generating function of the jump process is again expressed in terms
of the expectation of some functional of the diffusion process (θt)t≥0 defined by (6.7):

Ẽp0

[
zÑt

]
= E

[(
1 − tanh

(
θt
2

)2
)

tanh

(
θt
2

)2p0 ∣∣∣∣ θ0 = 2 argtanh(
√
z)

]
.

It should be noted also that W̃0 is not a density with respect to the Lebesgue measure
over R

+ (while W1 is a density, as seen in section 6.2). It consists actually of the sum
of a Dirac mass at 0 and a density:

W̃0(ω, dτ, 0) = pω,dδ0(dτ) + W̃0,c(ω, dτ, 0).
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This expression is obtained by disintegrating the right-hand side of (7.3) over the first
jump time of the process (Ñ)t≥0. The weight of the Dirac mass is

pω,d = exp

(
− 4L

lβ(ω)

)
,

while the absolutely continuous part is given by∫ τ1

0

W̃0,c(ω, τ, 0)dτ =

∫ L

0

4

lβ(ω)
e

−4(L−t)
lβ(ω)

P̃1

(∫ t

0

2Ñsds ∈ [0, τ1], Ñt = 0

)
dt.

It seems impossible to derive a closed form expression for the density part. We
can either derive expansions or perform numerical simulations based on Monte-Carlo
simulations of the random jump process (Ñt)t≥0. For instance, we can expand W̃0,c

for small τ . Indeed, if τ1 � lβ(ω), then

P̃1

(∫ t

0

2Ñsds ∈ [0, τ1], Ñt = 0

)
 2τ1
lβ(ω)

exp

(
− 4t

lβ(ω)

)
,

so that

W̃0,c(ω, τ, 0)
τ	lβ(ω) exp

(
− 4L

lβ(ω)

)
8L

lβ(ω)2
.

This approximate expression will be used in the next section to give a closed form
expression of the refocused pulse in a particular regime.

7.3. The refocused pulse. The following theorem expresses the self-averaging
property of the refocused pulse.

Theorem 7.1. For any T > 0, δ > 0,

P

(
sup

t∈[−T,T ]

∣∣∣∣ηεtr(TRT )

(
t1 + L

ε2
+ t, z = 0

)
− ηtr(TRT )(t)

∣∣∣∣ > δ

)
ε→0−→ 0,

where ηtr(TRT ) is the refocused pulse shape:

ηtr(TRT )(t) = (f(− ·) ∗KTRT (·)) (t).(7.4)

The Fourier transform of the kernel is the convolution of the time-inverted cut-off
function Gt0,t1 with the density τ �→ ΛLtr(ω, τ) evaluated at (1 − k′(ω))L:

K̂TRT (ω) =
(
Gt0,t1(− ·) ∗ ΛLtr(ω, ·)

)
((1 − k′(ω))L)

=

∫
Gt0,t1(τ − (1 − k′(ω))L)ΛLtr(ω, dτ).(7.5)

Proof. The proof follows the same lines as that of Theorem 6.1 with the transport
equations corresponding to the transmission problem.

Homogeneous dispersive case. Assume here that randomness is absent (αβ(ω) ≡
0). Then ΛLtr(ω, τ) = δ0(τ), so that

K̂TRT (ω) = Gt0,t1((k
′(ω) − 1)L),

which is consistent with the results of section 5.4 at z = 0.
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Fig. 7.1. Fourier transform of the convolution kernel KTRT (a) and refocused pulse (b). We
consider the three cut-off functions G1, G2, G3 described within the text. Here we assume α(ω) ≡ 1,
L = 1. The initial pulse has Gaussian shape f(t) = exp(−t2/2).

Random nondispersive case. Assume here that β = 0. Consider an input pulse f
which is such that the power spectral density of the process m can be considered as
constant over the spectral range [−ωmax, ωmax] of f : α(ω) ≡ α0. Finally, assume that
we record a small piece of the transmitted wave in the sense that the cut-off function
Gt0,t1 has its support in [t0, t1] such that t0 < 0 and t1 > 0 with α0ω

2
maxt1 � 1. Then

K̂TRT (ω) = e−
α0ω2L

2

(
Gt0,t1(0) +

α2
0ω

4L

8
〈Gt0,t1〉

)
,

where 〈Gt0,t1〉 =
∫∞
0
Gt0,t1(t)dt, so that

ηtr(TRT )(t) = Gt0,t1(0) (f(− ·) ∗KTRT,1(·)) (t) + 〈Gt0,t1〉 (f(− ·) ∗KTRT,2(·)) (t),

K̂TRT,1(ω) = e−
α0ω2L

2 ,

K̂TRT,2(ω) =
α2

0ω
4L

8
e−

α0ω2L

2 .

The convolution kernel KTRT,1 results from the double action of the O’Doherty–
Anstey theory on the front pulse in forward and backward directions. Of course this
contribution completely vanishes if we do not record the front of the pulse (Gt0,t1(0) =
0). The convolution kernel KTRT,2 is a filter that retains only the frequencies around
1/
√
α0L, those which can probe the medium without being completely reflected by

the strong localization effect.

7.4. Numerical illustrations. We would like to illustrate results obtained in
the previous section. We consider the hyperbolic random case discussed in subsection
7.3. In Figure 7.1 we plot the Fourier transform of the kernel KTRT for three different
time reversal calculations corresponding to three different cut-off functions Gt0,t1 that
we shall denote by G1, G2, and G3. In the first calculation, we record only the front
pulse and send it back into the medium G1(0) = 1, 〈G1〉 � L. We may think, for
instance, that

G1(t) = cos2
(
t

t1

)
1[−πt1/2,πt1/2](t),

with α0ω
2
maxt1 � 1 and t1 � L. The refocused pulse results from the action of the

O’Doherty–Anstey theory, and its shape is the convolution of the initial pulse shape
with the kernel KTRT,1 (solid line, Figure 7.1).
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In the second calculation, we record a small piece of the coda but not the front
pulse G2(0) = 0, 〈G2〉 = 4L. We may think, for instance, that

G2(t) =
8L

πt1
sin2

(
t

t1

)
1[0,πt1](t),

with α0ω
2
maxt1  0.1 − 0.2. Only medium range frequencies have been recorded, so

that the refocused pulse shape is the convolution of the initial pulse shape with the
kernel KTRT,2 (dashed line, Figure 7.1).

In the third calculation, we record both the front pulse and a piece of the coda,
so that G3(0) = 1, 〈G3〉  3.2L. We may think, for instance, that

G3(t) =
6.4L

πt1
sin2

(
t+ t0
t1

)
1[−πt0,π(t1−t0)](t),

with α0ω
2
maxt1  0.1 − 0.2 and t0 

√
πt31/(6.4L). In such a case a broad range of

frequencies are recorded, and the cut-off function has been chosen in such a way that
the weighted sum of the two kernels KTRT,1 and KTRT,2 define a kernel KTRT with
a large band of frequencies (dash-dotted line, Figure 7.1). As a result, the refocused
pulse is close to the initial pulse.

It has been observed experimentally [10] that retransmitting part of the coda pro-
duces better refocusing than resending the front. This observation addresses spatial
refocusing, while in this paper we focus our attention on time refocusing. The above
illustrations show that the contributions of the coda and the front to the refocused
pulse are actually complimentary. The contribution of the front is concerned with the
low-frequency components of the pulse, while the contribution of the coda is concerned
with the high-frequency components of the pulse. If we extrapolate this observation
to three-dimensional configurations, then we can understand the quoted experimental
observation in the sense that the high-frequency components are the ones that are
expected to give the precise location of the source point.

7.5. TRT numerical experiments and application to source reconstruc-
tion. In this section we further illustrate TRT. A numerical method for the nonlinear
terrain-following Boussinesq equation has been fully described in [19]. In this section
we describe time reversal experiments in transmission by performing numerical experi-
ments corresponding to the linearized terrain-following Boussinesq system (2.1)–(2.2).
The initial wave elevation profile is incoming from the left and is given either by a
Gaussian η0(z) = f(z) = exp(−z2/0.05) or by its spatial derivative f ′(z), as displayed
in Figure 7.2. The corresponding initial velocity field is calculated in order to gener-
ate only a right-propagating mode, as presented in section 3. This is easily done by
performing the inverse FFT of ǔ ≡ (ω/k)f̌ .

7.5.1. Previous numerical results in related configurations. In a previous
article by Fouque and Nachbin [15], TRR numerical experiments were conducted
with a weakly nonlinear shallow water system. In particular, formula (6.10) (for
the refocused pulse shape in reflection) was numerically captured in the hyperbolic
(β = 0) case. The corresponding formula in [15] reads as (6.10) with KTRR, as given
by expression (6.13), with κ(β=0)(ω) = α(ω)/4. A weakly nonlinear example was also
presented showing that formula (6.10) with β = 0 still holds as a good approximation.
As a consequence of these early results, a complete nonlinear hyperbolic theory has
been recently developed by the present authors [13]. Subsequently [14, 19] nonlinear
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Fig. 7.2. Initial wave elevation profiles considered in the experiments.

experiments were further extended, and several numerical experiments for TRR were
presented for both linear and weakly nonlinear dispersive waves, including solitary
waves. Theory is not yet available for weakly dispersive, weakly nonlinear (solitary)
waves.

Connecting the above comments and previous results with the present paper, we
recall that numerical results for the transmitted front (as at the end of section 5.2)
were presented by Grajales and Nachbin in [18]. The present numerical code captured
quantitatively the composition of both kernels Kd and Kr, defined through (5.6).
One should keep in mind that the present stochastic O’Doherty–Anstey formulation
in transmission is more general than the deterministic theory given in [18], in part
because it does not necessarily rely on β being small and also because it displays the
self-averaging property. Moreover, time reversal was not addressed in [18].

Hence it is important to note that the transmission formula (5.6) plays an essential
role in expression (5.7), which converges asymptotically to the TRT formula (7.4). The
limiting form (7.1) of the frequency autocorrelation function was studied in section 7.1
and is characterized by the solution W̃0 of a transport equation, as indicated in (7.2).
In contrast to the TRR problem it is not possible to derive a closed form expression for
the power spectral density ΛLtr, as mentioned at the end of section 7.2. One can derive
expansions or perform Monte-Carlo simulations with the corresponding jump process.
On the other hand, in the TRR problem this was made possible with the large slab
hypothesis (section 6.4), leading to a closed form expression for Λ∞

ref . Thus extracting
quantitative information from expression (7.4) is a complex task, particularly due to
the difficulty of computing ΛLtr.

Our strategy for presenting numerical results that address the theoretical expres-
sion for TRT is as follows. In section 7.3 a dispersive regime was identified where TRT
can be easily checked: the homogeneous dispersive case. It has never been verified
that the oscillatory effect of the Airy kernel can be completely recompressed, even for
large values of β where we end up completely losing track of the initial pulse shape.
Phases are scrambled due to dispersion but recompressed (reorganized) through time
reversal. This will be shown below.
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Fig. 7.3. Bottom graph: the complete transmitted wave elevation. The initial condition is given
by a dashed line. Dispersive propagation (β = 0.01) over a flat bottom. Top graph: cut-off wave
elevation profile to be time reversed and sent back towards the origin.

The next step is to add randomness. In forward transmission the dispersive
O’Doherty–Anstey attenuation mechanism has been quantitatively validated in [18],
for a specific realization. Note that these are two separate ways of addressing the two
main mechanisms encoded in ΛLtr: the dispersive and the incoherent coda production
and recompression. Finally, in the absence of a closed form expression for ΛLtr, we
proceed to qualitatively verifying the combined effect for the dispersive TRT in a
random environment.

7.5.2. New experiments for dispersive TRT. The new experiments of in-
terest are in the TRT regime illustrating how, in particular, it can be applied to source
reconstruction (i.e., waveform inversion).

We first consider the homogeneous dispersive case discussed above. In this prob-
lem a Gaussian pulse will be gradually transformed into an Airy function (cf. section
5.4, case (b)). An oscillatory tail develops behind the wavefront due to dispersion,
as displayed in Figure 7.3. TRT will recompress the oscillatory tail, and the initial
waveform is obtained as indicated in the sequence of Figure 7.4. In these experiments
we used the Gaussian pulse (of approximately unit width) for the right-propagating
initial elevation, together with its consistent (right-going) dispersive velocity profile
(β = 0.01). Both the wave elevation η and the wave velocity u were recorded for time
reversion. Hence no right-going mode was produced in the time reversed experiment.

Dispersion is then increased to a level where we will completely lose track of the
initial pulse shape. Let β = 0.1, and consider the derivative of a Gaussian for the initial
profile η0(z). In Figure 7.5 we present the forward experiment (in the top graph),
having only a right-going mode. Time evolves from bottom trace to the top. The
final trace (at the top) shows that we have completely lost track of the initial profile
highlighted in the bottom trace. Both η and u are recorded and time reversed. Hence
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Fig. 7.4. Time reversal in transmission (TRT) over a flat bottom. The initial profile was a
Gaussian at the origin. The time reversed profile is the trace at the bottom. Time evolves from
bottom to top at time increments of 3.6 units. Complete refocusing is observed in the top trace. The
dispersion level is β = 0.01.
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Fig. 7.5. TRT over a flat bottom. The initial profile is a derivative of a Gaussian at the origin
(bottom trace of graph (A)). Time evolves from bottom to top. Full recompression is observed in
graph (B). The dispersion level has been increased to β = 0.1.
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Fig. 7.6. TRT over a flat bottom. Time evolves from bottom to top. The TR wave elevation
(bottom trace) was amplified by a factor of two, while the velocity field u was not used for TR.
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Fig. 7.7. (A) Solid line: the recorded η; dashed line: the amplified η for time reversion. (B)
Refocused pulse for the amplified experiment of Figure 7.6 (dashed line) and for the experiment in
Figure 7.5 (solid line).

a left-propagating mode is generated for the time reversed experiment. In the bottom
graph of Figure 7.5 we clearly see the full recompression as predicted in section 5.4.

Next we consider the case where we record only the wave elevation η. For the
time reversal experiment we re-emit this elevation field with a two-fold amplification.
The corresponding dynamics is presented in Figure 7.6. We clearly see that, as recom-
pression takes place along the left-propagating mode, there is a small dispersive wave
propagating to the right. In Figure 7.7(A) we have the “doubled” time reversed profile
compared to the recorded profile. In Figure 7.7(B) we see that the refocused pulse is
the same for both experiments considered with β = 0.1. The oscillatory coda seen in
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Fig. 7.8. TRT over a random topography. The fluctuation level is 50% and the correlation
length is ε = 0.1. The realization of the topography used for the simulation is given at the bottom.
Just above the topography we have the wave elevation profile used for time reversion. Then time
evolves from bottom to top in increments of 11.52 time units. The expected refocusing time takes
place at half the time increment used and is therefore graphed accordingly.

Figure 7.7(B) is due to the right-propagating mode in the “amplified” experiment.
We now repeat both TRT experiments in the presence of a random topography

expressed through the coefficient M(z). In these experiments both η and u are used in
the time reversed data. In Figure 7.8 a realization of the random topography is given
at the bottom of the graph, together with the transmitted wave elevation which will
be time reversed and sent back into the random medium. Note that to the left of the
(transmitted) oscillatory coda we have (small) incoherent radiation. At the correct
time the deterministic front, coda, and random radiation recompress to give rise to
(a reduced version of) the original waveform, namely a Gaussian. The correct time
is exactly the time for the wave to reach the origin (t = 97.92). This was the time
up to which the time reversed signal was originally recorded. Note, however, that the
resolution of the source location is rather poor. The three upper curves in Figure 7.8
show almost the same waveform. This is of course an expected consequence of the
hyperbolicity of the equations.

Our final illustration of TRT considers strong dispersive effects. In the previous
example we had β = 0.01. Now we consider a value ten times larger. We now adopt the
Gaussian’s derivative as the initial wave elevation profile. This function has more en-
ergy on higher Fourier modes than the Gaussian. Thus the effect of dispersion will be
even more noticeable. In Figure 7.9 we see the topography realization at the very bot-
tom of the figure. Above the topography we find the transmitted wave elevation profile
to be used in the time reversal experiment. This profile was recorded after 95.4 time
units. The corresponding velocity profile is reversed. From bottom to top, the next
three curves correspond to times t = 91.8, 95.4 (the expected refocusing time), and 99
time units. Only at time t = 95.4 do we have the original initial profile. At neigh-



TIME REVERSAL FOR DISPERSIVE WAVES IN RANDOM MEDIA 1837

0 10 20 30 40 50 60 70 80 90 100
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

3
   T R T       ( β  =  0.1)

   z   

Fig. 7.9. TRT over a random topography. The dispersion level has been increased 10 times
(β = 0.1). The trace at the bottom represents the time reversed wave elevation profile. The three
following curves (from bottom to top) correspond to times t = 91.8, 95.4 (the expected refocusing
time), and 99 time units. The topography’s fluctuation level is 50%, and the correlation length is
ε = 0.1.

boring times we see the effect of dispersion. At t = 91.8 we see that the oscillatory
coda (here ahead of the left-propagating pulse) is still being recompressed. At time
t = 99 the pulse starts developing the usual dispersive coda behind it. The wave
source is located at the origin with a much higher accuracy than in the hyperbolic
case. The source location is precisely the point between coda recompression and coda
generation. Note that from the TR initial profile (at the bottom of Figure 7.9) it is
very difficult to predict the source’s waveform, while TRT has naturally performed
the waveform inversion. We are currently working on the extension of these results
and applications to higher dimensions. A good numerical model and bathymetric
information can be invaluable tools for performing the time reversed dynamics and
waveform inversion.

8. Conclusion. In this paper we have addressed the time reversal for waves gov-
erned by a random dispersive Boussinesq system. We have demonstrated that source
location by time reversal is more effective in the dispersive case than in the hyperbolic
case, because the source location is precisely the point between coda recompression
and coda generation. Our analysis also shows that dispersion enhances localization
effects in random medium. As a result, time reversal focusing in reflection (resp., in
transmission) is more efficient (resp., less efficient) in the dispersive case than in the
hyperbolic case, as indicated in Figure 6.1(a). Extension to more general dispersion
relations is straightforward. The only but important hypothesis is that the addressed
dispersion relation k(ω) should be an odd function so that it preserves time reversibil-
ity. These statements can also be generalized to some extent to three-dimensional
configurations. In 3D configurations the pulse refocuses in time and in space [12, 6].
Accordingly, even in absence of dispersion source localization is possible, as it is given
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by the point where the refocused wave reaches its climax. However, we conjecture
that dispersion improves the resolution of the source location, as the pulse spreading
is enhanced when propagating away from the original source location. Furthermore,
the spectral phase modulations are larger in the presence of dispersion, so that only
close wavenumbers are phase-matched. We can thus expect that dispersion enhances
the statistical stability as well as the super-resolution in spatial refocusing described
in [3, 6, 23], and in time refocusing as described in this paper.
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ANALYSIS OF STRESS-DRIVEN GRAIN BOUNDARY DIFFUSION.
PART I∗
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Abstract. The stress-driven grain boundary diffusion problem is a continuum model of mass
transport phenomena in microelectronic circuits due to high current densities (electromigration) and
gradients in normal stress along grain boundaries. The model involves coupling many different equa-
tions and phenomena, and difficulties such as nonlocality, complex geometry, and singularities in the
stress tensor have left open such mathematical questions as existence of solutions and compatibility
of boundary conditions. In this paper and its companion, we address these issues and establish a
firm mathematical foundation for this problem.

We use techniques from semigroup theory to prove that the problem is well posed and that the
stress field relaxes to a steady state distribution which, in the nondegenerate case, balances the elec-
tromigration force along grain boundaries. Our analysis shows that while the role of electromigration
is important, it is the interplay among grain growth, stress generation, and mass transport that is
responsible for the diffusive nature of the problem. Electromigration acts as a passive driving force
that determines the steady state stress distribution, but it is not responsible for the dynamics that
drive the system to steady state.

We also show that stress singularities may develop near grain boundary junctions; however,
stress components directly involved in the diffusion process remain finite for all time. Thus, we have
identified a mechanism by which large “hidden” stresses may develop that are not directly involved
in the diffusion process but may play a role in void nucleation and stress-induced damage.

Key words. grain boundary, diffusion, electromigration, elasticity, semigroups

AMS subject classifications. 35Q72, 47D03, 74F99
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1. Introduction. A microelectronic circuit consists of a silicon substrate with
doped regions that function as circuit elements (transistors, diodes, resistors, and
capacitors), metal lines and vias (interconnects) that connect the circuit elements
together, intermetallic dielectric material that keeps the interconnects in place and
insulated from each other, various oxide layers and diffusion barriers that are primarily
needed in the manufacturing stage to control the doping process and keep the metal
from diffusing into the silicon, and passivation to keep all the components in place
and protected [28, 33].

A typical interconnect line might be an alloy of Al-0.5%Cu, have dimensions of
0.5 × 0.5 × 300 microns, and carry a current density of 20 mA/µm2. As electrons
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flow through the line, they are scattered by imperfections in the crystal lattice of the
metal and impart momentum to the ion cores. This “electron wind” force is stronger
than the opposing direct force of the electric field, so ions are transported in the same
direction as the flow of electrons. This process is known as electromigration; it is a
dominant failure mechanism in microelectronic devices.

Grain boundaries, void surfaces, and passivation interfaces are fast diffusion paths
along which the diffusion constant typically is seven to eight orders of magnitude
higher than in the grains; therefore, most of the mass transport occurs at these loca-
tions. The inhomogeneous redistribution of atoms leads to the development of stresses
in the line. Stress gradients along grain boundaries and surface tension at void sur-
faces both contribute to the flux of atoms, usually opposing the electromigration term
and increasing the lifetime of the line. Significant residual stresses left over from ther-
mal contraction during the manufacturing process also affect the formation of voids
and the transport of atoms.

As microelectronic circuits become smaller and current densities become higher,
failure due to electromigration damage becomes an ever increasing problem in the
design of circuits. Many theoretical models have been proposed to explain the role
of various combinations of electromigration, stress gradients, diffusion, temperature,
anisotropy, surface tension, and hillock formation on the mass transport of atoms
in the bulk grains, along void surfaces, along grain boundaries, and at passivation
interfaces. A useful reference written from the engineering perspective is the review
article by Ho and Kwok [14]; see also [27]. The concept of the electron wind force
was formulated by Fiks [9] and by Huntington and Grone [15]. In his experimental
work in the 1970s, Blech [2] studied the behavior of thin films of aluminum and
titanium-nickel when large currents were passed through them and demonstrated the
existence of a threshold current density below which no damage occurs, which varies
inversely with the stripe length. Shortly thereafter, Blech and Herring [3] offered
the explanation that stress gradients were developing along grain boundaries in the
sample to counter the electron wind force, but they could be sustained only up to a
critical threshold. Once this threshold was reached, there was no physical mechanism
to stop the transport of material, and the stripe eroded at one end and formed hillocks
at the other.

Recent models of these phenomena were described by Mullins [21], Cocks and Gill
[6], Korhonen et al. [18], Sarychev et al. [25], and Kirchheim [17]. The Mullins paper
presents a nice overview of mass transport along surfaces and grain boundaries and
discusses cobble creep and grain boundary grooving. The paper by Cocks and Gill
gives a variational approach to the dynamics of grain boundary motion associated
with decreasing grain boundary area; they did not include stress in their model. The
papers [25] and [17] deal primarily with electromigration, stress-driven diffusion, and
vacancy generation in the grains, while [18] focuses on electromigration and grain
boundary diffusion. The latter three papers use a statistical argument about the
orientation of the grain boundaries in order to model the stress as a scalar variable
instead of a tensor; one should keep in mind, however, that for any particular sample,
the grain boundaries have a specific geometry, and singularities can occur in the stress
field that are ignored with this simplifying assumption.

Bower, Craft, Fridline, and collaborators use an advancing front algorithm to gen-
erate a sequence of adaptive, evolving finite element meshes to study grain growth,
void evolution, hillock formation, and grain boundary sliding for possibly anisotropic
materials responding to stress, surface tension, thermal expansion, and electromi-
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gration; see, e.g., [4, 10]. They use interesting semi-implicit techniques to overcome
timestep limitations due to the stiffness of the equations, and they use Lagrange
multipliers to determine the normal stress along grain boundaries.

An alternative approach based on the theory described in this paper is presented
in [30, 26], where a new singularity capturing the least squares finite element method
is developed to study the effect of singularities in the stress field on the grain boundary
diffusion process. Further references to the literature on numerical methods for grain
growth and void evolution may be found there.

Mathematical analysis of the partial differential equations involved is largely ab-
sent in the electromigration literature. There are several reasons for this. First, there
is no universal agreement in the electromigration community on exactly how all the
phenomena fit together, especially at junctions where grain boundaries meet voids or
other grain boundaries, and the process of void nucleation is far from understood.
Second, the problem is very complicated, with many different (stiff) phenomena cou-
pled together in a nonlocal, nonlinear way. Growth rates depend on taking derivatives
of stress components along grain boundaries and curvatures along surfaces. Bound-
ary conditions specify the gradient of the normal stress at junctions where the stress
field is singular. Many of the equations couple the displacement field to the stress
field, and it is difficult to visualize how this constrains the evolution of the system.
Both displacement and flux boundary conditions are specified at junctions where grain
boundaries meet the outer walls; in simpler problems such as the heat equation, this
would overspecify the boundary conditions. As a result of these and similar diffi-
culties, one typically has a long list of equations reflecting various principles such as
mass conservation and chemical potential continuity that one would like to use as a
model. But occasionally, incomplete physical reasoning can lead to mathematically
ill-posed problems; therefore, it is important to develop a rigorous justification for the
collection of equations to ensure a self-consistent model.

The goal of this paper is to provide a mathematical framework in which we can
analyze a modest subset of the phenomena mentioned above. We assume there are no
voids in the structure, and we work within the framework of linear elasticity (small
strain and small grain growth). This may be thought of as the linearization of a
nonlinear grain boundary migration theory. Most of the difficult problems mentioned
above persist in this setting. The equations are nonlocal and couple together many
different stiff phenomena that relate rates of change of displacement jumps to spatial
derivatives of the normal stress. The boundary conditions specify the gradient of the
normal stress at locations where the stress tensor becomes singular. And the geometry
of the problem involves the complicated branching structure of a grain boundary
network which does not have a natural ordering or orientation of its segments. The
same approach is taken in [30].

In section 2, we exhibit the equations in dimensionless form and briefly describe
the physical considerations that lead to these equations. Our main contribution here
is to model the net grain growth along the grain boundary Γ as the jump in a normal
component of the displacement across Γ, thinking of it as a scalar function g defined
on Γ. This is identical to what Bower and Craft did in [4], except that they viewed
each side of the grain boundary as a moving interface (in parallel with their treatment
of void surfaces) and did not single out g as important. They derived an equation
for the change ∆g (denoted ∆un in their paper) in a timestep but used it only to
update the displacements u on each side of the grain boundary. The advantage
of treating g as a time evolving function defined on the grain boundary (which is
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fixed in the reference configuration) is that we are able to recast the problem as an
ordinary differential equation on a Hilbert space and to apply techniques of semigroup
theory to prove the equations are well posed. The difficulties due to nonlocality, the
existence of singularities, and the complicated nature of the boundary conditions
are all absorbed into two unbounded operators L and S, which turn out to possess
many nice properties, such as self-adjointness, discrete spectra, and positivity (or
negativity). An overview of this procedure is given in section 3, and full details are
presented in section 6.

In section 4, we define the grain boundary normal stress problem and the op-
erator S, which is a type of Dirichlet-to-Neumann map that maps the displacement
jump g across Γ to the normal stress η = n · σn on Γ. We state the important prop-
erties of S (which are proved in the companion paper [31]) and identify a new class
of grain boundaries, which we call degenerate. Throughout this paper, we assume the
grain boundary network is nondegenerate in order to simplify the presentation. The
degenerate case is dealt with in [31].

In section 5, we analyze the operator L (= − ∂2

∂s2 ) on the grain boundary network.
The most important properties of this operator are that it is positive and self-adjoint,
its domain D(L) consists only of functions that satisfy continuity and flux boundary
conditions (useful for proving that the normal stress η has these properties), and the

domain of L
1
2 is precisely H1(Γ) (useful in specifying the Hilbert space in which η

evolves). The boundary conditions of chemical potential continuity and flux balance
at junctions turn out to be exactly what are needed for these results to hold.

In section 6, we show that the equation governing the evolution of normal stress
(namely, ηt = SLη) generates an analytic semigroup {Et : t ≥ 0} of bounded linear
operators on H1(Γ). The primary difficulties that arise have to do with the fact that
L (and in the degenerate case, S) has a nontrivial finite dimensional kernel which
must be dealt with using projections. We also discuss the role of electromigration as
a passive driving force, the enforcement of boundary conditions, and the development
of stress singularities near corners and grain boundary junctions.

Finally, in the Appendix, we study an infinite interconnect line with a single grain
boundary running through its center, which provides insight into the nature of the
diffusion process without the complication of boundary conditions and singularities.

2. Problem statement. In this section, we describe a two dimensional con-
tinuum model of electromigration and stress-driven grain boundary diffusion in the
linear regime of small strain, small grain growth elasticity. The reference configuration
(including the location of the grain boundary in the reference configuration) remains
fixed, while the stress and displacement fields defined on this domain evolve in time.

A grain is a region where the atoms are aligned in a regular lattice. A grain
boundary is an interface between two grains where the lattice structure becomes
disorganized as the lattice alignment changes from one side to the other. In our (con-
tinuum) model, we ignore details of lattice alignment and assume all grain boundaries
have equivalent properties.

The grain boundaries are assumed to be fast diffusion paths along which atoms
are transported much more easily than in the bulk grains. At each point on the grain
boundary, we have a flux J of atoms traveling along the grain boundary. J has units
of surface flux (cm−1s−1), where we consider our two dimensional domain to have
a thickness δ in the third dimension. If a portion of the grain boundary has more
atoms flowing into it than out, the atoms incorporate themselves into the lattice of
the adjacent grains and cause the grains to move apart to make room for the new
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atoms. At the same time there will be a net flux of atoms out of other regions of
the grain boundary, where atoms are removed from the lattice of each grain and the
grains move together so as not to leave a gap.

Although our analysis of this problem does not rely on the grain boundaries being
straight, we have omitted curvature-driven grain boundary motion from our model.
For this reason, we assume that the grain boundaries are initially straight and that
as grain growth occurs, the appropriate fraction of atoms attaches to each side of the
grain boundary so that Γ remains fixed in the spatial (stressed) configuration. We
adopt an Eulerian viewpoint where the reference configuration on which the stress
and displacement fields are defined is the spatial configuration, and the natural (un-
stressed) shape of each grain changes in time as material is added to (or removed
from) its boundary. For a given deformation ϕ mapping the natural state to the
stressed state, the displacement is defined as u(x) = x− ϕ−1(x) instead of ϕ(x) − x.
The linearized equations of elasticity [20, 5] are the same in the material and Eulerian
viewpoints.

We assume the interconnect line consists of several disjoint bounded polygonal
grains Ωk, and we denote their union (an open set) by Ω =

⋃
k Ωk. Ω is assumed to be

connected; see Figure 2.1. We denote the outer boundary (the “walls”) of the domain
by Γ0 = ∂(Ω) and the grain boundary network by Γ = (∂Ω \ Γ0)

−. Γ consists of N

closed line segments Γ =
⋃N
j=1 Γj . Each segment is given an arbitrary orientation

(a unit tangent vector tj) and an arclength parameter s which increases in the tj
direction. The unit normal nj points from right to left facing along tj . We do not
impose the Young condition, requiring that grain boundaries meet at 120◦ angles,
since it is not required for well posedness unless curvature is included as a driving
force.

The net grain growth g is defined on Γ as the jump in normal component of
displacement across the grain boundary:

g(x) := [u(x+) − u(x−)] · nj (x ∈ Γj).(2.1)

It represents the distance the original grains have separated to accommodate the new
material that occupies that space; see Figure 2.2. In the Eulerian picture, g(x) =
[ϕ−1(x−) − ϕ−1(x+)] · n is the amount that opposite sides of the grain boundary
at x would overlap if the grains were allowed to pass through each other to achieve
their stress-free shapes. This overlap corresponds to new material added during the
diffusion process.

In Figure 2.3, we list the equations and boundary conditions in nondimensional
form. We choose an arbitrary length scale L (∼ 1µm) and define the timescale

t0 = kTL3

νbDbΩ2
aµ

, where k is the Boltzmann constant, T is temperature, Db is the diffusion

constant for grain boundary surface diffusion at temperature T , νb is the number of
participating atoms per unit area, Ωa is the volume of an atom in the atomic lattice,
and µ is the shear modulus. See [21] for typical values of these parameters. We then
define the dimensionless variables

x̃ =
x

L
, t̃ =

t

t0
, ũ =

u

L
, σ̃ =

σ

µ
, ψ̃ =

|Z∗|e
Ωaµ

ψ, J̃ =
Ωat0
L2

J, etc.,(2.2)

and rewrite the equations (see [4, 30]) in terms of these variables (dropping the tildes).
Z∗e is a phenomenological effective charge for an ion in the lattice; e = |e| is the
elementary electric charge; and for a good conductor [21, 29], Z∗ ≈ −5. This means
the electron wind force is stronger than the opposing direct force of the electric field.
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Fig. 2.1. Left: geometry of an interconnect line. Right: arbitrarily assigned orientation of grain
boundary segment determines tangential and normal directions, left and right grain labels, etc. The
normal vector nj points from right to left when facing along the tj direction.

Γj

tj

nj

u−

u+

g(x)
x−
x+

Fig. 2.2. Left: g(x) is the jump in normal component of displacement across Γ at x. The sign
of g is independent of the orientation chosen for the segment. Right: exaggerated view of the natural
state of each grain obtained by plotting x− Cu(x±), x ∈ Γ, with a suitable C > 0. Grains must be
zipped together (g < 0) on the left and pushed apart (g > 0) on the right in order to fit together.

�

�

�
�

�

��� ��� � �

�� � � �

�� ��� � �

�	
���� ���
����	

�� ���� �������
� �
 �������	
 �� �

�	�������� ��� ���� �����

��� ���� ��� ����� � �� � �

��� � � �

��� � � �

��� ������� � ������� � ������� � �

��� ����� � ����� � �����
 �����	 !��������" � � �

��� ���� � �� � �

��� ����� � �� � ����� � �� � ����� � �� � �

�

�

�

�

�� ��

��

��� ��� � ���
�
�� � ��

�
� � ���� � ��

�� � �� � �

�

��� ������ ����� � �����

��� ����� � �����

��� � � ����� � ����

�� � � ��

Fig. 2.3. Summary of equations and boundary conditions. Segments are assumed (in this figure
only) to be parameterized away from the triple junction to avoid minus signs.
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The electric potential ψ is found by solving the Laplace equation under the as-
sumption that the grain boundaries do not significantly affect the flow of current in
the line. The displacement field u is found by solving the Lamé equations of linearized
elasticity (assuming plane strain). The stress tensor satisfies Hooke’s law,

σ = 2µε+ λ tr(ε)I,(2.3)

where λ and µ are the Lamé coefficients, εij = 1
2 (∂iuj + ∂jui) are the components of

the strain tensor, and tr(·) is the trace operator; see [20, 5].
Referring to Figure 2.3, 2a enforces the requirement that the displacement is

zero at the outer walls (passivation). In 3a, we assume that the grains do not slide
tangentially relative to each other, and we define the displacement jump g. In 3b,
we enforce the local balance of forces (tractions) across the grain boundary, which
together with the no-sliding assumption implies that all components of the stress
tensor are continuous across grain boundaries. In 3c, we define the normal stress η
on the grain boundary, which is well defined by 3b.

Equation 3d in Figure 2.3 is the main evolution equation, which gives the grain
growth rate in terms of the normal stress and the electrostatic potential. This equation
is a consequence of the continuity equation, the Einstein–Nernst equation, the Blech–
Herring model of the chemical potential of an atom in a grain boundary of a stressed
solid [3, 30], and electromigration:

∂tg + Ωa∂sJ = 0 (continuity equation),(2.4)

J = −νbDb

kT ∂sµb (Einstein–Nernst, µb = chemical potential),(2.5)

µb = µ0 − Ωaσnn (Blech–Herring, µ0 = const),(2.6)

∂sµb → ∂sµb + Z∗e ∂sψ (electron wind force, Z∗e < 0),(2.7)

J = νbDb

kT (Ωa∂sσnn + |Z∗e| ∂sψ) (flux before nondimensionalizing).(2.8)

Note that qualitatively, atoms are transported from regions of compression to regions
of tension and travel against the electric field E = −∇ψ in the same direction that
electrons flow. Here, ∂sψ is the derivative of ψ

∣∣
Γ

with respect to arc length, so
−∂sψ = E · t is the component of the electric field along the grain boundary.

Equation 4a in Figure 2.3 follows from 2a and 3a but is worth recording as a
boundary condition on g. Equation 4b enforces zero flux at gb-wall junctions: atoms
are not allowed to flow in or out of the network where the grain boundary meets
passivation, so global mass conservation should hold. Equation 5a is a compatibility
requirement following from 3a: if we start in one grain and follow the jump in dis-
placement around a triple junction, we have to end up with the original displacement
when we return. (The point xi here is infinitesimally close to the triple junction on
segment i.) Finally, equations 5b and 5c enforce chemical potential continuity and
flux balance at triple junctions, respectively.

3. Strategy. Thus far, each equation represents either a definition (of g or η) or
some physical requirement such as chemical potential continuity or mass conservation.
The next task is to find a way to organize them so that mathematical questions such
as well posedness can be addressed. One major challenge is to identify the role played
by singularities in the stress field near junctions and to understand the sense in which
4b, 5b, and 5c of Figure 2.3 can be expected to hold in light of these singularities.
Another goal is to find a way to untangle the equations and boundary conditions in
order to handle the nonlocal nature of expressions relating the displacement jump g
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to the normal stress η; placing local constraints on one imposes (rather awkward)
global constraints on the other via the Lamé equations. It is not immediately obvious
that the evolution 3d is compatible with conditions 4a–5c.

Our approach is to recast the problem as an ordinary differential equation on a
Hilbert space, writing the equation in terms of the normal stress η and absorbing all
the boundary conditions into the operators. In this way we take advantage of linearity
and gain insight into the role played by each of the boundary conditions in the well
posedness of the problem.

3.1. A type of Dirichlet-to-Neumann map. Equations 1a–3c in Figure 2.3
can be thought of as providing a mapping between the jump in displacement g and
the normal stress η. If we are given one (in some appropriate space), the other can
be determined by solving the elasticity equations. There is a duality between g and
η embodied in the energy relation

E = −1

2

∫
Γ

ηg ds,(3.1)

relating the elastic energy stored in the grains to the work done at the grain boundaries
to accommodate the accumulation or depletion of atoms there. See the companion
paper [31] for further details.

We denote the operator that maps a given grain growth function g on Γ to the
corresponding normal stress η by

S : D(S) → L2(Γ) : g �→ η (grain growth to normal stress map).(3.2)

Although S is unbounded, it turns out to be self-adjoint and negative (essentially due
to (3.1)), and its domain is dense in L2(Γ). Moreover, S has a compact pseudoinverse
B such that SB is the identity (nondegenerate case) or differs from the identity by a
finite rank projection (degenerate case). These properties are discussed in section 4
and proved in [31].

3.2. The second derivative operator. We define the operator L : D(L) →
L2(Γ) to be the negative of the second derivative operator with respect to arc length
on each grain boundary segment. If η is twice continuously differentiable on each Γj
and satisfies certain boundary conditions at the junctions, then η ∈ D(L) and the
restriction of Lη to the interior of Γj is given by

Lη(x) = −∂
2η

∂s2
(x ∈ Γoj).(3.3)

In section 5 we will show that boundary conditions 4b, 5b, and 5c from Figure 2.3
enforcing mass conservation and chemical potential continuity are exactly what are
needed for some of the most useful properties of L on the unit interval to carry
over to the more complicated branching structure of a grain boundary network. In
particular, L is self-adjoint, positive, and densely defined, and its kernel is finite
dimensional. Moreover, if L

1
2 is modified by a finite rank projection to remove its

kernel, it becomes an isomorphism from H1(Γ) onto L2(Γ), which is important in our
proof of well posedness.

3.3. An ordinary differential equation on a Hilbert space. The evolution
of the jump in displacement g is governed by equation 3d of Figure 2.3, namely,

gt = −∂2
s (η + ψ) = L(Sg + ψ).(3.4)
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Applying S to (3.4), we obtain

ηt = SL(η + ψ).(3.5)

The term ψ is acting as a passive driving force in (3.4) and (3.5). In general, if
the equation

dx

dt
= Ax, x(0) = x0,(3.6)

generates a strongly continuous semigroup {Et : t ≥ 0} of bounded linear operators
on a Banach space X [13, 32, 16, 1], then for f ∈ X the solution to the equation

ẋ = A(x+ f), x(0) = x0,(3.7)

is given by

x(t) = Et(x0 + f) − f (t ≥ 0).(3.8)

In section 6, we will show that the equation

ηt = SLη, η(x, t = 0) = η0(x),(3.9)

generates such a semigroup in H1(Γ), so the evolution of the normal stress η with
initial condition η0 (usually taken to be zero) is given by

η(t) = Et(η0 + ψ) − ψ.(3.10)

In the nondegenerate case, the evolution of g may be obtained directly from that
of η via g(t) = Bη(t), but in the degenerate case this is not so. In both cases, the
normal stress η evolves to a steady state stress distribution, but in the degenerate
case the displacement jump g can grow linearly without bound along certain growth
modes which are not suppressed by the stress-driven diffusion mechanism. The pic-
ture is suggestive of continental drift in plate tectonics, but the underlying physical
mechanism is entirely different; see [31].

4. The grain boundary normal stress problem. In this section we describe
the interface boundary conditions that are imposed when solving the Lamé equations,
introduce the notion of degeneracy of a grain boundary network, and define the op-
erators S and B. Rigorous proofs of the key properties of S and B are presented in
the companion paper [31].

Definition 4.1 (grain boundary normal stress). Given a function η ∈ L2(Γ),
find the displacement field u ∈ H1(Ω)2 satisfying µ∆u + (λ+ µ)∇(∇ · u) = 0 in the
interior of each grain subject to the boundary conditions

u(x) = 0 (x ∈ Γ0),(4.1)

[u(x+) − u(x−)] · tj = 0 (x ∈ Γj),(4.2)

[σ(x+) − σ(x−)]nj = 0 (x ∈ Γj),(4.3)

nj · σ(x)nj = η(x) (x ∈ Γj).(4.4)

Here H1(Ω) denotes the set {w ∈ L2(Ω) : w|Ωk
∈ H1(Ωk)}, so the jump in normal

component of displacement [u(x+)−u(x−)] ·nj is permitted to be nonzero for x ∈ Γj.
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To make sense of the boundary condition (4.4) for a general η ∈ L2(Γ), a suitable
notion of weak solution must be defined. This is done in [31], where it is shown that
for certain “degenerate” grain boundary networks, additional compatibility conditions
must be satisfied by η for a solution u to exist, and when it does exist, it is not unique.
This situation may be characterized as follows.

Definition 4.2. A grain boundary network is said to be degenerate if there exists
a nonzero displacement field u consisting of infinitesimal rigid body motions

u1

∣∣
Ωk

= ak − cky, u2

∣∣
Ωk

= bk + ckx (ak, bk, ck constants)(4.5)

such that the boundary conditions (4.1)–(4.4) hold with η ≡ 0. The jump in normal
component of displacement across grain boundaries is permitted to be nonzero.

In other words, degeneracy occurs when stress-free infinitesimal rigid body mo-
tions exist (grain by grain) that are zero at the outer walls and satisfy a no-sliding
condition across grain boundaries. An algorithm for finding the degeneracies of any
grain boundary network is presented in [31], where it is shown that degeneracy is
a consequence of pathologies such as junction angles greater than 180◦ or a large
number of quadruple (or higher) order junctions. In this paper we explicitly assume
the grain boundary network is nondegenerate, leaving the general case to [31]. This
substantially simplifies our proof of well posedness while retaining the key ideas.

Definition 4.3. When the grain boundary network is nondegenerate, the normal
stress to grain growth operator B : L2(Γ) → L2(Γ) : η �→ g is defined via

(Bη)(x) = [u(x+) − u(x−)] · nj (x ∈ Γj),(4.6)

where u is the (unique) solution to the grain boundary normal stress problem corre-
sponding to η.

Remark 4.4. As discussed in Figure 2.2, this definition is independent of the
orientation chosen for each segment Γj .

Definition 4.5. When the grain boundary network is nondegenerate, the op-
erator S : D(S) → L2(Γ) : g �→ η is defined as the inverse of B. In other words,
D(S) := range(B) and for y ∈ D(S), Sy is the unique x such that Bx = y.

Theorem 4.6. B is self-adjoint, negative, and compact. S is self-adjoint, nega-
tive, closed, and densely defined. In the nondegenerate case considered here, B is also
injective and has dense range.

Proof. See [31] for the proof.

Remark 4.7. The domain D(S) is quite complicated due to the variety of ways
self-similar solutions of the Lamé equations can behave near grain boundary junc-
tions; see [26, 30]. In particular, even for smooth functions η that are continuous at
junctions, g = Bη generally will be discontinuous at junctions and exhibit infinite
slopes. As a result, it would be very difficult to define S directly by setting up a
boundary value problem specifying g along Γ such that the resulting normal stress
η is always meaningful in the trace sense. By defining S as we have, we can de-
rive its properties by studying the compact operator B, which is well defined for all
η ∈ L2(Γ). Moreover, this approach allows us to explain how it is possible to impose
boundary conditions involving the normal stress at junctions where the stress tensor
develops singularities: the components directly involved in the diffusion process re-
main finite and well behaved for all time (and satisfy the boundary conditions) while
other components of the stress tensor blow up; see section 6.4.
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Fig. 5.1. The flux Fiη into junction i is a sum over incident segments j of slopes ±∂sη.

5. The Poisson equation on the grain boundary network. In this section
we show that the operator L is self-adjoint and positive, that there is a compact
pseudoinverse G for L such that I − LG is a finite rank projection onto ker(L) in

L2(Γ), and that A
1
2 := (L+ I−LG)

1
2 is an isomorphism from H1(Γ) onto L2(Γ). We

also characterize D(L) and D(L
1
2 ) and identify the kernel of L as the set of functions

that are constant on each connected component of Γ. Although these facts are well
known in the case of the Neumann problem on the unit interval, several nonobvious
tricks must be used to prove them for a network, and notation must be introduced
that can cleanly handle the lack of a natural ordering and orientation for the grain
boundary segments. In particular, we point out that not every function on a network
with loops has a continuous antiderivative (unless its integral around each loop is
zero).

5.1. Boundary conditions. As discussed in section 3.2, the operator L is the
negative of the second derivative operator with respect to arc length on each grain
boundary segment. If η is twice continuously differentiable on each segment and
satisfies the boundary conditions

1. η is continuous at xi

2. Fiη = 0
(i any junction label),(5.1)

then the restriction of Lη to the interior of Γj is given by

Lη(x) = −∂
2η

∂s2
(x ∈ Γoj).(5.2)

Here Fi is a flux operator for junction i, defined by

Fiη = (−1)ki∂sη(xi) (xi a gb-wall junction),(5.3)

Fiη =

pi∑
j=1

(−1)k
j
i ∂sη(x

j
i ) (xi a gb junction of order pi),(5.4)

where xji is infinitesimally close to junction xi on segment j and kji is 0 or 1 depending
on whether segment j is parameterized toward or away from xi; see Figure 5.1. At
junctions where a grain boundary meets an outer wall, only the second condition in
(5.1) is imposed since the first condition is automatic.

5.2. Integration by parts on the network. Let C(Γ) denote the space of

continuous functions on Γ, and let C̃(Γ) denote the space of functions f continuous
on the interiors of the Γj with well-defined limits f(xji ) at the endpoints xi of Γj but
with possibly different limiting values at xi when approached from different segments.
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Differentiation is defined segment by segment, where we recall that each segment is
given an arbitrary orientation along which the arc length parameter increases. We
define

C̃r(Γ) = {f : f (k) ∈ C̃(Γ), 0 ≤ k ≤ r}.(5.5)

For f ∈ C̃(Γ), we write [
f
]
Γ

=
∑
j

[
f(xji1(j)) − f(xji0(j))

]
,(5.6)

where i0(j) and i1(j) are the junction indices of the initial and final endpoints of seg-
ment j. We note that although both sides of (5.7) and (5.8) depend on the orientation
chosen for each segment, the identities[

f ′g
]
Γ

=
∑
i

g(xi)Fif
(
f ∈ C̃1(Γ) g ∈ C(Γ)

)
(5.7)

and ∫
Γ

f ′g ds =
[
fg
]
Γ
−
∫

Γ

g′f ds
(
f, g ∈ C̃1(Γ)

)
(5.8)

are valid for any particular choice. It follows that

(Lu, v) = (u, Lv)
(
u, v ∈ C̃2(Γ) and satisfy (5.1)

)
(5.9)

holds independently of the orientations chosen for each segment; i.e., the boundary
value problem Lu = λu subject to the boundary conditions (5.1) is self-adjoint.

5.3. Construction of a Green’s function. In this section we construct a
Green’s function Gl(x, y) for the operator L+ l2, where l is any positive real number.
Since L has a nontrivial kernel, there is no Green’s function when l = 0. We begin by
defining an auxiliary function

Kl(x, y) =

{
0, x, y on different segments,

kl(aj , sj(x), sj(y)), x, y ∈ Γj ,
(5.10)

where aj = |Γj | is the length of Γj , sj(x) = |x− xi0(j)| is the value of the arc length
parameter along Γj at x, and kl(a, x, y) is the Green’s function for −∂2

x + l2 on the
interval (0, a) with Dirichlet boundary conditions; see Figure 5.2. For (0 ≤ x ≤ y ≤ a),
we have

kl(a, x, y) = kl(a, y, x) =

(
cosh ly

sinh la

l
− cosh la

sinh ly

l

)
sinh lx

sinh la
.(5.11)

To get Gl from Kl, we have to fix the flux boundary conditions at each junction.
Let n be the number of junctions, and define the linear operator Tl : R

n → R
n as

follows. For w ∈ R
n, let ul,w be the unique function in C(Γ) which satisfies

ul,w(xi) = wi, ∂2
sul,w = l2ul,w.(5.12)

Explicitly, on segment Γj , we set

ul,w(x) = wi0(j) cosh lsj(x) +
[
wi1(j) − wi0(j) cosh laj

] sinh lsj(x)

sinh laj
.(5.13)
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Fig. 5.2. The function kl(a, x, y) satisfies −∂2
xkl = l2kl on (0, y) and (y, a), is zero at x = 0

and x = a, and has a unit (negative) jump in slope at x = y. In this plot, a = 1, l = 2, and
y = 0.1, . . . , 0.9. Note that limy→0

∂
∂x

∣
∣
x=0

kl(a, x, y) = 1 with a similar result as y → 1.

Now we define the ith component of Tlw to be the flux of ul,w into junction i:

(Tlw)i = Fiul,w.(5.14)

Thus Tl converts values at junctions into fluxes at junctions of the solution to (5.12).
We next show that Tl is invertible. Suppose that Tlw = 0, i.e., that Fiul,w = 0

at each junction. We wish to conclude that ul,w ≡ 0, so we proceed by contradiction.
Multiplying by (−1) if necessary, we assume the maximum value of ul,w is positive.
The maximum cannot occur in the interior of a segment or at a gb-wall junction
because the slope would be zero at such a maximum, while (5.12) would require that
the second derivative be positive. It also cannot occur at a triple junction because
the sum of the outward slopes is zero at such a junction: if any is positive it is not a
maximum, and if each is zero we use (5.12) again. Thus we reach a contradiction and
conclude that Tl is invertible.

To correct the flux boundary conditions of Kl to obtain Gl, we define wl(y) ∈ R
n

to give the values at the junctions of the solution to ∂2
xu = l2u with the same junction

fluxes as K(·, y):

wl(y) = T−1
l ({FiK(·, y)}ni=1) (y not an endpoint).(5.15)

Note that FiK(·, y) is nonzero only when y is on a segment incident to junction i,
and by (5.11), as y approaches junction i we have

lim
y→xi

({FkK(·, y)}nk=1

)
= −ei ∈ R

n.(5.16)

We define Gl(x, y) by

Gl(x, y) =

{
K(x, y) − ul,wl(y)(x), y not an endpoint,

ul,T−1
l (ei)

(x), y = xi.
(5.17)

By (5.16), Gl(x, y) is continuous on Γ × Γ, and by construction, for fixed y in the
interior of some segment, Gl(x, y) as a function of x satisfies the boundary conditions
(5.1). It is readily verified using the corresponding property of kl(a, x, y) that the
operator

Glf(x) =

∫
Γ

Gl(x, y)f(y) dy(5.18)
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is the inverse of L + l2 in the sense that for all f ∈ C(Γ) and all u ∈ C̃2(Γ) ∩ C(Γ)
satisfying (5.1),

(L+ l2)Glf = f, Gl(L+ l2)u = u.(5.19)

Gl is self-adjoint since L is self-adjoint, and as a result, Gl(x, y) = Gl(y, x) for all
x, y ∈ Γ.

Theorem 5.1. There exists an orthonormal basis {ϕn}∞n=1 for L2(Γ) and an
increasing sequence of nonnegative numbers λn growing without bound such that

ϕn ∈ C̃∞(Γ) ∩ C(Γ),(5.20)

Fiϕn = 0 (i any junction label),(5.21)

Lϕn = λ2
nϕn.(5.22)

The domain of L satisfies

{f ∈ C̃2(Γ) : f satisfies (5.1)} ⊂ D(L) ⊂ {f ∈ C̃1(Γ) : f satisfies (5.1)}.(5.23)

Proof. In the standard way [7, 8], we can show that Gl is a self-adjoint, compact
operator on L2(Γ); thus Gl has a complete orthonormal set {ϕn}∞n=1 of eigenfunctions
with eigenvalues converging to zero. It is also readily shown that for all f ∈ L1(Γ) ⊃
L2(Γ),

Glf ∈ {η ∈ C̃1(Γ) : η satisfies the boundary conditions (5.1)};(5.24)

hence the eigenfunctions are continuous and satisfy flux boundary conditions. Differ-
entiating (5.18), it follows that if f ∈ C̃r(Γ), then Glf ∈ C̃r+2(Γ); thus the eigenfunc-

tions belong to C̃∞(Γ) by a bootstrap argument. By (5.19), they are eigenfunctions
of L+ l2 with reciprocal eigenvalues. Since L+ l2 is invertible for l > 0, we conclude
that the eigenvalues of L form an unbounded sequence of nonnegative numbers {λ2

n}.
Finally, (5.23) holds when we redefine L to be G−1

l − l2. Then D(L) = ran(Gl), so the
first inclusion follows from (5.19) and the second from (5.24).

5.4. The kernel of L. The segments Γj of the grain boundary network can
be grouped together into connected components as sets in R

2. We decompose the
numbers 1, . . . , N into a collection J of disjoint sets such that each J ∈ J is the set
of indices of the segments Γj that belong to component ΓJ = ∪j∈JΓj . We number
these subsets arbitrarily J = {J1, . . . , Jd} and define the functions ek ∈ L2(Γ) for
1 ≤ k ≤ d by

ek(x) =

{
|ΓJk |−

1
2 , x ∈ ΓJk ,

0 otherwise.
(5.25)

Here |ΓJk | =
∑
j∈Jk |Γj | is the sum of the lengths of the segments making up compo-

nent k. Note that each ek is continuous at all junctions since all segments that meet
at a junction belong to the same connected component.

Proposition 5.2. The functions {ek}dk=1 form a basis for ker(L).
Proof. Theorem 5.1 ensures that ker(L) is finite dimensional and is spanned

by functions {ϕ1, . . . , ϕd′} satisfying (5.20)–(5.22) with λn = 0. Since each ek also
satisfies these conditions, we have d′ ≥ d, and it remains to show that any ϕ ∈ ker(L)
is constant on each connected component. Suppose not. Then there is a segment Γj∗
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on which ϕ is not constant. Since Lϕ = 0, ϕ is linear on each segment. Starting with
Γj∗ , there is a path to an outer wall along which ϕ strictly increases. This is because
ϕ satisfies (5.21), so if ϕ increases along a segment as we approach a triple junction,
it must also increase along one of the other segments as we leave the junction. Since
ϕ strictly increases along the path, no interior node can be revisited, and eventually
the path reaches a wall with a positive slope, which contradicts (5.21).

5.5. An isomorphism. In this section we show that L
1
2 becomes an isomor-

phism from H1(Γ) onto L2(Γ) if we modify it slightly to eliminate its kernel. It will
be useful to define the operators

P = I −
d∑

n=1

(·, ϕn)ϕn, A = L+

d∑
n=1

(·, ϕn)ϕn.(5.26)

Note that P is the orthogonal projection onto the subspace

ran(L) = ker(L)⊥ =

{
f ∈ L2(Γ) :

∫
ΓJk

f ds = 0, 1 ≤ k ≤ d

}
(5.27)

and L = AP = PA. A and P are self-adjoint since the ϕn are orthogonal.
Theorem 5.3. For any absolutely continuous f such that f ′ ∈ L2(Γ), if we write

f =
∑
anϕn, then

‖f‖2 =

∞∑
n=1

|an|2, ‖f ′‖2 =

∞∑
n=1

|anλn|2.(5.28)

There is a constant C such that

‖f‖L2 ≤ ‖A− 1
2 f‖H1 ≤ C‖f‖L2

(
f ∈ L2(Γ)

)
;(5.29)

i.e., A− 1
2 is an isomorphism from L2(Γ) onto H1(Γ) and is therefore compact as an

operator on L2(Γ). The domain of L
1
2 is H1(Γ), which requires continuity but imposes

no constraints on the derivatives at junctions.
Proof. On each segment, we have

ϕn(x) = cn,j cos(λnsj(x) − θn,j) (x ∈ Γj).(5.30)

We define

ψn = λ−1
n ϕ′

n (n > d).(5.31)

Note that ψn is not continuous on Γ but is zero at gb-wall junctions and satisfies
appropriate jump conditions at triple junctions so that[

ψng]Γ = 0 (g ∈ C(Γ)).(5.32)

We claim that {ψn}n>d is an orthonormal basis for the subset of functions f ∈ L2

such that f is the derivative of an absolutely continuous function in C(Γ). This subset
will not be all of L2 as soon as there are loops in the grain boundary network, since
the integral around a loop must be zero for a continuous antiderivative to exist. By
(5.8), we have the orthogonality condition∫

Γ

ψnψm = λ−1
n

([
ϕnψm

]
Γ
−
∫

Γ

ψ′
mϕn

)
=

∫
Γ

ϕmϕn = δmn.(5.33)
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To prove completeness, suppose W ∈ C(Γ) is absolutely continuous and w = W ′

belongs to L2. Suppose further that for all n > d, we have∫
Γ

wψn = 0.(5.34)

We must show that w ≡ 0. Integrating by parts, we obtain∫
Γ

wψn =
[
Wψn]Γ −

∫
Γ

ψ′
nW = λn

∫
Γ

Wϕn = 0 (n > d).(5.35)

Since {ϕn}∞n=1 is a basis, we conclude that W is a linear combination of ϕ1, . . . , ϕd.
Thus W is a constant on each connected component of Γ and w = W ′ = 0, as desired.

For any f ∈ L2, we may expand f =
∑∞
n=1 anϕn and apply the Parseval identity

to conclude that ‖f‖2 =
∑ |an|2. If f is absolutely continuous and its derivative is in

L2, then we have f ′ =
∑
n>d bnψn with

bn =

∫
Γ

f ′ψn =
[
fψn

]
Γ
−
∫

Γ

fψ′
n = λn

∫
Γ

fϕn = λnan.(5.36)

Since λn = 0 for n ≤ d, the Parseval identity gives the result ‖f ′‖2 =
∑∞

1 |λnan|2.
Therefore we have

‖f‖2
H1 = ‖f‖2

L2 + ‖f ′‖2
L2 =

∞∑
n=1

(1 + λ2
n)|an|2,

‖A 1
2 f‖2

L2 =

d∑
n=1

|an|2 +

∞∑
n=d+1

λ2
n|an|2.

(5.37)

As a result, we obtain

‖A 1
2 f‖L2 ≤ ‖f‖H1 ≤ C‖A 1

2 f‖L2

(
f ∈ H1(Γ)

)
,(5.38)

with C = λ−1
∗
√

1 + λ2∗, where λ∗ = λd+1 is the smallest nonzero eigenvalue of

L
1
2 .

Definition 5.4. The operator G is defined via

G = A−1 −
d∑

n=1

(·, ϕn)ϕn.(5.39)

G is the pseudoinverse of L in the sense that they have the same kernel and eigen-
functions with reciprocal (or zero) eigenvalues. The properties of A imply that G is
self-adjoint and compact on L2(Γ) and satisfies G = PA−1 = A−1P and LG = P .

6. Dynamics. In this section we show that if the grain boundary network is
nondegenerate, then the equation

ηt = SLη, η(0) = η0,(6.1)

generates an analytic semigroup {Et : t ≥ 0} of bounded linear operators on H1(Γ).
See [31] for the degenerate case and the books [13, 32, 16, 1] for background infor-
mation on semigroup theory. As mentioned in section 3.3, the solution η(t) when the
electromigration force is present is given by

η(t) = Et(η0 + ψ) − ψ.(6.2)
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The boundary conditions on η enforcing chemical potential continuity and flux balance
at junctions hold as a consequence of the analyticity of Et and the properties of the
domain D(SL). The role of singularities in the stress field near corners and junctions
is also discussed.

6.1. The semigroup generated by SL. In this section we show that there is
a Riesz basis (a basis equivalent to an orthonormal basis [11]) for H1(Γ) consisting of
eigenfunctions of SL. This allows us to exhibit the semigroup operator Et explicitly,
study its properties, and approximate it numerically [30, 26]. Throughout this section,
we assume the grain boundary network is nondegenerate so that B is injective and
SB = I on L2(Γ).

Lemma 6.1. Let us denote ker(L) = span{ek}dk=1 by {e}. Then

ker(SL) = {e}, ran(SL) = {Be}⊥.(6.3)

Proof. SL is densely defined in L2(Γ) since D(S) is dense, A−1 is bounded with
dense range, and D(SL) = A−1D(S). Clearly {e} ⊂ ker(SL). Since S is injective
on its domain, if Lx ∈ D(S) is nonzero, so is SLx. Thus ker(SL) = {e} as claimed.
Suppose y = SLx. Then By = Lx belongs to ran(L) = {e}⊥, so (y,Be) = 0 for all
e ∈ ker(L), as claimed.

Lemma 6.2. The (nonorthogonal) projection on L2(Γ) given by

Q projects along {e} onto {Be}⊥(6.4)

is well defined.
Proof. Since B is injective, {e} and {Be} have the same dimension. We must

show that {e} ∩ {Be}⊥ = {0}. Suppose x ∈ {e} ∩ {Be}⊥. Then (x,Bx) = 0, which
implies x = 0 since B is self-adjoint and negative definite.

Remark 6.3. Q may be written explicitly as I − (·, wk)ek (summation implied),
where wk = (Bej)αjk and (ei, Bej)αjk = δik. Since the L2 inner product (·, wk)
is a bounded linear functional on H1(Γ) and ek ∈ H1(Γ), Q is also a well-defined
projection on H1(Γ). By contrast, the L2 adjoint Q∗ = I − (·, ek)wk is generally not
defined on H1(Γ) due to the possibility of singularities in the arc length derivative of
wk near junctions.

Lemma 6.4. The following diagram is commutative in the sense that for each

block X
f ��

Y
g

�� we have f ◦ g = idY and g ◦ f = idD(f):

{Be}⊥ P �� {e}⊥
Q

��
L �� {e}⊥
G

��
S �� {Be}⊥
B

�� .(6.5)

Proof. P and Q both project along {e}, so PQ = P and QP = Q. Since
ran(P ) = {e}⊥ and ran(Q) = {Be}⊥, the block involving P and Q is commutative.
Since LG is the identity on {e}⊥ and GL is the identity on D(L) ∩ {e}⊥ = ran(G),
the block involving L and G is commutative. If (x,Be) = 0, then (Bx, e) = 0, so B
maps {Be}⊥ to {e}⊥. Since SB is the identity on L2(Γ) and BS is the identity on
D(S) = ran(B), the block involving S and B is commutative.

Theorem 6.5. There is a Riesz basis {φk} for H1(Γ) and a nonincreasing,
unbounded sequence of numbers λk ≤ 0 such that SLφk = λkφk.

Proof. The operator K = G
1
2Q∗BQG

1
2 is compact and self-adjoint, so there is an

orthonormal basis {ϕk} for L2(Γ) such that Kϕk = µkϕk, (µk ∈ R, µk → 0). Note
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that µk = (ϕk,Kϕk) = (QG
1
2ϕk, BQG

1
2ϕk) ≤ 0, with equality iff QG

1
2ϕk = 0. Note

that ker(QG
1
2 ) = ker(G

1
2 ) = {e} since ker(Q) = {e} and ran(G

1
2 ) ⊂ {e}⊥. We may

therefore assume µ1, . . . , µd = 0, and the remaining µk form an increasing sequence
of negative numbers converging to zero. Note that

QGQ∗B(QG
1
2ϕk) = µk(QG

1
2ϕk).(6.6)

From the above remarks, we know QG
1
2ϕk is nonzero for k > d. We define

φk =

{
ϕk, k = 1, . . . , d

QG
1
2ϕk, k > d

}
, λk =

{
0, k = 1, . . . , d
µ−1
k , k > d

}
.(6.7)

From the definition of Q, it follows that Q∗B = BQ, so QGBQφk = µkφk. If
k ≤ d, then SLφk = 0 since φk ∈ {e}. Otherwise, Qφk = φk and Lemma 6.4 gives
SLφk = SL(µ−1

k QGBφk) = λkφk. It is readily verified that for k ≥ 1,

φk =
[
(I − P ) +QG

1
2

]
ϕk, ϕk =

[
(I −Q) + L

1
2

]
φk.(6.8)

Since [I − P + QG
1
2 ] is bounded from L2(Γ) to H1(Γ) and its inverse [I − Q + L

1
2 ]

is bounded in the other direction, they are isomorphisms. Thus the φk form a Riesz
basis for H1(Γ) as claimed.

Theorem 6.6. The initial value problem ηt = SLη, η(0) = η0 generates an
analytic semigroup {Et : t ≥ 0} of bounded linear operators on H1(Γ).

Proof. Since the φk form a Riesz basis, the mapping from H1(Γ) to l2 giving
the coefficients of the expansion η0 =

∑
k akφk is an isomorphism, and there is a

constant C independent of η0 such that C−2‖η0‖2
H1 ≤∑∞

k=1 |ak|2 ≤ C2‖η0‖2
H1 . These

coefficients may be determined via

ak = ([I −Q+ L
1
2 ]η0, ϕk) = (η0, φ

∗
k), φ∗k = [I −Q∗ + L

1
2 ]ϕk,(6.9)

where (·, ·) is the L2(Γ) inner product. For η0 ∈ H1(Γ) we define

Etη0 =
∑
k ake

λktφk, ak = (η0, φ
∗
k).(6.10)

Et is bounded for any t ≥ 0 since λk ≤ 0 for all k, and hence ‖Etη0‖H1 ≤ C2‖η0‖H1 .
E0 is clearly the identity on H1(Γ), and Et+s = EtEs since (φj , φ

∗
k) = δjk. For fixed

η0, the mapping t �→ Etη0 is continuous for t ≥ 0 since

‖Etη0 − Esη0‖H1 ≤ C

(
N∑
k=1

|ak(eλkt − eλks)|2 +

∞∑
k=N+1

|ak|2
) 1

2

(6.11)

may be made arbitrarily small by choosing N large enough to make the second term
small and then s close enough to t to make the first term small. Note that for any
fixed t > 0 and η0 ∈ H1(Γ) we have

∥∥∥∥Et+hη0 − Etη0
h

− SLEtη0

∥∥∥∥
H1

≤ C

(
sup
k≥1

∣∣t−1f1(λkt)f2(λkh)
∣∣)( ∞∑

k=1

|ak|2
) 1

2

,

(6.12)

where f1(z) = zez and f2(z) = 1
z (e

z − 1) − 1. The supremum may be made arbi-
trarily small by taking h sufficiently close to zero since f1 and f2 are bounded on
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the negative real axis, limz→−∞ f1(z) = 0, and limz→0 f2(z) = 0. Thus we see that
SL is the generator of {Et : t ≥ 0}. To show that this semigroup is analytic, we
need only check that lim supt↓0 t‖SLEt‖ < ∞, which follows from t‖SLEtη0‖H1 ≤
C (supk |f1(λkt)|)

(∑∞
1 |ak|2

)1/2 ≤ C2e−1‖η0‖H1 .

Remark 6.7. Equation (6.10) leads to a useful numerical method in which φk, φ
∗
k,

and λk are computed by approximating QGBQ (which has the same eigenfunctions
as SL with reciprocal or zero eigenvalues) using a singularity capturing least squares
finite element method; see [30, 26].

Remark 6.8. Since Et is an operator on H1(Γ) and the formula for the evolution
of normal stress is given by

η(t) = Et(η0 + ψ) − ψ,(6.13)

we should verify that ψ belongs to H1(Γ). Since ψ is the solution to the Laplace
equation on a domain with corners, it is smooth in the interior of Ω with singularities
of the form

rλφ(θ) (λ = π/ω ≥ 1/2)(6.14)

near reentrant corners of opening angle ω ≤ 2π [12, 19]. As a result, the restriction of
ψ to Γ is continuous on Γ, differentiable in the interior of each Γj , and its derivative
with respect to arc length cannot diverge at the endpoints faster than s(λmin−1). (It
will diverge at all only if the grain boundary terminates at a reentrant corner of the
domain.) If we assume that Ω has no cracks with ω = 2π or, if it has cracks, that the
crack tips do not lie on grain boundaries, then λmin >

1
2 and ψ ∈ H1(Γ) as claimed.

6.2. The steady state stress distribution. Since λ1 = · · · = λd = 0, Et leaves
{e} = ker(SL) invariant. Since λk ≤ λd+1 < 0 for k > d, Et takes any vector
in {Be}⊥ = ran(SL) to zero as t → ∞. More precisely, one may show [31] that
limt→∞Et = I −Q in norm. Thus

ηsteady = lim
t→∞ η(t) = (I −Q)(η0 + ψ) − ψ.(6.15)

As a result, in the nondegenerate case there are constants cj such that

ηsteady = −ψ + cjej (summation implied).(6.16)

We also observe that (ηsteady − η0) = −Q(η0 + ψ) ∈ {Be}⊥, so

(ηsteady − η0, Bek) = 0 (1 ≤ k ≤ d).(6.17)

Since B is self-adjoint, this implies (gsteady−g0, ek) = 0, which is a statement of mass
conservation on each connected component of Γ. Using (6.16) and (6.17), we have

cj(ej , Bek) = (η0 + ψ,Bek) (1 ≤ k ≤ d),(6.18)

which determines the cj uniquely due to the fact that the d×dmatrix with components
(ej , Bek) is invertible. Note that the steady state flux ∂s(ηsteady+ψ) is zero; this ceases
to be true in the degenerate case [31], where (6.16) has additional nonconstant terms.
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Fig. 6.1. The electric field can lead to a flux imbalance at a triple (or wall) junction which
must be immediately compensated by stress gradients to satisfy mass conservation. As a result, ψ
generally will not lie in D(L) although η(t) + ψ ∈ D(L) when t > 0.

6.3. Boundary conditions. ψ does not necessarily satisfy zero flux boundary
conditions at junctions, and therefore, although ψ ∈ D(L1/2), it is not necessarily in
D(L); see Figure 6.1. On the other hand, because Et is analytic, we have range(Et) ⊂
D(SL) for all t > 0. Therefore η(t) in (6.13) has the property that

η(t) + ψ ∈ D(L) (t > 0).(6.19)

This implies chemical potential continuity and flux balance at all junctions for t > 0
(conditions 4b, 5b, and 5c in Figure 2.3). The grain growth function g may be obtained
from η via g(t) = Bη(t), which automatically satisfies the compatibility conditions
4a and 5a of Figure 2.3 by virtue of the definition of B in (4.6). We have therefore
proved that the grain boundary diffusion problem is well posed.

6.4. Stress singularities at junctions. It is well known that solutions to el-
liptic systems (such as the Lamé equations) on domains with corners and interface
junctions exhibit singularities at these junctions. In the current case, as the normal
stress η evolves on the grain boundary network, the stress and displacement fields in
the bulk grains evolve as the solution to the grain boundary normal stress problem
with η specified on Γ; see Definition 4.1. The general theory [30, 19, 24] states that
the singular part of the solution may be written as a sum of power solutions (each
component of the form rλφ(θ) in local polar coordinates) to the homogeneous bound-
ary value problem. As a result, the singular part of the solution near a given junction
satisfies boundary conditions (4.1)–(4.4) with η ≡ 0 along the grain boundaries en-
tering the junction. Although a different linear combination of stress components
will generally diverge as the junction is approached along Γ, n · σn will remain finite
and well behaved, and all boundary conditions in Figure 2.3 describe quantities that
remain finite despite the singularities. The corresponding displacement jump g will
also remain finite, although it will generally exhibit infinite slopes and discontinuities
(compatible with the boundary conditions) at junctions.

We have therefore demonstrated a mechanism through which stress components
directly involved in the mass transport process remain bounded and well behaved
while other “hidden” stress components grow very large and develop singularities;
these components may be responsible for void nucleation and stress-induced damage
but are omitted from commonly used scalar stress-generation models. In [30, 26], the
first several terms in the asymptotic expansion for u and σ are computed a priori and
added to the finite element basis to improve accuracy without mesh refinement. These
singular functions often are very complicated, with singularity exponents clustered
together in the complex plane.

Appendix. Infinite interconnect line.
In this section, we work out an exact solution to the stress-driven grain boundary

diffusion problem gt = −ηxx for an infinite interconnect line with a single grain
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Fig. A.1. The geometry and boundary conditions for the infinite strip.

boundary running through the center. This provides useful insight about the nature
of the diffusion process without the complication of boundary conditions at junctions
or singularities in the stress field. The approach is to solve the elastic equations
for a sinusoidal grain growth g and then use separation of variables and the Fourier
transform to determine the evolution for an arbitrary initial condition.

A.1. Elastic equations for sinusoidal grain growth. Suppose the grain
boundary coincides with the x-axis, and let h denote the width of each grain, as
shown in Figure A.1. If we let u = u1, v = u2 and define κ, α, β, γ, and τ by

κ =
λ+ 3µ

λ+ µ
, σ = µ

(
α− γ τ
τ α+ γ

)
, β =

2

κ+ 1
(vx − uy),(A.1)

then complex variable methods in plane elasticity [22, 30] can be used to guarantee
the existence of holomorphic φ and ψ (known as Muskhelishvili functions) such that

α+ iβ = 2φ′,
γ + iτ = z̄φ′′ + ψ′,

u+ iv =
1

2

(
κφ− zφ̄′ − ψ̄

)
.

(A.2)

By symmetry, for any displacement jump g(x) the variables in the top grain will be
related to the variables in the bottom grain via

u+(x, y) = u−(x,−y), v+(x, y) = −v−(x,−y),(A.3)

α+(x, y) = α−(x,−y), β+(x, y) = −β−(x,−y),(A.4)

γ+(x, y) = γ−(x,−y), τ+(x, y) = −τ−(x,−y).(A.5)

Thus it is sufficient to restrict attention to the top grain. At y = h, we impose Dirichlet
boundary conditions u = v = 0. Along the grain boundary, the four conditions
u+ = u−, v+ − v− = g, α+ + γ+ = α− + γ−, τ+ = τ− reduce to

τ = 0, v =
g

2
(boundary conditions along grain boundary).(A.6)

We observe that in the limit as h→ ∞, these boundary conditions coincide with the
problem of a rigid stamp without friction on a half-space and can be solved using
singular integrals [23]. We omit details since the result for finite h covers this case in
the limit.



1860 JON WILKENING, LEN BORUCKI, AND J. A. SETHIAN

For finite h, the singular integral approach does not work (at least not easily), so
instead we take g of the form

g(x) = c1 cosωx+ c2 sinωx(A.7)

and make an ansatz for the form of the Muskhelishvili functions:

φ = (a1 + ia2) cosωz + (a3 + ia4) sinωz,
(A.8)

ψ = (a5 + ia6) cosωz + (a7 + ia8) sinωz + (a9 + ia10)z cosωz + (a11 + ia12)z sinωz.
(A.9)

We wish to determine if there are real coefficients ai for which the boundary conditions
are satisfied. We begin by constructing the 4 × 12 real matrix A0(ω, κ, h, x) whose
ith column contains the boundary conditions u(y = h), v(y = h), v(y = 0), τ(y = 0)
for the φ and ψ corresponding to ai. For example, the second column corresponds to
φ = i cosωz, ψ = 0:

col2(A0) =
1

2

⎛
⎜⎜⎝

ωh sinωx coshωh− ωx cosωx sinhωh+ κ sinωx sinhωh
−ωh cosωx sinhωh− ωx sinωx coshωh+ κ cosωx coshωh

−ωx sinωx+ κ cosωx
−2ω2x cosωx

⎞
⎟⎟⎠ .(A.10)

Next we define the 16×12 real matrix A(ω, κ, h) by expanding each row of A0 into four
rows containing the coefficients of cos(ωx), sin(ωx), x cos(ωx), x sin(ωx). To satisfy
the boundary conditions (A.6), we need to find a ∈ R12 such that Aa = b, where b
contains the desired coefficients of the terms cos(ωx), sin(ωx), x cos(ωx), x sin(ωx) in
the boundary conditions. Explicitly, b and the second column of A are given by

b =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
0
0
0
0
0
0
c1
c2
0
0
0
0
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, col2(A) =
1

2

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
ωh coshωh+ κ sinhωh

−ω sinhωh
0

−ωh sinhωh+ κ coshωh
0
0

−ω coshωh
κ
0
0
−ω
0
0

−2ω2

0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.(A.11)

We verify that a solution exists by computing the nullspace of AT symbolically and
checking that b ∈ (kerAT )⊥ = imageA. We then select 12 linearly independent rows
of A (and the corresponding rows of b) and solve Aa = b symbolically. The resulting
a determines φ and ψ, which we use to compute η = σ22 = α + γ along the grain
boundary. This has to be done only once since the parameters such as κ and h appear
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Fig. A.2. Left: plot of C(ω) for h = 1 and κ = 1.15, 1.4, 2.0, 3.0. Right: plot of the dissipation
rate C(ω)ω2 for h = 1 and κ = 1.001, 1.01, 1.1, 2.0. Note that C(ω) diverges in the incompressible
(κ→ 1), long wavelength (ω → 0) limit and that although C(ω) is not monotonic for κ < 2, C(ω)ω2

is monotonic for ω ≥ 0. The envelope of the graphs of C(ω)ω2 is 3
2

+ 27
10
ω2 near the origin as

κ→ 1.

symbolically. All of this, including the construction of A0 and A via (A.2), (A.8), and
(A.9), can be done without difficulty using Mathematica or Maple.

The result of this computation is that along the grain boundary, η is a constant
multiple of g for any c1, c2, ω:

η(x) = −C(ω)g(x), C(ω) =
ω[1 + κ2 + 4h2ω2 + 2κ cosh 2hω]

(1 + κ)[κ sinh 2hω − 2hω]
.(A.12)

A plot of C(ω) for a few values of κ is given in Figure A.2. For large and small ω, we
see that C(ω) has the asymptotic form

C(ω) =
2ω

1 + κ
(|hω| � 1),(A.13)

C(ω) =
1

h

{
κ+ 1

2(κ− 1)
− (κ− 2)(κ− 3)

3(κ− 1)2
(hω)2 + · · ·

}
(|hω| � 1).(A.14)

A.2. Evolution for an arbitrary initial condition. The fact that η(x) =
−C(ω)g(x) when g varies harmonically allows us to use the Fourier transform to solve
the grain boundary diffusion problem for an arbitrary initial condition g(x, t = 0).
Note that the solution to gt = −ηxx with g(x, t = 0) = cosωx is given by

g(x, t) = e−C(ω)ω2t cosωx.(A.15)

This gives the time evolution of each Fourier mode. If we write g at t = 0 as

g(x, 0) =

∫ ∞

−∞
eiωxĝ(ω, 0) dω,(A.16)

then at any later time g will be

g(x, t) =

∫ ∞

−∞
eiωxĝ(ω, t) dω =

∫ ∞

−∞
eiωxe−C(ω)ω2tĝ(ω, 0) dω.(A.17)

It is instructive to compare the dissipation rate C(ω)ω2 to that for the heat
equation and the linearized surface diffusion equation:
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Dissipation Rate Equation
bω2 ut = buxx (b > 0)

C(ω)ω2 gt = −ηxx
bω4 ut = −buxxxx (b > 0)

From Figure A.2 and (A.12)–(A.14), we see that low-frequency modes decay like the
heat equation with b = (κ+ 1)[2h(κ− 1)]−1, whereas high-frequency modes decay as
exp(−b|ω|3) with b = 2(1+κ)−1, which is halfway between the heat equation and the
linearized surface diffusion equation.
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Abstract. The stress-driven grain boundary diffusion problem is a continuum model of mass
transport phenomena in microelectronic circuits due to high current densities (electromigration) and
gradients in normal stress along grain boundaries. The model involves coupling many different equa-
tions and phenomena, and difficulties such as nonlocality, complex geometry, and singularities in the
stress tensor have left open such mathematical questions as existence of solutions and compatibility
of boundary conditions. In this paper and its companion, we address these issues and establish a
firm mathematical foundation for this problem.

We study the properties of a type of Dirichlet-to-Neumann map that involves solving the Lamé
equations with interesting interface boundary conditions. We identify a new class of degenerate grain
boundary networks that lead to unsuppressed linear growth modes that are suggestive of continental
drift in plate tectonics. We use techniques from semigroup theory to prove that the problem is well
posed and that the stress field relaxes to a steady state distribution which may or may not completely
balance the electromigration force. In the latter (degenerate) case, the displacements continue to
grow without bound along stress-free modes.
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1. Introduction. Electromigration is a diffusion process in which high current
densities act as a driving force to transport ions in a metallic lattice in the direction
of electron flow by transferring momentum through scattering [10]. As microelec-
tronic circuits become smaller and current densities become higher, failure due to
electromigration damage in interconnect lines becomes an everincreasing problem in
the design of circuits. Grain boundaries, void surfaces, and passivation interfaces
are fast diffusion paths along which the diffusion constant typically is seven to eight
orders of magnitude higher than in the grains; therefore, most of the mass transport
occurs at these locations. The inhomogeneous redistribution of atoms leads to the
development of stresses in the line. Stress gradients along grain boundaries and sur-
face tension at void surfaces both contribute to the flux of atoms, usually suppressing
electromigration and increasing the lifetime of the line.

Many experimental, theoretical, and numerical studies have been done to inves-
tigate the role of various combinations of electromigration, stress gradients, surface
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diffusion, temperature, and anisotropy on the transport of atoms in the bulk grains,
along void surfaces, along grain boundaries, and at passivation interfaces. We refer
the reader to the companion paper [13] for a discussion of this literature.

The goal of this paper and its companion [13] is to provide a rigorous treatment
of a modest subset of the mass transport phenomena that occur in microelectronic
circuits. In particular, our model is two dimensional and neglects void evolution,
curvature-driven grain boundary motion, plastic deformation, and thermal effects.
Instead, we focus on the coupling of electromigration to stress generation, which is
difficult due to nonlocality, stiffness, complex geometry, and stress singularities at
junctions where boundary conditions involving normal stress are imposed.

In [13], we describe the problem physically, state the equations and boundary
conditions, find an exact solution for an infinite interconnect line, recast the problem
for a finite geometry as an ordinary differential equation on a Hilbert space involv-
ing two unbounded operators L and S, analyze the operator L, and prove that the
problem is well posed (using techniques from semigroup theory) under the simplifying
assumption that the grain boundary network is nondegenerate. We summarize many
of these results in section 2.

In section 3, we prove that S (a type of Dirichlet-to-Neumann map) is self-adjoint,
negative, closed, and densely defined. These properties are stated (omitting proofs) in
[13] and play an essential role in our analysis of the nondegenerate and general cases.
To define S, we study weak solutions to the grain boundary normal stress problem.
This leads us to identify a new class of degenerate grain boundary networks for which
S has a nontrivial (but always finite dimensional) kernel. We use an energy argument
to prove self-adjointness and negativity, and we present a counting argument that is
useful for characterizing degeneracy.

In section 4, we prove that the equation governing the evolution of normal stress
on the grain boundary network Γ generates an analytic semigroup of bounded linear
operators on H1(Γ). We also show how to use this semigroup to determine the
evolution of displacement and stress inside each grain, which is a nontrivial task since
the grain boundary normal stress problem is not uniquely solvable in the degenerate
case without additional information about the jump in displacement across Γ. We
show that the stress field relaxes to a steady state distribution which may or may not
completely balance the electromigration force along grain boundaries. In the latter
(degenerate) case, the displacement field describing the motion of the grains continues
to grow without bound along stress-free modes, leading to behavior that resembles
continental drift in plate tectonics.

We remark that such growth modes are quite harmless to an interconnect line.
They correspond to a gradual transport of material from one side of each participating
grain to the other, causing it to continually drift to avoid misfit with its neighbors,
but not leading to stress generation or voiding.

2. Preliminaries. We model the interconnect line as a union Ω =
⋃M
k=1 Ωk of

disjoint polygonal grains, as shown in Figure 2.1. We denote the outer boundary
(the “walls”) of the domain by Γ0, and we denote the grain boundary network by

Γ =
⋃N
j=1 Γj . Each line segment Γj is given an arbitrary orientation (a unit tangent

vector tj) and an arc length parameter s which increases in the tj direction. The unit
normal nj points from right (−) to left (+) facing along tj . The net grain growth
g is defined on Γ as the jump in normal component of displacement across the grain
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Fig. 2.1. Left: geometry of an interconnect line. Right: g(x) is the jump in normal component
of displacement across Γ at x.

boundary:

g(x) := [u(x+) − u(x−)] · nj (x ∈ Γj).(2.1)

It represents the distance the original grains have separated to accommodate the
new material that occupies that space; see Figure 2.1. Note that g evolves as a
function defined on Γ as u evolves on Ω; both Γ and Ω remain fixed in the reference
configuration. The sign of g is independent of the orientation chosen for the segment.

The electric potential ψ is found by solving the Laplace equation subject to the
boundary conditions ψ = 0 and ψ = ψ0 at the two ends of the interconnect line and
∂nψ = 0 on all other walls. We assume the grain boundaries do not significantly affect
the flow of electrons in the line, so boundary conditions are specified along Γ0 only;
Γ is invisible to ψ.

Each grain is assumed to deform elastically (assuming plane strain) and to satisfy
the Lamé equations of linearized elasticity, µ∆u + (λ + µ)∇(∇ · u) = 0. The outer
walls are assumed to be perfectly rigid, giving the two boundary conditions

u(x) = 0 (x ∈ Γ0).(2.2)

Along grain boundaries, four interface boundary conditions are specified:

u(x+) − u(x−) = g(x)nj (x ∈ Γj),(2.3)

σ(x+)nj = σ(x−)nj (x ∈ Γj).(2.4)

In other words, grains are not allowed to slide tangentially, the jump in normal com-
ponent of displacement is specified to be g(x), and both components of traction bal-
ance across the grain boundary. The traction condition is justified because we have
adopted an Eulerian viewpoint for the meaning of displacement; see [13]. For a given
deformation ϕ, u(x) is defined to be x − ϕ−1(x) rather than ϕ(x) − x. As a result,
g(x)nj = ϕ−1(x−)−ϕ−1(x+) rather than ϕ(x+)−ϕ(x−) (the latter is shown in Figure
2.1). The material and Eulerian viewpoints have the same linearization.

After nondimensionalizing [13], the flux J of atoms along the grain boundary is
given by J = ∂s(η+ψ). Here η = n ·σn is the normal stress along the grain boundary,
ψ = ψ

∣∣
Γ

is the restriction of the electric potential to the grain boundary, and ∂s is
the derivative with respect to arc length along the grain boundary. The continuity
equation expressing mass conservation is ∂tg + ∂sJ = 0; hence the evolution of net
grain growth is governed by

∂tg = −∂2
s (η + ψ) = L(Sg + ψ).(2.5)
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Here L = − ∂2

∂s2 is the negative of the second derivative operator with respect to arc
length on each grain boundary segment, and S maps a displacement jump g defined
on Γ to the corresponding normal stress η on Γ by solving the Lamé equations, as
discussed above. If we apply the operator S to both sides of (2.5), we obtain a
differential equation for η:

∂tη = SL(η + ψ).(2.6)

The solution to this equation is given by η(t) = Et(η + ψ) − ψ, where {Et : t ≥ 0} is
the strongly continuous semigroup of linear operators generated by SL; see section 4.
The solution to (2.5) is more complicated; it will be discussed in section 4.3.

Boundary conditions for chemical potential continuity and flux balance at junc-
tions are enforced by requiring that η + ψ belongs to the domain D(L) for t > 0;
see [13]. Similarly, to ensure that g is actually a displacement jump, i.e., that there
exists a displacement field u on Ω satisfying (2.3), we require that g ∈ D(S) for t > 0.

The domain D(S) is difficult to characterize; see section 3.3. To describe the
domain D(L), it is useful to establish further notation. Let C(Γ) denote the space of

continuous functions on Γ, and let C̃(Γ) denote the space of functions f continuous
on the interiors of the Γj with well-defined limits f(xji ) at the endpoints xi of Γj but
with possibly different limiting values at xi when approached from different segments.
Differentiation is defined segment by segment, where we recall that each segment is
given an arbitrary orientation along which the arc length parameter increases. We
define

C̃r(Γ) = {f : f (k) ∈ C̃(Γ), 0 ≤ k ≤ r}.(2.7)

Then the domain D(L) satisfies

{f ∈ C̃2(Γ) : f satisfies (∗)} ⊂ D(L) ⊂ {f ∈ C̃1(Γ) : f satisfies (∗)},(2.8)

where (∗) refers to continuity and flux boundary conditions at all junctions. In other

words, f ∈ C̃r(Γ) satisfies (∗) if f ∈ C(Γ) and at each junction xi,
∑
j ±f ′(xji ) = 0,

where the sum is over segments incident to xi and the sign depends on whether the
segment is parameterized toward or away from the junction.

Other key properties of L (all proved in [13]) are as follows. L is self-adjoint and
positive. Its kernel consists of the functions

ek(x) =

{
|ΓJk |−

1
2 , x ∈ ΓJk ,

0 otherwise.
(2.9)

Here Jk is the set of indices such that ΓJk := ∪j∈JkΓj is the kth connected component
of Γ (treated as a point set in R

2), and |ΓJk | =
∑
j∈Jk |Γj | is the sum of the lengths

of the segments making up component k. Let d = dim ker(L), and define

P = I −
d∑
k=1

(·, ek)ek, A = L+

d∑
k=1

(·, ek)ek, G = A−1 −
d∑

n=1

(·, ek)ek,(2.10)

where (·, ·) is the L2 inner product on Γ. Then P is the orthogonal projection onto
the subspace

ran(L) = ker(L)⊥ =

{
f ∈ L2(Γ) :

∫
ΓJk

f ds = 0, 1 ≤ k ≤ d

}
,(2.11)
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and we have L = AP = PA, LG = P , and GL = P
∣∣
D(L)

. A
1
2 is an isomorphism

from H1(Γ) to L2(Γ), where H1(Γ) consists of all f ∈ C(Γ) which are absolutely

continuous with (weak) derivative f ′ ∈ L2(Γ). Finally, D(L
1
2 ) = H1(Γ).

3. Elasticity with interface boundary conditions. In this section we give
rigorous definitions of the operators S and B, define weak solutions to the Lamé
equations with appropriate interface boundary conditions along grain boundaries,
and introduce the notion of degeneracy of a grain boundary network. We prove that
S and B are self-adjoint and negative on L2(Γ), that the former is closed and densely
defined, and that the latter is compact. We also provide a precise characterization of
grain boundary degeneracy that is easy to check numerically.

In the previous section, we described S as a type of Dirichlet-to-Neumann operator
that takes a displacement jump g on the grain boundary, solves the Lamé equations
subject to the boundary conditions (2.2)–(2.4), and returns the normal stress η on Γ.
For technical reasons, it is preferable to define S as the pseudoinverse of B, where B
takes a specified normal stress η on the grain boundary, solves the Lamé equations
subject to the boundary conditions

u(x) = 0 (x ∈ Γ0),(3.1)

[u(x+) − u(x−)] · tj = 0 (x ∈ Γj),(3.2)

[σ(x+) − σ(x−)]nj = 0 (x ∈ Γj),(3.3)

nj · σ(x)nj = η(x) (x ∈ Γj),(3.4)

and returns the jump in the normal component of displacement

(Bη)(x) = [u(x+) − u(x−)] · nj (x ∈ Γj).(3.5)

The primary obstacle to this approach is that in the case of degeneracy, η must satisfy
further conditions for a solution u to exist, and these solutions are not unique. In
this case, we define B using appropriate projections so that its pseudoinverse S has
the physical meaning described previously.

3.1. Boundary conditions. To impose Dirichlet boundary conditions at walls
and no-slip boundary conditions across grain boundaries, we employ a Hilbert sub-
space H of H1(Ω)2 defined as the kernel of appropriate trace operators. Recall that
the inner product of the Sobolev space H1(Ω)2 is given by

(u,v) =

∫
Ω

(u · v + ∇u : ∇v)dx,(3.6)

where (∇u)ij = ∂jui and A : B =
∑
ij AijBij . Note that the values of u in this space

do not communicate across grain boundaries—the restriction of u to each Ωk can
be any function in H1(Ωk)

2. The trace operators defined below map, respectively, a
vector field u ∈ H1(Ω)2 to its value at the walls, to its jump in tangential component
across grain boundaries, and to its jump in normal component across grain boundaries.
We use γ0 and γt to define the Hilbert space H given by

H =
{
u ∈ H1(Ω)2

∣∣ γ0u = 0, γtu = 0
}
.(3.7)

We will need γn in section 3.3 to define weak solutions and also to define the oper-
ator B. Recall that N and M are the number of grain boundary segments and the
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number of regions, respectively:

Ω =

M⋃
k=1

Ωk, Γ =

N⋃
j=1

Γj , Γ0 = outer walls.(3.8)

Theorem 3.1. The following trace operators are compact:

γ0 : H1(Ω)2 → L2(Γ0)
2 : u 	→ u

∣∣
Γ0
,(3.9)

γt : H1(Ω)2 → L2(Γ) : u 	→
(
[u
∣∣
Γ+

1
− u

∣∣
Γ−

1
] · t1 , . . . , [u

∣∣
Γ+
N

− u
∣∣
Γ−
N

] · tN
)
,(3.10)

γn : H1(Ω)2 → L2(Γ) : u 	→
(
[u
∣∣
Γ+

1
− u

∣∣
Γ−

1
] · n1 , . . . , [u

∣∣
Γ+
N

− u
∣∣
Γ−
N

] · nN
)
.(3.11)

Here u
∣∣
Γ+
j

is the trace of u on Γj from the left (i.e., the trace of u
∣∣
Ωk

on Γj, where

Ωk lies to the left of Γj), u
∣∣
Γ−
j

is the trace of u on Γj from the right, and we have

identified L2(Γ) with L2(Γ1) × · · · × L2(ΓN ).
Proof. Since Γ0 is also a union of line segments, it suffices to show that for any

region Ωk and boundary segment X ⊂ ∂Ωk, the composite map

u 	→ u
∣∣
Ωk

	→
(
u
∣∣
Ωk

) ∣∣
∂Ωk

	→
(
u
∣∣
Ωk

) ∣∣
X

(3.12)

is compact. The first and last maps are just restriction operators from H1(Ω)2 to
H1(Ωk)

2 and L2(∂Ωk)
2 to L2(X)2, so they are bounded. Since Ωk is a polygon, it

has a Lipschitz boundary, and hence [1, 4, 5] the trace operator

γk : H1(Ωk)
2 → H

1
2 (∂Ωk)

2(3.13)

is bounded. But H
1
2 (∂Ωk)

2 is compactly embedded in L2(∂Ωk)
2, so the middle map

in (3.12) is compact, as required.

3.2. Degenerate grain boundary networks. In this section we define the
notion of grain boundary degeneracy, which characterizes the existence of unsup-
pressed growth modes consisting of stress-free infinitesimal rigid body motions in
each grain. We also describe an algorithm for determining whether a given grain
boundary network is degenerate and, if it is, for finding these modes. We present a
counting argument that strongly suggests that grain geometries with convex grains
and very few quadruple or higher order junctions will be nondegenerate. We verify
numerically that randomly generated grain boundary networks with convex grains are
indeed nondegenerate.

Definition 3.2. A grain boundary network Γ is said to be degenerate if H
contains a nonzero function u consisting of infinitesimal rigid body motions (defined
below) on each grain.

To gain geometric insight, we construct a procedure for testing the degeneracy of
a given grain boundary network. An infinitesimal rigid body motion is a displacement
field of the form

u1(x, y) = a− cy, u2(x, y) = b+ cx,(3.14)

where a, b, c are arbitrary real numbers. Let (xk, yk) be some fixed point in Ωk, and
let rk be a characteristic length scale for the kth grain. For any u ∈ H(Ω)2 consisting
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of infinitesimal rigid body motions, there are parameters ak, bk, and ck for each region
such that

u
∣∣
Ωk

=

(
ak − ck

y − yk
rk

, bk + ck
x− xk
rk

)
.(3.15)

We wish to determine if there is a nontrivial choice of these parameters such that the
corresponding u belongs to H. We define the vector w by

w = (a1, b1, c1, . . . , aM , bM , cM )T(3.16)

and construct a matrix A with 3M columns such that

Aw = 0 ⇔ uw ∈ H.(3.17)

Clearly, if Ωk touches an outer wall, then the condition that γ0u = 0 requires that
ak = bk = ck = 0. We assume that the M0 outer grains appear first in the list, and
we let

Aij = δij (1 ≤ i ≤ 3M0, 1 ≤ j ≤ 3M)(3.18)

so that A has the block structure

A =

(
I 0
∗ A′

)
.(3.19)

Note that A is injective iff A′ is injective. For each edge that borders a grain with
index k > M0, we add a row to A to impose the condition that γtu = 0. Explicitly,
letting (x, y) be any point on edge j and denoting the left and right grains by l and
k, the row added to A enforces the equation

(3.20)

(
al − cl

y − yl
rl

− ak + ck
y − yk
rk

, bl + cl
x− xl
rl

− bk − ck
x− xk
rk

)
· tj = 0,

which is clearly linear in the components of w. Note that adding αtj to (x, y) does
not affect the validity of this equation, so if it holds for one point on the edge, it holds
at all points on the edge.

The number of edges that contribute an equation to A can be computed as follows.
Let Ω′ = ∪Mk=M0+1Ωk, and consider the planar graph Γ′ = ∂Ω′. For example, in
Figure 3.1(a), Γ′ consists of the eight segments bordering unshaded regions. The
Euler relation

n+ f − e = 1 (Γ′ connected)(3.21)

gives the relationship between the number of vertices, regions, and edges of this graph,
where we use 1 instead of 2 since we do not count the unbounded region. If Ω′ is
multiply connected, this formula holds for each of the c connected subgraphs of Γ′,
so (3.21) should be modified to read

n+ f − e = c (Γ′ has c connected components).(3.22)

Let np be the number of vertices with p incident edges. Then since each edge has two
endpoints, we have

∞∑
p=2

pnp = 2e.(3.23)
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Fig. 3.1. Examples of degenerate grain boundary networks. (a) Ω′ has four regions and eight
edges, so A′ has 12−8 = 4 more columns than rows. This also could have been obtained using (3.24)
with n3 = 4, n4 = 1. The arrows represent one of the functions u in the four dimensional space Hd,
namely, u

∣
∣
shaded

= u
∣
∣
Ω1

= 0, u
∣
∣
Ω2

= (1 − y, x), u
∣
∣
Ω3

= (y,−1 − x), u
∣
∣
Ω4

= (1,−1). (b) A′ has six

rows and nine columns. Note that nonconvexity in the outer grains allows all nodes of Ω′ to have
p = 3, whereas normally n2 ≥ 3. (c) This time A′ has the same number of rows and columns, yet it
still has a one dimensional kernel since the sign pattern +−+− is periodic at a quadruple junction.

(a) (b)

(c)

Fig. 3.2. Typical examples of the geometries generated while computing the condition numbers
in Table 3.1. Each • marks a corner with p = 2 incident edges. All other junctions of Γ′ have p = 3.
Triple junctions often occur clustered together in random Voronoi diagrams, giving the appearance
of higher order junctions; this does not give rise to poorly conditioned matrices A′. Large shear
forces may develop across short edges in such cases if there is not enough redundancy in the other
equations (e.g., in case (a) here), but that is not a relevant issue when deciding whether a grain
boundary network is degenerate. Since at least three corners with p = 2 are needed to traverse the
outer boundary of each connected component of Γ′, e− 3f in (3.24) is guaranteed to be nonnegative.
(a) Same number of equations as unknowns (e = 3f). (b) n2 = 38, so there are n2 − 3 = 35 more
equations than unknowns. (c) n2 = 51 and c = 3, so e− 3f = 42. Nonconvexity of grains at outer
walls due to reentrant corners clearly will not lead to the difficulties that arose in Figure 3.1(b).
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Table 3.1

Condition number of A′ for randomly generated Voronoi diagrams. The geometry labels cor-
respond to Figure 3.2, which shows examples of (a)-50, (b)-100, and (c)-100. In case (a), we add
three outer regions to the Voronoi diagram so that the number of equations is equal to the number
of unknowns (a worst-case scenario). Geometries (b) and (c) are more realistic, although they tend
to have more pathologies (such as clustered triple points and short edges) than would likely be found
in a real grain boundary network. All the matrices tested were extremely well conditioned, which
supports our conjecture that if each grain is convex and no quadruple or higher order junctions occur
in the grain boundary network, then Γ is nondegenerate.

Geometry Regions Trials max min mean std dev
(a) 200 10000 172.6 31.7 37.8 3.2
(a) 100 10000 48.4 21.6 26.2 2.1
(a) 50 10000 35.0 14.4 18.2 1.6
(b) 200 10000 31.8 13.0 16.8 1.3
(b) 100 10000 31.5 8.2 11.1 1.1
(c) 200 10000 26.8 7.4 9.9 1.1
(c) 100 10000 21.4 4.5 6.9 1.1

Multiplying (3.22) by 3 and subtracting (3.23), we obtain

e− 3f =
∑

(3 − p)np − 3c (A′ is an e× 3f matrix).(3.24)

Since each region of Ω′ contributes three unknowns and each edge contributes one
equation, we see that a necessary condition for the grain boundary network to be
nondegenerate is that the right-hand side be nonnegative—otherwise A′ will have
more columns than rows, and hence a nontrivial kernel. This necessary condition is
automatically satisfied if each grain is convex and np = 0 for p > 3, i.e., if we require
that all grain boundary junctions be gb-wall or triple junctions: traversing the outer
boundary of each of the c components of Ω′, we will encounter at least three changes
in direction of more than 180 degrees; each of these angles contributes to n2 since the
third segment must prevent nonconvex outer grains (the grains touching walls), and
thus n2 ≥ 3c. Some examples of degenerate grain boundary networks are shown in
Figure 3.1.

Conjecture 3.3. If each Ωk is convex and no quadruple or higher order junc-
tions occur in the grain boundary network, then Γ is nondegenerate.

To test this conjecture, we wrote a PERL program to choose M points at random
in a polygonal domain U , compute the Voronoi diagram of these points, chop Voronoi
regions that cross ∂U , set up the matrix A′, and call Matlab to compute its condition
number as the ratio of largest to smallest singular value. The points (xk, yk) are
taken to be the average of the vertices of grain k, and rk is taken to be

√
areak/π.

The purpose of xk, yk, and rk is to improve the condition number of A′ by scaling
the effect of ck to be commensurate with ak and bk. The PERL program repeats
the above procedure many times (opening a pipe to Matlab at the beginning) and
computes the minimum, maximum, mean, and standard deviation of the condition
numbers. The results are summarized in Table 3.1. Typical examples of the resulting
grain boundary structures are shown in Figure 3.2. Although convex grains do not
necessarily arise from Voronoi diagrams, we see no reason that these would not be a
good representative sample, especially in light of the fact that all the matrices A′ that
we generated in this way were extremely well conditioned even for grain boundary
networks where several triple points had almost coalesced into higher order junctions.

Even if the conjecture is false, this numerical experiment shows that “typical”
grain boundary networks are nondegenerate, and we have provided a method for
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finding all degeneracies of any grain boundary network (possibly containing nonconvex
grains and higher order junctions):

Procedure 3.4 (finding all degeneracies). Construct the matrix A, find a basis
w1, . . . , wq for its kernel, and record the corresponding displacements u1, . . . ,uq using
(3.15) and (3.16). These are a basis for the subspace Hd of stress-free (grain by grain)
infinitesimal rigid body motions in H.

Definition 3.5. A degenerate grain growth mode is a function h ∈ L2(Γ) of the
form h = γn(u) for some u ∈ Hd. We denote the space of such functions by γn(Hd).

Remark 3.6. We will see later that ker(S) = ker(B) = γn(Hd).
Lemma 3.7. γn is injective on Hd. Thus if {uk}qk=1 is a basis for Hd, then the

functions hk = γn(uk) form a basis for γn(Hd).
Proof. Suppose u ∈ Hd and γn(u) = 0. Then, since Hd ⊂ H, we also have

γt(u) = 0 and γ0(u) = 0. Thus u is continuous across grain boundaries, is zero on the
outer walls, and consists of infinitesimal rigid body motions on each grain. Continuity
across grain boundaries implies that the rigid body parameters are the same in each
grain, for if l and r index the parameters on either side of a grain boundary segment,
then

al − ar − (cl − cr)y = 0,

bl − br + (cl − cr)x = 0
(3.25)

for each (x, y) on the segment. Using two points on the grain boundary, we find
cl = cr, so (3.25) implies al = ar and bl = br. Dirichlet conditions at the walls then
give that a = b = c = 0 in all grains, as required.

Remark 3.8. We may assume the hk are orthonormal in L2(Γ) (using a Gram–
Schmidt procedure, if necessary).

Theorem 3.9. Each h ∈ γn(Hd) has zero mass on every connected component
of the grain boundary network:∫

ΓJi

h ds = 0 (i = 1, . . . , d).(3.26)

Proof. Let u ∈ Hd, h = γnu, and i ∈ {1, . . . , d}. Define

Ki = {k : Ωk does not touch Γ0 but does touch ΓJi},(3.27)

J ′
i = {j ∈ Ji : Γj borders an Ωk which doesn’t touch Γ0}.(3.28)

In Figure 3.3, J ′
1 contains 12 segment indices, K1 contains 4 region indices, J ′

2 contains
6 indices, K2 contains 3 indices, and J ′

3 and K3 are empty. Since u is an infinitesimal
rigid body motion on each grain, it is divergence free, so for 1 ≤ k ≤M we have∫

∂Ωk

u · n ds =

∫∫
Ωk

∇ · u dx = 0 (n = outward unit normal).(3.29)

Summing (3.29) over k ∈ Ki (with an empty sum meaning zero), we obtain

0 =
∑
k∈Ki

∫
∂Ωk

u · n ds =
∑
j∈J′

i

∫
Γj

[u(x−) − u(x+)] · nj ds =

∫
ΓJi

−h ds.(3.30)

Here we have used the following facts: nj is the unit inward normal on the left
(+) grain and the unit outward normal on the right (−) grain; the condition γ0u = 0
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Fig. 3.3. Shown here, Γ consists of three connected components ΓJi
, so dim ker(L) = 3. The

space Hd (and hence ker(S)) is four dimensional (one degree of freedom in the unshaded structure
on the left, three in the middle; see Figure 3.1). Each u ∈ Hd is zero on the shaded grains.

implies that u is zero on any Ωk touching an outer wall since u consists of infinitesimal
rigid body motions; if j ∈ J ′

i , then Γj borders either one or two Ωk with k ∈ Ki—in
the former case, u(x±) is zero on the other side because that region touches a wall;
if k ∈ Ki, all boundary segments Γj of Ωk have j ∈ J ′

i ; finally, h = γnu is zero on
the segments Γj with j ∈ Ji \ J ′

i since both adjacent regions touch a wall. Figure 3.4
illustrates a similar argument in the next section.

3.3. Weak solutions. In this section, we define weak solutions of the grain
boundary normal stress and displacement jump problems, and we give rigorous defi-
nitions of the operators B and S. Many complications arise in the case of degenerate
grain boundaries that make the analysis difficult. We prove that B is compact, self-
adjoint, and negative, and we show that ker(B) = γn(Hd). The operator S is defined
as the pseudoinverse of B, inheriting self-adjointness and negativity.

We will need to make use of the bilinear form

a(u,v) :=

∫
Ω

σ(u) : ε(v) dx =

∫
Ω

[λ (∇ · u)(∇ · v) + 2µ ε(u) : ε(v)] dx,(3.31)

which induces the seminorm ‖u‖a =
√
a(u,u) on H1(Ω)2. Here

ε(u)ij =
1

2
(∂iuj + ∂jui), σ(u) = λ tr ε(u)I + 2µε(u),(3.32)

and there is clearly a constant C such that

‖u‖a ≤ C‖u‖H1(Ω)2
(
u ∈ H1(Ω)2

)
.(3.33)

For any η ∈ L2(Γ), we define the linear functional lη ∈ H ′ by

lη(v) = −(η, γnv)L2(Γ) = −
∫

Γ

(η)(γnv) ds (v ∈ H).(3.34)

Note that

‖lη‖H′ ≤ ‖γn‖L(H1(Ω)2,L2(Γ))‖η‖L2(Γ).(3.35)

Definition 3.10. A weak solution to the grain boundary normal stress problem
for a given normal stress η ∈ L2(Γ) is a function u ∈ H which satisfies

a(u,v) = −
∫

Γ

(η)(γnv) ds (v ∈ H).(3.36)
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Fig. 3.4. The contribution of a particular grain boundary segment to
∑

k

∫
∂Ωk

v
∣
∣
Ωk

· σn contains

precisely one term from the left grain and one term from the right grain. Segments on the outer
walls do not contribute since γ0v = 0.

Proposition 3.11. Any classical solution is a weak solution.
Proof. Suppose u is a classical solution with corresponding stress tensor σ and

v ∈ H. Then on Ωk we have

(3.37)

∫
∂Ωk

v
∣∣
Ωk

· (σn) ds =

∫
Ωk

∂j (viσij) dx =

∫
Ωk

0︷ ︸︸ ︷
(∂jσij) vi + σij (∂jvi) dx

=

∫
Ωk

σij

(
∂jvi + ∂ivj

2

)
dx =

∫
Ωk

σ : ε(v) dx = ak(u
∣∣
Ωk
, v
∣∣
Ωk

).

When we sum over all regions, the right-hand side becomes a(u,v), and the left-hand
side becomes a sum over all segments of Γ with one term coming from the left grain
and one term coming from the right grain; see Figure 3.4. Since γtv = 0 and σ is
continuous across each segment, the sum of these two terms for the jth segment is∫

Γj

(v+ · σ(−nj)) ds+

∫
Γj

(v− · σnj) ds = −
∫

Γj

(γnv)nj · σnj ds.(3.38)

Summing over all segments and using the boundary condition σnn = η, we obtain
(3.36) as desired.

Proposition 3.12. If the grain boundary network is degenerate, then a necessary
condition for a weak solution to exist is that η ⊥ γn(Hd). If a solution does exist, it
is only defined modulo Hd.

Proof. Fix η, and suppose a solution u exists. For any w ∈ Hd, we use (3.36) to
conclude that

−
∫

Γ

(η)(γnw) ds = a(u,w) =

∫
Ω

σ(u) :

0︷ ︸︸ ︷
ε(w) dx = 0.(3.39)

Thus η is orthogonal to γnw. For any v ∈ H we have a(w,v) = 0, so

a(u + w,v) = a(u,v) = −
∫

Γ

(η)(γnv) ds,(3.40)

and u + w is also a weak solution.
Definition 3.13. We define the space H̃ by the relation γn(H̃) ⊂ γn(Hd)

⊥:

H̃ = {u ∈ H
∣∣ lh(u) = 0 whenever h ∈ γn(Hd)}.(3.41)

Remark 3.14. Since γn is injective on Hd, u ≡ 0 is the only (grain by grain)
infinitesimal rigid body motion in H̃, i.e., H̃ ∩Hd = {0}. Since the codimension of H̃
is at most q := dimHd by (3.41), the decomposition H = H̃ ⊕Hd holds.
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Theorem 3.15. The bilinear form a(·, ·) is coercive on H̃, and therefore ‖ · ‖a is
a norm on H̃ equivalent to the one inherited from H1(Ω)2.

Proof. Since λ ≥ 0 and µ > 0, it suffices to show that there is a c > 0 such that

‖u‖2
ε :=

∫
Ω

ε(u) : ε(u) dx ≥ c

∫
Ω

[u · u + ∇u : ∇u] dx = c‖u‖2
H̃

(
u ∈ H̃

)
.(3.42)

Suppose not. Then there is a sequence of unit vectors un ∈ H̃ such that

‖un‖2
ε → 0.(3.43)

Since the unit ball of H1(Ω)2 is compact in L2(Ω)2, there is a subsequence which
converges in L2(Ω)2. Replacing the original sequence with the subsequence, we may
assume

‖um − un‖2
L2(Ω)2 → 0 (m,n→ ∞).(3.44)

Since each Ωk is polygonal, Korn’s inequality [4, 3] guarantees the existence of positive
constants ck such that∫

Ωk

ε(u) : ε(u) dx+ ‖u‖2
L2(Ωk)2 ≥ ck‖u‖2

H1(Ωk)2

(
u ∈ H1(Ωk)

2
)
.(3.45)

Letting c = mink ck and summing over all regions, we obtain

‖u‖2
ε + ‖u‖2

L2(Ω)2 ≥ c‖u‖2
H1(Ω)2

(
u ∈ H1(Ω)2

)
.(3.46)

Replacing u by um −un in (3.46) and using (3.43) and (3.44), we find that {un} is a
Cauchy sequence in H̃. We let u∗ = limn un and note that because ‖·‖ε is continuous
in H1(Ω)2, ‖u∗‖ε = limn ‖un‖ε = 0. Thus ε(u∗) ≡ 0. It is straightforward to show [3]
that the only solutions to ε(u) ≡ 0 on a domain U are infinitesimal rigid body motions.
Thus u∗∣∣

Ωk
is an infinitesimal rigid body motion for each k, and by Remark 3.14,

u∗ ≡ 0. But this is impossible since we must also have ‖u∗‖H̃ = limn ‖un‖H̃ = 1.

Therefore a(·, ·) is coercive on H̃ as claimed.
Proposition 3.16. If η ∈ L2(Γ) is nonzero, then lη ∈ H ′ is nonzero.
Proof. We define

C = {η ∈ C̃1(Γ) ∩ C(Γ)
∣∣ η = 0 at all junctions},(3.47)

where C̃r(Γ) was defined in (2.7), and we claim that

C ⊂ {η ∈ L2(Γ)
∣∣ ∃ v ∈ H s.t. η = γnv}.(3.48)

To see this, let η ∈ C, and extend η to C(Γ ∪ Γ0) by setting η = 0 on the outer walls.
Decompose η into a sum

η =
∑
k

ηk, ηk =
1

2
η
∣∣
∂Ωk

.(3.49)

Since each restriction ηk is C1 on the (closed) segments of ∂Ωk and zero at the corners,
the x- and y-components ξ1k, ξ

2
k of −ηkn also have this property (n is the outward unit

normal). This is sufficient to ensure that each ξik belongs to H1(∂Ωk) ⊂ H
1
2 (∂Ωk),

which implies [5] that there are functions vik ∈ H1(Ωk) whose trace is equal to ξik
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on the boundary. Defining v ∈ H grain by grain to have components v1
k, v

2
k proves

(3.48). Since C is dense in L2(Γ) and (3.48) holds, we have

lη = 0 ⇒ η ⊥ C ⇒ η = 0 a.e.(3.50)

as desired.
Corollary 3.17. If η ∈ γn(Hd)

⊥ is nonzero, then lη is nonzero in H̃ ′.
Proof. Such an lη is nonzero when acting on H and is zero on Hd, so it must be

nonzero on H̃ due to H = H̃ ⊕Hd.
Definition 3.18. The projection R is defined as the orthogonal projection in

L2(Γ) onto γn(Hd)
⊥. Explicitly, we have

R = I −
q∑

k=1

(·, hk)hk,(3.51)

where the hk form an L2-orthonormal basis for γn(Hd), as discussed in Remark 3.8.
Theorem 3.19 (weak solutions). For any η ∈ L2(Γ), there exists a unique weak

solution u[η] ∈ H̃ to the grain boundary normal stress problem with normal stress Rη
on Γ. There is a constant C independent of η such that

‖u[η]‖H1(Ω)2 ≤ C‖η‖L2(Γ).(3.52)

Moreover, if u ≡ 0, then η ∈ γn(Hd).
Proof. We produce a candidate solution u ∈ H̃ using the Lax–Milgram theorem

and the fact that a(·, ·) is bounded and coercive on H̃ while lRη is a bounded linear

functional on H̃. The solution u is the unique function in H̃ satisfying

a(u,v) = lRη(v) (v ∈ H̃),(3.53)

which we must show holds for all v ∈ H. Since H = H̃ ⊕ Hd, it suffices to check
the result for v ∈ Hd: we have a(u,v) = 0 since v is a rigid body motion on each
grain, and lRη(v) = −(Rη, γnv) = 0 since R projects onto γn(Hd)

⊥. Equation (3.52)
follows from coercivity, (3.53), and (3.35):

c‖u‖2 ≤ a(u,u) ≤ ‖lRη‖ ‖u‖ ≤ ‖γn‖ ‖R‖ ‖u‖ ‖η‖.(3.54)

If η �∈ γn(Hd), then Rη satisfies the hypothesis of Corollary 3.17, so lRη is nonzero in

H̃ ′. By (3.53), the solution u cannot be identically zero.
Definition 3.20. The operator B : L2(Γ) → L2(Γ) is defined via

Bη := γnu[η].(3.55)

Note that in the case of grain boundary degeneracy, u[η] involves a projection of η
and a selection criterion for choosing among the nonunique solutions in H.

Theorem 3.21. B is compact, self-adjoint, and negative and satisfies

ker(B) = γn(Hd).(3.56)

Proof. B is compact because η 	→ u[η] is bounded and γn is compact. Using
(3.36) and the fact that (η, w)L2 = (Rη,w)L2 for w ∈ γn(H̃), we have∫

Γ

η0Bη1 ds =

∫
Γ

η0γnu[η1] ds =

∫
Γ

(Rη0)(γnu[η1]) ds = −a(u[η0],u[η1]).(3.57)
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Since a(·, ·) is symmetric and coercive on H̃, B is self-adjoint and negative:

(η0, Bη1)L2 = (η1, Bη0)L2 , (η0, Bη0)L2 ≤ 0
(
η0, η1 ∈ L2(Γ)

)
.(3.58)

Note that (η,Bη)L2 is related to the elastic energy stored in the grains:

E =
1

2
a (u[η],u[η]) = −1

2

∫
Γ

ηBη ds
(
η ∈ L2(Γ)

)
.(3.59)

Since E = 0 iff u ≡ 0, and u[η] ≡ 0 precisely when η ∈ γn(Hd), we find that
ker(B) = γn(Hd) as claimed.

Definition 3.22. The operator S is defined to be the pseudoinverse of B.
Remark 3.23. Since B is self-adjoint and compact, it has an orthonormal eigen-

decomposition B =
∑∞

1 βk(·, χk)χk with (β1 = · · · = βq = 0) and the remaining βk
forming an increasing sequence of negative numbers converging to zero. S is defined
as S =

∑∞
1 αk(·, χk)χk, where αk = 0 for k ≤ q and αk = 1/βk for k > q. Since

S is defined with respect to an orthonormal basis, we know it is self-adjoint, densely
defined, and negative, and its range is γn(Hd)

⊥. Note that the operators S and B
satisfy SB = R, BS = R

∣∣
D(S)

.

Definition 3.24. A solution of the grain boundary displacement jump problem
for a given g ∈ D(S) is a solution u of the normal stress problem with η = Sg, subject
to the additional requirement that γnu = g.

Theorem 3.25. For any g ∈ D(S) there is a unique solution u(g) of the grain
boundary displacement jump problem.

Proof. Suppose g ∈ D(S). Since γn is injective on Hd and range(I−R) = γn(Hd),
there is a unique ud[g] ∈ Hd such that γn(ud[g]) = (I −R)g. Clearly

u(g) = ud[g] + u[Sg](3.60)

is the desired solution, where u[Sg] is the unique solution in H̃ with normal stress
Sg specified on Γ; see Proposition 3.12 and note that γn(u(g)) = (I − R)g + BSg
= g.

Remark 3.26. In the degenerate case, the condition γnu = g removes the indeter-
minacy of the solution to the normal stress problem. As a result, the operator S truly
maps g to the corresponding normal stress η, whereas B has nonphysical projections
built into it for the convenience of being defined on all of L2(Γ).

Remark 3.27. The domain D(S) is quite complicated due to the variety of ways
self-similar solutions of the Lamé equations can behave near grain boundary junctions;
see [9, 12]. In particular, even for smooth functions η that are continuous at junc-
tions, g = Bη generally will be discontinuous at junctions and exhibit infinite slopes.
As a result, it would be very difficult to define weak solutions to the grain bound-
ary displacement jump problem directly (without using the grain boundary normal
stress problem) and to characterize those g for which the resulting normal stress η is
meaningful in the trace sense. The above approach allows us to define S and derive
its properties via the compact operator B, which avoids these complications.

4. Dynamics. In this section we show that the equation

ηt = SLη, η(0) = η0,(4.1)

generates an analytic semigroup {Et : t ≥ 0} of bounded linear operators on H1(Γ).
As mentioned previously, the solution η(t) when the electromigration force is present
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is then given by

η(t) = Et(η0 + ψ) − ψ.(4.2)

The boundary conditions on η(t) + ψ at junctions hold for t > 0 as a consequence
of the analyticity of Et and the properties of D(SL). We will also show that the
evolution of grain growth is given by

g(t) = R1Bη(t) + (I −R1)g0 + [(I −R1)Lψ]t,(4.3)

where R1 is a projection with kernel of dimension q = dim kerS (the degree of degener-
acy of the grain boundary network). The term that grows linearly in time corresponds
to a continual transport of material around the grains, leading to stress-free rigid body
motions in each grain suggestive of continental drift in plate tectonics.

4.1. Semigroup theory. We briefly review the elements of semigroup theory
we will need in what follows. A family {Et : t ≥ 0} of bounded linear operators on a
Banach space X is called a strongly continuous semigroup if

(i) Et+s = EtEs (t, s ≥ 0),
(ii) E0 = idX ,
(iii) t 	→ Etx is continuous on [0,∞) for each fixed x ∈ X.

(4.4)

If ‖Et‖ ≤ 1 for all t ≥ 0, {Et} is called a contraction semigroup. The infinitesimal
generator A of a strongly continuous semigroup {Et} is given by

Ax = lim
h→0+

[Ehx− x]/h (x ∈ D(A)) ,(4.5)

where D(A) is the set of all x ∈ X for which the limit exists. It can be proved [2]
that D(A) is dense in X, that A on D(A) is a closed operator, and that for x ∈ D(A),
t 	→ Etx is continuously differentiable and satisfies

d

dt
Etx = AEtx = EtAx (0 ≤ t <∞).(4.6)

The semigroup {Et} is said to be differentiable if EtX ⊂ D(A) for t > 0, in which

case [2] it is infinitely differentiable and for each t > 0 the operators E
(n)
t given by

E
(n)
t x :=

dn

dtn
Etx = AnEtx(4.7)

are bounded and satisfy

E
(n)
t x = (E′

t/n)
nx (t > 0).(4.8)

A differentiable semigroup is said to be analytic if

lim sup
t→0

t‖E′
t‖ = α <∞,(4.9)

which is equivalent [11] to having a holomorphic extension Eλ given locally by

Eλx =

∞∑
n=0

(λ− t)n

n!
E

(n)
t x

(
t > 0, |λ− t| < t

αe
, x ∈ X

)
.(4.10)

Theorem 4.1. If X is a Hilbert space and A is a closed, densely defined, negative,
self-adjoint operator on X, then A is the infinitesimal generator of a contraction
semigroup {Et} with holomorphic extension {Eλ : Reλ > 0}, and α ≤ e−1 in (4.9).

Proof. See [7, 14].
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4.2. The semigroup generated by SL. The main obstacle to solving (4.1) is
that although S and L are each self-adjoint, they do not commute, and hence SL is
not self-adjoint. If L were invertible, the obvious thing to do in this situation (see,

e.g., [8]) would be to define a new variable y = L
1
2 η, use Theorem 4.1 to obtain the

solution y(t) of the equation

yt = L
1
2SL

1
2 y, y(0) = y0,(4.11)

with y0 = L
1
2 η0, and check that η = L− 1

2 y satisfies (4.1). Since L has a d dimensional
kernel, we cannot directly obtain η from y in this way, and we will instead rely on the
knowledge that y(t) − y0 ∈ ran(L

1
2SL

1
2 ) for all time while η(t) − η0 ∈ ran(SL).

Convention 4.2. Generic elements of ker(L) and ker(S) will be denoted e and h
so that the notation {e,Gh}, for example, represents the space ker(L) ⊕G ker(S).

Recall from (2.10) and (3.51) that we have defined d = dim{e}, q = dim{h}, and
P and R as the orthogonal projections onto {e}⊥ and {h}⊥, respectively:

P = I −
d∑
k=1

(·, ek)ek, R = I −
q∑

k=1

(·, hk)hk.(4.12)

By Theorem 3.9, we know {e} ⊥ {h}; hence P and R commute. Moreover, B is
injective on {e} (and G on {h}) since {e} ∩ ker(B) = {e} ∩ {h} = {0}.

Lemma 4.3. The following identities hold:

ker(SL) = {e,Gh},
ran(SL) = {Be, h}⊥,

ker(LS) = {Be, h},
ran(LS) = {e,Gh}⊥,

ker(L
1
2SL

1
2 ) = {e,G 1

2h},
ran(L

1
2SL

1
2 ) = {e,G 1

2h}⊥.
(4.13)

Proof. SL is densely defined in L2(Γ) since D(S) is dense, G is bounded with
range dense in {e}⊥, and D(SL) = {e} ⊕ GD(S). Likewise D(LS) = {h} ⊕ BD(L)

and D(L
1
2SL

1
2 ) = {e} ⊕ G

1
2 [{h} ⊕ BD(L

1
2 )] are dense in L2(Γ). Clearly, ker(SL) ⊃

{e,Gh}. Since {h} ⊂ {e}⊥ and LG is the identity on {e}⊥, the only vectors mapped
to {h} by L belong to {e,Gh}, so the reverse inclusion also holds. A similar argument

establishes ker(LS) = {Be, h}. For ker(L
1
2SL

1
2 ), we use

(x, L
1
2SL

1
2x) = 0 ⇔ −(|S| 12L 1

2x, |S| 12L 1
2x) = 0 ⇔ |S| 12L 1

2x = 0(4.14)

and argue as in the other two cases. The result ran(SL) ⊂ ker(LS)⊥ follows from
the fact that (SL)∗ = LS, and ran(SL) ⊃ {Be, h}⊥ is a consequence of Lemma 4.9

below. Similar arguments give ran(LS) and ran(L
1
2SL

1
2 ).

Remark 4.4. Since {e} ⊥ {Gh}, {Be} ⊥ {h} and {e} ⊥ {G 1
2h}, the kernels in

(4.13) all have dimension d+ q = dim{e} + dim{h}.
Definition 4.5. We define the (nonorthogonal) projections P1, R1, and Q on

L2(Γ) via

P1 projects along {e} onto {Be}⊥,(4.15)

R1 projects along {h} onto {Gh}⊥,(4.16)

Q projects along {e,Gh} = ker(SL) onto {Be, h}⊥ = ran(SL).(4.17)

Remark 4.6. In general, if X and Y are finite dimensional subspaces of the same
dimension such that X ∩ Y ⊥ = {0}, the projection along X onto Y ⊥ exists and is
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given by I − (·, wk)xk (summation is implied). Here {xk} is a basis for X, {yk} is a
basis for Y , wk = yjαjk, and (xi, yj)αjk = δik. To verify that P1, R1, and Q are well
defined, we must check the condition X ∩ Y ⊥ = {0}.

Suppose x ∈ {e} ∩ {Be}⊥. Then (x,Bx) = −(|B| 12x, |B| 12x) = 0, which implies
x ∈ {h}. Since {e} ⊥ {h}, x = 0 as required. An identical argument works for R1.

Suppose x ∈ {e,Gh} ∩ {Be, h}⊥. Then there is e0 ∈ {e} and h0 ∈ {h} such that
x = e0 + Gh0. Since x ⊥ {h} and e0 ⊥ h0, we have (x, h0) = (Gh0, h0) = 0. Since
G is self-adjoint and positive, this implies h0 ∈ {e} so that x = e0 + 0. But now we
have x ∈ {e} ∩ {Be}⊥, which implies x = 0 from the above argument.

Remark 4.7. Note that there are wk ∈ {Be} and zk ∈ {Gh} such that

P1 = I −
d∑
k=1

(·, wk)ek, R1 = I −
q∑

k=1

(·, zk)hk.(4.18)

As a result, in addition to being bounded in L2(Γ), P1 is also bounded as an operator
on H1(Γ) since the ek belong to this space. On the other hand, the L2 adjoint P ∗

1 =
I − (·, ek)wk is not necessarily defined on H1(Γ) due to the possibility of singularities
in the derivative of wk near junctions. Similarly, R∗

1 is a projection in H1(Γ) while
R1 generally is not due to discontinuities in the hk at junctions.

Remark 4.8. Q may be written Q = P1R
∗
1 since {e} ⊥ {Gh} and {e} ⊥ {h}.

Lemma 4.9. The following diagrams are commutative in the sense that for each

block X
f ��

Y
g

�� we have f ◦ g = idY and g ◦ f = idD(f):

{e,G 1
2h}⊥ L

1
2 �� {e,Gh}⊥

G
1
2

��
R �� {e, h}⊥
R1

��
S �� {Be, h}⊥
B

��
P �� {e, h}⊥
P1

��
L

1
2 �� {e,G 1

2h}⊥,
G

1
2

��

(4.19)

{Be, h}⊥ P �� {e, h}⊥
P1

��
L �� {e,Gh}⊥
G

��
R �� {e, h}⊥
R1

��
S �� {Be, h}⊥.
B

��(4.20)

Proof. P and P1 both project along {e}, so PP1 = P and P1P = P1. Since
{e} ⊥ {h}, both projections leave {h}⊥ invariant. Since ran(P ) = {e}⊥ and ran(P1) =
{Be}⊥, the blocks involving P and P1 are commutative. Identical arguments may be
used for the blocks involving R and R1.

Note that if (x,Gh) = 0, then (Gx, h) = 0; i.e., G maps {Gh}⊥ into {h}⊥. Since
LG is the identity on {e}⊥ (recall D(L) = ran(G) ⊕ {e}) and GL is the identity on
{e}⊥ ∩ D(L), the blocks involving L and G are commutative. Identical arguments
may be used for the remaining blocks.

Definition 4.10. We say that T is the pseudoinverse of the bounded operator
K on the Hilbert space H if there are closed subspaces X and Y (not necessarily
orthogonal) such that H = X ⊕ Y , ker(T ) = X = ker(K), and

TKy = y (y ∈ Y ), KTy = y (y ∈ Y ∩ D(T )).(4.21)

In particular, we require ran(K) ⊂ D(T ).
Lemma 4.11. Such a T is closed.
Proof. First we claim that ran(T ) = Y . Clearly, (4.21) implies ran(T ) ⊃ Y . To

prove the reverse inclusion, suppose x1 + y1 = T (x2 + y2) with xi ∈ X, yi ∈ Y . Then
Ky1 = KTy2 = y2, so y1 = TKy1 = Ty2 = x1 + y1, which implies x1 = 0 as required.
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Now suppose ak → a, Tak → b. We must show Ta = b. Note that b ∈ Y
since each Tak ∈ Y and Y is closed. Decompose ak = xk + yk and a = x + y using
H = X ⊕ Y . Then yk → y since the projection along X onto Y is continuous. We
also know yk = KTyk = KTak → Kb since K is continuous. Thus y = Kb and
a = x+ y ∈ D(T ). Finally, Ta = Ty = TKb = b since b ∈ Y .

Remark 4.12. If there is an eigenbasis for K, then it is an eigenbasis for both
operators, and the eigenvalues are reciprocal or zero. When K is not self-adjoint, this
definition differs from the usual definition in linear algebra that T and K should have
the same SVD bases (exchanging left and right singular vectors) with reciprocal (or
zero) singular values. The current definition is more useful for eigenvalue problems
while the usual one is more useful for least squares problems. The definitions coincide
when T and K are self-adjoint.

Theorem 4.13. The following pseudoinverse relationships hold:

L
1
2SL

1
2 = pinv(G

1
2Q∗BQG

1
2 ),(4.22)

SL = pinv(QGBQ),(4.23)

LS = pinv(Q∗BGQ∗).(4.24)

Proof. Since SR = S and LP = L, the left-to-right compositions in (4.19) and

(4.20) are L
1
2SL

1
2 and SL, respectively. Because P1 leaves {h}⊥ invariant, Q and P1

agree on {h}⊥. Likewise Q∗ and R1 agree on {e}⊥, so the right-to-left compositions

are G
1
2Q∗BQG

1
2 and QGQ∗B, respectively.

Clearly, K := G
1
2Q∗BQG

1
2 annihilates X := {e,G 1

2h} = ker(L
1
2SL

1
2 ), and (4.19)

ensures that (4.21) holds with T := L
1
2SL

1
2 , Y := {e,G 1

2h}⊥ as required.
The operator QGQ∗B does not have the same kernel as T := SL; however, this

is easily corrected using K := QGQ∗BQ instead. We then have ker(K) = ker(T ) =
{e,Gh} =: X by (4.13) and (4.17). Equation (4.20) implies that (4.21) holds with
Y := {Be, h}⊥, which complements X in L2(Γ) since Q is a well-defined projection.
Finally, by Remark 4.8 and the identities R∗

1GR1 = R∗
1G = GR1, P

∗
1BP1 = P ∗

1B =
BP1, it follows that QGQ∗BQ = QGBQ. The proof for LS is similar.

Lemma 4.14. Equation (4.11) generates an analytic contraction semigroup {Ẽt :
t ≥ 0} of bounded linear operators on L2(Γ). For each t ≥ 0, PẼtP = ẼtP .

Proof. We showed that L
1
2SL

1
2 has dense domain in the proof of Lemma 4.3. It is

closed by Lemma 4.11 and Theorem 4.13, self-adjoint since L and S are self-adjoint,
and negative since S is negative:

(x, L
1
2SL

1
2x) = (L

1
2x, SL

1
2x) ≤ 0.(4.25)

Theorem 4.1 may therefore be applied to conclude that L
1
2SL

1
2 is the generator of

an analytic contraction semigroup {Ẽt : t ≥ 0} of bounded linear operators. Since

ran(L
1
2SL

1
2 ) ⊂ {e}⊥, for y0 ∈ L2(Γ) we have

(Ẽty0, ek) = (Ẽ0y0, ek) +

∫ t

0

(L
1
2SL

1
2 Ẽsy0, ek) ds = (y0, ek).(4.26)

Hence Ẽt leaves {e}⊥ invariant, and PẼtP = ẼtP as claimed.
Theorem 4.15. The family {Et : t ≥ 0} given by

Et = (I − P1) + P1G
1
2 ẼtL

1
2(4.27)
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is an analytic semigroup in H1(Γ). Its infinitesimal generator is SL.

Proof. Since G
1
2 is bounded from L2 to H1, L

1
2 is bounded from H1 to L2, and P1

is bounded in H1, there is a C > 0 such that ‖P1G
1
2 ẼtL

1
2 ‖H1 ≤ C‖Ẽt‖L2 ; therefore,

each Et is bounded in H1(Γ). Property (4.4)(iii) follows similarly: pick x ∈ H1, and

let y = L
1
2x; then we have

‖(Et − Es)x‖H1 = ‖P1G
1
2 (Ẽt − Ẽs)y‖H1 ≤ C‖(Ẽt − Ẽs)y‖L2 −→

t→s
0.(4.28)

Properties (4.4)(i) and (4.4)(ii) follow immediately from (4.27) and the corresponding
properties of Ẽ, using the relations

P1P = P1, PP1 = P, L
1
2 = L

1
2P, G

1
2L

1
2 = P = L

1
2G

1
2 , P ẼsP = ẼsP.

(4.29)

The analyticity may be seen by computing

lim sup
t→0

t‖E′
t‖H1 ≤ C lim sup

t→0
t‖Ẽ′

t‖L2 <∞.(4.30)

To prove that the generator of Et is SL, we first note that

L
1
2Et = L

1
2P1G

1
2 ẼtL

1
2 = PẼtL

1
2 = ẼtL

1
2(4.31)

and compute

E′
t = P1G

1
2

(
L

1
2SL

1
2 Ẽt

)
L

1
2 = P1PSL

1
2

(
L

1
2Et

)
= P1SLEt = SLEt.(4.32)

Proposition 4.16. There is a Riesz basis {φk} for H1(Γ) and a nonincreasing,
unbounded sequence of numbers λk ≤ 0 such that SLφk = λkφk.

Proof. Since G
1
2Q∗BQG

1
2 is self-adjoint and compact, the spectral theorem gives

an L2 orthonormal basis of eigenfunctions {ϕk}∞k=1, which by Theorem 4.13 is also

an eigenbasis of L
1
2SL

1
2 : ϕk is either in the kernel of both operators, or it is an

eigenfunction of each with reciprocal eigenvalues. Since S is negative, the eigenvalues
λk of L

1
2SL

1
2 satisfy λk ≤ 0. Since L

1
2SL

1
2 commutes with P , we may assume the ϕk

are also eigenfunctions of P (with eigenvalue 0 or 1). Define

φk =

{
ϕk, Pϕk = 0,

P1G
1
2ϕk otherwise.

(4.33)

In the first case we have SLφk = 0. In the second, we obtain

SLP1G
1
2ϕk = SL

1
2ϕk = P1SL

1
2ϕk = P1G

1
2L

1
2SL

1
2ϕk = λkP1G

1
2ϕk.(4.34)

The φk are related to the ϕk via

φk =
[
(I − P ) + P1G

1
2

]
ϕk, ϕk =

[
(I − P1) + L

1
2

]
φk.(4.35)

Since [I − P + P1G
1
2 ] is bounded from L2(Γ) to H1(Γ) and its inverse [I − P1 + L

1
2 ]

is bounded in the other direction, they are isomorphisms. Thus the φk form a Riesz
basis (a basis equivalent to an orthonormal basis [6]) for H1(Γ) as claimed.

Remark 4.17. Equation (4.27) could also have been written

Et = [I − P + P1G
1
2 ] Ẽt [I − P1 + L

1
2 ].(4.36)
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Remark 4.18. For η0 ∈ H1(Γ), the coefficients in the expansion η0 =
∑
k akφk

can be determined via

ak = ([I − P1 + L
1
2 ]η0, ϕk)L2 = (η0, φ

∗
k)L2 , φ∗k = [I − P ∗

1 + L
1
2 ]ϕk.(4.37)

The φ∗k are eigenfunctions of LS with eigenvalues λk since LSφ∗k = [(SL− P1SL)∗ +

LSL
1
2 ]ϕk = λkL

1
2ϕk = λkφ

∗
k. They belong to L2(Γ) but need not belong to H1(Γ)

due to possible singularities in ∂sφ
∗
k at junctions. For η0 ∈ H1(Γ) the expansions

η0 =

∞∑
k=1

akφk, Etη0 =

∞∑
k=1

ake
λktφk, ak = (η0, φ

∗
k)L2(Γ),(4.38)

hold inH1(Γ). Note that the L2 norm of φ∗k diverges as k → ∞, but when η0 ∈ H1(Γ),
the inner products ak in (4.38) do not; they are square summable.

Remark 4.19. The expansions (4.38) lead to a useful numerical method in which
the φk, φ

∗
k, and λk are computed by approximating the pseudoinverse pinv(SL) =

QGBQ using a singularity-capturing least squares finite element method; see [12, 9].
Proposition 4.20. limt→∞Et = I −Q in norm.
Proof. Recall that dim ker(SL) = d + q so that λ1 = · · · = λd+q = 0. Since

{φk}d+qk=1 is a basis for range(I −Q), we have

[Et − (I −Q)]η0 =

∞∑
k=d+q+1

ake
λktφk.(4.39)

Since the mapping η0 	→ 〈ak〉∞k=1 with ak = (η0, φ
∗
k)L2 is an isomorphism from H1(Γ)

to l2, there is a constant C such that

‖(Et − I +Q)η0‖H1 ≤ Ceλ
∗t‖η‖H1 (t ≥ 0, η0 ∈ H1(Γ))(4.40)

with λ∗ = λd+q+1 < 0. Thus ‖Et − (I − Q)‖H1 ≤ Ceλ
∗t → 0 as t → ∞ as

claimed.
Remark 4.21. Since Et is an operator on H1(Γ) and the formula for the evolution

of normal stress is given by

η(t) = Et(η0 + ψ) − ψ,(4.41)

we should verify that ψ belongs to H1(Γ). This is done in the companion paper [13].
Remark 4.22. Since Et is analytic, we have ran(Et) ⊂ D(SL) for all t > 0.

Therefore η(t) in (4.41) has the property that

η(t) + ψ ∈ D(L) (t > 0).(4.42)

Thus although ψ does not necessarily satisfy zero flux boundary conditions at junc-
tions, the normal stress η immediately compensates so that for all t > 0, flux balance
holds. As long as there is a displacement jump g(t) compatible with the evolution of
η(t), we have proved that the grain boundary diffusion problem is well posed.

4.3. The evolution of g. In the nondegenerate case, the evolution of g is easily
determined from the evolution of η in (4.41) via

g(t) = Bη(t) (nondegenerate case).(4.43)
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The situation becomes much more complicated (and rather interesting) in the degen-
erate situation where the subspace {h} = ker(S) = ker(B) is nontrivial. In that case,
each function in {h} is a growth mode which is not suppressed by the grain boundary
diffusion process. If such a mode h is activated by ψ, it will grow linearly in time
without bound, as will the corresponding u ∈ Hd such that γnu = h; see Defini-
tion 3.5. The nonlinear picture in which u is replaced by a collection of genuine (as
opposed to infinitesimal) rigid body motions on each grain resembles continental drift
in plate tectonics, at least superficially. The steady state stress distribution does not
fully cancel the flux due to electromigration, and material is continually transported
around the participating grains, causing them to drift in order to avoid misfit with
their neighbors as material is removed from one side and deposited on the other.

Theorem 4.23. The evolution of g is given by

g(t) = R1Bη(t) + (I −R1)g0 + [(I −R1)Lψ]t.(4.44)

Proof. Recall that the projections R and R1 may be written

R = I −
q∑

k=1

(·, hk)hk, R1 = I −
q∑

k=1

(·, zk)hk
(
hk ∈ {h}, zk ∈ {Gh}).(4.45)

Note that (I − R1)L =
∑q
k=1(·, Lzk)hk is actually a bounded operator on L2(Γ), so

its domain may be extended from D(L) to L2(Γ). Since ker(S) = {h}, we see that
S(I −R1) = 0. Therefore

Sg = SBη = Rη = η,(4.46)

where the last step follows from the fact that η0 := Sg0 ∈ ran(R) and

ηt = SL(η + ψ) ⇒ η − η0 ∈ ran(SL) ⊂ ran(R).(4.47)

We next use R1R = R1 and BS = R
∣∣
D(S)

to conclude that

g(0) = R1BSg0 + (I −R1)g0 = g0.(4.48)

Finally, we check that g solves the evolution equation gt = L(Sg + ψ):

gt = R1BSL(η + ψ) + (I −R1)Lψ

= R1L(Sg + ψ) + (I −R1)Lψ

= L(Sg + ψ) − [(I −R1)L](Sg + ψ − ψ)

= L(Sg + ψ).

(4.49)

In the last step, we used the fact that (I − R1)LSg = 0 since ran(LS) ⊂ {Gh}⊥ =
ker(I − R1) by (4.13) and (4.16). In the second-to-last step we were careful not to
break up (I −R1)L when acting on ψ since the latter may not belong to the domain
of L. In contrast, the function (Sg + ψ) belongs to D(L) for t > 0, as discussed in
Remark 4.22.

Remark 4.24. Once g(t) is known, the stress and displacement fields inside the
grains are uniquely determined as the solution to the grain boundary displacement
jump problem; see Definition 3.24 and Theorem 3.25.
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5. Conclusion. The stress-driven grain boundary diffusion problem involves
coupling many different equations and phenomena that lead to interesting behavior
due to the interplay between nonlocality, singular behavior, and complex geometry.
By posing the problem as an evolution of functions defined on the grain boundary,
we were able to use methods of semigroup theory to answer fundamental questions
of existence, uniqueness, and appropriateness of boundary conditions. In the process,
we discovered a class of degenerate grain boundaries that exhibit interesting behavior.

Placing this problem back into the larger model, which includes void and vacancy
evolution, grain boundary sliding, etc., it would be interesting to study the behavior
of the solution in the vicinity of a junction where a void meets a grain boundary. Here
again, questions of appropriate boundary conditions arise, thermodynamic arguments
are murky, and singularities in the stress tensor and electric field together with the
stiffness inherent in grain boundary diffusion and curvature-driven surface diffusion
make the problem difficult to attack theoretically and numerically.
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Abstract. We propose a sharp-interface theory for the dynamics of domain walls in highly
anisotropic (“hard”) ferromagnetic bodies. Starting from the Gilbert equation, we consider the
asymptotic regime when the hardness parameter goes to infinity, and we use the technique of matched
expansions to derive a system of two evolution equations for the domain wall, regarded as a smooth
surface. The first equation, apart for a nonlocal forcing term, has the standard form for a surface set
in motion according to its mean curvature. The second relates the normal velocity to the internal
structure of the domain wall.

Key words. micromagnetics, domain walls, matched asymptotic expansions, motion by curva-
ture

AMS subject classifications. 35K57, 74N20
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1. Introduction. The formation and the evolution of magnetic domains are
the core subject in the mathematical modeling of saturated ferromagnetic bodies. A
magnetic domain is a region in space where, at a given time, the magnetization, a
unit vector, has constant direction. Adjacent domains are separated by thin zones
where the magnetization direction undergoes large spatial changes; for all practical
purposes, these zones can be modeled as sharp interfaces, the domain walls. Magnetic
domains and their walls are collectively referred to as domain-wall structures.

Domain structures are usually observed in static circumstances. To predict their
evolution is the goal of dynamic micromagnetics, a discipline that was first constituted
as a chapter of continuum mechanics in 1963 by Brown [4]. Brown, building on a path-
breaking paper by Landau and Lifshitz [16] that appeared in 1935, coined the name
“micromagnetics” for the study in a variational format of the static problem of domain
formation; it seems that the term “dynamic micromagnetics” was first used in [6], in
1996.

The variational theory of micromagnetics interprets domain structures as the re-
sult of minimizing a suitable energy functional [4, 18, 2, 13]. In particular, the occur-
rence of patchwise-constant energy minimizers accounts for the formation of magnetic
domains and domain walls. Dynamic micromagnetics is a much less developed the-
ory, centered about the (Landau–Lifshitz–) Gilbert equation [16, 9, 22], a nonlinear
parabolic PDE that rules the evolution of the magnetization in a rigid ferromagnet
(or, more generally, in a ferromagnet being at mechanical rest, in a sense made precise
in [6, 3]). The existence of global-in-time weak solutions to this equation has been
established [29, 3], as has their characteristic nonuniqueness [1]; their form has been
studied numerically [20].

Here we concentrate on the evolution problem of domain walls, however they were
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formed. We propose to view a domain wall as a smooth surface S whose dynamics,
in the absence of deformations, is a direct consequence of the Gilbert equation alone.
Implementing a way to obtain an evolution equation for S first proposed in [27] (see
also [28]), we take the anisotropy modulus as the parameter inducing the asymptotic
regime we consider, and we assume that a solution to the Gilbert equation can be
constructed by matching two regular expansions, the one holding in a tubular neigh-
borhood of S, the other away from S; roughly speaking, the matching conditions
yield the desired evolution equation. This equation has the form, apart for the typi-
cally nonlocal forcing term, of the classic equation of motion of a surface by its own
curvature.

Hubert and Schäfer [13, p. 215] describe well the role and significance to be
ascribed to micromagnetics: “The calculation of domain wall structures is by far the
most important contribution of micromagnetics to the analysis of magnetic domains.
This is true for two reasons: experimentally, domain walls are difficult to access
because they change their properties at surfaces where they can be primarily observed.
Also, it is in most cases difficult to isolate a single wall from its neighbours to measure
its properties. Usually, domain walls interact in a complicated network.” In connection
with this last remark, we believe that our finding an evolution equation for a single
wall opens the way to a study of wall junctions.

Our paper is organized as follows. In section 2 we detail the form of the Gilbert
equation on which we base our study. In section 3 we illustrate the static solution
of the Gilbert equation due to Landau and Lifshitz [16], a suitable preliminary to a
dynamic solution that we also illustrate, the traveling-wave solution, first discovered
by Walker [30], which mimics the motion of a flat wall in an infinite body under the
action of a uniform external magnetic field parallel to the wall plane. In section 4 we
delineate the asymptotic regime under which our motion equations will emerge as a
consequence of the Gilbert equation. In sections 5 and 6 we address the derivation
of those equations using the method of matched asymptotic expansions. Both our
approach and our methods, as well as our results, differ from those of authors who
have looked at the same problem before us (and in greater generality, because they
have not ignored mechanical deformation, as we do). We briefly discuss their findings,
and compare them with ours, in section 7.

2. The Gilbert equation. For a rigid and saturated ferromagnetic body, here
identified for short with a domain Ω of R

3, the evolution of the magnetization m, a
unimodular vector field on Ω × (0, T ), is modeled by the Landau–Lifshitz equation,
which we write in the Gilbert format:

γ−1ṁ = m × (heff + d) in Ω × (0, T ), γ < 0,(2.1)

where γ is the opposite of the gyromagnetic ratio, heff is the effective field, and d is
the dissipation field [9, 21].

For the effective field, we take

heff = α∆m + β(e · m)e + h + hext.(2.2)

Here, (i) α > 0 is the exchange constant, β > 0 the anisotropy constant, and e a
unit vector parallel to the easy axis of magnetization of the material; (ii) h is the
stray field, defined to be the only L2(R3) solution of the Maxwell equations in the
quasi-static approximation, namely,

curl h = 0, div h = −div (χΩm) in R
3 × (0, T ),(2.3)



EVOLUTION OF DOMAIN WALLS 1889

with χΩ the characteristic function of Ω; and (iii) hext is the external field, a forcing
term that can be chosen at will. Our choice for the dissipation field is standard:

d = −µṁ, µ > 0,(2.4)

with µ the dissipation constant. (See [21] for a discussion of other thermodynamically
admissible dissipation mechanisms in ferromagnets.) As explained in the appendix to
[27],

dim[γ] = (time)−1, dim[µ] = time, dim[α] = (length)2,

and β is dimensionless; consequently, both h and hext are dimensionless as well.
With these constitutive prescriptions, the Gilbert equation takes the form we

study here, namely,

γ−1ṁ + µm × ṁ = m × (α∆m + β(m · e)e + h + hext) in Ω × (0, T ).(2.5)

In the next section we review some known explicit and exact solutions to this equation.

3. Flat walls. Consider an infinite body (Ω ≡ R
3) composed of a uniaxial ma-

terial so oriented as to have e = c3 (with c3 the third vector of a given orthonormal
basis), and look for solutions

m = m(x1, t)(3.1)

of the Gilbert equation (2.5) whose spatial dependence is only through the first coor-
dinate x1 of the typical point x ∈ Ω and such that

lim
x1→±∞m(x1, t) = ±c3

at all times t. For such solutions, the Maxwell equations (2.3) yield

h(x1, t) = −(m(x1, t) · c1)c1 + h∞(t).(3.2)

We dispose of the space constant h∞ by asking that

lim
x1→±∞h(x1, t) = 0(3.3)

at all times. The Gilbert equation then becomes

γ−1ṁ + µm × ṁ = m × (αm′′ + Tm) in R × (0, T ),(3.4)

where (·)′ denotes differentiation with respect to x1 and where

T = βc3 ⊗ c3 − c1 ⊗ c1.(3.5)

3.1. The static solution of Landau and Lifshitz. A time-independent solu-
tion of type (3.1) was found by Landau and Lifshitz [16] for the case when the external
field is everywhere null. In this case (3.4) becomes

0 = m × (αm′′ + Tm) in R.(3.6)

If we parametrize m by means of two scalar fields ϑ and ϕ (Figure 3.1) such that

m(ϑ, ϕ) = cosϑ c3 + sinϑ t(ϕ), ϑ ∈ [0, π],
t(ϕ) = sinϕ c1 + cosϕ c2, ϕ ∈ [−π, π[,

(3.7)
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Fig. 3.1. Parametrization of m.

Fig. 3.2. Wall profile.

then the Landau–Lifshitz solution has the form

ϑ(x1) = arccos tanh
x1

δ
,

ϕ(x1) = 0
(3.8)

with

δ =

(
α

β

) 1
2

.(3.9)

Landau and Lifshitz found this solution by minimizing over the set of unimodular
vector fields m on R the functional

m �→
∫ +∞

−∞

(
α|m′|2 − m · Tm

)
dx1,

whose Euler–Lagrange equation is (3.6). We see from (3.8) that, at a large distance
from the origin (that is to say, for |x1/δ| � 1), the magnetization is nearly parallel to
the easy axis (m(x1) × e � 0), its direction being determined by the sign of x1. The
body can be thought of as partitioned into two infinite magnetic domains, x1 < −δ
(where m � e) and δ < x1 (where m � −e), separated by the domain wall, a
transition layer of thickness 2δ within which the magnetization undergoes most of its
overall 180◦ rotation in a plane perpendicular to c1 (Figure 3.2); the accompanying
stray field is everywhere null. The situation depicted in Figure 3.2(b) is commonly
referred to as a Bloch wall.

3.2. Walker’s dynamic solution. The Landau–Lifshitz solution was general-
ized by Walker [30] to the case when the external field has the form

hext = −H c3(3.10)
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with H a real constant such that

|H| < 1

2
γµ.(3.11)

The traveling-wave solution found by Walker is

ϑ(x1, t) = arccos tanh
x1 − vHt

δH
,

ϕ(x1, t) = ϕH .
(3.12)

The Walker solution coincides with the Landau–Lifshitz solution for an observer
moving with velocity vHc1 because, at each time t, the dissipation associated with
the evolution of the magnetization m is exactly compensated by the working of the
external field hext [23]. For Walker, the vector m must lie in a plane through the easy
axis forming an angle ϕH with the plane of the domain wall such that

sin(2ϕH) = − 2

γµ
H,(3.13)

whence the bounds (3.11) on the applied field H; m is nearly parallel to the easy axis,
everywhere except in a layer whose thickness is of the order

δH =

(
α

β + sin2 ϕH

) 1
2

(3.14)

(cf. (3.8)2 and (3.9)).
All in all, the Walker solution pictures a flat domain wall moving with velocity

vH =
1

µ

(
α

β + sin2 ϕH

)1
2

H(3.15)

in the direction of the x1-axis.1

What we learn from this explicit solution of the Gilbert equation is that two
material parameters happen to be of special importance in the dynamics of domain
walls: the wall thickness δ and the wall mobility

ν := lim
H→0

vH
H

=
δ

µ
.(3.16)

Indeed, these two parameters play a crucial role in tuning the asymptotics yielding
our sharp-interface theory, what we do in the next section.

4. Basic scalings. Given a length scale L and a time scale T , we introduce the
dimensionless independent variables

x̃ = L−1x, t̃ = T−1t.(4.1)

Then, the material parameters in the Gilbert equation (2.5) scale as

γ̃ = Tγ, µ̃ = T−1µ, α̃ = L−2α.(4.2)

1Combining (3.15) with (3.11) yields a bound on |vH |, referred to as the “breakdown velocity”
[13].
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As noted in section 2, the anisotropy constant β carries no dimension and hence is not
affected by the scaling (4.1). A dimensionless version of the Gilbert equation (2.5) is

β δ̃−1 ν̃(τ ṁ + m × ṁ) = m × (δ̃2∆m + (m · e)e + β−1(h + hext)),(4.3)

where the dimensionless wall thickness and mobility are defined by

δ̃ =

(
α̃

β

) 1
2

, ν̃ =
δ̃

µ̃
,(4.4)

and where

τ = (γµ)−1.(4.5)

The physical assumption that underlies our sharp-interface theory under con-
struction is that β is as large as necessary to make the wall thickness as small as
desired . One way to achieve this is to identify our smallness parameter with β−1:

β = ε−1.(4.6)

Then, we stipulate that the dimensionless wall thickness scales like ε and the dimen-
sionless wall mobility scales like 1:

δ̃ = ε, ν̃ = 1.(4.7)

To achieve this, we choose L and T as follows:

L = ε−1/2 α1/2, T = ε−1µ.(4.8)

With these choices, (4.3) becomes

ε2 (τ ṁ + m × ṁ) = m × (ε2∆m + (e · m)e + ε(h + hext)
)
.(4.9)

When ε is small, exchange interactions become negligible with respect to anisotropy
interactions, and we expect m to quickly converge toward a local minimum of the
anisotropy energy. Hence, in a short time, the region Ω presents itself as partitioned
into magnetic domains, in each of which m is nearly parallel to e. Thin transition
layers, the domain walls, separate neighboring domains with opposite magnetization.
As anticipated in the introduction, we disregard the process of domain formation and
focus on the evolution of domain boundaries, in the limit for ε ↓ 0 when they are ex-
pected to become surfaces. To simplify matters, we take Ω = R

3 so that the Maxwell
equations take the form

curl h = 0, div (h + m) = 0 in R
3 × (0, T )(4.10)

and need not be scaled.

5. Time and space differentiation following a moving surface. Let St =
S(t) be a smooth oriented surface, smoothly evolving over the time interval T ⊂ (0, T ).
For each t ∈ T , let Wt be a tubular neighborhood of St of thickness 2ht, that is to say,
an open set of R

3 in one-to-one correspondence with the set St × (−ht,+ht) by way
of the mapping

St × (−ht,+ht) 
 (s, d) ↔ s + d nt(s) = x ∈ Wt,(5.1)
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where nt(s) denotes the positively oriented unit normal to St at its point s. We take
T short enough for the set

W :=
⋂
t∈T

Wt

to be open and nonempty; needless to say, W contains a tubular neighborhood of St
for all t ∈ T . For each x ∈ W and for each t ∈ T , we denote by ŝt the projection of
x on St and by d̂t the signed distance of x from St. Precisely, we set

s = ŝt(x), d = d̂t(x);(5.2)

we also set, consistently,

n = n̂t(x) := nt(ŝt(x)).(5.3)

5.1. Some preparatory results. For each ε > 0 fixed, we introduce the scaled
signed distance

rε = r̂ε(x, t) := ε−1d̂t(x)(5.4)

and consider the following identity over W × T :

ŝt(x) + ε r̂ε(x, t) n̂t(x) = x.(5.5)

Differentiating (5.5) with respect to t and taking the scalar product of both sides
with n we get

r�
ε = −ε−1v,(5.6)

where

v = v̂t(x) := ŝ�
t(x) · n̂t(x)(5.7)

is the normal velocity of the surface St at point ŝt(x).
Differentiating (5.5) with respect to x and using the fact that

grad d = n,(5.8)

we obtain that

grad s = P − ε rε gradn, P = P̂t(x) := 1 − n̂t(x) ⊗ n̂t(x).(5.9)

Next, we differentiate with respect to x relation (5.3) and use the chain rule to get

gradn = (∂snt) grad s = −L grad s,(5.10)

where the Weingarten tensor L of the surface St can be thought of as a tensor field
over W × T according to the following definition:

L = L̂t(x) := −∂snt |s=ŝt(x).(5.11)

As is well known,

LP = L.(5.12)
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Combining (5.9), (5.10), and (5.12), we arrive at

gradn = −L + ε rε L gradn.(5.13)

We take the trace of both sides of (5.13) and obtain

div n = −k + ε rε L · gradn,(5.14)

where

k = k̂t(x) := tr L̂t(x)(5.15)

is twice the mean curvature of St at point s = ŝt(x).

5.2. Time rate, gradient, Laplacian, and curl of a vector field. Let now

v = v(x, t)

be a smooth vector field over R
3 × T . For each ε > 0 fixed, the inner representation

of v is delivered by the map v̌ε over R ×W × T defined by

v̌ε(r,x, t) := v(ŝt(x) + ε r n̂t(x), t).(5.16)

A consequence of this definition is that, for each (r,x, t) ∈ R × W × T fixed, the
relation

v̌ε(r,x + α n̂t(x), t) = v̌ε(r,x, t)(5.17)

holds identically for α in the open neighborhood of 0 where

ŝt(x) = ŝt(x + α n̂t(x)).

We now differentiate with respect to t the identity

v(x, t) = v̌ε(r̂ε(x, t),x, t),(5.18)

so as to obtain

v� = r�
ε ∂rv̌ε + ∂tv̌ε,(5.19)

that is, recalling (5.6),

v� = −ε−1 v ∂rv̌ε + ∂tv̌ε.(5.20)

Next, we differentiate (5.18) with respect to x and obtain

gradv = ∂rv̌ε ⊗ grad rε + ∂xv̌ε,(5.21)

which we rewrite as

gradv = ε−1∂rv̌ε ⊗ n + ∂xv̌ε,(5.22)

using (5.4) and (5.8).
We are now in a position to compute both the Laplacian and the curl of v in

terms of its inner representation.
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As to the Laplacian, taking the divergence of both sides of (5.22), we find that

∆v = ε−1(grad(∂rv̌ε))n + ε−1(div n) ∂rv̌ε + div ∂xv̌ε,(5.23)

where

grad(∂rv̌ε) = −ε−1∂rrv̌ε ⊗ n + ∂x∂rv̌ε.(5.24)

But, since differentiation of (5.17) with respect to r and α yields

(∂x(∂rv̌ε))n = 0,(5.25)

substitution of (5.14) and (5.24) into (5.23) yields

∆v = ε−2∂rrv̌ε − ε−1∂rv̌ε + div ∂xv̌ε + rε(L · gradn) ∂rv̌ε.(5.26)

As to the curl, again from (5.22) we deduce that

curl v = ε−1n × ∂rv̌ε + (∂xv̌ε − (∂xv̌ε)
T )×,(5.27)

where W× denotes the axial vector associated to the skew tensor W.

5.3. Estimates. Equations (5.22), (5.20), (5.26), and (5.27) yield the following
estimates:

v� = −ε−1 v ∂rv̌ε +O(1),(5.28)

gradv = ε−1∂rv̌ε ⊗ n +O(1),(5.29)

∆v = ε−2∂rrv̌ε − ε−1k∂rv̌ε +O(1),(5.30)

curl v = ε−1n × ∂rv̌ε +O(1),(5.31)

div v = ε−1∂rv̌ε · n +O(1).(5.32)

6. Matched asymptotics. For convenience, let us repeat here the system (4.9)–
(4.10):

ε2 (τ ṁ + m × ṁ) = m × (ε2∆m + (e · m)e + ε(h + hext)
)
,

curl h = 0, div (h + m) = 0.
(6.1)

We recall that the independent variables in (6.1) are the dimensionless variables x̃
and t̃ defined in (4.1); to lighten our notation, we omit the superposed tildes until, in
subsection 6.4, we return to the original space and time variables.

We assume that there is a positive constant ε̄ such that for each ε ∈ (0, ε̄), the
system (6.1) has a solution (mε, hε) defined on R

3 × T . We also assume that the
surface St introduced in the previous section splits R

3 into a pair of disjoint regions
D+
t and D−

t having St as their common boundary, and that, at each time t ∈ T , the
limits

m0(x, t) = lim
ε→0

mε(x, t),

h0(x, t) = lim
ε→0

hε(x, t)
(6.2)

exist at each point x ∈ R
3 \ St, with

m0(x, t) =

{−e if x ∈ D−
t ,

+e if x ∈ D+
t ,

(6.3)
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and with h0(·, t) a smooth field on R
3 \ St. Furthermore, we let

m̌ε(r,x, t) = mε(ŝ(x, t) + ε r n̂(x, t), t),

ȟε(r,x, t) = hε(ŝ(x, t) + ε r n̂(x, t), t)
(6.4)

be the inner representations of mε and hε for each ε ∈ (0, ε̄) (see definition (5.16)),
and we assume that the limits

m̌0(r,x, t) = lim
ε→0

m̌ε(r,x, t),

ȟ0(r,x, t) = lim
ε→0

ȟε(r,x, t)
(6.5)

exist for each (r,x, t) ∈ R × (R3 \ St) × T . The following matching conditions will
soon prove crucial to our developments:

lim
r→±∞ m̌0(r,x, t) = lim

d→0±
m0(ŝt(x) + d n̂t(x), t),

lim
r→±∞ ȟ0(r,x, t) = lim

d→0±
h0(ŝt(x) + d n̂t(x), t)

(6.6)

for each (x, t) ∈ W × T . The reader may consult [7] or [5, 8] for justifications of
(6.6). As to a motivation, we note that, for each fixed pair (x, t) ∈ W × T , the inner
representation of the field mε can be written in the alternative forms

m̌ε(r,x, t) = mε(ŝt(x) + εr n̂t(x), t) = mε(ŝt(x) + d n̂t(x), t) = m̌ε

(
d

ε
,x, t

)
,

where the real variables r and d satisfy

r−1 d = ε;

hence, both r−1 and d tend to null with ε at a smaller rate than ε itself — both as
ε1/2, say.

Finally, we recall that all solutions of the Gilbert equation must have constant
modulus. For an expansion such as

mε = m0 + εm1 + o(ε)

to be consistent with the requirement that

|mε| = 1,

the approximations of mε must be such that

|m0| = 1, m0 · m1 = 0, etc.(6.7)

6.1. The zeroth-order magnetization field. For each (x, t) ∈ W × T , the
relations (6.5) and the estimates (5.28) and (5.30) yield

mε(st(x) + ε r nt(x)) = m̌0(r,x, t) +O(ε),

hε(st(x) + ε r nt(x)) = ȟ0(r,x, t) +O(ε),
ṁε(st(x) + ε r nt(x)) = −ε−1v ∂rm̌0(r,x, t) +O(1),

∆mε(st(x) + ε r nt(x)) = ε−2∂rrm̌0(r,x, t) +O(ε−1).

(6.8)

Substituting (6.8) into the scaled Gilbert equation (6.1)1, and letting ε ↓ 0, we obtain
the following ODE for m̌0(·,x, t):

m̌0 × (∂rrm0 + (e ⊗ e)m̌0) = 0 in R;(6.9)
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the field m̌0 must be unimodular to satisfy (6.7)1, and it must comply with the
conditions at infinity resulting from the assumption (6.3) and the matching condition
(6.6)1, namely,

lim
r→±∞ m̌0(r) = ±e.(6.10)

To construct a solution to the nonlinear boundary-value problem (6.9)–(6.10), we
look for smooth solutions v : R → S2 to the problem{

v × Dv = 0 in R, Dv := v′′ + (e · v)e,
lim

r→±∞v(r) = ±e.(6.11)

(Here a superscript prime denotes differentiation.)
We preliminarily note that if v(r) is a solution of (6.11), then the field

vρ,ϕ(r) := Re(ϕ)v(r − ρ)(6.12)

is a solution as well, whatever the translation ρ ∈ R and whatever the angle ϕ ∈
(−π,+π) of the rotation Re(ϕ) about the easy axis.2 The identities

v′ × Dv + v × Dv′ = 0(6.13)

and

(e × v) × Dv + v × D(e × v) = 0(6.14)

obtain by differentiating with respect to ρ and φ, respectively, the identity

vρ,φ × Dvρ,φ = 0,(6.15)

and evaluating the resulting expression at ρ = φ = 0.3

We show in the appendix that smooth solutions to problem (6.11) have the form

v(r) = tanh(r − ρ)e +
1

cosh(r − ρ)
t, ρ ∈ R, t · e = 0(6.16)

(compare with the Landau–Lifshitz and Walker solutions). Accordingly, we assign to
the zeroth-order magnetization field inside the domain wall the form

m̌0(r,x, t) = tanh(r − ρ(st(x), t)) e +
1

cosh(r − ρ(st(x), t))
t(st(x), t)(6.17)

with ρ(·, t) and t(·, t) two smooth fields on St, the latter being unimodular and or-
thogonal to the easy axis. Not only does this vector field solve problem (6.9)–(6.10)
but it also satisfies two identities corresponding, respectively, to (6.13) and (6.14):

∂rm̌0 × Dm̌0 + m̌0 × D ∂rm̌0 = 0,
(e × m̌0) × Dm̌0 + m̌0 × D(e × m̌0) = 0,

(6.18)

2Recall that

Re(ϕ) = I + sinϕE + (1 − cosϕ)(e ⊗ e − I), E× = e.

Needless to say, whatever ρ and ϕ,

|vρ,ϕ(r)| = |v(r − ρ)| for all r ∈ R.

3In fact, relation (6.13) also follows from differentiating the first of (6.11) with respect to r; a
completely analogous relation holds for v′′, v′′′, etc.
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where now

Dv = ∂rrv + (e · v)v for v = v̌(r,x, t).(6.19)

In addition, as is easy to verify on the basis of (6.17),

lim
r→±∞ ∂rm̌0(r,x, t) = 0, lim

r→±∞ ∂rrm̌0(r,x, t) = 0.(6.20)

6.2. The zeroth-order stray field. We now use the Maxwell equations to
compute ȟ0, the lowest-order term of the stray field inside the domain wall.

In view of (6.5)2, (5.31), and (5.32), we have that

curl hε = ε−1n × ∂rȟ0 +O(1),

div hε = ε−1∂rȟ0 · n +O(1).
(6.21)

Substituting (6.21) into (4.10) and letting ε ↓ 0, we get

∂rȟ0 × n̂ = 0, ∂r(ȟ0 + m̌0) · n̂ = 0.(6.22)

The associated boundary conditions are

lim
r→±∞ ȟ0(r, s, t) = lim

d→0±
h0(s + d n̂(s, t), t)(6.23)

(cf. (6.6)2).
The solution of (6.22)–(6.23) is

ȟ0(r, s, t) = 〈〈h0 + (m0 · n)n〉〉(s, t) − (m̌0(r, s, t) · n̂(s, t))n̂(s, t);(6.24)

moreover, the jump conditions

[[h0 × n̂]](s, t) = 0, [[(h0 + m0) · n̂]](s, t) = 0(6.25)

hold at all points s ∈ St. Here, for ϕ a field on R
3 × (0, T ), we denote by

〈〈ϕ〉〉(s, t) = lim
d→0

1

2
(ϕ(s + dn, t) + ϕ(s − dn, t))(6.26)

and

[[ϕ]](s, t) = lim
d→0+

(ϕ(s + dn, t) − ϕ(s − dn, t)),(6.27)

respectively, the mean value and the jump of ϕ at point s ∈ St. We note here for
later use the identity

[[ϕψ]] = 〈〈ϕ〉〉[[ψ]] + [[ϕ]]〈〈ψ〉〉,(6.28)

whence

[[ϕϕ]] = 2 〈〈ϕ〉〉[[ϕ]].(6.29)
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6.3. The first-order magnetization field. We now assume that the inner
representation of mε admits a regular expansion up to the first order:

m̌ε(r,x, t) = m̌0(r,x, t) + εm̌1(r,x, t) + o(ε).(6.30)

As a consequence of this assumption and (6.10), we have, among other things, that

lim
r→±∞ m̌1(r,x, t) = 0.(6.31)

Furthermore, we can replace relation (6.8)4 by the sharper estimate

∆mε = ε−2∂rrm̌0 − ε−1(k ∂rm0 − ∂rrm1) +O(1).(6.32)

Substituting (6.32) into the scaled Gilbert equation (6.1)1, and using (6.9), we
obtain

ε
(
m̌1 × Dm̌0 + m̌0 × Dm̌1 + b̌0

)
+O(ε2) = 0,(6.33)

where D is defined as in (6.19) and

b̌0 := σv ∂rm̌0 + m̌0 × (hext + ȟ0 + (v − k)∂rm̌0);(6.34)

note that b̌0 · m̌0 = 0. Hence, for each fixed (x, t) ∈ W ×T , the field m̌1(·,x, t) must
satisfy the ODE

m̌0 × Dm̌1 + m̌1 × Dm̌0 + b̌0 = 0(6.35)

as well as the boundary conditions at infinity expressed by (6.31). We now derive two
solvability conditions for the linear problem ruled by (6.35) and (6.31).

First, taking the dot product of both sides of (6.35) with m̌0 × ∂rm̌0, we find4

∂rm̌0 · Dm̌1 − (∂rm̌0 · m̌1)(m̌0 · Dm̌0) + m̌0 × ∂rm̌0 · b̌0 = 0,

or rather

(A0m̌1 + b̌0 × m̌0) · ∂rm̌0 = 0,(6.36)

where

A0 := D − (m̌0 · Dm̌0)I.(6.37)

With the use of (6.20) and (6.31), an integration by parts over the real line yields∫ +∞

−∞
(A0m̌1) · ∂rm̌0 dr =

∫ +∞

−∞
(A0m̌0) · ∂rm̌1 dr.(6.38)

4We exploit the fact that m̌0 is orthogonal both to ∂rm̌0 (because |m̌0| = 1) and to m̌1 (because
of (6.7)2) and apply two consequences of the vectorial identity

(a × b) · (d × c) = (a · d)(b · c) − (d · b)(a · c),
namely,

(a × b) · (a × c) = b · c, for a unimodular and orthogonal either to b or to c

and

(a × b) · (d × c) = −(d · b)(a · c), for a orthogonal to d.
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But,

A0∂rm̌0 · m̌1 = 0,(6.39)

as is proven by taking the dot product of both sides of (6.18)1 with m̌0 × m̌1. Thus,
integration of (6.36) gives

∫ +∞

−∞
m̌0 × b̌0 · ∂rm̌0 dr = 0.(6.40)

Equation (6.40) is the first of the solvability conditions we are after. The other
obtains quite similarly, by taking the dot product of both sides of (6.35) with m̌0 ×e,
integrating the resulting scalar equation over the real line, and using the identity
(6.18)2; all in all,

∫ +∞

−∞
(m̌0 × b̌0) · (m̌0 × e) dr = 0.(6.41)

In (6.40) and (6.41) the fields m̌0, ∂rm̌0 are specified by (6.17) and the field b̌0

by (6.34). An explicit computation, where use is made of the fact that both ∂rm̌0

and b̌0 are orthogonal to m̌0 and of the identity (6.29), gives (6.40) the form

g(v̂(s, t) − k̂(s, t)) + f̂ (s, t) = 0,(6.42)

where the coefficient g, a constant, is defined to be

g =

∫ +∞

−∞
|∂rm̌0|2 dr(6.43)

and where the forcing term is

f̂(s, t) = (htot · [[m0]])(s, t), htot := 〈〈h0〉〉 + hext.(6.44)

Likewise, (6.41) takes the form

(e · [[m0]]) τ v̂ + e × t ·
(
πhtot + (n̂ ⊗ n̂)(π〈〈m0〉〉 − g t)

)
= 0.(6.45)

Now, with the use of (6.17), it is easy to evaluate the integral in (6.43) and find

g = 2.(6.46)

Moreover, it follows from assumption (6.3) that the jump and mean of m0 across the
domain wall are, respectively,

[[m0]] = 2e, 〈〈m0〉〉 = 0.(6.47)

Consequently, we rewrite (6.42) and, respectively, (6.45) as follows:

v̂(s, t) − k̂(s, t) + ĥ(s, t) = 0, ĥ(s, t) := e · htot(s, t);
2τ v̂ + e × t · (πhtot − 2 (n̂ ⊗ n̂)t

)
= 0.

(6.48)
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6.4. The evolution equations of the domain wall. The last step of our
derivation consists in scaling equations (6.48) back to the original variables x and
t. This is achieved by replacing v and k, respectively, by L−1 T v and Lk, so as to
obtain

ν−1v − σk + h = 0(6.49)

and

2τν−1v + (e × t) · (πhtot − 2 (n̂ ⊗ n̂)t
)

= 0,(6.50)

where

ν :=
1

µ

(
α

β

) 1
2

, σ := (αβ)
1
2 .(6.51)

(It follows from (4.6) and (4.8) that L = (αβ)1/2 and T = βµ.)
Equation (6.49) determines the evolution of the domain wall St, whose motion

appears to be driven by its own current mean curvature and by a generally nonlocal
forcing term. It is precisely this last feature that distinguishes (6.49) from the formally
identical equations that describe the motion of sharp grain boundaries or solidification
fronts according to their mobility ν and surface tension σ, under the driving force
f := −h (see, e.g., [10, 11]). From (6.44)2 and (6.48)1 we have that the forcing term
h has the form

h(s, t) = e · (〈〈h0〉〉 + hext)(s, t),

where, given St, the stray field h0 is the solution of the system of PDEs

curl h0 = 0, div h0 = 0 in R
3 − St,

subject to the jump conditions

[[h0]] · n̂ = 2e · n̂, [[h0]] × n̂ = 0 on St.
While (6.49) determines v, (6.50) determines t and hence provides information

on the zeroth-order magnetization inside the domain wall. Note that the requirement
that (6.50) admits a solution sets a restriction on the possible values of v. Remarkably,
this restriction yields Walker’s breakdown velocity when flat walls are considered.

6.5. Comparison with Walker’s solution. With a view toward using Walker’s
solution as a benchmark for our theory, we consider the case when St is a plane paral-
lel to the easy axis e, with unit normal c1. Just as in subsection 3.2, we assume that
the spatial dependence of all fields of interest is only through the first coordinate x1,
and that the easy axis coincides with c3; we also assume that the external field has
the form (3.10), and we maintain the prescription (3.3) that the stray field h vanishes
at x1 = ±∞, which implies, in the present case, that h is everywhere null.

Under these circumstances, (6.49) becomes

v = νH =
1

µ

(
α

β

) 1
2

H,(6.52)

which agrees with (3.15) for β � 1. Moreover, with the use of the representation
(3.7)2 for t, (6.50) becomes

v = −ντ−1 cosϕ sinϕ.(6.53)

Combining (6.52) and (6.53), we recover both (3.13) and the bounds (3.11) on H.
Thus, even in this respect, the predictions of our theory are consistent with Walker’s.
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7. Concluding remarks. In saturated ferromagnets, neither magnetic domains
nor domain walls have an observable, definite physical substance: their presence and
shape do not seem to reflect differences in composition or texture. Thus, in principle,
domain structures should correspond to specific classes of solutions to certain initial
and boundary value problems based on the Gilbert equation: for rigid ferromagnets,
there should be no need for any further balance principle.5

This is why we chose to derive our evolution equation for a domain wall from
the Gilbert equation, by way of matched asymptotics. Admittedly, with such an
approach, the desired result is anticipated by the very start, in that one does not
prove, but assumes, that a domain wall is well described as a smooth and smoothly
evolving surface. Given this, the governing equations follow, under assumptions on
scaling exponents that, no matter how reasonable and well motivated, are best justified
a posteriori by the inspection of the phenomenology they encompass.6

Needless to say, our results are not applicable to situations where the Gilbert
equation would not hold (e.g., they would not be applicable to unsaturated ferro-
magnets, for which materials, however, the concept of magnetic domain would stricto
sensu be in the need of a reformulation) or to situations that the Gilbert equation
ignores, such as the pinning of domain walls. (Indeed, it is only after an evolution
equation for domain walls is made available that a discussion of pinning can be started;
the same applies to a discussion of domain-wall junctions.)

There have been few previous attempts to model domain-wall evolution, among
which we mention the work of Slonczewsky [26] (see also [17]) and the works of Jiang
[15], Maugin and Fomethe (see [19], where reference is given to other related papers
by the same authors and by Maugin, alone and with different coworkers), and James
[14]. This is no place for a detailed analysis of the conceptual differences between our
approach and those in these papers; for such an analysis, we refer the reader to our
forthcoming paper [24]. Over and beyond their differences in method and scope, what
is derived in all the papers by Jiang, Maugin and Fomethe, and James is a formula for
the driving force; direct geometric contributions to wall motion, such as the curvature
term in (6.49), are absent (they are not in Slonczewsky’s work). The other ingredient
of all models in [15, 19, 14] is a functional relation

v = V(f)(7.1)

between normal velocity and driving force, a relation that is postulated, not derived,
and is regarded as constitutive. Since wall motion is viewed as an essentially dissipa-
tive phenomenon, the form of V is restricted by the requirement that

fv ≥ 0.(7.2)

In view of the above, we can compare our formula for the driving force,

f = −(〈〈h0〉〉 + hext) · [[m0]],(7.3)

5The form of the Gilbert equation we study is consistent with thermodynamics [21]. Yet, it could
happen that a dissipation principle would be of use to separate physically significant evolutions from
others having only a mathematical life [3].

6Different governing equations would follow from scaling assumptions other than those we made.
For example, ṁ appears in two addenda of the Gilbert equation (2.5), namely, γ−1ṁ and µm×ṁ .
There are then two different characteristic times built into the equation, one for each of these terms.
As the second of (4.8) makes clear, our scaling selects the “slow” time β µ and therefore excludes
any account in the domain-wall evolution of the “jerking term” µm × ṁ .
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with those derived by Jiang [15], Maugin and Fomethe [19], and James [14], so spe-
cialized as to ignore mechanical deformation. We find that (7.3) agrees with Jiang’s
(3.26) and with the combination of Maugin and Fomethe’s (4.28) and (6.2); instead,
James’ (92) reads, in our notations,

f = −[[(h0 + hext) · m0]],(7.4)

or rather, with the use of (6.28),

f = −(〈〈h0〉〉 + hext) · [[m0]] − [[h0]] · 〈〈m0〉〉.(7.5)

Appendix. In this section, we address the problem of finding a C2-solution to
the boundary value problem

v × (v′′ + (v · e)e) = 0 in R,
lim

r→±∞v(r) = ±e,(7.6)

with the constraint

|v| = 1.(7.7)

We begin by noting that an admissible solution of (7.6) must satisfy the following
first-order differential conditions:

v′ · v = 0;
v′ · (v × e) = 0;
|v′|2 + (v · e)2 = κ2, a constant.

(7.8)

The first of (7.8) is a straightforward consequence of (7.7). To obtain (7.8)2, take the
scalar product of both sides of (7.6)1 with e, use the identity v× v′′ = (v× v′)′, and
then integrate the resulting equation with the aid of the boundary conditions (7.6)2.
As to (7.8)3, by taking the scalar product of both sides of (7.6)1 with v × v′, obtain

v′ · v′′ + (v · e)(v · e)′ = 0,(7.9)

then integrate.
Every solution of (7.6)–(7.7) can be given a provisional partial representation as

v(r) = α(r)e + β(r)t(r),(7.10)

provided that, for all r ∈ R,
(i) t(r) is a unimodular vector orthogonal to the easy axis:

|t(r)| = 1, t(r) · e = 0;(7.11)

(ii) the scalars α(r), β(r) satisfy

α2(r) + β2(r) = 1(7.12)

and, moreover,

lim
r→±∞α(r) = ±1, lim

r→±∞β(r) = 0.(7.13)
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Note that taking

|α(r)| ≡ 1, β(r) ≡ 0(7.14)

would not yield a continuous solution to problem (7.6)–(7.7). Needless to say, the
functions α and β we introduce and manipulate here have nothing to do with, respec-
tively, the exchange modulus and the anisotropy modulus, which everywhere else in
this paper we have denoted by those same Greek letters.

With this representation for the solutions, the differential relations (7.8) become

α′α+ β′β = 0;
β2t × t′ = 0;

α′2 + β′2 + β2|t′|2 + α2 = κ2.
(7.15)

A consequence of (7.15)1, (7.12), and (7.13)2 is that

(1 − β2)α′2 = β2β′2.(7.16)

On the other hand, it follows from (7.15)2 and (7.11)1 that

β2t′ = 0,(7.17)

so that (7.15)3 becomes

α′2 + β′2 + α2 = κ2.(7.18)

Substituting (7.16) in (7.18) multiplied by (1 − β2), we obtain

β′2 + (1 − β2)2 = (1 − β2)κ2.(7.19)

Taking the limits of (7.19) for r → ±∞ in the light of (7.13)2, we see that β′2 tends to
(κ2 − 1), a constant that must be null, for otherwise β(r) could not have finite limits
as r → ±∞ and thus, in particular, it could not satisfy (7.13)2. Then, since

κ2 = 1,

(7.19) becomes

β′2 = β2(1 − β2),(7.20)

while (7.15)3 and (7.20) imply that

α′2 = (1 − α2)2.(7.21)

It follows from (7.20) that β can never vanish. Indeed, were β(r0) = 0 for some
r0 ∈ R, then

β2(r) =

∫ r

r0

2ββ′ ≤
∫ r

r0

(β2 + β′2) ≤ 2

∫ r

r0

β2,

where the last inequality is a consequence of (7.20). With this, an application of the
Gronwall lemma would lead to the unacceptable conclusion that β(r) ≡ 0 in R (cf.
(7.14)2).
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But, if β(r) is never null, then (7.17) implies that t(r) is a constant vector.
Furthermore, α2(r) < 1 for all r ∈ R, and (7.21) reduces to the ODE for α7

α′ = 1 − α2,(7.22)

whose solutions have the form

α(r) = tanh(r − ρ), ρ ∈ R,(7.23)

and satisfy the boundary conditions (7.13)1.

Acknowledgments. We gratefully acknowledge the valuable comments of two
referees.
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Abstract. Numerical solution of the Cauchy problem for the stationary Schrödinger equation in
a bounded two-dimensional domain is discussed. The solution algorithm is based on the properties
of Faddeev’s Green function. Numerical examples with computer-simulated data are presented,
including an application to the inverse potential problem of electrocardiography.
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1. Introduction. The Cauchy problem for an elliptic equation is an ill-posed
problem appearing in engineering, medical imaging, and geophysics. One important
application is to recover the stationary temperature inside a given body from the
temperature and heat flux on the boundary of the body. Another application is the
inverse problem of electrocardiography, or determination of electric voltage potential
on the surface of the heart from measurements on the skin.

We consider the Cauchy problem for the stationary Schrödinger equation. Let
n = 2, 3 and let Ω ⊂ R

n be a bounded connected domain with Lipschitz boundary.
Let u ∈ H2(Ω) satisfy

(−∆ + V )u = 0 in Ω,(1)

where V = V (x) is a known, essentially bounded and complex-valued function. We
denote by ν the unit outward normal vector field to ∂Ω. Given a nonempty open
subset Γ ⊂ Ω, the pair (

u|Γ, ∂u
∂ν

∣∣∣
Γ

)

is called the Cauchy data of u on Γ. It is well known that the Cauchy data of u on
Γ uniquely determines u in Ω. See [15] for recent uniqueness and stability results
of Cauchy problems for general partial differential equations. We are interested in
finding an analytic formula and a regularized algorithm for calculating the value of u
at a given point in Ω.

In the case V = 0, (1) becomes the Laplace equation. In two dimensions the
Cauchy problem for the Laplace equation is equivalent to the corresponding Cauchy
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problem for the Cauchy–Riemann system of equations provided Ω is simply connected.
Carleman [4] gave an explicit formula for calculating the value of the solution of
the Cauchy–Riemann system of equations from the Cauchy data on a part of the
boundary of a domain having a special shape. In [10] Goluzin and Krylov established
a generalization of the formula in the simply connected domain. We refer the reader
to [1, 20, 36] for other formulae and related results in complex analysis.

In the higher-dimensional case Yarmukhamedov [34, 35] gave explicit formulae of
the Carleman type for the Laplace equation for special Ω and Γ. His result covers also
the case when V is a constant function [37]. For constant coefficient partial differential
equations several formulae of the Carleman type are described in Tarkhanov [29].
The approach is based on the uniqueness of the Cauchy problem, or equivalently, the
Runge approximation property of the governing equations. The common point of their
methods is the construction of special fundamental solutions Φτ (x, y) for the governing
equation that depend on a large parameter τ and have the following property: for
a fixed y ∈ Ω the Cauchy data of Φτ ( · , y) on ∂Ω \ Γ decay as τ −→ ∞. Following
M. M. Lavrent’ev [19], we call those fundamental solutions Carleman functions for
the governing equation, Ω and Γ. Explicit construction of Carleman functions for (1)
for general Ω and Γ in three dimensions is an interesting open problem.

In [13] the first author gave a formula of the Carleman type for (1) for general V
and particular Ω and Γ. Here we present its minor modification given in [14]. The
set Ω is the intersection of a convex open set with the half-space xn > 0, and Γ is
the part of ∂Ω satisfying xn > 0. Let us describe the result in the two-dimensional
case. The construction of the formula is divided into three steps: first, given y ∈ Ω, let
D ⊂ Ω∩{x2 < y2} be the interior of a triangle with vertex at y. Second, construct the
exponentially growing solution vτ of Sylvester and Uhlmann [28] for the Schrödinger
equation

(−∆ + Ṽ )vτ = χDe
τ(x2−y2)+iτx1 in R

2,(2)

where Ṽ is the zero extension of V outside Ω. Then the restriction of vτ to Ω satisfies
the equation

(−∆ + V )vτ = χDe
τ(x2−y2)+iτx1 in Ω.(3)

Third, establish the following asymptotic behavior as τ → ∞:∫
D

eτ(x2−y2)+iτx1u(x)dx ∼ CD
2τ2

eiτy1u(y),(4)

where CD is a nonzero constant. A combination of (3) and (4) yields the following
formula for the solution u of (1):

u(y) = lim
τ→∞uτ (y),(5)

where

uτ (y) :=
2τ2e−iτy1

CD

∫
Γ

(
∂u

∂ν
vτ − ∂vτ

∂ν
u

)
dσ(x).(6)

The construction of exponentially growing solutions is based on the properties of
Faddeev’s Green function [8],

Gζ(x) :=
eiζ·x

(2π)2

∫
R2

eix·ξ

|ξ|2 + 2ζ · ξ dξ, ζ ∈ C
2 \ 0, ζ · ζ = 0.(7)
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Therefore one may consider (5) as a new application of Gζ in addition to inverse
boundary value problems and inverse scattering problems (see [31] for the prob-
lems).

We present a numerical implementation of (6) in dimension two. The ill-posed
Cauchy problem is regularized by choosing τ small enough for the numerical computa-
tion to be robust against noise in the data. The main computational task is numerical
evaluation of the exponentially growing solutions and their normal derivatives. For
this we present an improvement of the algorithm for Gζ given in [26] and write the
derivatives of Gζ in terms of itself and explicit formulae. The exponentially growing
solutions and their derivatives can be computed combining the above with the algo-
rithm introduced in [22] (a modification of the fast Lippmann–Schwinger equation
solver of Vainikko [32, 24]). These algorithms have independent interest in the fields
of electrical impedance tomography and inverse scattering.

We review some earlier numerical works on the Cauchy problem for the elliptic
equation. The constant coefficient case has been studied by Leitão [21], Berntsson
and Eldén [2], Cheng et al. [6], Kabanikhin and Karchevsky [16], and Háo and Lesnic
[12]. The method of quasi reversibility proposed by Lattés and Lions [18] covers the
variable coefficient case, and Klibanov and Santosa [17] gave an explicit estimate of
the convergence rate. However, in the proof of the convergence, the uniqueness of the
Cauchy problem is essential.

The present solution algorithm does not require uniqueness of the Cauchy prob-
lem for the convergence proof, and its implementation does not involve solution of
boundary value problems. The computational effort is divided into two parts: first,
evaluation of vτ |Γ and ∂vτ/∂ν|Γ for given y, V,Ω, and τ and, second, evaluation of
uτ for given Cauchy data. The second computation is very fast since it is essentially
linear filtering of the data. The method can thus be applied to real-time monitoring
of fixed targets with changing Cauchy data.

This paper is organized as follows. In section 2 we give details of the reconstruc-
tion formula. In section 3 we discuss the stability of our method when applied to noisy
data. In section 4 we describe some properties of Faddeev’s Green function and show
how to evaluate it numerically. In section 5 we describe a numerical implementation
of (6). We illustrate the algorithm in sections 6 and 7 by numerical examples using
computer-simulated noisy data.

2. Background of the method. Throughout the paper we assume that Ω is
the intersection of the open unit disc B = {x ∈ R

2 | |x| < 1} with the half-plane {x ∈
R

2 |x2 > t} with −1 < t < 1 and that Cauchy data is given on Γ = {x ∈ ∂B |x2 > t}.
There is no loss of generality with this simplification of the geometry of Ω since any
simply connected domain with a smooth boundary can be conformally mapped to the
case when t = 0 (see Figure 2.1). However, in section 7 we will consider the case when
t �= 0.

Ω
Γ

Fig. 2.1. Conformal mapping of a domain onto the upper half of the unit disc.
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Let u be an H2(Ω) solution of the stationary Schrödinger equation

−∆u+ V u = 0 in Ω,(8)

where V belongs to the following class.
Definition 2.1. The potential V is admissible if V is C2 in each component of

Ω \ c, where c = ∪Jj=1cj with cj ⊂ Ω compact, piecewise C1 curves for which ci ∩ cj is
a discrete set if i �= j.

The set D mentioned in the introduction is defined as follows.
Definition 2.2. Given y = (y1, y2) ∈ Ω, let L, p, q ∈ R satisfy 0 < L ≤ y2 − t

and

−
√

1 − (y2 − L)2 < y1 + p < y1 + q <
√

1 − (y2 − L)2.(9)

We call the interior of the triangle with vertices

y = (y1, y2), y
′ = (y1 + p, y2 − L), y

′′
= (y1 + q, y2 − L)(10)

a triangular patch D at y (see Figure 2.2). Although not explicitly indicated, D depends
on the point y and the parameters L, p, q. D is an open subset of Ω and satisfies
D ⊂ {x |x2 < y2}.

Γ

Ω

x
1

x
2

y

y´ y´´

D

Fig. 2.2. Geometry of the problem for t = 0. Domain Ω is the intersection of the unit disc
with the upper half-space x2 > 0. The set Γ ⊂ ∂Ω is drawn as a thick curve. The reconstruction
point y is marked with a star, and one possible choice for the triangular patch D is drawn below y.

In what follows, we take for simplicity t = 0.
Let χD denote the characteristic function of D. Let Ṽ denote the zero extension

of V outside Ω. By Sylvester and Uhlmann [28], for large τ 
 1 there exists the
unique solution wτ of the integral equation

wτ (x) +

∫
R2

gτ (x− z){Ṽ (z) − χD(z)}wτ (z)dz

= −
∫

R2

gτ (x− z){Ṽ (z) − χD(z)}dz(11)

such that for −1 < δ < 0

‖wτ‖δ ≡
(∫

R2

|wτ (x)|2(1 + |x|2)δdx
) 1

2

= O

(
1

τ

)
.(12)
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Here gτ is defined for any τ > 0 by

gτ (x) =
1

(2π)2

∫
R2

eix·ξdξ
|ξ|2 + 2τ(ξ1 − iξ2)

.(13)

Note that gτ satisfies {∆ + 2iτ(∂1 − i∂2)}gτ (x) + δ(x) = 0 in R
2.

For any τ > 0 the function

v0
τ (x) = eτ(x2−y2)eiτx1 , x ∈ R

2,

is harmonic and has the following properties:
If x2 > y2, then |v0

τ | is exponentially growing as τ −→ ∞.
If x2 < y2, then |v0

τ | is exponentially decaying as τ −→ ∞.
We see that

v0
τ (x)gτ (x) = e−τy2G(τ,−iτ)(x),(14)

where G(τ,−iτ) is Faddeev’s Green function (7). Then one knows that the functions
v′τ ≡ v0

τ (1 + wτ ) become the solutions of the equation

−∆v′τ + Ṽ v′τ = χDv
′
τ in R

2

and satisfy v′τ ∼ v0
τ as τ → ∞ in the sense that (12) holds. Define

vτ = v′τ |Ω.(15)

Since v′τ ∈ H2
loc(R

2), vτ is an H2(Ω) solution of the equation

−∆vτ + V vτ = χDvτ in Ω.

Now, by Theorem 2.1 of [13]

u(y) = lim
τ→∞uτ (y) = lim

τ→∞
2τ2e−iτy1

CD

∫
Γ

(
∂u

∂ν
vτ − ∂vτ

∂ν
u

)
dσ(x),(16)

where

CD :=
2L(q − p)

(L− ip)(L− iq)
.(17)

The proof uses the estimate ‖wτ‖L∞(Ω) = O( 1
τ ) which comes from (2.11) of Propo-

sition 2.3 in [27] and the well-known fact that the growth rate of ‖wτ‖H2(Ω) with
respect to τ is at most algebraic.

Note that one can give a simpler choice of vτ appearing in (16). This is done in
[14]. More precisely, for large τ 
 1 there exists the unique solution w′

τ of the integral
equation

w′
τ (x) +

∫
R2

gτ (x− z)Ṽ (z)w′
τ (z)dz =

∫
R2

gτ (x− z)χD(z)dz(18)

such that for −1 < δ < 0 we have ‖w′
τ‖δ = O(1/τ). Then

v′′τ = v0
τw

′
τ(19)

satisfies the equation −∆v′′τ + Ṽ v′′τ = χDv
0
τ in R

2. A trivial modification of the proof
of Theorem 2.1 of [13] shows that (16) holds with the choice

vτ = v′′τ |Ω.(20)

In this case we use only the algebraic growth of ‖w′
τ‖H2(Ω) with respect to τ . Hereafter

we consider vτ given by (20) and not by (15).
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3. Stability of the method. In this section we consider the case when the
Cauchy data of u on Γ contains noise. Let M > 0 satisfy

‖V ‖L∞(Ω) ≤M.

Given y ∈ Ω choose a triangular patch D at y according to Definition 2.2. Fix
δ ∈] − 1, 0[. Using a perturbation argument, (2.7) in Proposition 2.1 in [23], and the
argument made for the proof of (2.53) in Lemma 2.11 of [23], one obtains the unique
solvability of (18). More precisely, there exist positive constants C1(M) and C2(M)
(independent of y and D) such that for τ > C1(M) the equation (18) has a unique
solution w′

τ satisfying the estimate

τ‖w′
τ‖δ + ‖∇w′

τ‖δ + τ−1
2∑

i,j=1

‖∂i∂jw′
τ‖δ ≤ C2(M).(21)

For vτ given by (20) and (f, g) ∈ L2(Γ) × L2(Γ) define

Sτ (f, g)(y) =
2τ2e−iτy1

CD

∫
Γ

(
gvτ − ∂vτ

∂ν
f

)
dσ.

Let E = (E1, E2) ∈ L2(Γ)×L2(Γ) be additive noise on the Cauchy data on Γ. Denote
‖E‖ = (‖E1‖2

L2(Γ) + ‖E2‖2
L2(Γ))

1/2.

The problem is to calculate an approximate value of u(y) from

Sτ

(
u|Γ + E1,

∂u

∂ν

∣∣∣∣
Γ

+ E2

)
(y)

with τ > C1(M) when ‖E‖ is small. One cannot choose extremely large τ since such
a selection enlarges the effect of noise. The suitable choice of τ is just the problem of
regularizing the formula (16).

In order to describe a result quantitatively and show the effect of the choice of D
we prepare two lemmas.

Lemma 3.1. Assume that u belongs to the space of Hölder continuous functions
C0,θ(D) with 0 < θ ≤ 1. Then for all τ > 0 we have∣∣∣∣τ2e−τ(y2+iy1)

∫
D

u(x)eτ(x2+ix1)dx− CD
2
u(y)

∣∣∣∣
≤ q − p

L
‖u‖C0,θ(D)

{
(τL+ 1)e−τL +

(
diamD

L

)θ
Cθ

τθ

}
,(22)

where Cθ is a positive constant depending only on θ, and q, p, L are as in Defini-
tion 2.2.

Proof. See [13, Lemma 2].
Lemma 3.2. Let 0 < ε < 1 and y satisfy y2 > ε. There exists such a positive

constant CM,ε depending on M and ε that for any u ∈ H2(Ω) and vτ with τ > C1(M)
given by (20) the following estimate holds:∣∣∣∣∣τ2e−iτy1

∫
∂Ω\Γ

(
∂u

∂ν
vτ − ∂vτ

∂ν
u

)
dσ

∣∣∣∣∣ ≤ CM,ε‖u‖H2(Ω)τ
3e−

τε
2 .(23)
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Proof. Using (19), (20), (21), and the estimate |eτ(x2−y2)| ≤ e−τε/2 for x ∈ Ωε we
obtain

‖vτ‖H2(Ωε) ≤ C ′
Mτe

− τε
2 ,(24)

where Ωε = {x ∈ Ω | 0 < x2 < ε/2} and C ′
M is a positive constant independent of ε.

Since ∂Ωε is Lipschitz, we have the following consequence of a general trace theorem
[11]: for any φ ∈ H2(Ωε) we have

‖∇φ‖L2(∂Ωε) + ‖φ‖L2(∂Ωε) ≤ Cε‖φ‖H2(Ωε).(25)

Combining (24) and (25) yields (23).
Now we discuss the problem mentioned above. Integration by parts yields

τ2e−iτy1
∫

Γ

(
∂u

∂ν
vτ − ∂vτ

∂ν
u

)
dσ = τ2e−τ(y2+iy1)

∫
D

u(x)eτ(x2+ix1)dx

+ τ2e−iτy1
∫
∂Ω\Γ

(
∂u

∂ν
vτ − ∂vτ

∂ν
u

)
dσ.

Recalling (6), we rewrite

CD
2
uτ (y) =

CD
2
u(y) +

{
τ2e−τ(y2+iy1)

∫
D

u(x)eτ(x2+ix1)dx− CD
2
u(y)

}

+ τ2e−iτy1
∫
∂Ω\Γ

(
∂u

∂ν
vτ − ∂vτ

∂ν
u

)
dσ.

This together with (22) and (23) yields

|uτ (y) − u(y)| |CD|
2

≤ q − p

L
‖u‖C0,θ(D)

{
(τL+ 1)e−τL +

(
diamD

L

)θ
Cθ

τθ

}

+CM,ε‖u‖H2(Ω)τ
3e−

τε
2 .(26)

This is an error estimate of the formula (16), and the order of the convergence is
O(τ−θ) as τ −→ ∞.

Write

Sτ

(
u|Γ + E1,

∂u

∂ν

∣∣∣∣
Γ

+ E2

)
(y) = uτ (y) + Sτ (E1, E2)(y).

From (17) one has

|CD| =
2L(q − p)√

L2 + p2
√
L2 + q2

≤ 2.(27)

Recalling (19) and (20), from (21) we have

‖vτ‖H2(Ω) ≤ C ′
Mτe

τ(1−y2), τ > C1(M),(28)

where C ′
M is a positive constant. Using (27), (28), and the trace theorem we see that

there exists a positive constant C ′′
M such that∣∣∣∣Sτ

(
u|Γ + E1,

∂u

∂ν

∣∣∣∣
Γ

+ E2

)
(y) − uτ (y)

∣∣∣∣ |CD|2
≤ C ′′

M‖E‖τ3eτ(1−y2).(29)
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Let A > 0 satisfy

‖u‖H2(Ω) ≤ A.(30)

By the Sobolev imbedding theorem, one can choose a positive constant C ′
θ depending

on 0 < θ < 1 such that for all v ∈ H2(Ω)

‖v‖C0,θ(Ω) ≤ C ′
θ‖v‖H2(Ω).(31)

Now from (26), (29), (30), and (31) we obtain

sup
‖E‖≤η

∣∣∣∣Sτ
(
u|Γ + E1,

∂u

∂ν

∣∣∣∣
Γ

+ E2

)
(y) − u(y)

∣∣∣∣ |CD|
≤ q − p

L
C ′
θA

{
(τL+ 1)e−τL +

(
diamD

L

)θ
Cθ
τθ

}

+CM,εAτ
3e−

τε
2 + C ′′

Mητ
3eτ(1−y2).(32)

The last term of this right-hand side estimates the speed of enlarging the effect of
noise. We choose a suitable τ > C1(M) depending on η in such a way that for this
τ the right-hand side converges to zero as η −→ 0. There should be several choices
of τ . Here we ignore the exponential decaying terms in the right-hand side of (32)
and consider minimizing the remaining term f(τ ; η) with respect to τ > C1(M):

f(τ ; η) =
α

τθ
+ βητ3eτ(1−y2),

where

α =
q − p

L
C ′
θA

(
diamD

L

)θ
Cθ; β = C ′′

M .

Since limτ−→0 f(τ ; η) = ∞ and limτ−→∞ f(τ ; η) = ∞, f(τ ; η) attains its minimum
value in a point in the interval ]0, ∞[. The point has to satisfy the equation f ′(τ ; η) =
0. This is equivalent to the equation

τθ+3{3 + (1 − y2)τ}eτ(1−y2) =
αθ

βη
.(33)

This equation has a unique positive solution and can be written as

τ = τ

(
αθ

βη
, y2

)
=

1

1 − y2
w

(
αθ

βη
(1 − y2)

θ+3

)
,

where w = w(s), s > 0, is the unique positive solution of the equation

wθ+3(3 + w)ew = s.(34)

If τ(αβ/βη, y2) ≤ C1(M), then f(τ ; η) does not attain its greatest lower bound in the
interval ]C1(M),∞[. So we assume that the magnitude of the noise η satisfies

τ

(
αθ

βη
, y2

)
> C1(M).
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This is equivalent to the inequality

C1(M)θ+3{3 + (1 − y2)C1(M)}eC1(M)(1−y2) <
αθ

βη
,

that is,

η <
αθC1(M)−(θ+3)e−C1(M)(1−y2)

β{3 + (1 − y2)C1(M)} .(35)

From (33) we have

min
τ>C1(M)

f(τ ; η) = f

(
τ

(
αθ

βη
, y2

)
; η

)
=

α

τ(αθβη , y2)
θ

{
1 +

θ

3 + (1 − y2)τ(
αθ
βη , y2)

}
;(36)

for τ = τ(αθ/βη, y2),

e−τL =

(
βη

αθ

) L
1−y2 {τθ+3(3 + (1 − y2)τ)}

L
1−y2 ,(37)

e−τε/2 =

(
βη

αθ

) ε/2
1−y2 {τθ+3(3 + (1 − y2)τ)}

ε/2
1−y2 .(38)

It is easy to see that, from (34), we have w(s) ∼ log s as s −→ ∞, and one concludes
that, as η −→ 0,

τ

(
αθ

βη
, y2

)
∼ 1

1 − y2
log

{
αθ

βη
(1 − y2)

θ+3

}
.(39)

Therefore the order of blowing up of τ is | log η| as η −→ 0. Moreover, from (34)
one knows that w(s) ∼ (s/3)1/(θ+3) as s −→ 0. Then, for fixed η that satisfies the
condition

η < min
y2>ε

αθC1(M)−(θ+3)e−C1(M)(1−y2)

β{3 + (1 − y2)C1(M)} =
αθC1(M)−(θ+3)e−C1(M)(1−ε)

β{3 + (1 − ε)C1(M)} ,

we obtain, as y2 −→ 1,

τ

(
αθ

βη
, y2

)
∼
(
αθ

3βη

) 1
θ+3

.

Note that from (36), (37), (38), and (39) we obtain, for τ = τ(αθ/βη, y2),

sup
‖E‖≤η

∣∣∣∣Sτ
(
u|Γ + E1,

∂u

∂ν

∣∣∣∣
Γ

+ E2

)
(y) − u(y)

∣∣∣∣ |CD| = O(| log η|−θ)

as η −→ 0. This is a regularized formula of (16).
It should be noted that the above type of argument for choosing τ is due to

Lavrent’ev [19]. Therein he gave a regularization of Carleman’s original formula.
We remark also that the conformal mapping depicted in Figure 2.1 deforms the

potential in such a way that the bound M can become very large. This in turn makes
the error estimates worse and can have an impact on the quality of the numerical
solution.
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4. Faddeev’s Green function.

4.1. Definitions and basic properties. Consider the differential operator
∆ζ := ∆ + 2iζ · ∇ with ζ ∈ C

2 \ 0 satisfying ζ · ζ = 0. Any such ζ can be writ-
ten in the form ζ = (k,±ik) for some k ∈ C \ 0. We consider fundamental solutions

g±k (x) =
1

(2π)2

∫
R2

eix·ξ

|ξ|2 + 2k(ξ1 ± iξ2)
dξ, k ∈ C \ 0,(40)

satisfying

−∆(k,±ik)g
±
k (x) =

(
− ∆ − 2ik

( ∂

∂x1
± i

∂

∂x2

))
g±k (x) = δ(x).(41)

Then Faddeev’s Green function (7) takes the form

G(k,±ik)(x) = eik(x1±ix2)g±k (x), k ∈ C \ 0.(42)

We see from (40) that the two types of fundamental solutions are related by

g−k (x) = g+
k̄

(−x).(43)

Moreover, coordinate changes in (40) give the following symmetries:

g+
k (x) = g+

1 (kx), g+
k (x) = g+

k̄
(−x̄), g+

k (x) = e−k(x)g+
k (x),(44)

where e−k(x) = exp(−i(kx+ k̄x̄)). It is easy to see from (13), (43), and (44) that

gτ (x) = g−τ (x) = g+
τ (−x) = g+

1 (−τx).(45)

4.2. Numerical evaluation of g+
1 . We improve here the algorithm for g+

1 given
in [25, 26]. Divide the plane into disjoint regions D1, . . . , D7 as in Figure 4.1. We
describe how to numerically evaluate g+

1 (x) accurately in each region.
In region D1 = {|x| ≤ R1} with R1 = 5.5 we use formulae (3.10) and (3.12) of

[3]:

g+
1 (x) = −e

−ix

4π

(
2γ + log |x|2 +

∞∑
n=1

(ix)n + (−ix̄)n
nn!

)
,(46)

where γ ≈ 0.577215665 is the Euler–Mascheroni constant. The infinite sum in (46) is
truncated at n = 23.

In region D3 we use formula (82) of [25]:

g1(x) =
e−ix1

2π
Re

⎡
⎣−eix1

N∑
j=0

j!

(ix)j+1
+

(N + 1)!eix1

(−x)N+1

∫ ∞

0

e−t(x1+ix2)

(t− i)N+2
dt

⎤
⎦ .(47)

We use N = 6 and implement the one-dimensional integration of the exponentially
decaying integrand with Gaussian quadrature.

For region D2 we modify (47) using residue calculus:∫ ∞

0

e−ix2t−x1t

(t− i)N+2
dt = (1 + i)

∫ ∞

0

e−is(x2+x1)+s(x2−x1)

(s+ is− i)N+2
ds.(48)

This modification ensures exponential decay of the integrand.
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D
1

D
2

D
3

D
4

D
5

D
6

D
7

Fig. 4.1. Computational regions D1, . . . , D7 dividing the plane into disjoint parts. The radii of
the two circles are R1 = 5.5 and R2 = 25. The slopes of the skew lines dividing regions are either 2
or −2. It is irrelevant for the algorithm how the boundary points are divided between the regions.

For region D4 we modify (47) using residue calculus:

∫ ∞

0

e−ix2t−x1t

(t− i)N+2
dt = −i

∫ ∞

0

e−x2s+ix1s

(−is− i)N+2
ds.(49)

Again, the modified integrand decays exponentially.
For regions D5 and D6 we use the reflectional symmetry

g+
1 (−x1, x2) = g+

1 (x1, x2)(50)

and the algorithms for reflected regions D2 and D3 described above.
In region D7 = {|x| ≥ R2} with R2 = 25 we set N = 9 and ignore the term with

the integral in (47).
Let us comment on the choice of the radii R1, R2. The choice of R1 is a trade-off:

if R1 is small, then only a few terms are needed in the truncated power series (46) to
achieve desired accuracy, but on the other hand, the numerical integrations in formulae
(47), (48), and (49) require many quadrature points to achieve the same accuracy.
The choice R1 = 5.5 gives a good balance but is not proven to be optimal. For radii
R1 > 1 formula (46) leads to faster computation and less memory consumption than
the previous approach based on the Poisson kernel used in [25, 26]. The choice of R2

is a similar trade-off between accuracy and computational speed.

4.3. Derivatives. As shown in [25], we can write derivatives of g±k as follows.
Lemma 4.1. Define the functions g±k (x) by (40) for k ∈ C \ 0. Then

∂g+
k

∂x1
(x) = − 1

4πx
− e−k(x)

4πx̄
− ikg+

k (x),(51)

∂g+
k

∂x2
(x) = +

1

4πix
− e−k(x)

4πix̄
+ kg+

k (x),(52)
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∂g−k
∂x1

(x) = − 1

4πx̄
− e−k̄(x)

4πx
− ikg−k (x),(53)

∂g−k
∂x2

(x) = − 1

4πix̄
+
e−k̄(x)
4πix

− kg−k (x),(54)

where e−k(x) = exp(−i(kx+ k̄x̄)), x = x1 + ix2, and x̄ = x1 − ix2.
Proof. By (43) and (44) it is enough to consider g−1 and apply the chain rule.
Denote ∂ = (∂/∂x1 − i∂/∂x2)/2. Let us compute ∂g−1 (x). By (40) we have

∂g−1 (x) =
i

2

1

(2π)2

∫
R2

eix·ξ

ξ1 + iξ2 + 2
dξ =

ie−2ix1

2(2π)2

∫
R2

eix·ξ

ξ1 + iξ2
dξ.(55)

Furthermore,

2

i

1

(2π)2

∫
R2

eix·ξ

ξ1 + iξ2
dξ =

1

π(x1 + ix2)
.(56)

Combining (55) and (56) we get

∂g−1 (x) = − e−i2x1

4π(x1 + ix2)
.(57)

Next we determine ∂̄g−1 (x). Combining (57) and (44) gives

− ei2x1

4π(x1 − ix2)
= ∂g−1 (x) = ∂̄ g−1 (x) = ∂̄ei(x+x̄)g−1 (x) = iei2x1g−1 (x) + ei2x1 ∂̄g−1 (x),

and we have

∂̄g−1 (x) = − 1

4π(x1 − ix2)
− ig−1 (x).(58)

Now formulae (57) and (58) yield the claim for τ = 1 since ∂1g
−
1 = ∂g−1 + ∂̄g−1

and ∂2g
−
1 = −i(∂̄g−1 − ∂g−1 ).

We remark that with formulae (51)–(54) any derivatives of Faddeev’s Green func-
tions can be written in terms of the Green functions themselves and explicit expres-
sions. For instance,

∂̄G(τ,−iτ)(x) = ∂̄[eiτx̄g−τ (x)] = eiτx̄[iτg−τ (x) + ∂̄g−τ (x)] = − eiτ(x1−ix2)

4π(x1 − ix2)
.(59)

This indicates a relationship between Faddeev’s Green function and Fok–Kuni’s Car-
leman function in the complex domain [9].

5. Numerical solution of the Cauchy problem. We discuss step by step the
numerical implementation of formula (6) with fixed y ∈ Ω.

5.1. Integration on Γ. We must choose a numerical quadrature for Γ. This
is a collection of points x(k) ∈ Γ with k = 1, . . . ,K and corresponding weights w(k)

satisfying

∫
Γ

fdσ ≈
K∑
k=1

w(k)f(x(k)).(60)

Suitable choices are, e.g., Simpson’s rule or Gaussian quadrature.
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5.2. Discussion of data. We must evaluate the Cauchy data u|Γ and ∂u
∂ν |Γ on

the quadrature points x(k) ∈ Γ. How this can be done depends on the way the data
are given in a particular application. We discuss here one possibility for evaluating
the trace; the normal derivative can be treated similarly.

Assume that our knowledge of u|Γ is a finite collection of noisy point samples:

mj := u(z̃(j)) + εj , z̃(j) ∈ Γ, j = 1, . . . , J0,(61)

where εj for j = 1, . . . , J0 are independent Gaussian, real-valued, zero-mean random
variables with standard deviation σ > 0.

Define z(k) = (cos θk, sin θk) ∈ Γ with θk = (k − 1)π/(J − 1) with k = 1, . . . , J
and J ≥ J0. Assume that the data points z̃(j) are included in the evaluation points:

z̃(j) = z(kj), j = 1, . . . , J0, 1 ≤ kj ≤ J.(62)

Next we approximate u(z(k)) under the a priori assumption that u is smooth.
Denote by U = [U1, . . . , UJ ]T = [u(z(1)), . . . , u(z(J))]T the unknown values and

by m = [m1, . . . ,mJ ]T the measured data. We use Tikhonov regularization [30] with
second derivative penalty. That is, we solve the optimization problem

Û := arg min
U

{‖RU −m‖2
2 + α‖DU‖2

2}.(63)

The first term in the penalty functional (63) describes how well U fits the data m.
The matrix R implements (62): each row of R has all zeros except the entry 1 in
the kjth column. The second term in (63) expresses our a priori knowledge on u: we
know that u is smooth, so we take the matrix D : R

J → R
J−2 to be the second-order

difference matrix

D(U)k =
1

(∆θ)2
(Uk+1 − 2Uk + Uk−1), k = 2, . . . , J − 1.

The parameter α > 0 is the regularization parameter: the greater α is, the stronger
we require smoothness from the reconstruction. It is practical to write (63) in the
stacked form as explained by Varah [33]:[ R√

αD
]
U =

[
m
0

]
.(64)

The regularized solution Û is the least squares solution of (64).
Finally, we interpolate the values u(x(k)) at the quadrature points in (60) with

spline interpolation from the recovered values u(z(k)). Under the smoothness assump-
tion this does not produce significant error.

5.3. Choosing the triangle D. We need a systematic choice for D = D(y).
The analysis in section 3 suggests the following:

1. Better results are expected in the domain y2 ≥ 1/2 if one chooses L = y2.
This is because L ≥ 1 − y2 and the convergence rate of (37) is better than
Hölder.

2. The constant |CD| should be as large as possible because the inverse of |CD|
enlarges the error (32).

3. Note that diamD/L ≥ 1 and cannot be small.
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Fig. 5.1. Triangular patches D corresponding to some y.

We take vertices of the triangle enclosing D to be

(y1, y2), (y1 − L, y2 − L), (y1 + L, y2 − L),(65)

with L > 0 taken as large as possible while still having D ⊂ Ω. See Figure 5.1.

Now p = −L and q = L, so

CD =
2L(q − p)

(L− ip)(L− iq)
=

4L2

L2(1 + i)(1 − i)
= 2.(66)

Note that in light of (27) this choice of CD maximizes |CD|.

5.4. Computing exponentially growing solutions. We want to evaluate the
function vτ given by (20) at the points x(k) ∈ Γ for k = 1, . . . ,K. We have vτ |Γ =
v0
τw

′
τ |Γ with w′

τ solving (18). In the case V ≡ 0, solving (18) amounts to computing
a convolution. If V �= 0, write (18) in the form

[I + gτ ∗ (Ṽ · )]w′
τ = f,(67)

where f = gτ ∗ χD. A numerical solution method for (67) is described in [22]. It
is a modification of Vainikko’s fast Lippmann–Schwinger solver [32, section 2]. This
method is valid for potentials in the class of Definition 2.1.

Given an integer m > 1, the outcome of the solution algorithm is the set

{w′
τ (x

())}M2

=1,

where the evaluation points x() belong to the Cartesian grid

Gm = {jh | j ∈ Z
2
m},(68)

Z
2
m = {j = (j1, j2) ∈ Z

2 | − 2m−1 ≤ jl < 2m−1, l = 1, 2},

where s > 1 is a real number, M = 2m, and h = 2s/M .

5.5. Computing derivatives of exponentially growing solutions. We need
the values ∂vτ/∂ν(x

(k)) for k = 1, . . . ,K. We show that it is enough to evaluate w′
τ

in addition to explicit formulae.

Take τ > 0 and let w′
τ be the solution of w′

τ = gτ ∗ χD − gτ ∗ (Ṽ w′
τ ). The

derivatives ∂jw
′
τ for j = 1, 2 are given by

∂jw
′
τ = −(∂jgτ ) ∗ (Ṽ w′

τ − χD).(69)



NUMERICAL SOLUTION OF THE CAUCHY PROBLEM 1921

Using Lemma 4.1 we get

∂vτ
∂ν

= e−τy2
∂(eiτx̄w′

τ )

∂ν
= e−τy2

[
ν1
∂(eiτx̄w′

τ )

∂x1
+ ν2

∂(eiτx̄w′
τ )

∂x2

]
= eτ(x2−y2)eiτx1 [iτν1w

′
τ + τν2w

′
τ − (ν1(∂1gτ ) + ν2(∂2gτ )) ∗ (Ṽ w′

τ − χD)]

= eτ(x2−y2)eiτx1

[
iτν1w

′
τ + τν2w

′
τ

−ν1
(
− 1

4πx̄
− e−τ̄ (x)

4πx
− iτgτ

)
∗ (Ṽ w′

τ − χD)(70)

−ν2
(
− 1

4πix̄
+
e−τ̄ (x)
4πix

− τgτ

)
∗ (Ṽ w′

τ − χD)

]

=
eτ(x2−y2)eiτx1

4π

[(
ν1

(
1

x̄
+
e−i2τx1

x

)
+ ν2

(
1

ix̄
− e−i2τx1

ix

))
∗ (Ṽ w′

τ − χD)

]
,

where we used formulae (53) and (54) and the real-valuedness of τ . Note the cancella-
tion of four terms containing w′

τ resulting from the identity w′
τ = −gτ ∗ (Ṽ w′

τ − χD).

5.6. Choosing τ . Theoretically, the larger τ > 0 is, the closer uτ (y) is to u(y).
However, too large τ leads to computations involving exponentially large numbers and
numerical instability. This is even more so when the data is noisy. Thus τ must be
chosen large enough for the approximation u(y) ≈ uτ (y) to be accurate enough but
small enough to avoid instability. We discussed the optimal choice of τ theoretically
in section 3, and in section 6 we study several choices of τ numerically.

6. Numerical results for V ≡ 0.

6.1. The model problem. Let u = Re((x1 + ix2)
4) be the harmonic function

to be recovered from its Cauchy data on

Γ = {x1 + ix2 = eiθ | 0 < θ < π} ⊂ ∂Ω.(71)

See Figure 6.1 for a contour plot of u in the domain Ω together with plot of trace of
u and plot of ∂u/∂ν.

Γ

0 π/2 π
−1

0

1

θ
0 π/2 π

−4

0

4

θ

Fig. 6.1. Left: contour plot of the harmonic function u in the domain Ω. Middle: plot of the
trace u|Γ as function of angular parameter θ. Right: plot of normal derivative ∂u/∂ν|Γ.

6.2. Details of implementation.
Step 1: Integration on Γ. According to a given y, we divide Γ into three intervals:

0 < θ < θ̃, θ̃ < θ < π − θ̃, π − θ̃ < θ < π.

Here 0 < θ̃ < π/2 is chosen so that, roughly, the largest values of the integrand are
in the interval containing π/2. We take θ̃ = (70/360) · 2π. We choose K0 Gaussian
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Error in recovered trace
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Noisy samples of normal derivative

0 π/2 π
−4
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Recovered normal derivative

0 π/2 π
−0.04

0

0.04
Error in recovered normal derivative

Fig. 6.2. Simulation of noisy Cauchy data of u satisfying Laplace’s equation. In each plot, the
abscissa is the angular parameter θ for the curve Γ = {eiθ | 0 < θ < π}.

quadrature points for each interval leading to a quadrature rule ofK = 3K0 evaluation
points for Γ.

Step 2: Evaluation of data. The Cauchy data of u are given by explicit formulae:

u|Γ(θ) = cos 4θ,
∂u

∂ν

∣∣∣∣
Γ

(θ) = 4 cos 4θ.(72)

We produce simulated noisy data following the discussion in section 5.2. Set
z̃(j) = (cosφj , sinφj) with φj = (j − 1)π/(J0 − 1) with j = 1, . . . , J0 = 40. We
compute noisy samples as

u(z̃(j)) + 0.003 εj ,
∂u

∂ν
(z̃(j)) + 0.012 ε′j ,(73)

where εj and ε′j are normally distributed independent random numbers with standard
deviation σ = 1. See Figure 6.2.

To recover the smooth data using Tikhonov regularization, we take

θk = (k − 1)π/(J − 1), z(k) = (cos θk, sin θk) for k = 1, . . . , J = 391.

The result of solving (64) with regularization parameter α = 4 is shown in Figure 6.2.
The choice of α was based on visual inspection. The L2 norm for the noise introduced
in section 3 is E ≈ 0.02.

Step 3: Choosing the triangle D and computing CD. We implement the choice
given in section 5.3. For any y, we start by L = y2. Generally, this leads to D �⊂ Ω.
Then, we replace L with L/2 so many times that D ⊂ Ω. Then we replace L with
L+ 0.01 as many times as possible while still having D ⊂ Ω. We have CD = 2.

Step 4: Evaluation of vτ . With fixed y and given choice of D = D(y) and
τ = τ(y), we substitute V ≡ 0 into (18):

w′
τ (x) =

∫
R2

gτ (x− z)χD(z)dz =

∫
D

gτ (x− z)dz.

So we need to integrate over D to find w′
τ (x) for a given x ∈ Γ. We use Gaussian

product quadrature with K̃2
0 = K̃ evaluation points. As indicated in section 4, we

have available a numerical algorithm for gτ , so Step 4 is complete.
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y(1)

y(2) y(3)

y(4)

y(5)

y(1) = (0, 4/5)
y(2) = (−7/10, 3/5)
y(3) = (0, 3/5)
y(4) = (0, 2/5)
y(5) = (0, 1/5)

Fig. 6.3. Special points for examining the convergence of uτ (y(j)) to u(y(j)).

Step 5: Evaluation of ∂vτ/∂ν. We have vτ (x) = e−τy2eiτx̄w′
τ (x), where w′

τ (x) =
gτ ∗ χD. Compute

∂vτ
∂x1

= e−τy2eiτx̄
(
iτw′

τ (x) +
∂w′

τ

∂x1

)
.(74)

Further, using Lemma 4.1,

∂w′
τ

∂x1
=
∂gτ
∂x1

∗ χD =

(
− 1

4πx̄
− e−τ (x)

4πx

)
∗ χD − iτw′

τ .(75)

A combination of (74) and (75) yields

∂vτ
∂x1

= −e−τy2eiτx̄
(

1

4πx̄
+
e−τ (x)
4πx

)
∗ χD.(76)

We can compute ∂vτ/∂x2 in a similar fashion. Note that on Γ the normal vector ν
takes the simple form ν(x) = (x1, x2). Thus we get

∂vτ
∂ν

∣∣∣
Γ

= −e
−τy2eiτx̄

4π

(x1

x̄
+
x1e−τ (x)

x
+
x2

ix̄
− x2e−τ (x)

ix

)
∗ χD.(77)

Step 6: Choosing τ . We want to find a suitable τ experimentally. So we will
compute uτ with τ varying in the interval [10, 80]. We study convergence of uτ to
u at the points y(1), . . . , y(5) given in Figure 6.3. We plot uτ (y

(j)) for j = 1, . . . , 5
as functions of τ in Figure 6.4. Note that numerical instability occurs when τ is
large. This is due to finite precision of the computation and the exponential functions
appearing in the reconstruction formula.

6.3. Results for ideal data. We now have a complete numerical algorithm for
uτ . Since it is numerically impossible to compute uτ for y2 close to zero, we choose
the computational reconstruction domain as

Ω′ =

{
y ∈ Ω | y2 ≥ 1

8

}
.(78)

We compute uτ (y) in Ω′ for τ = 10, 40, 70 on a collection of 1382 evaluation points
inside the upper half of the unit disc. For integration on Γ we choose K = 360
quadrature points, and for integration on D we take a product rule with K̃ = 252 =
625 points. We show the functions u, u20, u40, and u70 in Figure 6.5.

We see that the quality of the reconstruction varies depending on y2 and τ .
In particular, we observe that each plot with fixed τ has a region of acceptable
reconstruction always containing a neighborhood of the point (0, 1). Furthermore,
when τ grows, the region of acceptable reconstruction shrinks, but the quality of
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τ

Fig. 6.4. Convergence study for the Laplace equation. From top to bottom: plot of the real part
of the function τ �→ uτ (y(j)) for j = 1, 2, 3, 4, 5. The theoretical limit values for these functions when
τ → ∞ are marked in the plots. Note that numerical instability makes the computation inaccurate
when τ grows. Divergence appears with smaller τ values for those reconstruction points that are
deeper inside Ω.

Table 6.1

Relative errors in uτ computed from ideal Cauchy data of a solution u to Laplace’s equation.
Left: relative L2 errors E2(t, τ). Right: relative L∞ errors E∞(t, τ). In these tables, “—” stands
for “greater than 1000%.” For definitions of E2 and E∞, see (79).

t = 1/8 1/2 7/8
τ = 10 53% 47% 45%

40 923% 16% 14%
70 — — 9%

t = 1/8 1/2 7/8
τ = 10 91% 91% 33%

40 — 46% 10%
70 — — 6%

reconstruction in the acceptable region is better than with smaller τ . For quantita-
tive examination of this property we introduce the following norms for measuring the
error of reconstructions. Given 0 < t < 1 and τ > 0, we consider the relative errors

E2(t, τ) =
‖u− uτ‖L2(Ωt)

‖u‖L2(Ωt)
, E∞(t, τ) =

‖u− uτ‖L∞(Ωt)

‖u‖L∞(Ωt)
,(79)

where Ωt = {y ∈ Ω | y2 > t}. The errors are given in Table 6.1.
For one choice of τ , the computation takes about 4 hours with MATLAB 6.5

running on a desktop PC computer with an Intel Pentium IV 2.8 GHz processor and
1 GB memory. In practical applications the collection of recovery points y and a good
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Fig. 6.5. Results for the Laplace equation and ideal data. Top left: mesh plot of the original
harmonic function u. Top right: contour plot of u. Similarly, from top to bottom, we show mesh
and contour plots of the reconstructions u10, u40, and u70. The axis limits are the same in all mesh
plots, allowing easy comparison. We do not plot any function values greater than 1 in absolute
value since numerical instability causes extremely large (incorrect) values in the reconstructions,
and visualizing these values would obscure the acceptable parts of the reconstructions. Note that the
greater τ is, the better the reconstruction is for points (y1, y2) with y2 near 1.
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Fig. 6.6. Results for the Laplace equation and noisy data. Left: mesh plot of the original
harmonic function u. Middle: recovery of u with spatially varying τ from data with noise level
0.3%. Right: recovery of u with spatially varying τ from data with noise level 0.6%.

choice for τ can be fixed. Then traces vτ |∂Ω and the normal derivatives ∂vτ/∂ν|∂Ω

according to each y need be computed only once and saved. Then recovery of u(y)
with given Cauchy data takes in this case only a couple of seconds.

It can be seen in Figure 6.5 that near those parts of the boundary that are almost
parallel to the y2 axis, the quality of the reconstruction is bad. This is related to the
smaller triangular patch D used there, leading to slower convergence.

6.4. Results for noisy data. We compute the functions u7, u10, and u12 using
noisy Cauchy data. The results are similar to the nonnoisy case, the main difference
being that the region of acceptable results shrinks with considerably smaller τ val-
ues. To achieve a uniform level of regularization, we choose τ as a function of y as
follows:

τ = τ(y) = 6 + 6y3
2 ,

so deep inside Ω we use a smaller value of τ , leading to less oscillation. Since the
τ values used were relatively small, we did not need so many quadrature points for
numerical integration. For integration on Γ we choose K = 36 quadrature points, and
for integration on D we take a product rule with K̃ = 72 = 49 points.

For the result, see the middle plot in Figure 6.6. The recovered solution has 38%
relative L2(Ω′) error. To examine the robustness of our method against noise, we
produce noisy data with double standard deviation in the random errors in (73). We
repeat the recovery process, leading to a result having 41% relative L2(Ω′) error; see
the rightmost plot in Figure 6.6. The relative difference between the two reconstruc-
tions in L2(Ω′) is only 6% although the noise level was doubled. The computation of
each of the two reconstructions took 5 minutes.

7. Numerical results for V �= 0. We present a two-dimensional example
roughly modelling the inverse potential problem in cardiology.

7.1. The Cauchy problem in cardiology. A beating heart produces an elec-
trical field inside the body, and the resulting voltage distribution can be measured
with electrodes placed on the skin. This is called electrocardiography (ECG). The
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B

H
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3

6

Fig. 7.1. Left: the domain of the conductivity equation is the annulus Ω̃ = B \ H. Right:
contour plot of the twice differentiable conductivity distribution on B.

inverse potential problem of cardiology is of clinical interest: given the ECG measure-
ments and the conductivity distribution of the body, what is the voltage potential on
the surface of the heart?

We present a two-dimensional quasi-static model of the above inverse problem.
Let the unit disc B = {x ∈ R

2 | |x| < 1} model a cross section of human thorax, and
assume that the heart is located on the disc H with center at (−0.2, 0.2) ∈ B and
radius 0.3. Further, we model the electrical conductivity γ : B → R of the body with
a strictly positive C2(B) function taking value 6 in the heart, 1 in the lungs, and 3 in
the background. These values approximate the tissue conductivities during perfusion.
See Figure 7.1.

Electric current inside the heart results in the following boundary value problem
for the electric voltage potential ũ in the annulus Ω̃ = B \H:

∇ · γ∇ũ = 0 in Ω̃, ũ|∂H = f,
∂ũ

∂ν

∣∣∣
∂B

= 0,(80)

where we assumed that the outer boundary ∂B is perfectly insulated.

We create our example by setting f(x1, x2) = (x1 + 0.5)(x2 − 0.2) in (80), qual-
itatively resembling a voltage distribution depicted on page 386 in [7]. We solve the
elliptic boundary value problem (80) with the finite element solver of MATLAB’s
PDE toolbox using 14848 triangles in the domain Ω̃. See Figure 7.2.

+
−

0 π 2π
−0.12

0

0.12

0 π 2π

−.05

.07

Fig. 7.2. Left: contour plot of the solution ũ of the conductivity equation (80). Middle: voltage
potential ũ|∂H on the surface of the heart as a function of the angular variable θ corresponding to
the parametrization ∂H = {(−0.2 + 0.3 cos θ, 0.2 + 0.3 sin θ) ∈ R

2 | 0 ≤ θ < 2π}. Right: voltage
potential ũ|∂B as a function of the angular variable θ corresponding to the parametrization ∂B =
{(cos θ, sin θ) ∈ R

2 | 0 ≤ θ < 2π}. Axis limits in the two plots are the same to allow quantitative
comparison.
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Fig. 7.3. In the rightmost picture are 24 reconstruction points on the circle S defined in (83)
at distance 0.1 from the surface of the heart. For each reconstruction point we choose a domain Ω
that coincides after rotation with a canonical domain described in section 2.

Application of the techniques of this paper requires transforming the conductivity
equation (80) into the Schrödinger equation. Set

V (x) =
∆
√
γ(x)√
γ(x)

.(81)

Since γ ∈ C2(B), we have V ∈ C0(Ω̃) ⊂ L∞(Ω̃). (The norm of the particular potential
we use is approximately ‖V ‖L∞(Ω̃) ≈ 293, so our example is not a small perturbation

of the harmonic case.) It is straightforward to check that u := γ1/2ũ satisfies the
equation

(−∆ + V )u = 0 in Ω̃.(82)

Because γ ≡ 3 in a neighborhood of ∂B, we know the Cauchy data of u on ∂B:

u|∂B =
√

3ũ|∂B , ∂u

∂ν

∣∣∣
∂B

= 0.

Equation (82) is valid only outside the heart. We choose a collection of com-
putational domains Ω as shown in Figure 7.3; each of these domains coincides after
rotation with a canonical domain described in section 2. We cannot choose our recov-
ery points right at the surface of the heart because the set D would then be empty,
so we choose 24 points on the circle S given by

S = {(−0.2 + 0.4 cos θ, 0.2 + 0.4 sin θ) ∈ R
2 | 0 ≤ θ < 2π}.(83)

Thus we reconstruct the voltage at distance 0.1 from the surface of the heart. See
Figure 7.3.

7.2. Details of implementation. We assume that the domain Ω is (possibly
after rotation) of the canonical form with −1 < t < 1 described in section 2. The
Neumann data of u vanish, we need only compute

uτ (y) = −2τ2e−iτy1

CD

∫
Γ

∂vτ
∂ν

u dσ(x).(84)

Step 1: Integration on Γ. We choose K Gaussian quadrature points on Γ. There
is no need to divide Γ into subintervals as done in section 6.2 since we use so small a
value of τ that the integrand is roughly of the same order of magnitude throughout Γ.
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Fig. 7.4. Product Gaussian quadratures on the triangular patch D with 13× 13 points in polar
coordinates. Left: the origin is inside D. Middle: the origin is on the boundary of D. Right: the
origin is at the corner of D.

Step 2: Evaluation of data. The experimental setup in [7] uses 24 electrodes with
2% noise level. We simulate that measurement with

ũ(z̃(j)) + 0.0022 εj ,

where z̃(j) = (cosφj , sinφj) with φj = (j − 1)2π/J0 with j = 1, . . . , J0 = 24 and εj
are normally distributed independent random numbers with standard deviation 1.

We use Tikhonov regularization to recover a smooth approximation to the actual
voltage. In the notation of section 5.2, we have J0 = 24, J = 144, and α = 2. Since
we reconstruct the trace on the full circle, we include requirement of periodicity into
the regularization. Relative L2(∂Ω) error in the reconstruction of the trace ũ|∂Ω is
0.033, and relative L∞(∂Ω) error is 0.032.

Step 3: Choosing the triangle D and computing CD. We take L = 0.1 and use the
choice given in section 5.3 leading to CD = 2.

Step 4: Evaluation of vτ . We need to solve the Lippmann–Schwinger-type equa-
tion [I + gτ ∗ (Ṽ · )]w′

τ = f as explained in section 5.4. The problem is the evaluation
of

f(x()) = (gτ ∗ χD)(x()) =

∫
D

gτ (x
() − y)dy, � = 1, 2, . . . ,M2.(85)

Since gτ (x) has a logarithmic singularity at x = 0, numerical integration in (85)
becomes problematic when x() belongs to D or is close to the boundary ∂D. We
overcome this problem by writing the integral in polar coordinates and using product
Gaussian quadrature; due to the product measure rdrdφ the integrand is bounded
and continuous since limr→0 r log r = 0. We need only to go through the tedious
task of writing the integration domain as a function of φ and r(φ). We do not bore
the reader with the details of dividing the algorithm into 19 subcases and performing
the necessary trigonometric calculations but instead show some resulting quadrature
points in Figure 7.4.

Step 5: Evaluation of ∂vτ/∂ν. From (70) we see that the normal derivative of vτ
appearing in (84) is given by

−e
τ(x2−y2)eiτx1

4π

[(
ν1

(
1

x̄
+
e−i2τx1

x

)
+ ν2

(
1

ix̄
− e−i2τx1

ix

))
∗ χD

]

+
eτ(x2−y2)eiτx1

4π

[(
ν1

(
1

x̄
+
e−i2τx1

x

)
+ ν2

(
1

ix̄
− e−i2τx1

ix

))
∗ Ṽ w′

τ

]
≡ I1 + I2.
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Fig. 7.5. Left: true voltage potential at distance 0.1 from the boundary of the heart is plotted
as a solid line. Reconstructed voltage potential values are plotted as dots. See Figure 7.3 for the
reconstruction points. Right: true voltage potential at the boundary of the heart (solid line) and
the same reconstructed voltage potentials as in the left plot (dots). The abscissa in both plots is the
angular parameter of the circle around the heart.

Note that I2 vanishes when V = 0, and therefore I2 can be seen as a correction term
compensating for nonzero V . The computation of I1 was already described for the
case V = 0.

Given an integer m > 1, the outcome of Step 4 is the set {w′
τ (x

())}M2

=1, where
the evaluation points x() belong to the grid (68). It is then natural to implement the
integral in I2 simply with the midpoint rule.

Step 6: Choosing τ . We take τ = 4, 6, 8, 10, 12.

7.3. Results. To compute (84) we choose K = 70 for integrating over Γ, and for
all integrations over D we take K̃ = 152 = 225 quadrature points. We take m = 7, or
M = 128 in the Lippmann–Schwinger solver. We compute uτ with τ = 4, 6, 8, 10, 12
and find that the reconstructions with τ > 6 are oscillatory, and τ = 6 gives a better
result than τ = 4. We thus choose τ = 6.

The plot on the left in Figure 7.5 shows the superposition of reconstructed voltage
potential γ−1/2u6 and the actual potential on the circle S containing the reconstruc-
tion points. We find that the maximum relative absolute error of the reconstruction
is 86%. Diagnostically, the most interesting part of the reconstruction is the angular
interval 0 ≤ θ ≤ π. In this interval, the maximum and average relative absolute errors
are 25% and 10%, respectively.

However, we are interested in the voltage potential at the boundary of the heart.
We simply consider our reconstruction of the voltage on S to be an approximation
to the voltage on ∂H. The plot on the right in Figure 7.5 shows a comparison
of these two quantities. Maximum relative absolute error in the reconstruction as
compared to the voltage potential at the boundary of the heart is 1.07. In the interval
0 ≤ θ ≤ π, the maximum and average relative absolute errors are 43% and 21%,
respectively.

The computation took 4 hours.

7.4. Discussion. Unlike in many works on the inverse potential problem of
ECG, such as [7], we do not assume that the tissue between the skin and the surface
of the heart is homogeneous. If the electric conductivity of the body is known, e.g., by
electrical impedance tomography [5], our method thus allows more accurate modelling
of the problem.

The worst-case performance of our algorithm is not impressive: the maximum
relative error is 1.07. However, this worst error appears near the posterior surface of
the heart (facing the back), which is far away from the boundary. The anterior surface
of the heart (facing the chest) is diagnostically more important. Relative error on the
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anterior surface, defined as 0 ≤ θ ≤ π in the notation of Figure 7.2, is on average 21%
and at most 43%. This result is somewhat better than the 30%–50% error reported
in [7], where conductivity was taken to be constant.

Instead of quantitative reconstruction of the voltage, we might want to know the
location of the maximum voltage potential on the anterior surface of the heart. The
true maximum appears at θ0 = 1.05 (in radians), and the reconstruction attains its
maximum at θ̃0 = 1.31. The error in the reconstructed angle is 15 degrees.

The main advantage of our method is modelling the conductivity, and the main
source of error is the inherent problem that we cannot recover the voltage at the sur-
face of the heart but slightly away from it. As mentioned in the introduction, there
are other methods capable of dealing with nonconstant conductivities and additionally
providing reconstruction right at the surface of the heart. However, those methods
typically involve solution of boundary value problems, which is computationally inten-
sive. Our reconstruction method is very fast after the initial computational load, and
it could thus be better suited for real-time monitoring. Also, modelling the movement
of a beating heart for the solution of boundary value problems is difficult, and our
approach of reconstructing a little bit away from the heart might be considered an
advantage.

Our tissue model assumes that the conductivity is differentiable although in re-
ality it is discontinuous, but since many regularized electrical impedance tomography
reconstructions produce a differentiable approximation to the conductivity, this is
perhaps not so serious. The most obvious drawback of the presented algorithm is the
two-dimensional approximation. However, the theory behind our method covers the
three-dimensional case, and a similar algorithm can be designed in three dimensions.
This is left for a future study.

REFERENCES

[1] L. Aizenberg, Carleman’s Formulas in Complex Analysis, Kluwer Academic Publishers, Lon-
don, 1993.

[2] F. Berntsson and L. Eldén, Numerical solution of a Cauchy problem for the Laplace equation,
Inverse Problems, 17 (2001), pp 839–853.

[3] M. Boiti, J. P. Leon, M. Manna, and F. Pempinelli, On a spectral transform of a KdV-
like equation related to the Schrödinger operator in the plane, Inverse Problems, 3 (1987),
pp. 25–36.

[4] T. Carleman, Les Fonctions Quasi Analytiques, Gauthier-Villars, Paris, 1926.
[5] M. Cheney, D. Isaacson, and J. C. Newell, Electrical impedance tomography, SIAM Rev.,

41 (1999), pp. 85–101.
[6] J. Cheng, Y. C. Hon, T. Wei, and M. Yamamoto, Numerical computation of a Cauchy

problem for Laplace equation, ZAMM Z. Angew. Math. Mech., 81 (2001), pp. 665–674.
[7] P. Colli-Franzone, L. Guerri, S. Tentoni, C. Viganotti, S. Baruffi, S. Spaggiari, and

B. Taccardi, A mathematical procedure for solving the inverse potential problem of elec-
trocardiography. Analysis of the time-space accuracy from in vitro experimental data, Math.
Biosci., 77 (1985), pp. 353–396.

[8] L. D. Faddeev, Increasing solutions of the Schrödinger equation, Sov. Phys. Dokl., 10 (1966),
pp. 1033–1035.

[9] V. A. Fok and F. M. Kuni, On the introduction of a “suppressing” function in dispersion
relation, Dokl. Akad. Nauk SSSR, 127 (1959), pp. 1195–1198 (in Russian).

[10] M. G. Goluzin and I. V. Krylov, A generalized Carleman formula and its application to
analytic continuation of functions, Mat. Sb., 4 (1933), pp. 144–149.

[11] P. Grisvard, Elliptic Problems in Nonsmooth Domains, Pitman, Boston, 1985.
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Abstract. We derive a quantum mechanical correction to the semiclassical Fermi golden rule
operator for scattering of electrons in a crystal. This correction takes into account the fact that
electron-phonon interaction is not instantaneous in quantum mechanics. The corrective term is
derived via an oscillatory, i.e., weak, limit in the Levinson equation for large timescales.
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1. Introduction. It is generally accepted that the dominant collision mecha-
nism for electron transport in crystals is scattering of electrons by phonons, i.e., with
vibrations of the crystal lattice. In a semiclassical description this collision mecha-
nism is described by the Fermi golden rule. In the absence of an electric field and in
the spatially homogeneous case, the evolution of the effective single electron density
function is then given by the Boltzmann equation

(a) ∂tf(p, t) = QFGR[f ](p, t)

:=

∫
dp′[SFGR(p, p′)f(p′, t) − SFGR(p′, p)f(p, t)],(1.1)

(b) SFGR(p, p′) = [A−δ(ε(p) − ε(p′) − �ω) +A+δ(ε(p) − ε(p′) + �ω)],

where p denotes the momentum vector and ε(p) = |p|2
2m∗

denotes the energy associated
with the momentum p. The Fermi golden rule states that during a collision the
electron gains or loses an amount �ω of energy from the crystal lattice by annihilation
or generation of a phonon. We remark that the Boltzmann equation (1.1) models
instantaneous collisions; i.e., the momentum of an electron changes instantaneously
from p′ to p during a collision event.

Semiclassical transport theory based on the Boltzmann equation neglects several
effects which originate from the quantum mechanical nature of the charge carriers,
such as a collisional broadening due to the finite lifetime of the carrier momentum
eigenstate, collision retardation, and the intracollisional field effect due to the action of
the electric field during the scattering process [11]. To describe these effects a quantum
kinetic equation has to be adopted which takes the finiteness of the scattering duration
into account. An appropriate kinetic equation describing the interaction of a single
electron with the equilibrium phonon system of a semiconductor has been proposed
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by Levinson [6]. Restricting ourselves to the case of a spatially uniform semiconductor
and vanishing electric field, the Levinson equation is of the form

(a) ∂tf(p, t) = Q[f ](p, t)

:=

∫ t

0

dt′
∫
dp′[S(p, p′, t− t′)f(p′, t′) − S(p′, p, t− t′)f(p, t′)],

(b) S(p, p′, t) =
2V F 2n

(2π�)3
cos

[
t

�
(ε(p) − ε(p′) − �ω)

]
(1.2)

+
2V F 2(n+ 1)

(2π�)3
cos

[
t

�
(ε(p) − ε(p′) + �ω)

]
,

ε(p) =
|p|2
2m∗

, n =
1

exp(β�ω) − 1
.

The symbols in (1.2) have the following meaning: �F denotes the electron-phonon
interaction matrix element, �ω the phonon energy, V the normalization volume, m∗
the effective electron mass, n the Bose–Einstein distribution, and β = (kBT )−1 the
inverse temperature of the phonon system. Note that, other than the Fermi golden
rule equation (1.1), the Levinson equation (1.2) is nonlocal in time, and the effect of
a collision is actually felt for all future times. Therefore the Levinson equation is able
to model some of the effects mentioned above, which become increasingly relevant
as the dimensions of modern semiconductor devices decrease, and, consequently, fast
relaxation processes play a more prominent role. The Levinson equation can be
derived from the quantum mechanical many body problem for one electron and an
arbitrary number of phonons, i.e., from an infinite system of Schrödinger equations
for the wave functions ψn(p, q1, . . . , qn, t), where p is the electron momentum vector
and the qj denote the phonon momenta. ψn describes the state of the system for
one electron and n phonons, and ψn is coupled to ψn−1 and ψn+1 via coupling terms
in the Fröhlich Hamiltonian, modelling the creation and annihilation of phonons.
The function f is then the Wigner function corresponding to the phonon trace of
the density matrix. We refer the reader to [1], [3], [4], [5] for an overview of the
derivation. The Levinson equation represents the weak coupling limit of this system,
which means that only electron-phonon interactions of first order are retained. An
interaction starts at some time, say t1, when one half of the phonon momentum is
transferred to the electron, and gets completed at some time t2, when the second half
of the phonon momentum is transferred (see, e.g., [4], [9]). These partial processes
capture the emission and absorption of both real and virtual phonons. The weak
coupling limit implies that during the period t2 − t1 of a particular interaction no
other interaction can start. In other words, only a sequence of completed interactions
is considered. The time between two interactions is determined by the frequency
F given by the interaction matrix element, whereas the duration of the interaction
depends on the frequency of the lattice vibrations, ω. Therefore, F � ω must hold.
A result of the weak coupling limit is that no powers higher than F 2 appear in
(1.2)(b). To our knowledge, a completely rigorous mathematical derivation of the
Levinson equation from the many body problem for the Fröhlich Hamiltonian is still
outstanding. However, for the purpose of this paper, we will assume the Levinson
equation (1.2) to be valid.

Remark: The Levinson equation results from an asymptotic expansion of the
Fröhlich Hamiltonian for small coupling coefficients [1], [3]. While there obviously is
a density matrix formulation of the Levinson equation, which is given by the Fourier
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transform of (1.2), the corresponding density matrix cannot simply be written as a
superposition of pure state wave functions, and therefore the positive definiteness of
the Wigner function f in (1.2) cannot be guaranteed automatically.

The objective of the present paper is to relate (1.2) to the Fermi golden rule (1.1).
While much simpler than the original many body equation, the Levinson equation still
poses significant challenges because of its nonlocality in time and rapid oscillations
due to the presence of the term t/� in the integral kernel in (1.2). It is mentioned in
the original work [6] that in the classical limit � → 0 the scattering rate S in (1.2)(b)
will be replaced by the Fermi golden rule (cf. [2]).

In the present paper we prove the convergence of the Levinson operator Q in (1.2)
to the Fermi golden rule operator QFGR for large timescales, and more importantly,
in addition to the golden rule the first order term in the asymptotic expansion is
derived. The result is a correction to the Fermi golden rule, which better reflects the
effects of finite collision times. The resulting corrected operator is structurally of the
form

QC [f ] =

∫
dp′[SC(p, p′, ∂t)f(p′, t) − SC(p′, p, ∂t)f(p, t)],(1.3)

where the corrected scattering rate SC contains the Fermi golden rule rate SFGR and
a correction term that involves the time derivative of the density function. However,
the corrected operator QC in (1.3) is still local in time, in the sense that it is not
an integral operator in time, and therefore the resulting transport equation is much
simpler to solve than the Levinson equation (1.2). More precisely, we prove that the
Levinson operator Q converges weakly, in zeroth order to QFGR, and in first order
to the corrected operator QC . The considered regime is one of large timescales, i.e.,
timescales which are much larger than 1/ω, where ω is the frequency with which the
lattice vibrates.

This paper is organized as follows. In section 2 we introduce an appropriate
dimensionless form of the Levinson equation (1.2) which contains a dimensionless
parameter λ = (ωt0)

−1, where t0 is the timescale under consideration. Section 3
contains the asymptotic analysis for λ → 0. We prove that Q = QC + o(λ), QC =
QFGR+λQ1 holds in a weak sense, i.e., when integrated against a fixed test function.
The main result of the paper, the form of QC , is given at the end of section 3 in
formula (3.10). Section 4 is devoted to numerical experiments. First the asymptotic
result of section 3 is verified. This result states only the weak convergence of Q to QC
and not the convergence of the solution f of the Levinson equation to the solution
of the corresponding transport equation containing QC . The approximation of the
solution of the transport equation is verified numerically in section 4 as well. The
numerical solution of the transport equation involving the operator QC in (1.3) is
nontrivial because this equation is implicit. We propose a solution method which is
amenable to particle discretizations.

2. Scaling. We start by bringing the Levinson equation (1.2) into an appropriate
dimensionless form. Choosing scales p0, t0 for the momentum p and the time t, and
rescaling S by s0, we set

f(p, t) =
1

p3
0

fs(ps, ts), S(p, p′, t) = s0Ss(ps, p
′
s, ts),

ε(p) =
p2
0

m∗
εs(ps), ps =

p

p0
, ts =

t

t0
,
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where m∗ denotes the effective electron mass, and we obtain

(a) ∂tsfs(ps, ts) = s0t
2
0p

3
0

∫ ts

0

dt′s

∫
dp′s[Ss(ps, p

′
s, ts − t′s)fs(p

′
s, t

′
s)

−Ss(p
′
s, ps, ts − t′s)fs(ps, t

′
s)],

(2.1)

(b) Ss(ps, p
′
s, ts) =

2V F 2n

s0(2π�)3
cos

[
t0p

2
0ts

m∗�

(
εs(ps) − εs(p

′
s) −

m∗�ω
p2
0

)]

+
2V F 2(n+ 1)

s0(2π�)3
cos

[
t0p

2
0ts

m∗�

(
εs(ps) − εs(p

′
s) +

m∗�ω
p2
0

)]
,

where, in the case of parabolic bands, εs(ps) = |ps|2
2 holds. For the rest of this paper

we will restrict ourselves to parabolic bands and assume that the matrix element F
of the electron-phonon interaction is constant with respect to momentum.

The parameter s0 can be chosen more or less freely, since it cancels as soon
as (2.1)(b) is inserted into (2.1)(a). We choose s0 = 1

t20p
3
0
, which ensures that the

resulting equation varies on an O(1) scale in time. The key issue is now to choose
an appropriate scale p0 for the momentum variable. A natural choice is to scale the
phonon energy to unity, which gives p2

0 = m∗�ω. Furthermore, we will consider the
Levinson equation on a timescale that is much larger than the timescale on which
the lattice vibrates. Therefore we set t0 = (λω)−1, where λ denotes a dimensionless
parameter. We drop the subscript s from here on and obtain

∂tf(p, t) =

∫ t

0

dt′
∫
dp′[S(p, p′, t− t′)f(p′, t′) − S(p′, p, t− t′)f(p, t′)],

S(p, p′, t) =
2V F 2

λ2(2π)3

√
m3∗
�3ω

(
n cos

[
t

λ
(ε(p) − ε(p′) − 1)

]

+ (n+ 1) cos

[
t

λ
(ε(p) − εs(p

′) + 1)

])
.

Since the scattering rate varies on a timescale of order 1
λ , the amplitude should be of

the same order to keep the integral of order O(1), which is obtained by setting

λ2 =
2V F 2(n+ 1)

(2π)3

√
m3∗
�3ω

.(2.2)

This gives a scaled equation of the form

(a) ∂tf(p, t) = Qλ[f ](p, t)

:=

∫ t

0

dt′
∫
dp′[Sλ(p, p′, t− t′)f(p′, t′) − Sλ(p

′, p, t− t′)f(p, t′)],(2.3)

(b) Sλ(p, p
′, t) =

∑
ν=±1

aν
λ

cos

[
t

λ
(ε(p) − ε(p′) + ν)

]
, a−1 =

n

n+ 1
, a1 = 1.

Thus we consider an asymptotic regime where the quantity λ defined by (2.2) is
small, and consider the asymptotic behavior of the collision operator in the Levinson
equation for timescales t0 = (λω)−1, which are much larger than the scale on which
the lattice vibrates.
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We conclude this section with the following observation, giving a heuristic argu-
ment for the convergence to the Fermi golden rule operator. Changing variables in
the integral in (2.3)(a), we obtain

Qλ[f ](p, t) =

∫ t/λ

0

dτ

∫
dp′[λSλ(p, p′, λτ)f(p′, t− λτ) − λSλ(p

′, p, λτ)f(p, t− λτ)],

λSλ(p, p
′, λτ) =

∑
ν=±1

aν cos[τ(ε(p) − ε(p′) + ν)].

If the term λSλ(p, p
′, λτ), which is actually independent of λ, would decay for large τ ,

we could Taylor-expand the solution f and obtain in zeroth order

∂tf(p, t) =

∫ ∞

0

dτ

∫
dp′[λS(p, p′, λτ)f(p′, t) − λS(p′, p, λτ)f(p, t)],

which makes the collision operator local in time. The corresponding scattering rate
would then be given by∫ ∞

0

λS(p, p′, λτ)dτ =
∑
ν=±1

aν

∫ ∞

0

cos[τ(ε(p) − ε(p′) + ν)]dτ,

and the integral over the cosine produces the δ-function in the Fermi golden rule.
This heuristic argument has been given in [1], [3], [5]. Although S does not decay for
large times, this result still holds, but the limit process is oscillatory; i.e., we have to
compute a weak limit for λ → 0. The computation of this weak limit is the subject
of the present paper.

3. Asymptotics. In this section we derive the asymptotic behavior of the colli-
sion operator Qλ in (2.3) for λ→ 0 and show that Qλ indeed converges to the Fermi
golden rule operator in the weak sense. More importantly, we are able to derive the
first order term in the asymptotic expansion. This enables us to obtain a corrected
Fermi golden rule operator which is still local in time, and thus a corrected Boltzmann
equation which better reflects the effects of finite collision times. The main result of
this section is stated in Theorem 3.2, which gives an asymptotic expression for the
Levinson operator Qλ in (2.3) up to terms of order o(λ) in the weak sense. This ap-
proximation is still local in time in the sense that it depends only on the values of the
density function f at time t and on its time derivative. The first order approximation
is, although local in time, only given in a weak sense in p since the scattering rates in
the loss term will contain integrals which exist only as principal value. The form of
the resulting approximate collision operator is given in formulas (3.7) and (3.10).

Since we are considering a weak limit, we will define, for a given density f , the
functional

Yλ(f, ψ) =

∫ ∞

0

dt

∫
dpψ(p, t)Qλ[f ](p, t)

for a smooth test function ψ, and investigate the limiting behavior of Yλ(f, ψ) for
λ→ 0. It will be convenient to rewrite Yλ using the adjoint of the collision operator.
Interchanging the integration variables p and p′ in the first part of (2.3)(a) gives

(a) Yλ(f, ψ) =

∫ ∞

0

dt

∫
dp[f(p, t)Qadjλ [ψ](p, t)],

(3.1)

(b) Qadjλ [ψ](p, t) =

∫ ∞

t

dt′
∫
dp′[Sλ(p′, p, t′ − t)(ψ(p′, t′) − ψ(p, t′))],
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where we have also interchanged the time variables t, t′. In this form it is easy
to see that the collision operator Qλ conserves mass locally in time since the adjoint
operator Qadjλ (ψ) equals zero for test functions ψ which are constant in the momentum
direction. The functional Yλ represents a convolution in time and is therefore best
expressed through Fourier transforms. To this end, we extend the definition (3.1)(b)

of the adjoint collision operator Qadjλ [ψ](p, t) for negative time. We define the Fourier
transforms of the truncated density function f and the test functions by

f̂(p, τ) =
1√
2π

∫
dt[H(t)f(p, t)e−iτt], ψ̂(p, τ) =

1√
2π

∫
dt[ψ(p, t)e−iτt],(3.2)

where H(t) denotes the Heaviside function. From now on all integrals are to be
understood as being over the whole real line or all of R

3 unless stated explicitly
otherwise. We have the following.

Proposition 3.1. In terms of the Fourier transform of the truncated density
function f and the test function ψ, the functional Yλ(f, ψ) is given by

(a) Yλ(f, ψ) =

∫
dp

∫
dτ{f̂∗(p, τ)Q̂adjλ [ψ](p, τ)},

(b) Q̂adjλ [ψ](p, τ) =
1

2

∑
ν,σ=±1

aν

∫
dp′
[
π

λ
δ
(σ
λ
wν(p

′, p) − τ
)

+
1

i(σwν(p′, p) − λτ)

]
[ψ̂(p′, τ) − ψ̂(p, τ)],(3.3)

where ∗ denotes the complex conjugate and wν(p
′, p) = ε(p′) − ε(p) + ν holds.

Proof of Proposition 3.1. If we define the Fourier transform of the adjoint operator
Qadjλ [ψ] by

Q̂adjλ [ψ](p, τ) =
1√
2π

∫
dt

∫
dt′
∫
dp′H(t′ − t)Sλ(p

′, p, t′ − t)[ψ(p′, t′) − ψ(p, t′)]e−iτt,

(3.4)

the functional Yλ becomes

Yλ(f, ψ) =

∫
dτ

∫
dp[f̂∗(p, τ)Q̂adj [ψ](p, τ)],

where from here on ∗ will denote the complex conjugate. In order to compute the
Fourier transform of the adjoint collision operatorQadj , we have to essentially compute
the Fourier transform of the function H(t) cos(ut) as a distribution in t. We choose
a sufficiently smooth test function φ(t), which is compactly supported in time, and
compute the integral ∫

dt[H(t) cos(ut)φ(t)].

We split the integrand into its even and odd parts by writing

cos(ut)φ(t) = a(u, t) + ∂tb(u, t),

where a and b are both real and even functions in time. These functions are given by

a(u, t) =
1

2
cos(ut)

∑
γ=±1

φ(γt), b(u, t) = −1

2

∫ ∞

|t|
ds

[
cos(us)

∑
γ=±1

γφ(γs)

]
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and are both compactly supported in time as well. Their Fourier transforms in time
satisfy

â(u, τ) =
1

4

∑
σ,γ=±1

p̂hi(γτ − σu), b̂(u, τ) =
1

4iτ

∑
σ,γ=±1

γp̂hi(γτ − σu)

and are both well defined, also for τ → 0. Since both a and b are even functions of t,
we can extend the integral now over the whole real line and write∫

dt[H(t) cos(ut)φ(t)] =

∫ ∞

0

cos(ut)φ(t)dt =
1

2

∫
a(u, t)dt− b(u, 0)

=

√
2π

2
â(u, 0) − 1√

2π

∫
b̂(u, τ)dτ.

Inserting the expressions for the Fourier transforms of a and b gives∫
dt[H(t) cos(ut)φ(t)] =

1

4
√

2π

∑
σ,γ=±1

{
πp̂hi(−σu) −

∫
γ

iτ
p̂hi(γτ − σu)dτ

}
.

Shifting the integration variable in the second term gives, since the result does not
depend on the summation index γ anymore,∫

dt[H(t) cos(ut)φ(t)] =
1

2
√

2π

∑
σ=±1

{
πp̂hi(−σu) −

∫
p̂hi(τ)

i(τ + σu)
dτ

}
.

Finally, we introduce a δ-function to have a more compact notation, obtaining that∫
dt[H(t) cos(ut)φ(t)] =

1

2
√

2π

∑
σ=±1

∫ [
πδ(τ + σu) − 1

i(τ + σu)

]
p̂hi(τ)dτ

holds for all test functions φ(t) which are compactly supported in t. Thus, in a weak
sense, i.e., when integrated against the Fourier transform of compactly supported test
functions,

̂[H(t) cos(ut)](τ) =
1

2
√

2π

∑
σ=±1

[
πδ(τ + σu) +

1

i(τ + σu)

]

holds. Equipped with this, we can express the convolution integral for Q̂adj in (3.4)
as

Q̂adj [ψ](p, τ) =
√

2π

∫
dp′{ ̂[H(t)Sλ(p′, p, t)](−τ)[ψ̂(p′, τ) − ψ̂(p, τ)]}

=
1

2

∑
ν,σ=±1

aν

∫
dp′
[
π

λ
δ
(σ
λ
wν(p

′, p) − τ
)

+
1

i(σwν(p′, p) − λτ)

]
[ψ̂(p′, τ) − ψ̂(p, τ)],

wν(p
′, p) := ε(p′) − ε(p) + ν.

We now change to energy-angle variables. We make the coordinate transformation
in momentum space of the form

p→ (ε(p), p0), p0 :=
p

|p| ,
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where p0 is a vector living only on the unit sphere. Carrying out this coordinate
transformation in integrals and directional derivatives in the radial direction for the

parabolic band energy ε(p) = |p|2
2 , this means

∫
f(p)dp =

∫ ∞

0

dε

∫
dp0f(ε, p0)

√
2ε,

∫
1dp0 = 4π, pT∇pf(p) = 2ε∂εf(ε, p0),

and the functional Yλ(f, ψ) in (3.3) is given by

(a) Yλ(f, ψ) =

∫ ∞

0

dε

∫
dp0

∫
dτ
{√

2εf̂∗(ε, p0, τ)Q̂
adj
λ [ψ](ε, p0, τ)

}
,

(b) Q̂adjλ [ψ](ε, p0, τ) =
1

2

∑
ν,σ=±1

aν

∫ ∞

0

dε′
∫
dp′0

×
√

2ε′
[
πδ(ε′ − ε+ ν − σλτ)

+
σ

i(ε′ − ε+ ν − σλτ)

]
[ψ̂(ε′, p′0, τ) − ψ̂(ε, p0, τ)],(3.5)

where we have made use of the identity 1
λδ(

z
λ ) = δ(z) and the fact that the δ-function

is even. We now give the weak expansion of the collision operator Qλ as follows.
Theorem 3.2. For any fixed test function ψ(ε, p0, t) whose Fourier transform

in time ψ̂(ε, p0, τ) decays sufficiently fast, the value of the functional Yλ(f, ψ) can be
written as

(a) Yλ(f, ψ) = Y0(f, ψ) + λY1(f, ψ) + o(λ),(3.6)

with Y0 and Y1 given by

(b) Y0(f, ψ) =
∑
ν=±1

aν

∫ ∞

0

dε

∫
dp0

∫ ∞

0

dε′
∫
dp′0

∫ ∞

0

dt

πδ(ε′ − ε+ ν)
√

2ε′
√

2εf(ε, p0, t)[ψ(ε′, p′0, t) − ψ(ε, p0, t)],

(c) Y1(f, ψ) = −
∑
ν=±1

aν

∫ ∞

0

dε

∫
dp0

∫ ∞

0

dε′
∫
dp′0

∫ ∞

0

dt

ln(|ε′ − ε+ ν|)∂ε′∂ε
(√

2ε′
√

2εf(ε, p0, t)∂t[ψ(ε′, p′0, t) − ψ(ε, p0, t)]
)
.

The proof of Theorem 3.2 is deferred to the end of this section.
Remark: In the usual Cartesian coordinates this means that the collision operator

Qλ is given in weak form by

(3.7)

(a) Qλ[f ] = Q0[f ] + λQ1[f ] + o(λ),

(b) Q0[f ](p, t) =
∑
ν=±1

πaν

∫
dp′[δ(ε− ε′ + ν)f(p′, t)−δ(ε′ − ε+ν)f(p, t)],

(c)

∫
dp[φ(p)Q1[f ](p, t)] =

∑
ν=±1

aν

∫
dp

∫
dp′

ln(|ε′ − ε+ ν|) 1

4εε′
(pT∇p)((p′)T∇p′)

[√
4εε′∂tf(p, t)(φ(p′) − φ(p))

]
,
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where the first order term Q1 is formulated weakly in the momentum direction only,
in order to guarantee that the integrals converge. What remains of the nonlocality in
time of the Levinson operator Qλ in (2.3) is that the operator Q1 in (3.7)(c) acts on
the time derivative of the density function f .

Remark: Theorem 3.2 states only the weak convergence of the Levinson opera-
tor (1.2) towards the Fermi golden rule operator (1.1)(b) and not the convergence of
solutions of the Levinson equation towards solutions of the corresponding Boltzmann
equation. Since solutions of the Boltzmann equation remain nonnegative for nonnega-
tive initial data, a weak convergence result for solutions would actually imply that the
Wigner function and its density matrix equivalent would remain nonnegative definite
for all time.

Note that Theorem 3.2 holds only for a fixed function f which is independent
of λ. However, its validity can be extended by considering a filtered collision operator,
since convolution integrals are commutative. If we choose a test function ψ which is
of the form ψ(p, t) = φ(p)Γ(s − t) for any s, whose Fourier transform is given by

ψ̂(p, τ) = φ(p)Γ̂(τ)∗eiτs, then the Fourier transform of the convolution kernel can be
transferred onto the Fourier transform of f , and (3.3)(a) reads

Yλ(fλ, ψ) =
√

2π

∫
dp

∫
dτ{f̂∗λ(p, τ)Γ̂∗(τ)Q̂adjλ [φ(p)δ(t− s)](p, τ)}.

Theorem 3.2 will still hold as long as the function f̂∗λ(p, τ)Γ̂(τ) decays sufficiently fast
in the variable τ . This means that, even for a function which is oscillating rapidly in
time, the filtered operator

QFλ [fλ](p, t) =

∫
Γ(t− s)Qλ[fλ](p, s)ds(3.8)

will satisfy

QFλ [fλ] = Q0[f
F
λ ] + λQ1[f

F
λ ] + o(λ)(3.9)

pointwise in t, where the filtered signal fFλ (p, t) is given by

f̂Fλ (p, τ) =
√

2πΓ̂(τ)f̂λ(p, τ), fFλ (p, t) =

∫
Γ(t− s)H(s)fλ(p, s)ds.

The unscaled equation. Finally, we reverse the scaling of section 2 and write
the corrected Fermi golden rule in dimensional variables. Undoing the scaling and
choosing the strong form gives the following corrected Boltzmann equation:

∂tf(p, t) =

∫
dp′S0(p, p

′)f(p′, t) − κ0(p)f(p, t) +

∫
dp′S1(p, p

′)∂tf(p′, t) − ∂tκ1(p)f(p, t).

(3.10)

The transition rates Sj and the out-scattering rates κj are

S0(p, p
′) =

V

(2π�)3

∑
ν=±1

2π

�
M2

(
n+

1

2
+
ν

2

)
δ(ε(p) − ε(p′) + ν�ω),

S1(p, p
′) =

V

(2π�)3

∑
ν=±1

2M2

(
n+

1

2
+
ν

2

)
1

(ε(p) − ε(p′) + ν�ω)2
,

κj(p) =

∫
dp′Sj(p′, p), j = 0, 1,
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where M = �F holds, and it should again be pointed out that the strong form of the
collision operator is purely formal; i.e., the integral in the out-scattering rate κ1 is
actually infinite, and the first order term has to be formulated in the weak form (3.7).

We conclude this section with the proof of Theorem 3.2.
Proof of Theorem 3.2. We start by writing (3.5) in a more compact form as

(3.11)

Yλ(f, ψ)

=
1

2

∑
ν,σ=±1

aν

∫
dε

∫
dp0

∫
dε′
∫
dp′0

∫
dτA′

σ(ε
′− ε+ν−σλτ)B(ε, ε′, p0, p

′
0, τ)

√
2ε′

+
,

where we have formally extended the integrals with respect to the energy variables
ε, ε′ over the whole real line and denote by

√
z
+

the truncated root; i.e.,
√
z
+

= 0
for z < 0 holds. This notation will simplify the further derivation. Here the function
A(u), its derivative A′(u), and B are given by

(a) Aσ(u) = πH(u) − iσ ln(|u|), A′
σ(u) = πδ(u) − iσ

u
,

(3.12)
(b) B(ε, ε′, p0, p

′
0, τ) =

√
2ε

+
f̂∗(ε, p0, τ)[ψ̂(ε′, p′0, τ) − ψ̂(ε, p0, τ)].

Shifting the ε′ variable in (3.11) gives

Yλ(f, ψ)

=
1

2

∑
ν,σ=±1

aν

∫
dε

∫
dp0

∫
dε′
∫
dp′0

∫
dτA′

σ(ε
′−ε+ν)B(ε, ε′+σλτ, p0, p

′
0, τ)

√
2(ε′+σλτ)

+
.

In principle, we are now going to Taylor-expand the function B with respect to the
variable ε′. This is admissible since the variable ε′ only appears in the argument of
the test function ψ̂ in the definition of B, and therefore the function ∂ε′B decays
sufficiently fast in ε′ as well. However, care has to be taken with the various singu-
larities appearing in the integrals. We remove the singularity in the function A′

σ by
integrating by parts with respect to ε and obtain

Yλ(f, ψ)

=
1

2

∑
ν,σ=±1

aν

∫
dε

∫
dp0

∫
dε′
∫
dp′0

∫
dτ

Aσ(ε
′−ε+ν)∂εB(ε, ε′+σλτ, p0, p

′
0, τ)

√
2(ε′+σλτ)

+
.

Now we Taylor-expand the function B with respect to the variable ε′ and write

∂εB(ε, ε′ + σλτ, p0, p
′
0, τ) = ∂εB(ε, ε′, p0, p

′
0, τ) + σλτ∂ε∂ε′B(ε, ε′, p0, p

′
0, τ) +O(λ2).

(3.13)

This is admissible since the function B is compactly supported in the variable ε′.
Next we formally expand the volume element

√
2ε′

+
and write

√
2(ε′ + σλτ)

+
=

√
2ε′

+
+
σλτH(ε′)√

2ε′
+
λστ

(ε′)α
Rα(ε′, λστ)(3.14)
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for some α, which of course is, at this point, only a definition for the remainder
term Rα. Inserting (3.13) and (3.14) into the definition for Yλ(f, ψ), and neglecting
the O(λ2) terms in (3.13), gives

Yλ = Y0 + λY1 + λY2λ +O(λ2)

with

Y0(f, ψ)

=
1

2

∑
ν,σ=±1

aν

∫
dε

∫
dp0

∫
dε′
∫
dp′0

∫
dτA′

σ(ε
′ − ε+ ν)

√
2ε′

+
B(ε, ε′, p0, p

′
0, τ),

Y1(f, ψ)

=
1

2

∑
ν,σ=±1

aν

∫
dε

∫
dp0

∫
dε′
∫
dp′0

∫
dτAσ(ε

′−ε+ν)στ∂ε′∂ε(
√

2ε′
+
B(ε, ε′, p0, p

′
0, τ)),

Y2λ(f, ψ)

=
1

2

∑
ν,σ=±1

aν

∫
dε

∫
dp0

∫
dε′
∫
dp′0

∫
dτAσ(ε

′ − ε+ ν)
στ

(ε′)α

× ∂εB(ε, ε′ + σλτ, p0, p
′
0, τ)Rα(ε′, λστ).

Inserting the definition of the function Aσ from (3.12), we see that odd terms in σ
will cancel in Y0, and the even terms in σ will cancel in Y1, giving

Y0(f, ψ)

=
∑
ν=±1

aν

∫
dε

∫
dp0

∫
dε′
∫
dp′0

∫
dτπδ(ε′ − ε+ ν)

√
2ε′

+
B(ε, ε′, p0, p

′
0, τ),

Y1(f, ψ)

=−
∑
ν=±1

aν

∫
dε

∫
dp0

∫
dε′
∫
dp′0

∫
dτ ln(|ε′− ε+ν|)iτ∂ε′∂ε

(√
2ε′

+
B(ε, ε′, p0, p

′
0, τ)

)
.

Reversing the Fourier transforms in time gives (3.6)(b,c). The term Y0 produces the
Fermi golden rule, and the term Y1 the O(λ) correction to it. It remains to estimate
the term Y2λ. Since the singularity in the integrand Aσ in ε′ is only logarithmic,
the integrals will converge for α < 1. It therefore remains to choose α such that Rα
remains uniformly bounded in ε′; i.e., we can write

|Y2λ(f, ψ)| ≤ constmax{|Rα(ε′, λστ)|, 0 ≤ ε′ <∞, |τ | ≤ K} for 0 < α < 1,
(3.15)

where we only have to consider a finite range for τ , since the test function ψ̂ can be
assumed to be compactly supported. Thus we have to estimate the term

max{|Rα(ε′, z)|, 0 ≤ ε′ <∞, |z| ≤ λK}.

According to (3.14), Rα is given by

Rα(ε′, z) = (ε′)α
[√

2(ε′ + z)
+ −√

2ε′
+

z
− H(ε′)√

2ε′

]
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or

Rα(ε′, z) =

⎛
⎜⎜⎜⎜⎜⎜⎝

(ε′)α
[
−√

2ε′

z
− 1√

2ε′

]
for 0 ≤ ε′ ≤ max{−z, 0}

(ε′)α
[√

2(ε′ + z) −√
2ε′

z
− 1√

2ε′

]
for max{−z, 0} ≤ ε′

⎞
⎟⎟⎟⎟⎟⎟⎠
,(3.16)

where the first row is relevant only for z < 0. If we choose α > 1
2 , then we can

estimate

(ε′)α
∣∣∣∣∣−

√
2ε′

z
− 1√

2ε′

∣∣∣∣∣≤
√

2(−z)α−1/2+
1√
2
(−z)α−1/2 = O(λα−1/2) for 0 ≤ ε′ ≤−z,

which takes care of the first row of (3.16). To estimate the second row of (3.16), we
rewrite the expression as∣∣∣∣∣(ε′)α

[√
2(ε′ + z) −√

2ε′

z
− 1√

2ε′

]∣∣∣∣∣
=

(ε′)α√
2ε′

∣∣∣∣∣1 −√1 + z
ε′

1 +
√

1 + z
ε′

∣∣∣∣∣ = |z|α−1/2

√
2

∣∣∣ z
ε′

∣∣∣1/2−α
∣∣∣∣∣1 −√1 + z

ε′

1 +
√

1 + z
ε′

∣∣∣∣∣
≤ |z|α−1/2

√
2

max
−1≤x<∞

{
|x|1/2−α

∣∣∣∣1 −√
1 + x

1 +
√

1 + x

∣∣∣∣
}

= O(λα−1/2) for α >
1

2
.

Thus, in summary, max{|Rα(ε′, λστ)|, 0 ≤ ε′ ≤ K, |τ | ≤ K} = O(λα−1/2) will hold for
any α > 1

2 , and because of (3.15), Y2λ(f, ψ) = O(λα−1/2) will hold for any 1
2 < α < 1.

Therefore λY2λ is actually a term of order o(λ), although not of order O(λ2), and can
be neglected in the first order approximation. Inserting the definition (3.12)(b) for
the function B into Y0, Y1 and reversing the Fourier transforms gives the result.

4. Numerical results. In this section we verify the asymptotic analysis of the
previous section numerically. This verification will consist of two parts. The first part
is concerned directly with the weak approximation of the operator Qλ by Q0 + λQ1,
i.e., with the verification of Theorem 3.2. The more interesting question is of course
in what sense the solution of the zero field Levinson equation (1.2) is approximated
by the solution of the corresponding approximate equation. To answer this question
rigorously we would need some form of stability or entropy estimate for the Levinson
equation (1.2). This will be the subject of future work. Nevertheless, the second
part of this section is devoted to a numerical study of this question, i.e., a numerical
comparison of the solution of the Levinson equation to the solution of an appropriate
approximate problem based on the result in Theorem 3.2.

Discretization of the collision operators. For reasons of computational simplicity,
we choose a finite difference discretization of the involved collision operators Q0,
Q1, and Qλ. While the discretization of the full collision operator Qλ in (2.3) and
the zero order term Q0 in (3.7)(b) (the Fermi golden rule) by finite differences is
straightforward, some care has to be taken when discretizing the first order term
Q1 in (3.7)(c), since it is only formulated in a weak sense. This means that the
corresponding strong formulation of the operator Q1 will contain diverging integrals.
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Integrating (3.6)(c) by parts to obtain the strong version of Q1 gives

Q1[f ](p, t) =

∫
dp′[S1(p, p

′)∂tf(p′, t) − S1(p
′, p)∂tf(p, t)]

with the first order scattering cross section S1 given by

S1(p, p
′) =

∑
ν=±1

aν
(ε(p) − ε(p′) + ν)2

,(4.1)

and the resulting integral will be infinite in the strong formulation. We therefore
discretize the first order operator Q1 in a weak difference form. We start by choosing
a mesh in energy and time direction of the form

Mε = {ε : ε = j∆ε, j = 0, 1, . . . }, ∆ε =
1

K
, Mt = {t : t = n∆t, n = 0, 1, . . . },

where we choose ∆ε conveniently in such a way that the emission/absorption energy,
which is equal to unity in our scaling, is an integer multiple of the mesh size. The
density function f can be assumed to be a function of the energy only, so f = f(ε, t)

holds. Using parabolic bands (ε = |p|2
2 ), integrals with respect to the momentum p

are approximated by

∫
f(p, t)dp ≈ ∆ε

∞∑
j=0

f(j∆ε, t)dp(j∆ε), dp(ε) := 4π
√

2ε.

The full collision operator Qλ in (2.3) is now approximated by

Qλ[f ](j∆ε, n∆t) := ∆t∆ε

n∑
n′=0

∞∑
j′=0

dp(j′∆ε)

×[Sλ(j∆ε, j
′∆ε, (n− n′)∆t)f(j′∆ε, n′∆t)

−Sλ(j
′∆ε, j∆ε, (n− n′)∆t)f(j∆ε, n′∆t)]

with Sλ given as in (2.3)(c). The Fermi golden rule operator Q0 is discretized by

Q0[f ](j∆ε, t) =
∑
ν=±1

πaν [dp((j + νK)∆ε)f((j + νK)∆ε, t) − dp((j − νK)∆ε)f(j∆ε, t)],

(4.2)

where, for notational simplicity, we simply set dp(ε) = 0 for ε < 0. The first order
collision operator Q1 in (3.7)(c) is given in its weak formulation by∫

dp(ε)[φ(ε)Q1[f ](ε, t)]dε = 16π2
∑
ν=±1

aν

∫
dε

∫
dε′

× ln(|ε′ − ε+ ν|)∂ε∂ε′
[√

4εε′∂tf(ε, t)(φ(ε′) − φ(ε))
]
.

In this weak formulation the integrals are guaranteed to converge. It is therefore
allowed to truncate the logarithmic singularity in the integral kernel. We define

ln0(j∆ε) =

{
ln(j∆ε), j > 0,
ln(∆ε), j = 0,
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and discretize Q1 in a weak finite difference sense by requiring that

∆ε

∞∑
j=0

dp(j∆ε)[φ(j∆ε)Q1[f ](j∆ε, n∆t)]

= 16π2(∆ε)2
∑
ν=±1

aν

∞∑
j=0

∞∑
j′=0

ln0(|j′ − j + νK|∆ε)D+
j D

+
j′

[√
4jj′∆εD+

n f(j∆ε, n∆t)(φ(j′∆ε) − φ(j∆ε))
]

hold for all grid-test-functions φ. Here D+ denotes the usual forward difference oper-
ators acting on the respective indices; i.e.,

(a) D+
j f(j∆ε, t) =

f((j + 1)∆ε, t) − f(j∆ε, t)

∆ε
,

(4.3)

(b) D+
n f(ε, n∆t) =

f(ε, (n+ 1)∆t) − f(ε, n∆t)

∆t
,

holds. Expressing the first order collision operator in a strong form on the discrete
level, i.e., choosing a discrete δ-function for the test function φ, gives

(4.4)

Q1[f ](j∆ε, n∆t)

= ∆ε

∞∑
j′=0

dp(j∆ε)[S1(j∆ε, j
′∆ε)D+

n f(j′∆ε, n∆t) − S1(j
′∆ε, j∆ε)D+

n f(j∆ε, n∆t)],

with the discrete scattering cross section S1 given by

S1(j∆ε, j
′∆ε) =

∑
ν=±1

aνD
−
j D

−
j′ ln0 |(j − j′ + νK)∆ε|,

which is the appropriate approximation to the singular integral kernel (4.1). Here D−

denotes the backward differencing operator, analogously to the definition of D+ in
(4.3).

We now proceed to verify Theorem 3.2 numerically. Besides the verification of the
asymptotic analysis of the previous section, the purpose of this exercise is also to gain
some confidence in the weak difference discretization before computing asymptotic
solutions to the Levinson equation. More precisely, we will verify the consequence
of Theorem 3.2 given in (3.9), namely that the smoothed version of the full collision
operator Qλ applied to a highly oscillatory function is approximated by the zero-
and first order terms Q0 and Q1 applied to the smoothed function. Figure 1 shows
the signal chosen for this verification, which consists of the function f(ε, t) = (1 +
cos(20t))/(1 + 3ε2), i.e., a smooth function of ε modulated by a rapid oscillation in
time. Figure 2 shows the filtered signal fF (ε, t), obtained by convoluting f with a
Gaussian in time. We now compute Qλ[f ] and the corresponding smoothed version
QFλ [f ] according to (3.8) and compare the result to (Q0 + λQ1)[f

F ]. As a measure
for the approximation we chose the energy given by the formula

〈εQ〉(t) = ∆ε

∞∑
j=0

dp(j∆ε)j∆εQ(j∆ε, t).



BEYOND FERMI’S GOLDEN RULE 1947

0

1

2

3

4

0

2

4

6

8
0

0.5

1

1.5

2

energytime

f

Fig. 1. Unfiltered signal.

0

1

2

3

4

0

2

4

6

8
0

0.2

0.4

0.6

0.8

1

energytime

f (
fil

te
re

d)

Fig. 2. Filtered signal.
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Fig. 3. Comparison of energies.

Figure 3 shows the highly oscillatory energy 〈εQλ[f ]〉 and compares 〈εQFλ [f ]〉 to the
values of 〈εQ0[f

F ]〉 and 〈ε(Q0[f
F ] + λQ1[f

F ])〉 for λ = 0.1 and λ = 0.01. Figure 3
first confirms that the smoothed collision operator converges to the Fermi golden
rule applied to the smoothed signal pointwise in time and that the approximation is
improved by adding the first order correction, which is a direct consequence of the
weak convergence given in Theorem 3.2.

We now turn to the more interesting question of whether, and in what sense, the
solution of the zero field Levinson equation (1.2) is approximated by the solution of
the asymptotic equation

∂tf = Q0[f ] + λQ1[f ].(4.5)

To this end, we will compute with more realistic parameters. F in (1.2)(b) denotes
the frequency of a particular lattice state and is given by the formula

F (ξ) =

√
q2�ω

2V |ξ|2ε0

(
1

ε∞
− 1

εs

)
,(4.6)

where ξ is the momentum vector corresponding to the lattice state, ε0 is the dielec-
tricity constant (for vacuum), and ε∞ and εs are the usual corrections to ε0, taking
into account the property of the crystal. The values for the physical parameters in
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section 1 are summarized in the table below:

Symbol Value Unit Meaning

q 1.602 ∗ 10−19 C Electron charge
� 1.054 ∗ 10−34 kgm2/sec Planck constant
h 6.626196 ∗ 10−34 kgm2/sec h = 2π�

m∗ 0.063 ∗ 0.109 ∗ 10−31 kg Effective electron mass
�ω 0.036 eV Emission/absorption energy

ε0 8.85 ∗ 10−12 C
V m

Dielectricity constant (vacuum)
ε∞ 10.92 1
εs 12.9 1

We are considering the system at room temperature; i.e., the inverse temperature
β in section 2 has a value of β = 40(eV )−1, which gives a value of n = 0.3105 for
the occupation number n. We consider only a single lattice state corresponding to
the lattice being in equilibrium; i.e., we choose |ξ|2 = m∗

β . Using these values, one
computes a value of λ = 0.0113 for the dimensionless parameter λ, which suggests
that we are in the appropriate asymptotic regime.

The asymptotic solution of the Levinson equation. The solution of the asymptotic
equation (4.5) is complicated by the following facts. First, the equation is implicit in
time, since the first order perturbation operator Q1 acts on the time derivative of the
solution f . Second, the implicit term is nonlocal in the energy variable, and third,
this nonlocal implicit integral term contains a singular kernel. These factors make
the actual numerical solution of (4.5) highly nontrivial. One could, for instance, be
tempted to replace the time derivative of the density function in Q1 in first order by
Q0[f ] and solve the explicit equation

∂tf = Q0[f ] + λ

∫
dp[S1(p, p

′)Q0[f ](p′, t) − S1(p
′, p)Q0[f ](p, t)](4.7)

instead. It is, however, relatively easy to see (and has been verified numerically) that
(4.7) is ill posed. At the level of computational complexity considered in this paper it
would be feasible to directly discretize (4.5) using an implicit time discretization. We
would then have to consider the artificial numerical diffusion generated by implicit
methods, which is a major factor since we want to compare asymptotic solutions to
the highly oscillatory solution of the Levinson equation. It should be pointed out
here that we have made life particularly simple by considering solutions which are
functions of energy only. As soon as we would introduce a field term, or consider
spatially inhomogeneous problems, we would have to resort to some form of particle-
based discretization, and the solution of implicit equations would become a major
issue. With an eye to the future particle-based solution of inhomogeneous problems,
the easiest way out of this dilemma is to actually solve for the asymptotic expansion
of f given by (4.5). That is, to write f = f0 + λf1 and to solve the system

(a) ∂tf0 = Q0[f0], (b) ∂tf1 = Q0[f1] +Q1[f0].(4.8)

Now the time derivative of the zero order term f0, which appears in (4.8)(b), can be
replaced by (4.8)(a), and we actually solve

(a) ∂tf0 = Q0[f0],
(4.9)

(b) ∂tf1 = Q0[f1] +

∫
dp[S1(p, p

′)Q0[f0](p
′, t) − S1(p

′, p)Q0[f0](p, t)].



1950 RINGHOFER, NEDJALKOV, KOSINA, AND SELBERHERR

0 50 100 150 200 250
0

0.2

0.4

0.6

0.8

1

1.2

1.4

energy (meV)

in
iti

al
 c

on
di

tio
n

Fig. 4. Initial condition for the Levinson equation.

Equation (4.9)(a) is just the Boltzmann equation with the Fermi golden rule oper-
ator, and (4.9)(b) is also the same Boltzmann equation with an additional source
term, which could be discretized using weighted particles. It is in this form that the
numerical experiments below have been carried out, using the discretizations (4.2)
and (4.4) for the operators Q1 and Q2.

We choose as initial condition (shown in Figure 4) the equilibrium Maxwellian
with a second peak added. Thus we expect the second peak to be eliminated by the
evolution of the Levinson equation as time advances. Figure 5 shows the solution fλ
of the Levinson equation (1.2) as a function of energy and time, and it exhibits the
expected oscillations in time, albeit not to the same extent as the test example. To
compare this solution with the asymptotic solution of (4.9), we smooth it in the same
way as in the test example, i.e., by convoluting it with a Gaussian in time, shown
in Figure 6. Figure 7 shows the solution of (4.9) for the same parameters. Figure 8
compares the full solution fλ of the Levinson equation to the solution f0 of the Fermi
golden rule and f0 + λf1 of (4.9) at different points in time. We observe that the
solution f0 of the Fermi golden rule has essentially reached steady state, while the full
solution fλ still evolves, i.e., the quantum effect causes a significantly longer relaxation
time. This behavior is captured more or less by the asymptotic solution f0 + λf1.

The structure of the equilibrium solution for the Fermi golden rule is determined
by the fact that we have chosen a simple constant value of the lattice state frequency F
in (4.6), corresponding to a δ-function collision potential [10]. This implies that
the kernel of the Fermi golden rule operator Q0 contains not only Maxwellians, but
Maxwellians multiplied by arbitrary �ω-periodic functions of energy [7], [8], [12]. The
steps in the equilibrium solution in the lower-right panel of Figure 8 represent the
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projection of the initial solution into this space.
We were unable to continue the comparison beyond the given point in time due

to memory constraints, since the solution of the Levinson equation requires time steps
much smaller than λ to resolve the oscillations, and the storage of all previous time
steps because of its nonlocality in time. It should be pointed out that the solution of
the asymptotic system (4.9) does not suffer from these constraints, and (4.9) could
be solved with much larger time steps on much longer timescales. The asymptotic
solution f0 + λf1 will eventually, however, converge to the same equilibrium solution,
since the system (4.9) clearly has the same steady states as the original Fermi golden
rule equation (1.2). Thus the quantum corrections give, at least in the absence of an
electric field term, a purely transient effect.

5. Conclusions. Based on the Levinson equation, which in turn is derived from
a weak interaction limit for the many body Schrödinger equation, we have derived a
corrective term to the semiclassical Fermi golden rule collision operator. This correc-
tive term is only mildly nonlocal in time in the sense that it is a local operator acting
on the time derivative of the density function. It therefore renders itself much more
easily to simulations on long timescales than did the original Levinson operator. We
have shown the weak convergence of the corrected operator to the Levinson opera-
tor; i.e., we have proven the oscillatory limit for large times. Furthermore, we have
demonstrated numerically the convergence of the solution to the Levinson equation
towards the system resulting from the corresponding asymptotic expansion. From a
numerical standpoint the complexity of this system is equivalent to that of solving a
standard Boltzmann equation with additional source terms.
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RETROFOCUSING OF ACOUSTIC WAVE FIELDS
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Abstract. In the present paper an iterative time-reversal algorithm that retrofocuses an acoustic
wave field to its controllable part is established. For a fixed temporal support, i.e., transducer
excitation time, the algorithm generates an optimal retrofocusing in the least-squares sense. Thus the
iterative time-reversal algorithm reduces the temporal support of the excitation from the requirement
of negligible remaining energy to the requirement of controllability. The time-reversal retrofocusing
is analyzed from a boundary-control perspective where time reversal is used to steer the acoustic
wave field towards a desired state. The wave field is controlled by transducers located at subsets
of the boundary, i.e., the controllable part of the boundary. The time-reversal cavity and time-
reversal mirror cases are analyzed. In the cavity case, the transducers generate a locally plane wave
in the fundamental mode through a set of ducts. Numerical examples are given to illustrate the
convergence of the iterative time-reversal algorithm. In the mirror case, a homogeneous half space
is considered. For this case the analytic expression for the retrofocused wave field is given for finite
temporal support. It is shown that the mirror case does not have the same degree of steering as the
cavity case. It is also shown that the pressure can be perfectly retrofocused for infinite temporal
support. Two examples are given that indicate that the influence of the evanescent part of the wave
field is small.
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1. Introduction. Time-reversal acoustics is based on recording the wave field
using a set of transducers, time-reversing the recorded signal, and retransmitting the
result. The retransmitted wave field propagates back in the medium towards its source
of origin [5, 9, 10, 12, 13]. In this paper, the time-reversal approach is analyzed from a
boundary-control perspective [2, 3] in which time reversal is used to steer the acoustic
wave field towards a desired state, corresponding to the original state. The boundary
is divided into a controllable and an uncontrollable part. On the controllable part of
the boundary, transducers are used to record or generate the acoustic wave field. The
uncontrollable part of the boundary is assumed to be acoustically hard [26].

Both the time-reversal cavity and the time-reversal mirror have been extensively
studied by Fink and coworkers; see, e.g., [5, 9, 10, 12, 13]. The cavity and mirror cases
describe measurement situations with transducers surrounding the original source
and only occupying a limited angular area, respectively. Applications of time-reversal
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algorithms include lithotripsy, pulse focusing, medical imaging, inverse scattering
[10, 13], and optimal distinguishability measurements [6, 7]. The time-reversal ap-
proach gives a perfect retrofocusing if the transducers surround the original source,
i.e., the time-reversal cavity, and the wave field is recorded until the wave field is qui-
escent; see, e.g., [2]. If the conditions for local energy decay are satisfied [1, 23], the
retrofocusing error can be made arbitrarily small as observation or measurement time
approaches infinity. An analysis of the super-resolving property of the time-reversal
mirror is presented in [4]. Applications to communications are given in [19].

From boundary control theory, it is known that transducers can steer the wave
field towards an arbitrary field distribution if the region is controllable [3, 22]. If the
configuration is not controllable, an optimal control produces an optimal retrofocused
wave field. The present paper establishes an iterative time-reversal algorithm that
retrofocuses an acoustic wave field to its controllable part. The obtained iterative
time-reversal algorithm reduces the temporal support of the transducer excitation
from the requirement of negligible remaining energy to the requirement of control-
lability. In particular, for a fixed temporal support of the excitation, the algorithm
generates an optimal retrofocusing in the least-squares sense. The characteristics of
the transducers are included.

The considered cavity is a bounded domain with a perforated acoustically hard
boundary. Transducers induce the wave field through the fundamental (or plane wave)
mode in a set of ducts [26]. Numerical examples are given to illustrate the convergence
of the iterative time-reversal algorithm. In the mirror case, a homogeneous half space
is considered. For this case, it is shown that the pressure can be perfectly retrofocused
for infinite temporal support. For finite temporal support the algorithm gives an op-
timal control for the propagating part of the wave field. A closed-form representation
for the retrofocused wave field, with finite temporally supported excitation, from an
initial Dirac-pressure source is given. Its behavior in the long time limit is calculated.
Two examples of retrofocusing of a pressure source are given, and the influence of
the evanescent part of the wave is discussed. In both the cavity and the mirror the
iterated time-reversal procedure does not make use of the medium properties of the
interior.

The optimal measurements [6, 7] are discussed in the sense of maximal mea-
sured least-squares distinguishability of a scattering operator relative to a reference
scattering operator. The obtained algorithm is the limit of a renormalized series of
iterated time reversals. It is noted in [6] that the limit of this renormalized series is
a time-harmonic, frequency tuned wave form that corresponds to the frequency such
that the largest eigenvalue of the squared time-reversed reflection operator attains its
maximum in a given frequency interval. The algorithm in the present paper uses the
sum of the iterated squared time-reversed response operators to obtain the retrofo-
cusing of an initially prescribed field. Thus the resulting control for retrofocusing has
a multifrequency content, as opposed to the algorithms proposed in [6, 7].

The present paper begins with a short discussion of the boundary control of acous-
tic wave fields. Transducers are introduced, and their restrictions on the boundary
conditions are analyzed. In section 3, the sufficient conditions for optimal boundary
control with respect to a least-squares measure is given. As the first example we con-
sider the case where the material parameters are unknown; see section 4. In section 5,
a cavity with acoustically hard walls and attached ducts is analyzed. Numerical ex-
amples are given. The time-reversal algorithm is shown to efficiently retrofocus the
field of an initial pulse source. In section 6, the mirror case is analyzed for a homo-
geneous material. The optimal control for measurements with negligible evanescent
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part is derived. For the nonnegligible evanescent part of the measured response, the
closed-form expression for the time reversal of an initial pressure source is derived.
Here we utilize a constant wavespeed to obtain an analytical expression. It is shown
that, for an initial pressure distribution, the evanescent part of the control has a
marginal influence on the resulting field in the long excitation time limit. Section 7
is a discussion of the results.

2. The acoustic wave field and boundary control.

2.1. The control state. In this section we state the acoustic equations, the
boundary conditions, and initial values assumed in the further analysis. The goal is
to focus the acoustic wave field to a desired state at a given finite time. To quantify
the focusing, relative to the desired state, we use a weighted L2 measure, in the form
of an energy functional. We also introduce the boundary control, the admittance
operator, a representation of the characteristics of a transducer, and the response
operator due to a boundary control.

The control state is an acoustic wave field in the domain Ω ∈ R
3 and time interval

[0, T ]. The boundary of the domain, ∂Ω, is assumed to be piecewise C1, and thus
the normal to the boundary is well defined almost everywhere. At the open subset
Γt ⊂ ∂Ω, the controllable part of the boundary, we have a set of transducers that
are used to generate an acoustic wave field in the domain. The control state at time
t is represented by the pressure, p = p(x, t), and the particle velocity, v = v(x, t).
Given a desired final state, {pT ,vT }, we quantify the degree of focusing between the
control state at time T , {p(·, T ),v(·, T )}, and the desired state, with the weighted L2

functional

J =
1

2

∫
Ω

(κ(x)|p(x, T ) − pT (x)|2 + ρ(x)|v(x, T ) − vT (x)|2) dV(x).(2.1)

The control state {p,v} satisfies the source-free acoustic equations{
κ(x)∂tp+ ∇ · v = 0

ρ(x)∂tv + ∇p = 0
for x ∈ Ω and t ∈ [0, T ],(2.2)

where the compressibility κ(x) and the density ρ(x) model the interaction between
the acoustic wave field and the material. To ensure the existence of solutions, it is
assumed that material parameters κ and ρ are positive and belong to L∞(Ω); i.e.,
the parameters are bounded and measurable. No explicit knowledge of the param-
eters is assumed, except that they belong to the mentioned class. In the process of
retrofocusing, we assume the initial conditions

p(x, 0) = 0 and v(x, 0) = 0 for x ∈ Ω.(2.3)

In our model the transducers are supported on the controllable part Γt of the bound-
ary; see Figure 5.1. Given a boundary control [22], p+ = p+(x, t), x ∈ Γt, the
characteristics of the transducers determine how the field is induced in the domain.
Here, we model the transducer characteristic with the transducer’s admittance op-
erator Y that maps its domain D ⊂ L2 to L2 and is invertible. Thus the boundary
condition at the controllable part of the boundary, Γt (see Figure 2.1) takes the form,

(Yp)(x, t) + vn(x, t)

2
= p+(x, t) for x ∈ Γt and t ∈ [0, T ],(2.4)
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Fig. 2.1. The control state: The boundary control p+ is prescribed at the boundary, and given
quiescent initial conditions, we measure the response p−. The desired final state {pT ,vT } is shown
as the state at time t = T in panel (b).

where vn is the normal component of the particle velocity, i.e., vn = v · n and n is
the inward unit normal vector to the boundary; see Figure 2.1(a). The boundary
condition above is said to be in the velocity normalization [16, 17, 18]. The case
with Y = 1 in (2.4) represents boundary conditions in the form of a locally plane
wave propagating inward into the domain, i.e., in the n-direction [26], and this case
is considered in section 5. The time-reversal mirror case with the transducer modeled
by the wave splitting operator [18] is considered in section 6.

The remaining, noncontrollable, enclosed part of the boundary, the wall that we
denote as the uncontrollable part of the boundary, Γw = ∂Ω\Γt (see, e.g., Figure 5.1),
is made of a particular material with characteristics U , giving the boundary condition

(Up)(x, t) + vn(x, t) = 0 for x ∈ Γw and t ∈ [0, T ].(2.5)

Here, U is a continuous mapping from L2 to L2. Observe that U = 0 in (2.5) corre-
sponds to an acoustically hard (uncontrollable) boundary. We use this as an example.

The operators Y and U are chosen such that the acoustic wave equation is well
posed with this boundary condition [20, section 8.2]. The Kreiss–Lorenz class of
boundary conditions is of the type pin = Cpout+ source terms, where pin and pout are
defined as the eigenvectors to the matrix of the normal to the boundary-derivative, in
our case p± vn. For this class of boundary conditions, there is a requirement on the
principal part size of the coupling term C. In our case, C = (Y−1 − 1)(Y−1 + 1)−1. In
the examples that we consider, Y = 1 or pout = 0, and hence the coupling term
vanishes. For a more detailed discussion and more general boundary conditions,
see [20]. The above discussion holds also for the uncontrollable part of the boundary,
i.e., for U .

We assume that the transducers can also be used as receivers, and we measure the
outgoing field component, p−, at the boundary; see Figure 2.1(b). This component is
given by

p−(x, t) =
(Yp)(x, t) − vn(x, t)

2
for x ∈ Γt and t ∈ [0, T ].(2.6)
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The relation between the boundary control p+ and the measured outgoing field com-
ponent p−, for zero initial conditions, is the response operator R, which is also called
the scattering operator or reflection operator [6, 7],

p−(x, t) = (Rp+)(x, t) for x ∈ Γt and t ∈ [0, T ].(2.7)

Given a boundary control, we assume that we can obtain its response by measure-
ments on the domain, i.e., using the transducers to measure the response to the given
boundary control.

In our formulation, the boundary control is not uniquely determined. There
are many acoustic wave field configurations where it is clear that several boundary
controls minimize J . One such example is a homogeneous slab where we consider
long enough excitation times such that the wave field can pass through the slab. The
final internal field in the slab does not depend on fields that have left the slab, and
hence the control is not unique.

2.2. The observation states. In this section, we define the notion of initial ob-
servation, an observation, and an observation state. The observation of an observation
state is used in constructing the boundary control for the control state.

To distinguish between the control states and the field used for observation, we
introduce the notation {q(x, t),u(x, t)} for the observation state at times t ∈ [−T, 0].
The observation state {q,u} solves (2.2), and for convenience we let the observation
take place in the time interval [−T, 0].

We define the initial observation state through its initial conditions

q(x,−T ) = pT (x) and u(x,−T ) = −vT (x) for x ∈ Ω.(2.8)

The observation of the initial observation state is carried out with the receivers co-
inciding with the transducers for the control state; i.e., the measurement in terms of
the field at the boundary is

q−(x, t) =
(Yq)(x, t) − un(x, t)

2
for x ∈ Γt and t ∈ [−T, 0].(2.9)

Consequently, the boundary condition for the controllable part of the boundary takes
the form

(Yq)(x, t) + un(x, t)

2
= q+ for x ∈ Γt and t ∈ [−T, 0].(2.10)

The initial observation is thus given by q
(0)
− = q−, setting q+ = 0 in (2.10). On the

uncontrollable part of the boundary, the field satisfies the boundary condition (cf.
(2.5))

(Uq)(x, t) + un(x, t) = 0 for x ∈ Γw and t ∈ [−T, 0].(2.11)

The relation between q− and q+ and the initial conditions are, by the superposition
principle,

q−(x, t) = (Rq+)(x, t) + q
(0)
− (x, t) for x ∈ Γt and t ∈ [−T, 0],(2.12)

where R coincides with the R in (2.7) since q− and p− are both the measured response
with the same receivers from the acoustic wave equations with identical domains and
type of boundary conditions.
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With the above given information about the response operator and the initial
observation, we will search for an optimal boundary control, i.e., the control applied
in (2.4) such that the resulting control state at time T minimizes the least-squares
functional J in (2.1), for a given {pT ,vT }.

3. Retrofocusing by time reversal. The time-reversal operator T is defined
as

(T p)(x, t) = p(x,−t).(3.1)

If {p,v} solves the acoustic wave equation (2.2), then so does {T p,−T v}.
3.1. Energies. In this section, we define the energy corresponding to the acous-

tic wave field, and reformulate the least-squares functional J on the interior of the
domain into a functional on the boundary.

The energy at time t of the observation state {q(x, t),u(x, t)} is defined by

E[q,u](t) =
1

2

∫
Ω

(κ(x)|q(x, t)|2 + ρ(x)|u(x, t)|2) dV(x).(3.2)

Energy conservation is given as

E[q,u](0) − E[q,u](−T ) =

∫ 0

−T

∫
∂Ω

q(x, t)un(x, t)dS(x) dt,(3.3)

by the Gauss theorem with the direction of a normal unit vector as in Figure 2.1(a).
To rewrite J in a form more suitable for our analysis, consider the summation of

the equations for p, v and T q, T u:{
κ(x)∂t(p− T q) + ∇ · (v + T u) = 0

ρ(x)∂t(v + T u) + ∇(p− T q) = 0
for x ∈ Ω and t ∈ [0, T ].(3.4)

Multiplication of the equations with p−T q and v+ T u, respectively, and integration
over time and space together with the Gauss theorem gives∫

Ω

κ(x)|p(x, t) − (T q)(x, t)|2 + ρ(x)|v(x, t) + (T u)(x, t)|2 dV(x)|Tt=0

(3.5)

=

∫ T

0

∫
∂Ω

(p(x, t) − (T q)(x, t))(vn(x, t) + (T un)(x, t))dS(x) dt.

Let E0 = E[q,u](0), and recall that at t = 0, p = 0 and v = 0. Now, using the initial
condition for q, u from (2.8), the left-hand side at t = T is J , and at t = 0 is −E0.
Thus

J = E0 +

∫ T

0

∫
∂Ω

(p(x, t) − (T q)(x, t))(vn(x, t) + (T un)(x, t))dS(x) dt.(3.6)

3.2. Controllability. In this section, we show that the uncontrollable subspace
of the wave-field solutions is orthogonal to the controllable subspace of wave-field
solutions. We introduce the concept of “equal fields on the boundary.”

In general, it is not possible to retrofocus the wave field to the desired wave field
{pT ,vT }. At best the wave field retrofocuses to its controllable part, i.e., to the
part of {pT ,vT } that is possible to reach from the boundary. This projection to the
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pT p′
T vT v′

T p′
T ,v

′
T

,

(a) (c)(b)

{q,u} {p,v} {p′,v′}

Fig. 3.1. Controllable and uncontrollable subspaces for the equal fields on the boundary. Bound-
ary fields such that p = T q and vn = −T un decompose the original state into its controllable and
uncontrollable parts. (a) In the observation state, the wave field is decomposed into the observed
boundary field {q, un} and the nonobserved remaining field {q0,−v0}. (b) In the control state, the
boundary field (2.6) is time-reversed and retransmitted into the region. (c) The error term corre-
sponds to the nonobservable and noncontrollable part of the wave field.

controllable part is achieved when the boundary fields are identical in the control and
observation state, viz.,

p = T q and vn = −T un when x ∈ Γt and t ∈ [0, T ].(3.7)

This goal of retrofocusing cannot always be achieved. For an example of imperfect
retrofocus, see section 6. We denote the condition (3.7) as the “equal fields on the
boundary” condition. If the “equal fields on the boundary” condition is achieved, it
gives a constructive description of the controllable, uncontrollable, observable, and
unobservable parts of the wave field. Observe that it is not possible to enforce (3.7)
for the acoustic wave equation together with arbitrary initial data. In general, one
set of boundary condition (2.4), (2.5), uniquely determines both the pressure and the
particle velocity in the region. In this section, we examine what the “equal fields at
the boundary” condition implies. In section 3.3 it is shown that the time reversal
approach can be used to achieve the “equal fields on the boundary” condition from
well posed initial boundary value problems if the admittance operator commutes with
the time-reversal operator and the uncontrollable part of the boundary is acoustically
hard or soft.

The observation (measurement) of the response of a boundary control p+ and an
initial state {p0(x),v0(x)} is expressed as

p− = Rp+ + OΓt(p0,v0) for x ∈ Γt and t ∈ [0, T ],(3.8)

where OΓt
is a linear map from L2(Ω) to L2(Γt × [0, T ]). The unobservable initial

states, NΩ, are defined as

NΩ = {{p0,v0} ∈ L2(Ω) : OΓt
(p0,v0) = 0 ∈ L2(Γt × [0, T ])},(3.9)

i.e., they form the null space of OΓt and thus a closed linear subspace of L2
Ω. We define

the observable initial states as the orthogonal complement to NΩ, and N⊥
Ω is a closed

linear subspace of L2
Ω; hence L2

Ω = NΩ ⊕N⊥
Ω . Solving the control problem (2.2)–(2.4)
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for some p+, and its corresponding observation problem (2.2), (2.8), (2.10), and (2.11)
for some q+, gives the corresponding field {p, vn} and {q, un} at the controllable part
of the boundary Γt. If this field for some given p+, q+ satisfies (3.7), then from the
superposition principle (see Figure 3.1) we note that the controllable and uncontrol-
lable parts of the wave field coincide with the observable and unobservable parts. In
the next section, we derive a sufficient condition on the transducer admittance Y so
that the “equal fields on the boundary” condition is achievable.

Now, since L2
Ω is a Hilbert space with the κ, ρ-weighted standard inner product,

the least-squares functional (2.1) is minimized by projecting the desired state on the
controllable subspace, N⊥

Ω . This follows from the orthogonal projection theorem in
Hilbert spaces; see, e.g., [25]. The final state {pT − p′T ,vT − v′T } is the controllable
part of the original state {pT ,vT }. The error {p′T ,v′T } is the uncontrollable (and
unobserved) part of the original state. In other words with pT , vT and p′T , v′T defined
as above, then∫

Ω

(κ(x)(pT (x) − p′T (x))p′T (x) + ρ(x)(vT (x) − v′T (x)) · v′T (x)) dV(x) = 0.(3.10)

To derive this, we use energy estimates of the three problems depicted in Fig-
ure 3.1. For an acoustically hard or soft uncontrollable part of the boundary, the
energy balance of Figure 3.1(a) takes the form

E[pT ,vT ] +

∫ 0

−T

∫
Γt

qundS dt = E[q0,u0],(3.11)

while for Figure 3.1(b)∫ T

0

∫
Γt

pvndS dt = E[pT − p′T ,vT − v′T ],(3.12)

and for Figure 3.1(c), E[q0,u0] = E[p′T ,v
′
T ]. The “equal field on the boundary”

condition gives pvn = −T qT un. Combining the three energy balance equations gives
the identity

E[pT ,vT ] = E[p′T ,v
′
T ] + E[pT − p′T ,vT − v′T ].(3.13)

Expansion of the right-hand side gives

(3.14)

E[p′T ,v
′
T ] + E[pT − p′T ,vT − v′T ]

=E[pT ,vT ]+2

∫
Ω

(κ(x)(pT (x)− p′T (x))p′T (x)+ρ(x)(vT (x)−v′T (x)) · v′T (x)) dV(x).

Substitution of (3.14) into (3.13) and canceling E[pT ,vT ] gives the orthogonality
condition (3.10).

Thus, if it is possible to generate “equal fields on the boundary,” we are able to
reconstruct the controllable part of the final state {pT − p′T ,vT − v′T }.

3.3. Iterated time-reversal retrofocusing. In this section, a well-posed it-
erative algorithm is introduced to solve the condition (3.7) of “equal fields on the
boundary” for a class of transducer admittances.

Using a standard energy argument in Figure 3.1(b), with either p = T q or v3 =
−T u3 for x ∈ Γt and either acoustically soft, p = 0, or acoustically hard, v3 = 0, for
x ∈ Γw, the interior field is uniquely determined.
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The “equal boundary fields condition” (3.7) can be rewritten in the observed
quantities {p−, q−} and the boundary controls {p+, q+} using (2.4), (2.6), (2.9), and
(2.10). We find

{
Y−1p+ + Y−1p− = T Y−1q+ + T Y−1q−,

p+ − p− = −T q+ + T q−,
x ∈ Γt, t ∈ [0, T ].(3.15)

In terms of the response operator (2.12) we note that, for a given boundary control

q+ and given initial observation q
(0)
− , we have q− = Rq+ + q

(0)
− .

If (3.15) admits a solution, elimination of q− and p− in (3.15) gives that p+ and
q+ satisfy the system of equations

⎧⎪⎪⎨
⎪⎪⎩
p+ =

1

2
(YT Y−1 + T )Rq+ +

1

2
(YT Y−1 − T )q+ +

1

2
(YT Y−1 + T )q

(0)
− ,

q+ =
1

2
(YT Y−1 + T )Rp+ +

1

2
(YT Y−1 − T )p+,

(3.16)

for x ∈ Γt and t ∈ [0, T ]. If the admittance commutes with the time reversal, i.e.,

YT = T Y,(3.17)

then the requirement (3.16) simplifies to the linear system

{
p+ = T Rq+ + T q(0)− ,

q+ = T Rp+,
or

(
1 −T R

−T R 1

)(
p+

q+

)
=

(
T q(0)−

0

)
.(3.18)

This system can be solved in a variety of ways if the response operator R is known.
In the case where only the action of R on an incident field is known, as in our case,
the system is preferably solved by iterative methods. If R is sufficiently small, i.e.,
the spectral radius of R in L2 is smaller than 1, an iterative scheme of the Jacobi
type [29] converges. This gives the iterated time-reversal algorithm

{
p
(n)
+ = T Rq(n−1)

+ = T q(n−1)
−

q
(n)
+ = T Rp(n)

+ = T p(n)
−

for n = 1, 2, . . . ,(3.19)

where q
(0)
− is the initial measurement; see Figure 3.2 and section 2.2. If ‖Rq(n)

+ ‖L2 =

‖q(n)
+ ‖L2 for any n, say n∗, then the algorithm has converged and can be terminated.

In this case the input field does not give any contribution to the final field and would
just repeat itself. The boundary control and the final state are given by

p+ =

N∑
n=1

p
(n)
+ =

N∑
n=1

(T R)2nT q(0)− and {pT ,vT } =

N∑
n=1

{p(n)
T ,v

(n)
T },(3.20)

respectively. Here N = min(n∗,∞). The iterated time-reversal algorithm (3.19) is

initiated by recording the output field, q
(0)
− , generated by the original state {pT ,−vT }.

This recorded output field is time-reversed and re-emitted into the domain. Recording
and time reversal of the corresponding output field iterates the algorithm.
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Fig. 3.2. The iterated time-reversal algorithm. (b) an observation q
(n − 1)
− is time-reversed

and used as a boundary control, to produce the output fields and the final state {p(n)

T ,v
(n)

T } and the

output p
(n)
− . (a) the output, p

(n)
− , is recorded, time-reversed, and used as boundary control for the

observation states, to produce the observation q
(n)
− , that, once again, is used to improve the final

state.

4. Example: Time-reversal retrofocusing. In this section, the theory of
section 3 is applied to the problem of retrofocusing a wave field towards its initial state
when both the initial state and the material parameters of the object are unknown.
This problem has been thoroughly analyzed by Fink and coworkers; see, e.g., [10,
11, 12, 13]. In the time-reversal retrofocusing it is assumed that an initial state
{qT ,uT } exists in the object at time t = −T . This initial wave field is generated
either by sources inside the object or by a field on the surface of the object. Since
the material parameters and the original field distribution, in general, are unknown,
the distribution of the retrofocused field is not known. However, it is known that the
field retrofocuses towards its original field distribution.

The output q(0)
− is recorded at the boundary Γt for times −T < t < 0; see

Figure 4.1(a). This initial observed field is time-reversed and re-emitted into the

tt

0,0
t = 0

t = T

x

xp′
T ,v

′
T

t = 0

t = T

q(n)p(n)

t

qT , uT

x
t = 0

t = T

q(0)
+ = 0

(a) (c)(b)

0,0

q(n)
+ = T p(n)p(n)

+ = T q(n 1)

q(0)

Initial observation Retrofocusing Observation

{q(0),u(0)} {p(n),v(n)} {q(n),u(n)}

Fig. 4.1. Iterated time-reversal retrofocusing. (a) The output field is recorded from the original
field as the initial observation or the initial step of the algorithm n = 0. (b) in the retrofocusing,

the recorded output q
(n − 1)
− is time-reversed and re-emitted into the domain to produce the final

state {p(n)

T ,−v
(n)

T } and the output p
(n)
− . (c) in the observation, the output p

(n)
− is time-reversed and

re-emitted into the domain to give the output q
(n)
− .
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domain; see Figure 4.1(b). The retrofocusing is carried out with the iterative time-
reversal algorithm (3.19). From section 3, it is concluded that the final state {p′T ,−v′T }
coincides with the controllable part of the initial state, {qT ,uT }. Observe that the
retrofocusing does not require knowledge of the initial state nor of the material pa-
rameters. Moreover, if the initial state and the material parameters are unknown, the
distribution of the retrofocused wave field is also unknown.

5. Example: Time-reversal cavity.

5.1. Acoustically hard boundary with ducts. In this section, the acousti-
cally hard boundary cavity is considered, with transducers and receivers in the form
of narrow ducts. The particular form of the transducers and receivers corresponds to
a simple admittance operator. We present a numerical simulation in three dimensions
of the retrofocusing and the resulting fields.

The cavity is a bounded region with a perforated acoustically hard boundary. The
perforations are located in the end of a set of ducts. The wave field is induced through
the perforations Γt; see Figure 5.1. If the ducts are sufficiently narrow and long, it is
only the fundamental mode that propagates, i.e., a locally plane wave, propagating in
the n-direction; see [24, 26]. In this case the admittance operator reduces to a scalar
constant,

Y = Y0 =
√
κ0/ρ0.(5.1)

The sufficient condition (3.17) of commutation between the admittance operator and
the time-reversal operator is trivially satisfied. Moreover, the energy balance (3.3)
gives ‖Rq(n)

+ ‖L2 ≤ ‖q(n)
+ ‖L2 for all n, and hence the algorithm (3.19) converges. (Here,

the norm, ‖ · ‖L2 , is the L2-norm over space and time.) The uncontrollable part of
the boundary is acoustically hard, i.e., U = 0. For this case the iterated time-reversal
focusing algorithm (3.19) reduces to p(n)

+ = T q(n − 1)
− and q(n)

+ = T p(n)
− .

5.2. Numerical results. To illustrate the iterated time-reversal algorithm, a
numerical example is presented. A cubic cavity with side length L = 1 and four horns

-
¡w

n

κ(x) ½(x)

(t)p+

Hard

¡t

Fig. 5.1. The cavity geometry. The boundary of the cavity is divided into the transducer
surface, Γt, at the wave guide openings, and the acoustically hard wall, Γw. The transducers induce
the boundary control, p+(x, t), as a locally plane wave propagating in the n-direction, where n is
the inward unit normal.
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Fig. 5.2. Example of a focused pressure in the cavity. Each improvement of the respective
family of lines above is obtained by including one more term in the sum (3.20). The vertical axes
show nondimensional values where the energies, the standard deviation, and the error are normalized
with respect to the original energy, a uniform field distribution, and the error of quiescent fields,
respectively. (a) The field energy is concentrated at T = 2.2 s. The standard deviation of the energy
around its center point is minimized at the focusing time T . (b) The error term is

√J , where J
is the least-square functional. The pressure part of the energy dominates the velocity part at the
focusing time T .

t=2.3, [-1.7,1.7] t=2.6, [-1.2,1.2] t=2.9, [-2.4,2.4] t=3.2, [-3.7,3.7] t=3.5, [-8.8,8.8]

Fig. 5.3. Example of a retrofocused pressure in the cavity; the range is given in brackets. The
focusing time is T = 3.5. Note that the pressure amplitude range at t = 3.2 is considerably smaller
than at t = 3.5, (3.7 versus 8.8); hence the concentration of the field is highest at t = 3.5. Also note
the extended region with “gray” at t = 3.2.

attached to each side is considered. The acoustic wave equation is solved with a
standard leap-frog scheme, where the cavity, the horns, and the ducts are discretized
on an equidistant grid with discretization L/82. The fundamental mode is induced
with a Huygens surface in the ducts, and the ducts are terminated with a perfectly
matched layer. The temporal step is chosen according to the CFL condition [31] to
minimize the numerical dispersion.

In Figure ??(a), the first two moments of the energy distribution are depicted.
It is obvious that the field energy is concentrated around the focusing time T = 2.2.
At these times the energy is centered around the focusing point. The concentration
of the energy is measured with the variation of the energy. The variation is scaled
such that an energy with uniform distribution has unit variation. From the variation
curve, it is clear that the wave field is concentrated around the focusing point at the
focusing time but that the wave field is not concentrated for other times. The field
energy of each field component is shown in Figure ??(b). The retrofocused field for a
case with retrofocusing at T = 3.5 is illustrated in Figure 5.3.
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6. Example: Time-reversal mirror. For the time-reversal mirror, we consider
the half space Ω = {x : x3 ≥ 0}, with homogeneous material parameters κ = κ0 and
ρ = ρ0. The transducers are located at the plane Γt = {x ∈ R

3 : x3 = 0}. Thus we
assume that the transducers can prescribe a boundary condition on the entire plane;
cf. (2.4).

6.1. The impedance operator. A nonreflective admittance operator [16, 17,
32, 33] is given here as an explicit integral operator, as well as its adjoint with respect
to the standard L2-inner product.

The characteristics of the transducers and receivers are modeled by the wave
splitting admittance operator [18], Y, with symbol [30, 8]

y(ξ̃, s) = s−1

√
s2κ0ρ0 + ξ̃2,(6.1)

where s is the Laplace transform variable corresponding to time and ξ̃ = (ξ1, ξ2) is
the transverse Fourier variable corresponding to x̃ = (x1, x2). We use the notation
x̃ = |x̃| and ξ̃ = |ξ̃| to denote the norms of x̃ and ξ̃, respectively. Let L denote the
temporal Laplace transform and F denote the spatial transverse Fourier transform;
the Y acting of the pressure can be expressed in terms of the symbol as

(Yp)(x, v) = L−1F−1(y(ξ̃, s)p(ξ̃, x3, s)),(6.2)

where we have used p(ξ̃, x3, s) to denote the Laplace and Fourier transforms of p(x, t).
The above square root is taken with the branch-cut at the negative real axis, i.e.,√

s2 = s, when Re s > 0. An energy renormalization of the field removes the constant
material parameters in the acoustic wave equation (2.2) [14, p. 37] and consequently in
(6.1). The inverse of the admittance, the impedance, satisfies the transform relation

s√
s2 + ξ̃2

= FL δ′(t− |x̃|)
2π|x̃|(6.3)

for t ≥ 0, which follows from a straightforward calculation. Thus the time-space
representation of the impedance operator action is

(Y−1p+)(x̃, t) =

∫
R2

∫ t

0

δ′(t− t′ − |x̃− x̃′|)
2π|x̃− x̃′| p+(x̃′, t′) dt′ dx′1 dx′2(6.4)

for sufficiently smooth controls, p+. Here, x ∈ Γt, t ∈ [0, T ].
In section 6 and the appendices, we use Fourier and Laplace transforms. To utilize

their properties, we consider the case that all fields, p, v and q, u, have temporal
support contained in [0, T ]. Consequently, the time-reversal operator is redefined as

(T p+)(x, t) = p+(x, T − t), x ∈ Ω, t ∈ [0, T ].(6.5)

For section 6 and forward we use (6.5) instead of (3.1). As the system is linear and
independent of starting time, the change of definition of T is only a matter of shifting
the solution with respect to time.

T does not commute with an admittance Y of the form (6.1). Indeed, observe
that the adjoint Y∗ of Y with respect to the standard L2-inner product over time and
space at the boundary is

((Y∗)−1p+)(x̃, t) =

∫
R2

∫ T

t

δ′(t′ − t− |x̃− x̃′|)
2π|x̃− x̃′| p+(x̃′, t′) dt′ dx′1 dx′2.(6.6)
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It follows that Y is not self-adjoint. By the variable substitution τ = T − t′, we obtain

((Y∗)−1p+)(x̃, t) = T
∫

R2

∫ t

0

δ′(t− τ − |x̃− x̃′|)
2π|x̃− x̃′| (T p+)(x̃′, τ) dτ dx′1 dx′2

(6.7)
= (T Y−1T p+)(x̃, t).

6.2. Nonsolvability of “equal fields on the boundary. ” In this section, we
show that for the time-reversal mirror configuration with boundary condition (2.4) and
admittance operator (6.4), the given algorithm does not have an optimal boundary
control. We derive an approximate boundary control that agrees with the equation
for optimal boundary control in the nonevanescent part of the measured field.

For the homogeneous half space, with transducer characteristics Y−1 as in (6.4),
the boundary condition (2.4) is equivalent to a splitting of the field into an in- and
an outgoing constituent at the boundary [14, 15, 16, 17]. Thus a transducer with the
(6.4) characteristics is perfectly matched to the domain and does not introduce any
transducer mismatch reflections. Hence, as the medium is homogeneous, the response
operator vanishes; i.e., Rp+ = 0, likewise Rq+ = 0.

If we consider the solvability of the requirement of “equal fields on the boundary,”
with (6.7) the equations (3.15) reduce to

(Y−1 + (Y∗)−1)p+ = 2(Y∗)−1T q(0)− .(6.8)

The operator (Y−1 + (Y∗)−1) is not invertible everywhere on the range of (Y∗)−1.
Thus the requirement of “equal fields on the boundary” is too strong a condition for
this admittance. To analyze this situation we rewrite the least-squares functional, J ,
with the definitions of the boundary control and its observations, as

J = E0 +

∫ T

0

∫
Γt

(Y−1p+ − T Y−1(q+ + q
(0)
− ))(p+ + T (q+ − q

(0)
− )) dx1 dx2 dt.(6.9)

The least-squares functional J does not have any critical points for this choice
of admittance. To see this, we denote the above integral over time and boundary
by the inner product 〈·, ·〉Γt×[0,T ], and we observe that the field is real-valued and
that the operator Y−1 maps real-valued functions into real-valued functions. Upon
determining the variation with respect to p+, we find the requirement for critical
points to be

〈DJ , δp+〉Γt×[0,T ] = 2 Re〈(Y−1 + (Y∗)−1)p+ − (T Y−1 + (Y∗)−1T )q
(0)
−

(6.10)
+ ((Y∗)−1T − T Y−1)q+, δp+〉Γt×[0,T ] = 0

for all δp+ ∈ L2. Using property (6.7), we find that (6.10) simplifies to

〈(Y−1 + (Y∗)−1)p+, δp+〉Γt×[0,T ] = 〈2(Y∗)−1T q(0)− , δp+〉Γt×[0,T ](6.11)

for all δp+ ∈ L2. This equation is equivalent to (6.8), and to confirm its nonsolvability

for general q
(0)
− , we apply Parseval’s formula to (6.11) and obtain

H(ω2 − ξ̃2)
|ω|√
ω2 − ξ̃2

p+(ξ̃, ω) = lim
η→0+

(η − iω)√
(η − iω)2 + ξ̃2

e−iωT q
(0)
− (ξ̃,−ω),(6.12)
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where H(·) is the Heaviside (step) function. It is obvious that (6.12) does not have

a solution for all q
(0)
− , in particular for |ω| < ξ̃, since the left-hand side is zero while

the right-hand side can be nonzero, depending on q
(0)
− . In the Fourier domain for the

corresponding Green’s function the frequency region |ω| < ξ̃ is the nonpropagating

part of the field; hence we denote the part where q
(0)
− �= 0 for |ω| < ξ̃ as the evanescent

part of q
(0)
− (cf., e.g., [26]). Thus the “equal fields on the boundary condition” is

not applicable in the time-reversal mirror, and thus the algorithm does not yield an
optimum for this case.

We conclude that for general q
(0)
− ∈ L2 the least-squares functional, J , does not

have a critical point in terms of the field at the boundary. However, if q
(0)
− does not

have an evanescent part, then J has a critical point and the corresponding optimal
control is

p+ = T q(0)−
∣∣
|ω|≥ξ̃.(6.13)

6.3. Approximate boundary controls. As shown in section 6.2 it is only
possible to satisfy the equal fields on the boundary condition for the propagating part
of the wave field. Hence, it is not clear how to choose the control in the nonpropagating
or evanescent part of the wave field. Here, we consider three different controls, labeled

p
(1)
+ , p

(2)
+ , and p

(3)
+ , that satisfy (6.11) in the propagating regime.

Case one. p
(1)
+ is the particle-velocity normalized control; i.e., observation of the

initial state q
(0)
− is measured in particle-velocity normalization, time-reversed, and

retransmitted, viz.,

p
(1)
+ = T q(0)− .(6.14)

Case two. To construct p
(2)
+ , we begin with a consideration of the control problem

in pressure normalization. The boundary condition and the measurement take the
form

p+ Y−1v3
2

= p
(2)
+,Np

and m(2) =
p− Y−1v3

2
.(6.15)

Now consider a measurement of the initial pressure pulse in this normalization m(2),

time-reversed and retransmitted, viz., p
(2)
+,Np

= Tm(2). The result from this control
is the second case. To express this for particle-velocity normalization we utilize the

linearity of the problem to obtain that the control p
(2)
+ in the form

p
(2)
+ = YT Y−1q

(0)
−(6.16)

yields the same internal field as p
(2)
+,Np

, but with the particle-velocity boundary condi-
tions.1 Note that (6.7) gives the relations YT Y−1 = T Y∗Y−1 = Y(Y−1)∗T .

Case three. The control p
(3)
+ is the linear combination of the first two cases, i.e.,

p
(3)
+ = p

(1)
+ + p

(2)
+ = (1 + Y(Y−1)∗)T q(0)− .(6.17)

Note from (6.12) that p
(3)
+ cuts out the nonpropagating part for the q

(0)
− . The results

of Case three are discussed in section 6.7.

1The fields inside the domain from the controls p
(2)
+ and p

(2)
+,Np

with the respective normalized
boundary conditions are the same. This is utilized to explicitly calculate the response of p

(2)
+ ; see

Appendix C.
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6.4. Control operators. In this section, we derive the control operators for the
respective normalizations of p+, for boundary data with temporal duration T , i.e., an
operator that takes the boundary control to the respective final states at t = T .

The control operator in particle velocity-normalization is defined as

{p(1)(·, T ), v(1)(·, T )} = Wvp
(1)
+ .(6.18)

To derive the explicit form of Wv, we solve the acoustic wave equation, (2.2), and
(2.3), together with the transducer boundary condition (2.4) and quiescent initial
conditions. We obtain (see Appendix A.1)

p(1)(x, T ) =

∫ T

0

∫
R2

δ(T − t′ − |x− x̃′|)
2π|x− x̃′| ∂t′(H(t′)p(1)

+ (x̃′, t′)) dx′1 dx′2 dt′(6.19)

and

v(1)(x, T ) = −∇
∫ T

0

∫
R2

δ(T − t′ − |x− x̃′|)
2π|x− x̃′| p

(1)
+ (x̃′, t′) dx′1 dx′2 dt′.(6.20)

The control operator in the pressure normalization, Wp, is obtained by solving
the acoustic wave equation with transducer boundary condition (6.15) and quiescent
initial conditions. We obtain (see Appendix C)

p(2)(x, T ) = −∂3

∫ T

0

∫
R2

δ(T − t′ − |x− x̃′|)
2π|x− x̃′| p

(2)
+,Np

(x̃′, t′) dx′1 dx′2 dt′(6.21)

and

v(2)(x, T ) = ∇∂3

∫ T

0

∫
R2

δ(T − t′ − |x− x̃′|)
2π|x− x̃′|

∫ t′

0

p
(2)
+,Np

(x̃′, t′′) dt′′ dx′1 dx′2 dt′.

(6.22)

Thus we have an explicit expression for the control operator in both normaliza-
tions, expressed in terms of a common Green’s function. Note that the form of the
control operators has the typical retarded time dependence that is associated with
hyperbolic systems.

6.5. The solution operator. In this section, we use the solution operator with
initial conditions corresponding to a pressure pulse to derive the field at the boundary.
We also construct the boundary controls for the two cases (6.14) and (6.16).

To construct the boundary controls, p
(1)
+ , p

(2)
+,Np

, corresponding to an initial pres-
sure pulse, the time-reversed output field component is needed as data. It is obtained
by solving the acoustic equations (2.2) with the initial value {pT ,−vT } at t = 0. The
solution is (see [21])(

q(x, t)
u(x, t)

)
=

(
∂t −∇·
−∇ I∂t

)∫
R3

δ(t− |x− x′|)
4π|x− x′|

(
pT (x′)
−vT (x′)

)
dx′1 dx′2 dx′3,(6.23)

for an irrotational initial velocity, i.e., ∇× vT = 0. Now, to generate the output field
component at the boundary Γt = {x ∈ R

3 : x3 = 0}, we assume that supp pT and
suppvT are bounded and contained in the half space x3 > 0. Furthermore, we impose
a transparent boundary condition at Γt, i.e., no reflection at the boundary x3 = 0.
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For the measurement of the outgoing wave (2.9) this is equivalent to measurement
with perfectly matched receivers of the solution to (2.2) at the boundary.

To obtain an explicit representation of the field, we let the initial field be a pulse
in the pressure, with source point x̃ = 0, x3 = z0 > 0, that is,

pT (x) = δ(x̃) δ(x3 − z0) and vT = 0.(6.24)

The choice of pulse (6.24) substituted into (6.23) makes the field {q,u} into the
components of the pressure Green’s function. At the boundary, its {q, u3}-component
becomes(

q(x̃, 0, t)
u3(x̃, 0, t)

)
=

(
∂t
−∂3

)∫
R3

δ(t− |x− x′|)
4π|x− x′| δ(x̃′) δ(x′3 − z0) dx′1 dx′2 dx′3

∣∣∣∣
x3=0

(6.25)

=

(
∂t
∂z0

)
δ(t−

√
x̃2 + z2

0)

4π
√
x̃2 + z2

0

.

This field is measured by transducers yielding q
(0)
− and m(2), respectively; see (2.6)

and (6.15).
The transducer is perfectly matched to the domain, equivalent to a transparent

boundary condition, and measures the velocity normalized out-going component of
the wave; cf. [18]. As the receiver and transducer characteristics are identical, the

measured response {q(0)− , m(2)} in the respective normalizations, Cases one and two,
is (cf. (2.6), (6.15))

q
(0)
− (x̃, t) =

1

2
((Yq)(x̃, 0, t) − u3(x̃, 0, t)),(6.26)

m(2)(x̃, t) =
1

2
(q(x̃, 0, t) − (Y−1u3)(x̃, 0, t)).(6.27)

Substituting the expressions for {q, u3} (cf. (6.25)) into (6.26) and (6.27) gives (see
Appendix A.2 and Appendix C)

q
(0)
− (x̃, t) = −∂z0

δ(t−
√
x̃2 + z2

0)

4π
√
x̃2 + z2

0

,(6.28)

m(2)(x̃, t) = ∂t
δ(t−

√
x̃2 + z2

0)

4π
√
x̃2 + z2

0

.(6.29)

The measurements, {q(0)− ,m(2)}, of the field at the surface start at time t = 0. We
notice the expected delayed arrival in the measurement, because the initial pulse is
at depth x3 = z0. The “measurement” ends at t = T and, in general, the field at this
time is nonzero. Hence, to describe the measured field, we have to introduce a step
function that removes the field after t = T . Now, time reversal in accordance with

(6.5) of q
(0)
− and m(2) are the controls that we search for,

p
(1)
+ (x̃, t) = H(t)q

(0)
− (x̃, T − t) = −H(t)∂z0

δ(T − t−
√
x̃2 + z2

0)

4π
√
x̃2 + z2

0

,(6.30)

p
(2)
+,Np

(x̃, t) = H(t)m(2)(x̃, T − t) = −H(t)∂t
δ(T − t−

√
x̃2 + z2

0)

4π
√
x̃2 + z2

0

.(6.31)
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6.6. Retrofocused fields and their properties. Here, the explicit form of the
retrofocused field in Case one is used to analyze the long time limit of the retrofocused
field. In the long time limit, Case one retrofocuses the pressure perfectly, modulo a
numerical factor, whereas the particle velocity shows a nonzero remainder and is hence
not perfectly retrofocused. We also give the explicit form of the pressure for Case two.
We also show a number of graphs describing the degree of retrofocusing versus time
duration of the measured data.

For the boundary control (6.30) we can explicitly obtain the final state as distribu-
tions, denoted by {p(1)(·, T ),v(1)(·, T )}, for any finite time T . To this end, substitute

the control p
(1)
+ of (6.30) into (6.19) and (6.20). Integration with respect to time gives

the response,

(6.32)

p(1)(x, T )

= − ∂z0∂t

∫
R2

H(t− |x− x̃′|) δ(T − t+ |x− x̃′| −
√

(x̃′)2 + z2
0)

8π2|x− x̃′|
√

(x̃′)2 + z2
0

dx′1 dx′2

∣∣∣∣∣
t=T

=
−z0

4π2x3x̃2
∂3

x̃2 − x2
3 + z2

0

([T 2 − x2
3 − (x̃−

√
T 2 − z2

0)2][(x̃+
√
T 2 − z2

0)2 + x2
3 − T 2])

1/2
+

and

v(1)(x, T )

= ∇∂z0
∫

R2

H(t− |x− x̃′|) δ(T − t+ |x− x̃′| −
√

(x̃′)2 + z2
0)

8π2|x− x̃′|
√

(x̃′)2 + z2
0

dx′1 dx′2

∣∣∣∣∣
t=T

(6.33)

= ∇
[

−z0T
π2(4x̃2z2

0 + (x̃2 + x2
3 − z2

0)2)

x̃2 − x2
3 + z2

0

([T 2 − x2
3 − (x̃−

√
T 2 − z2

0)2][(x̃+
√
T 2 − z2

0)2 + x2
3 − T 2])

1/2
+

]
.

For details we refer to Appendix B.
The analogous derivation for Case two follows the substitution of the boundary

control p
(2)
+,Np

of (6.31) into (6.21) and (6.22). Upon integration (see Appendix C), we
find that

(6.34)

p(2)(x, T )

=
−1

4π2x̃2
∂3

x̃2 − x2
3 + z2

0

([T 2 − x2
3 − (x̃−

√
T 2 − z2

0)2][(x̃+
√
T 2 − z2

0)2 + x2
3 − T 2])

1/2
+

and

(6.35)

v(2)(x, T ) = −∇∂3

∫
R2

(
H

(
T −

√
(x̃′)2 + z2

0

)
δ(
√

(x̃′)2 + z2
0 − |x− x̃′|)

8π2|x− x̃′|
√

(x̃′)2 + z2
0

−δ
(
T −

√
(x̃′)2 + z2

0

)
H(
√

(x̃′)2 + z2
0 − |x− x̃′|)

8π2|x− x̃′|
√

(x̃′)2 + z2
0

)
dx′1 dx′2.



1972 JONSSON, GUSTAFSSON, WESTON, AND DE HOOP

0 2 4 6
0

1

2

3

4

5

6

Transverse distance

Case 1: log
10

(abs(v
3
)), T=10

D
ep

th

0 2 4 6
0

1

2

3

4

5

6

Transverse distance

Case 1: log
10

(abs(Pressure)), T=10

D
ep

th

−15

−10

−5

0

5

Wave front 

Retrofocusing error 

Retrofocused pulse 

Wave front 

Retrofocusing error 

Fig. 6.1. The retrofocused p(1) and v
(1)
3 , for T = 10, with initial state a Dirac pulse at z0 = 1,

x̃ = 0, and its boundary control p
(1)
+ . The pressure to high degree, concentrated to x3 = 0, z0 = 1,

with a small retrofocus error, and the velocity have no corresponding concentration; cf. (6.36). The

graphs show that the boundary control, p
(1)
+ , is imposed at depth x3 = 0 and has a support at x3 = 0

and x̃ ≤
√
T 2 − z20 . In the graph, notice the out-going wave front with radius T = 10 with center

located at all x̃ such that |x̃| =
√
T 2 − z20 , here at {x̃, x3} = {√99, 0}, due to the finite time cut-off

of the measurement. Recall that the graphs are distributions; hence the graphs are smoothed around
the wave front set.

The difference in pressure between the pressure normalization and the particle-velocity
normalization is the factor z0/x3. Furthermore, observe that v3 is zero on the x3-axis
for x3 �= z0. The integration of the first term in (6.35) is analogous to the normal
particle-velocity normalization; cf. (B.21).

The first observation on the above final state is that p(1), p(2), and v
(1)
3 depend

only on x̃ and not on x̃; i.e., they are independent of polar angle—the angle between

x1 and x2. The denominator (. . . )
1/2
+ describes wave fronts induced from the nonzero

field at the end of a finite measurement time. These wave fronts are centered on
the circle x3 = 0, {x̃ : x̃ =

√
T 2 − z2

0}. The cut-off in (. . . )
1/2
+ , with the polar

angle symmetry, results in a field having a domain shape that resembles a donut, cut
horizontally just below the middle. A cross section of the field is shown in Figure 6.1
for T = 10; i.e., the excitation time equals ten times the time it takes for the initial
pulse to reach the surface.

With the retrofocusing of this pulse, note that for an expansion as T → ∞,

p(1) =
z0
4π2

(T−1x̃−3 + (2T )−3(x̃−1 + 2x̃−3(x2
3 + z2

0) + 3x̃−5(x2
3 − z2

0))) + O(T−5)

and

v
(1)
3 =

x3z0((x
2
3 − z2

0)2 − 3x̃4 − 2x̃2(x2
3 + z2

0))

π2x̃(x̃4 + (x2
3 − z2

0)2 + 2x̃2(x2
3 + z2

0))2
+ O(T−2),(6.36)

together with(
v
(1)
1

v
(1)
2

)
=

(
z0(3x̃

2 + 4z2
0)

2π2x̃2(x̃2 + 4z2
0)

(
cos θ
sin θ

)
+ O((x3 − z0)

2)

)
+ O(T−2),(6.37)

where θ is the polar angle. Furthermore, at the axis x̃ = 0 the retrofocused field is
supported only at x3 = z0. In Figure 6.2 we plot the pressure away from the singular
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Fig. 6.2. Plots of the pressure for different excitation times T . In graph (b) and (c) each lower
line corresponds to the T values 10, 102, 103, 104, 105. (a) The black lines indicates where the
values in graphs (b) and (c) are taken. (b) At x3 = z0 we see the damping to the Dirac pulse, for
the area around the singular point. (c) At r := |x̃| = z0 we see that the fields damp as T increases;
the endings of the two top lines result from reaching the wave front; cf. Figure 6.2(a).
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Fig. 6.3. Plots of v
(1)
3 for a source at depth z0 = 1 and its boundary control p

(1)
+ . (a) The

“remaining” field as T becomes large; cf. (6.36). (b) Plots log10(|v(1)3 (T )−v(1)3 (t = 105)|) for T = 10,
102, 103, 104, along x3 = z0. In the lowest line the unevenness is due to numerical inaccuracies.

(c) Plot of v
(1)
3 along r := |x̃| = z0 for times T = 10 to −205. All lines start along the same

“remaining” velocity at x3 = 0. The first to deviate is v
(1)
3 (T = 10), which encounters its wave

front at x3 ≈ 4 (cf. Figure 6.1(b)); the next to go off to infinity is T = 102, which encounters its
wave front at x3 ≈ 15.

point for different excitation times T . It is apparent that the field is rapidly damped
with respect to T and x̃. The analogous plots for v3 are shown in Figure 6.3, where
it is apparent that v3 rapidly approaches its remaining, nonzero, distribution.

In the limit T → ∞ we obtain for the pressure (see Appendix D)

lim
T→∞

∫
p(1)(x̃, x3, T )φ(x̃, x3) dx1 dx2 dx3 =

1

2
φ(0, z0),(6.38)

for a compactly supported test function φ. This result agrees with the result presented
in [14], obtained by an argument that utilized symmetries of the cavity case.
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Fig. 6.4. Comparison between Cases one and two. The plots are along r := |x̃| = z0. (a) The
pressure, for T = 10. The wave front appears at r ≈ 4. (b) The same plot as in Figure 6.4(a) but
with T = 102.

Thus we obtain a perfect retrofocusing in the pressure component, modulo an
amplitude factor of 2, in the presence of an evanescent component in the control. The
factor of 2 appears since the “controllable part” of the wave field is essentially half of
the original wave field, the up-going part of the original pressure pulse that reaches
the surface.

We cannot expect a perfect retrofocusing of the pure pressure pulse state for
controls on only the half plane, as such controls can only generate “down-going”
waves, whereas the pure pressure pulse contains fields that radiate in all directions.
The residual of the velocity component ensures that the generated, retrofocused field
remains down-going, and hence the velocity component remains nonzero, i.e., not
perfectly “retrofitted” to zero.

6.7. Influence of the evanescent part of the boundary control. Here, we
discuss the influence of the evanescent part of the boundary control on the resulting
fields.

As we noted in section 6.3, the two given boundary controls differ only in the
evanescent part, and thus by comparing the responding fields of the respective cases,
we compare controls that differ only in the evanescent region. As we derived only
the pressure component of the pressure normalized fields explicitly, let us study the
difference in pressure. The pressure field differs only by a factor x3/z0, and hence the
difference is independent of time. To understand the difference between the retrofo-
cused fields we plot the pressure for x̃ = z0; see Figure 6.4.

For Case one, we proved that, as T → ∞, the pressure concentrates at the source
point x3 = z0, x̃ = 0. The appearance of the factor x3/z0 for Case two does not
change the conclusion for T → ∞, as x3/z0 = 1 at the source point. From the
plots in Figure 6.4 we notice the apparent difference between the two cases, but upon
observation of the amplitudes involved we conclude that, for sufficiently large T , the
evanescent part of the control has a negligible influence. As both cases of controls
have a pressure component that converges to a pulse, so must their sum, the response

to p
(3)
+ , as the acoustic wave equation is linear.
As we have already shown that the sum of the two controls does not have an

evanescent part, and the sum still converges to the pressure Dirac pulse, the influence
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of the evanescent part in the long time limit on the pressure component of the final
state is small. As the initial pressure is a Dirac pulse, this implies that for any initial
state with quiescent velocity and nonzero pressure distribution, the evanescent part
of the field has a marginal effect for sufficiently long excitation times.

7. Discussion. The use of time reversal in experiments and theory, both for
linear acoustics and electromagnetics, has increased rapidly in the last years. Here,
we have developed an iterative time-reversal algorithm for the purpose of retrofo-
cusing that differs from the iterative time-reversal algorithms described by Fink and
colleagues [2, 5, 9, 10, 11, 12, 13, 27] and Cheney and coworkers [6, 7]. The algorithms
are identical in the first step where they reduce to classical time reversal. The present
algorithm retrofocuses the wave field towards the controllable part of its originating
distribution; i.e., it uses the transducers in an optimal way to recreate the original
(initial) wave field. This is achieved by the construction of identical fields at the
transducers in the original and retrofocused states. In contrast to this, the iterative
time-reversal algorithm described in [6, 7, 13] retransmit the wave field such that the
reflection is maximized. This produces a focusing on the largest scatterer and largest
eigenfunction in [13] and [6, 7], respectively.

The iterative time-reversal algorithm is especially useful in strongly multiple scat-
tering cases such as the cavity described in section 5. For this type of geometry, a few
iterations improve the retrofocusing, as illustrated by the numerical examples. For
the time-reversal mirror examined in this paper, the iterative time-reversal algorithm
reduces to the classical time reversal since the homogeneous half space is nonreflect-
ing. But also in this case, the boundary control analysis shows that the iterative
time-reversal algorithm is optimally retrofocusing, in the least-squares sense, when
the evanescent part of the measured wave field is negligible.

In the half space geometry, both a direct time reversal of the recorded wave field
and a weighted time reversal are considered. The two controls differ only in the
evanescent part of the wave field. The analytic representation of the pressure field is
given for the two controls when the initial field is a pressure Dirac pulse. As expected,
the retrofocusing is not perfect; i.e., only the controllable part of the wave field is
retrieved. In this case the controllable part is essentially half of the wave field since
only the up-going part [18] of the original pressure pulse reaches the surface and is
retransmitted as a down-going wave field. The retrofocused field concentrates around
the initial pulse point, and as the excitation time approaches infinity, the pressure
pulse retrofocuses to half the initial pulse. However, the velocity component does not
vanish in the large time limit since the resulting field has to remain down-going.

Appendix A. Calculations on the half space.

A.1. Derivation of the control operator. Here, we give the explicit deriva-
tions to obtain the control operator for the particle-velocity normalization.

To derive the control operator for the homogeneous half space, we solve the system
of equations ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∂tp+ ∇ · v = 0, x ∈ Ω, t ∈ (0, T ],
∂tv + ∇p = 0, x ∈ Ω, t ∈ (0, T ],
p = 0, v = 0, x ∈ Ω, t = 0,

1

2
(Yp+ v3) = p

(1)
+ , x ∈ ∂Ω, t ∈ [0, T ],

(A.1)

where the boundary condition is in the particle-velocity normalization.
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We Laplace transform the field in time, and with the use of p(x, 0) = 0 and
v(x, 0) = 0, together with the enforced causality, the resulting field is analytic for
Re s ≥ 0. Furthermore, the correspondence ∂t → s holds. We Fourier transform the
transverse coordinates, x̃→ ξ̃, and upon eliminating the transverse particle-velocities,
we obtain the “two-way” equation for linear acoustic waves⎧⎪⎨

⎪⎩
(∂3 + a)f(ξ̃, x3, s) = 0, x3 > 0,

yp+ v3 = p
(1)
+ (ξ̃, s), x3 = 0,

sv⊥(ξ̃, x3, s) + iξ̃p(ξ̃, x3, s) = 0, x3 > 0,

(A.2)

f = (p, v3) and where the admittance operator symbol, y, is defined in (6.1). Here,
the acoustic system’s matrix, a, has the form

a =

(
0 s

s+ s−1ξ̃2 0

)
.(A.3)

The formal solution to (A.2) is derived through wave splitting; see, e.g., [14, 15,
16, 17]. Also notice the freedom of “normalization,” pointed out in [16, 17, 18]; the
normalization is arbitrary and related to the transducer characteristics, where we have

chosen the boundary condition in the particle-velocity normalization; i.e., p
(1)
+ is of

“dimension” particle-velocity. The formal solution to (A.2) is⎧⎪⎨
⎪⎩
f(ξ̃, x3, s) = e−x3

√
s2+ξ̃2η+p

(1)
+ (ξ̃, s),

v⊥(ξ̃, x3, s) = − iξ̃

s
e−x3

√
s2+ξ̃2(η+p

(1)
+ (ξ̃, s))1,

(A.4)

where η+, (η−) is the eigenvector corresponding to the positive (negative) eigenvalue,

±
√
s2 + ξ̃2 of a, and has the form, in particle-velocity normalization,

η± =

⎛
⎜⎝

s√
s2 + ξ̃2

±1

⎞
⎟⎠ .(A.5)

With the above reformulations, the symbol of the control operator, Wv, becomes

w+ = e−x3

√
s2+ξ̃2

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

s√
s2 + ξ̃2

− iξ̃√
s2 + ξ̃2

1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠
.(A.6)

To transform this operator back into space and time, we observe the identity

F−1 e−x3

√
s2+ξ̃2√

s2 + ξ̃2
=

∫ ∞

0

ξ̃ J0(ξ̃x̃)e
−x3

√
s2+ξ̃2

2π

√
s2 + ξ̃2

dξ̃ =
e−s|x|

2π|x| ,(A.7)

by using Purdnikov, Brychkov and Marichev’s relation 2.12.10.10 [28]. Thus

L−1F−1 e−x3

√
s2+ξ̃2√

s2 + ξ̃2
=

δ(t− |x|)
2π|x| ,(A.8)
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and as the inverse transform of this integral kernel is known, we express the symbol
of the control operator, w+, in terms of the above kernel as⎛

⎝ p
ṽ
v3

⎞
⎠ = (w+p

(1)
+ )(ξ̃, x3, s) =

⎛
⎝ s

−iξ̃
−∂3

⎞
⎠ e−x3

√
s2+ξ̃2√

s2 + ξ̃2
p
(1)
+ (ξ̃, s),(A.9)

where ṽ = {v1, v2}. Using (A.8) on (A.9), we find that

p(x, T ) =

∫ T

0

∫
R2

δ(T − t′ − |x− x̃′|)
2π|x− x̃′| ∂t′(H(t′)p(1)

+ (x̃′, t′)) dx′1 dx′2 dt′(A.10)

and

v(x, T ) = −∇
∫ T

0

∫
R2

δ(T − t′ − |x− x̃′|)
2π|x− x̃′| p

(1)
+ (x̃′, t′) dx′1 dx′2 dt′.(A.11)

Thus we have an explicit expression for the control operator, when the boundary
condition is in the particle-velocity normalization. The control operator gives the
field inside the domain, once the control at the boundary is known.

A.2. The measured data. In this section a calculation to obtain the explicit
form of the measured field at the boundary for Case one is presented.

From (6.26) we have that the measured data has the form

q
(0)
− (x̃, t) =

1

2
((Yq)(x̃, 0, t) − u3(x̃, 0, t)).(A.12)

In the Laplace–Fourier domain the equivalent field has the representation

q
(0)
− (ξ̃, s) =

1

2

(
s−1q(ξ̃, 0, s)

√
s2 + ξ̃2 − u3(ξ̃, 0, s)

)
.(A.13)

With the relation (A.8) we Laplace–Fourier transform the field {q(x̃, 0, t), u3(x̃, 0, t)}
at the boundary; cf. (6.25). Substituting the result into (A.13) gives(

q(ξ̃, 0, s)

u3(ξ̃, 0, s)

)
=

1

2
e−z0

√
s2+ξ̃2η−(ξ̃, s) ⇒ q

(0)
− (ξ̃, s) =

1

2
e−z0

√
s2+ξ̃2 ,(A.14)

where η− is an eigenvector of a in the particle-velocity normalization; see (A.5). In
the time-space domain, using (A.8), we find that

q
(0)
− (x̃, t) = −∂z0

δ(t−
√
x̃2 + z2

0)

4π
√
x̃2 + z2

0

.(A.15)

Appendix B. The field in the domain for control p
(1)
+ . Given the control

p
(1)
+ in (6.30), we substitute it into (6.19) and (6.20). Below we explicitly calculate

the two resulting distributions.

B.1. The pressure component. In this section we give a detailed derivation
of the pressure distribution for Case one.

Let us introduce the help quantities,

R1 =
√

(x̃′)2 + z2
0 , R2 =

√
|x̃− x̃′|2 + x2

3, and τ = T − t.(B.1)



1978 JONSSON, GUSTAFSSON, WESTON, AND DE HOOP

The pressure, p(1), with the use of (B.1) is represented as

p(1)(x, t) = − ∂z0∂t

∫
R2

H(t−R2)
δ(τ + (R2 −R1))

8π2R1R2
dx′1 dx′2

(B.2)

= ∂z0x
−1
3 ∂3

∫
R2

H(t−R2)
δ(τ + (R2 −R1))

8π2R1
dx′1 dx′2.

The delta Dirac traces out a curve for x̃′; to find the curve consider the x̃′ such that
R1 −R2 − τ = 0:

R2
1 = (τ +R2)

2 = τ2 +R2
2 + 2τR2 ⇔

− τ
√
x2

3 + |x̃− x̃′|2 = (x̃2 + x2
3 − z2

0 + τ2)/2 − x̃ · x̃′ ⇔
(B.3)

τ2(x2
3 + x̃2 + (x̃′)2 − 2x̃ · x̃′) = ((x̃2 + x2

3 − z2
0 + τ2)/2 − x̃ · x̃′)2 ⇔

τ2(x2
3 + x̃2) −A2/4 = −τ2(x̃′)2 + (x̃ · x̃′)2 −A(x̃ · x̃′);

hence δ(R1 −R2 − τ) traces out a conical section. Here,

A = x̃2 + x2
3 − z2

0 + τ2.(B.4)

We observe the freedom of choice in the coordinates x̃′, and hence we choose the
particular coordinate system for x̃′ such that x̃ = (x̃, 0). This is equivalent to rotating
the coordinate system of x̃′. The compatibility condition imposed on the solution
associated with the square roots is

− sgn(τ) = sgn(x̃2 + x2
3 − z2

0 + τ2 − 2x̃x′1),(B.5)

as is observed from the second line of (B.3). Now we rewrite (B.3) into a more
standard form for conical sections,

c = (x̃2 − τ2)(x′1 − x0
1)

2 − τ2(x′2)
2,(B.6)

and hence the set of {x′1, x′2}, which fulfills (B.6), traces out a curve in space. In this
case

x0
1 = x̃

A/2 − τ2

x̃2 − τ2
and c = τ2(x2

3 + x̃2) − A2

4
+ (x̃2 − τ2)(x0

1)
2.(B.7)

We notice that if x̃ > τ , the curve traced out is a hyperbola; when x̃ < τ , it is an
ellipse; and when x̃ = τ , it is a line parallel to x′1-axis.

In evaluating the integral (B.2) we consider only the limiting case when t = T ,
i.e., τ = 0. Thus the integral reduces to

p(1)(x, T ) =
1

x3
∂z0∂3

∫
R2

H(T −R2)
δ(R2 −R1)

8π2R1
dx′1 dx′2.(B.8)

We find that

x0
1 =

A

(2x̃)
=
x̃

2

(
1 +

x2
3 − z2

0

x̃2

)
, c = 0, A = x̃2 + x2

3 − z2
0 ,(B.9)

and the conical curve (B.6) collapses into the line

x′1 = x0
1 ⇒ x1 =

x̃

2

(
1 +

x2
3 − z2

0

2x̃2

)
.(B.10)
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This line fulfills the compatibility condition (B.5), and hence it is a solution.
To evaluate the integral we introduce a change of coordinates, Ψ = R1 −R2, and

the arc length, s, along the line (B.10). The integral in those coordinates collapses
into an integral with integrand

(R2|∇Ψ|)−1 ds = x̃−1 dx′2.(B.11)

To see this, first note that

ds =

√
1 +

(
∂x′1
∂x′2

)2

dx′2 = dx′2(B.12)

and

(R1R2)
2|∇′(R1 −R2)|2Ψ=0 = |(R2 −R1)x̃

′ +R1x̃|2Ψ=0 = R2
1x̃

2|Ψ=0,(B.13)

where we have used R1 = R2, or equivalently x′1 = x0
1. Hence, the pressure integral

becomes

p(1)(x, T ) =
1

8π2x̃x3
∂z0∂3

∫
R

H(T −R1)|R1=R2 dx′2,(B.14)

i.e., the length of the line, x′1 = x0
1, inside the circle described by H(T − R1). The

height, x′2, where x′1 = x0
1 crosses the circle, is

T 2 = z2
0 + (x′1)

2 + (x′2)
2|x′

1=x
0
1

= z2
0 + (x0

1)
2 + (x′2)

2 ⇒
(B.15)

x′2 = ±
√
T 2 − z2

0 − (x0
1)

2,

and hence

p(1)(x, T ) =
1

4π2x̃x3
∂z0∂3

(√
T 2 − (z2

0 + (x0
1)

2)H

(
T −

√
z2
0 + (x0

1)
2

))
.(B.16)

We now let the derivative with respect to the parameter z0 act on the distribution.
We first observe that

∂z0

√
T 2 − (z2

0 + (x0
1)

2) =
−z0(x− x0

1)

x̃
√
T 2 − z2

0 − (x0
1)

2
,(B.17)

so that

p(1)(x, T ) =
−z0

4π2x3x̃2
∂3

x̃− x0
1

(T 2 − z2
0 − (x0

1)
2)

1/2
+

(B.18)

=
−z0

4π2x3x̃2
∂3

x̃2 − x2
3 + z2

0

(4x̃2(T 2 − z2
0) −A2)

1/2
+

.

We rewrite the denominator in the form([
T 2 − x2

3 −
(
x̃−

√
T 2 − z2

0

)2 ][(
x̃+

√
T 2 − z2

0

)2

+ x2
3 − T 2

])1/2

+

,(B.19)

where the plus sign indicates that we consider it as a generalized function, and the
value within the outer parentheses must be positive. With (B.18) and (B.19) we have

obtained the pressure inside the domain corresponding to the control p
(1)
+ . It is a

distribution, and is considered as acting on smooth test functions.
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B.2. The velocity component. With the same notation as in the previous
section, we write the particle velocity inside the domain for the boundary control

p
(1)
+ , in the limit t = T , as

v(1)(x, T ) = ∇∂z0
∫

R2

H(T −R2)
δ(R2 −R1)

8π2R1R2
dx′1 dx′2.(B.20)

With the change to the arc-length coordinates, we have (cf. (B.11))

v(1)(x, T ) = ∇ 1

8π2x̃
∂z0

∫
R

H(T −R2)

R1

∣∣∣∣
R1=R2

dx′2.(B.21)

Analogous to the derivation leading up to (B.10), the condition R1 = R2 is equivalent
to x′1 = x0

1, and hence

R1|x′
1=x

0
1

= ((x0
1)

2 + z2
0 + (x′2)

2)1/2.(B.22)

The integral is straightforward once we notice that the step function imposes the
boundary value of x′2 (see (B.15))

v(1)(x, T )

= ∇
[

1

8π2x̃
∂z0 ln

(∣∣∣∣x′2 +
√

(x′2)2 + z2
0 + (x0

1)
2

∣∣∣∣
)]∣∣∣∣

x′
2={x′

2:R1|x′
1=x0

1
=T}

(B.23)

= ∇
[

1

8π2x̃
∂z0

(
ln

(
T +

√
T 2 − z2

0 − (x0
1)

2

T −
√
T 2 − z2

0 − (x0
1)

2

)
H

(
T − c−1

√
z2
0 + (x0

1)
2

))]
.

Upon evaluating the derivative with respect to z0, we obtain

v(1)(x, T ) = ∇
(

z0
4π2x̃2

T (x0
1 − x̃)

(T 2 − z2
0 − (x0

1)
2)

1/2
+ (z2

0 + (x0
1)

2)

)
,(B.24)

where the generalized function in the denominator is the same as for the pressure
(B.17) and can be rewritten as (B.19).

Appendix C. The response field for Case two. To obtain the response for
the control in Case two, we start to examine the characteristics of our transducers.
The derivation in Appendices A and B is for the particle-velocity normalization of
the boundary condition, both for the control and for the measurement. If we use the
pressure normalization instead of velocity normalization, then the boundary condition
takes the form (cf. (6.15))

p+ Y−1v3
2

= p
(2)
+,Np

and m(2) =
q − Y−1u3

2
.(C.1)

The control operator is then expressed in terms of the eigenvector in the pressure
normalization; i.e., η+ in (A.4) is replaced by η+

(2), where

η±
(2) =

(
1

±s−1

√
s2 + ξ̃2

)
.(C.2)
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Thus the symbol of the control operator, w+
(2), in this normalization is

⎛
⎝ p
ṽ
v3

⎞
⎠ =

(
w+

(2)p
(2)
+,Np

)
(ξ̃, x3, s) =

⎛
⎝ −∂3

s−1iξ̃∂3

s−1∂2
3

⎞
⎠ e−x3

√
s2+ξ̃2√

s2 + ξ̃2
p
(2)
+,Np

(ξ̃, s).(C.3)

Using (A.8), we obtain the control operator as

p(x, T ) = −∂3

∫ T

0

∫
R2

δ(T − t′ − |x− x̃′|)
2π|x− x̃′| p

(2)
+,Np

(x̃′, t′) dx′1 dx′2 dt′(C.4)

and

v(x, T ) = ∇∂3

∫ T

0

∫
R2

δ(T − t′ − |x− x̃′|)
2π|x− x̃′|

∫ t′

0

p
(2)
+,Np

(x̃′, t′′) dt′′ dx′1 dx′2 dt′.(C.5)

Hence, the normalization of the boundary condition changes the field, as expected; cf.
(6.19) and (6.20). The change related to the different transducer normalizations can
be compared to solving a partial differential equation with the Neumann and Dirichlet
boundary conditions, respectively.

The field from the pressure pulse at the surface in (6.25), {q, u3}, is independent
of normalization, but we measure particle-velocity (see (C.1)); thus in the pressure
normalization the measured signal becomes(

q(ξ̃, 0, s)

u3(ξ̃, 0, s)

)
=
se−z0

√
s2+ξ̃2

2

√
s2 + ξ̃2

η−
(2)(ξ̃, s) ⇒ m(2)(ξ̃, s) =

se−z0
√
s2+ξ̃2

2

√
s2 + ξ̃2

(C.6)

in the transform domain, and hence

m(2)(x̃, t) = ∂t
δ(t−

√
x̃2 + z2

0)

4π
√
x̃2 + z2

0

.(C.7)

Thus the control corresponding to the m(2) measurement is given by

p
(2)
+,Np

= H(t)m(2)(x̃, T − t) = −H(t)∂t
δ(T − t−

√
x̃2 + z2

0)

4π
√
x̃2 + z2

0

.(C.8)

We substitute the control (C.8) into (C.4) and (C.5) to obtain

p(2)(x, T ) = ∂3z
−1
0 ∂z0

∫
R2

H(T − |x− x̃′|) δ(|x− x̃′| −
√

(x̃′)2 + z2
0)

8π2|x− x̃′| dx′1 dx′2(C.9)

and

v(2)(x, T )=−∇∂3z
−1
0 ∂z0

∫
R2

H

(
T −

√
(x̃′)2 + z2

0

)
H(
√

(x̃′)2 + z2
0 −|x− x̃′|)

8π2|x− x̃′| dx′1 dx′2.

(C.10)

We rewrite (C.10) by evaluating ∂z0 ; thus

v(2)(x, T ) = −∇∂3

∫
R2

H

(
T −

√
(x̃′)2 + z2

0

)
δ(
√

(x̃′)2 + z2
0 − |x− x̃′|)

8π2|x− x̃′|
√

(x̃′)2 + z2
0

(C.11)

− δ

(
T −

√
(x̃′)2 + z2

0

)
H(
√

(x̃′)2 + z2
0 − |x− x̃′|)

8π2|x− x̃′|
√

(x̃′)2 + z2
0

dx′1 dx′2.
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The evaluation of (C.9) is analogous to the corresponding case in the particle velocity
normalization (see (B.8)), and thus we obtain

(C.12)

p(2)(x, T )

=
−1

4π2x̃2
∂3

(
x̃2 − x2

3 + z2
0

([T 2 − x2
3 − (x̃−

√
T 2 − z2

0)2][(x̃+
√
T 2 − z2

0)2 + x2
3 − T 2])

1/2
+

)
.

Appendix D. The pressure response distribution for T → ∞. In this
section, we give the details for the calculation of the limit T → ∞ of the pressure
response (6.32) in Case one.

We rewrite the denominator of (6.32) in the more convenient form

(D.1)

p(1)(x, T )

=
−z0

4π2x3x̃2
∂3

(
x̃2 − x2

3 + z2
0

([(
√
T 2 − z2

0 +
√
T 2 −x2

3)
2 − x̃2][x̃2 − (

√
T 2 − z2

0 −
√
T 2 −x2

3)
2])

1/2
+

)
.

In the limit T → ∞, let φ = φ(x̃, x3) be a compactly supported test function, i.e.,
smooth and bounded. We require that

suppφ ⊂ {x ∈ R
3 : x3 > 0} and diamφ ≤ Dφ,(D.2)

for some fixed number Dφ > 0. As we are interested only in the limit T → ∞, we
require that T � z0. Let us define the pressure functional pf = pf (T ) as

pf =

∫
R3

+∩suppφ

p(1)(x, T )φ(x̃, x3) dx1 dx2 dx3.(D.3)

By partial integration we push the derivative to the test function to obtain

pf =

∫
R3

+∩suppφ

z0
4π2

(
∂3
φ(x̃, x3)

x3

)
(D.4)

× (x̃2 − x2
3 + z2

0) dx1 dx2 dx3

x̃2([(
√
T 2 − z2

0 +
√
T 2 − x2

3)
2 − x̃2][x̃2 − (

√
T 2 − z2

0 −
√
T 2 − x2

3)
2])

1/2
+

.

We eliminate the appearance of T in the integrand with the change of variables

ž0 =
z0√

T 2 − z2
0

, x̌3 =
x3√

T 2 − z2
0

, ř =
x̃√

T 2 − z2
0

,(D.5)

giving dx1 dx2 dx3 = (T 2 − z2
0)3/2ř dř dx̌3 dθ. With this change of variables the de-

nominator takes the form

(. . . )
1/2
+ = (T 2 − z2

0)

([(
1 +

√
1− x̌2

3 + ž2
0

)2

− ř2
][
ř2 −

(
1−

√
1− x̌2

3 + ž2
0

)2 ])1/2

+

.

For notational convenience let

ψ(ř cos θ, ř sin θ, x̌3, T ) =
ž0
2π

∂

∂x̌3

φ(
√
T 2 − z2

0 ř cos θ,
√
T 2 − z2

0 ř sin θ,
√
T 2 − z2

0 x̌3)

x̌3
.

(D.6)
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The limit of the integration, R
3
+ ∩ suppφ, in the new variables is included in the set

(x̌3 − ž0)
2 + ř2 ≤ D2

φ

T 2 − z2
0

≡ Ď2
φ,(D.7)

for sufficiently large T . Hence, we only have to consider small ř and |x̌3 − ž0| as we
make T arbitrary large. In particular, we can expand the test function ψ around
ř = 0: ψ(x̌, x3) = ψ(0, 0, x3, T ) + řψx̌1 cos θ + řψx̌2 sin θ + O(ř2). As the integrand,
apart from the test function, is independent of θ, we obtain

pf =

∫
√

(x̌3−ž0)2+ř2≤Ďφ

(ψ(0, 0, x̌3, T ) + O(T−2))

(D.8)

× (ř2 − x̌2
3 + ž2

0) dř dx̌3

ř([(1 +
√

1 − x̌2
3 + ž2

0)2 − ř2][ř2 − (1 −
√

1 − x̌2
3 + ž2

0)2])
1/2
+

.

The ř-integral can be integrated exactly, but as we are only interested in the limit
T → ∞, we simplify the above expression as both |x̌3 − ž0| and ř are bounded above
by Ďφ = O(T−1) � 1 for sufficiently large T . Applying Taylor expansion gives

1 +
√

1 − x̌2
3 + ž2

0 = 2 + O(T−1), 1 −
√

1 − x̌2
3 + ž2

0 =
x̌2

3 − ž2
0

2
+ O(T−2),

(D.9)

and hence

(. . . )
1/2
+ = ([4ř2 − (x̌2

3 − ž2
0)2])

1/2
+ + O(T−1).(D.10)

Thus the pressure functional becomes

pf =

∫
√

(x̌3−ž0)2+ř2≤Ďφ

ř2 − x̌2
3 + ž2

0

ř[4ř2 − (x̌2
3 − ž2

0)2]
1/2
+

ψ(0, 0, x̌3, T ) dř dx̌3 + · · · .(D.11)

The disk
√

(x̌3 − ž0)2 + ř2 ≤ Ďφ, together with the step function indicated by the

plus sign on (. . . )
1/2
+ , is depicted in Figure D.1. With the change of variables

ř =
|x̌2

3 − ž2
0 |u

2
=
ζu

2
,(D.12)

we find

pf =

∫
|x̌3−ž0|f(x̌3)≤2Ďφ

∫ 2ζ−1
√
Ď2

φ−(x̌3−ž0)2

1

ψ(0, 0, x̌3, T )
ζ2u2/4 − x̌2

3 + ž2
0

ζu(u2 − 1)1/2
du dx̌3 + · · · ,

where f(x̌3) =
√

4 + (x̌3 + ž0)2. Upon integrating, we have

pf = −
∫
|x̌3−ž0|f(x̌3)≤2Ďφ

ψ(0, 0, x̌3, T )

(
(x̌2

3 − ž2
0)π

2|x̌2
3 − ž2

0 |
− 1

4

√
4Ď2

φ − 4(x̌3 − ž0)2 − ζ2

− x̌
2
3 − ž2

0

ζ
arctan(ζ(4Ď2

φ − (x̌3 − ž0)
2 − ζ2)−1/2)

)
dx̌3 + · · · .
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Fig. D.1. The triangle with the gray dot is the area of integration. The outer circle bounds the

domain of ψ, and the cut-off, (. . . )
1/2
+ , is shown as the two lines entering the half-circle.

Observe that on the given interval we have the upper bound

1

4

√
4Ď2

φ − 4(x̌3 − ž0)2 − ζ2 ≤ Ďφ

2
;(D.13)

this, together with the facts that the square root is a continuous function and that
the test function is bounded above, gives that the integral of this term vanishes as
T → ∞. For the arctan term, we observe that it is continuous at x̌3 = ž0, since
arctan ε = ε+ · · · , and furthermore, on the given interval

| sgn(x̌2
3 − ž2

0) arctan(ζ(4Ď2
φ − (x̌3 − ž0)

2 − ζ2)−1/2)| ≤ π

2
;(D.14)

thus, as the test function is bounded, this term also gives a vanishing contribution to
the integral.

With the above considerations the pressure functional becomes

pf = −π
2

∫
|x̌3−ž0|f(x̌3)≤2Ďφ

ψ(0, 0, x̌3, T )
x̌2

3 − ž2
0

|x̌2
3 − ž2

0 |
dx̌3 + O(T−1).(D.15)

If we now substitute the expression for ψ, (D.6), we find that

pf = − ž0
4

∫
|x̌3−ž0|f(x̌3)≤2Ďφ

(
∂x̌3

φ(0, x̌3

√
T 2 − z2

0)

x̌3

)
sgn(x̌2

3 − ž2
0) dx̌3 + O(T−1).

(D.16)

This integral is evaluated as

(D.17)

pf =
ž0
4

∫
|x̌3−ž0|f(x̌3)≤2Ďφ

φ

(
0, x̌3

√
T 2 − z2

0

)
(x̌−1

3 ∂x̌3
sgn(x̌2

3− ž2
0)) dx̌3 +O(T−1)

=
1

2
φ(0, z0) + O(T−1).
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In the integration we used that z0 is always in the domain |x̌3 − ž0|f(x̌3) ≤ 2Ďφ, for
sufficiently small Ďφ or correspondingly for large enough T . In the limit T → ∞ we
find that the distribution reduces to a delta Dirac at x̃ = 0 and x3 = z0. Hence, in
the limit we get back half the original pressure pulse in the pressure component.
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Abstract. Let us consider a one dimensional flow in a cylindrical tube, a portion of which is
flexible. It can be a shell structure or a membrane equipped with actuators in order to reduce and
if possible to cancel the acoustic perturbations transferred by the flow. The goal of this paper is to
discuss the efficiency of such a noise insulator in a mathematical framework.

Key words. aeroacoustics, fluid-structure, control of noise, flow duct
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1. Introduction. The modelling of aeroacoustic waves in an air flow coupled
with a flexible structure is an old but difficult problem, which still contains a lot of
unrevealed secrets [18], [17]. A cornerstone of such systems is the reflection of different
wave speeds on the boundaries or at a geometrical discontinuity. Such phenomena
can occur in a much more complex way at the interface between an air flow and a
flexible structure. For instance, local waves like Stoneley waves [9] can appear and
be acoustically predominant, at least locally [7]. More generally the question of lo-
cal waves is a difficult problem in fluid-structure interactions, and the mathematical
tools available are not yet well adapted to such analysis. The reason is that the
approaches which make use of Fourier series or eigenmodes expansions are based on
energetic approximations which do not represent correctly the local behavior of wave
models, especially when the media are inhomogeneous. Phenomena occurring at a
low frequency but with a very short wave length can certainly be better analyzed
using Fourier transform (with respect to space coordinates). In such a formulation
local behavior is transformed into global behavior. However, special technical strate-
gies are necessary because Fourier transforms cannot be applied straightforwardly to
inhomegeneous media. Another alternative consists of using special eigenmodes like
the so-called Steklov ones. This is the approach used in this paper, but on a very
restricted model. The difficulties mentioned here are magnified when a control model
is considered. A lot of new mechanical phenomena arise and significantly disturb the
certainties of the engineers. Therefore we think that it could be better to restrict our
ambitions to a simple one dimensional model coupling a flexible structure with a fluid.
Our goal is to prove that very strange mechanical behaviours can occur in such a class
of aeroacoustic problems and to discuss the efficiency of a control system in order to
suppress exactly any acoustic perturbation in the flow or in the structure. The first
section gives a presentation of the model used and few useful properties. The flutter
analysis is carried out in the third section, and the control problem is defined in the
fourth one. Then a mathematical study of the adjoint state functions, performed in
section five, enables one to prove a few controllability results in the sixth section. The
method is an adaptation of the H.U.M. method of Lions [21]. The characterization
of spaces for the control functions is performed in section 7 and is based on an idea
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Fig. 1. The flow duct and the flexible structure.

introduced by Zuazua (quoted in [21]). The last part (section 8) suggests a discussion
on the stability of the classical optimal control loop compared to the controllability
results obtained previously.

2. The aeroacoustic model coupled with a flexible structure. We con-
sider the steady flow of a fluid through a duct like that of Figure 1. A flow is travelling
through it. It is assumed that this steady flow is uniform with the velocity U . The
acoustic waves can be modelled by a potential function, say ϕ, which is a solution of
the following partial differential equation, where cf is the sound speed in the fluid:

∂2ϕ

∂t2
+ 2U

∂2ϕ

∂x∂t
+ (U2 − c2f )

∂2ϕ

∂x2
= ac2f

(
∂z

∂t
+ U

∂z

∂x

)
χ[L1,L2](x),(1)

where z is the normal displacement of the flexible structure which is positioned be-
tween x = L1 and x = L2. (It is a wave equation but written in a moving frame at
the velocity U (x′ = x − Ut), and therefore we substitute the time derivative ∂.

∂t by
∂.
∂t +U ∂.

∂x .) The characteristic function of the segment [L1, L2] is denoted by χ[L1,L2],
and a is a geometrical coefficient function of the cross section of the duct. The term
∂z
∂t +U ∂z

∂x is due to the continuity of the normal velocity between the flexible structure

and the wall of the duct (see Figure 2). More precisely, the term U ∂z
∂x comes from

the rotation of the normal to the interface. Another kind of junction including a
smart device will also be considered in this paper. It is obtained, for instance, by a
direct control of the position of a part of the tube or by a prescribed acoustic pressure
using skin loud speakers. This control is denoted by w. It is assumed for the sake of
simplicity that its support is on a segment ]α, β[ inside the flexible structure, but its
position could be anywhere along the flow duct. The full justification of such a model
will be given in a forthcoming paper using the asymptotic method based on the small
parameters representing the transverse dimensions of the duct and of the structure.

Then the new model is

∂2ϕ

∂t2
+ 2U

∂2ϕ

∂x∂t
+ (U2 − c2f )

∂2ϕ

∂x2
= ac2f

(
∂z

∂t
+ U

∂z

∂x

)
χ[L1,L2](x) + wχ[α,β](x).(2)
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Fig. 2. The smart system.

The segment [α, β] can be quite small compared to the length of the structure. This
is precisely one advantage of the system that we study: the mechanical effect of the
control on the flow duct is extended to the whole length of the structure even if the
control device is restricted to the subsegment [α, β]. In fact, this control system is not
necessary for proving the exact controllability of the coupled model, as we prove in the
following. But it enables one to regularize the control functions used on the structure
which is specified later on. Another point is that the boundary layer in the fluid is not
taken into account in the model (1) or (2). It is true that the viscosity would contribute
to changing the conclusions of the present study; however, it has been omitted in this
paper for the sake of brevity and also because the parabolic behavior of the wall law
is a real difficulty for the mathematical analysis [10]. At the extremities of the duct,
the boundary conditions are not obvious at all from a mechanical point of view (in
our opinion at least!). A first attempt in [5] was to prescribe homogeneous Dirichlet
boundary conditions on the potential function ϕ. This facilitates the control analysis
of the coupled system considerably, but it should be confessed that this is not a very
realistic condition. A more physically founded one consists of prescribing the mass
flow. Let us explain how it can be written mathematically. Let us first recall from
classical fluid mechanics that the acoustic pressure pa and the mass density variation
�a are such that (�0 is the mass density of the steady flow)

pa = c2f�a = −�0

[
∂ϕ

∂t
+ U

∂ϕ

∂x

]
.(3)

Let us denote by D the mass flow at the extremities of the duct. If S is the cross-
section area, the variation of D at first order is

δD = S

[
�0
∂ϕ

∂x
+ U�a

]
.(4)

Therefore, from (3) and (4), one deduces that (we set M = U/c2f , which is the Mach
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number and is assumed to be smaller than 1 in all the text)

δD = −SU�0

c2f

[
∂ϕ

∂t
+ U

(
1 − 1

M2

)
∂ϕ

∂x

]
.(5)

Finally, the conservation of the mass flow at the extremities of the flow duct will be
written as[

∂ϕ

∂t
+U

(
1 − 1

M2

)
∂ϕ

∂x

]
(0, t)=

[
∂ϕ

∂t
+U

(
1 − 1

M2

)
∂ϕ

∂x

]
(L, t)=0 ∀t ∈ ]0, T [.(6)

From the mathematical point of view, the previous condition corresponds to the nor-
mal derivative with respect to the operator involved in (1) and (2). The function ϕ is
defined up to an arbitrary constant (with respect to the coordinate x). This constant
has no physical meaning, and we eliminate it by a convenient condition for the math-
ematical aspects of our analysis. Therefore we prescribe the additional condition that
was not necessary for a Dirichlet condition:∫ L2

L1

ϕ = 0 ∀t ∈ ]0, T [.(7)

In the following it will be convenient to use the definition

H1
m(]0, L[) =

{
ψ ∈ H1(]0, L[),

∫ L2

L1

ψ = 0

}
.(8)

Let us now introduce a variational formulation for (1) or (2), assuming that there is
a smooth enough solution (it will be justified in the following). By multiplying (1)
or (2) by an arbitrary element ψ in the space H1(]0, L[) and integrating by parts, we
obtain, because of (6),

∀ψ ∈ H1(]0, L[),

∫ L

0

∂2ϕ

∂t2
ψ+U

∫ L

0

(
∂2ϕ

∂x∂t
ψ− ∂ϕ

∂t

∂ψ

∂x

)
+(c2f −U2)

∫ L

0

∂ϕ

∂x

∂ψ

∂x

= ac2f

∫ L2

L1

(
∂z

∂t
+ U

∂z

∂x

)
ψ +

∫ β

α

wψ.

(9)

Let us notice that if we choose ψ = ∂ϕ
∂t in (9), assuming again that there exists a

solution which is smooth enough, one has the first energetic invariant relation

∂

∂t

[
1

2

∫ L

0

(
∂ϕ

∂t

)2

+
c2f − U2

2

∫ L

0

(
∂ϕ

∂x

)2
]

= ac2f

∫ L2

L1

∂z

∂t

∂ϕ

∂t
+ U

∂z

∂t

∂ϕ

∂x
+ aUc2f

∂

∂t

[∫ L2

L1

∂z

∂x
ϕ

]
+

∫ β

α

w
∂ϕ

∂t

(10)

or else [
1

2

∫ L

0

(
∂ϕ

∂t

)2

+
c2f − U2

2

∫ L

0

(
∂ϕ

∂x

)2

− aUc2f

∫ L2

L1

∂z

∂x
ϕ

]t
0

= ac2f

∫ t

0

∫ L2

L1

(
∂ϕ

∂t
+ U

∂ϕ

∂x

)
∂z

∂t
+

∫ t

0

∫ β

α

w
∂ϕ

∂t
.

(11)
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Concerning the flexible structure, one can consider that it is a membrane or a shell.
In the first case, the normal displacement z is a solution of

⎧⎨
⎩

∂2z

∂t2
− c2s

∂2z

∂x2
= −b

(
∂ϕ

∂t
+ U

∂ϕ

∂x

)
+ uχ[α,β] ∀(x, t) ∈ ]L1, L2[× ]0, T [ ,

z(L1, t) = z(L2, t) = 0 ∀t ∈ ]0, T [ ,

(12)

where cs is the wave speed in the structure, b is a geometrical coefficient which also
involves the ratio between the mass density of the fluid and that of the structure, and,
finally, u is the external control force applied on the segment [α, β] ⊂ [L1, L2] of the
structure. This control is the most important in our study. In fact, it is sufficient for
proving an exact controllability of the solution of the coupled system.

If the structure is a clamped shell, then z is solution of⎧⎪⎪⎨
⎪⎪⎩

∂2z

∂t2
+D

[
∂4z

∂x4
+γ4z

]
=−b

(
∂ϕ

∂t
+U

∂ϕ

x

)
+uχ[α,β] ∀(x, t) ∈ ]L1, L2[× ]0, T [ ,

z(L1, t) =
∂z

∂x
(L1, t) = z(L2, t) =

∂z

∂x
(L2, t) = 0 ∀t ∈ ]0, T [ ,

(13)

where D is the bending modulus of the shell in the direction x1 and γ is the Batdorf
coefficient of the shell. Here again if z is a smooth enough solution of (12) or (13),
one has the following:

(a) for a membrane structure,

∂

∂t

[
1

2

∫ L2

L1

(
∂z

∂t

)2

+
c2s
2

∫ L2

L1

(
∂z

∂x

)2
]
=−b

∫ L2

L1

(
∂ϕ

∂t
+ U

∂ϕ

∂x

)
∂z

∂t
+

∫ β

α

u
∂z

∂t
;(14)

(b) for a shell structure,

∂

∂t

[
1

2

∫ L2

L1

(
∂z

∂t

)2

+
D

2

∫ L2

L1

(
∂2z

∂x2

)2

+γ4z2

]
=−b

∫ L2

L1

(
∂ϕ

∂t
+U

∂ϕ

∂x

)
∂z

∂t
+

∫ β

α

u
∂z

∂t
.(15)

It is possible to combine (11)–(14) or (11)–(15) in order to derive an energy invariance.
Let us set

X = (ϕ, z)(x, t)(16)

and ⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

am(X,X) = (c2f − U2)

∫ L

0

(
∂ϕ

∂x

)2

+
ac2fc

2
s

b

∫ L2

L1

(
∂z

∂x

)2

− 2aUc2f

∫ L2

L1

∂z

∂x
ϕ,

ac(X,X) = (c2f − U2)

∫ L

0

(
∂ϕ

∂x

)2

+
ac2fc

2
s

b

∫ L2

L1

(
∂2z

∂x2

)2

− 2aUc2f

∫ L2

L1

∂z

∂x
ϕ.

(17)

A solution of the coupled model (9)–(12) or (13) is such that (we set a = am or ac,
depending on whether the structure is a membrane or a shell)

∂

∂t

[
1

2

∫ L

0

(
∂ϕ

∂t

)2

+
ac2f
2b

∫ L2

L1

(
∂z

∂t

)2

+
1

2
a(X,X)

]
(t) =

ac2f
b

∫ β

α

u
∂z

∂t
+

∫ β

α

w
∂ϕ

∂t
.(18)
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Let us now introduce a change of variables by setting

X(x, t) = eλtX̃(x, t), X = (ϕ, z), X̃ = (ϕ̃, z̃), where

λ ∈ R, (ϕ̃, z̃) ∈ H1(]0, L[) ×H1
0 (]L1, L2[).

(19)

Then X̃ satisfies

∂

∂t

[
e2λt

(∫ L

0

{(
∂ϕ̃

∂t

)2

+ 2λϕ̃
∂ϕ̃

∂t

}
+
ac2f
b

∫ L2

L1

{(
∂z̃

∂t

)2

+ 2λz̃
∂z̃

∂t

}
+
ac2f
b

+aλ(X̃, X̃)

)]

=
2ac2f
b

∫ β

α

eλtu(x, t)

(
∂z̃

∂t
+ λz̃

)
dx+ 2

∫ β

α

eλtw(x, t)

(
∂ϕ̃

∂t
+ λϕ̃

)
dx,

(20)
where we have used the notation

aλ(X̃, X̃) = λ2

(∫ L

0

ϕ̃2 +
ac2f
b

∫ L2

L1

z̃2

)
+ a(X̃, X̃).(21)

It is useful to notice that, from physical arguments, the coefficients a and b are both
strictly positive. The stability of a solution can therefore be discussed with u = w =
0 ∀(x, t) ∈ ]α, β[× ]0, T [ . The basic point is to characterize the eigenvalues of the
bilinear form a(., .). If all of them are positive, then the system is stable because
the global energy remains bounded with respect to time. But if there exist negative
eigenvalues, one can always choose λ large enough that the following quantity remains
positive:

pseudoenergy =

∫ L

0

{(
∂ϕ̃

∂t

)2

+2λϕ̃
∂ϕ̃

∂t

}
+
ac2f
b

∫ L2

L1

{(
∂z̃

∂t

)2

+ λz̃
∂z̃

∂t

}
+aλ(X̃, X̃).

The terms
∫ L2

L1
ϕ̃∂ϕ̃∂t and

∫ L2

L1
z̃ ∂z̃∂t can be bounded using the Cauchy–Schwarz inequality.

For instance,

λ

∫ L2

L1

ϕ̃
∂ϕ̃

∂t
≤ λ2

2

∫ L

0

(ϕ̃)2 +
1

2

∫ L

0

(
∂ϕ̃

∂t

)2

,

and the same thing can be used for z. In fact, it will appear in the following that the
generalized Steklov eigenvalue problem can be useful in characterizing the velocities
Uc at which a flutter phenomenon (i.e., an unstability) can occur.

3. Existence, uniqueness, and stability of solutions.

3.1. Eigenmodes for the fluid. The first step is to define the eigenmodes of
vibration for the fluid. Assuming that the structure is rigid, we set⎧⎪⎪⎨

⎪⎪⎩
−(c2f − U2)

d2Φf

dx2
= λfΦf , 0 < x < L,

∫ L2

L1

Φf = 0,

dΦf

dx
(0) =

dΦf

dx
(L) = 0,

∫ L

0

|Φf |2 = 1.

(22)

It is classical that in this particular case the solution (Φfn, λ
f
n) can be computed

analytically. Another useful set of functions for our analysis is the generalized Steklov
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Fig. 3. The generalized Steklov eigenmodes.

one, which is defined as the solution of⎧⎪⎪⎨
⎪⎪⎩

−(c2f − U2)
d2Φsk

dx2
= λskΦskχ[L1,L2], 0 < x < L,

dΦsk

dx
(0) =

dΦsk

dx
(L) = 0,

∫ L2

L1

|Φsk|2 = 1, Φskn ∈ H1
m(]0, L[),

(23)

where χ[L1,L2] is the characteristic function of the segment [L1, L2]. Here again the
eigenmodes can be computed analytically (see Figure 3). It is interesting for our
purpose to give their expressions:⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

Φskn (x) = ±A, 0 < x < L1, L2 < x < L,

Φskn (x) = A cos

(
nπ(x− L1)

L2 − L1

)
, A =

√
2

L2 − L1
,

λskn =
n2π2(c2f − U2)

(L2 − L1)2
.

(24)

An important property for our purpose is the next one:

∀n ≥ 1,

∫ L2

L1

Φskn (x)dx = 0.

Let us now consider a function ϕ in the space H1(]0, L[). We associate the new
function δϕ defined by

δϕ = ϕ− 1

L2 − L1

∫ L2

L1

ϕ(x)dx.(25)

The second term on the right-hand side is a constant function on ]0, L[. Furthermore,
we have the property∫ L2

L1

δϕ = 0, and hence δϕ ∈ H1
m(]0, L[),
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which proves that δϕ is orthogonal to constant functions in the space L2(]L1, L2[).
Therefore, from the min-max theorem applied to the generalized Steklov problem,
one obtains (let us recall that we assumed that U < cf !)

∀ϕ ∈ H1(]0, L[), (c2f−U2)

∫ L

0

∣∣∣∣dϕdx
∣∣∣∣
2

= (c2f−U2)

∫ L2

L1

∣∣∣∣dδϕdx
∣∣∣∣
2

≥ λsk1

∫ L2

L1

|δϕ|2.(26)

Furthermore,⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∀z ∈ H1
0 (]L1, L2[),

ac2sc
2
f

b

∫ L2

L1

∣∣∣∣dzdx
∣∣∣∣
2

− 2aUc2f

∫ L2

L1

dz

dx
ϕ

=
ac2fc

2
s

b

[∫ L2

L1

(
dz

dx
− Ub

c2s
δϕ

)2

− U2b2

c4s

∫ L2

L1

|δϕ|2
]
.

(27)

Therefore (δϕ is defined from ϕ by (25)),⎧⎪⎪⎨
⎪⎪⎩

∀X = (ϕ, z) ∈ H1(]0, L[) ×H1
0 (]L1, L2[),

am(X,X) ≥
[
λsk1 − abc2fU

2

c2s

]∫ L2

L1

|δϕ|2 +
ac2fc

2
s

b

∫ L2

L1

(
∂z

∂x
− Ub

c2s
δϕ

)2

.
(28)

Finally, if the following condition is satisfied (we set ηsk1 (c2f − U2) = λsk1 ),

(c2f − U2)ηsk1 > abU2

(
cf
cs

)2

,

or else (Uc is called a critical velocity for the steady flow)

U < Uc =
cf√

1 +
ab

ηsk1

(
cf
cs

)2
< cf ,(29)

then one obtains from (18)

am(X,X) ≥ c0[|ϕ|21,0L + ||z||21,L1L2
],

and therefore there exists a positive constant c1 such that(∣∣∣∣
∣∣∣∣∂ϕ∂t

∣∣∣∣
∣∣∣∣
2

0,0L

+

∣∣∣∣
∣∣∣∣∂z∂t

∣∣∣∣
∣∣∣∣
2

0,0L

+ |ϕ|21,0L + ||z||21,L1L2

)
(t)

≤ c1

[(∣∣∣∣
∣∣∣∣∂ϕ∂t

∣∣∣∣
∣∣∣∣
2

0,0L

+

∣∣∣∣
∣∣∣∣∂z∂t

∣∣∣∣
∣∣∣∣
2

0,0L

+ |ϕ|21,0L+ ||z||21,L1L2

)
(0)+

∫ t

0

∫ β

α

u2(x, ξ)dxdξ

]
.

(30)

Remark 1. From the expression of the Steklov eigenvalue λsk1 , we deduce that

ηsk1 =
π2

(L2 − L1)2
,

that λsk1 → ∞ when |L2 − L1| → 0, and therefore, from (29), Uc → cf . Conversely,

when |L2 − L1|
√
ab→ ∞, one has the asymptotic behavior for the critical value Uc:

Uc	cs π

|L2 − L1|
1√
ab
.
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Remark 2. For a shell structure, one has

∀z ∈ H2
0 (]L1, L2[),

Dac2f
b

[∫ L2

L1

∣∣∣∣d2z

dx2

∣∣∣∣
2

+ γ4z2

]
≥ Dac2fπ

2

b(L2 − L1)2

∫ L2

L1

∣∣∣∣dzdx
∣∣∣∣
2

,

and thus similar results can be obtained. For instance, one obtains the new critical
value for the steady flow velocity:

Uc =
cf√

1 +
abc2f (L2 − L1)

2

Dπ2

.(31)

3.2. The eigenmodes for the flexible structure. Let us introduce now the
eigenvectors of the flexible structure (for a membrane, for instance), which can be
explicited analytically:⎧⎪⎪⎨

⎪⎪⎩
−c2s

d2Zs

dx2
= λsZs, L1 < x < L2,

Zs(L1) = Zs(L2) = 0,

∫ L2

L1

|Zs|2 = 1.
(32)

The solutions are

Zsn(x) =

√
2

L2 − L1
sin

(
nπ(x− L1)

L2 − L1

)
.(33)

A similar system can be explicated for a shell structure.

3.3. Existence and uniqueness of solutions for U < cf . In order to sim-
plify the presentation, we restrict the analysis to the case of a membrane structure,
but it could be extended to a shell. Let us introduce the following approximation
spaces: ⎧⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

V N =

{
ϕ =

∑
1≤n≤N

αnΦ
f
n

}
,

ZN =

{
z =

∑
1≤n≤N

βnZ
s
n

}
.

(34)

Then the approximate solution (ϕN , zN ) ∈ C 1([0, T ];V N × ZN ) is defined as the
unique solution of the finite dimensional differential equation⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀ψ ∈ V N ,

∫ L

0

∂2ϕN

∂t2
ψ + U

∫ L

0

(
∂2ϕN

∂x∂t
ψ − ∂ϕN

∂t

∂ψ

∂x

)

+ (c2f − U2)

∫ L

0

∂ϕN

∂x

∂ψ

∂x

= ac2f

∫ L2

L1

(
∂zN

∂t
+ U

∂zN

∂x

)
ψ +

∫ β

α

wψ,

∀v ∈ ZN ,

∫ L2

L1

∂2zN

∂t2
v + c2s

∫ L2

L1

∂zN

∂x

∂v

∂x

= −b
∫ L2

L1

(
∂ϕN

∂t
+ U

∂ϕN

∂x

)
v +

∫ β

α

uv.

(35)



1996 PHILIPPE DESTUYNDER AND JOCELYNE VÉTILLARD

The initial conditions satisfied by (ϕN , zN ) are defined from those of the contin-

uous model by taking the L2 projection of both (ϕN , zN ) and (∂ϕ
N

∂t ,
∂zN

∂t ). The
existence and uniqueness theorem is then derived from a priori energy estimates

by setting ψ = ∂ϕN

∂t and v = ∂zN

∂t in (35) when U < Uc. Then the weak con-
vergence of a subsequence to a weak solution of the variational coupled model can
be proved from classical strategies. When Uc < U < cf , a spectrum translation
can be used as we mentioned in (19)–(20). But even if existence and uniqueness
are still true, an unstability can appear. For details concerning the existence and
uniqueness theorem, we refer to the paper [6]. In order to characterize more pre-
cisely the unstabilities which can occur for U > Uc (Uc is only a lower bound),
let us consider the particular case where L1 = 0 and L2 = L. In such a config-
uration the Steklov basis Φskn is identical to the one used for the fluid Φfn. The
solution (ϕ, z) of the coupled model can be expanded in the basis of the eigenmodes
of the fluid, on the one hand, and of the structure, on the other hand. Therefore
we set (because {Φfn} and {Zsn} are Hilbert bases of, respectively, H1(]0, L[) and
H1

0 (]0, L[))

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ϕ(x, t) =
∑
n≥1

αn(t)Φ
f
n(x),

z(x, t) =
∑
n≥1

βn(t)Z
s
n(x),

(36)

where we recall that

Φfn(x) =

√
2

L
cos
(nπx
L

)
, Zsn(x) =

√
2

L
sin
(nπx
L

)
.

Introducing these expressions of ϕ and z into the variational formulation, we obtain
(the control functions u and w are supposed to be zero and one can observe that the
second term in the fluid equation disappears)

⎧⎪⎪⎨
⎪⎪⎩

∂2αn
∂t2

+ µ2
n(c

2
f − U2)αn − ac2fUµnβn = 0,

∂2βn
∂t2

+ µ2
nc

2
sβn − bUµnαn = 0

(37)

(we set µn = nπ
L for the sake of brevity). The solutions (αn, βn)(t) can be analyzed

from the eigenvalues of the stiffness matrix of (37). Let us denote them by λ. They
are the solutions of the characteristic equation of (37):

λ2 + λµ2
n(c

2
s + c2f − U2) + µ4

n(c
2
f − U2)c2s − abµ2

nU
2c2f = 0.(38)

If λ ∈ R, then one can check directly that λ > 0 (see the product and the sum of
the roots). Then the solutions (αn, βn) are stable (i.e., sine and cosine functions of
time with pulsation equal to

√
λ). But if λ is a complex number, the solutions of (37)

can be exponentially increasing with respect to time. In fact, using an eigenvector
basis (assuming that the two eigenvalues are distinct), (37) can also be written as
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follows:

∂2ξn
∂t2

+ (d0 ± id1)ξn = 0,(39)

where d0 ± id1 are the roots of (38). Thus, whatever is the sign of d1, one of the
two roots of the characteristic equations of (37) leads to an exponentially increasing
solution with respect to time. The point is to characterize the critical velocity Uf at
which the discriminant of (38) is zero, because for U = 0 the two roots are real and
positive, and their product remains also positive. One obtains

U4µ4
n − 2µ2

nU
2(µ2

n(c
2
f − c2s) − 2abc2f ) + µ4

n(c
2
f − c2s)

2 = 0.(40)

There exist real and positive roots in U to this equation if and only if{
(i) µ2

n(c
2
f −c2s)−abc2f < 0 (real roots),

(ii) µ2
n(c

2
f −c2s)−2abc2f < 0 (positivity of the real parts of the roots).

(41)

The first condition implies the second one. Let us recall that we assumed that U < cf
and for physical reasons the numbers a and b are both positive. Therefore the flutter
phenomenon occurs if and only if cs < cf and for the values of n (if there are any!)
such that

µn <

√
ab√

1 −
(
cs
cf

)2
.(42)

Hence, only a finite number of values of n lead to a flutter mechanism. All of
them correspond to homogeneous boundary conditions at the extremities of the tube
(x = 0 and x = L). However, the acoustic pressure is not zero at these points. More
realistic cases (i.e., 0 < L1 < L2 < L) can be treated numerically using a finite ele-
ment method, but unfortunately, not analytically. From a mechanical point of view,
the flutter phenomenon is a coupling between two eigenmodes which have the same
frequencies. One captures the energy from the steady flow, and the other stores it.
In fact, the flutter mechanism is generally destructive and thus avoided. Nevertheless
it can be interesting to use the phenomenon in order to increase the efficiency of the
control system that we discuss in the following. The principle would be to transfer
the acoustic energy from the flow into the structure and to kill it there. But clearly
such a strategy can be catastrophic whenever the control system fails. It is worth
noting that the condition cs < cf is precisely the same as that which enables the
existence of local waves in two dimensional or three dimensional fluid-structure inter-
action. This surprising aspect has been discussed in [11]. Concerning the Stoneley
waves in inhomogeneous structures, one can refer to Stoneley [27], Cagniard [1], or
Fung [9]. From a mechanical point of view the existence of local waves enables us to
store energy in a close neighborhood of the structure. This is also what happens in
the flutter mechanism.

In the next section we discuss the control law for a steady flow velocity which
is smaller than the critical value Uc. Using the change of unknowns defined at (19),
one can extend the result to the more general case: Uc ≤ U < cf . Unfortunately the
analysis that has been developed in this paper cannot be extended to the supersonic
case.
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4. The control problem. Let us consider a system of initial conditions for the
coupled model⎧⎪⎨

⎪⎩
ϕ(x, 0) = ϕ0(x),

∂ϕ

∂t
(x, 0) = ϕ1(x) ∀x ∈ ]0, L[ ,

z(x, 0) = z0(x),
∂z

∂t
(x, 0) = z1(x) ∀x ∈ ]L1, L2[ ,

(43)

Furthermore we assume that

ϕ0 ∈ H1(]0, L[), ϕ1 ∈ L2(]0, L[), z0 ∈ H1
0 (]L1, L2[), z1 ∈ L2(]L1, L2[).

Then the solution of the coupled model is such that (it is assumed that (u,w) ∈
[L2( ]α, β[× ]0, T [ )]2){

ϕ ∈ C 0([0, T ];H1(]0, L[)) ∩ C 1([0, T ];L2(]0, L[)),

z ∈ C 0([0, T ];H1
0 (]L1, L2[)) ∩ C 1([0, T ];L2(]L1, L2[)).

(44)

Let us now define the following criterion as a function of the control variables
(u,w) ∈ [L2( ]α, β[× ]0, T [ )]2, where A,B,C,D and ε are positive constants:⎧⎪⎪⎪⎨

⎪⎪⎪⎩
Jε(u,w) =

A

2

∫ L

0

∣∣∣∣∂ϕ∂t (x, T )

∣∣∣∣
2

+
B

2

∫ L

0

∣∣∣∣∂ϕ∂x (x, T )

∣∣∣∣
2

+
C

2

∫ L2

L1

∣∣∣∣∂z∂t (x, T )

∣∣∣∣
2

+
D

2

∫ L2

L1

∣∣∣∣∂z∂x (x, T )

∣∣∣∣
2

+
ε

2

∫ T

0

∫ β

α

(u2 +w2)(x, t).

(45)

Let us point out that the two control variables have been located at the same place.
This is not necessary for our analysis, but it enables a few helpful simplifications.
The existence and uniqueness of a solution to the next optimization problem is clear
because of the strict convexity, the continuity, and the coerciveness of Jε :{

min Jε(u,w),

(u,w) ∈ [L2(]α, β[×]0, T [)]2.
(46)

In order to characterize the solution of (46), it is very convenient (in fact, it is neces-
sary) to introduce the adjoint state function—say, ψ and d, which are the Lagrange
multipliers of the fluid and of the structural equation, respectively. They are the
solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2ψ

∂t2
+ 2U

∂2ψ

∂x∂t
+ (U2 − c2f )

∂2ψ

∂x2

= b

(
∂d

∂t
+ U

∂d

∂x

)
χ[L1,L2](x) ∀(x, t) ∈ ]0, L[× ]0, T [ ,

[
∂ψ

∂t
+U

(
1− 1

M2

)
∂ψ

∂x

]
(0, t)=

[
∂ψ

∂t
+U

(
1− 1

M2

)
∂ψ

∂x

]
(L, t)=0 ∀t∈ ]0, T [ ,

∂2d

∂t2
− c2s

∂2d

∂x2
= −ac2f

(
∂ψ

∂t
+ U

∂ψ

∂x

)
∀(x, t) ∈ ]L1, L2[× ]0, T [ ,

d(L1, t) = d(L2, t) = 0 ∀t ∈ ]0, T [ ,

(47)

and the final conditions are adjusted such that the gradient of Jε could be represented
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simply in the space [L2(]α, β[×]0, T [)]2. Thus we set⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

d(x, T ) = C
∂z

∂t
(x, T ) ∀x ∈ ]L1, L2[ ,

∂d

∂t
(x, T ) = −ac2fA

∂ϕ

∂t
(x, T ) −Dz(x, T ) ∀x ∈ ]L1, L2[ ,

ψ(x, T ) = A
∂ϕ

∂t
(x, T ) ∀x ∈ ]0, L[ ,

∂ψ

∂t
(x, T ) = −2AU

∂2ϕ

∂x∂t
(x, T ) + bC

∂z

∂t
(x, T )χ[L1,L2] +B

∂2ϕ

∂x2
(x, T )

+

(
AU +

BM2

U(M2 − 1)

)[
∂ϕ

∂t
(L, T )δL(x) − ∂ϕ

∂t
(0, T )δ0(x)

]
.

(48)

It is worth noting that if

B = A(c2f − U2)(49)

(where M = U
cf
< 1), then the Dirac distributions which appear in the expression of

∂ψ
∂t (x, T ) are canceled. Anyway, a simple computation leads to the following expres-
sions for the derivatives of Jε with respect to the control functions u and w:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∂Jε

∂u
(u,w) = d+ εu on ]α, β[× ]0, T [ ,

∂Jε

∂w
(u,w) = ψ + εw on ]α, β[× ]0, T [ .

(50)

The existence and uniqueness of a solution to the dual system (47)–(48) are not
obvious, because the initial data for the primal model are not smooth enough. Usually
one can use a series of eigenvectors in order to characterize the solution of a time
dependent system (cf. Lions [20]). In our case this method cannot be applied because
there is no spectral theorem for this coupled model. This is due to a loss of symmetry
in the coupling terms and also to the first order derivatives with respect to the time
variable. But another strategy can be used. We set⎧⎪⎪⎨

⎪⎪⎩
ψ̃(x, t) = ψ̃0(x) +

∫ t

T

ψ(x, s)ds,

d̃(x, t) = d̃0(x) +

∫ t

T

d(x, s)ds,

(51)

and from a quite classical computation we obtain that (ψ̃, d̃) is a solution of⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2ψ̃

∂t2
+ 2U

∂2ψ̃

∂x∂t
+ (U2 − c2f )

∂2ψ̃

∂x2

= b

(
∂d̃

∂t
+ U

∂d̃

∂x

)
χ[L1,L2](x) ∀(x, t) ∈ ]0, L[× ]0, T [ ,

[
∂ψ̃

∂t
+U

(
1− 1

M2

)
∂ψ̃

∂x

]
(0, t) =

[
∂ψ̃

∂t
+U

(
1− 1

M2

)
∂ψ̃

∂x

]
(L, t) = 0 ∀t ∈ ]0, T [ ,

∂2d̃

∂t2
− c2s

∂2d̃

∂x2
= −ac2f

(
∂ψ̃

∂t
+ U

∂ψ̃

∂x

)
∀(x, t) ∈ ]L1, L2[× ]0, T [ ,

d̃(L1, t) = d̃(L2, t) = 0 ∀t ∈ ]0, T [ ,

(52)
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and the boundary conditions are⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

d̃(L1, t) = d̃(L2, t) = 0 ∀t ∈ ]0, T [ ,(
∂ψ̃

∂t
+ U

(
1 − 1

M2

)
∂ψ̃

∂x

)
(x, t)

= ψ(x, T ) + U

(
1 − 1

M2

)
∂ψ̃0

∂x
(x) ∀(x, t) ∈ {0, L}× ]0, T [ .

(53)

The functions (ψ̃0, d̃0) are chosen such that the right-hand sides of (52)–(53) are zero.
Hence we set⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−(c2f − U2)
∂2ψ̃0

∂x2
− Ub

∂d̃0

∂x
= −

(
∂ψ

∂t
(x, T ) + 2U

∂ψ

∂x
(x, T ) − bd(x, T )

)
,

−c2s
∂2d̃0

∂x2
+ aUc2f

∂ψ̃0

∂x
= −

(
∂d

∂t
(x, T ) + ac2fψ(x, T )

)
,

d̃0 ∈ H1
0 (]L1, L2[), ψ̃0 ∈ H1(]0, L[),

∂ψ̃0

∂x
(x) =

M2

U(1 −M2)
ψ(x, T ) = A

∂ϕ

∂x
(x, T ) ∀x ∈ {0, L}.

(54)

The final conditions that should be satisfied by (ψ̃, d̃) are⎧⎨
⎩

ψ̃(x, T ) = ψ̃0(x) ∀x ∈ ]0, L[ ,

∂ψ̃

∂t
(x, T ) = ψ(x, T ) = A

∂ϕ

∂x
(x, T ) ∀x ∈ ]0, L[ ,

(55)

⎧⎨
⎩

d̃(x, T ) = d̃0(x) ∀x ∈ ]L1, L2[ ,

∂d̃

∂t
(x, T ) = d(x, T ) = C

∂z

∂t
(x, T ) ∀x ∈ ]L1, L2[ .

(56)

The existence and uniqueness of (ψ̃, d̃) can then be obtained by the same result as
that used for (ϕ, z) (i.e., the primal solution). Furthermore, one can check directly
that (ψ, d), obtained by taking the time derivative of (ψ̃, d̃), is the solution of the
dual model (47)–(48). The only point to be checked is the existence and uniqueness
of (ψ̃0, d̃0). Let us therefore first introduce the notation

X0 = (ψ̃0, d̃0) ∈ H1(]0, L[) ×H1
0 (]L1, L2[),

and then the bilinear form

a0(X0, X0) = (c2f−U2)

∫ L

0

(
∂ψ̃0

∂x

)2

+
bc2s
ac2f

∫ L2

L1

(
∂d̃0

∂x

)2

−2bU

∫ L2

L1

(
∂d̃0

∂x

)
ψ̃0,(57)

and finally the linear form l0(.) defined by⎧⎪⎪⎪⎨
⎪⎪⎪⎩

l0(X0) = A(c2f − U2)

∫ L

0

∂ϕ

∂x
(x, T )

∂ψ̃0

∂x
(x) − 2AU

∫ L

0

∂ϕ

∂t
(x, T )

ψ̃0

∂x
(x)

+ bC

∫ L2

L1

∫ L2

L1

∂z

∂t
(x, T )ψ̃0(x).

(58)

First, a0(., .) and l0(.) are respectively bilinear and linear. Furthermore, they are both
continuous on the space H1(]0, L[)×H1

0 (]L1, L2[) as soon as (ϕ, z), which appears in
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the definition of l0(.), is a solution of the primal model with a finite energy initial
condition. The last point to be checked in order to apply the Lax–Milgram theorem
concerns the coerciveness of a0(., .). In fact, it has already been proved in (28) when
U < Uc. For U > Uc one can use the Garding inequality based on a compactness
argument [15]. Let us now discuss the regularity of the solution (ψ, d) and/or that of
(ϕ, z). It is dependent on the initial conditions. If the energy of the initial condition
is finite, then the solution (ϕ, z) is in the space

C 0([0, T ];H1(]0, L[) ×H1
0 (]L1, L2[)) ∩ C 1([0, T ];L2(]0, L[) × L2(]L1, L2[)).

But taking the time or space derivatives of (ϕ, z) (and also of (ψ, d)), the same reg-
ularity can be obtained if the initial conditions and the control functions are smooth
enough. Unfortunately a restriction appears again for the space derivatives because
at x = L1 and x = L2 the functions z (and d) are continuous, but this is not true
for the first order derivative. Hence one can only apply the previous method to first
order derivatives with respect to the space coordinate. Nevertheless this is a suf-
ficient regularity for our purpose in the multiplier method that we use in the next
section.

5. Energy estimates on the adjoint state. Several a priori estimates can
be obtained from the multiplier method of Lions [21]. Then from several additional
tricks introduced by Lions [21] and Zuazua [31] we can derive local estimates which
are useful for characterizing the initial data, and which can be exactly controlled with
control functions in the space L2(]α, β[×]0, T [). All the following computations are
performed assuming that the dual fields (ψ, d) are smooth enough. This is possible
because of the regularity results mentioned previously. Then the inequalities obtained
are extended by a density argument. The method being quite standard, we refer to
the book of Lions [21] for the details.

5.1. Lagrangian invariants. Let us multiply (47) by ∂ψ
∂t and ∂d

∂t . Then by
integrating with respect to time from 0 to T and with respect to the space coordinate
x, one obtains the following identities:

ε(t) = ε(0) ∀t ∈ [0, T ],(59)

where ε is a pseudoenergy defined by⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ε(t) =
1

2

∫ L

0

(
∂ψ

∂t

)2

+
b

2ac2f

∫ L2

L1

(
∂d

∂t

)2

+
(c2f − U2)

2

∫ L

0

(
∂ψ

∂x

)2

+
bc2s

2ac2f

∫ L2

L1

(
∂d

∂x

)2

− bU

∫ L2

L1

∂d

∂x
ψ.

(60)

Then from (28), and if U < Uc, there exist two positive constants—say, c0 and c1—
such that

c0E(t) ≤ ε(t) ≤ c1E(t),(61)

where E(t) is the global energy of the fluid and the structure (but without the coupling
term) and which is defined by⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩
E(t) =

1

2

∫ L

0

(
∂ψ

∂t

)2

+
b

2ac2f

∫ L2

L1

(
∂d

∂t

)2

+
(c2f − U2)

2

∫ L

0

(
∂ψ

∂x

)2

+
bc2s

2ac2f

∫ L2

L1

(
∂d

∂x

)2

.

(62)
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The difference between ε(t) and E(t) is the coupling term, which is connected to
the transfer of energy from the steady flow to the flexible structure through the
compressible flow (transient waves), or conversely. The mechanical meaning of E(t)
is clear because it is just the sum of the energy of the fluid and that of the structure
up to multiplicative constants.

Remark 3. The quantity E(t) is the square of a norm as soon as U < cf .
However, from (59) and the inequalities (61), we proved that there exist four constants
c2, c3, c4, and c5 such that

{
c2E(0) ≤ ε(t) ≤ c3E(0),

c4E(0) ≤ E(t) ≤ c5E(t).
(63)

5.2. Eulerian invariants. Let us consider a point x0 of the axis −→ox; it will be
specified later on. Let us now set q = x− x0 ( ∂q∂x = 1!). Then, by multiplying (47) by
∂ψ
∂x q for the fluid equation and by ∂d

∂xq for the structural equation, we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)

∫ T

0

∫ L

0

∂2ψ

∂t2
∂ψ

∂x
q + 2U

∫ T

0

∫ L

0

∂2ψ

∂x∂t

∂ψ

∂x
q + (U2 − c2f )

∫ T

0

∫ L

0

∂2ψ

∂x2

∂ψ

∂x
q

= b

∫ T

0

∫ L2

L1

(
∂d

∂t
+ U

∂d

∂x

)
∂ψ

∂x
q,

(b)

∫ T

0

∫ L2

L1

∂2d

∂t2
∂d

∂x
q − c2s

∫ T

0

∫ L2

L1

∂2d

∂x2

∂d

∂x
q

= −ac2f
∫ T

0

∫ L2

L1

(
∂ψ

∂t
+ U

∂ψ

∂x

)
∂d

∂x
q.

(64)

Then from several integrations by parts one deduces that

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(a)

[∫ L

0

∂ψ

∂t

∂ψ

∂x
q

]T
0

+ U

[∫ L

0

(
∂ψ

∂x

)2

q

]T
0

− 1

2

[(
∂ψ

∂t

)2

q

]L
0

+
U2−c2f

2

[∫ T

0

(
∂ψ

∂x

)2

q

]L
0

+
1

2

∫ T

0

∫ L

0

(
∂ψ

∂t

)2
∂q

∂x
−U2−c2f

2

∫ T

0

∫ L

0

(
∂ψ

∂x

)2
∂q

∂x

= −b
[∫ L2

L1

(
∂d

∂x

)
ψq

]T
0

−b
∫ T

0

∫ L2

L1

∂d

∂t
ψ
∂q

∂x

∂q

∂x

+ b

∫ T

0

∫ L2

L1

∂d

∂x

∂ψ

∂t
q + bU

∫ T

0

∫ L2

L1

∂ψ

∂x

∂d

∂x
q,

(b)

[∫ L2

L1

∂d

∂t

∂d

∂x
q

]T
0

− 1

2

[(
∂d

∂t

)2

q

]L2

L1

+
1

2

∫ T

0

∫ L2

L1

(
∂d

∂t

)2
∂q

∂x

− c2s
2

[∫ T

0

(
∂d

∂x

)2

q

]L2

L1

+
c2s
2

∫ T

0

∫ L2

L1

(
∂d

∂x

)2
∂q

∂x

= −ac2f
∫ T

0

∫ L2

L1

(
∂ψ

∂t
+ U

∂ψ

∂x

)
∂d

∂t
q.

(65)
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Multiplying the second relation by the coefficient b
ac2

f

and adding this to (a), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

∫ T

0

∫ L

0

(
∂ψ

∂t

)2

+
c2f − U2

2

∫ T

0

∫ L

0

(
∂ψ

∂x

)2

+
b

2ac2f

∫ T

0

∫ L2

L1

(
∂d

∂t

)2

+
bc2s

2ac2f

∫ T

0

∫ L2

L1

(
∂d

∂x

)2

+ b

∫ T

0

∫ L2

L1

(
∂d

∂t
ψ

)

+

[∫ L

0

∂ψ

∂t

∂ψ

∂x
q + U

∫ L

0

(
∂ψ

∂x

)2

q + b

∫ L2

L1

(
∂d

∂x
ψ

)
q +

b

ac2f

∫ L2

L1

∂d

∂t

∂d

∂x
q

]T
0

=
1

2

[∫ T

0

(
∂ψ

∂t

)2

q+(c2f −U2)

(
∂ψ

∂x

)2

q

]L
0

+
b

2ac2f

[∫ T

0

(
∂d

∂t

)2

q+ c2s

(
∂d

∂x

)2

q

]L2

L1

.

(66)

This equality enables one to prove a regularity result on the boundary term (as an
element of the space L2(]0, T [)), but the main point is the inverse inequality, which
will give very interesting information on the control law. The method is similar to
the one introduced by Lions [21] and his coworkers [14], [29]. The new difficulty in
our study concerns the coupling term

b

∫ T

0

∫ L2

L1

∂d

∂t
ψ.

The first point consists in noting that for any α > 0

∣∣∣∣∣b
∫ T

0

∫ L2

L1

∂d

∂t
ψ

∣∣∣∣∣ ≤ bα

2

∫ T

0

∫ L2

L1

(
∂d

∂t

)2

+
b

2α

∫ T

0

∫ L2

L1

ψ,(67)

and if we introduce the smallest eigenvalue λsk1 = ηsk1 (c2f − U2) of the generalized
Steklov problem (see (24)), we get

∣∣∣∣∣b
∫ T

0

∫ L2

L1

∂d

∂t
ψ

∣∣∣∣∣ ≤ bα

2

∫ T

0

∫ L2

L1

(
∂d

∂t

)2

+
b

2αηsk1

∫ T

0

∫ L2

L1

(
∂ψ

∂x

)2

.(68)

Let us assume that the following geometrical condition is satisfied for a given Mach

number M
(
one has ηsk1 = π2

(L2−L1)2

)
:

ab < ηsk1 (1 −M2)
π2

(L2 − L1)2
(1 −M2).

Then if the steady flow velocity U satisfies

U < cf

√
1 − ab

ηsk0
= U0,(69)
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then one can find a number α > 0 such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1

2

∫ T

0

∫ L

0

(
∂ψ

∂t

)2

+

(
c2f − U2

2
− b

2αηsk1

)∫ T

0

∫ L

0

(
∂ψ

∂x

)2

+

(
b

2ac2f
− bα

2

)∫ T

0

∫ L2

L1

(
∂d

∂t

)2

+
c2sb

2ac2f

∫ T

0

∫ L2

L1

(
∂d

∂x

)2

− 2T0 sup
t∈[0,T ]

[
1

2

∫ L

0

(
∂ψ

∂t

)2

+

(
c2f − U2

2

)∫ L

0

(
∂ψ

∂x

)2

+
b

ac2f

(
1

2

∫ L2

L1

(
∂d

∂t

)2

+
c2s
2

∫ L2

L1

(
∂d

∂x

)2
)]

≤ 1

2

[∫ T

0

(
∂ψ

∂t

)2

q+(c2f − U2)

(
∂ψ

∂x

)2

q

]L
0

+
b

2ac2f

[∫ L

0

(
∂d

∂t

)2

q + c2s

(
∂d

∂x

)2

q

]L2

L1

,

(70)
where we have set

T0 = min
θ>0

(
max

(
L

cf − U
+

b

θηsk1
,

(
L2 − L1

acsc2f
+ θ

)
b

))
.(71)

Finally, setting

κ = max
α>0

(
min

(
1 − b

αηsk1 (c2f − U2)
, 1 − aαc2f

))
(72)

and because of (59), one obtains (see (69))⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

(κc5T − 2T0)E(0)

≤ 1

2

[∫ T

0

(
∂ψ

∂t

)2

q + (c2f − U2)

∫ T

0

(
∂ψ

∂x

)2

q

]L
0

+
b

2ac2f

[∫ T

0

(
∂d

∂t

)2

q + c2s

∫ T

0

(
∂d

∂x

)2

q

]L2

L1

.

(73)

Remark 4. The estimate (73) makes sense only if κ > 0. But one can notice that
this condition is obvious if a or b is zero. This points out that the restriction is fully
connected to the coupling between the fluid and the structure.

Remark 5. The assumptions required for justifying (73) are⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

U < cf

√
1 − ab

ηsk1
< cf ,

ab < ηsk1 (1 −M2) =
π2

(L2 − L1)2
(1 −M2),

U <
cf√

1 +
abc2f
ηsk1 c2s

= Uc (< cf !).

(74)
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But from the boundary conditions (recalling that M = U
cf
< 1),⎧⎪⎪⎨

⎪⎪⎩
∂d

∂t
= 0 for x = L1 and L2,

∂ψ

∂t
= U

(
1

M2
− 1

)
∂ψ

∂x
for x = 0 and L,

(75)

and then assuming that (74) is satisfied, one deduces, setting q = x− L1+L2

2 , that⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(κc5T − 2T0)E(0) ≤ L

2
c2f

(
1 −M2

M2

)[∫ T

0

(
∂ψ

∂x

)2

(0) +

(
∂ψ

∂x

)2

(L)

]

+
b(L2 − L1)

2ac2f

[∫ T

0

c2s

(
∂d

∂x

)2

(L1) + c2s

(
∂d

∂x

)2

(L2)

]
.

(76)

Remark 6. The coefficients a and b can be expressed with respect to the mass
density of the structure—say, �s—and of the fluid (at rest)—say, �f—but also using
the thickness of the structure—say, 2ε—and the inner radius of the flow duct—say,
R. One has ab = 1

εR

f

s

.

6. Asymptotic behavior of the control problem when ε → 0. Let us
first introduce a formal asymptotic expansion of (ϕε, zε, uε) which is solution of the
optimal control problem. Thus we set{

(ϕε, zε, uε) = (ϕ0, z0, u0) + ε(ϕ1, z1, u1) + · · · ,
(ψε, dε) = (ψ0, d0) + ε(ψ1, d1) + · · · .(77)

Nothing guarantees the validity of this expansion. However, a convergence result will
be proved when ε → 0 as soon as the exact controllability conditions are satisfied.
The first step consists in identifying the terms of order zero and one. The terms of
order one enable us to characterize the optimal control u0. In fact, this limit control is
exactly the one given by the so-called H.U.M. method of Lions [21]. A few additional
difficulties arise because of the coupling and the instabilities which can appear when
the velocity U is large enough.

6.1. Identification of terms of order zero. By introducing (77) into the
equations satisfied by (ϕε, zε, uε) and by equating the terms of same order in ε, one
obtains the following necessary conditions:

(a) For the primal model,⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2ϕ0

∂t2
+ 2U

∂2ϕ0

∂x∂t
+ (U2 − c2f )

∂2ϕ0

∂x2

= ac2f

(
∂z0

∂t
+ U

∂z0

∂x

)
χ[L1,L2](x) ∀(x, t) ∈ ]0, L[× ]0, T [ ,[

∂ϕ0

∂t
+ U

(
1 − 1

M2

)
∂ϕ0

∂x

]
(0, t)

=

[
∂ϕ0

∂t
+ U

(
1 − 1

M2

)
∂ϕ0

∂x

]
(L, t) = 0 ∀t ∈ ]0, T [ ,

∂2z0

∂t2
− c2s

∂2z0

∂x2
= −b

(
∂ϕ0

∂t
+ U

∂ϕ0

∂x

)
∀(x, t) ∈ ]L1, L2[× ]0, T [ ,

z0(L1, t) = z0(L2, t) = 0 ∀t ∈ ]0, T [ .

(78)

The initial conditions satisfied by (ϕ0, z0) are those defined in (43).
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(b) For the adjoint model,

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2ψ0

∂t2
+ 2U

∂2ψ0

∂x∂t
+ (U2 − c2f )

∂2ψ0

∂x2

= b

(
∂d0

∂t
+ U

∂d0

∂x

)
χ[L1,L2](x) ∀(x, t) ∈ ]0, L[× ]0, T [ ,[

∂ψ0

∂t
+ U

(
1 − 1

M2

)
∂ψ0

∂x

]
(0, t)

=

[
∂ψ0

∂t
+ U

(
1 − 1

M2

)
∂ψ0

∂x

]
(L, t) = 0 ∀t ∈ ]0, T [ ,

∂2d0

∂t2
− c2s

∂2d0

∂x2
= −ac2f

(
∂ψ0

∂t
+ U

∂ψ0

∂x

)
∀(x, t) ∈ ]L1, L2[× ]0, T [ ,

d0(L1, t) = d0(L2, t) = 0 ∀t ∈ ]0, T [ .

(79)

The final conditions satisfied by (ψ0, d0) are those defined in (48).
(c) For the optimality equations when two controls functions are used,

d0(x, t) = ψ0(x, t) = 0 ∀(x, t) ∈ ]α, β[× ]0, T [ .(80)

Remark 7. The existence and uniqueness of a solution to systems (78) and (79)
can be obtained by the same method used for (ϕε, zε) and (ψε, dε).

Remark 8. From (80) and using the inverse inequality, we prove in the following
that:

(ψ0, d0) = 0.

However, this inverse inequality will give much more information on the control and
also on the space of initial data which can be controlled. Many of technical tricks are
necessary, which are developed in section 7.

6.2. Exact controllability of noise in the duct with only the structural
control. In this section we consider that there is only one control, which is the one
applied on the structure (i.e., w = 0 and only u is active). The optimality condition
is now restricted to the following one:

d0(x, t) = 0 ∀(x, t) ∈ ]α, β[× ]0, T [ .(81)

This corresponds to a very simple version of the Holmgrem theorem for a coupled
fluid-structure model. From (80) and using the structural equation, one deduces that

∂ψ0

∂t
+ U

∂ψ0

∂x
(x, t) = 0 ∀(x, t) ∈ ]α, β[× ]0, T [ .

Therefore there exists a function k such that on ]α, β[× ]0, T [

ψ0(x, t) = k(x− Ut).

But from the fluid equation one has

∂2ψ0

∂t2
+ 2U

∂2ψ0

∂x∂t
+ (U2 − c2f )

∂2ψ0

∂x2
= −c2f

∂2k

∂x2
(x− Ut) = 0 ∀(x, t) ∈ ]α, β[× ]0, T [ ,
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and therefore there exist two constants F and G such that

ψ0(x, t) = F (x− Ut) +G ∀(x, t) ∈ ]α, β[× ]0, T [ .(82)

Let us now multiply the equations of the adjoint state by (∂ψ
0

∂t ,
∂d0

∂t ), and let us
integrate on ]0, α[ and ]β, L[ separately. Because d(α, t) = d(β, t) = 0 ∀t ∈ ]0, T [ and
d0(x, t) = 0 ∀(x, t) ∈ ]α, β[× ]0, T [, from the expression of ψ0 on ]α, β[× ]0, T [ given
at (82), we obtain ⎧⎪⎨

⎪⎩
∂.

∂t
[ε0α] = −UF 2c2f ,

∂.

∂t
[εβL] = UF 2c2f ,

(83)

where ε0α (respectively, εβL) is the quantity defined at (60), but where the integrals
are restricted to ]0, α[ (respectively, ]β, L[). By integrating (83) from 0 to t, we deduce
that {

ε0α(t) = ε0α(0) − UFc2f t,

εβL(t) = εβL(0) + UFc2f t.
(84)

It is worth noting that for U < Uc (see (29)) the quantity ε0α(t) is positive. Hence
for t large enough, one has necessarily F = 0. But it is necessary to get rid of this
time condition which depends on F . Therefore we use again the multiplier method

with the equations satisfied by the adjoint state. The multipliers are ∂ψ0

∂x (x − x0)

and ∂d0

∂x (x − x0) with, respectively, x0 = 0 for the set ]0, α[ and x0 = L for ]β, L[.
Assuming again that U < Uc (see (29)), one deduces from a computation similar to
the one which led to (66) that the following inequalities hold:⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∫ T

0

ε0α(t) − T0(ε
0α(0) + ε0α(T )) ≤ α

2
F 2Tc2f ,∫ T

0

εβL(t) − T0(ε
βL(0) + εβL(T )) ≤ L− β

2
F 2Tc2f ,

(85)

where T0 is a constant homogeneous to time and which could be adjusted separately
on ]0, α[ and ]β, L[. From (85) and using (84), we deduce that, for instance, on ]β, L[
one has ∫ T

0

εβL(t) − 2T0ε
βL(0) − UT0TF

2c2f ≤ L− β

2
F 2Tc2f ,(86)

or else

(T − 2T0)ε
βL(0) +

UF 2c2f
2

T 2 − T0TUFc
2
f ≤ L− β

2
F 2Tc2f .(87)

One can arrange the previous expression such that

(T − 2T0)ε
βL(0) +

F 2c2f
2

T (UT − 2T0U − (L− β)) ≤ 0.(88)

Let us consider that T > 2T0 + L−β
U . Such a condition is possible if and only if U > 0.

Then we conclude that F = 0. Thus we can also conclude that εβL(0) = 0. From the
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final condition which should be satisfied by ψ0(x, T ) (see (48)), and because ϕ0(x, t),
we prescribe on φ0 the following condition ((see (7)):

∫ L2

L1

ϕ0(x, t)dx = 0 ∀t ∈ [0, T ];(89)

one can also ensure that G = 0. Finally, we proved that

(ψ0, d0) = 0 ∀(x, t).(90)

When the steady velocity U is zero, then the function ψ0 is linear with respect to
the coordinate x on ]α, β[× ]0, T [. This proves that steady flows cannot be controlled
even if they satisfy all the equations of the model for ψ0, d0. Let us summarize the
previous results in the following theorem.

Theorem 1. Let us consider a set of initial data for the coupled model (ϕ0, ϕ1,
z0, z1), which are assumed to be smooth enough and such that ϕ0 satisfies (7). Then
if d0 is zero on the set ]α, β[× ]0, T [ , and if

(i) T > 2T0 + L−β
U , where T0 is defined at (71),

(ii) U satisfies (74),
then

(ψ0, d0) ≡ 0.

If U = 0, then one only has ψ0(x, t) = Fx+G.
Remark 9. The results obtained in (89) are still true even if the control w0 is also

applied. But the proof is much easier in this latter case because the optimality condi-
tion implies directly that ψ0 = 0 ∀(x, t) ∈ ]α, β[. This can be checked directly on the
proof given previously. If the controllability is a general result which doesn’t require
the introduction of w (the second control function), it will enable us to characterize
an exact control (u,w) in the space [L2(]α, β[×]0, T [)]2 for finite energy initial data.

Remark 10. The condition on T is not classical in control theory (see Lions [21]),
but it can also be physically interpreted. First, for U = 0 it cannot be satisfied,
because the information cannot travel with the particles along the duct and because
the boundary conditions that we chose for the steady flow (i.e., uniform velocity)
cannot be controlled. For U �= 0 the condition on T means that a perturbation
introduced at one extremity of the flow duct can cross the full length of the duct and
return at the entrance. But it is also necessary to add the time necessary for the
steady flow to cross the uncontrolled portion of the duct (L− β).

Remark 11. A simple consequence of (89) is that the control (u0, w0) is exact.
However, it is not yet defined. This is the goal of the next section.

Remark 12. A similar result to the one given in this section can be obtained for
a control which is only applied to the fluid (i.e., u = 0 and w �= 0).

6.3. Identification of terms of order one. The model characterizing (ϕ1, z1,
ψ1d1) is similar to the one characterizing the terms of order zero. But only few of the
equations are necessary in order to define (u0, w0), which is the formal limit (at this
step) of (uε, wε) when ε tends to zero. First, let us note that the optimality conditions
give

u0 + d1 = 0, w0 + ψ1 = 0 ∀(x, t) ∈ ]α, β[× ]0, T [ .(91)
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Then, setting (u0, w0) = −(d1, ψ1) in the equations satisfied by (ϕ0, z0), we obtain

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀δϕ ∈ H1(]0, L[),

∫ L

0

∂2ϕ0

∂t2
δϕ+ U

∫ L

0

(
∂2ϕ0

∂x∂t
δϕ− ∂ϕ0

∂t

∂δϕ

∂x

)

+ (c2f − U2)

∫ L

0

∂ϕ0

∂x

∂δϕ

∂x

= ac2f

∫ L2

L1

(
∂z0

∂t
+ U

∂z0

∂x

)
δϕ−

∫ β

α

ψ1δϕ,

∀δz ∈ H1
0 (]L1, L2[),

∫ L2

L1

∂2z0

∂t2
δz + c2s

∫ L2

L1

∂z0

∂x

∂δz

∂x

= −b
∫ L2

L1

(
∂ϕ0

∂t
+ U

∂ϕ0

∂x

)
δz −

∫ β

α

d1δz.

(92)

Let us assume that (δϕ, δz) is a solution of the adjoint state (as for (ϕ1, d1)). Thus

we obtain (because at t = T , ϕ0, ∂ϕ
0

∂t , z
0, ∂z

0

∂t are zero)

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

∫ T

0

∫ β

α

d1δz + ψ1δϕ =

∫ L

0

∂ϕ0

∂t
(x, 0)δϕ(x, 0) −

∫ L

0

ϕ0(x, 0)
∂δϕ

∂t
(x, 0)

+ 2U

∫ L

0

∂ϕ0

∂x
(x, 0)δϕ(x, 0) − ac2f

∫ L2

L1

d0(x, 0)δϕ(x, 0)

+

∫ L2

L1

∂z0

∂t
(x, 0)δz(x, 0) −

∫ L2

L1

z0(x, 0)
∂δz0

∂t
(x, 0) + b

∫ L2

L1

ϕ0(x, 0)δz(x, 0).

(93)

Setting ⎧⎪⎪⎨
⎪⎪⎩

Φ0 = (ψ1, d1)(x, 0), Φ1 =

(
∂ψ1

∂t
,
d1

∂t

)
(x, 0),

δΦ0 = (δψ, δz)(x, 0), δΦ1 =

(
∂δψ1

∂t
,
∂δd1

∂t

)
(x, 0),

(94)

we introduce the following bilinear and linear forms:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Λ(Φ, δΦ) =

∫ T

0

∫ β

α

d1δz + ψ1δϕ,

where Φ = (Φ0,Φ
1) and δΦ = (δΦ0, δΦ

1),

L(δΦ) =

∫ L

0

∂ϕ0

∂t
(x, 0)δϕ(x, 0) −

∫ L

0

ϕ0(x, 0)
∂ϕ

∂t
(x, 0)

+ 2U

∫ L

0

∂ϕ0

∂x
(x, 0)δϕ(x, 0) − ac2f

∫ L2

L1

z0(x, 0)δϕ(x, 0)

+

∫ L2

L1

∂z0

∂t
(x, 0)δz(x, 0) −

∫ L2

L1

z0(x, 0)
∂δz

∂t
(x, 0) + b

∫ L2

L1

ϕ0(x, 0)δz(x, 0).

(95)

Hence (92) can be formulated as follows:{
find Φ ∈ V ∗ such that
∀δΦ ∈ V ∗, Λ(Φ, δΦ) = L(δΦ).

(96)
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The space V ∗ is not yet defined; it is the completed space with respect to the norm

Φ ∈ [H1(]0, L[) × L2(]0, L[), H1
0 (]L1, L2[) × L2(]L1, L2[)] →

√
Λ(Φ,Φ).

Conversely, if Φ solution of (96) can be found, one has⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∀δΦ ∈ V ∗,
∫ L

0

∂ϕ0

∂t
(x, T )δϕ(x, T ) −

∫ L

0

ϕ0(x, T )
∂ϕ

∂t
(x, T )

+ 2U

∫ L

0

∂ϕ0

∂x
(x, T )δϕ(x, T ) − ac2f

∫ L2

L1

z0(x, T )δϕ(x, T )

+

∫ L2

L1

∂z0

∂t
(x, T )δz(x, T ) −

∫ L2

L1

z0(x, T )
∂δz

∂t
(x, T )

+ b

∫ L2

L1

ϕ0(x, T )δz(x, T ) = 0.

(97)

Because, on the one hand, the space V ∗ contains [H1(]0, L[)×L2(]0, L[), H1
0 (]L1, L2[)×

L2(]L1, L2[)], and on the other hand, the final value (at time t = T ) of (δϕ, δz) can
be chosen arbitrarily in this space (it is sufficient to reverse the time and to choose
the initial value obtained for (δΦ)!), one deduces from (97) that (as soon as the initial
data are such that the expression (97) make sense, i.e., the initial data should be
smooth enough)

ϕ0(x, T ) =
∂ϕ0

∂t
(x, T ) = 0 ∀x ∈ ]0, L[ ,

and

z0(x, T ) =
∂z0

∂t
(x, T ) = 0 ∀x ∈ ]L1, L2[ .

There are still two important points to justify: the characterization of the space V ∗

and the construction of the exact control, and then the convergence of the sequences
(uε, wε) to (u0, w0) when ε → 0 (and even the one of uε to u0 if only the structural
control is used).

7. Construction of an exact control. In this section we make use of a tech-
nical method given in the book of Lions [21] and due to Zuazua. There are four steps
which basically make use of the inequalities obtained by the multiplier method as in
section 4. Let us first state the results that we are going to prove.

Theorem 2. Let Λ(., .) be the symmetrical and bilinear form defined at (95). For
T large enough, there exists a strictly positive constant—say, c0—such that

∀X ∈ V #, Λ(Φ,Φ)≥ c0

[
||Φ0||20,0L+ ||Φ1||2[H1(]O,L[)]′ + ||D0||20,0L+ ||D1||2−1,0L

]
,(98)

where X = (Φ0,Φ1, D0, D1) is the initial condition for the adjoint state for (φ1, d1).
Theorem 3. Let

ϕ0(x, 0) ∈ H1(]0, L[),
∂ϕ

∂t
(x, 0) ∈ L2(]0, L[),

and

z0(x, 0) ∈ H1
0 (]L1, L2[),

∂z0

∂t
(x, 0) ∈ L2(]L1, L2[).
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Then L(.) defined at (96) is a linear and continuous form on the space

V # = L2(]0, L[) × [H1(]0, L[)]′ × L2(]L1, L2[) ×H−1(]L1, L2[).

Remark 13. The dual space (H1(]0, L[))′ is isomorphic to H−1(]0, L[)×R2. The
two scalar components are the coefficients of the Dirac distributions at both end of

the segment ]0, L[. Therefore the term
∫ L
0
ϕ(x, 0)∂δϕ∂t (x, 0) should be written more

precisely using a duality product between H1(]0, L[) and its dual space. But this
would not lead to new phenomena or new difficulties. The discussion would be quite
different for the two dimensional cases that are considered in [7].

From Theorems 2 and 3, we can deduce the following controllability result.
Theorem 4. Let (ϕ0, ϕ1 z0, z1) be a set of initial conditions for the coupled

system lying in the space

H1
m(]0, L[) × L2(]0, L[) ×H1

0 (]L1, L2[) × L2(]L1, L2[).

Then there exists an exact control (u0, w0) in the space [L2(]α, β[×]0, T [)]2.
Proof of the Theorem 4. Because of Theorems 2 and 3, one can claim that

the variational equation (96) has a unique solution, say (ϕ1, d1). The exact control
(u0, w0)(x, t) is then given by −(ϕ1, d1)(x, t)χ(x) because of (97).

Proof of the Theorem 2. There are several steps in our proof. They are rather
technical and mainly rest upon the multiplier method.

Step 1. Let us set q = (x− x0)t(t− T ), where x0 ∈ ]α, β[ . Then we consider the
equations of the coupled dual model, which should be satisfied by (ψ1, d1). They can
be written as follows:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∂2ψ1

∂t2
+ 2U

∂2ψ1

∂x∂t
+ (U2 − c2f )

∂2ψ1

∂x2

= b

(
∂d1

∂t
+ U

∂d1

∂x

)
χ[L1,L2](x) ∀(x, t) ∈ ]0, L[× ]0, T [ ,[

∂ψ1

∂t
+ U

(
1 − 1

M2

)
∂ψ1

∂x

]
(0, t)

=

[
∂ψ1

∂t
+ U

(
1 − 1

M2

)
∂ψ1

∂x

]
(L, t) = 0 ∀t ∈ ]0, T [ ,

∂2d1

∂t2
− c2s

∂2d1

∂x2
= −ac2f

(
∂ψ1

∂t
+ U

∂ψ1

∂x

)
∀(x, t) ∈ ]L1, L2[× ]0, T [ ,

d1(L1, t) = d1(L2, t) = 0 ∀t ∈ ]0, T [ .

(99)

Let us multiply each of these equations by ∂ψ1

∂x q and ∂d1

∂x q, and for η > 0 let us
integrate on ]α, β[× ]η, T − η[ , where ]α, β[ is the segment on which the controls are
applied. Thus from a computation similar to the one we did previously, we obtain,
where c1 is a constant which tends to the infinity when η → 0,

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

∫ T−η

η

[(
∂ψ1

∂t

)2

+(c2f − U2)

(
∂ψ1

∂x

)2
]β
α

+
ac2f
b

[(
∂d1

∂t

)2

+c2s

(
∂d1

∂x

)2
]β
α

≤ c1

[∫ T

0

∫ β

α

(
∂ψ1

∂t

)2

+(c2f − U2)

(
∂ψ1

∂x

)2

+
ac2f
b

{(
∂d1

∂t

)2

+c2s

(
∂d1

∂x

)2
}]
.

(100)
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But one can also apply the multiplier method on the set ]0, η[× ]α, β[ and then, by
upper bounding the energy on ]0, η[× ]0, L[, we obtain

(
with q = x− α+β

2

)
⎧⎪⎪⎨
⎪⎪⎩
∫ η

0

[(
∂ψ1

∂t

)2

+ (c2f − U2)

(
∂ψ1

∂x

)2
]β
α

+
ac2f
b

[(
∂d1

∂t

)2

+ c2s

(
∂d1

∂x

)2
]β
α

≤ 2ηE(0),

(101)

where E(0) is the energy of the global system defined at (62) and for t = 0. Thus by
adding (100) and (101), one can conclude that⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

∫ T

0

[(
∂ψ1

∂t

)2

+ (c2f − U2)

(
∂ψ1

∂x

)2
]β
α

+
ac2f
b

[(
∂d1

∂t

)2

+ c2s

(
∂d1

∂x

)2
]β
α

≤ c1

[∫ T

0

∫ β

α

(
∂ψ1

∂t

)2

+(c2f − U2)

(
∂ψ1

∂x

)2

+
ac2f
b

{(
∂d1

∂t

)2

+ c2s

(
∂d1

∂x

)2
}]

+ c2ηE(0).

(102)

Step 2. Let us now consider the segment ]0, α[, and we define two functions, say,

qf = x and qs = x − L1. Then by multiplying the two equations (99) by ∂ψ1

∂x qf and
∂d1

∂x qs, respectively, one obtains that (for U < Uc) there exists a positive constant c
and a time delay T0 such that⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫ T

0

∫ α

0

(
∂ψ1

∂t

)2

+ (c2f − U2)

(
∂ψ1

∂x

)2

+
ac2f
b

{(
∂d1

∂t

)2

+ c2s

(
∂d1

∂x

)2
}

−T0

{[∫ α

0

(
∂ψ1

∂t

)2

+(c2f − U2)

(
∂ψ1

∂x

)2

+
ac2f
b

{(
∂d1

∂t

)2

+c2s

(
∂d1

∂x

)2
}]

(0)

+

[∫ α

0

(
∂ψ1

∂t

)2

+(c2f − U2)

(
∂ψ1

∂x

)2

+
ac2f
b

{(
∂d1

∂t

)2

+ c2s

(
∂d1

∂x

)2
}]

(T )

}

≤
[∫ T

0

(
∂ψ1

∂t

)2

+(c2f − U2)

(
∂ψ1

∂x

)2

+
ac2f
b

{(
∂d1

∂t

)2

+ c2s

(
∂d1

∂x

)2
}]

(α).

(103)

The time T0 (or at least an upper bound) has been defined similarly in (71). The same
inequality as (103) can also be written on the segment [β, L]. By adding these two and
choosing for T0 the largest one (one could compute the best constant depending on
the geometry of the system), we obtain the inverse inequality for the coupled system:⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

[∫ T

0

(
∂ψ1

∂t

)2

+ (c2f − U2)

(
∂ψ1

∂x

)2

+
ac2f
b

{(
∂d1

∂t

)2

+ c2s

(
∂d1

∂x

)2
}]

(α)

+

[∫ T

0

(
∂ψ1

∂t

)2

+ (c2f − U2)

(
∂ψ1

∂x

)2

+
ac2f
b

{(
∂d1

∂t

)2

+ c2s

(
∂d1

∂x

)2
}]

(β)

+

[∫ T

0

∫ β

α

(
∂ψ1

∂t

)2

+(c2f − U2)

(
∂ψ1

∂x

)2

+
ac2f
b

{(
∂d1

∂t

)2

+c2s

(
∂d1

∂x

)2
}]

≥ c̃(T − 2T0 − 4η)E(0),
(104)
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where c̃ is a new positive constant. Finally, we proved that for a constant ˜̃c, one has⎧⎪⎪⎨
⎪⎪⎩

[∫ T

0

∫ β

α

(
∂ψ1

∂t

)2

+(c2f − U2)

(
∂ψ1

∂x

)2

+
ac2f
b

{(
∂d1

∂t

)2

+ c2s

(
∂d1

∂x

)2
}]

≥ ˜̃c(T − 2T0 − 4η)E(0).

(105)

Step 3. Following again a strategy introduced by Lions [21], we apply the multi-
plier method to (99) with the multipliers ψ1t(t − T )(x − x0) and d1t(t − T )(x − x0)
and by integrating over ]α, β[× ]0, T [. Thus we obtain from a standard computation
(see [21])⎧⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

[∫ T

0

∫ β

α

(
∂ψ1

∂t

)2

+(c2f − U2)

(
∂ψ1

∂x

)2

+
ac2f
b

{(
∂d1

∂t

)2

+c2s

(
∂d1

∂x

)2
}]

≤
[∫ T

0

∫ β

α

(
∂ψ1

∂t

)2

+ (c2f − U2)(ψ1)2 +
ac2f
b

{(
∂d1

∂t

)2

+ c2s(d
1)2

}]

+ 2ηE(0).

(106)

Step 4. From (104) and (105) we can conclude that there exists a new constant—
say, c—such that⎧⎪⎨

⎪⎩
(T − 2T0 − 6η)E(0)

≤
[∫ T

0

∫ β

α

(
∂ψ1

∂t

)2

+ (c2f − U2)(ψ1)2 +
ac2f
b

{(
∂d1

∂t

)2

+ c2s(d
1)2

}]
.

(107)

Hence the right-hand side of (106) defines the square of a norm on the initial data
(ϕ0, ϕ1, z0, z1) in the space (E(0) <∞):

V = [H1(]0, L[) × L2(]0, L[), H1
0 (]L1, L2[) × L2(]L1, L2[)].

Step 5. The last step of the proof of Theorem 4 rests on a compactness argument.
Thus we are going to prove that there exists a positive constant—say again, c—such
that ⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

[∫ T

0

∫ β

α

(
∂ψ1

∂t

)2

+ (c2f − U2)(ψ1)2 +
ac2f
b

{(
∂d1

∂t

)2

+ c2s(d
1)2

}]

≤ c

[∫ T

0

∫ β

α

(
∂ψ1

∂t

)2

+

(
∂d1

∂t

)2
]
.

(108)

The method is classical in numerical analysis; therefore, we only sketch it. Let us
assume that (108) is false. Then for any integer number n there exists an element
Xn ∈ V such that (where E(0)(Xn) defined at (62) is the square of a norm on V )

∀n > 0, E(0)(Xn) 	 ||Xn||2V = 1,

∫ T

0

∫ β

α

(
∂dn

∂t

)2

+

(
∂ψn

∂t

)2

≤ 1

n
,(109)

where (Ψn, dn) is the solution of (99) with the initial conditions Xn. From the weak
compactness of unit balls in Hilbert spaces, one can extract from Xn a subsequence
denoted Xn′

and such that

Xn → X∗ in V weakly.
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But one has also

(ψn
′
, dn

′
) → (ψ∗, d∗) weakly in the space of solutions (see section 3),

where (ψ∗, d∗) is the solution of (99) with the initial condition X∗ ∈ V . However,
from (109), one deduces that∫ T

0

∫ β

α

(
∂d∗

∂t

)2

+

(
∂ψ∗

∂t

)2

≤ lim
n′→∞

∫ T

0

∫ β

α

(dn
′
)2 + (ψn

′
)2 = 0,

and therefore

∂ψ∗

∂t
=
∂d∗

∂t
= 0 ∀(x, t) ∈ ]α, β[× ]0, T [ .

Setting

ψ̄∗ =
∂ψ∗

∂t
and d̄∗ =

∂d∗

∂t
,

one deduces that, on the one hand,

ψ̄∗ = d̄∗ = 0 ∀(x, t) ∈ ]α, β[× ]0, T [ ;

following the proof given in section 3, one deduces that

ψ̄∗ = 0 ∀(x, t) ∈ ]0, L[× ]0, T [ and d̄∗ = 0 ∀(x, t) ∈ ]L1, L2[× ]0, T [ .

Thus, ψ∗ and d∗ are both time independent. From (99) we obtain that⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

−(c2f − U2)
∂2ψ∗

∂x2
= bU

∂d∗

∂x
χ[L1,L2] ∀(x, t) ∈ ]0, L[× ]0, T [ ,

−c2s
∂2d∗

∂x2
= −ac2f

∂ψ∗

∂x
∀(x, t) ∈ ]L1, L2[× ]0, T [ ,

∂ψ∗

∂x
(0) =

∂ψ∗

∂x
(L) = d∗(L1) = d(L2) = 0.

(110)

Because U < Uc, we can deduce that

d∗ = 0, ψ∗ = constant,

and because ψ∗ ∈ H1
m(]0, L[), one has (see (7))∫ L2

L1

ψ∗ = 0

and finally

ψ∗ = 0.

This is in contradiction to (109), and the inequality (108) is true.
Step 6. Let us consider for a given set of initial conditions—say, (Φ0,Φ1, D0, D1)—

the solution (ϕ, z) of the coupled system. Then we set⎧⎪⎪⎨
⎪⎪⎩

ψ̃(x, t) = ψ̃0(x) +

∫ t

T

ψ(x, s)ds,

d̃(x, t) = d̃0(x) +

∫ t

T

d(x, s)ds.

(111)
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The initial terms (ψ̃0, d̃0) are chosen such that (ψ̃, d̃) is also a solution of the ad-
joint system (52). The definitions of these terms are specified in (54). By apply-
ing the inequalities (76) and (108), we deduce that there exists a constant c such
that ⎧⎪⎪⎪⎨

⎪⎪⎪⎩

c
[||Φ0||20,OL + ||Φ1||2[H1(]O,L[)]′ + ||D0||20,L1L2

+ ||D1||21,L1L2

]

≤
∫ T

0

∫ β

α

(
∂ψ̃

∂t

)2

+

(
∂d̃

∂t

)2

,

(112)

and finally from (111), we deduce that Theorem 2 is proved.

8. Convergence of the least square control to the exact control when
ε → 0. In practical application it is more convenient to use the optimal control
(uε, wε). However, the stability of the method is strongly dependent on the conver-
gence when ε tends to zero to the exact control, when it exists. Let first state the
result that we are proving in this section.

Theorem 5. Let us assume that the assumptions of Theorem 4 are satisfied.
Then one has the following convergence result:

lim
ε→0

||uε − u0||2L2(]α,β[×]0,T [) + ||wε − w0||2L2(]α,β[×]0,T [) = 0.

Remark 14. The order of convergence with respect to ε can be obtained by
the computation of the term of order one in the asymptotic expansion with respect
to ε. But it depends on additional regularity of the initial data in order to make
sure that u1 and w1 are effectively in the space L2(]α, β[×]0, T [). Nevertheless, from
interpolation techniques, one can adjust the order of convergence with respect to ε
when this regularity is not satisfied. We refer to the book by Lions [22].

Proof of Theorem 5. Let us set (u,w) = (u0, w0) in the criterion Jε. Because it is
an exact control, the corresponding final state is zero. Thus we obtain the following
upper bound:

Jε(uε, wε) ≤ Jε(u0, w0) =
ε

2

∫ T

0

∫ β

α

(u0)2 + (w0)2.

Therefore the sequence (uε, wε) is bounded with respect to ε in the space[
L2(]α, β[×]0, T [)

]2
. Furthermore, one has

A

2

∫ L

0

∣∣∣∣∂ϕ∂t (x, T )

∣∣∣∣
2

+
B

2

∫ L

0

∣∣∣∣∂ϕ∂x (x, T )

∣∣∣∣
2

+
C

2

∫ L2

L1

∣∣∣∣∂z∂t (x, T )

∣∣∣∣
2

+
D

2

∫ L2

L1

∣∣∣∣∂z∂x (x, T )

∣∣∣∣
2

≤ cε.

Thus, from classical analysis, we deduce the “strong” continuity of the solution of the

coupled model with respect to the right-hand side (uε, wε) in
[
L2(]α, β[×]0, T [)

]2
, and

therefore the strong convergence of the solution (ϕε, zε)(x, t) tends also to (ϕ0, z0)(x, t)
with ε in the space mentioned in Theorem 5. The last point concerns the strong
convergence of the control (uε, wε) to the H.U.M. control (u0, w0) in the space[
L2(]α, β[×]0, T [)

]2
. From the upper bound mentioned at the beginning of the proof,

one has the following:
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∫ T

0

∫ β

α

(uε − u0)2 + (wε − w0)2

=

∫ T

0

∫ β

α

(uε)2 + (wε)2 − 2

∫ T

0

∫ β

α

uεu0 + wεw0 +

∫ T

0

∫ β

α

(u0)2 + (w0)2

≤ 2

[∫ T

0

∫ β

α

(u0)2 + (w0)2 − (uεu0 + wεw0)

]
→ 0 when ε→ 0.

This completes the proof of Theorem 5.
Remark 15. In practical applications it is usually more convenient to use the least

square control because it can be more easily computed. But this is only true if the
system can be exactly controlled. In other words, when ε tends to zero, there could
be a singular perturbation known as a stiff problem if there were no exact control in
the space [L2(α, β[×]0, T [)]2. Nevertheless, if only one control is used (the structural
one), we proved that the system could be exactly controlled, but nothing has been
proved concerning the space of initial data which could be exactly controlled with a
control u0 in L2(α, β[×]0, T [). There exist a few tricks in order to obtain an exact
control for any initial data with finite energy (for both the fluid and the structure).
But unfortunately the control are no longer in L2. They contain Dirac distributions
at both time extremities. The details of the method mentioned also in [7] for fluid-
structure problems can be found again in [21].

9. Conclusion. A simple one dimensional model in aeroacoustics, coupled with
a structure, has been discussed in this paper. The goal was to analyze the solutions
of the coupled model and to point out the possibility of a flutter phenomenon. Then
we discussed the exact controllability of any perturbations in the fluid or/and in the
structure. For sake of simplicity in the explanation we have restricted the discussion
to a membrane model for the structure. It has been proved that one control applied
to a small part of the structure is sufficient for obtaining an exact control. However,
a stability (inverse inequality) result has only been proved for a couple of controls:
one applied to the flexible structure and the other on the walls of the flow duct. This
restriction is due to mathematical difficulties but also to a subsonic shock wave which
can appear at the extremity of the structure where the rotations can be discontinuous.
(In fact, the terms involved are U ∂z

∂x (L1, t) and U ∂z
∂x (L2, t).) When U = 0 (i.e., no

steady flow), the difficulty disappears. One basic point is that the exact control still
works if the critical velocity for the flutter apparition is overtaken. But obviously
the cost of the control can also be exponentially increasing with respect to time.
A lot of improvements can be suggested. First one could introduce a wall law in
order to take into account the viscosity of the fluid. But the mathematical structure
of the operator is changed and nonlocal energy bounds from the control area are
much more complicated to derive (see, for instance, the difficulties encountered for
Stokes equations [8], [2], [3] [10]). Another point is that the one dimensional model
is certainly insufficient in order to reproduce reality. Some improvements could be
forecast by a better modelling of the control devices themselves. Two dimensional
modelling is clearly more realistic, especially for reproducing local waves which can
appear at the interface between the fluid and the structure. One possibility seems to
use an asymptotic method, where the small parameters are the transverse dimensions
of the structure compared to the length of the flow duct and the ratio between the
smallest period of the coupled system and the time control delay T .
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Abstract. Numerical simulations have shown that when a line of defects is introduced into a
photonic bandgap structure, waves can be guided along the line. It has been conjectured that the
mechanism responsible for the guidance phenomenon is the introduction of a spectrum in the bandgap
by the defect. The purpose of this work is to give a mathematical framework for understanding this
phenomenon. We show that there exist solutions of the scalar wave equation that is localized near
the line defects that behave like guided modes. Moreover, these solutions can be parameterized by a
frequency spectrum that is continuous and can cover parts of the original bandgap. The frequency
of the guided modes depends on a wave number parameter and can be interpreted as a dispersion
relation. We illustrate the main findings of the investigation in a numerical example.

Key words. photonic bandgap structures, line defect, guided waves, spectral analysis

AMS subject classifications. 35P99, 78A10, 78A48

DOI. 10.1137/S0036139902404025

1. Introduction. The purpose of this work is the study of wave propagation
in an infinite periodic structure with a line defect. The medium under consideration
is periodic with the exception of a row of identical defects. Without the defect, the
periodic medium is assumed to have a bandgap, which is an interval of frequencies at
which waves cannot propagate.

It has been observed in numerical simulations that line defects can support guided
modes which propagate along the row of defect. Moreover, these modes are highly
confined near the row, with frequencies lying in the bandgap of the infinite periodic
structure.

When a defect is introduced into the perfect array, i.e., a perturbation with com-
pact support, it is possible to create a midgap defect mode, which is a highly localized
standing wave whose frequency ω lies in the bandgap [6, 7]. What is less clear is how
a medium with an infinite line of defects behaves. It has been observed through
numerical experiments that propagating modes which are localized near the line of
defects can be produced [4, 14, 13]. The goal of this work is to understand how these
propagating modes are created and what properties they possess. For this purpose,
we use the theory developed by Figotin and Klein [6, 7]. This work is a first step in
rigorously explaining the guidance phenomenon in photonic bandgap structures.

In this work, we model wave propagation using the scalar Helmholtz equation
in two dimensions, corresponding to transverse electric (TE) mode electromagnetic
waves. The spectrum, which is the frequency parameter of Helmholtz’s equation, is
analyzed. What this work does not address is the fundamental question of whether
the spectrum in question is absolutely continuous. Instead, we prove that guided
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modes can be created by introducing line defects. We also provide a description for
these guided modes. Our work does not answer the question of whether the bandgap
could be filled in by the new spectrum.

The paper is organized as follows. The problem statement is given in section
2. This is followed by a brief review of known results about waves in an infinite
periodic medium. Section 4 considers the spectral problem in an infinite strip with
Bloch conditions on the sides. The strip problem is the basis from which we build
a framework to analyze the spectral problem in a medium with a line defect. The
strip problem with a defect is analyzed in section 5. We remark on the construction
of guided waves in section 6. Section 7 contains numerical calculations that illustrate
the main findings of this work. The paper ends with a discussion.

2. Problem statement. Consider a two-dimensional periodic medium charac-
terized by the dielectric constant εp(x1, x2). We assume that it is an L∞ function
satisfying

0 < ε− ≤ εp(x) ≤ ε+ <∞
and is unit periodic, i.e.,

εp(x1 + 1, x2) = εp(x1, x2), εp(x1, x2 + 1) = εp(x1, x2).

To this perfect array, we introduce a line defect which is represented by a perturbation
to the dielectric property δε(x1, x2). The perturbation is confined to the cells over
the x1-axis and is periodic in x1,

δε(x1, x2) = 0, |x2| > 1/2,
δε(x1 + 1, x2) = δε(x1, x2).

The medium with defect then has dielectric constant

ε(x1, x2) = εp(x1, x2) + δε(x1, x2).

It is assumed that ε is still a strictly positive bounded measurable function. The
object of this work is the study of Helmholtz equation

∆u+ ω2εu = 0, (x1, x2) ∈ R
2.(1)

The Helmholtz equation is a model for TE-mode electromagnetic wave propagation
in two dimensions. We view the frequency squared, ω2, as the spectral parameter and
investigate the spectrum of the operator

−1

ε
∆.

The approach is to compare the spectrum with that when the medium is periodic,
i.e., one with dielectric constant εp(x).

It is well known that the medium εp(x) can have bandgaps, i.e., intervals of
values ω for which propagating waves cannot exist [5, 10]. While necessary conditions
under which bandgaps exist in general are not known, Figotin and Kuchment have
produced an example of a high-contrast periodic medium where bandgaps exist and
can be characterized [8, 9].

Moreover, it is also known that when a defect is introduced into the perfect
array, i.e., a perturbation to εp with compact support, it is possible to create a defect
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mode, which is a solution to Helmholtz’s equation with exponential decay, and with
frequency ω which lies in the bandgap [6, 7]. The work cited also provided estimates
of the decay rates, which we do not use in the present work. A lot less is known
about the case in which there is an infinite line of defects such as ε(x). Although
numerical experiments have provided evidence that waves that are localized near the
line of defects can be produced, little analytical results are known for this case. The
goal of this work is to investigate the spectral problem of (1) to reveal the guidance
phenomena.

3. Periodic problem. We first consider the properties of the periodic structure
without defect. The known results, particularly those that will be useful for this work,
are presented. We consider the Bloch waves w(x, α) satisfying

∆w + ω2εpw = 0, x ∈ R
2,(2a)

w(x1 + 1, x2, α1, α2) = w(x1, x2, α1, α2)e
iα1 ,(2b)

w(x1, x2 + 1, α1, α2) = w(x1, x2, α1, α2)e
iα2 .(2c)

When a solution to the above exists for a given vector α, the function w(x, α) corre-
sponds to plane wave-like solutions with the vector α = (α1, α2) playing the role of
wave number.

Another way to characterize this eigenvalue problem is by introducing

w(x, α) = ψ(x, α)eiα·x.

It can be shown that ψ satisfies

(∇ + iα) · (∇ + iα)ψ + ω2εpψ = 0(3a)

with periodic boundary conditions

ψ(x1 + 1, x2, α1, α2) = ψ(x1, x2, α1, α2),(3b)

ψ(x1, x2 + 1, α1, α2) = ψ(x1, x2, α1, α2).(3c)

We can view the above as an eigenvalue problem to find ω given the vector α. It can
be shown that this eigenvalue problem admits an infinity of solutions, with frequen-
cies ωn(α), where the index n = 1, 2, . . . provides an ordering for the eigenvalues.
The function ωn(α) is referred to as the dispersion relation for the nth modes. The
corresponding eigenfunctions, the Bloch waves, are denoted by wn(x, α), and it will
be useful to consider the pairs {ωn(α), wn(x, α)}∞n=1.

The periodicity of the eigenvalue problem above induces periodicity in the dis-
persion relation ωn(α) as a function of α. That is, ωn(α) is periodic with period
P := [0, 2π]2. If εp ∈ C∞([0, 1]2), ωn are analytic functions of α everywhere on P
except on subsets of measure zero where their multiplicity changes. In particular,
they are continuous for all α [15, 3]. The set of Bloch waves, as α varies in P , and
n = 1, 2, . . ., is complete in L2(R2) [11]. Therefore, any solution of the wave equation

∆u+ ω2εpu = 0

can be expressed as a linear combination of Bloch waves.
Let In denote the interval of values of ω2

n(α) for α ∈ P . Then the spectrum of
the periodic operator −∆/εp is

Σ(εp) =

∞⋃
n=1

In.
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Fig. 1. A vertical strip from the periodic medium.

It is further known that for some εp(x), there are bandgaps, i.e., Σ(εp) does not
cover [0,∞). Let us suppose this is the case and let this gap be the interval Γ(εp) =
]a, b[. Physically, it means that a wave of frequency λ2 ∈ Γ(εp) cannot propagate
in the medium. The existence of the gap is a problem studied in [8, 9], where it is
shown that for a high-contrast medium of a particular geometry, the bandgap can be
characterized. More general questions about gaps are still open [10].

3.1. Green’s function. The Green’s function for Helmholtz’s equation with a
periodic medium satisfies

∆G+ λ2εpG = δ(x− y).

The following is described in [6, 7, 2]:
• For λ2 ∈ Γ(εp), the Green’s function is exponentially decaying away from y:

|G(x, y;λ)| ≤ C1e
−C2|x−y|.(4a)

• The function

G(x, y;λ) − 1

2π
log |x− y|(4b)

is continuous for |x− y| → 0.

4. The strip. With the introduction of the line defect as described in section
2, the medium loses periodicity in the x2-direction. It is, however, still periodic in
the x1-direction. We will exploit this fact in our analysis. For now, we investigate
the periodic problem on the strip as shown in Figure 1, and we view the x1-direction
quasi-momentum α1 as a parameter on the interval [0, 2π].

4.1. Characterization of the periodic problem in the strip. Let O =
(− 1

2 ,
1
2 ) × R denote the strip in Figure 1. Consider the Bloch wave w(x, α) as a

function of x and α2, parameterized by α1. For each α1 ∈ [0, 2π], we solve

∆uα1
+ ν2

α1
(α2)εp(x)uα1

= 0 in O(5a)



2022 HABIB AMMARI AND FADIL SANTOSA

να1,

να1,

να1,

α

1

2

3

(

(

(

α

α

α

2

2

2

)

)

)

1iα1,

2

2

2

2

Fig. 2. Dispersion relation να1,n(α2) for a fixed α1.

with boundary conditions

uα1
(x1 + 1, x2) = uα1

(x1, x2)e
iα1 ,(5b)

uα1
(x1, x2 + 1) = uα1(x1, x2)e

iα2 .(5c)

Consider the problem for a fixed α1. Now choose a value for α2. The eigenvalue prob-
lem (5) admits an infinity of solutions {να1,n(α2), uα1,n(x, α2)}∞n=1. The dispersion
relation and the Bloch waves in (2) are recovered as

ωn(α1, α2) = να1,n(α2), wn(x, α1, α2) = uα1,n(x, α2).

For each fixed α1, we view να1,n(α2) as a dispersion relation. A sketch of what such
a dispersion relation might look like is provided in Figure 2.

For a fixed α1, the spectrum of the operator on the strip is

σα1(εp) =

∞⋃
n=1

iα1,n,

where iα1,n is the interval for the values of ν2
α1,n(α2) for α2 ∈ [0, 2π]. We recover

In =
⋃
α1

iα1,n and Σ(εp) =
⋃
α1

σα1
(εp).

The spectrum σα1
(εp) may have a bandgap for a given α1. Let us denote it by γα1

(εp).
The bandgap of the periodic medium Γ(εp) is contained in the intersection of γα1

Γ(εp) ⊂
⋂
α1

γα1
(εp).

4.2. Green’s function in the strip. We will next study the Green’s function
for the strip for a fixed α1. For frequency λ such that λ2 is in the gap Γ(εp), the
Green’s function can be constructed using the partial Floquet transform. The strip
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Green’s function satisfies

∆gα1 + λ2εpgα1 = δα1(x− y) =
∑
j∈Z

δ(x1 + j − y1, x2 − y2)e
ijα1 ,(6a)

gα1
(x1 + 1, x2, y1, y2;λ) = gα1

(x1, x2, y1, y2;λ)eiα1 .(6b)

Lemma 1. Suppose that λ2 ∈ Γ(εp). Then the Green’s function is related to the
whole-space Green’s function through

gα1(x1, x2, y1, y2;λ) =
∑
j∈Z

G(x1 + j, x2, y1, y2;λ)eijα1 .(7)

Moreover, gα1
(·, y;λ) is in L2

loc(R
2).

Proof. Suppose that λ2 ∈ Γ(εp). Then, clearly, for any fixed y = (y1, y2)
x = (x1, x2) →

∑
j∈Z

G(x1 + j, x2, y1, y2;λ)eijα1 defines a function in L2
loc(R

2) which

satisfies (6b) almost everywhere on R
2. Indeed, we have in a distribution sense

(∆ + λ2εp)
∑
j∈Z

G(x1 + j, x2, y1, y2;λ)eijα1

=
∑
j∈Z

(∆ + λ2εp)G(x1 + j, x2, y1, y2;λ)eijα1

=
∑
j∈Z

δ(x1 + j − y1, x2 − y2)e
ijα1 .

Since λ2 ∈ Γ(εp), the strip Green’s function gα1 defined by (7) is the unique solution
to (6).

Let us define a regular part of gα1 as the series

rα1
(x1, x2, y1, y2;λ) =

∑
j∈Z,j �=0

G(x1 + j, x2, y1, y2;λ)eijα1 ,(8)

whose terms are well defined for (x1, y1) ∈ (− 1
2 ,

1
2 )

2. By (4), the series in (8) converges
uniformly for (x, y) in compact subsets of O×O. Therefore, as for the local behavior
of gα1 , i.e., when |x − y| → 0, the following result of logarithmic singularity holds
from (4).

Lemma 2. Suppose that λ2 ∈ Γ(εp). Then the function

gα1
(x, y;λ) − 1

2π
log |x− y|

is continuous as |x− y| → 0.
Proof. In any open set K that does not contain a point (y1 − j, y2), j ∈ Z, the

regular part rα1 satisfies

(∆ + λ2εp)rα1 = 0 in D′(K).

But rα1 is in L2
loc(R

2) so that, applying classical results on elliptic regularity together
with the Sobolev embedding theorem, we obtain that rα1

is a continuous function in
K. Lemma 2 then follows immediately from the logarithmic behavior (4b) of
G(x, y;λ).
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For (x1, y1) ∈ (− 1
2 ,

1
2 )

2 it follows from the exponential decay property (4) that
the regular part rα1 defined by (8) is a continuous function of α1 and therefore the
following continuity result holds.

Lemma 3. If λ2 ∈ Γ(εp), then the map α1 ∈ [0, 2π] �→ the operator with kernel
gα1

(., .;λ) ∈ D′(R2) ×D′(R2), mapping L2(O) to L2(O) is continuous.
If λ2 ∈ Γ(εp), then, by (4), all the terms in (7) are exponentially decaying as

|x2 − y2| → +∞, and so is their sum.
Lemma 4. Suppose that λ2 ∈ Γ(εp). Then there exist positive constants C2 and

C3 such that

|gα1(x, y;λ)| ≤ C3e
−C2|x2−y2| as |x2 − y2| → ∞.

Proof. Combining√
(x1 + j − y1)2 + (x2 − y2)2 ≤ |x1 + j − y1| + |x2 − y2|

with the fact that the series
∑
j∈Z

e−C2|x1+j−y1| is uniformly bounded for (x1, y1) ∈
(− 1

2 ,
1
2 )

2, it is readily seen by using the exponential decay property (4a) of G that for
(x1, y1) ∈ (− 1

2 ,
1
2 )

2 the estimates

|gα1
(x, y;λ)| ≤ C1

∑
j∈Z

e−C2

√
(x1+j−y1)2+(x2−y2)2

≤ C1e
−C2|x2−y2|

∑
j∈Z

e−C2|x1+j−y1| ≤ C3e
−C2|x2−y2|

hold for some positive constant C3.

4.3. Preliminary results. The following preliminary results will be useful in
the subsequent sections for understanding the behavior of the strip when a defect is
introduced.

We shall use quite standard quasi-periodic L2-based Sobolev spaces to measure
regularity of functions which satisfy the Bloch condition in the x1-direction. The
space L2

α1
(O) is the set of restrictions on O of functions u such that e−iα1x1u(x1, x2) ∈

L2(R2/2πZ). The space H1
α1

(O) is the set of restrictions on O of functions u which
satisfy e−iα1x1u(x1, x2) ∈ H1(R/2πZ × R). These functions are, along with all their
first derivatives, in L2(O) and satisfy the Bloch condition

u(1, x2) = u(0, x2)e
iα1 .

We also introduce for γ > 0 the weighted Sobolev space:

Hα1,γ(O) =

{
f ∈ H1

α1
(O) :

∫
O

eγ|x2|(|f |2 + |∇f |2)(x1, x2) dx1 dx2 < +∞
}
.

Let Ω be a region centered at the origin

Ω ⊂⊂
{
|x1| < 1

2
, |x2| < h, h > 0

}
.

The defect we will later introduce on the strip is supported in Ω. Define the operator

Aα1(λ) : L2
α1

(O) → L2
α1

(O),

u �→ Aα1
(u) =

∫
Ω

gα1
(x, y;λ)q(y)u(y)dy,
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where q ∈ L∞(Ω) is either q ≥ 0 or q ≤ 0 almost everywhere in Ω.
Since the Green’s function gα1 decays exponentially in x2 and has logarith-

mic singularity, we are guaranteed that there exists a constant γ > 0 such that
Aα1(λ)(L2

α1
(O)) ⊂ Hα1,γ(O). Using the fact that the embedding Hα1,γ(O) ↪→ L2

α1
(O)

is compact, for any γ > 0 [1], we conclude that the operator Aα1(λ) is a compact op-
erator.

Lemma 5. For any fixed λ2 ∈ Γ(εp) and α1 ∈ [0, 2π], the operator Aα1
(λ) is a

compact operator.
The eigenvalue problem

Aα1(λ)(v) = µ(λ, α1)v(9)

can be rewritten as

µ(λ, α1)vχΩ = χΩ

(
∆ + λ2εp

)−1

(qχΩv),

where χΩ is the characteristic function of the region Ω. If we set

ψ =

{ √
qvχΩ if q ≥ 0,

√−qvχΩ if q ≤ 0,

we obtain that the eigenvalue problem (9) is equivalent to

sgn(q)µ(λ, α)ψ = Aα1(λ)ψ,

where

Aα1(λ) =

⎧⎪⎨
⎪⎩

√
qχΩ

(
∆ + λ2εp

)−1√
qχΩ if q ≥ 0,

√−qχΩ

(
∆ + λ2εp

)−1√−qχΩ if q ≤ 0.

Here
(
∆ + λ2εp

)−1
: L2

α1
(O) → L2

α1
(O) is defined by

(
∆ + λ2εp

)−1
(f) = v, where v

is the unique solution in H1
α1

(O) of (∆ + λ2εp)v = f in O.
Lemma 6. The operator Aα1

(λ) is a compact self-adjoint operator.

Since
(
∆ + λ2εp

)−1
is a monotonically decreasing, norm-continuous operator of

λ2 ∈ Γ(εp), the following holds.
Lemma 7. Let α1 ∈ [0, 2π]. The map λ2 ∈ Γ(εp) �→ Aα1(λ) is norm-continuous

and operator monotone decreasing for both positive and negative q.
Now, given λ2 ∈ Γ(εp) and α1 ∈ [0, 2π], the spectrum of the self-adjoint compact

operator Aα1(λ) consists of eigenvalues of finite multiplicity with 0 being the only
possible point of accumulation. Let µ+

1 (λ, α1) ≥ µ+
2 (λ, α1) ≥ · · · ≥ 0 and µ−

1 (λ, α1) ≤
µ−

2 (λ, α1) ≤ . . . 0 be infinite sequences of, respectively, the positive and negative
eigenvalues of Aα1(λ), repeated according to their multiplicity. The sequence
µ−
i (λ, α1), i = 1, 2, . . . , can be obtained by applying the min-max principle to the

operator χ(−∞,0](Aα1(λ))Aα1(λ); similarly, we obtain −µ+
i (λ, α1), i = 1, 2, . . . , by

applying the min-max principle to the operator −χ[0,+∞)(Aα1(λ))Aα1(λ).
As a consequence of Lemma 7, the following λ-dependence of the eigenvalues

µ±
i (λ, α1) of Aα1

(λ) holds.
Lemma 8. The functions µ±

i (λ, α1) are monotonically decreasing continuous
functions of λ2 ∈ Γ(εp) for each i = 1, 2, . . . .
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Fig. 3. A vertical strip with a defect at the origin.

On the other hand, the following α1-dependence of the eigenvalues µ±
i (λ, α1) on

α1 is an immediate consequence of Lemma 3.
Lemma 9. Let λ2 ∈ Γ(εp). The functions µ±

i (λ, α1) are continuous functions of
α1 ∈ [0, 2π] for each i = 1, 2, . . . .

5. Defect in the strip. To the strip in Figure 1 we introduce a defect centered
at the origin. Let ε and εp differ only in the region Ω which is contained in (− 1

2 ,
1
2 )×

(−h, h), as indicated in Figure 3. Again, we view α1 as a parameter and consider the
eigenvalue problem of finding uα1

∈ H1
α1

(O) satisfying

∆uα1
+ ω2

α1
ε(x)uα1 = 0 in O.(10)

Note that we have implicitly required uα1 to satisfy the Bloch condition in the
x1-direction by putting it in H1

α1
(O). We cannot apply the Bloch condition in the x2-

direction since the problem is no longer periodic in that direction. We will consider the
spectrum σα1(ε) for a fixed α1. In particular, we will look at defect modes introduced
by the defect.

5.1. Stability of the essential spectrum. We define unbounded mappings

Bpα1
: L2

α1
(O, εp(x)dx) → L2

α1
(O, εp(x)dx), Bpα1

= −∆,

Bα1
: L2

α1
(O, ε(x)dx) → L2

α1
(O, ε(x)dx), Bα1

= −∆.

Denote by σα1(εp) and σα1(ε) the essential spectra of the operators Bpα1
and Bα1 ,

respectively.
Instead of working directly with Bpα1

and Bα1
, we will work with

Apα1
= (−∆)−

1
2 εp(−∆)−

1
2 and Aα1

= (−∆)−
1
2 ε(−∆)−

1
2 .

It is easily seen that ω2
α1

∈ σα1(εp) if and only if 1
ω2

α1

∈ σess(A
p
α1

). Similarly, ω2
α1

∈
σα1(ε) if and only if 1

ω2
α1

∈ σess(Aα1
). Next, let

C = Apα1
−Aα1 = (−∆)−

1
2 (εp − ε)(−∆)−

1
2 .
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Note that by assumption (εp − ε) has compact support. Therefore, the operator
C maps functions in L2

α1
(O) into Hα1,γ(O). By the compactness of the embedding

Hα1,γ(O) ↪→ L2
α1

(O), the perturbation C is a relatively compact perturbation of Apα1
.

Hence, as a consequence of Weyl’s theorem [12], it follows that σess(A
p
α1

) = σess(Aα1),
and so the following lemma holds.

Lemma 10. For a fixed α1, and perturbations

q = εp − ε

supported in Ω ⊂⊂ (− 1
2 ,

1
2 ) × (−h, h), the essential spectrum σα1

(εp) is stable; i.e.,

σα1(εp) = σα1(ε).

5.2. Spectrum of the strip. From Lemma 10 it is readily seen that the spec-
trum of the strip (for a fixed α1 ∈ [0, 2π]) in the gap Γ(εp) consists only of isolated
eigenvalues of finite multiplicity, which can accumulate only at the edges of the gap
Γ(εp). Let us consider the eigenvalue problem (10), where the eigenvalue ω2

α1
∈ Γ(εp).

The eigenvector uα1 satisfies

∆uα1
+ ω2

α1
εp(x)uα1

= ω2
α1

(εp(x) − ε(x))χΩuα1
in O.

Since ω2
α1

∈ Γ(εp), uα1
solves the Lippman–Schwinger integral equation

uα1(x) = ω2
α1

∫
Ω

gα1
(x, y;ωα1

)q(y)uα1
(y) dy,

where q(y) = εp(y) − ε(y) is supported in Ω. This implies that

sgn(q)
1

ω2
α1

√
|q|χΩuα1

= Aα1
(ωα1)(

√
|q|χΩuα1

).

Conversely, if ϕ(ωα1 , α1) is an eigenvector of Aα1
(ωα1

) with eigenvalue sgn(q) 1
ω2

α1

,

then
∫

Ω
gα1(x, y;ωα1)ϕ(ωα1 , α1)(y) dy is an eigenvector of (10) with eigenvalue ω2

α1
∈

Γ(εp). As a consequence of the results stated in the above section for Aα1
(λ), where

λ2 ∈ Γ(εp), the following results on the spectrum of the strip hold.
Theorem 1. For a fixed α1 ∈ [0, 2π], and perturbations q = εp − ε supported in

Ω ⊂⊂ (− 1
2 ,

1
2 ) × (−h, h) we have

• if q ≥ 0, the eigenvalues ωα1 of (10) in the gap Γ(εp) coincide with the set of
the solutions of the equations

µ+
i (λ, α1) =

1

λ2
, i = 1, 2, . . . ,

where µ+
i (λ, α1) are the positive eigenvalues of the operator Aα1(λ); more-

over, if ϕ(λ, α1) is an eigenvector of the operator Aα1(λ) with eigenvalue
µ+
i (λ, α1) = 1

λ2 , then
∫

Ω
gα1

(x, y;λ)ϕ(λ, α1)(y) dy is an exponentially local-
ized in x2-direction eigenvalue of (10).

• if q ≤ 0, the eigenvalues ωα1 of (10) in the gap Γ(εp) coincide with the set of
the solutions of the equations

µ−
i (λ, α1) = − 1

λ2
, i = 1, 2, . . . ,

where µ−
i (λ, α1) are the negative eigenvalues of the operator Aα1(λ). More-

over, if ϕ(λ, α1) is an eigenvector of the operator Aα1(λ) with eigenvalue
µ−
i (λ, α1) = − 1

λ2 , then
∫
Ω
gα1(x, y;λ)ϕ(λ, α1)(y) dy is an exponentially local-

ized in x2-direction eigenvalue of (10).
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The following result is an immediate consequence of Theorem 1. It gives a crite-
rion for the absence of eigenvalues of (10).

Corollary 1. Problem (10) has no eigenvalues in the gap Γ(εp) for small
||εp − ε||L∞(Ω).

5.3. Filling in the gap. The result of Theorem 1 provides a way by which
we can interpret the guided mode spectrum. However, it does not tell us about the
general properties, such as absolute continuity, of the spectrum of the wave operator
in a medium with a line defect. What we can say is that it is possible for the bandgap
of the periodic medium, Γ(εp), to be filled in (partially or totally) by the introduction
of the line defect. To see this, assume for now that q > 0, and let α0

1 ∈ [0, 2π] be such
that there exists a solution to

µ+
i (λ, α0

1) =
1

λ2

for some i, which we denote by ω2
α0

1,i
. We argue by Lemma 9 that for α1 in an open

neighborhood of α0
1, there exists a solution λ to

µ+
i (λ, α1) =

1

λ2
,

and this solution is a continuous function of α1. Therefore, as α1 is varied over the
neighborhood of α0, we trace out the solution set ωα1,i. The values ω2

α1,i
fill out part

(or all) of the gap Γ(εp).
Let us draw a conceptual figure of the fill-in process. In Figure 4, the horizontal

axis is α1 and the vertical axis is frequency. For the periodic medium εp, we calculate
the passband for each value of α1. The passbands are intervals in frequency, which is⋃

n

iα1,n,

where iα1,n is as in section 4.1. To display the spectrum of the wave operator in the
periodic medium, we draw these intervals vertically on the ω-α1 plane at horizontal
position α1. When we are done, we are left with two (or more) disjoint regions, such as
those shown in Figure 4. The dark regions correspond to values of α1 and frequencies
at which waves can propagate.

We have indicated the point α0 on the figure and suppose there is a corresponding
eigenvalue ωα0

1
of (10). As we vary α1 in the neighborhood of α0

1, we obtain solutions
ωα1

, which when displayed in the figure trace out a curve that fills (or partially fills)
the gap. This is indicated in the figure. We denote the interval of α1 over which
such eigenvalues exist by A1. The results we obtained so far conclude only that A1 is
nonempty. Detailed information, such as connectivity of A1, is unknown. The picture
gets a little more complicated if there are multiple solutions at a given α0

1, producing
multiple curves. It is hoped that the numerical examples, to be presented in the last
section, will give some insight into this and other questions.

6. Guided propagation. Our medium, with a line defect lying along the x1-
axis, can guide waves so that they propagate along the x1-direction. Such a wave will
be a linear combination of the guided modes. Each guided mode is an eigenfunction
of (10) and decays exponentially away from the origin in x2. Let us suppose that we
have found guided modes for α1 in A1 and the corresponding frequencies for these
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Fig. 4. A conceptual figure depicting the fill-in process of the bandgap. The vertical axis is
frequency. The dark regions correspond to values of α1 and frequencies at which waves can propagate
in the periodic medium. The gap above corresponds to the bandgap of the periodic medium. When
a defect is introduced, a point spectrum is created for some values of α1. These points trace out a
curve in the gap. In the example, a complete fill-in is indicated.
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Fig. 5. The periodic medium and its spectrum. Light region corresponds to ε = 9 and dark
region to ε = 1. Note the presence of the gaps around 1.7 and 2.7.

modes are ωα1
. We denote the associated eigenfunctions by uα1

(x). Then a guided
wave in this medium has the representation

U(x, t) =

∫
α1∈A1

Cα1uα1(x)e
iωα1

tdα1,

where Cα1 is the mode amplitude function. Such a wave would propagate like a pulse
along the x1-axis. Its dispersion relation along the x1-direction is given by ωα1 , with
group velocity given by dωα1/dα1.
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7. Numerical experiment. We consider a periodic structure with permittivity
εp taking a value of 1 or 9. The medium is shown in Figure 5 (left), where the dark
region corresponds to low index. We use finite difference approximations to solve (3)
for values of α on the boundary of the Brioullin zone:

KL = {0 ≤ α1 ≤ π, α2 = 0}, LM = {0 ≤ α2 ≤ π, α1 = π},
MN = {0 ≤ α1 ≤ π, α2 = α1}.

The resulting values of ωn(α) are displayed in Figure 5 (right). Note the presence of
a small gap near 1.7 and a larger one near 2.7.

The problem involving a line defect is considered next. We start by solving the
strip eigenvalue problem (5) for the periodic medium εp. We do this by creating a
strip of 19 cells and applying the Bloch condition with parameter α2 at the top and
at the bottom of the strip. The Bloch condition has to be modified to reflect the strip
geometry:

uα1
(x1, x2 + 19) = uα1

(x1, x2)e
i19α2 .

We choose α1 and solve for eigenvalues να1,n(α2) as α2 is sampled over the interval
[0, π/19]. The first 25 eigenvalues are found for each case and are displayed as points
with horizontal coordinate α1. The resulting picture is shown in Figure 6 (top). The
points lie in the dark regions indicated in the conceptual version shown in Figure 4.
Note that the gap in question is the one around 2.7 from Figure 5.

Next, a defect is introduced. The strip with the defect can be seen in Figure
6 (bottom). The calculation described above is repeated with the defect. With the
Bloch condition at the top and bottom, we are essentially performing a supercell
computation. The defect produces the fill-in described in section 5, which we display
in Figure 6 (bottom). For each α1 the eigenvalues calculated for different samples of
α2 are slightly different. The dense placement of points vertically has now become
more broken. What can be clearly seen is that the boundary between the empty
region and the region populated with dots remains in place. Moreover, we now see
the presence of an additional set of points running from the lower left to the upper
right. Of these points, those that lie within the gap correspond to the guided modes
and trace out the dispersion curve of the modes. To verify that this is the case, we
selected the points that lie in the bandgap of the periodic medium. Note that because
we are using the supercell method, each defect spectrum is calculated as many times
as we sample α2. For each of these points, we calculate the associated eigenfunction
uα1(x, α2) and display its absolute value. In Figure 7, we show the absolute value of
the guided modes for different α1. Note that the modes become more concentrated
near the defect for higher values of α1. In this example, the set of α1 for which we
have guided modes is smaller than the interval [−π, π].

We ran two more examples with different defects. In the first case, shown in
Figure 8 (top), the defect produces two defect modes in the gap at most values of α1.
The fill-in is total. In the second case, Figure 8, bottom, the fill-in is only partial. A
bandgap, slightly smaller, still exists.
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Fig. 6. The spectrum of the periodic strip and the strip with a defect. The images of the strips
are given on the left. The graph for the periodic medium is calculated for comparison with that
of the medium with defect. On the top, note the white region corresponding to the gap. On the
bottom, note that the boundary of the white region is not changed for the perturbed medium. The
only difference is the creation of a point spectrum (a curve) which fills the gap.

Fig. 7. The medium and the guided modes intensity sampled at various values of α1.
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Fig. 8. Spectra of the strip with two different defects. Images of the strip are given on the left.
Note that a complete fill-in has occurred in the first case. Moreover, there are multiple guided modes
at each α1. In the second case, the fill-in is partial.

8. Discussion. We have provided a mathematical framework by which wave
guidance phenomena in a photonic bandgap structure with line defect can be under-
stood. The key idea is to analyze the spectral properties of Helmholtz’s equation in
a strip. Using Weyl’s theorem, we have shown that the essential spectrum of the pe-
riodic medium is stable to the introduction of the defect. The new spectrum created
by the defect corresponds to guided modes and has a dispersion relation that can fill
(or partially fill) the bandgap of the periodic medium. The main findings of this work
are further illustrated in numerical examples.

The question of absolute continuity of the spectrum, while of great importance,
is beyond the scope and techniques of the present work. Our theoretical result shows
that if a line defect creates a guided mode, there should be a continuum of these modes
parameterized by wave number α1 over an open interval, covering an open interval of
the bandgap in frequency. The numerical results show that for some perturbations,
the coverage is complete, thus filling in the bandgap, while for other perturbations,
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the fill-in is only partial. Our method also does not reveal what happens near the
band edges. Numerical calculations presented here indicate that guided modes with
frequencies up to the band edges are possible. It is not known how these modes decay
in the x2-direction.

Finally, we remark that it would be useful to take this work and produce a kind
of approximate theory that is as simple to use as that employed in modeling guided
waves in optical fibers. This and other issues mentioned indicate possibilities for
further investigation.
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Abstract. This paper studies an optimal stopping time problem for pricing perpetual American
put options in a regime switching model. An explicit optimal stopping rule and the corresponding
value function in a closed form are obtained using the “modified smooth fit” technique. The solution
is then compared with the numerical results obtained via a dynamic programming approach and also
with a two-point boundary-value differential equation (TPBVDE) method.

Key words. Markov chain, optimal stopping time, American options, regime switching, modi-
fied smooth fit principle
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1. Introduction. Given a probability space (Ω,F , P ), consider a process X(t)
which satisfies (in a strong sense) a stochastic differential equation of the following
form:

dX(t) = X(t)µε(t)dt+X(t)σε(t)dW (t), X(0) = x,(1)

where ε(t) ∈ {1, . . . , S} is a finite-state continuous-time Markov chain and W (t) is
a standard Wiener process. Here ε(t) and W (t) are defined on (Ω,F , P ) and are
independent. Moreover, for a given ε(t) = i, µi and σi (i = 1, . . . , S) are constants
and known.

The X(t) governed by (1) is generally referred to as a process with “regime switch-
ing (or shifts)” or “a Markov modulated (geometric) Brownian motion.” There is a
substantial body of literature on this type of model studied from different perspec-
tives. See, for instance, Di Masi, Kabanov, and Runggaldier [3] for mean variance
hedging issues; Guo [5, 7] for closed-form solutions for pricing European and perpetual
lookback options; Yao, Zhang, and Zhou [23] for numerical algorithms for computing
European stock options; Zhang [24] for suboptimal selling rules for investors; and
Zhang and Yin [25] for portfolio optimization problems.

In light of the celebrated Black–Scholes geometric Brownian motion model (see
Black and Scholes [1] and Samuelson [20]), which corresponds to a special case of (1)
with µ1 = · · · = µS and σ1 = · · · = σS , the primary motivation for the incorporation
of the Markov chain ε(t) is the conviction that various economic factors (e.g., interest
rates, quarterly GDP) and general information (e.g., corporate news releases, quar-
terly earnings reports) could be major catalysts for stock fluctuations. In addition, a
finite-state Markov chain has been proved to be simple yet rich enough to characterize
the uncertainty in many discrete events. These convictions have been further sub-
stantiated by numerical studies: Yao, Zhang, and Zhou [23] showed that the infamous
“volatility smile” can be created with a Markov chain of a single jump, instead of the
more complicated stochastic volatility model by Renault and Touzi [17].
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Our results. In this paper we consider an optimal stopping problem that arises in
pricing American put options, in the framework of this regime switching model. An
American option is a derivative that gives its holder the option but not the obligation
of exercising a share of stock at his/her choice of time τ (T ≥ τ ≥ 0), with a payoff
of (K − Xτ )

+ = max(0,K − Xτ ). Here, T is the expiration date and K is the
strike price. It is well known that under a risk-neutral measure, the value (or the
price) of this option is the expected discounted value of its future cash flow. (For
more details, readers are referred to Duffie [4] and the references therein for risk-
neutral option pricing for general models, to Guo [6] for the regime switching models,
and to Karatzas [10] for the mathematical formulation of the American option pricing
problem in the context of optimal stopping problems.) In particular, when T = ∞, the
option becomes perpetual, and our optimal stopping problem becomes the evaluation
of

V ∗(x, i) = sup
0≤τ≤∞

E[e−rτ (K −X(τ))+ | X(0) = x, ε(0) = i].(2)

Here, r > 0 is the discounted factor, and τ is an Ft = σ{(W (s), ε(s)) | s ≤ t}-
stopping time.

We derive an optimal stopping rule for (2) and its corresponding value functions
for S = 2 (see Remark 3.5). We show that the optimal stopping times are of threshold
type, with the technique of modified smooth fit. The main ingredient of the optimality
proof is Dynkin’s formula.

It is worth mentioning that a special case of this problem with no switching (i.e.,
µ1 = µ2, σ1 = σ2) was solved by McKean [14], and it is referred to in what follows as
“the McKean problem.” His result is the earliest instance in which optimal stopping
problems were related to option pricings. See also Jacka [9] and Robbins, Sigmund,
and Chow [19] for related literature on optimal stopping.

Organization. In section 2, we provide a detailed derivation of the closed-form
solution to (2). The optimality proof is given in section 3. In section 4, we numerically
compare the closed-form solution with numerical results derived from other previous
approaches, namely the dynamic programming approach (see Guo [7]) and the TPB-
VDE (two-point boundary-value differential equation) method (see Zhang [24]). The
paper concludes with additional discussion and open problems in section 5.

2. The derivation of solutions. Given (1), we will study problem (2) with a
two-state Markov chain (see Remark 3.5) for the general case K. Without loss of
generality, we assume that σ1 �= σ2 (see Remark 3.1) and that the Markov chain has
a generator of the form ⎛

⎜⎝ −λ1 λ1

λ2 −λ2

⎞
⎟⎠ ,(3)

with λ1, λ2 > 0.
Recall that when there is no regime switching, this problem corresponds to a

McKean problem [14] for which there exists a threshold x∗ such that the optimal
stopping rule is τ∗ = inf{t > 0 : X(t) �∈ (x∗,∞)}, and the corresponding value
function

V ∗(x)= sup
0≤τ≤∞

E[e−rτ (K −X(τ))+|X(0) = x]

= E[e−rτ
∗
(K −X(τ∗))+|X(0) = x]
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is given by

V ∗(x) =

⎧⎪⎨
⎪⎩

(K − x∗)(x/x∗)γ if x > x∗,

K − x if x ≤ x∗.

Now, with a two-state Markov chain and with σ1 �= σ2, it is easy to see that
(X(t), ε(t)) is a joint Markov process (see Guo [7]). Therefore, it is natural to conjec-
ture that the optimal stopping rule is also of threshold type, except that the threshold
should vary depending on the state ε(t). In other words, we expect the existence of
two thresholds x1, x2 ≤ K, so that the optimal stopping rule is given as

τ∗ = inf{t ≥ 0 | (X(t), ε(t)) �∈ D},

where

D = {(x, i) | V ∗(x, i) > (K − x)+}.

The set D is referred to as the continuation region. Using τ∗, the corresponding value
functions are

V ∗(x, i) = E[e−rτ
∗
(K −X(τ∗))+ | X(0) = x, ε(0) = i].(4)

We consider the case when D can be represented by two threshold levels x1 and
x2, i.e.,

D = {(x, 1) | x ∈ (x1,∞)} ∪ {(x, 2) | x ∈ (x2,∞)}.

Notice that x1 and x2 should depend on r, K, µi, σi, λi. For any x1 and x2, there
are only three possibilities, x1 < x2, x1 > x2, and x1 = x2. In the next sections
we discuss each of these cases and derive the values of these thresholds xi as well as
the corresponding value functions (denoted as Vi(x)) obtained from exercising this
type of stopping rule. We will then prove the optimality of these value functions, i.e.,
V ∗(x, i) = Vi(x), in Theorem 3.1.

2.1. Case 1: x1 < x2 ≤ K. At any given time t, if ε(t) = 1 and X(t) ≤ x1,
then one should stop immediately and obtain a payoff of (K − X(t))+; this follows
from the definition of x1 and x2. However, if X(t) ≤ x1 with ε(t) = 2, it is not optimal
to stop until X(t) ≤ x2. In view of Ito’s differential rule, this is translated into a set
of differential equations. For x ∈ [x1, x2], we have⎧⎪⎨

⎪⎩
(r + λ1)V1(x) = xµ1V

′
1(x) +

1

2
x2σ2

1V
′′
1 (x) + λ1(K − x),

V2(x) = K − x;

(5)

for x ∈ [x2,∞),⎧⎪⎪⎨
⎪⎪⎩

(r + λ1)V1(x) = xµ1V
′
1(x) +

1

2
x2σ2

1V
′′
1 (x) + λ1V2(x),

(r + λ2)V2(x) = xµ2V
′
2(x) +

1

2
x2σ2

2V
′′
2 (x) + λ2V1(x);

(6)
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and for x ∈ [0, x1],

V1(x) = V2(x) = K − x.(7)

Now, (6) has an associated characteristic function

g1(β)g2(β) = λ1λ2,(8)

where

g1(β) = λ1 + r −
(
µ1 − 1

2
σ2

1

)
β − 1

2
σ2

1β
2,

g2(β) = λ2 + r −
(
µ2 − 1

2
σ2

2

)
β − 1

2
σ2

2β
2.

Moreover, this characteristic function has four distinct roots β1 < β2 < 0 < β3 < β4

(see Guo [7]), such that the general form of the solution to (6) is given by

V1(x) =

4∑
i=1

Aix
βi ,

V2(x) =

4∑
i=1

Bix
βi ,

with Bi = liAi and li = l(βi) = g1(βi)
λ1

= λ2

g2(βi)
.

Note that when x→ ∞, V1(x) and V2(x) are bounded. Thus, the positive powers
of x should be eliminated so that

V1(x) = A1x
β1 +A2x

β2 ,

V2(x) = B1x
β1 +B2x

β2 .

(9)

Next, we turn our attention to (5). The first equation is an inhomogeneous
equation whose solution can be written as

V1(x) = C1x
γ1 + C2x

γ2 + φ(x),(10)

where φ(x) is a special solution and γ1, γ2 are the two real roots of

µ1γ +
1

2
σ2

1γ(γ − 1) = r + λ1.

In particular, when r + λ1 − µ1 �= 0, one can choose

φ(x) =
λ1K

r + λ1
− λ1x

r + λ1 − µ1
.(11)

Now, we want to solve for A1, A2, C1, C2, x1, and x2. To this end, appropriate
boundary conditions are needed. Applying the smooth fit at x2, conditions V2(x+) =
V2(x−) and V ′

2(x+) = V ′
2(x−) suggest⎧⎪⎨

⎪⎩
l1A1x

β1

2 + l2A2x
β2

2 = K − x2,

β1l1A1x
β1

2 + β2l2A2x
β2

2 = −x2.

(12)
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Similarly, the smoothness of V1(x) at x1 and x2 yields⎧⎪⎨
⎪⎩

A1x
β1

2 +A2x
β2

2 = C1x
γ1
2 + C2x

γ2
2 + φ(x2),

β1A1x
β1

2 + β2A2x
β2

2 = γ1C1x
γ1
2 + γ2C2x

γ2
2 + x2φ

′(x2),

(13)

and ⎧⎪⎨
⎪⎩

C1x
γ1
1 + C2x

γ2
1 + φ(x1) = K − x1,

γ1C1x
γ1
1 + γ2C2x

γ2
1 + x1φ

′(x1) = −x1.

(14)

Combining the above three equations and following some algebraic manipulation, we
obtain an algebraic equation for x1 and x2:⎛

⎜⎝ x−γ11 0

0 x−γ21

⎞
⎟⎠F1(x1) =

⎛
⎜⎝ x−γ12 0

0 x−γ22

⎞
⎟⎠F2(x2),(15)

where

F1(x1) =

⎛
⎜⎝ 1 1

γ1 γ2

⎞
⎟⎠

−1⎛
⎜⎝ K − x1 − φ(x1)

−x1 − x1φ
′(x1)

⎞
⎟⎠

and

F2(x2) =

⎛
⎜⎝ 1 1

γ1 γ2

⎞
⎟⎠
−1
⎡
⎢⎢⎣
⎛
⎜⎝ 1 1

β1 β2

⎞
⎟⎠
⎛
⎜⎝ l1 l2

β1l1 β2l2

⎞
⎟⎠
−1⎛
⎜⎝ K − x2

−x2

⎞
⎟⎠−
⎛
⎜⎝ φ(x2)

x2φ
′(x2)

⎞
⎟⎠
⎤
⎥⎥⎦ .

In particular, if r + λ1 − µ1 �= 0, where φ(x1) is in the form of (11), then

F1(x1) = a1 + a2x1

and

F2(x2) = b1 + b2x2.

Here

a1 =

⎛
⎜⎝ 1 1

γ1 γ2

⎞
⎟⎠

−1⎛
⎜⎝ rK

r+λ1

0

⎞
⎟⎠ , a2 =

⎛
⎜⎝ 1 1

γ1 γ2

⎞
⎟⎠

−1⎛
⎜⎝ µ1−r

r+λ1−µ1

µ1−r
r+λ1−µ1

⎞
⎟⎠ ,

b1 =

⎛
⎜⎝ 1 1

γ1 γ2

⎞
⎟⎠

−1
⎡
⎢⎢⎣
⎛
⎜⎝ 1 1

β1 β2

⎞
⎟⎠
⎛
⎜⎝ l1 l2

β1l1 β2l2

⎞
⎟⎠

−1⎛
⎜⎝K

0

⎞
⎟⎠+

⎛
⎜⎝ − λ1K

r+λ1

0

⎞
⎟⎠
⎤
⎥⎥⎦ ,
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b2 =

⎛
⎜⎝ 1 1

γ1 γ2

⎞
⎟⎠

−1
⎡
⎢⎢⎣−

⎛
⎜⎝ 1 1

β1 β2

⎞
⎟⎠
⎛
⎜⎝ l1 l2

β1l1 β2l2

⎞
⎟⎠

−1⎛
⎜⎝ 1

1

⎞
⎟⎠+

⎛
⎜⎝ λ1

r+λ1−µ1

λ1

r+λ1−µ1

⎞
⎟⎠
⎤
⎥⎥⎦ .

The coefficients are given by⎛
⎜⎝ A1

A2

⎞
⎟⎠ =

⎛
⎜⎝ l1x

β1

2 l2x
β2

2

β1l1x
β1

2 β2l2x
β2

2

⎞
⎟⎠

−1⎛
⎜⎝ K − x2

−x2

⎞
⎟⎠ ,

⎛
⎜⎝ B1

B2

⎞
⎟⎠ =

⎛
⎜⎝ l1A1

l2A2

⎞
⎟⎠ ,

and ⎛
⎜⎝ C1

C2

⎞
⎟⎠ =

⎛
⎜⎝ xγ11 xγ21

γ1x
γ1
1 γ2x

γ2
1

⎞
⎟⎠

−1⎛
⎜⎝ K − x1 − φ(x1)

−x1 − x1φ
′(x1)

⎞
⎟⎠ .

With these coefficients, the value functions become

V1(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

A1x
β1 +A2x

β2 if x > x2,

C1x
γ1 + C2x

γ2 + φ(x) if x1 < x ≤ x2,

K − x if x ≤ x1,

V2(x) =

⎧⎪⎨
⎪⎩

B1x
β1 +B2x

β2 if x > x2,

K − x if x ≤ x2.

(16)

2.2. Case 2: x2 < x1 ≤ K. The derivation of this case is analogous to that of
x1 < x2, and we only summarize the results below.

Let γ̃1 and γ̃2 be the roots of

µ2γ +
1

2
σ2

2γ(γ − 1) = r + λ2,

and φ̃(x) be a solution to

(r + λ2)V2(x) = xµ2V
′
2(x) +

1

2
x2σ2

2V
′′
2 (x) + λ2(K − x).

Then, x1, x2 satisfy⎛
⎜⎝ x−γ̃11 0

0 x−γ̃21

⎞
⎟⎠ F̃1(x1) =

⎛
⎜⎝ x−γ̃12 0

0 x−γ̃22

⎞
⎟⎠ F̃2(x2),(17)

with

F̃1(x1) =

⎛
⎜⎝ 1 1

γ̃1 γ̃2

⎞
⎟⎠
−1
⎡
⎢⎢⎣
⎛
⎜⎝ 1 1

β1 β2

⎞
⎟⎠
⎛
⎜⎝ l̃1 l̃2

β1 l̃1 β2 l̃2

⎞
⎟⎠
−1⎛
⎜⎝ K − x1

−x1

⎞
⎟⎠−
⎛
⎜⎝ φ(x1)

x1φ
′(x1)

⎞
⎟⎠
⎤
⎥⎥⎦
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and

F̃2(x2) =

⎛
⎜⎝ 1 1

γ̃1 γ̃2

⎞
⎟⎠

−1⎛
⎜⎝ K − x2 − φ(x2)

−x2 − x2φ
′(x2)

⎞
⎟⎠ ,

where l̃i = 1/li.

In particular, if r + λ2 − µ2 �= 0, then φ̃(x) is given by

φ̃(x) =
λ2K

r + λ2
− λ2x

r + λ2 − µ2
,

and

F̃1(x1) = ã1 + ã2x1,

F̃2(x2) = b̃1 + b̃2x2,

where

ã1 =

⎛
⎜⎝ 1 1

γ̃1 γ̃2

⎞
⎟⎠

−1
⎡
⎢⎢⎣
⎛
⎜⎝ 1 1

β1 β2

⎞
⎟⎠
⎛
⎜⎝ l̃1 l̃2

β1 l̃1 β2 l̃2

⎞
⎟⎠

−1⎛
⎜⎝ K

0

⎞
⎟⎠+

⎛
⎜⎝ − λ2K

r+λ2

0

⎞
⎟⎠
⎤
⎥⎥⎦ ,

ã2 =

⎛
⎜⎝ 1 1

γ̃1 γ̃2

⎞
⎟⎠

−1
⎡
⎢⎢⎣−

⎛
⎜⎝ 1 1

β1 β2

⎞
⎟⎠
⎛
⎜⎝ l̃1 l̃2

β1 l̃1 β2 l̃2

⎞
⎟⎠

−1⎛
⎜⎝ 1

1

⎞
⎟⎠+

⎛
⎜⎝ λ2

r+λ2−µ2

λ2

r+λ2−µ2

⎞
⎟⎠
⎤
⎥⎥⎦ ,

b̃1 =

⎛
⎜⎝ 1 1

γ̃1 γ̃2

⎞
⎟⎠

−1⎛
⎜⎝ rK

r+λ2

0

⎞
⎟⎠ , b̃2 =

⎛
⎜⎝ 1 1

γ̃1 γ̃2

⎞
⎟⎠

−1⎛
⎜⎝ µ2−r

r+λ2−µ2

µ1−r
r+λ2−µ2

⎞
⎟⎠ .

In short, if x1 > x2, then the corresponding value functions are

V1(x) =

⎧⎪⎨
⎪⎩

Ã1x
β1 + Ã2x

β2 if x > x1,

K − x if x ≤ x1,

V2(x) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

B̃1x
β1 + B̃2x

β2 if x > x1,

C̃1x
γ̃1 + C̃2x

γ̃2 + φ̃(x) if x2 < x ≤ x1,

K − x if x ≤ x2,

(18)

with⎛
⎜⎝ Ã1

Ã2

⎞
⎟⎠ =

⎛
⎜⎝ xβ1

1 xβ2

1

β1x
β1

1 β2x
β2

1

⎞
⎟⎠

−1⎛
⎜⎝ K − x1

−x1

⎞
⎟⎠ ,

⎛
⎜⎝ B̃1

B̃2

⎞
⎟⎠ =

⎛
⎜⎝ l1Ã1

l2Ã2

⎞
⎟⎠ ,
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and ⎛
⎜⎝ C̃1

C̃2

⎞
⎟⎠ =

⎛
⎜⎝ xγ̃12 xγ̃22

γ̃1x
γ̃1
2 γ̃2x

γ̃2
2

⎞
⎟⎠

−1⎛
⎜⎝ K − x2 − φ̃(x2)

−x2 − x2φ̃
′(x2)

⎞
⎟⎠ .

2.3. Case 3: x1 = x2 = x∗ ≤ K. In this case, we have, for x ≥ x∗,

V1(x) = A1x
β1 +A2x

β2 ,

V2(x) = B1x
β1 +B2x

β2 ,

and V1(x) = V2(x) = K − x for x ∈ [0, x∗]. The smooth fit scheme leads to⎧⎪⎨
⎪⎩

A1(x
∗)β1 +A2(x

∗)β2 = K − x∗,

β1A1(x
∗)β1 + β2A2(x

∗)β2 = −x∗,
(19)

and ⎧⎪⎨
⎪⎩

B1(x
∗)β1 +B2(x

∗)β2 = K − x∗,

β1B1(x
∗)β1 + β2B2(x

∗)β2 = −x∗.
(20)

Necessarily, we have A1 = B1 and A2 = B2, and therefore, V1 = V2.
Defining V (x) = V1(x) = V2(x), then for x > x∗, the first equation in (6) reduces

to

rV (x) = xµiV
′(x) +

1

2
x2σ2

i V
′′(x),

for both i = 1, 2. This implies

V1(x) = V2(x) =

⎧⎪⎨
⎪⎩

(K − x∗)xβ

(x∗)β
if x > x∗,

K − x if x ≤ x∗,

where x∗ = Kβ/(β − 1) and β is the negative solution of

r −
(
µi − 1

2
σ2
i

)
β − 1

2
σ2
i β

2 = 0

for i = 1 or i = 2.

3. Optimality of the solution. Now, we prove the optimality of Vi(x) and xi
for i = 1, 2 derived in the previous section. For general results on stochastic calculus,
we refer to the books by Karatzas and Shreve [11], McKean [15], and Revuz and Yor
[18].

Recall

V ∗(x, i) = sup
τ
E[e−rτ (K −X(τ))+ | X(0) = x, ε(0) = i].
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Then we must prove the following claim.
Theorem 3.1. Suppose that (15) (resp., (17)) has a solution (x∗1, x

∗
2) such that

0 < x∗1 ≤ K and 0 < x∗2 ≤ K. Assume Vi(x) > (K − x)+ on (x∗i ,∞) and µi ≥ 0 for
i = 1, 2. Define

D = {(x, i) | Vi(x) > (K − x)+},
and let

τ∗ = inf{t ≥ 0 | (X(t), ε(t)) �∈ D}.
Then τ∗ is an optimal stopping time, and Vi(x) are value functions (i.e., Vi(x) =
V ∗(x, i)) and are given by (16) (resp., (18)).

Proof. It is easy to see that Vi(∞) = 0, i = 1, 2, and

D = {(x, 1) | x ∈ (x∗1,∞)} ∪ {(x, 2) | x ∈ (x∗2,∞)} .
For any v(x, i) ∈ C2, define

Lv(x, i) = xµi
∂v(x, i)

∂x
+

1

2
x2σ2

i

∂2v(x, i)

∂x2
+ λi(v(x, 3−i) − v(x, i)) − rv(x, i).

Let v(x, i) = Vi(x). Then Lv ≤ 0 on (x, i) ∈ D. Using Dynkin’s formula, we have

d(e−rtv(X(t), ε(t))) = e−rtLv(X(t), ε(t))dt+ d(martingale).

For any stopping time τ , it follows, from a smooth approximation approach for vari-
ational inequalities in Øksendal [16, p. 204], that

v(x, i) ≥ E[e−rτv(X(τ), ε(τ))] ≥ E[e−rτ (K −X(τ))+].(21)

To show the optimality of τ∗, note that if τ∗ < ∞, then v(X(τ∗), ε(τ∗)) =
(K−X(τ∗))+. In this case, Dynkin’s formula yields v(x, i) = E[e−rτ

∗
(K−X(τ∗))+].

Otherwise, let

Dk = D ∩ {x < k}, for k = 1, 2, . . . .

Let τk = inf{t ≥ 0 | (X(t), ε(t)) �∈ Dk}. Then we can show that τk → τ∗ a.s.
Moreover, as in Zhang [24, Theorems 4.5 and 4.6], we can show that, for each k,
τk <∞ a.s. Using the definition of τk, we have, for k > K,

v(X(τk), ε(τk)) = v(X(τk), ε(τk))I{X(τk)=k} + v(X(τk), ε(τk))I{X(τk)<k}.

Note that

v(X(τk), ε(τk))I{X(τk)<k} = (K −X(τk))
+I{X(τk)<k} ≤ (K −X(τk))

+.

Moreover, note that 0 ≤ v(x, i) ≤ K and e−rτkI{X(τk)=k} → 0, as k → ∞, a.s. It
follows that

E[e−rτkv(X(τk), ε(τk))I{X(τk)=k}] → 0.

Therefore, we have, as k → ∞,

v(x, i) ≤ E[e−rτkv(X(τk), ε(τk)] ≤ E[e−rτ
∗
(K −X(τ∗))+].
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Combining this with (21), we have

v(x, i) = E[e−rτ
∗
(K −X(τ∗))+].

This completes the proof.
Remark 3.1. As mentioned earlier, when σ1 �= σ2, ε(t) becomes observable from

the quadratic variation of X(t) by Ito’s calculus (see McKean [14]) and yields the
joint Markov structure of (X(t), ε(t)). This is one of the key points for our analysis.
Although the case σ1 = σ2 is of independent interest from the filtering perspective
since ε(t) is no longer observable (see Wonham [22] for estimating the probability
distribution of ε(t), Liptser and Shiryayev [13] for general filtering, and Zhang [26, 27]
for state detection and hybrid filtering), the option pricing problem is exactly the
McKean problem, since a Girsanov transformation will reduce the regime switching
model to the Black–Scholes model.

Remark 3.2. When λ1λ2 = 0, the corresponding ε(t) reduces to a single jump
process, and the value functions can be solved sequentially using our method.

Remark 3.3. The optimality proof in Theorem 3.1 indicates the uniqueness of
the value functions and that of the corresponding xi’s. Moreover, the assumption
Vi(x) > (K − x)+ or the existence of x1, x2 would be redundant if we assume the C1

smoothness at the boundary x1, x2.
Remark 3.4. The assumption µi ≥ 0 guarantees that e−rtv(X(t), ε(t)) is a super-

martingale. This is not restrictive in general. Indeed, it is standard in risk-neutral
option pricing to have µ1 = µ2 = r ≥ 0, following a change of measure via the
Girsanov transformation.

Remark 3.5. It is clear from our analysis that a closed-form solution is possible
if and only if K, the number of states of ε(t), equals two, since in general an algebraic
equation of order 2K needs to be solved.

4. Numerical simulation. In this section we perform numerical experiments
to compare the analytical solutions with the TPBVDE solutions studied in Zhang
[24], together with the numerical results derived from a dynamic programming (DP)
approach.

To this end, we first briefly review both DP and TPBVDE methods.

4.1. Dynamic programming. The DP approach we adopt here is built on the
discretization method of the regime switching model proposed by Guo [6].

For a fixed T , let us divide the interval [0, T ] into N subintervals such that T =
Nh. Moreover, if we define

ui = eσi

√
h, li = e−λih, d = e−rh,(22)

pi =
µih+ σi

√
h− 0.5σ2

i h

2σi
√
h

, pi + qi = 1,(23)

then the discrete counterpart of the process (X(t), ε(t)) becomes the two-dimensional
Markov chain (Xn, εn) that satisfies the recurrence

(Xn, εn) = η(εn,εn−1)
n (Xn−1, εn−1),(24)

where ηi,jn are independently and identically distributed (i.i.d.) random variables tak-
ing values uj with probability pj(χi,1−j + (−1)χi,1−je−λjh) and 1/uj with probability
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(1 − pj)(χi,1−j + (−1)χi,1−je−λjh), respectively, where (i, j = 1, 2) and

χ(i, j) =

⎧⎪⎨
⎪⎩

1, i = j = 1, 2,

0, i �= j.

In other words, (Xn, εn) is a random walk taking values on the set (um1 u
n
2 , i) with

i = 1, 2 and m,n = 0,±1,±2, . . . such that Xn represents the stock price at time n
and εn the state of the market at time n.

Furthermore, the optimal stopping problem in question becomes

Ṽi(x) = sup
τ∈{1,2,...,}

E[dn(K −Xn)
+|ε0 = i,X0 = x].(25)

Given the Markov chain X = ((Xn, εn),Fn, P ), the optimal stopping problem
(25) can be derived via the following dynamic programming principle:

W0(x) = (K − x)+,

Z0(x) = (K − x)+,

Wm(x) = max
{
Wm−1(x), dp1l1Wm−1(u1x) + dl1q1Wm−1

(
x
u1

)
+ d(1 − l1)p2Zm−1(u2x) + d(1 − l1)q2Zm−1

(
x
u2

)}
,

Zm(x) = max
{
Zm−1(x), dp2l2Zm−1(u2x) + dl2q2Zm−1

(
x
u2

)
+ (1 − l2)dp1Wm−1(u1x) + (1 − l2)dq1Wm−1

(
x
u1

)}
.

It is clear that Wm(x), Zm(x) are nondecreasing sequences, and

Ṽ1(x) = lim
n→∞Wn(x),

Ṽ2(x) = lim
n→∞Zn(x).

Evidently, Ṽ1(x) and Ṽ2(x) are bounded nonnegative decreasing functions, and

Ṽ1(x) ≥ (K − x)+, Ṽ2(x) ≥ (K − x)+. They are also called the least excessive
dominating functions.

If we define

x1 = min

{
x ≥ 0, min

i∈{1,2}
Ṽi(x) = (K − x)+

}

and

x2 = min

{
x ≥ 0, max

i∈{1,2}
Ṽi(x) = (K − x)+

}
,

then x1, x2 are the so-called free boundary for the stopping rule.
With proper smooth conditions, Ṽi(x) coincides with V (x, i) and hence with

V ∗(x, i). For more detailed discussions on the least excessive dominating function
and its application in option pricing, interested readers are referred to Guo [7] and
Shiryayev et al. [21].
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4.2. The TPBVDE approach. The TPBVDE approach was proposed by
Zhang [24] to derive certain selling rules of threshold type. The stopping rule is
to stop whenever the underlying stock price reaches two predefined bounds, an upper
bound B or a lower bound A:

τ0 = inf {t > 0 | X(t) �∈ (A,B)} .

This rule is suboptimal since it limits the holder’s choice to a smaller class of stopping
times. If one takes A = x∗ and B = ∞ in Case 3, then it leads to a preferable stopping
rule of τ0 = τ∗.

The basic idea is to first choose a region of (A,B) so that for any given 0 ≤ a < b,

X(0)e−b ≤ A ≤ X(0)e−a,

X(0)ea ≤ B ≤ X(0)eb.

Next, we choose A and B within this interval to maximize

E[e−rτ (K −X(τ)+].

With this given A and B, the value function can thus be derived via analysis of a
TPBVDE. (See [24] for details.)

4.3. Numerics. This section will report the numerical comparison results. First,
we take

r = 3, µ1 = µ2 = 3, K = 5,

λ1 = λ2 = 100, σ1 = 9, σ2 = 5,

and compare the closed-form solution with the numerical solutions from the DP and
TPBVDE methods; for the latter, we use the lower bound a = 0 and upper bounds
b = 3, b = 10. The numerical results are plotted in Figure 1 and labeled with V e(x, i),
V DP(x, i), V b=3(x, i), and V b=10(x, i), accordingly.

After 4000 iterations, with N = 100, 000 and h = 0.0001, we obtain the threshold
levels (x∗1, x

∗
2) = (0.454, 0.617) for the DP approach, in comparison to the (x∗1, x

∗
2) =

(0.441, 0.614) derived from the closed-form solution.
Figure 2 confirms Vi(x) ≥ (K − x)+ and illustrates the differences of these value

functions. As is shown, the accuracy of the two-point value method improves with
increases in the upper bound b. The DP approach approximates the exact solutions
better than the TPBVDE method for b = 3, while the converse is true with b = 10. In
addition, these differences equal zero on the intervals (x∗1,∞) and (x∗2,∞) for ε(0) = 1
or 2, respectively.

Next, we check the monotonicity of these threshold levels with respect to σi and
λi. First, we vary σ1 and keep all other parameters fixed. The resulting (x∗1, x

∗
2)

are listed in Table 1. Both threshold levels x∗1 and x∗2 decrease with decreasing σ1.
This shows that a larger σ1 leads to a higher option premium and therefore a smaller
threshold level.

We then vary λ1. The result in Table 2 implies that both x∗1 and x∗2 increase with
λ1 increasing: this is because a larger λ1 implies a shorter period for ε(t) staying at
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Fig. 1. Value functions.

ε(t) = 1 and a smaller weight on σ1 = 9 (> σ2 = 5), which leads to smaller average
volatility.

These monotonicity properties may be better explained using the average volatil-
ity σ =

√
ν1σ2

1 + ν2σ2
2 , where (ν1, ν2) is the stationary distribution corresponding to

the generator of ε(t). The results in Tables 1 and 2 suggest that both x∗1 and x∗2
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Fig. 2. Differences between value functions.

decrease with decreasing σ.

Not surprisingly, the convergence rate of the DP approach depends on the choice
of parameters. This in essence has to do with the specific discretization method of the
underlying diffusion process. For example, with the same parameters specified above
and with perturbations on the magnitude of r, we found that the smaller the r, the
longer the computational time.
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Table 1

Dependency on σ1, given σ2 = 5.

σ1 7 8 9 10 11 12

Exact (.646,.764) (.531,.683) (.441,.614) (.369,.554) (.312,.505) (.266,.462)

DP (.660,.773) (.545,.687) (.454,.617) (.381,.557) (.324,.506) (.277,.465)

Table 2

Dependency on λ1, given λ2 = 100.

λ1 80 90 100 110 120 130

Exact (.425,.596) (.433,.605) (.441,.614) (.448,.621) (.456,.629) (.463,.637)

DP (.437,.599) (.446,.607) (.454,.617) (.461,.624) (.469,.632) (.476,.640)

As far as total CPU usage is concerned, the DP approach took substantially
longer time than the closed-form and the TPBVDE methods. For example, with
a basic Linux 7.2 i386 system, it took a little more than 30 minutes for our DP
solution to complete 4000 iterations, while it took just seconds for both the exact and
TPBVDE methods.

5. Concluding remarks. In this paper we have derived a closed-form solution
to the optimal stopping problem for pricing perpetual American put options in a
regime switching model.

It remains to be seen whether there are alternative methods for deriving the solu-
tion. One obvious candidate is the first passage time technique, which was exploited
in solving the McKean problem (McKean [14] and Karlin and Taylor [12]). However,
despite the two promising features that (i) (X(t), ε(t)) is jointly Markovian and (ii)
the free boundaries are of threshold type, it seems hard to explicitly solve the integral
equation system using results of the first passage time for regime switching models
(derived in Guo [8]). The main obstacle seems to be the instantaneous jump due to
the regime switching.

It is also of interest to extend our analysis to the case when T is finite. Needless to
say, this case would be mathematically interesting and practically appealing. However,
a closed-form solution for a finite time horizon problem with regime switching is
difficult to obtain. Even the special case with no regime switching remains an open
problem to date. Moreover, with all the structural insights gained from the infinite
case, it is not even clear whether the boundary is monotonic; i.e., will x1 < x2 imply
x1(T ) < x2(T )? Assuming this monotonicity condition a priori, Buffington and Elliott
[2] extended our analysis and obtained certain properties for the value functions of
American put options with T <∞.

Nevertheless, our hope is that the closed-form solutions in this paper will provide
better understanding of and some insight into the nature of optimal stopping rules,
and our approach can be useful for numerical approximations of long-term American
options.

Acknowledgments. We thank the referees for a very careful reading of the
manuscript and many constructive suggestions.
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Abstract. Rotationally invariant polynomial bases of the hyperelastic strain energy function
are rederived using methods of group theory, invariant theory, and computational algebra. A set of
minimal basis functions is given for each of the 11 Laue groups, with a complete set of rewriting
syzygies. The ideal generated from this minimal basis agrees with the classic work of Smith and
Rivlin [Trans. Amer. Math. Soc., 88 (1958), pp. 175–193]. However, the structure of the invariant
algebra described here calls for fewer terms, beginning with the fourth degree in strain, for most
groups.
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1. Introduction. In 1958 Smith and Rivlin [20] derived a set of so-called in-
tegrity bases: a finite set of homogeneous polynomial functions of the strain, unique to
each of 11 sets of symmetry groups (the Laue groups) which govern the symmetry of
the strain energy function. These invariants were derived using theorems for the in-
variants of permutation groups (e.g., Weyl [25]). By “basis” it is meant that any arbi-
trary symmetry-invariant polynomial may be rewritten as a polynomial in these basis
functions. Since the number of invariant homogeneous polynomials is unbounded, the
discovery of a finite basis makes the problem of hyperelastic constitutive modeling
tractable (and, indeed, far simpler than constructing a symmetry-invariant function
as an expansion in symmetry-correct fourth- and higher-order elastic constant ten-
sors). The integrity bases are particularly important for modeling time-dependent
large deformation solid mechanics. Examples of computational methods requiring
properly invariant hyperelastic descriptions include [15, 16, 14].

Since the important classification by Smith and Rivlin, a number of significant
advances have been made in computational tools for algebra, particularly the theory
of Gröbner bases, which has opened powerful new approaches to the study of group
invariants (e.g., [24]). In this paper the elastic integrity bases are rederived using
these new algorithmic approaches. The main point of this paper is to reexamine the
invariant structure of hyperelastic materials using these modern methods. It will be
shown that the integrity bases of Smith and Rivlin are correct in the sense that their
integrity bases are finite bases which generate the correct invariant polynomial ideals.
However, for most symmetry groups a number of syzygies exist which interrelate
the invariant basis polynomials, and therefore their bases are not minimal (syzygies
and minimality are described in this context in, e.g., [22]). It will be shown that for
most groups, beginning at degree 4 in the Cauchy tensor (equivalently, the Lagrangian
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strain tensor), the Smith and Rivlin integrity bases imply the existence of unnecessary
polynomial terms.

In section 2 properties of the strain energy function are reviewed. This section sets
the thermodynamic context for subsequent more mathematical sections and identifies
the Cauchy tensor as the key fundamental variable controlling hyperelasticity. In
section 3 the group theoretical properties of the 32 crystallographic point groups are
described as they relate to the Cauchy tensor. Section 4 extends group theory to
describe the algebraic structure of polynomial invariants of each group. Algebraic
algorithms are described briefly in section 5 and used to construct a complete set
of invariants. Simplifying relations among these invariants, syzygies are described in
the appendix. A complete set of “rewriting syzygies” is presented, with which one
could cast an arbitrary invariant polynomial into a minimal form. Select syzygies are
also presented which demonstrate the algebraic dependence of “secondary invariants”
upon the “primary invariants.” Concluding remarks are made in section 6.

2. The strain energy function. The fundamental kinematic variable that gov-
erns hyperelasticity is the deformation tensor

Fαβ =
∂xα
∂aβ

,(2.1)

which describes the deformation of a spatial (Eulerian) frame x with respect to a
material (Lagrangian) frame a. The internal energy E is some function of the nine
components of F , entropy S, and possibly other material constitutive parameters:
E = E(F, S).

Since the internal energy is a scalar function, its value must be independent of the
reference frame of the observer. Thus, an observer utilizing a reference frame x̂ will
interpret the laboratory reference frame x rotated through an arbitrary orthogonal
rotation Q (Q−1 = QT ) and translated by an arbitrary vector x̂0:

x̂ = x̂0 +Qx,(2.2)

F̂ = QF.(2.3)

The possibly time-dependent translation x̂0 is independent of the material reference
frame {a} and therefore does not affect the observer’s deformation tensor F̂ . In the
observer’s frame, the internal energy would be Ê = Ê(QF, S). And so, for the internal
energy to be independent of the reference frame of the observer, the function must
depend not on the components of F individually but upon some combination of them
that removes the dependence on Q.

One way of removing the Q-dependence is to factor F̂ into a matrix of pure
stretches and a matrix of rotations. The so-called right-polar decomposition of F is

F = RU,(2.4)

where R is a rotation (R−1 = RT ) and U is symmetric. This decomposition is unique,
with

UTU = FTF = FTQTQF = F̂T F̂ .(2.5)

Instead of solving (2.5) for the six independent components of U , one might use
directly the six independent components of C—the Cauchy tensor (or “right Cauchy–
Green tensor”)

C = FTF,(2.6)

E = E(C, S).(2.7)
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These manipulations determine the functional dependence of the internal en-
ergy in such a way as to make the result independent of the reference frame of an
observer. The Cauchy tensor remains, however, dependent upon the orientation of
the material with respect to the material reference frame a. For crystals with no
rotational symmetry, this result is adequate, and one may without loss of generality
construct hyperelastic equations of state (2.7) that are consistent with all symmetry
constraints.

There are 230 space groups that classify the symmetry of single crystals. These
are based upon 32 crystallographic point groups, which derive from consideration
of rotations and reflections (reflections may also be referred to as improper S1 ro-
tations; collectively such operations will be called simply “rotations”), and become
230 upon consideration of translations consistent with the rotational symmetry. To
discuss rotational invariance it is sufficient to consider the point groups. Of these 32
point groups, only two (C1 and Ci) are correctly modeled by (2.7) without additional
considerations of symmetry. The remaining 30 point groups classify materials which
are symmetric with respect to certain discrete symmetry operations π̄ on the atomic
coordinates in the material reference frame:

ǎ = π̄−1a,(2.8)

F̌ = Fπ̄,(2.9)

Č = π̄TCπ̄.(2.10)

For the internal energy to be invariant with respect to each of these discrete rotational
mappings, one must have

E = E(C, S) = E(π̄TCπ̄, S) ∀ π̄ ∈ Γ̄Ḡ,(2.11)

where Γ̄Ḡ represents the set of rotation operations of the crystallographic point group
Ḡ of the material (the symbols π̄, Γ̄, Ḡ, etc. are used here to describe the group
properties in the R

3 coordinate space; the symbols π, Γ, G, etc. will denote the cor-
responding extension of these group properties to the R

6 space of the unique Cauchy
tensor elements).

3. Group theory. The crystallographic point groups may be described by a
finite number of 3 × 3 matrices which rotate a vector, reflect it across a plane, or
combinations thereof. The set Γ̄ of these matrices π̄ are a representation of a group
algebra Ḡ, which means (1) multiplication is associative, (π̄απ̄β)π̄γ = π̄α(π̄β π̄γ) for
each π̄α, π̄β , π̄γ ∈ Γ̄; (2) that for each π̄α, π̄β ∈ Γ̄, the product π̄απ̄β is also contained
in Γ̄; (3) there exists an identity Ē ∈ Γ̄ such that Ēπ̄α = π̄αĒ = π̄α for each π̄α ∈ Γ̄;
and (4) for each π̄α ∈ Γ̄, there exists an inverse π̄−1

α such that π̄απ̄
−1
α = Ē.

One may use the property (2.10) to construct a set of 6 × 6 matrix operators π1

π1 =

⎛
⎜⎜⎜⎜⎜⎜⎝

π̄2
11 π̄2

21 π̄2
31 2π̄31π̄21 2π̄11π̄31 2π̄11π̄21

π̄2
12 π̄2

22 π̄2
32 2π̄22π̄32 2π̄32π̄12 2π̄22π̄12

π̄2
13 π̄2

23 π̄2
33 2π̄33π̄23 2π̄33π̄13 2π̄23π̄13

π̄12π̄13 π̄22π̄23 π̄32π̄33 π̄22π̄33+π̄32π̄23 π̄12π̄33+π̄32π̄13 π̄12π̄23+π̄22π̄13

π̄11π̄13 π̄21π̄23 π̄31π̄33 π̄21π̄33+π̄31π̄23 π̄11π̄33+π̄31π̄13 π̄11π̄23+π̄21π̄13

π̄11π̄12 π̄21π̄22 π̄31π̄32 π̄21π̄32+π̄31π̄22 π̄11π̄32+π̄31π̄12 π̄11π̄22+π̄21π̄12

⎞
⎟⎟⎟⎟⎟⎟⎠

(3.1)
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that transform the six-dimensional vector η = (C11, C22, C33, C23(= C32), C13(= C31),
C12(= C21))

T , or in Voigt notation (C1, C2, C3, C4, C5, C6)
T , according to

η̌ = π1η.(3.2)

In the language of Murnaghan [18, Ch. 3], the matrices π1 are symmetrized Kro-
necker products of the transformation matrices π̄T . The d-form matrices πd intro-
duced below are symmetrized Kronecker d-powers of the transformations π1.

Note that the set Γ of matrices π1, formed from the elements π̄ ∈ Γ̄ of group
Ḡ, define a group algebra G that may be different from Ḡ (e.g., [8]). In particu-
lar, the transformation matrices (3.1) effectively introduce inversion symmetry where
none may have existed in the original group. Thus, as with Laue diffraction, the 32
crystallographic point groups reduce immediately to the 11 Laue groups.

A linear combination κ of elements of the Cauchy tensor is invariant to all sym-
metry operations if for each π1 ∈ Γ one has κ = π1κ; thus κ must be an eigenvector
of each matrix π1 with eigenvalue 1. Or

κ = PRκ,(3.3)

with

PR =
1

|Γ|
∑
π1∈Γ

π1(3.4)

and |Γ| the cardinality of the group. PR is the Reynolds operator, a special case of the
more general symmetry projection operator which projects a vector onto an irreducible
representation of the group (e.g., [6, Ch. 6]). The Reynolds operator projects a vector
onto the unique totally symmetric representation. PR is a projection, PR2 = PR, by
virtue of the property of groups that π1αΓ = Γ for all π1α ∈ Γ. Consequently, the
eigenvalues of PR are all either 0 or 1. And, therefore, the number N1 of linearly
independent degree-1 invariant vectors is given by the number of unity eigenvalues of
PR, which is equal to the trace of PR:

N1 = trace(PR) =
1

|Γ|
∑
π1∈Γ

trace(π1).(3.5)

To evaluate this equation for any group, one tabulates the symmetry operations by
type (Table 3.1 displays the operations of each group and their assumed orientation
with respect to the assumed orthogonal Lagrangian coordinate system a). The num-
bers of symmetry operations π1, by type and group Γ, are given in Table 3.2. The
traces may be calculated from the eigenvalues listed in Table 3.3.

Invariants of higher degree lie in the
(
6+d−1
d

)
-dimensional space formed by the

unique combinations of degree-d monomials (e.g., a basis for degree-2 monomials is
given by the 21 homogeneous terms CiCj≥i in a process analogous to that described
by (3.1)). From the matrices π1, so-called d-form matrices πd may be constructed
easily to represent the action of the symmetry operations on the degree-d terms. The
numberNd of linearly independent degree-d symmetry-invariant terms are constructed
as in the degree-1 case with

PR,d =
1

|Γ|
∑
πd∈Γ

πd,(3.6)
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Table 3.1

Settings for those crystallographic point groups with planes and axes (Wulff stereographic pro-
jections). Bold lines are mirror planes. Open and closed circles are general positions, above and
below plane z = 0, respectively. Closed symbols with n-fold symmetry are rotation axes, and mixed
open-closed symbols with n-fold symmetry are improper rotations.

Cs C2 C2h C2v D2 D2h

S4 C4 C4h D2d C4v D4

D4h T Th Td O Oh

C3 S6 C3v D3 D3d C3h

C6 C6h D3h C6v D6 D6h

Table 3.2

Number of distinct occurrences of operations π in the crystallographic point groups, in the R
6

space of the Cauchy tensor. The symbols used here are Schoenflies notation: E is the identity, I is
inversion on all three orthogonal axes, Cn is an n-fold rotation, Sn is an improper n-fold rotation,
and σ = S1 is a mirror reflection.

Group Γ |Γ| E, I C2, σ C3, S6 C4, S4 C6, S3

C1, Ci 1 1
Cs, C2, C2h 2 1 1
C2v , D2, D2h 4 1 3
S4, C4, C4h 4 1 1 2
D2d, C4v , D4, D4h 8 1 5 2
T, Th 12 1 3 8
Td, O,Oh 24 1 9 8 6
C3, S6 3 1 2
C3v , D3, D3d 6 1 3 2
C3h, C6, C6h 6 1 1 2 2
D3h, C6v , D6, D6h 12 1 7 2 2



INVARIANT BASES FOR HYPERELASTICITY 2055

Table 3.3

Eigenvalues of the point group operators π in the space R
6 of the Cauchy tensor.

Operator π1 Eigenvalues

E I 1 1 1 1 1 1
C2 σ 1 1 1 1 −1 −1

C3 S6 1 1 e
2πi
3 e

2πi
3 e−

2πi
3 e−

2πi
3

C4 S4 1 1 −1 −1 e
πi
2 e−

πi
2

C6 S3 1 1 e
πi
3 e−

πi
3 e

2πi
3 e−

2πi
3

Nd = trace(PR,d) =
1

|Γ|
∑
πd∈Γ

trace(πd).(3.7)

In practice it is not necessary to actually create the matrices πd. The eigenvalues
of the d-form matrices πd are λd11 · · ·λd66 , with λi representing the ith eigenvalue of
π1, and with the exponents di subject to d1 + · · · + d6 = d. Therefore,

trace(πd) =
∑

d1+···+d6=d
λd11 · · ·λd66 .(3.8)

For completeness, one has also the scalar degree-0 term: the number “1.” This
polynomial invariant of degree 0 is generated by π0 = 1, whence N0 = 1.

Via the projections PR,d group theory provides a method for the construction of
all linearly independent degree-d symmetry-invariant homogeneous polynomials. The
number of such polynomials is unbounded, however, since for any degree d the number
of terms is at least as large as

(
N1+d−1

d

)
—the number of distinct degree-d polynomials

formed from by multiplying together different combinations of degree-1 polynomials.
A finite polynomial basis, a set of invariant polynomials from which all others

may be constructed, exists. The number of terms in this basis and some properties of
it are provided by theorems of invariant theory described below. The construction of
the actual invariant polynomial bases is accomplished with the Gröbner basis methods
of computational algebra, described in the subsequent section.

4. Invariant theory. The Hilbert series Φ(z) (also known as Poincaré’s series)
is a polynomial in the dummy variable z where the coefficient of zn is the number
of polynomial invariants of degree n. Spencer’s generating functions [21], used in the
study of invariants in continuum mechanics, are particular instances of the Hilbert
series constructed by different means than those employed here. Following Sturmfels
[24, Theorem 2.2.1] after [17],

Φ(z) =
∞∑
d=0

Ndz
d =

1

|Γ|
∑
π1∈Γ

∞∑
d=0

∑
d1+···+d6=d

λd11 · · ·λd66 z
d,

=
1

|Γ|
∑
π1∈Γ

∞∑
d1,...,d6=0

λd11 · · ·λd66 z
d1+···+d6

=
1

|Γ|
∑
π1∈Γ

6∏
n=1

(
1+(λnz)+(λnz)

2+· · · )

=
1

|Γ|
∑
π1∈Γ

6∏
n=1

1

(1 − λnz)
=

1

|Γ|
∑
π1∈Γ

1

det(I − π1z)
,(4.1)

where λα = λα(π1), and where one assumes that |z| < 1.
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Table 4.1

Contributions of point group operators to the Hilbert series.

Operation π1 Hilbert series contribution

E, I
1

(1 − z)6

C2, σ
1

(1 − z)4(1 + z)2
=

1

(1 − z)2(1 − z2)2

C3, S6
1

(1 − z)2(1 + z + z2)2
=

1

(1 − z3)2

C4, S4
1

(1 − z2)2(1 + z2)
=

1

(1 − z2)(1 − z4)

C6, S3
1

(1 − z)2(1 − z + z2)(1 + z + z2)
=

(1 + z)

(1 − z)(1 − z6)

By means of this result, it is apparent that the Hilbert series for a given crystallo-
graphic point group may be algebraically constructed by summing factors 1/det(I −
π1z) corresponding to the individual operators π1 that occur in the point group. These
factors are summarized in Table 4.1.

One may then construct the Hilbert series according to the formula

ΦΓ(z) =
1

|Γ|

[
N(E, I)

(1 − z)6
+

N(C2, σ)

(1 − z)2(1 − z2)2
+
N(C3, S6)

(1 − z3)2

+
N(C4, S4)

(1 − z2)(1 − z4)
+
N(C6, S3)(1 + z)

(1 − z)(1 − z6)

]
,(4.2)

where N(π, . . . ) is the number of occurrences of symmetry operators π, . . . ∈ Γ, tab-
ulated for the crystallographic point groups in Table 3.2.

Finite groups have the Cohen–Macaulay property of commutative algebra (e.g.,
[23]), which has significance for this project in that it implies that certain important
properties of the invariant group algebra may be deduced by appropriate factorizations
of the Hilbert series, called “Molien functions” or “Hironaka decompositions”:

Φ(z) =

∑t−1
i=0 z

ei∏n
j=1(1 − zdj )

.(4.3)

The interpretation of these factorizations is that there exist n primary invariants
θ which comprise a “homogeneous system of parameters” (HSOP), with degrees di =
deg(θi), and where n is the number of variables (six for the Cauchy tensor elements).
These are represented in the denominator of the Molien function. Since a factor 1/
(1−zd) contributes (multiplicatively) 1+zd+z2d+z3d+· · · to the Hilbert series, these
factors are unrestricted in a polynomial representation. The numerator represents the
t secondary invariants φ, with degrees ej = deg(φj) and cardinality

t =
1

|Γ|
n∏
i=1

di,(4.4)

including the degree-0 term “1.” Since factors ze in the numerator contribute only ze

(multiplicatively) to the Hilbert series, the implication is that these factors occur at
most once in a polynomial representation.
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Table 4.2

Molien factorizations of the Hilbert series of crystallographic point groups in the R
6 space of

the Cauchy tensor.

Groups Γ Molien function

triclinic
C1, Ci

1
(1−z)6

monoclinic
Cs, C2, C2h

1+z2

(1−z)4(1−z2)2

orthorhombic
C2v , D2, D2h

1+z3

(1−z)3(1−z2)3

tetragonal
S4, C4, C4h

1+z2+4z3+z4+z6

(1−z)2(1−z2)3(1−z4)

tetragonal
D2d, C4v , D4, D4h

1+2z3+z6

(1−z)2(1−z2)3(1−z4)

cubic
T, Th

1+3z3+2z4+2z5+3z6+z9

(1−z)(1−z2)2(1−z3)2(1−z4)

cubic
Td, O, Oh

1+z3+z4+z5+z6+z9

(1−z)(1−z2)2(1−z3)2(1−z4)

trigonal
C3, S6

1+2z2+6z3+2z4+z6

(1−z)2(1−z2)2(1−z3)2

trigonal
C3v , D3, D3d

1+z2+2z3+z4+z6

(1−z)2(1−z2)2(1−z3)2

hexagonal
C3h, C6, C6h

1+3z3+2z4+2z5+3z6+z9

(1−z)2(1−z2)2(1−z3)(1−z6)

hexagonal
D3h, C6v , D6, D6h

1+z3+z4+z5+z6+z9

(1−z)2(1−z2)2(1−z3)(1−z6)

A consequence of the Molien function is that all symmetry-invariant polynomial
functions P of the Cauchy tensor may be expressed in the form

P ({θ}, {φ}) =

t−1∑
α=0

φαPα({θ}),(4.5)

where Pα({θ}) is an arbitrary polynomial in the primary invariants, and where each
secondary invariant φα occurs at most once. For all groups henceforth let φ0 = 1, and
consider only nontrivial secondary invariants.

Molien factorizations of the crystallographic point groups, constructed using (4.2)
for the invariants of the Cauchy tensor terms, are given in Table 4.2. These functions
are fully reduced in that there is no common algebraic factor to both numerator and
denominator, and in this sense the implied size of the invariant set is minimal. These
factorizations are not unique. For example, the factorization displayed for group
C2v implies primary invariants of degree 1, 1, 1, 2, 2, 2 and one nontrivial secondary
invariant of degree 3. However, multiplication of numerator and denominator by
(1 + z) gives the function
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1 + z + z2 + z4

(1 − z)2(1 − z2)4
,(4.6)

implying primary invariants of degree 1, 1, 2, 2, 2, 2 and three nontrivial secondary
invariants of degree 1, 2, 4. If the form given in Table 4.2 exists, then the alternative
form (4.6) is not minimal. The question of existence must be settled by constructing
the algebraically independent basis functions of the group and partitioning them into
primary and secondary invariants (e.g., [19, p. 101]). It will be shown that HSOPs of
the degrees indicated by the reduced functions in Table 4.2 exist.

Since secondary φα is an invariant, so is φ2
α. However, φ2

α is not represented in the
Hilbert series. Thus, the invariant φ2

α must be expressible by some polynomial of the
form (4.5). This implies the existence of syzygies—polynomial equalities that relate
the secondary and primary invariants. A set of syzygies may be found to serve as
“rewriting rules” for systematic conversion of a general polynomial P ({θ}, {φ}) into
the minimal form given by the right-hand side of (4.5).

An HSOP is a minimal set of algebraically independent polynomials, with cardi-
nality 6, equal to the number of independent variables in C. There cannot be more
algebraically independent homogeneous polynomials, and so any additional polyno-
mial (in particular, the secondary invariants) must possess an algebraic dependence
upon the primary invariants. The algebraic relations expressing a particular secondary
invariant in terms of the primary ones are also expressible as syzygies.

The six primary invariants of each crystal point group are therefore algebraic (vs.
polynomial) invariants; all polynomial invariants are expressible as algebraic functions
of the primary invariants. This settles a conundrum regarding the number of degrees
of freedom. The elastic Cauchy tensor has six degrees of freedom, and there are six
algebraic invariants. The additional apparent degrees of freedom represented by the
number of secondary invariants (aside from the trivial one, 1, of degree zero) are a
consequence of assuming a polynomial form for the invariant energy function.

5. Computational algebra: Gröbner bases. In R
3, the space of material

coordinates a, and in R
6, the space of Cauchy tensor components, some matrix op-

erations of the groups (e.g., corresponding to rotations through 2π/3) contain fac-
tors of

√
3/2. However, polynomials generated through the Reynolds operator con-

tain only integer coefficients, so it is sufficient to study the properties of Q[C], the
ring over rational numbers Q of polynomials in the Cauchy tensor elements C. Let
F = {fi|fi ∈ Q[C], fi = PRfi} be some set of invariant polynomials. The ideal gen-
erated by F , I(F ) is the set of all polynomials p1f1 + p2f2 + · · · , pi ∈ Q[C], that are
dependent on elements of F ; i.e., g ∈ I(F ) and h ∈ Q[C] implies that gh ∈ I(F ), and
g, f ∈ I(F ) implies that g+f ∈ I(F ). The objective is to construct the smallest basis
F consisting of homogeneous invariant polynomials, with degrees consistent with the
Molien function of the group, such that I(F ) is equal to the complete invariant ideal
I(Q[C]G) (see, e.g., [23, 4] and [3] for algebra concepts, and the latter also for Gröbner
bases).

Algorithms designed to address this problem require the capability of deciding
whether some polynomial f is in the ideal I(F ). The solution is to construct a special
basis GB(F ), the Gröbner basis, with I(GB(F )) = I(F ). That is, GB is an alternative
basis that generates the same ideal as F . The key property of a Gröbner basis is that
for any f ∈ I(F ), f→GB 0: f is reducible to zero by successive steps of a Euclidean
reduction algorithm. The reduction property is linked to a notion of term order; a
unique reduced Gröbner is specified by the basis F , and a specification of the term
order �.
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Group theory shows how, using the Reynolds operator, invariant polynomials may
be generated, and from the Molien function one has an idea of what the degrees of
primary and secondary invariants may be. Given a set of six homogeneous polynomial
functions with degrees that are compatible with their being primary invariants, the
first task is to show whether or not they are an HSOP. An algorithm for this task
is given by Sturmfels [24, algorithm 2.5.3]. First, one uses the Reynolds operator1

to generate a set of homogeneous polynomial invariants θ′(C) of the Cauchy tensor
elements. Next, construct a polynomial basis set F = {θ′1 − y1, . . . , θ

′
6 − y6} in the

variables C and new slack variables y, with lexicographic order C1 > · · · > C6 >
y1 > · · · > y6. This is an “elimination order” that systematically eliminates terms in
C from the head of each polynomial in the basis during construction of the Gröbner
basis (the head term is the greatest with respect to the specified order—lexicographic
in this case). Generate the Gröbner basis GB(F ). Let GB′ = GB(F ) ∩ Q[y] be the
set of polynomials found in GB(F ) containing only variables y. If GB′ = ∅, then
{θ′} are algebraically independent; they may be chosen to comprise the HSOP of the
group. If GB′ �= ∅, then the functions contained in GB′ represent polynomial equations
P (y1, y2, . . . , y6) = 0 which represent syzygies among the variables y hence amongst
the functions θ′. This property will be exploited to determine syzygies.

The second task is the determination of secondary invariant polynomials [24, al-
gorithm 2.5.14]. Begin with F = {θ}, the set of primary invariants, and let φ = ∅ be
the set of discovered secondary invariants. Compute GB = GB(F ) with respect to any
valid term order. For each degree indicated in the numerator of the Molien function,
use the Reynolds operator to construct a set of linearly independent homogeneous
invariants. Those candidate polynomials φ′ that reduce to zero with GB have a poly-
nomial dependence on {θ} and are not valid secondary invariants. Those φ′ that do
not reduce to zero are secondary invariants; φ := φ ∪ {φ′}.

To deduce rewriting syzygies, i.e., syzygies of the form φiφj = p0 +
∑
k pkφk,

pi ∈ Q[θ], another algorithm based on Gröbner bases has been proposed [24, algo-
rithm 2.5.6]. One computes the Gröbner basis of F = {θ1−y1, . . . , θ6−y6, φ1−z1 . . . }
in the variables C and slack variables y and z. Sturmfels recommends the variable
order C1 > · · · > C6 > y1 > · · · > y6 > z1 > · · · and suggests the following term
order �. Term Cαyβzγ � Cα

′
yβ

′
zγ

′
if Cα > Cα

′
in the purely lexicographic order,

or if Cα = Cα
′

and yβ > yβ
′

in the degree lexicographic order, or if Cα = Cα
′

and
yβ = yβ

′
and zγ > zγ

′
in the purely lexicographic order. The resulting Gröbner basis

will contain the desired syzygies.
To compute syzygies relating one secondary invariant φi to the primary invari-

ants, essentially the same procedure is employed. The Gröbner basis of F = {θ1 −
y1, . . . , θ6−y6, φi−z} is computed in the variables C1 > · · · > C6 > y1 > · · · > y6 > z
with an order that eliminates the variables C. Good success was found using a matrix
order (e.g., [9]) that first selects for graded degree (using the degrees in C as weights),
then selects for degree in the variables C, and then enforces reverse lexicographical
ordering on the C and y blocks. As suggested by Bayer and Stillman [2], the reverse
lexicographical refinement was substantially more efficient than purely lexicographical
order.

The construction of Gröbner bases is given by a simple algorithm by Buchberger
[5], but the simplicity of the algorithm belies the complexity of the computational

1Note that the Reynolds operator does depend on the “setting,” or orientation, of the symmetry
axes given in Table 3.1. To this point in the manuscript, only the setting-independent eigenvalues of
the operations have been used.
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task. The maximum degree computed in a Gröbner basis may be as large as doubly
exponential in the number of variables used [13]; and integer or rational coefficients
have been reported to contain as many as O(105) significant decimal figures with basis
functions containing O(1) coefficients [1]. Thus, poor algorithmic choices (and there
are many choices one is free to make) render even simple basis calculations impossible.
To control these issues directly, implementations of Buchberger’s algorithm and the
F4 variant of this algorithm by Faugére [7] were constructed in C++ using GMP
[12] to represent and manipulate arbitrary precision integers. Superfluous pairs were
eliminated using the method of Gebauer and Möller [10], and selection strategies
used the “sugar” phantom degree order method of [11]. The F4 algorithm has been
reported to be on the order of 10 times faster than the equivalent Buchberger method.
Our implementation of F4 modifies the selection criterion as follows. Let degW be
a W -graded degree, chosen so all polynomials are W -homogeneous (e.g, weights wi
correspond to the degree of a variable when expressed in the common basis of C
elements). An F4 row echelon calculation containing polynomials of different degW
may be immediately block diagonalized according to degW . Including polynomials
of different degW in a row echelon calculation does not affect the correctness of the
method, but in practice it is found that selecting only those pairs whose degW are
equal and as small as possible improves efficiency.

The results of these algorithms applied to the 11 Laue groups are presented be-
low. The following subsections present the computed invariant bases, with elements
distinguished as being primary or secondary invariants. In all cases the minimal fac-
torizations displayed in Table 4.2 are realized. In the appendix, a complete set of
rewriting syzygies is presented. Application of these equations may transform any
polynomial P ({θ}, {φ}) into the minimal form given by (4.5). These are offered in
proof of the simplification implied by the Molien factorizations. Also presented in the
appendix is a representative example of an algebraic dependence syzygy, a polyno-
mial of the form P (φα, θ1, . . . , θ6) which demonstrates the algebraic dependence of the
secondary invariants. Several such algebraic dependence syzygies also appear in the
set of rewriting syzygies. Note that the computation of these algebraic dependence
syzygies is difficult, and several such syzygies have thus far defied computation. With
the algorithms used, the relevant Gröbner basis calculation may consume all available
core memory (8Gb) in the span of a few days.

5.1. Triclinic groups C1 and Ci. The group C1 contains no symmetry op-
erations aside from the identity E. The group Ci contains only the identity and a
center of inversion. With respect to the action of these groups on the Cauchy tensor
components, the groups are therefore identical. Since no Cauchy tensor components
are mixed by the action of these groups, there are no nontrivial Reynolds projections.
The basis for these groups consists of the Cauchy tensor components, all primary
invariants.

θ1 = C6,(5.1)

θ2 = C5,(5.2)

θ3 = C4,(5.3)

θ4 = C3,(5.4)

θ5 = C2,(5.5)

θ6 = C1.(5.6)
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5.2. Monoclinic groups Cs, C2, C2h. A single secondary invariant exists for
this group. An invariant basis is

θ1 = C4,(5.7)

θ2 = C3,(5.8)

θ3 = C2,(5.9)

θ4 = C1,(5.10)

θ5 = C2
6 ,(5.11)

θ6 = C2
5 ,(5.12)

φ1 = C5C6.(5.13)

5.3. Orthorhombic groups C2v, D2, D2h. A single secondary invariant of
degree 3 exists:

θ1 = C3,(5.14)

θ2 = C2,(5.15)

θ3 = C1,(5.16)

θ4 = C2
6 ,(5.17)

θ5 = C2
5 ,(5.18)

θ6 = C2
4 ,(5.19)

φ1 = C4C5C6.(5.20)

5.4. Tetragonal groups S4, C4, C4h. An invariant basis obeying the Molien
factorization of Table 4.2 is

θ1 = C3,(5.21)

θ2 = C1 + C2,(5.22)

θ3 = C2
6 ,(5.23)

θ4 = C2
4 + C2

5 ,(5.24)

θ5 = C2
1 + C2

2 ,(5.25)

θ6 = C4
4 + C4

5 ,(5.26)

φ1 = (C1 − C2)C6,(5.27)

φ2 = (C2
4 − C2

5 )C6,(5.28)

φ3 = C4C5C6,(5.29)

φ4 = C1C
2
4 + C2C

2
5 ,(5.30)

φ5 = (C1 − C2)C4C5,(5.31)

φ6 = C4C5(C
2
4 − C2

5 ),(5.32)

φ7 = φ3φ4.(5.33)

5.5. Tetragonal groups D2d, C4v, D4, D4h. The invariant relations for these
groups are also relatively simple:

θ1 = C3,(5.34)

θ2 = C1 + C2,(5.35)

θ3 = C2
6 ,(5.36)
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θ4 = C2
4 + C2

5 ,(5.37)

θ5 = C2
1 + C2

2 ,(5.38)

θ6 = C4
4 + C4

5 ,(5.39)

φ1 = C4C5C6,(5.40)

φ2 = C1C
2
4 + C2C

2
5 ,(5.41)

φ3 = φ1φ2.(5.42)

5.6. Cubic groups T , Th and groups Td, O, Oh. Group Td is subset of
group T ; they share the same primary invariants and several secondary invariants.
Those secondary invariants found in group T but absent from Td are denoted by an
asterisk:

θ1 = C1 + C2 + C3,(5.43)

θ2 = C2
4 + C2

5 + C2
6 ,(5.44)

θ3 = C2
1 + C2

2 + C2
3 ,(5.45)

θ4 = C4C5C6,(5.46)

θ5 = C3
1 + C3

2 + C3
3 ,(5.47)

θ6 = C4
4 + C4

5 + C4
6 ,(5.48)

φ1 = C1C
2
4 + C2C

2
5 + C3C

2
6 ,(5.49)

φ2 = φ2
1,(5.50)

φ3 = φ3
1,(5.51)

(∗) φ4 = C1C
2
6 + C2C

2
4 + C3C

2
5 ,(5.52)

(∗) φ5 = φ2
4,(5.53)

(∗) φ6 = C2
1C3 + C1C

2
2 + C2C

2
3 ,(5.54)

φ7 = C2
1C

2
4 + C2

2C
2
5 + C2

3C
2
6 ,(5.55)

(∗) φ8 = C2
1C

2
6 + C2

2C
2
4 + C2

3C
2
5 ,(5.56)

φ9 = C1C
4
4 + C2C

4
5 + C3C

4
6 ,(5.57)

(∗) φ10 = C1C
2
4C

2
6 + C2C

2
4C

2
5 + C3C

2
5C

2
6 ,(5.58)

(∗) φ11 = C4
4C

2
6 + C2

4C
4
5 + C2

5C
4
6 .(5.59)

It is interesting to note that the groups T and Td share the same primary invariants.
Consider (A.62), an algebraic dependence syzygy for φ4, which occurs in T but not
in Td. The coefficients of φm4 , m ∈ (0, 6), in (A.62) are expressed in terms of θ, and
therefore the coefficients are invariant with respect to both T and Td. However, the
roots of this syzygy are not invariant. In T the roots φ of (A.62) describe an orbit of
size 6 under the action of the reflection symmetry operations found in T but not in
Td.

5.7. Trigonal groups C3, S6. An invariant basis is

θ1 = C3,(5.60)

θ2 = C1 + C2,(5.61)

θ3 = (C1 − C2)
2 + C2

6 ,(5.62)

θ4 = C2
4 + C2

5 ,(5.63)

θ5 = C3
6 − 3C6(C1 − C2)

2,(5.64)
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θ6 = C5(C
2
5 − 3C2

4 ),(5.65)

φ1 = C4(C1 − C2) + C5C6,(5.66)

φ2 = φ2
1,(5.67)

φ3 = φ3
1,(5.68)

φ4 = C5(C1 − C2) − C4C6,(5.69)

φ5 = C5(C1 − C2)
2 + 2C4C6(C1 − C2) − C5C

2
6 ,(5.70)

φ6 = 2C4C5(C1 − C2) + C6(C
2
4 − C2

5 ),(5.71)

φ7 = C4(C1 − C2)
2 − 2C5C6(C1 − C2) − C4C

2
6 ,(5.72)

φ8 = (C1 − C2)(C
2
4 − C2

5 ) − 2C4C5C6,(5.73)

φ9 = C4(C
2
4 − 3C2

5 ),(5.74)

φ10 = (C1 − C2)
2(3C1 + C2) − C2

6 (C1 − 5C2),(5.75)

φ11 = φ1φ4.(5.76)

5.8. Trigonal groups C3v, D3, D3d. An invariant basis is

θ1 = C3,(5.77)

θ2 = C1 + C2,(5.78)

θ3 = (C1 − C2)
2 + C2

6 ,(5.79)

θ4 = C2
4 + C2

5 ,(5.80)

θ5 = C4(C
2
4 − 3C2

5 ),(5.81)

θ6 = (C1 − C2)
2(3C1 + C2) − C2

6 (C1 − 5C2),(5.82)

φ1 = C4(C1 − C2) + C5C6,(5.83)

φ2 = φ2
1,(5.84)

φ3 = φ3
1,(5.85)

φ4 = C4(C1 − C2)
2 − 2C5C6(C1 − C2) − C4C

2
6 ,(5.86)

φ5 = (C1 − C2)(C
2
4 − C2

5 ) − 2C4C5C6.(5.87)

5.9. Hexagonal groups C3h, C6, C6h. An invariant basis is

θ1 = C3,(5.88)

θ2 = C1 + C2,(5.89)

θ3 = (C1 − C2)
2 + C2

6 ,(5.90)

θ4 = C2
4 + C2

5 ,(5.91)

θ5 = C3
6 − 3C6(C1 − C2)

2,(5.92)

θ6 = 9C6
4 + 45C4

4C
2
5 + 15C2

4C
4
5 + 11C6

5 ,(5.93)

φ1 = 2C4C5(C1 − C2) + C6(C
2
4 − C2

5 ),(5.94)

φ2 = φ2
1,(5.95)

φ3 = φ3
1,(5.96)

φ4 = (C1 − C2)(C
2
4 − C2

5 ) − 2C4C5C6,(5.97)

φ5 = (C1 − C2)
2(3C1 + C2) − C2

6 (C1 − 5C2),(5.98)

φ6 = (3C2
4 + C2

5 )(C1 − C2)
2 + 4C4C5C6(C1 − C2) + C2

6 (C2
4 + 3C2

5 ),(5.99)

φ7 = (C1C5 − C2C5 − C4C6)(C1C4 − C2C4 + C5C6),(5.100)
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φ8 = 4C4C5(C1 − C2)(3C
2
4 + C2

5 ) + C6(3C
4
4 + 6C2

4C
2
5 − 5C4

5 ),(5.101)

φ9 = 8C4C
3
5C6 − (C1 − C2)(3C

4
4 − 6C2

4C
2
5 − C4

5 ),(5.102)

φ10 = 4C4C
3
5 (C1 − C2)

2 − 4C4C
3
5C

2
6 − (C1 − C2)

× (3C4
4C6 − 6C2

4C
2
5C6 − C4

5C6),(5.103)

φ11 = −C4C5(C
2
4 − 3C2

5 )(3C2
4 − C2

5 ).(5.104)

5.10. Hexagonal groups D3h, C6v, D6, D6h. An invariant basis for these
groups is

θ1 = C3,(5.105)

θ2 = C1 + C2,(5.106)

θ3 = (C1 − C2)
2 + C2

6 ,(5.107)

θ4 = C2
4 + C2

5 ,(5.108)

θ5 = (C1 − C2)
2(3C1 + C2) − C2

6 (C1 − 5C2),(5.109)

θ6 = 9C6
4 + 45C4

4C
2
5 + 15C2

4C
4
5 + 11C6

5 ,(5.110)

φ1 = (C1 − C2)(C
2
4 − C2

5 ) − 2C4C5C6,(5.111)

φ2 = φ2
1,(5.112)

φ3 = φ3
1,(5.113)

φ4 = (C1 − C2)
2(3C2

4 + C2
5 ) + 4C4C5C6

×(C1 − C2) + C2
6 (C2

4 + 3C2
5 ),(5.114)

φ5 = 8C4C
3
5C6 − (C1 − C2)(3C

4
4 − 6C2

4C
2
5 − C4

5 ).(5.115)

6. Conclusions. The invariant bases presented above agree with those pre-
sented by Smith and Rivlin [20] and are identical in the sense that they generate
the same ideal. In many cases the particular form of the invariants differs. This
has no significance and is merely an artifact of the particular methods used. For
example, in the group T the invariants K presented by Smith and Rivlin are related
to the invariants θ and φ in (5.43)–(5.59) via θ1 = K1, θ2 = K4, θ3 = K2

1 − 2K2,
θ4 = K0, θ5 = K3

1 − 3K1K2 + 3K3, θ6 = K2
4 − 2K5, φ1 = K1K4 − K7 − K8,

φ4 = K8, φ6 = K1K2 − K9 − 3K3, φ7 = K2
1K4 − K1K7 − K1K8 + K12 − K2K4,

φ8 = K1K8 −K2K4 +K13, φ9 = K1K
2
4 −K4K8 −K4K7 −K1K5 +K11, φ10 = K14,

and φ11 = K4K5 − K10 − 3K6 (with K0 =
√
K6 = C4C5C6). By writing the K’s

in terms of θ’s and φ’s, it is apparent on inspection that K1, K4, K2, K0, K3, and
K5 form an HSOP and a set of primary invariants of minimal degree indicated in
Table 4.2. Likewise, K7, K8, K9, K12, K13, K11, K14, and K10 are valid secondary
invariants. To make a complete set of secondary invariants, one could include both
K2

7 and K2
8 of degree 6 and one of K3

7 or K3
8 of degree 9.

The following truncated series displays the difference between the Hilbert series
implied by the Smith and Rivlin integrity bases and the invariants deduced above in
their Molien form. The Smith and Rivlin results differ beginning with fourth-degree
(in C) polynomials.

C2 : z4+4z5+13z6+32z7+71z8+140z9+259z10+448z11+742z12+ · · · ,(6.1)

C2v : z6+3z7+9z8+20z9+42z10+78z11+139z12+ · · · ,(6.2)

S4 : 2z4+8z5+32z6+80z7+194z8+404z9+808z10+1488z11+ 2663z12+ · · · ,(6.3)

D2d : 2z6+4z7+12z8+24z9+50z10+88z11+157z12+ · · · ,(6.4)
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T : 4z6+10z7+27z8+63z9+126z10+239z11+439z12+ · · · ,(6.5)

Td : z7+3z8+6z9+14z10+26z11+47z12+ · · · ,(6.6)

C3 : z4+14z5+53z6+136z7+341z8+750z9+1485z10+2856z11+5206z12+ · · · ,(6.7)

C3v : 2z5+7z6+18z7+43z8+90z9+170z10+308z11+528z12+ · · · ,(6.8)

C3h : 4z6+14z7+41z8+100z9+212z10+414z11+767z12+ · · · ,(6.9)

D3h : z7+4z8+10z9+23z10+45z11+83z12+ · · · .(6.10)

Appendix. Syzygies.
The invariant bases for the triclinic groups C1 and Ci contain no secondary in-

variants and hence no syzygies.

A.1. Monoclinic groups Cs, C2, C2h. This syzygy is a rewriting expression
and also displays the algebraic dependence of the secondary invariant upon the HSOP:

φ2
1 = θ5θ6.(A.1)

A.2. Orthorhombic groups C2v, D2, D2h. An obvious syzygy exists:

φ2
1 = θ4θ5θ6.(A.2)

This is a rewriting expression and displays the algebraic dependence.

A.3. Tetragonal groups S4, C4, C4h. Again, the algebraic dependence syzy-
gies are included in the set of rewriting syzygies. Rewriting syzygies for φ7φα are
omitted since they may be simply constructed by rewriting φ3(φ4φα) or φ4(φ3φα).

φ2
1 = − θ3

[
θ22 − 2θ5],(A.3)

φ1φ2 = − θ2θ3θ4 + 2θ3φ4,(A.4)

φ1φ3 = θ3φ5,(A.5)

φ1φ4 =
1

2
θ2θ4φ1 − 1

2

[
θ22 − 2θ5

]
φ2,(A.6)

φ1φ5 = − [θ22 − 2θ5
]
φ3,(A.7)

φ1φ6 = − θ2θ4φ3 + 2φ7,(A.8)

φ2
2 = − θ3

[
θ24 − 2θ6],(A.9)

φ2φ3 = θ3φ6,(A.10)

φ2φ4 = − 1

2

[
θ24 − 2θ6

]
φ1 +

1

2
θ2θ4φ2,(A.11)

φ2φ5 = φ1φ6

= − θ2θ4φ3 + 2φ7,(A.12)

φ2φ6 = − [θ24 − 2θ6
]
φ3,(A.13)

φ2
3 =

1

2
θ3
[
θ24 − θ6

]
,(A.14)

φ3φ4 = φ7,(A.15)

φ3φ5 =
1

2

[
θ24 − θ6

]
φ1,(A.16)

φ3φ6 =
1

2

[
θ24 − θ6

]
φ2,(A.17)

φ2
4 = − 1

2

[
θ22θ6 + θ24θ5 − 2θ5θ6

]
+ θ2θ4φ4,(A.18)
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φ4φ5 =
1

2
θ2θ4φ5 − 1

2

[
θ22 − 2θ5

]
φ6,(A.19)

φ4φ6 = − 1

2

[
θ24 − 2θ6

]
φ5 +

1

2
θ2θ4φ6,(A.20)

φ2
5 = − 1

2

[
θ22θ

2
4 − θ22θ6 − 2θ24θ5 + 2θ5θ6

]
,(A.21)

φ5φ6 = − 1

2
θ2θ4

[
θ24 − θ6

]
+
[
θ24 − θ6

]
φ4,(A.22)

φ2
6 = − 1

2

[
θ44 − 3θ24θ6 + 2θ26

]
.(A.23)

A.4. Tetragonal groups D2d, C4v, D4, D4h. Algebraic dependence syzygies
coincide with the rewriting syzygies for these groups:

φ2
1 =

1

2
θ3
[
θ24 − θ6

]
,(A.24)

φ2
2 = − 1

2

[
θ22θ6 + θ24θ5 − 2θ5θ6

]
+ θ2θ4φ2.(A.25)

A.5. Cubic groups T , Th and groups Td, O, Oh. The rewriting syzygies
for this group are complicated and do not contain all algebraic dependence syzygies.
Note that the rewriting syzygies for invariants of group Td are expressed in terms of
primaries θ and only those secondary invariants of group Td.

φ4
1 =

1

36

[
2θ4

1θ
4
2 − 7θ4

1θ
2
2θ6 − 12θ4

1θ2θ
2
4 + 3θ4

1θ
2
6 − 10θ2

1θ
4
2θ3

+ 28θ2
1θ

2
2θ3θ6 + 54θ2

1θ2θ3θ
2
4 − 12θ2

1θ3θ
2
6 + 14θ1θ

4
2θ5

− 36θ1θ
2
2θ5θ6 − 108θ1θ2θ

2
4θ5 + 18θ1θ5θ

2
6 − 6θ4

2θ
2
3 + 15θ2

2θ
2
3θ6

+ 54θ2θ
2
3θ

2
4 − 9θ2

3θ
2
6

]
− 1

18

[
2θ3

1θ
3
2 − 12θ3

1θ2θ6 − 18θ3
1θ

2
4

− 21θ1θ
3
2θ3 + 51θ1θ2θ3θ6 + 108θ1θ3θ

2
4 + 21θ3

2θ5 − 45θ2θ5θ6

− 162θ2
4θ5

]
φ1 − 1

36

[
19θ2

1θ
2
2 + 15θ2

1θ6 + 15θ2
2θ3 − 45θ3θ6

]
φ2

+
4

3
θ1θ2φ3 − 1

36

[
θ2
1 − 3θ3

][
5θ3

2 − 9θ2θ6 − 54θ2
4

]
φ7

+
1

18

[
2θ3

1 − 9θ1θ3 + 9θ5

][
θ2
2 − 3θ6

]
φ9,(A.26)

φ1φ4 = − 1

4

[
θ2
1θ

2
2 + θ2

1θ6 + θ2
2θ3 − 3θ3θ6

]
+ θ1θ2φ1 − φ2 + θ1θ2φ4 − φ5,(A.27)

φ1φ6 = − 1

6
θ2

[
θ2
1θ3 + 3θ2

3 − 4θ1θ5

]
+

1

3

[
2θ1θ3 − 3θ5

]
φ1 +

1

3

[
θ1θ3 − 3θ5

]
φ4

+
1

3
θ1θ2φ6 − 1

6

[
θ2
1 − 3θ3

]
φ7 − 1

3

[
θ2
1 − 3θ3

]
φ8,(A.28)

φ1φ7 =
1

6

[
θ3
1θ6 + θ1θ

2
2θ3 − 4θ1θ3θ6 − θ2

2θ5 + 3θ5θ6

]
− 1

3
θ2
1θ2φ1

+
2

3
θ1φ2 +

1

3
θ1θ2φ7 − 1

6

[
θ2
1 − 3θ3

]
φ9,(A.29)

φ1φ8 = − 1

12
θ1

[
θ2
1θ

2
2 + 3θ2

1θ6 + 3θ2
2θ3 − 7θ3θ6

]
+

1

6
θ2

[
3θ2

1 + θ3

]
φ1

− 2

3
θ1φ2 +

1

6
θ2

[
3θ2

1 − θ3

]
φ4 − 2

3
θ1φ5 − 1

6

[
θ2
2 − 3θ6

]
φ6

+
1

3
θ1θ2φ8 − 1

6

[
θ2
1 − 3θ3

]
φ10,(A.30)



INVARIANT BASES FOR HYPERELASTICITY 2067

φ1φ9 =
1

12

[
θ2
1θ

3
2 − θ2

1θ2θ6 − 6θ2
1θ

2
4 − θ3

2θ3 + θ2θ3θ6 + 18θ3θ
2
4

]
− 1

3
θ1θ

2
2φ1 +

2

3
θ2φ2 − 1

6

[
θ2
2 − 3θ6

]
φ7 +

1

3
θ1θ2φ9,(A.31)

φ1φ10 = − 1

12
θ2

[
θ2
1 + θ3

][
θ2
2 − θ6

]
− 1

12
θ2

[
θ2
1θ

2
2 − θ2

1θ6 + θ2
2θ3 − θ3θ6

]
+

1

6
θ1

[
θ2
2 − θ6

]
φ1 +

1

3
θ1

[
θ2
2 − θ6

]
φ4 − 1

3
θ2φ5

− 1

6

[
θ2
2 − 3θ6

]
φ8 +

1

3
θ1θ2φ10 − 1

6

[
θ2
1 − 3θ3

]
φ11,(A.32)

φ1φ11 = − θ1θ2θ
2
4 +

1

3
θ2

[
θ2
2 − 2θ6

]
φ1 − 1

6

[
θ3
2 − θ2θ6 − 18θ2

4

]
φ4

− 1

6

[
θ2
2 − 3θ6

]
φ9 − 1

3

[
θ2
2 − 3θ6

]
φ10 +

1

3
θ1θ2φ11,(A.33)

φ3
4 =

1

4

[
θ2
1θ

2
2 + θ2

1θ6 + θ2
2θ3 − 3θ3θ6

]
φ1 − θ1θ2φ2 + φ3

− 1

4

[
θ2
1θ

2
2 + θ2

1θ6 + θ2
2θ3 − 3θ3θ6

]
φ4 + θ1θ2φ5,(A.34)

φ4φ6 = −1

6
θ2

[
θ2
1θ3 − 3θ2

3 + 2θ1θ5

]
− 1

3

[
θ1θ3 − 3θ5

]
φ1 +

1

3
θ1θ3φ4

+
1

3
θ1θ2φ6 +

1

3

[
θ2
1 − 3θ3

]
φ7 +

1

6

[
θ2
1 − 3θ3

]
φ8,(A.35)

φ4φ7 = − 1

12

[
θ3
1θ

2
2 + 3θ3

1θ6 + 5θ1θ
2
2θ3 − 13θ1θ3θ6 − 2θ2

2θ5 + 6θ5θ6

]
+

1

6
θ2

[
3θ2

1 − θ3

]
φ1 − 2

3
θ1φ2 +

1

6
θ2

[
3θ2

1 + θ3

]
φ4 − 2

3
θ1φ5

+
1

6

[
θ2
2 − 3θ6

]
φ6 +

1

3
θ1θ2φ7 − 1

6

[
θ2
1 − 3θ3

]
φ10,(A.36)

φ4φ8 =
1

12

[
θ3
1θ

2
2 + θ3

1θ6 − θ1θ
2
2θ3 − 5θ1θ3θ6 − 2θ2

2θ5 + 6θ5θ6

]
− 1

6
θ2

[
θ2
1 − 3θ3

]
φ1 − 1

2
θ2

[
θ2
1 − θ3

]
φ4 +

2

3
θ1φ5

+
1

3
θ1θ2φ8 +

1

6

[
θ2
1 − 3θ3

]
φ9 +

1

6

[
θ2
1 − 3θ3

]
φ10,(A.37)

φ4φ9 = − 1

6
θ2

[
3θ2

1θ6 + 2θ2
2θ3 − 5θ3θ6

]
+

1

3
θ1

[
θ2
2 + θ6

]
φ1 − 2

3
θ2φ2

+
1

3
θ1

[
θ2
2 + 2θ6

]
φ4 − 2

3
θ2φ5 +

1

6

[
θ2
2 − 3θ6

]
φ7

+
1

6

[
θ2
2 − 3θ6

]
φ8 +

1

3
θ1θ2φ9 − 1

6

[
θ2
1 − 3θ3

]
φ11,(A.38)

φ4φ10 = − 1

6

[
θ2
1θ

3
2 − 3θ2

1θ
2
4 − θ2

1θ2θ6 − θ3
2θ3 + θ2θ3θ6 + 9θ3θ

2
4

]
+

1

3
θ1

[
θ2
2 − θ6

]
φ1 − 1

3
θ2φ2 +

1

6
θ1

[
θ2
2 − θ6

]
φ4 − 1

6

[
θ2
2 − 3θ6

]
φ7

+
1

3
θ1θ2φ10 +

1

6

[
θ2
1 − 3θ3

]
φ11,(A.39)

φ4φ11 = − 1

4
θ1

[
θ4
2 − 2θ2

2θ6 − 8θ2θ
2
4 + θ2

6

]
+

1

3

[
θ3
2 − 2θ2θ6 − 9θ2

4

]
φ1

+
1

3

[
θ3
2 − θ2θ6 − 9θ2

4

]
φ4 − 1

6

[
θ2
2 − 3θ6

]
φ9

+
1

6

[
θ2
2 − 3θ6

]
φ10 +

1

3
θ1θ2φ11,(A.40)

φ2
6 = − 1

24

[
θ6
1 − 9θ4

1θ3 + 8θ3
1θ5 + 27θ2

1θ
2
3 − 48θ1θ3θ5 − 3θ3

3 + 24θ2
5

]
+ [θ1θ3 − θ5]φ6,(A.41)
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φ6φ7 =
1

12
θ2

[
θ5
1 − 6θ3

1θ3 + 8θ2
1θ5 + θ1θ

2
3 − 4θ3θ5

]
− 1

12

[
θ4
1 − 6θ2

1θ3 + θ2
3 + 8θ1θ5

]
φ1

− 1

6

[
θ4
1 − 6θ2

1θ3 + 8θ1θ5 + θ2
3

]
φ4 +

1

3
θ2θ3φ6

+
1

3
θ1θ3φ7 − 1

3

[
θ1θ3 − 3θ5

]
φ8,(A.42)

φ6φ8 = − 1

12
θ2

[
θ2
1 − θ3

][
θ3
1 − 5θ1θ3 + 8θ5

]
+

1

6

[
θ4
1 + θ2

3 − 6θ2
1θ3 + 8θ1θ5

]
φ1

+
1

12

[
θ4
1 − 6θ2

1θ3 + 8θ1θ5 + θ2
3

]
φ4 +

1

3
θ2θ3φ6

+
1

3

[
θ1θ3 − 3θ5

]
φ7 +

1

3

[
2θ1θ3 − 3θ5

]
φ8,(A.43)

φ6φ9 =
1

36

[
θ4
1θ

2
2 − θ4

1θ6 − 6θ2
1θ

2
2θ3 + 18θ1θ

2
2θ5 + 6θ1θ5θ6 − 9θ2

2θ
2
3 − 9θ2

3θ6

]
− 1

9
θ2

[
θ3
1 − 6θ1θ3 + 9θ5

]
φ1 − 1

18

[
θ2
1 − 3θ3

]
φ2

+
1

3
θ2

[
θ1θ3 − 3θ5

]
φ4 − 1

9

[
θ2
1 − 3θ3

]
φ5 +

1

3
θ1θ6φ6

− 1

9
θ2

[
θ2
1 − 3θ3

]
φ7 − 2

9
θ2

[
θ2
1 − 3θ3

]
φ8 +

1

9
θ3
1φ9

+
1

9

[
2θ3

1 − 9θ1θ3 + 9θ5

]
φ10,(A.44)

φ6φ10 = − 1

18
θ1

[
θ3
1 − 3θ1θ3 + 3θ5

][
θ2
2 − θ6

]
+

1

9
θ2

[
2θ3

1 − 9θ1θ3 + 9θ5

]
φ1

− 1

18

[
θ2
1 − 3θ3

]
φ2 +

1

18

[
θ2
1 − 3θ3

]
φ5 +

1

6
θ1

[
θ2
2 − θ6

]
φ6

+
1

18
θ2

[
θ2
1 − 3θ3

]
φ7 − 1

18
θ2

[
θ2
1 − 3θ3

]
φ8

− 1

9

[
2θ3

1 − 9θ1θ3 + 9θ5

]
φ9 − 1

9

[
θ3
1 − 9θ1θ3 + 9θ5

]
φ10,(A.45)

φ6φ11 =
1

24

[
θ3
1θ

3
2 − 3θ3

1θ2θ6 − 12θ3
1θ

2
4 − 9θ1θ

3
2θ3 + 15θ1θ2θ3θ6 + 72θ1θ3θ

2
4 + 8θ3

2θ5

− 12θ2θ5θ6 − 72θ2
4θ5

]
+

1

8

[
θ2
1θ

2
2 + θ2

1θ6 + θ2
2θ3 − 3θ3θ6

]
φ1

− 1

2
θ1θ2φ2 +

1

2
φ3 +

1

4

[
θ3
2 − θ2θ6 − 6θ2

4

]
φ6

+
1

2

[
θ1θ3 − θ5

]
φ11,(A.46)

φ2
7 =

1

6

[
θ4
1θ6 + θ2

1θ
2
2θ3 − 4θ2

1θ3θ6 + 2θ1θ5θ6 − θ2
2θ

2
3 + θ2

3θ6

]
− 1

3
θ2

[
θ3
1 − θ1θ3 + 2θ5

]
φ1 +

1

6

[
3θ2

1 − θ3

]
φ2 +

2

3
θ2θ3φ7

− 1

3

[
θ1θ3 − 3θ5

]
φ9,(A.47)

φ7φ8 = − 1

24

[
θ4
1θ

2
2 + 5θ4

1θ6 + 6θ2
1θ

2
2θ3 − 18θ2

1θ3θ6 − 4θ1θ
2
2θ5

+ 4θ1θ5θ6 + θ2
2θ

2
3 + 5θ2

3θ6

]
+

1

3
θ2

[
θ3
1 − θ5

]
φ1 − 1

6

[
3θ2

1 − θ3

]
φ2

+
1

3
θ2

[
θ3
1 − θ5

]
φ4 − 1

6

[
3θ2

1 − θ3

]
φ5 +

1

3
θ2θ3φ7

+
1

3
θ2θ3φ8 − 1

3

[
θ1θ3 − 3θ5

]
φ10,(A.48)
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φ7φ9 = − 1

18

[
θ3
1θ

3
2 − 5θ3

1θ2θ6 − 6θ3
1θ

2
4 − 8θ1θ

3
2θ3 + 20θ1θ2θ3θ6 + 36θ1θ3θ

2
4 − 15θ2θ5θ6

+ 7θ3
2θ5 − 54θ2

4θ5

]
− 1

9

[
2θ2

1θ
2
2 + 3θ2

1θ6 + 3θ2
2θ3 − 3θ3θ6

]
φ1

+
7

9
θ1θ2φ2 − 1

3
φ3 − 1

9
θ1

[
θ2
2 − 6θ6

]
φ7 − 1

9
θ2

[
θ2
1 − 6θ3

]
φ9,(A.49)

φ7φ10 = − 1

72

[
3θ3

1θ
3
2 − θ3

1θ2θ6 + 12θ3
1θ

2
4 + θ1θ

3
2θ3 − 7θ1θ2θ3θ6 + 4θ3

2θ5

]
+

1

72

[
7θ2

1θ
2
2 − 9θ2

2θ3 + 3θ2
1θ6 − 9θ3θ6

]
φ1 − 1

6
θ1θ2φ2 +

1

6
φ3

+
1

12

[
3θ2

1 − θ3

][
θ2
2 − θ6

]
φ4 − 2

9
θ1θ2φ5 − 1

12

[
θ3
2 − θ2θ6 − 18θ2

4

]
φ6

+
1

6
θ1

[
θ2
2 − θ6

]
φ7 − 1

9
θ1

[
θ2
2 − 3θ6

]
φ8 − 1

18
θ2

[
θ2
1 − 3θ3

]
φ9

− 1

18
θ2

[
θ2
1 − 9θ3

]
φ10 − 1

6

[
θ1θ3 − 3θ5

]
φ11,(A.50)

φ7φ11 = − 1

36

[
θ2
1θ

4
2 − 4θ2

1θ
2
2θ6 + 3θ2

1θ
2
6 − 3θ4

2θ3 + 12θ2
2θ3θ6 + 36θ2θ3θ

2
4 − 9θ3θ

2
6

]
+

1

9
θ1θ2

[
θ2
2 − 3θ6

]
φ1 +

1

18

[
θ2
2 − 3θ6

]
φ2 +

1

9

[
θ2
2 − 3θ6

]
φ5

+
1

9
θ3
2φ7 − 1

18

[
5θ3

2 − 9θ2θ6 − 54θ2
4

]
φ8

− 1

9
θ1

[
θ2
2 − 3θ6

]
φ9 − 2

9
θ1

[
θ2
2 − 3θ6

]
φ10 +

1

3
θ2θ3φ11,(A.51)

φ2
8 =

1

6

[
θ4
1θ6 + 2θ2

1θ
2
2θ3 − 5θ2

1θ3θ6 − 3θ1θ
2
2θ5 + 5θ1θ5θ6 − θ2

2θ
2
3 + θ2

3θ6

]
− 1

3
θ2

[
θ1θ3 − 3θ5

]
φ1 − 1

3
θ2

[
θ3
1 − θ5

]
φ4 +

1

6

[
3θ2

1 − θ3

]
φ5

+
2

3
θ2θ3φ8 +

1

3

[
θ1θ3 − 3θ5

]
φ9 +

1

3

[
θ1θ3 − 3θ5

]
φ10,(A.52)

φ8φ9 =
1

72

[
θ3
1θ

3
2 − 12θ3

1θ
2
4 − 27θ3

1θ2θ6 − 13θ1θ
3
2θ3 + 43θ1θ2θ3θ6 − 4θ3

2θ5

]
+

1

24

[
7θ2

1θ
2
2 − θ2

2θ3 + 7θ2
1θ6 − 5θ3θ6

]
φ1 − 11

18
θ1θ2φ2

+
1

6
φ3 +

1

12

[
3θ2

1 − θ3

][
θ2
2 + θ6

]
φ4 − 4

9
θ1θ2φ5

− 1

12

[
3θ3

2 − 7θ2θ6 − 18θ2
4

]
φ6 +

1

9
θ1

[
θ2
2 − 3θ6

]
φ7 +

1

9
θ1θ

2
2φ8

+
1

3
θ2θ3φ9 − 1

9
θ2

[
θ2
1 − 3θ3

]
φ10 − 1

6

[
θ1θ3 − 3θ5

]
φ11,(A.53)

φ8φ10 = − 1

72

[
θ3
1θ

3
2 + θ3

1θ2θ6 + 12θ3
1θ

2
4 + 19θ1θ

3
2θ3 − 25θ1θ2θ3θ6

− 144θ1θ3θ
2
4 − 20θ3

2θ5 + 24θ2θ5θ6 + 216θ2
4θ5

]
+

1

72

[
17θ2

1θ
2
2 − 15θ2

1θ6 + 9θ2
2θ3 − 3θ3θ6

]
φ1 − 7

18
θ1θ2φ2

+
1

6
φ3 +

1

12

[
θ3
2 − θ2θ6 − 18θ2

4

]
φ6 − 1

9
θ1

[
θ2
2 − 3θ6

]
φ7

+
1

6
θ1

[
θ2
2 − θ6

]
φ8 +

1

18
θ2

[
θ2
1 − 3θ3

]
φ9 +

1

3
θ2θ3φ10

+
1

6

[
θ1θ3 − 3θ5

]
φ11,(A.54)
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φ8φ11 = − 1

36

[
θ2
1θ

4
2 − 4θ2

1θ
2
2θ6 + 3θ2

1θ
2
6 + 9θ4

2θ3 − 18θ2
2θ3θ6 − 72θ2θ3θ

2
4 + 9θ3θ

2
6

]
+

1

9
θ1θ2

[
θ2
2 − 3θ6

]
φ1 − 1

9

[
θ2
2 − 3θ6

]
φ2 − 1

18

[
θ2
2 − 3θ6

]
φ5

+
1

18

[
5θ3

2 − 9θ2θ6 − 54θ2
4

]
φ7 +

1

18

[
7θ3

2 − 9θ2θ6 − 54θ2
4

]
φ8

− 1

9
θ1

[
θ2
2 − 3θ6

]
φ9 +

1

9
θ1

[
θ2
2 − 3θ6

]
φ10 +

1

3
θ2θ3φ11,(A.55)

φ2
9 =

1

6

[
θ2
1θ

2
2θ6 − θ2

1θ
2
6 − θ2

2θ3θ6 + 6θ2θ3θ
2
4 + θ3θ

2
6

]
− 2

3
θ1

[
θ2θ6 + 3θ2

4

]
φ1 +

1

6

[
3θ2

2 − θ6

]
φ2 − 1

6

[
3θ3

2 − 7θ2θ6 − 18θ2
4

]
φ7

+
2

3
θ1θ6φ9,(A.56)

φ9φ10 = − 1

24

[
θ2
1θ

4
2 − 12θ2

1θ2θ
2
4 − θ2

1θ
2
6 + θ4

2θ3 + 12θ2θ3θ
2
4 − θ3θ

2
6

]
+

1

3
θ1

[
θ3
2 − θ2θ6 − 6θ2

4]φ4 − 1

6

[
θ2
2 + θ6

]
φ5 − 1

3

[
θ3
2 − 2θ2θ6 − 9θ2

4

]
φ8

+
1

6
θ1

[
θ2
2 − θ6

]
φ9 +

1

3
θ1θ6φ10 − 1

6
θ2

[
θ2
1 − 3θ3

]
φ11,(A.57)

φ9φ11 = −1

2
θ1θ

2
4(θ

2
2 − θ6) +

1

12

[
3θ4

2 − 8θ2
2θ6 − 12θ2θ

2
4 + θ2

6

]
φ1

− 1

6

[
θ2
2θ6 − 6θ2θ

2
4 − θ2

6

]
φ4 +

1

3
θ2θ6φ9

− 1

6

[
3θ3

2 − 7θ2θ6 − 18θ2
4

]
φ10 +

1

3
θ1θ6φ11,(A.58)

φ2
10 = − 1

12

[
12θ2

1θ2θ
2
4 + θ4

2θ3 − 2θ2
2θ3θ6 − 12θ2θ3θ

2
4 + θ3θ

2
6

]
+ 2θ1θ

2
4φ1

− 1

6

[
θ2
2 − θ6

]
φ2 + 2θ1θ

2
4φ4 − 1

6

[
θ2
2 − θ6

]
φ5

+
1

6

[
θ3
2 − θ2θ6 − 18θ2

4

]
φ7 +

1

6

[
θ3
2 − θ2θ6 − 18θ2

4

]
φ8

+
1

3
θ1

[
θ2
2 − θ6

]
φ10,(A.59)

φ10φ11 = − 1

2
θ1θ

2
4

[
θ2
2 − θ6

]
− 1

12

[
θ4
2 − 24θ2θ

2
4 − θ2

6

]
φ1

− 1

12

[
θ4
2 − 2θ2

2θ6 − 12θ2θ
2
4 + θ2

6

]
φ4 +

1

6

[
θ3
2 − θ2θ6 − 18θ2

4

]
φ9

+
1

3

[
θ3
2 − θ2θ6 − 9θ2

4

]
φ10 +

1

6
θ1

[
θ2
2 − θ6

]
φ11,(A.60)

φ2
11 = − 1

8

[
θ6
2 − 3θ4

2θ6 − 16θ3
2θ

2
4 + 3θ2

2θ
2
6 + 24θ2θ

2
4θ6 + 72θ4

4 − θ3
6

]
+

1

2

[
θ3
2 − θ2θ6 − 6θ2

4

]
φ11.(A.61)

Algebraic dependence syzygies for φ6 and φ11 are given by the rewriting syzygies.
For the other secondary invariants, the algebraic syzygies are higher-order polynomial
expressions. A representative algebraic dependence syzygy for φ4 is
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0 =
[
θ6
1θ

6
2 − 12θ6

1θ
3
2θ

2
4 − 3θ6

1θ
2
2θ

2
6 − 36θ6

1θ2θ
2
4θ6 + 36θ6

1θ
4
4 − 6θ6

1θ
3
6 − 3θ4

1θ
6
2θ3

− 12θ4
1θ

4
2θ3θ6 + 36θ4

1θ
3
2θ3θ

2
4 + 9θ4

1θ
2
2θ3θ

2
6 + 252θ4

1θ2θ3θ
2
4θ6 − 324θ4

1θ3θ
4
4

+ 54θ4
1θ3θ

3
6 + 4θ3

1θ
6
2θ5 − 24θ3

1θ
3
2θ

2
4θ5 + 12θ3

1θ
2
2θ5θ

2
6 − 216θ3

1θ2θ
2
4θ5θ6

− 48θ3
1θ5θ

3
6 − 9θ2

1θ
6
2θ

2
3 + 36θ2

1θ
4
2θ

2
3θ6 + 36θ2

1θ
3
2θ

2
3θ

2
4 + 27θ2

1θ
2
2θ

2
3θ

2
6

− 324θ2
1θ2θ

2
3θ

2
4θ6 + 972θ2

1θ
2
3θ

4
4 − 126θ2

1θ
2
3θ

3
6 + 12θ1θ

6
2θ3θ5 − 24θ1θ

4
2θ3θ5θ6

− 216θ1θ
3
2θ3θ

2
4θ5 − 108θ1θ

2
2θ3θ5θ

2
6 + 648θ1θ2θ3θ

2
4θ5θ6 + 216θ1θ3θ5θ

3
6

− 9θ6
2θ

3
3 + 4θ6

2θ
2
5 + 36θ4

2θ
3
3θ6 − 36θ4

2θ
2
5θ6 + 180θ3

2θ
3
3θ

2
4

− 45θ2
2θ

3
3θ

2
6 + 108θ2

2θ
2
5θ

2
6 − 324θ2θ

3
3θ

2
4θ6 − 972θ3

3θ
4
4 + 18θ3

3θ
3
6

− 108θ2
5θ

3
6

]
−
[
12θ5

1θ
5
2 − 24θ5

1θ
3
2θ6 − 144θ5

1θ
2
2θ

2
4 − 36θ5

1θ2θ
2
6 − 144θ5

1θ
2
4θ6

− 60θ3
1θ

5
2θ3 + 504θ3

1θ
2
2θ3θ

2
4 + 252θ3

1θ2θ3θ
2
6 + 1080θ3

1θ3θ
2
4θ6 + 60θ2

1θ
5
2θ5

− 48θ2
1θ

3
2θ5θ6 − 648θ2

1θ
2
2θ

2
4θ5 − 108θ2

1θ2θ5θ
2
6 − 648θ2

1θ
2
4θ5θ6 − 72θ1θ

5
2θ

2
3

+ 360θ1θ
3
2θ

2
3θ6 + 648θ1θ

2
2θ

2
3θ

2
4 − 432θ1θ2θ

2
3θ

2
6 − 1944θ1θ

2
3θ

2
4θ6 + 60θ5

2θ3θ5

− 288θ3
2θ3θ5θ6 − 648θ2

2θ3θ
2
4θ5 + 324θ2θ3θ5θ

2
6 + 1944θ3θ

2
4θ5θ6

]
φ4

+ 6
[
5θ4

1θ
4
2 − 30θ4

1θ
2
2θ6 − 96θ4

1θ2θ
2
4 − 3θ4

1θ
2
6 − 54θ2

1θ
4
2θ3 + 108θ2

1θ
2
2θ3θ6

+ 432θ2
1θ2θ3θ

2
4 + 18θ2

1θ3θ
2
6 + 40θ1θ

4
2θ5 − 72θ1θ

2
2θ5θ6 − 432θ1θ2θ

2
4θ5

− 3θ4
2θ

2
3 + 18θ2

2θ
2
3θ6 − 27θ2

3θ
2
6

]
φ2

4 + 48
[
2θ3

1θ
3
2 + 6θ3

1θ2θ6 + 12θ3
1θ

2
4

+ 9θ1θ
3
2θ3 − 21θ1θ2θ3θ6 − 54θ1θ3θ

2
4 − 5θ3

2θ5 + 9θ2θ5θ6 + 54θ2
4θ5

]
φ3

4

− 144
[
3θ2

1θ
2
2 + θ2

1θ6 + θ2
2θ3 − 3θ3θ6

]
φ4

4 + 576θ1θ2φ
5
4 − 288φ6

4.(A.62)

A.6. Trigonal groups C3, S6. The rewriting syzygies are

φ4
1 = −1

4
θ23θ

2
4 +

1

2
θ5θ6φ1 +

5

4
θ3θ4φ2 +

1

4
θ3θ6φ5 +

1

4
θ4θ5φ6,(A.63)

φ1φ4 = φ11,(A.64)

φ1φ5 = −1

2
θ4θ5 +

1

2
θ3φ6,(A.65)

φ1φ6 = −1

2
θ3θ6 +

1

2
θ4φ5,(A.66)

φ1φ7 = −θ2θ3θ4 +
1

2
θ3φ8 +

1

2
θ4φ10,(A.67)

φ1φ8 =
1

2
θ4φ7 +

1

2
θ3φ9,(A.68)

φ1φ9 = θ6φ4 + θ4φ8,(A.69)

φ1φ10 = 2θ2θ3φ1 − θ5φ4 + θ3φ7,(A.70)

φ2
4 = θ3θ4 − φ2,(A.71)

φ4φ5 = −θ2θ3θ4 − 1

2
θ3φ8 +

1

2
θ4φ10,(A.72)

φ4φ6 =
1

2
θ4φ7 − 1

2
θ3φ9,(A.73)

φ4φ7 = +
1

2
θ4θ5 +

1

2
θ3φ6,(A.74)

φ4φ8 = −1

2
θ3θ6 − 1

2
θ4φ5,(A.75)

φ4φ9 = −θ6φ1 − θ4φ6,(A.76)

φ4φ10 = θ5φ1 + 2θ2θ3φ4 + θ3φ5,(A.77)
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φ2
5 = θ23θ4 − θ3φ2 − θ5φ6,(A.78)

φ5φ6 = θ5θ6 + 2θ3θ4φ1 − 2φ3,(A.79)

φ5φ7 = −θ5φ8 + θ3φ11,(A.80)

φ5φ8 = θ2θ3θ6 − 1

2
θ3θ4φ4 − 1

2
θ5φ9 − 1

2
θ6φ10,(A.81)

φ5φ9 = −θ6φ7 − 2θ4φ11,(A.82)

φ5φ10 = θ23φ4 + 2θ2θ3φ5 − θ5φ7,(A.83)

φ2
6 = θ3θ

2
4 − θ4φ2 − θ6φ5,(A.84)

φ6φ7 = θ2θ3θ6 +
1

2
θ3θ4φ4 − 1

2
θ5φ9 − 1

2
θ6φ10,(A.85)

φ6φ8 = −θ6φ7 − θ4φ11,(A.86)

φ6φ9 = −θ24φ4 − θ6φ8,(A.87)

φ6φ10 = 2θ2θ3φ6 − θ5φ8 + 2θ3φ11,(A.88)

φ2
7 = θ3φ2 + θ5φ6,(A.89)

φ7φ8 = − θ5θ6 − θ3θ4φ1 + 2φ3,(A.90)

φ7φ9 = − θ3θ
2
4 + 2θ4φ2 + θ6φ5,(A.91)

φ7φ10 = θ23φ1 + 2θ2θ3φ7 + θ5φ5,(A.92)

φ2
8 = θ4φ2 + 1θ6φ5,(A.93)

φ8φ9 = θ24φ1 + θ6φ6,(A.94)

φ8φ10 = − θ23θ4 + 2θ3φ2 + θ5φ6 + 2θ2θ3φ8,(A.95)

φ2
9 =

[
θ34 − θ26

]
,(A.96)

φ9φ10 = − θ5θ6 − 3θ3θ4φ1 + 4φ3 + 2θ2θ3φ9,(A.97)

φ2
10 = −[4θ22θ23 − θ33 + θ25

]
+ 4θ2θ3φ10.(A.98)

A.7. Trigonal groups C3v, D3, D3d. The rewriting syzygies for these groups
are

φ4
1 = −1

4
θ2
3θ

2
4 − 1

2
θ5

[
2θ2θ3 − θ6

]
φ1 +

5

4
θ3θ4φ2 − 1

4
θ3θ5φ4 +

1

4
θ4

[
2θ2θ3 − θ6

]
φ5,(A.99)

φ1φ4 = −1

2
θ4

[
2θ2θ3 − θ6

]
+

1

2
θ3φ5,(A.100)

φ1φ5 =
1

2
θ3θ5 +

1

2
θ4φ4,(A.101)

φ2
4 = θ2

3θ4 − θ3φ2 + (θ6 − 2θ2θ3)φ5,(A.102)

φ4φ5 = −θ5

[
2θ2θ3 − θ6

]
+ 2θ3θ4φ1 − 2φ3,(A.103)

φ2
5 = θ3θ

2
4 − θ4φ2 + θ5φ4.(A.104)

A.8. Hexagonal groups C3h, C6, C6h. The rewriting syzygies are

φ4
1 = −1

4
θ23θ4

[
21θ34 − 2θ6

]
+

1

2
θ5
[
8θ34 − θ6

]
φ1

+
5

4
θ3θ

2
4φ2 +

1

4
θ3
[
10θ34 − θ6

]
φ6 +

1

4
θ24θ5φ8,(A.105)

φ1φ4 = 2θ4φ7 − φ10,(A.106)

φ1φ5 = 2θ2θ3φ1 − θ5φ4 + 2θ3φ7,(A.107)

φ1φ6 = −1

2
θ24θ5 +

1

2
θ3φ8,(A.108)
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φ1φ7 = −1

2
θ2θ3θ

2
4 +

1

2
θ3θ4φ4 +

1

4
θ24φ5 +

1

4
θ3φ9,(A.109)

φ1φ8 = −1

2
θ3
[
12θ34 − θ6

]
+ 4θ4φ2 +

1

2
θ24φ6,(A.110)

φ1φ9 = −3θ24φ7 + 2θ4φ10 + θ3φ11,(A.111)

φ1φ10 = −1

2
θ2θ3

[
12θ34 − θ6

]
+

3

4
θ3θ

2
4φ4

+
1

4

[
12θ34 − θ6

]
φ5 +

1

2
θ3θ4φ9 − 1

2
θ5φ11,(A.112)

φ1φ11 =
1

2

[
12θ34 − θ6

]
φ4 +

1

2
θ24φ9,(A.113)

φ2
4 = θ3θ

2
4 − φ2,(A.114)

φ4φ5 = −2θ23θ4 + θ5φ1 + 2θ2θ3φ4 + θ3φ6,(A.115)

φ4φ6 = −θ2θ3θ24 + θ3θ4φ4 +
1

2
θ24φ5 − 1

2
θ3φ9,(A.116)

φ4φ7 =
1

4
θ24θ5 − θ3θ4φ1 +

1

4
θ3φ8,(A.117)

φ4φ8 = 9θ24φ7 − 4θ4φ10 − θ3φ11,(A.118)

φ4φ9 = −1

2
θ3
[
12θ34 − θ6

]
+ 2θ4φ2 − 1

2
θ24φ6,(A.119)

φ4φ10 =
1

2
θ34θ5 − 3θ3θ

2
4φ1 + φ3 +

1

2
θ3θ4φ8,(A.120)

φ4φ11 = −1

2

[
6θ34 − θ6

]
φ1 − 1

2
θ24φ8,(A.121)

φ2
5 = −[4θ22θ23 − θ33 + θ25

]
+ 4θ2θ3φ5,(A.122)

φ5φ6 = −4θ2θ
2
3θ4 + θ23φ4 + 2θ3θ4φ5 + 2θ2θ3φ6 − 2θ5φ7,(A.123)

φ5φ7 = −θ3θ4θ5 +
1

2
θ23φ1 +

1

2
θ5φ6 + 2θ2θ3φ7,(A.124)

φ5φ8 = −6θ4θ5φ4 + 12θ3θ4φ7 + 2θ2θ3φ8 − θ5φ9 − 2θ3φ10,(A.125)

φ5φ9 = 3θ23θ
2
4 − 6θ4θ5φ1 + 2θ3φ2 − 2θ3θ4φ6 + θ5φ8 + 2θ2θ3φ9,(A.126)

φ5φ10 = −3

2
θ3θ

2
4θ5 + 3θ23θ4φ1 − θ5φ2 + θ4θ5φ6 − 1

2
θ23φ8 + 2θ2θ3φ10,(A.127)

φ5φ11 = −1

2
θ5
[
10θ34 − θ6

]− 3

2
θ3θ

2
4φ1 + 2φ3 + 2θ2θ3φ11,(A.128)

φ2
6 = −3θ23θ

2
4 + 4θ4θ5φ1 − θ3φ2 + 4θ3θ4φ6 − θ5φ8,(A.129)

φ6φ7 = −θ4θ5φ4 + 3θ3θ4φ7 − 1

2
θ5φ9 − 1

2
θ3φ10,(A.130)

φ6φ8 = θ5
[
8θ34 − θ6

]− 6θ3θ
2
4φ1 − 2φ3 + 4θ3θ4φ8,(A.131)

φ6φ9 = θ2θ3
[
12θ34 − θ6

]
+

3

2
θ3θ

2
4φ4 − 1

2

[
12θ34 − θ6

]
φ5 + 3θ3θ4φ9 − θ5φ11,(A.132)

φ6φ10 = −3

2
θ24θ5φ4 +

3

2
θ3θ

2
4φ7 − θ4θ5φ9 + θ3θ4φ10 +

1

2
θ23φ11,(A.133)

φ6φ11 = −[12θ34 − θ6
]
φ7 + θ24φ10 + 2θ3θ4φ11,(A.134)

φ2
7 = −θ4θ5φ1 +

1

4
θ3φ2 +

1

4
θ5φ8,(A.135)

φ7φ8 =
1

2
θ2θ3

[
6θ34 − θ6

]
+

9

4
θ3θ

2
4φ4 − 1

4

[
6θ34 − θ6

]
φ5 + θ3θ4φ9 − 1

2
θ5φ11,(A.136)
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φ7φ9 = −1

2
θ5
[
11θ34 − θ6

]
+

3

2
θ3θ

2
4φ1 + φ3 − 1

2
θ3θ4φ8,(A.137)

φ7φ10 =
1

8
θ23
[
12θ34 − θ6

]− 9

4
θ24θ5φ1 +

1

2
θ3θ4φ2 − 1

8
θ3θ

2
4φ6 +

1

2
θ4θ5φ8,(A.138)

φ7φ11 = −1

4
θ3θ4

[
21θ34 − 2θ6

]
+

1

2
θ24φ2 +

1

4

[
10θ34 − θ6

]
φ6,(A.139)

φ2
8 = −θ3θ4

[
27θ34 − 2θ6

]
+ 15θ24φ2 −

[
6θ34 − θ6

]
φ6,(A.140)

φ8φ9 = −2
[
18θ34 − θ6

]
φ7 + 9θ24φ10 + 6θ3θ4φ11,(A.141)

φ8φ10 = −1

2
θ2θ3θ4

[
27θ34 − 2θ6

]
+

1

2
θ3
[
18θ34 − θ6

]
φ4

+
1

4
θ4
[
27θ34 − 2θ6

]
φ5 +

9

4
θ3θ

2
4φ9 − 3θ4θ5φ11,(A.142)

φ8φ11 =
1

2
θ4
[
27θ34 − 2θ6

]
φ4 − 1

2

[
6θ34 − θ6

]
φ9,(A.143)

φ2
9 = −3θ24φ2 +

[
12θ34 − θ6

]
φ6,(A.144)

φ9φ10 = −1

4
θ4θ5

[
45θ34 − 4θ6

]
+

1

2
θ3
[
18θ34 − θ6

]
φ1 − 3

4
θ3θ

2
4φ8,(A.145)

φ9φ11 = −1

2
θ4
[
27θ34 − 2θ6

]
φ1 +

1

2

[
12θ34 − θ6

]
φ8,(A.146)

φ2
10 =

1

4
θ23θ4

[
45θ34 − 4θ6

]− 1

2
θ5
[
18θ34 − θ6

]
φ1

+
3

4
θ3θ

2
4φ2 − 1

4
θ3
[
12θ34 − θ6

]
φ6 +

3

4
θ24θ5φ8,(A.147)

φ10φ11 = −1

4
θ3θ

2
4

[
54θ34 − 5θ6

]
+

1

2

[
12θ34 − θ6

]
φ2 +

1

4
θ4
[
21θ34 − 2θ6

]
φ6,(A.148)

φ2
11 = −1

4

[
99θ64 − 20θ34θ6 + θ26

]
.(A.149)

A.9. Hexagonal groups D3h, C6v, D6, D6h. The rewriting syzygies are

φ4
1 =

1

4

[
19θ23θ

4
4 − 2θ23θ4θ6

]− 1

2

[
22θ2θ3θ

3
4 − 11θ34θ5 − 2θ2θ3θ6 + θ5θ6

]
φ1

+
5

4
θ3θ

2
4φ2 − 1

4
θ3
[
10θ34 − θ6

]
φ4 − 1

4
θ24
[
2θ2θ3 − θ5

]
φ5,(A.150)

φ1φ4 =

[
−θ2θ3θ24 +

1

2
θ24θ5

]
+ θ3θ4φ1 − 1

2
θ3φ5,(A.151)

φ1φ5 =

[
−4θ3θ

3
4 +

1

2
θ3θ6

]
− 2θ4φ2 − 1

2
θ24φ4,(A.152)

φ2
4 = −3θ23θ

2
4 + 2θ4

[
2θ2θ3 − θ5

]
φ1

−θ3φ2 + 4θ3θ4φ4 +
[
2θ2θ3 − θ5

]
φ5,(A.153)

φ4φ5 =
[
22θ2θ3θ

3
4 − 2θ2θ3θ6 − 11θ34θ5 + θ5θ6

]
+2φ3 + 3θ3θ4φ5,(A.154)

φ2
5 = −3θ3θ

4
4 + 3θ24φ2 +

[
12θ34 − θ6

]
φ4.(A.155)
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[7] J.-C. Faugére, A new efficient algorithm for computing Gröbner bases (F4), J. Pure Appl.

Algebra, 139 (1999), pp. 61–88.
[8] S. Forte and M. Vianello, Symmetry classes for elasticity tensors, J. Elasticity, 43 (1996),

pp. 81–108.
[9] K. Gatermann, Computer Algebra Methods for Equivariant Dynamical Systems, Springer-

Verlag, Berlin, 2000.
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ANALYTICAL SOLUTIONS OF A GROWTH MODEL FOR A MELT
REGION INDUCED BY A FOCUSED LASER BEAM∗
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Abstract. We consider processes in which a focused laser beam is used to induce the melting
of silicium. The first goal of this paper is to propose a simple three-dimensional (3D) model of this
melting process. Our model is partly based on an energy balance equation. This model leads to a
nontrivial ODE describing the evolution in time of the dimension of the melt region. The second goal
of this paper is to obtain approximate analytical solutions of this ODE. After using basic solution
methods, we propose an original geometrical method to derive asymptotic solutions for time → ∞.
These solutions turn out to be the most useful for the description of this process.

Key words. focused laser beam, melting of material, three-dimensional (3D) modeling, ODE,
analytic solution, asymptotic solution, geometrical method
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1. Introduction. Focusing an energetic pulsed photon beam on a material usu-
ally leads to a localized heating, possibly followed by atomic vaporization and even by
an ejection of materials, a process called ablation [5]. All these mechanisms contribute
to the dissipation of the laser beam energy into the materials. The time and spatial
distribution of these dissipation phenomena depend on the localized heat source pa-
rameters and on the materials’ properties. In this paper, we assume that the beam
does not cause any ablation and that all the incoming energy is dissipated into heat,
which leads to a local increase of temperature and to a melt region. The object of
this study is the time evolution of the melt region size.

In general, these heating and melting effects constitute a three-dimensional (3D)
heat flow problem usually solved numerically [4]. An analytical solution, even ap-
proximate, is very interesting because it allows analyzing the influence of the various
physical parameters involved. Actually, simplifications to a one-dimensional (1D)
heat flow problem have been proposed by many authors [9], [7], [6] for the case of a
large beam dimension when compared to the heat diffusion length. However, for a
long pulsed focused beam with beam dimension comparable to or smaller than the
melt depth, the lateral heat flow is on the same order of magnitude as the perpendic-
ular component. It follows that the 1D approximation is no longer valid. Nonlinear
boundary conditions arising from a moving solid-liquid interface make exact analytical
solutions of the 3D heat flow equation very difficult.

In this paper, we present a simplified 3D model based on an energy balance
equation. This model was first introduced in [3] with a brief justification and with an
emphasis on the comparison with experimental results. In this paper, our first goal is
to present a complete derivation of this model (section 2), with an emphasis on the
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nature of the approximations used. Our model leads to an ODE that describes the
evolution in time of the dimension of the melt region for a material irradiated by a
focused laser beam. The second goal of this paper is to obtain approximate analytical
solutions of this ODE. In section 3, we analyze this ODE in detail using classical
analytical and numerical methods. In sections 4 and 5, we derive asymptotic solutions
for t → ∞, using a possibly original geometrical method. Finally, in section 6, we
compare the accuracy of the approximate solutions.

2. The model. Our model is based on four main hypotheses that we present
and justify in the following.

2.1. Hypothesis A: The focused laser beam can be treated as a point
heat source. In this paper, we assume that the laser beam is orthogonal to the flat
material surface. A focused laser beam is most often characterized by a Gaussian
curve of width r0. The light intensity varies according to I(r) = I0 exp(−(r/r0)

2),
where r is the distance from the beam center in a direction perpendicular to the beam.
The heat diffusion characteristic length scale for a material of heat diffusivity D is
usually defined by d(t) =

√
D t. d(t) is an estimate of the heat front penetration

depth at time t, assuming that the laser is turned on at t = 0.
A 1D model of the heating process is obtained if r0 >> d. In this limit, the beam

radius can be regarded as infinite. For an isotropic material, the resulting isothermals
are planes which are perpendicular to the laser beam. If the beam is perpendicular
to the flat material surface, then the isothermals are planes which are parallel to this
surface.

A 3D model of the heating process is obtained if r0 << d(t). Photons entering
a material are absorbed progressively. It follows that the light intensity within the
material decreases according to an exponential law (Beers’s law) characterized by a
penetration depth � (the inverse of the absorptivity). We develop our model of the
heating process in the point source approximation framework, where both r0 and �
are much smaller than the diffusion length, i.e.,

{
r0 <<

√
D tp and

� <<
√
D tp,

(2.1)

where tp is the pulse width and d(tp) =
√
D tp is the diffusion length. We emphasize

that the point source approximation (2.1) implies that our model is not expected to
be valid or accurate for t ≈ 0.

2.2. Hypothesis B: Heat losses at the surface of the melt domain are
negligible during the whole melting process. Heat losses occur through two
interfaces: the flat upper surface of the melt domain and the liquid-solid interface. In
this section, we compare the magnitudes of these heat losses.

On one hand, it is a well-known experimental observation that the flat surface
of the liquid domain has approximately the shape of a disk. On the other hand,
the liquid-solid interface is a surface which is attached to the circumference of this
disk. During the melting process, this surface is symmetric with respect to an axis
going through the point heat source in the direction perpendicular to the solid-air
plane. This symmetry implies that the area A of the liquid-solid interface can be
expressed solely as a function of the disk radius r, i.e., A = A(r). If we assume
that the liquid-solid interface is not flat, then its area A(r) will be at least as large as
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the area of the disk, i.e.,

π r2

A(r)
≤ 1(2.2)

for r > 0.
Let us consider the ratio of the heat diffusion losses through these two surfaces.

This ratio is R =
Jliquid/air

Jliquid/solid
, where Jliquid/air and Jliquid/solid are the heat fluxes

through each interface. We use{
Jliquid/air = κair π r

2 ‖ ∇Tair ‖,
Jliquid/solid = κsolid A(r) ‖ ∇Tsolid ‖,(2.3)

where (κair, κsolid) are the heat conductivities of the air and of the solid, respectively,
and (‖ ∇Tair ‖, ‖ ∇Tsolid ‖) are the magnitudes of the temperature gradients at the
liquid surface in the air and in the solid, respectively. Using (2.3), the ratio R takes
the form

R =
π r2

A(r)

κair

κsolid

‖ ∇Tair ‖
‖ ∇Tsolid ‖ .(2.4)

If the solid and the air are at the same temperature initially, then we expect the
temperature gradients at both interfaces to have similar magnitudes during the whole

melting process, i.e., ‖∇Tair‖ ≈ ‖∇Tsolid‖, and therefore R ≈ π r2

A(r)
κair

κsolid
. The in-

equality (2.2) then implies that R has an upper bound:

R ≤ κair

κsolid
.(2.5)

In general, the heat conductivity of gases is typically 100 times smaller than for solids,
and therefore (2.5) implies that R < 1/100. Consequently, it seems reasonable to
neglect heat losses in the air during the melting process. This kind of approximation
has been discussed in the literature by Wood and Geist [8], who also took into account
convection in the air and radiations.

2.3. Hypothesis C: The melt domain is hemispherical. We shall see that
this hypothesis is essentially a consequence of the hypotheses A and B. We assume
that the following three conditions are satisfied: the solid material is isotropic; the
heat source is a point source (hypothesis A); the surface of the melt domain is effec-
tively a thermal insulator (hypothesis B). It follows from these hypotheses that the
temperature distribution has a spherical symmetry, i.e., that T = T (r), where r is the
distance from the point source.

The existence of a spherical symmetry can be understood by comparing our prob-
lem with another similar problem. Consider a point heat source within an infinite
isotropic solid material, instead of a semi-infinite material. In this case, the temper-
ature has obviously a spherical symmetry. Moreover, this symmetry implies that the
heat flux going through an arbitrary plane containing the point heat source vanishes
at each point of this plane. It follows that the problem with a spherical symmetry
has exactly the same boundary condition (i.e., zero heat flux along a plane containing
the source) as our problem in a semi-infinite material. For this reason, we expect the
two problems to have the same symmetry.

Convective flow driven either by buoyancy or surface tension does not have enough
time to develop for durations shorter than 1 µs, which is the laser pulse width in our
application [1]. It follows that convection does not break the spherical symmetry.
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Spherical symmetry implies that the isothermals are hemispherical. The liquid-
solid interface, which is an isothermal, is therefore hemispherical.

2.4. Hypothesis D: Everything happens as if the heat flux at the sur-
face of the melt region was transported instantaneously to the solid-liquid
interface. In this section, we estimate the heat flux which crosses the liquid-solid in-
terface. During a fixed time interval τ , the laser releases a constant quantity of energy
which is absorbed at the top surface of the melt domain. This energy is used to heat
the melt fluid, to melt a hemispherical shell of solid, and to heat the solid via diffusion.
The thermal energy is transferred to the liquid-solid interface via conduction in the
melt phase (convection being negligible).

In the framework of the Stefan problem [2], the energy density balance during a
time lapse dt is evaluated at the moving liquid-solid interface (Figure 2.1):

jin dt = jout dt+ L dr,(2.6)

where jin is the heat flux that reaches the interface inside the melt fluid, jout is the
heat flux diffused into the solid at the liquid-solid interface, and L dr is the heat flux
used to melt a region of solid of depth dr.

We integrate the energy balance equation (2.6) over the hemispherical shell of
radius r and divide by dt to obtain the heat transfer rate balance∫

interface

jin dS = jout 2πr2 + L
dr

dt
2πr2.(2.7)

According to hypothesis B, we neglect heat losses in the air. It follows that the heat
transfer rate

∫
interface

jin dS is the power provided by the laser (that we denote by P )

minus the power used to heat the melt fluid (that we denote by dEh

dt ):∫
interface

jin dS = P − dEh

dt
.(2.8)

Substituting (2.8) into (2.7) yields

P = jout 2πr2 + L
dr

dt
2πr2 +

dEh

dt
.(2.9)

We approximate jout by the linearization

jout = −κs

(
∂T

∂r

)
r=rm

≈ κs ∆sT

ξ
√
D t

,(2.10)

where κs is heat conductivity of the solid phase, rm is the radius of the melt region,
∆sT ≡ Tm − Ts, Tm and Ts are the silicium fusion temperature and the solid silicium
temperature far from the melt region, respectively (Ts equals the room temperature
Troom), D is the thermal diffusivity in the solid at the fusion temperature Tm,

√
D t is

the heat diffusion characteristic length scale of the solid, and ξ is a geometry dependent
constant usually fixed to 1.

The energy used to heat a hemisphere of melt solid satisfies

dEh
dt

= c�
2

3
π r3

dT�
dt

,(2.11)

where c� is the liquid silicium specific heat and T� is the mean temperature of the
liquid silicium.
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Substituting (2.10) and (2.11) into (2.9) leads to the energy transfer rate balance
equation

P =
κs ∆sT

ξ
√
D t

2πr2 + L
dr

dt
2πr2 + c�

2

3
π r3

dT�
dt

.(2.12)

We will now compare the magnitude of the three terms⎧⎪⎪⎨
⎪⎪⎩

Pdiffusion = κs ∆sT

ξ
√
D t

2 π r2,

Pmelting = L dr
dt 2 π r2,

Pliquid heating = c�
2
3 π r

3 dT�

dt .

(2.13)

In the second and third equations of (2.13), the instantaneous rates dr
dt and dT�

dt are
unknown a priori. However, the average rates can be estimated. For a time lapse τ , the
average rates are defined by dr

dt |mean = r/τ and dT�

dt |mean = ∆�T
τ . In this problem, the

laser beam power is constant and the size of the melt pool grows with time. Because
the volume to heat increases as time passes, we expect both dr/dt and dT�/dt to
decrease with time, i.e., to have negative second derivatives. This implies that the
average rates are larger than the instantaneous rates. Substituting the average rates
into (2.13) yields ⎧⎪⎪⎨

⎪⎪⎩
Pdiffusion = κs ∆sT

ξ
√
D t

2 π r2,

Pmelting ≤ L r
τ 2 π r2,

Pliquid heating ≤ c�
2
3 π r

3 ∆�T
τ .

(2.14)

We use parameter values which are close to the ones observed experimentally for a
focused laser beam on silicium, i.e., r = 1 µm, D = 0.1 cm2/s, κs = 0.3 W/(cm ◦K),
∆�T = Tvapor(Si) − Tmelt(Si) = 900 ◦K (by using the vaporization temperature of
silicium, we overestimate Pliquid heating), ∆sT = Tmelt(Si) − Troom = 1400 ◦K, cl =
0.91 J/(g ◦K), τ = 1 µs, and L = 4129 J/(cm3). Equation (2.14) leads to⎧⎨

⎩
Pdiffusion = 0.083 W,
Pmelting ≤ 0.025 W,

Pliquid heating ≤ 0.0017 W.
(2.15)

For short times, i.e., t ≤ tp, we expect both r(t) and T�(t) to increase rapidly with
time and consequently the instantaneous rates dr/dt and dT�/dt should be close to
their average values. It follows that we can use the upper bounds in the second
and third lines of (2.15) as estimates of Pmelting and Pliquid heating, which leads to
Pmelting/Pliquid heating ≈ 15. Pliquid heating is therefore the smallest contribution to the
energy balance, which is dominated by Pdiffusion and Pmelting. Combining the latter
two contributions, we get

Pliquid heating

Pdiffusion + Pmelting
<

2

100
.(2.16)

The energy stored by the heating fluid is therefore quite small compared to the energy
transported by conduction and the energy used to melt the solid. In the following, we
make the hypothesis that Pliquid heating can be neglected. It follows that the energy
transferred by the laser during consecutive equal length time intervals can be regarded
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as an incompressible train of equal size energy grains. Since the energy used to heat
the fluid is negligible, then for each grain of energy entering the fluid at the upper
surface, there is another grain of energy (emitted earlier) that exits the fluid at the
liquid-solid interface. In other words, everything happens as if the energy entering the
liquid at the top surface was transported instantaneously at the liquid-solid interface.

2.5. Derivation of the ODE based on the model hypotheses. According
to hypothesis C, the melt region can be described by a hemisphere of radius r, as
shown in Figure 2.1. We will therefore focus on the description of r(t) as a function of
the time t. According to the point heat source hypothesis A, the condition of validity
of our model is

r(t) >> r0,(2.17)

where r0 is the beam radius.
According to hypothesis D, we neglect the third term of (2.12) (on the right-hand

side) to obtain

P =
κs ∆sT

ξ
√
D t

2πr2 + L 2πr2
dr

dt
.(2.18)

Introducing the dimensionless quantities

x ≡ 2 π
r

r0
, τ = 4 π2 D t

r20
, p =

P

D L r0
,(2.19)

we can rewrite (2.18) in the equivalent form

dx

dτ
=

p

x2
− A

τ1/2
,(2.20)

where we introduce the dimensionless material-properties-only constant

A ≡ κs ∆sT

ξ D L
.(2.21)

For most materials, A ≈ 1. With typical values for D (0.1 cm2/s), L (4129 J/cm3),
∆sT (1400 K), r0 (10−4 cm), and P = 1 W, we get τ ≈ 4 × 108 t and p ≈ 25. Using
the first quantity in (2.19), the constraint (2.17) implies that x >> 2π.

2.6. Initial value. The laser beam is turned on at τ = 0 and is kept on after-
ward. The size of the melt region is zero at τ = 0, and therefore it seems natural to
use the initial value x(0) ≡ x0 = 0. However, the differential equation (2.20) happens
to be singular at τ = 0 and x = 0. These singularities deserve a few comments.

First, we should stress that according to hypothesis A (point source approxima-
tion), we do not expect our model to be valid for r = 0. Indeed, the assumption (2.1)

implies that r(t) >> r0 and t >>
r20
D . Let us nevertheless consider our model in the

limit r → 0 and t→ 0.
The origin of the singularity at t = 0 is the term κs ∆sT

ξ
√
D t

2πr2 in (2.18). The

parameter ∆sT ≡ Tm − Troom is fixed in our model, whereas in reality ∆sT = 0
for t = 0. Indeed, the medium does not melt instantaneously and therefore the
temperature at the laser beam impact point increases rapidly from its initial value
Troom to reach the melt value Tm. As expected, our equation does not correctly model
this part of the heating process, which causes the singularity at time zero.



2082 A. SAUCIER, J.-Y. DEGORCE, AND M. MEUNIER

Fig. 2.1. Schematics showing the hemispherical melt region of a semiconductor irradiated by a
focused beam.

The singularity at r = 0 is more physical because we expect dr
dt to be very large for

t ≈ 0. Indeed, for t ≈ 0 the finite power from the laser beam is transferred to a tiny
hemisphere, which naturally causes the material to melt rapidly and consequently dr

dt
to be very large. In numerical simulations, we have to consider initial values such that
r0 > 0, even if it is not consistent with the physics of the problem. As a compromise,
we will consider solutions with r0 > 0 in the limit r0 → 0+.

2.7. A preliminary simplification of the ODE. The change of variables

R = p−1 x , θ = p−2 τ(2.22)

transforms (2.20) into

dR

dθ
= f(R, θ) ≡ 1

R2
− A√

θ
,(2.23)

which contains only one parameter (i.e., A ≥ 0), instead of two (i.e., A and p).
In the following, we will study the ODE (2.23) with the initial condition R(0) ≡
R0 > 0. The restriction x >> 2π implies that R >> 0.25 (i.e., R >> 2π/p with
p = 25). According to (2.22), the solutions of (2.20) and (2.23) are directly related
by x(τ, x0) = p R(p−2τ,R0). If R0 = x0 ≈ 0, then

x(τ) = p R(p−2τ).(2.24)
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In the following, we will assess the accuracy of approximate analytical solutions by
comparison with numerical solutions, for which we use A = 0.75, which is the value
of A corresponding to silicium.

3. Basic considerations.

3.1. Separability and integrating factor. Equation (2.23) is a nonlinear first
order nonautonomous ODE. If A = 0, then (2.23) becomes dR

dθ = 1
R2 , which is sepa-

rable, and the solution is

R(θ) = (3 θ +R3
0)

1/3.(3.1)

However, if A > 0, then (2.23) is not separable. Moreover, an integrating factor that
depends only on R or only on θ does not exist.

3.2. Sign of the derivative and direction field. Equation (2.23) can be
rewritten in the equivalent form

dR

dθ
= − A

R2
√
θ

(
R+

θ1/4√
A

)(
R− θ1/4√

A

)
,(3.2)

which shows that the function

ρ0(θ) ≡ θ1/4√
A

(3.3)

plays a special role. On one hand, ρ0(θ) satisfies f(ρ0(θ), θ) = 0. On the other hand,
it follows from (3.2) that {

dR/dθ < 0 if R > ρ0(θ),
dR/dθ > 0 if R < ρ0(θ).

(3.4)

The inequalities (3.4) suggest that orbits have a tendency to remain close to ρ0(θ),
i.e., that ρ0(θ) is an asymptotic solution for θ → ∞. This is indeed the case, in the

sense that ρ̇0(θ) − f(ρ0(θ), θ) = θ−3/4

4
√
A

→ 0 as θ → ∞. The direction field (DF) of

(2.23) was plotted in Figure 3.1 for A = 0.75 and 0 ≤ θ ≤ 1. The DF is horizontal
on the solid curve R = ρ0(θ). The DF is pointing downward along the R-axis, which
indicates that orbits dive down for θ ≈ 0 and R(0) > 0. However, the large θ behavior
of the field is consistent with an increasing R(θ) as θ increases.

3.3. Singularities and numerical solutions. Equation (2.23) is singular at
R = 0 and θ = 0, which is problematic for initial values of the form R(0) = R0 > 0.
The singularity at θ = 0 can be circumvented with the change of variable s =

√
θ,

which transforms (2.23) into

dR

ds
= 2

(
−A+

s

R2

)
.(3.5)

Equation (3.5) is no longer singular at s = 0 but remains singular at R = 0. We
obtained our numerical solutions1 by solving (3.5) and then by replacing s by

√
θ.

With this method, we obtained several numerical solutions corresponding to different
values of R0 > 0 (Figure 3.2).

1In this paper, numerical solutions were obtained with the Mathematica function NDSolve, which
switches between a nonstiff Adams method and a stiff Gear method.
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Fig. 3.1. DF of (2.23) for A = 0.75. The solid curve represents the set of points for which the

DF is horizontal, i.e., R = ρ0(θ) ≡ θ1/4/
√
A.

Considering Figure 3.2, the first important observation is that R(θ,R0) is virtually
independent of R0 for large enough θ. This is fortunate because we did not know a
priori which value to choose for R0. Figure 3.2 informs us that any R0 < 0.1 leads
essentially to the same solution for θ >> 0.002. The second observation is that
the validity condition R >> 0.25 corresponds approximately to the validity range
θ >> θ1 ≡ 0.002.

3.4. Anomalous behavior of R(θ) around θ = 0. The physics of this prob-
lem implies that the melt region expands with time. However, as clearly seen on the
DF, all solutions with R0 > 0 dive down in the neighborhood of θ = 0 before even-
tually going up again. This peculiar behavior occurs in the region where the ODE
is not valid. To be cautious, it is important to see if this anomaly can overlap the
validity range θ > θ1 of the ODE.

We analyzed the behavior of R(θ) as θ → 0 in Appendix A and found that{
If R0 > 0, R(θ) ∼ R0 − 2 A

√
θ + 1

R2
0
θ,

If R0 ≈ 0, R(θ) ∼ (3 θ)1/3
(3.6)

as θ → 0. Solutions with R0 > 0 and R0 ≈ 0 are qualitatively different. Indeed, if
R0 ≈ 0, then R(θ) increases for all θ ≥ 0, as it should. However, if R0 > 0, then
R(θ) decreases, reaches a minimum around θmin = A2 R4

0, and then increases (R(θ)
is U-shaped). If we consider, for instance, a solution obtained with R0 = 0.001, then
we get θmin ≈ 5.6×10−13 << θ1 = 0.002. Hence the anomalous behavior (3.6) occurs
at very short times and does not overlap the validity range θ > θ1 of the ODE.

3.5. Perturbation solution for A small. The solution for A = 0 is known
exactly, i.e., R(θ) = (R3

0 + 3 θ)1/3, and we assume that 0 ≤ A ≤ 1. In this context, it
is appropriate to look for a perturbation solution that would be valid for A small. If
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Fig. 3.2. Numerical solutions for the initial values R(0) = (0.001, 0.01, 0.02, 0.05, 0.1).
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Fig. 3.3. The solid curve is a numerical solution with R(0) = 0.001 and A = 0.75, while the
dotted curve is the perturbation solution (3.8). The curves are superposed; i.e., the agreement is
excellent.

we search for a solution of the form

R(θ) =
∞∑
n=0

An Rn(θ),(3.7)
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where the Rns are unknown functions and R(0) = 0, then it is straightforward to
show (see Appendix B) that the perturbation method leads to the series

R(θ) = (3 θ)1/3 − 6

7

√
θ A+

3

49
(3 θ)2/3 A2 − 8 31/3

343
θ5/6 A3

− 711

12005
θ A4 +

4824 32/3

924385
θ7/6 A5 +O(A)6.

(3.8)

As shown in Figure 3.3, an excellent agreement of (3.8) with numerical solutions is
obtained for 0 ≤ θ ≤ 1.

3.6. Dependence of the solution on the parameter A. We notice that
(3.8) can be written in the form R(θ) =

∑5
n=0 cn (θ1/6)n+2 An, where the cns are real

coefficients. Factorizing θ1/3 yields R(θ) = θ1/3
∑5
n=0 cn (A θ1/6)n, which suggests

that the solution with R0 = 0 has the general form

R(θ) = θ1/3 F (A θ1/6),(3.9)

where F is an unknown function. Substituting (3.9) into (2.23) and using the change
of variable u = A θ1/6 lead to

dF

du
=

6 (1 − u F 2) − 2 F 3

u F 2
.(3.10)

Equation (3.10) does not depend explicitly on A, and therefore (3.9) is indeed correct
in general. The initial condition for (3.10) is F (0) = 31/3, which follows from R(θ) ∼
(3 θ)1/3 as θ → 0. Equation (3.10) is a key equation that allows us to recover the
MacLaurin series of F (u) directly, i.e., without using the perturbation method. Con-
sider, for instance, F ′(0). According to (3.10), F ′(0) has an indeterminate form 0/0.

However, using l’Hôspital’s rule yields F ′(0) = limu→0
−6 (F 2+2 u F F ′)−6 F 2 F ′

F 2+2 u F F ′ =
−6 − 6 F ′(0) ⇒ F ′(0) = −6/7, which is correct according to (3.8). Higher or-
der derivatives can also be obtained to recover the whole expansion, i.e., F (u) =

31/3 − 6
7 u+ 9 32/3

49 u2 − 8 31/3

343 u3 − 711
12005 u

4 + 4824 32/3

924385 u5 +O(u)6.

4. Asymptotic behavior for θ → ∞. In the spirit of the geometrical methods
of Poincaré, we will try to locate the orbit R(θ) by examining its distance with respect
to a reference curve. We have seen previously that the curve R = ρ0(θ), defined by
(3.3), is an asymptotic solution as θ → ∞. We will therefore choose R = ρ0(θ) as our
reference curve. We consider the time evolution of the distance function U(θ) defined
by

U(θ) ≡ 1

2
(R(θ) − ρ0(θ))

2
.(4.1)

A time derivative gives dU
dθ = (R − ρ0)(Ṙ − ρ̇0) = (R − ρ0)(f(R, θ) − ρ̇0). The factor

f(R, θ) − ρ̇0 has two roots R = ± ρ1(θ), which yields the factorization

dU

dθ
= − (1 + 4 A3/2 θ1/4)

4
√
A R2 θ3/4

(R+ ρ1(θ))(R− ρ0(θ))(R− ρ1(θ)),(4.2)

where

ρ1(θ) =
2 A1/4 θ3/8√

1 + 4 A3/2 θ1/4
.(4.3)
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Fig. 4.1. Dotted lines: Functions ρ0(θ) (top) and ρ1(θ) (bottom). Solid lines are orbits with
different values of R(0) > 0, i.e., (0.01, 0.1, 0.25, 0.5, 0.75, 1, 1.25, 1.5). The solutions that correspond
to R(0) = 0.01 and 0.01 are superposed. Here A = 0.75.

The functions ρ0(θ) and ρ1(θ), which are plotted in Figure 4.1 for A = 0.75, satisfy

ρ0(θ) > ρ1(θ) > 0(4.4)

for all θ > 0 as long as A > 0. It follows from (4.2) and (4.4) that⎧⎪⎪⎨
⎪⎪⎩
dU
dθ < 0 if R > ρ0(θ) or R < ρ1(θ),

dU
dθ > 0 if ρ0(θ) < R < ρ1(θ),

dU
dθ = 0 if R = ρ0(θ) or R = ρ1(θ).

(4.5)

In other words, the crescent-shaped zone bounded by the curves R = ρ0(θ) and
R = ρ1(θ) is attractive for all orbits that are outside the crescent. If R(0) > 0, then
the orbit is in the region R > ρ0(θ) initially, i.e., outside the crescent. If R(0) = 0,
then according to (3.6) we have R(θ) ∼ (3 θ)1/3 as θ → 0, and consequently the orbit
lies between the two curves ρ0(θ) and ρ1(θ) initially. Indeed, ρ1(θ) ∼ 2 A1/4 θ3/8 as
θ → 0, and one shows easily that 2 A1/4 θ3/8 < (3 θ)1/3 < θ1/4/

√
A as θ → 0. In

summary, the orbit is initially located either above the reference curve R = ρ0(θ) (for
R0 > 0), or between ρ0(θ) and ρ1(θ) (for R0 = 0).

If the orbit starts above R = ρ0(θ), then it follows from the first line of (4.5) that
R(θ) gets closer to ρ0(θ) as θ increases. This behavior is illustrated by the numerical
solutions displayed in Figure 4.1. All orbits with R(0) > 0 cross the curve R = ρ0(θ)
because the DF is horizontal on this curve. Once inside the crescent-shaped region
ρ0(θ) < R < ρ1(θ), then the second line of (4.5) implies that the orbit R(θ) goes away
from the upper boundary of the crescent R = ρ0(θ). We are going to prove that this
orbit cannot cross the bottom curve R = ρ1(θ) because this would imply U̇(θ) > 0,
which is not possible on and below this curve according to (4.5).
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First,

U̇ = (ρ0 −R)(ρ̇0 − Ṙ) = (ρ0 −R) Ḋ,(4.6)

where D(θ) ≡ ρ0(θ) −R(θ). The distance D(θ) satisfies

Ḋ = ρ̇0(θ) − Ṙ(θ) = ρ̇0(θ) − ρ̇1(θ) + ρ̇1(θ) − Ṙ(θ) = Ḋ0 + ρ̇1(θ) − Ṙ(θ),(4.7)

where D0(θ) ≡ ρ0(θ) − ρ1(θ) is the distance between the two curves. It can be shown
that Ḋ0 > 0 for all θ > 0; i.e., the distance separating the two curves increases. If
we assume that an orbit crosses the curve R = ρ1(θ) from above, then this orbit has
to satisfy Ṙ < ρ̇1 ⇒ ρ̇1(θ) − Ṙ(θ) > 0 at the crossing point. Since Ḋ0 > 0 and
ρ̇1(θ) − Ṙ(θ) > 0 at the crossing point, (4.7) implies that Ḋ > 0. Since R < ρ0 and
Ḋ > 0 at the crossing point, it follows from (4.6) that U̇ > 0, which is not possible
on or below the curve R = ρ1(θ) according to (4.5). Hence there is no crossing
point.

The orbit must therefore remain within the crescent, while going away from the
upper curve R = ρ0(θ). Orbits that start within the crescent, and, in particular, the
orbit with R0 = 0, also remain within the crescent for all θ > 0 (for the same reasons).
It can be shown that limθ→∞ ρ0(θ)−ρ1(θ) = 1/(8 A2). Hence the orbit is sandwiched
between two curves that are separated by an asymptotically finite constant distance
and goes away from the upper curve. Numerical solutions (Figure 4.1) indicate that
the limit orbit is much closer to ρ1(θ) (bottom curve) than to ρ0(θ) for A = 0.75. It
follows that a possible asymptotic behavior for the orbit is

R(θ) ∼ 2 A1/4 θ3/8√
1 + 4 A3/2 θ1/4

+ C(A,R0) as θ → ∞,(4.8)

where C(A,R0) << 1/(8 A2). Numerical solutions suggest that C(A,R0) could be
independent of R0. ρ1(θ) satisfies (2.23) asymptotically as θ → ∞. Indeed, as θ → ∞,
we have ρ̇1(θ)−f(ρ1(θ), θ) ∼ 1

4
√
A θ3/4

→ 0. Finally, let us stress that (4.8) has exactly

the functional form (3.9), with F (u) = (2 u1/4)/(
√

1 + 4 u3/2).

5. More accurate asymptotic solutions for θ → ∞. The asymptotic so-
lution ρ1(θ) was shown to be an improvement on the first guess ρ0(θ). One may
hope that a similar procedure could allow us to further improve the solution. Let us
therefore consider the distance function

V (θ) ≡ 1

2
(R(θ) − ρ1(θ))

2
.(5.1)

Taking the time derivative and factorizing as previously yield

V̇ (θ) = −a(θ)(R+ ρ2(θ))(R− ρ1(θ))(R− ρ2(θ)),(5.2)

where ρ2(θ) > 0 and a(θ) > 0 are given by

ρ2(θ) =
2 (1 + 4 A3/2 θ1/4)

3/4
θ5/16√

3 A1/4 + 4 A (1 + 4 A3/2 θ1/4)
3/2

θ1/8 + 8 A7/4 θ1/4
,

a(θ) =
3 A1/4 + 4 A (1 + 4 A3/2 θ1/4)

3/2
θ1/8 + 8 A7/4 θ1/4

4 R2 (1 + 4 A3/2 θ1/4)
3/2

θ5/8
.

(5.3)
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It can be shown that ρ2(θ) > ρ1(θ) for all θ > 0, which implies with (5.2) that

V̇ (θ) < 0 if R > ρ2(θ) or R < ρ1(θ),

V̇ (θ) > 0 if ρ1(θ) < R < ρ2(θ);
(5.4)

i.e., the crescent region bounded by the curves R = ρ1(θ) and R = ρ2(θ) is attractive.
The situation is therefore similar to the previous case in the sense that we have
identified another crescent-shaped region which is attractive for orbits that are outside
this region. However, the arguments that we used in section 4 to prove that orbits
entering this crescent are trapped no longer holds in this case. Indeed, the problem
is that ρ̇2 − ρ̇1 < 0; i.e., the two curves get closer to each other as θ increases (which
can be shown numerically for A = 0.75).

We cannot establish with the same argument that the orbit stays inside this
new crescent, but we can at least claim that ρ2(θ) is an asymptotic solution because
ρ2(θ) ∼ θ1/4/

√
A as θ → ∞. We may ask if ρ2(θ) is a better approximation of R(θ)

than ρ1(θ) for 0 ≤ θ ≤ 1. Numerical solutions (Figure 5.1) indicate that the orbits
with R0 ≈ 0 are closer to ρ2(θ) than to ρ1(θ). In Figure 5.1, a low value of A was used
to get a clearly visible spacing between the curves bounding the crescent. Indeed, for
A = 0.75 the curves ρ1(θ) and ρ2(θ) are almost superposed. We can therefore propose
the asymptotic solution

R(θ) ∼ 2 (1 + 4 A3/2 θ1/4)
3/4

θ5/16√
3 A1/4 + 4 A (1 + 4 A3/2 θ1/4)

3/2
θ1/8 + 8 A7/4 θ1/4

(5.5)

as θ → ∞, which is more accurate than ρ1(θ) for 0 ≤ θ ≤ 1. As shown in Figure 5.2,
ρ2(θ) appears to be a good asymptotic solution. Moreover, the range of validity of
ρ2(θ) is broader if R(0) ≈ 0, which is precisely the limit we are interested in.

Remark. The iterative process that allowed us to find ρ1(θ) and ρ2(θ), start-
ing with R = ρ0(θ), can be summarized as follows. In both cases, the new curve
R = ρn+1(θ) bounding the crescent zone is the positive root of the equation

f(ρn+1, θ) = ρ̇n(θ),(5.6)

where ρn(θ) is the previous curve. Using (2.23), (5.6) leads to the iteration formula

ρn+1(θ) =
θ1/4√√

θ ρ̇n(θ) +A
.(5.7)

Roughly speaking, (5.7) is a kind of backward Picard iteration, because we iterate a
derivative instead of an integration. We notice that ρn(0) = 0 for all n and conse-
quently the initial value R(0) = 0 is conserved exactly during iteration. Using the
initial value ρ̇−1(θ) = 0, we can iterate (5.7) to get successively ρ0(θ), ρ1(θ), and ρ2(θ).
It might be possible to generalize this iterative process to find asymptotic solutions
for other ODEs.

6. Conclusions. The only exact result that we derived about the solution of
the ODE (2.23) with R(0) ≈ 0 is the functional form (3.9). Using (2.22), (3.9) leads
to

x(τ, p) = (p τ)1/3 F (A p−1/3 τ1/6),(6.1)
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Fig. 5.1. Results obtained with A = 0.1. The solid curves are numerical solutions obtained
with R0 = (0.01, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9). Solutions with R0 = 0.01, 0.1 are superposed.
The dashed curves are R = ρ1(θ) (bottom) and R = ρ2(θ) (top). In the range 0 ≤ θ ≤ 1, orbits
that enter the crescent remain in the crescent, move away from R = ρ2(θ) as expected, but remain
nevertheless closer to R = ρ2(θ) than to R = ρ1(θ).

where F satisfies the ODE (3.10). Equation (6.1) could be useful to represent exper-
imental data obtained with varying beam power p.

To compare the three approximate analytical solutions obtained in this paper,
we plotted in Figure 6.1 (top) their relative errors (in percent) with respect to the
numerical solution, using A = 0.75 and R0 = 0.001. The perturbation solution
(3.8) is the most accurate over most of the range, except for θ > 0.4, where the
asymptotic solution R = ρ2(θ) is more accurate (using more terms in the perturbation
solution would increase its accuracy). The asymptotic solution R = ρ2(θ) is the second
best approximation and its error has a minimum around θ = 0.004. The third best
approximation is R = ρ1(θ).

The solution R = ρ1(θ) is attractive because of its greatest simplicity. In spite of
its slightly lower accuracy, we are going to see that this solution is the most useful in
practice. First, we should first remember that the ODE studied in this paper is derived
from an approximate model. In particular, the melt region is not exactly hemispherical
and the model ODE is valid only for θ >> θ1 = 0.002, for, say, θ ≥ 0.02. Knowing
that experimental errors lie in the range of 5–10% [3], we can therefore conclude
that the error in the approximate solutions of the model equations is smaller than
the error in experimental measurement. From this standpoint, the most interesting
solution is the one that offers a good compromise between simplicity and accuracy.
From this perspective, the asymptotic solution R(θ) = ρ1(θ) is the simplest and has
an error smaller than 3% in the validity range θ ≥ 0.02. More importantly, this
error decreases as θ increases, which is not the case for the perturbation solution. To
introduce explicitly the dependence on the beam power p, we can combine (2.24) and
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Fig. 5.2. Results obtained with A = 0.75. The dashed curves are numerical solutions obtained
with different positive values of R(0) > 0. The solid curve is the asymptotic solution R = ρ2(θ).

(4.3) to obtain

x(τ, p) =
2 A1/4 p1/4 τ3/8√

1 + 4 A3/2 p−1/2 τ1/4
,(6.2)

which gives an error smaller than 3% for τ ≥ 12.5, which corresponds to t ≥ 0.03 µs.
A satisfactory comparison of the model (6.2) with experimental data is presented
in [3].

We will conclude on a note about the geometrical method that we used to de-
rive the asymptotic solution R = ρ1(θ). This possibly original method leads us to
three increasingly accurate asymptotic solutions ρ0(θ), ρ1(θ), and ρ2(θ) that could be
obtained by iterating the formula

f(ρn+1, θ) =
d

dθ
ρn(θ)(6.3)

starting with ρ−1(θ) = 0. In (6.3), f is the function that defines the ODE, i.e.,
dR
dθ = f(R, θ). Roughly speaking, (6.3) is a kind of backward Picard iteration, because
we iterate a derivative instead of an integration. It would be interesting to see if the
iterative process (6.3) could be generalized to find approximate solutions for other
ODEs.

Appendix A. Asymptotic behavior of R(θ) as θ → 0 for A > 0.
To study R(θ) around θ = 0, we will make the hypothesis

R(θ) ∼ R0 + c θα(A.1)

as θ → 0, where α > 0 and c is a constant. Substituting (A.1) into (2.23) yields

c α

θ1−α
= − A

θ1/2
+

1

(R0 + c θα)2
.(A.2)
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Fig. 6.1. Comparison of the approximate solutions for A = 0.75 and R0 = 0.001. We plotted
the relative error in % with respect to the numerical solution, versus θ. Top-left: Error on R = ρ1(θ).
Center-left: Error on R = ρ2(θ). Bottom-left: Error on the perturbation solution (3.8).

If R0 > 0, then the term A
θ1/2 on the right-hand side of (A.2) dominates as θ → 0. It

follows that c α = −A and 1 − α = 1/2 ⇒ α = 1/2, which in turn implies c = −2A.
Hence, we have the asymptotic behavior

If R0 > 0 , R(θ) ∼ R0 − 2 A
√
θ(A.3)

as θ → 0; i.e., the orbit dives downward before it eventually returns to an increasing
regime. If R0 = 0, (A.2) becomes

c α

θ1−α
= − A

θ1/2
+

1

c2 θ2α
.(A.4)

One must examine two cases. First, if we assume that 2α > 1/2 ⇒ α > 1/4, then
the term 1/(c2 θ2α) (right-hand side of (A.4)) dominates as θ → 0, and therefore
c α = 1/c2 and 1 − α = 2 α ⇒ α = 1/3, which also implies c = 31/3. Second, if we
assume instead that 2α < 1/2 ⇒ α < 1/4, then we must have 1−α = 1/2 ⇒ α = 1/2,
which contradicts our assumption α < 1/4. Hence, for R0 = 0, we have the following
asymptotic behavior:

If R0 = 0, R(θ) ∼ (3 θ)1/3(A.5)

as θ → 0, which is consistent with (3.1).
Comparing (A.3) with (A.5), we see that solutions are qualitatively different for

R0 > 0 and R0 = 0. Indeed, R(θ) increases if R0 = 0, whereas it decreases if R0 > 0.
According to the DF, R(θ) should return rapidly to an increasing regime even if
R0 > 0. To see how this return occurs, we may try to find a better approximation
of R(θ) around θ = 0 with a MacLaurin expansion. Equation (3.5) implies that
the derivatives of R(s) are well defined at s = 0 as long as R0 > 0, and therefore
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Fig. A.1. Behavior of R(θ) around θ = 0 for R0 = 0.1. Here A = 0.75, and θmin ≈ 0.000056.

The solid line is a numerical solution, and the dashed curves are R0 − 2 A
√
θ (going down) and

R0 − 2 A
√
θ + 1

R2
0

θ (going back up).

R(s) =
∑∞
n=0

1
n!
dnR
dsn (0) sn. Using (3.5) to compute the derivatives dnR

dsn (0) leads to

R(s) = R0 − 2 A s+ s2

R2
0

+ 8 A
3 R3

0
s3 + ( 6 A2

R4
0

− 1
2 R5

0
) s4 +O(s)5, and replacing s by θ1/2

gives

R(θ) = R0 − 2 A θ1/2 +
θ

R2
0

+
8 A

3 R3
0

θ3/2 +O(θ)2.(A.6)

The first three terms of (A.6) give the approximation R̃(θ) ≡ R0−2 A θ1/2 + θ
R2

0
. The

minimum of R̃(θ) occurs at θmin = A2 R4
0. As shown in Figure A.1, R̃(θ) describes

fairly well the behavior of R(θ) around θ = 0 for R0 > 0.

Appendix B. Perturbation solution.
Substituting (3.7) into (2.23) yields

∞∑
n=0

An Ṙn(θ) = − A√
θ

+
1

(
∑∞
n=0A

n Rn(θ))2
.(B.1)

Expanding the rightmost term of (B.1) in Taylor series around A = 0 to order 2 yields

Ṙ0 + Ṙ1 A+ Ṙ2 A
2 = − A√

θ
+

1

R2
0

− 2

R3
0

R1 A+

(
3R2

1

R4
0

− 2

R3
0

)
A2,(B.2)
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where ḟ ≡ df
dθ for any function f . Identifying the terms of order 0, 1, and 2 yields

Ṙ0 =
1

R2
0

,

Ṙ1 = − 1√
θ
− 2

R3
0

R1,

Ṙ2 =
3R2

1

R4
0

− 2

R3
0

R2.

(B.3)

We will solve (B.3) with the initial value R(0) = 0. The solution of the first equation
of (B.3) is R0(θ) = (3 θ)1/3. Substituting R0(θ) into the second equation of (B.3), we
get

Ṙ1 +
2

3 θ
R1 = − 1√

θ
.(B.4)

Fortunately, (B.4) is a nonhomogeneous linear equation. Its general solution isR1(θ) =
− 6

7

√
θ+ C

θ2/3 , where C is an arbitrary constant. The initial condition R1(0) = 0 then
imposes C = 0 so that

R1(θ) = −6

7

√
θ.(B.5)

Using previous results for R0(θ) and R1(θ), the third equation of (B.3) becomes

Ṙ2 +
2

3 θ
R2 =

k1

θ1/3
,(B.6)

where k1 = 4 32/3/49, which is again a linear nonhomogeneous ODE. Its general
solution is R2(θ) = 3

49 (3 θ)2/3 + C
θ2/3 , where C is an arbitrary constant. The initial

condition R2(0) = 0 again implies C = 0, and therefore

R2(θ) =
3

49
(3 θ)2/3.(B.7)

This process can be continued, and the equations remain linear and easy to solve.
The first six terms lead to the expansion (3.8).
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Abstract. Standing waves are a fundamental class of solutions of nonlinear wave equations with
a spatial reflection symmetry, and they routinely arise in optical and oceanographic applications. At
the linear level they are composed of two synchronized counterpropagating periodic traveling waves.
At the nonlinear level, they can be defined abstractly by their symmetry properties. In this paper,
general aspects of the modulational instability of standing waves are considered. This problem has
difficulties that do not arise in the modulational instability of traveling waves. Here we propose a
new geometric formulation for the linear stability problem, based on embedding the standing wave in
a four-parameter family of nonlinear counterpropagating waves. Multisymplectic geometry is shown
to encode the stability properties in an essential way. At the weakly nonlinear level we obtain the
surprising result that standing waves are modulationally unstable only if the component traveling
waves are modulation unstable. Systems of nonlinear wave equations will be used for illustration,
but general aspects will be presented, applicable to a wide range of Hamiltonian PDEs, including
water waves.

Key words. modulation instability, variational principles, periodic waves, hyperbolic PDEs,
water waves
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1. Introduction. When considering spatially periodic solutions of nonlinear
wave equations on the real line, there are two “canonical” classes of temporally pe-
riodic solutions: traveling waves and standing waves. Standing waves arise naturally
when the system has a reflection symmetry. In this paper the linear stability problem
for standing waves is considered.

To illustrate the basic issues, consider the prototype nonlinear wave equation

utt − Cuxx + ∇V (u) = 0, u ∈ R
m, x ∈ R,(1.1)

where C is a symmetric, positive definite, m×mmatrix; V : R
m → R is a given smooth

function; and ∇ is the standard gradient on R
m. This class of wave equations appears

in a wide range of applications. An example is DNA modeling [30], where a typical
case would be m = 2, C = diag(1, c2), and V (u) = cos(u1 + u2) − 2 cosu1 − 2 cosu2.

For the system (1.1) a standing wave is a spatially periodic and temporally pe-
riodic solution which is invariant under reflection x �→ −x. (A precise definition of
standing wave will be given in section 3.)

Suppose a standing wave solution of (1.1) exists and denote it by û(x, t). This
existence problem is itself highly nontrivial due to the potential for small divisors.
(The relevance of this issue is discussed in section 7.) The linearized stability equa-
tion for û is then utt − uxx +D2V (û)u = 0. A modulational instability is a solution
of the type u(x, t) = Re(eiαxv(x, t)), where v(x, t) is periodic in x of the same pe-
riod as û(x, t) and α is real with 0 < |α| << 1, and ‖v‖ is exponentially growing in
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time. Basic technical issues are associated with this instability problem, such as an
appropriate function space in which to define the spectral problem, but these issues
will not be considered here. There is a more fundamental issue associated with mod-
ulational instability that arises even when we suppose that the basic state û(x, t) is
a classical solution of (1.1) and a smooth function of the wavenumber and frequency.
It is this fundamental issue, which can be attributed to the fact that standing waves
are related to a pair of synchronized counterpropagating traveling waves, that we will
address here.

Before considering the counterpropagation property of standing waves, it is worth
recalling the analogous linear stability problem for traveling waves. Let u(x, t) = φ̂(θ)
be a periodic traveling wave solution of (1.1), where θ = ωt + kx + θ0. The solution

φ̂ is a 2π-periodic function of θ, ω is the frequency, and k is the wavenumber. The
distinction between stability of traveling waves and standing waves can already be
seen at small amplitude. Therefore consider two well-known methods for determining
whether the traveling wave is modulationally unstable: the Whitham theory [29] and
the use of modulation equations such as the nonlinear Schrödinger (NLS) equation.

According to the Whitham modulation theory, a weakly nonlinear wave of am-
plitude A, of a nonlinear wave equation that can be derived from a Lagrangian for-
mulation, is modulationally unstable if

ω′′
0 (k)ω2(k) < 0,(1.2)

where ω0(k) is the frequency of the linearized wave and ω2(k) is the weakly nonlinear
correction to the frequency, that is, ω(k) = ω0(k) + ω2(k)|A|2 + · · · [29].

Using formal asymptotic methods, an NLS equation can be derived for the weakly
nonlinear amplitude A(X,T ), by letting φ̂(θ) = A(X,T )eθ + c.c.+ · · · ,

iAT + 1
2ω

′′
0 (k)AXX = σ |A|2A

(cf. [28]; see also [16] for a rigorous justification of this approach for scalar nonlin-
ear wave equations). The basic weakly nonlinear traveling wave is represented in this
equation as a solution of the form A(X,T ) = A0e

iωT , A0 ∈ C, and this state is linearly
unstable precisely when (1.2) is satisfied.

Now, the modulational instability of traveling waves, particularly the weakly non-
linear limit, is well understood, from physical, numerical, and rigorous points of view.

The case of standing waves is more difficult. Surprisingly, there is no generaliza-
tion of the Whitham theory to treat the modulational instability of standing waves.
The only theory in the literature that has been proposed for the modulation instabil-
ity of standing waves is the use of modulation equations (Knobloch and Pierce [18];
see also [17]).

At the linear level, standing waves reduce to a pair of synchronized counterprop-
agating waves. Therefore one might suspect that a pair of nonlinearly coupled NLS
equations of the form

iAT + icg AX = 1
2ω

′′
0 (k)AXX − σ |A|2A+ 2σ(k) |B|2A,

iBT − icg BX = 1
2ω

′′
0 (k)BXX − σ |B|2B + 2σ(k) |A|2B(1.3)

would be a suitable model for modulation instability of standing waves. Indeed, in
equation (3.3) of Okamura [23], a coupled NLS system of this form is proposed to
model the instability of standing waves. The above system was derived specifically to
model standing water waves, but the argument is similar for standing waves of any
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nonlinear wave equation, although the coefficients in (1.3) would differ. A standing
wave is represented in this system by a solution of the form A = B = B0e

iωT .
However, Knobloch and Pierce [18] argue that this coupled set of equations is

not valid, and this observation is confirmed by the rigorous analysis of Pierce and
Wayne [25] and Bambusi, Carati, and Ponno [2]. They argue that the coupling term
needs to be replaced by mean-field coupling terms,

iA+
T = 1

2ω
′′
0 (k)A+

X+X+
− σ(k)|A+|2A+ + β(k)Λ+(A+)A+,

−iA−
T = 1

2ω
′′
0 (k)A−

X−X− − σ(k)|A−|2A− + β(k)Λ−(A−)A−,
(1.4)

where X± = X ∓ cgT and Λ±(A±) = 1
P±

∫ P±
0

|A±|2 dX±.

The distinction between (1.3) and (1.4) is significant as they do not give equiva-
lent results on modulational instability of standing waves. The rational asymptotics
presented in [18, 17], and the rigorous theory of [25, 2], provide strong support for
the validity of (1.4).

Modulation equations have severe limitations, however. For example, the above
modulation equations are limited to weakly nonlinear standing waves. In this paper
we present a new theoretical framework for studying the modulational instability of
standing waves. The theory is global (i.e., not restricted to small amplitude) and is
based on a new variational principle.

Restricting the new theory to small amplitude waves, it predicts the same instabil-
ity as the modulation equation (1.4). Since the theory presented here is significantly
different from the theory used by Okamura and Knobloch and Pierce, it provides
additional support for the validity of the modulation instability predicted by (1.4).
Physically, the weakly nonlinear result is quite surprising, since weakly nonlinear
periodic standing waves are modulationally unstable only if the component weakly
nonlinear traveling waves are unstable. However, this correspondence between the
instability of traveling and standing waves will not in general carry over to finite-
amplitude standing waves.

The theory here will be developed for the modulation instability of standing wave
solutions of Hamiltonian PDEs. The theoretical framework has two parts: first, stand-
ing waves can be characterized by a constrained variational principle that encodes
information about the linear stability problem. Second, by formulating and studying
the linear stability problem directly, we show how the information from the varia-
tional principle appears explicitly in the linear stability problem. The main result is
that the stability exponents for all long-wave instabilities of standing waves of any
amplitude (for which they exist) are determined by the roots of a quartic polynomial
whose coefficients can be determined explicitly from the existing standing wave.

The obvious variational principle for standing waves does not provide enough
information about the linear stability problem. Surprisingly, we find that the natural
approach is to embed the family of standing waves in a four-parameter family, initially,
construct a variational principle for this larger family, and then take the limit to the
original two-parameter family. The argument in favor of this approach is provided by
the analogy of standing waves as synchronized counterpropagating waves: the larger
parameter family provides information about how the component counterpropagating
waves might break up due to instability.

Conservative PDEs can be analyzed from a Lagrangian, Hamiltonian, or multi-
symplectic Hamiltonian viewpoint. However, neither the Lagrangian nor the classical
Hamiltonian perspective provides sufficient geometry to give abstract results—that
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is, results that rely only on the Hamiltonian structure and are independent of the
particular PDE. It is the multisymplectic formulation of Hamiltonian PDEs that pro-
vides sufficient geometry for a general theory. The class of Hamiltonian PDEs that
we consider in canonical form is

MZt + KZx = ∇S(Z), Z ∈ R
n,(1.5)

where M and K are constant n × n skew-symmetric matrices and S : R
n → R is a

given smooth function. An example of the multisymplectification process is given in
section 2. Most Hamiltonian PDEs can be cast into this form, including water waves,
and other examples can be found in [6, 7, 9] and references therein.

Abstractly, these systems can still be characterized as Lagrangian PDEs by con-
sidering Lagrangians in the canonical form

L =

∫ ∫
L(Z,Zt, Zx) dxdt with L(Z,Zt, Zx) = 1

2 〈MZt, Z〉 + 1
2 〈KZx, Z〉 − S(Z),

(1.6)

where 〈·, ·〉 is a standard inner product on R
n. This Lagrangian, however, retains all

the geometry—two symplectic structures and the scalar function S—of the multisym-
plectic formulation.

An outline of the paper is as follows. In section 2, an example is given of multisym-
plectification, using (1.1) as an example. In section 3 standing waves are defined and
it is shown that a consequence of the definition is that the momentum is identically
zero. New variational principles for standing waves and standing waves embedded
in a four-parameter family of counterpropagating waves are presented in section 4.
There is an interesting connection between the geometry of O(2)-equivariant finite-
dimensional Hamiltonian systems, such as the spherical pendulum, and nonlinear wave
equations on the real line with periodic boundary conditions, and this connection is
explored in Appendix A. The details of the stability analysis for weakly nonlinear
and finite-amplitude standing waves are presented in sections 6 and 7.

The small divisor issue that appears in the analysis of standing waves is outside
the scope of this paper, but the issue is briefly discussed in section 7. One of the
main motivations for studying the modulational instability of standing waves is their
importance in the water-wave problem. The theory developed here does not apply
directly, but we speculate on some of the implications for water waves in section 8.

2. Multisymplectifying systems of nonlinear wave equations. The theory
for instability of standing waves will be developed for the general class of PDEs (1.5).
In this section, the general class of nonlinear wave equations (1.1) will be used to
illustrate the transformation to multisymplectic form. In sequence, a Lagrangian, a
classical Hamiltonian, and then a multisymplectic Hamiltonian formulation of this
system will be presented.

The canonical form of the Lagrangian for (1.1) is

L =

∫
V

L(u,ut,ux) dx ∧ dt, L(u,ut,ux) = 1
2ut · ut − 1

2ux · Cux − V(u),(2.1)

where V represents the volume in (x, t) space, and · represents the standard inner
product on R

m.
The canonical Hamiltonian formulation for the nonlinear wave equation is ob-

tained by taking the Legendre transform with respect to time only, v = ∂L
∂ut

= ut,
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and then the governing equations take the form

∂

∂t

⎛
⎝u

v

⎞
⎠ =

⎡
⎣ 0 I

−I 0

⎤
⎦
⎛
⎝δH /δu

δH /δv

⎞
⎠, H (u,v) =

∫
R

[
1

2
v · v +

1

2
ux · Cux + V (u)

]
dx.

(2.2)

This Hamiltonian formulation of the nonlinear wave equation has been widely used in
analysis (see [19] and references therein). However, a disadvantage of this formulation,
when studying pattern formation, is that the Hamiltonian function and symplectic
structure associated with (2.2) require specification of a space of functions over the x
direction a priori. In the case of modulation instabilities, the basic state is periodic
in space but the perturbation class will be in general quasi-periodic. In other words,
we may want to determine the spatial variation of the solution set a posteriori.

Multisymplecticity puts space and time on an equal footing. The governing equa-
tions are obtained by taking a Legendre transform with respect to all directions,

v =
∂L

∂ut
= ut and w =

∂L

∂ux
= −Cux.

The Legendre transform generates a new Hamiltonian functional,

S(u,v,w) = v · ut + w · ux − L = 1
2v · v − 1

2w · C−1w + V (u).(2.3)

This function can be thought of as generated by a total Legendre transform as above,
or it can be viewed as a secondary Legendre transform: −S is the Legendre transform
of the Hamiltonian density H in (2.2).

Now, the new Lagrangian for the system is in standard form for a generalization
of Hamilton’s principle,

L =

∫ ∫
L(u,v,w) dx ∧ dt, L(u,v,w) = v · ut + w · ux − S(u,v,w),(2.4)

and the governing equations are given by

0 = Lu = −vt − wx − Su = −vt − wx −∇V (u),

0 = Lv = ut − Sv = ut − v,

0 = Lw = ux − Sw = ux + C−1w,

using standard fixed endpoint conditions for the variations. While the PDE is now
expressed as a first-order system, it has a multisymplectic structure which is awkward
for analysis. It can be written in the form MZx + KZx = ∇S(Z) with Z ∈ R

3m, but
the pair of symplectic operators, M and K, act on R

3m and are always degenerate.
This structure can be improved by observing that v and w satisfy the constraint
C−1wt +vx = 0. Therefore add this constraint to the Lagrangian with vector-valued
Lagrange multiplier p, that is,

L =

∫
V

L(u,v,w,p) dx ∧ dt,

L(u,v,w,p) = v · ut + w · ux − S(u,v,w) + p · (C−1wt + vx).
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The governing equations are now

0 = Lu = −vt − wx − Su = −vt − wx −∇V (u),

0 = Lv = ut − Sv − px = ut − px − v,

0 = Lw = ux − Sw − C−1pt = −C−1pt + ux + C−1w,

0 = Lp = C−1wt + vx = C−1wt + vx

or ⎡
⎢⎢⎢⎢⎢⎢⎣

0 −I 0 0

I 0 0 0

0 0 0 −C−1

0 0 C−1 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

u

v

w

p

⎞
⎟⎟⎟⎟⎟⎟⎠
t

+

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 −I 0

0 0 0 −I

I 0 0 0

0 I 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

⎛
⎜⎜⎜⎜⎜⎜⎝

u

v

w

p

⎞
⎟⎟⎟⎟⎟⎟⎠
x

=

⎛
⎜⎜⎜⎜⎜⎜⎝

∇V(u)

v

−C−1w

0

⎞
⎟⎟⎟⎟⎟⎟⎠
.(2.5)

This system can be expressed in canonical multisymplectic form (1.5) with n = 4m,
and indeed, in this case, M and K define symplectic structures on R

4m. The two
symplectic structures do not commute in general, unless C = I, since

[M,K] = MK − KM =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 0 1

0 0 −1 0

0 −1 0 0

1 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
⊗ (I − C−1).

In the scalar case m = 1, scaling can be introduced so that M and K always commute.
In summary, the main point of this section is that the system of nonlinear wave

equations (1.1) can be characterized in terms of geometric properties: two symplectic
structures, and a scalar-valued function S(Z), on a finite-dimensional phase space:
Z ∈ R

n.
A property of the nonlinear wave equation (1.1) that is important for the existence

of standing waves is reversibility in x. If u(x, t) is a solution of (1.1), then u(−x, t) is
also a solution. In the multisymplectification of (1.1), this reversibility is represented
by the action

r · Z(x, t) = RZ(−x, t) with R = diag(I, I,−I,−I) ∈ R
4m×4m.(2.6)

The involution R and its associated action satisfy

RM = MR, RK = −KR, and S(r · Z) = S(Z).(2.7)

In turn, the properties (2.7) imply that r ·Z is a solution of the wave equation in the
form (1.5) whenever Z is.

The system of nonlinear wave equations (1.1) is reversible in t as well, and a
multisymplectic t-reversor can also be defined, but t-reversibility will not be needed
in the general theory for standing waves.
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3. Standing wave solutions of Hamiltonian PDEs. The theory for standing
waves can be developed based only on the geometric properties of the multisymplectic
formulation. Therefore, as in the previous section, we will assume that the PDE has
been transformed to a multisymplectic Hamiltonian PDE, and we take the following
general class of PDEs as the starting point for the analysis:

MZt + KZx = ∇S(Z), Z ∈ R
n.(3.1)

The only hypotheses on (3.1) are that M and K are constant n× n skew-symmetric
matrices and S : R

n → R is a given smooth function (at least twice continuously
differentiable), which does not depend explicitly on x or t. On R

n, the standard inner
product will be denoted by 〈·, ·〉.

For the existence of standing waves, we will require that the system (3.1) is x-
reversible with a multisymplectic action of the reversor,

r · Z(x, t) = RZ(−x, t)(3.2)

for some isometric involution R : R
n → R

n satisfying the identities (2.7) (with M,
K and S associated with (3.1)). In this setting, an abstract definition of a standing
wave can be given.

Definition. A solution Ẑ(x, t) of (3.1) is called a standing wave if it is periodic

in both x and t and satisfies r · Ẑ(x, t) = Ẑ(x, t).
Curiously, we cannot find anywhere in the literature where a general definition of

standing waves for nonlinear PDEs has heretofore been given.
It is sometimes remarked that standing waves are spatially periodic waves with

zero momentum. However, we can show that zero momentum is a consequence of the
above definition.

What is momentum? The momentum here is defined to be the conserved quantity
given by Noether’s theorem associated with the translation invariance in x of the
PDE. If (3.1) represents a physical system, this conserved quantity may indeed be
the physical momentum. An application of Noether’s theorem to the Lagrangian
(1.6) (see Appendix B for this argument) shows that the appropriate form for the
momentum on a space of functions that are 2π periodic in x is

I (Z) =

∮
1

2
〈MZx(x, t), Z(x, t)〉dx where

∮
( ) dx :=

1

2π

∫ 2π

0

( ) dx.(3.3)

Given this expression for momentum, we can show that I (Ẑ) = 0 if Ẑ(x, t) is a
standing wave solution of (3.1):

I (r · Z) =

∮
1
2 〈MR(Z(−x, t))x,RZ(−x, t)〉dx (by definition)

= −
∮

1
2 〈MRZx(−x, t),RZ(−x, t)〉dx

= −
∮

1
2 〈RMZx(−x, t),RZ(−x, t)〉dx (using RM = MR)

= −
∮

1
2 〈MZx(−x, t), Z(−x, t)〉dx (since R is an isometry)

= −
∮

1
2 〈MZx(x, t), Z(x, t)〉dx

(using the change of variable x �→ −x and periodicity)

= −I (Z).
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Therefore, if Ẑ(x, t) is a standing wave and so r·Ẑ = Ẑ, it is immediate that I (Ẑ) = 0.

4. Variational principles for standing waves and counterpropagating
waves. At the linear level, a standing wave consists of a pair of synchronized coun-
terpropagating waves,

Z(x, t) = Aξ ei(ωt+kx) +Aξ ei(ωt−kx) + c.c.,

where A ∈ C is a complex amplitude and ξ ∈ C
n is an eigenvector associated with

the linearization of (3.1). A natural generalization of this form to finite amplitude is
to look for nonlinear solutions of the form

Z(x, t) = Ẑ(θ1, θ2), θ1 = ωt+ kx+ θo1, θ2 = ωt− kx+ θo2,(4.1)

where θoj are arbitrary constant phases and Ẑ is a 2π-periodic function of θ1 and θ2.
Substituting the form (4.1) into (3.1) results in

ωM

(
∂Ẑ

∂θ1
+
∂Ẑ

∂θ2

)
+ kK

(
∂Ẑ

∂θ1
− ∂Ẑ

∂θ2

)
= ∇S(Ẑ).(4.2)

The operators M∂θj and K∂θj are formally self-adjoint operators on a space of doubly
periodic functions. Hence, treating ω and k as Lagrange multipliers, (4.2) can be
interpreted as the necessary condition for a constrained variational principle. Let

A (Z) =

∫
T2

1
2 〈M(∂θ1 + ∂θ2)Z,Z〉dθ and B(Z) =

∫
T2

1
2 〈K(∂θ1 − ∂θ2)Z,Z〉dθ,

where
∫

T2( ) dθ := (2π)−2
∫ 2π

0

∫ 2π

0
( ) dθ1dθ2. The constrained variational principle is

then to find critical points of S , S(Z) averaged over T
2, subject to fixed values of

the constraints A and B. It follows from standard Lagrange multiplier theory that
this constrained variational principle is nondegenerate when

det

⎡
⎣Aω Ak

Bω Bk

⎤
⎦ �= 0.(4.3)

This variational principle gives a global characterization of any state of (3.1)
which is periodic in both x and t. It includes a characterization of standing waves
and traveling waves. The special case of strictly traveling waves was considered in [7],
and it is shown there that the sign of the determinant (4.3) carries information about
linear stability.

Another way to view this variational principle is as a generalization to the spa-
tiotemporal setting of the classical variational principle for periodic solutions of finite-
dimensional Hamiltonian systems: find critical points of the energy (Hamiltonian) on
level sets of the action on a space of periodic functions, with the frequency ω as
a Lagrange multiplier. For finite-dimensional Hamiltonian systems this variational
principle has been widely used to prove the existence of periodic solutions (cf. [20]
and references therein). However, the variational principle associated with (4.1) is
more difficult to work with for the case of standing waves. Although standing waves
are periodic solutions, the fact that there is an infinite number of modes can cause
problems with small divisors (see section 7).



2104 THOMAS J. BRIDGES AND FIONA E. LAINE-PEARSON

The form of the solution (4.1) is not the most general form for a pair of coun-
terpropagating waves. When considering the linear stability problem for standing
waves, it will turn out that a somewhat more general variational principle will be
crucial for getting a geometric characterization of linear instability of standing waves.
The idea is to embed the family of standing waves in a four -parameter family of coun-
terpropagating waves, with the standing wave obtained as a limiting two-parameter
case.

Consider the more general class of solutions of (3.1); let

Z(x, t) = Ẑ(θ1, θ2) with θj = ωj t+ kj x+ θoj , j = 1, 2,(4.4)

where Ẑ is again a 2π-periodic function of both θ1 and θ2. The significant difference
here is that the state Ẑ now depends on four parameters, and the interpretation
as two counterpropagating waves that are not necessarily synchronized is now evident.
Indeed, in general, they may even be propagating in the same direction. However, it
is the case of counterpropagating waves, near synchronized standing waves, that is of
greatest interest here, that is, k1 + k2 ≈ 0 and ω1 − ω2 ≈ 0.

The function Ẑ now satisfies

ω1M
∂Ẑ

∂θ1
+ ω2M

∂Ẑ

∂θ2
+ k1K

∂Ẑ

∂θ1
+ k2K

∂Ẑ

∂θ2
= ∇S (Ẑ),(4.5)

where S is S averaged over θ1 and θ2. Equation (4.5) can be interpreted as the
Lagrange necessary condition for the constrained variational principle: find critical
points of S averaged over T

2 restricted to level sets of the four functionals

Aj(Z) =

∫
T2

1
2 〈M∂θjZ,Z〉dθ and Bj(Z) =

∫
T2

1
2 〈K∂θjZ,Z〉dθ, j = 1, 2.(4.6)

The Lagrange necessary condition can be written

∇S (Ẑ) = ω1 ∇A1(Ẑ) + ω2 ∇A2(Ẑ) + k1 ∇B1(Ẑ) + k2 ∇B2(Ẑ).(4.7)

The frequencies ω1, ω2 and the wavenumbers k1, k2 appear as Lagrange multipliers.
Using standard Lagrange multiplier theory, this constrained variational principle is
nondegenerate if

det

⎡
⎣ δAδω δA

δk

δB
δω

δB
δk

⎤
⎦ �= 0, where

δA

δω
=

⎛
⎝∂A1

∂ω1

∂A1

∂ω2

∂A2

∂ω1

∂A2

∂ω2

⎞
⎠,(4.8)

with similar expressions for the 2 × 2 matrices δA
δk ,

δB
δω ,

δB
δk . It is the two-parameter

subfamily of two-wave interactions that correspond to standing waves that is of inter-
est. Given a function Ẑ(θ1, θ2) satisfying this variational principle, a standing wave
is recovered formally by taking the limit to synchronized counterpropagating waves

ω1 → ω, k1 → k, ω2 → ω, and k2 → −k

if the limits exist. This limit is taken after the Jacobian matrices in (4.8) are com-
puted.

At first sight, this limit might seem a bit questionable: taking the limit on a
torus from irrational values to a resonance? However, there is additional structure
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here. The translation invariance in x restricted to periodic functions along with the
x-reversibility generates the group O(2). Translation invariance in time restricted to
periodic functions generates an action of S

1. Combining these groups gives O(2)×S
1:

a toral symmetry. The toral symmetry is almost enough structure to allow for smooth
variation of parameters on the torus. Indeed, if the system was finite-dimensional,
this would be true, and this case is discussed briefly in Appendix A. The obstacle to
smoothness for the above limit leading to standing waves is again the potential for
small divisors due to a countable number of purely imaginary eigenvalues (see sec-
tion 7).

5. Stability analysis of nonlinear standing waves. It is in the study of the
stability of standing waves that the importance of the embedding of standing waves
in the four-parameter family becomes apparent. In this section the linear stability
problem for standing waves is formulated and it is shown that the entries in the
determinant (4.8) appear in the linear stability analysis in a central way. The strategy
is to linearize (3.1) about the full four-parameter two-wave interaction. Then, after
the stability condition is deduced, the limit to standing waves is taken.

Substitute Z(x, t) = Ẑ(θ1, θ2) + Û(θ1, θ2, x, t), where Ẑ is the wave (4.4) and Û

is a perturbation, into (3.1) and linearize about Ẑ,

MÛt + KÛx = L(θ1, θ2)Û ,(5.1)

where

L(θ1, θ2) = D2S (Ẑ) − M

[
ω1

∂

∂θ1
+ ω2

∂

∂θ2

]
− K

[
k1

∂

∂θ1
+ k2

∂

∂θ2

]
= D2S (Ẑ) − ω1D

2A1(Ẑ) − ω2D
2A2(Ẑ) − k1D

2B1(Ẑ) − k2D
2B2(Ẑ).

(5.2)

The operator L is a linear partial differential operator with nonconstant (periodic)
coefficients depending on θ1 and θ2. Introduce a class of perturbations of modulation
type

Û(θ1, θ2, x, t) = Re
(
U(θ1, θ2)e

λt+iαx
)
,

where λ ∈ C is the stability exponent and α ∈ R is the modulation parameter associ-
ated with the x-direction. The eigenvalue problem for (λ,U(θ1, θ2)) is then

L(θ1, θ2)U = λMU + iαKU.(5.3)

Definition. If there exists a solution U(θ1, θ2) of (5.3) which is 2π-periodic in
θ1 and θ2, for some λ ∈ C and α ∈ R, with Re(λ) > 0, then we say that the basic

state Ẑ(θ1, θ2) is linearly unstable or spectrally unstable.
The application of this definition and the development of the geometric stability

condition are not rigorous. For example, identification of the precise space of functions
in which U(θ1, θ2) might exist is beyond the scope of this paper. The obstacle to rigor
is the potential small divisor problem, which would result in the range of the operator
L not being closed. In some special cases, for example, if there is enough symmetry [9],
the theory can be made rigorous using a Lyapunov–Schmidt reduction.

The eigenvalue problem (5.3) is still a PDE in θ1 and θ2. It has considerable
structure (combination of symmetric and antisymmetric operators), but we do not
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expect to be able to analyze this spectral problem completely. However, we can get
complete results on long-wave instability, that is, when |α|  1. In this case, the
geometry of (4.4) can be used to give a geometric characterization of the spectrum
for α small. Eigenvalue problems of this type have been studied geometrically before
in a different but related context [9, section 5], and therefore we can appeal to those
results.

The kernel of L(θ1, θ2) has (at least) two elements,

Ker(L) ⊇ span

{
∂Ẑ

∂θ1
,
∂Ẑ

∂θ2

}
,(5.4)

and this can be verified by differentiating (4.7) with respect to θ1 and θ2. Assume that
these two functions are the only elements in the kernel, a property that is generically
satisfied. (For certain parameter values, the kernel might be larger.) Then look for
long-wave instabilities α 1 by expanding U in a Taylor series. Consider the ansatz

U = c1

(
Ẑθ1 + λẐω1

+ iαẐk1

)
+ c2

(
Ẑθ2 + λẐω1 + iαẐk2

)
+ O(|λ|2 + |α|2),(5.5)

where c = (c1, c2) are arbitrary complex constants. By differentiating (4.7) with
respect to ω1, ω2, k1, and k2 it can be verified that this expression is indeed the
solution to (5.3) to leading order.

It is worth remarking here that it is precisely in the leading-order expression
for U that the deformation from standing waves to the general two-wave interaction
is necessary. Four derivatives of Ẑ with respect to parameters are needed in (5.5),

whereas if there was just one frequency and one wavenumber, only Ẑω and Ẑk would
be available for (5.5).

Since L is formally self-adjoint, the solvability condition for (5.3) is

[[Ẑθ1 , λMU + iαKU ]] = 0,

[[Ẑθ2 , λMU + iαKU ]] = 0,

where

[[f, g]] =

∫
T2

〈f(θ1, θ2), g(θ1, θ2)〉dθ =
1

(2π)2

∫ 2π

0

∫ 2π

0

〈f(θ1, θ2), g(θ1, θ2)〉dθ1dθ2.

This solvability condition still contains the unknown function U , but we have a
leading-order expression for U . Substituting the leading-order expression for U into
the solvability condition leads to the pair of algebraic equations

[
N0λ

2 + iαλN1 + (iα)2N2 + · · · ]
⎛
⎝c1
c2

⎞
⎠ =

⎛
⎝0

0

⎞
⎠,(5.6)

where Nj , j = 0, 1, 2, are 2×2 matrices depending only on the properties of the basic

wave Ẑ. The derivation of the expression for N0 will be given, and then the result
for the other two will be stated. From the solvability condition we have that

N0 =

⎡
⎣∫T2〈Ẑθ1 ,MẐω1〉dθ

∫
T2〈Ẑθ1 ,MẐω2〉dθ∫

T2〈Ẑθ2 ,MẐω1〉dθ
∫

T2〈Ẑθ2 ,MẐω2〉dθ

⎤
⎦.
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However, by differentiating the functionals (4.6) with respect to ω1 and ω2 we find
that the matrix simplifies to

N0 = −
⎡
⎣∂A1

∂ω1

∂A1

∂ω2

∂A2

∂ω1

∂A2

∂ω2

⎤
⎦ = −∂A

∂ω
.

Similarly, N1 = −∂A
∂k − ∂B

∂ω and N2 = −∂B
∂k , and so (5.6) reduces to

(
λ2 δA

δω
+ iαλ

(
δA

δk
+
δB

δω

)
+ (iα)2

δB

δk
+ · · ·

)⎛⎝c1
c2

⎞
⎠ =

⎛
⎝0

0

⎞
⎠.

Therefore, if |λ| + |α| is sufficiently small and the matrix (4.8) is nondegenerate,
the long-wave stability of the basic two-wave interaction is determined by the quartic

∆(λ, α) = det

[
λ2 δA

δω
+ iαλ

(
δA

δk
+
δB

δω

)
+ (iα)2

δB

δk

]

= det

⎡
⎣σT ⊗ I2

⎛
⎝δA /δω δA /δk

δB/δω δB/δk

⎞
⎠ σ ⊗ I2

⎤
⎦, σ =

⎛
⎝λ

iα

⎞
⎠.(5.7)

The second form shows that central role played by the nondegeneracy condition from
the constrained variational principle of section 4.

Expanding out the determinant in (5.7) leads to a quartic polynomial for λ,

∆(λ, α) = a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0(5.8)

with

a4 = det

(
δA

δω

)
,

a3 = iαTr

(
δA

δω

#(δA
δk

+
δB

δω

))
,

a2 = −α2det

(
δA

δk
+
δB

δω

)
− α2Tr

(
δA

δω

# δB

δk

)
,

a1 = −iα3Tr

(
δB

δk

# δA

δk
+
δB

δω

)
,

a0 = α4det

(
δB

δk

)
,

(5.9)

where the superscript # indicates adjugate, i.e.,

C# =

(
c1 c2

c2 c3

)#

= J−1CJ =

(
c3 −c2

−c2 c1

)
, where J =

(
0 −1

1 0

)
.

This stability quartic applies to both standing waves and the deformed two-wave
interaction, which may have independent interest. Given a basic four-parameter wave,
(Ẑ;ω1, ω2, k1, k2), the coefficients of the quartic can in principle be computed, and
then the quartic solved for the four roots, thereby determining whether there is a
long-wave instability.
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a

a 2

stable

0

Fig. 1. Position of the roots of the quartic ∆(λ, α) = 0 when a1 = a3 = 0 and a4 = 1, showing
the stable region and its boundary in the (a2, a0) plane. In all other regions there is at least one
unstable root.

5.1. The stability quartic when a1 = a3 = 0. A special case of the quartic
that can be analyzed in detail is when a1 = a3 = 0. This case will not arise in general
for standing waves at finite amplitude, but it does arise in the limit as the amplitude
of the wave tends to zero—the weakly nonlinear limit.

In the analysis of the stability quartic ∆(λ, α) = 0, the term “instability” will
mean that there is at least one root of ∆(λ, α) = 0 with positive real part, and
“stability” will mean that all four roots are purely imaginary and simple (spectral
stability). We have the following complete classification of the roots of (5.8) when
a1 = a3 = 0:

a4a0 < 0 ⇒ instability,

a4a0 ≥ 0 but a4a2 < 0 ⇒ instability,

a4a0 > 0 but a4a2 = 0 ⇒ instability,

a4a0 > 0 and a4a2 > 0 but a2
2 − 4a4a0 < 0 ⇒ instability,

a4a0 > 0, a4a2 > 0 and a2
2 − 4a4a0 > 0 ⇒ stability.

There are also two special cases where the spectrum is purely imaginary but there are
multiple eigenvalues. When a0a4 = 0, a2a4 > 0, and a2

2 − 4a4a0 > 0, there is a pair of
distinct purely imaginary eigenvalues and a double zero eigenvalue. When a4a0 > 0,
a4a2 > 0 but a2

2 − 4a4a0 = 0 there is a pair of purely imaginary eigenvalues each of
multiplicity two. These special cases lie on the boundary of the region of stability, as
illustrated in Figure 1.

6. Instability of weakly nonlinear standing waves. The purpose of this
section is threefold. It illustrates in the simplest possible setting how the variational
principle and stability theory accumulate information on the spectral problem. It
shows explicitly the importance of the limit from the four-parameter two-wave inter-
action to the two-parameter standing wave. Third, it shows that the theory of this
paper recovers the modulation instability predicted by coupled NLS equations with
mean-field coupling.
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To construct weakly nonlinear counterpropagating waves, take a Fourier ansatz,

Ẑ(θ1, θ2) = A1ξ1e
iθ1 +A1ξ1e

−iθ1 +A2ξ2e
iθ2 +A2ξ2e

−iθ2

+ Υ20 + Υ21e
2iθ1 + Υ21e

−2iθ1 + Υ22e
2iθ2 + Υ22e

−2iθ2

+ Υ23e
i(θ1+θ2) + Υ23e

−i(θ1+θ2) + Υ24e
i(θ1−θ2) + Υ24e

−i(θ1−θ2) + · · ·,

(6.1)

where θj = kjx + ωjt (j = 1, 2), A1 and A2 are complex amplitudes, and ξ1 and ξ2
have unit length. This ansatz is substituted into the Lagrangian (1.6),

L (A1, A2, ξ1, ξ2, µ1, µ2,Υ, . . . ) = S (Ẑ) − ω1A1 − ω2A2 − k1B1 − k2B2

− µ1(‖ξ1‖2 − 1) − µ2(‖ξ2‖2 − 1).
(6.2)

Here, µ1 and µ2 are Lagrange multipliers associated with the constraints on ξ1 and
ξ2. The vectors ξj are eigenvectors of a linear Hermitian operator, and the Lagrange
multipliers µj give a way of extending the dispersion relation to the nonlinear case in
a coordinate-free way.

Formally solving this finite-dimensional Lagrangian system leads to the reduced
Lagrangian

L = µ1|A1|2 + µ2|A2|2 + 1
2σ11|A1|4 + σ12|A1|2|A2|2 + 1

2σ22|A2|4 + · · ·
and to amplitude equations for A1 and A2 of the general form

A1 (µ(ω1, k1) + σ11|A1|2 + σ12|A2|2 + · · · ) = 0,

A2 (µ(ω2, k2) + σ12|A1|2 + σ22|A2|2 + · · · ) = 0.
(6.3)

To leading order, the Lagrange multipliers µ1 and µ2 are the dispersion relation for
the linearized problem evaluated at (ω1, k1) and (ω2, k2), respectively. To compute
the elements needed for the stability analysis, we need the functionals Aj and Bj . To
leading order they are

Aj(ω, k) = − ∂

∂ωj
µj(ω, k)|Aj |2 + · · · and Bj(ω, k) = − ∂

∂kj
µj(ω, k)|Aj |2 + · · ·,

where (ω, k) := (ω1, ω2, k1, k2). These expressions are verified by substituting (6.1)
into the functionals (4.6). Using these expressions we compute

δA

δω
=

⎡
⎣∂A1

δω1

∂A1

δω2

∂A2

δω1

∂A2

δω2

⎤
⎦ =

⎡
⎣ ∂
∂ω1

a1|A1|2 + a1
∂
∂ω1

|A1|2, a1
∂
∂ω2

|A1|2
a2

∂
∂ω1

|A2|2, ∂
∂ω2

a2|A2|2 + a2
∂
∂ω2

|A2|2

⎤
⎦+ · · ·,

where aj = − ∂
∂ωj

µj , j = 1, 2. Now apply the standing wave limit to this matrix,

ω2 → ω1 := ω, k2 → −k1 := −k, |A2| → |A1| := |A|,(6.4)

to find

δA

δω
= −D2

ωΛ−1 +Dωω|A|2
⎛
⎝1 0

0 1

⎞
⎠+ · · ·,
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where D(ω, k) = lim→ SWs µ1(ω1, k1) = lim→ SWs µ2(ω2, k2), and

Λ :=

⎡
⎣a b

b a

⎤
⎦ = lim

→ SWs

⎡
⎣σ11 σ12

σ12 σ22

⎤
⎦.

Similarly we find

δA

δk
= −DωDk Λ−1

⎛
⎝1 0

0 −1

⎞
⎠+Dωk|A|2

⎛
⎝1 0

0 −1

⎞
⎠+ · · ·,

δB

δω
=

(
δA

δk

)T
= −DωDk

⎛
⎝1 0

0 −1

⎞
⎠Λ−1 +Dωk|A|2

⎛
⎝1 0

0 −1

⎞
⎠+ · · ·,

and so

δA

δk
+
δB

δω
= − 2a

|Λ|DωDk

⎛
⎝1 0

0 −1

⎞
⎠+ 2Dωk|A|2

⎛
⎝1 0

0 −1

⎞
⎠+ · · ·.

For the third term in the matrix (5.7),

δB

δk
= −D2

k

Λ

|Λ| +Dkk|A|2
⎛
⎝1 0

0 1

⎞
⎠+ · · ·.

Now, the stability quartic (5.8) in the standing wave limit takes the form

∆(λ, α) = a4λ
4 + a3λ

3 + a2λ
2 + a1λ+ a0

with

a4 = det

(
δA

δω

)
=
D4
ω

|Λ| −
2a

|Λ|D
2
ωDωω|A|2 + · · ·,

a3 = iαTr

(
δA

δω

#(δA
δk

+
δB

δω

))
= 0,

a2 = −α2det

(
δA

δk
+
δB

δω

)
− α2Tr

(
δA

δω

# δB

δk

)

= −α2

(
− 2

|Λ|D
2
ωD

2
k +

2a

|Λ| (−D
2
ωDkk −D2

kDωω + 4DωDkDωk)|A|2 + · · ·
)

a1 = (iα)3Tr

(
δB

δk

#(δA
δk

+
δB

δω

))
= 0,

a0 = α4det

(
δB

δk

)
= α4

(
D4
k

|Λ| −
2a

|Λ|D
2
kDkk|A|2 + · · ·

)
.
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Let

δ = −D2
ωDkk −D2

kDωω + 2DωDkDωk = det

⎡
⎢⎢⎢⎣
Dωω Dωk Dω

Dkω Dkk Dk

Dω Dk 0

⎤
⎥⎥⎥⎦.(6.5)

Then, to summarize, the stability quartic in the standing wave limit is

∆(λ, α) = det

[
λ2 δA

δω
+ iαλ

(
δA

δk
+
δB

δω

)
+ (iα)2

δB

δk

]
= a4λ

4 + a2(iα)2λ2 + a0(iα)4

with

a4 = +
D4
ω

|Λ| −
2a

|Λ|D
2
ωDωω|A|2 + · · ·,

a2 = − 2

|Λ|D
2
ωD

2
k +

2a

|Λ| (δ + 2DωDkDωk)|A|2 + · · ·,

a0 = +
D4
k

|Λ| −
2a

|Λ|D
2
kDkk|A|2 + · · ·.

Apply the stability-instability classification in section 5.1, which requires the expres-
sions

a0a4 =
D4
ωD

4
k

|Λ|2 + · · · > 0,

−a2a4 =
2

|Λ|2D
2
kD

6
ω + · · · > 0,

a2
2 − 4a0a4 = −16 aδ

D2
ωD

2
k

|Λ|2 |A|2 + · · · .

Hence, from the stability-instability classification in section 5.1, if we assume the
conditions

Dω �= 0, Dk �= 0, det(Λ) �= 0, a �= 0, and δ �= 0

are satisfied, we can conclude, for |A| sufficiently small, that the stability quartic (5.7)
has an unstable eigenvalue if and only if

aδ > 0.

A significant feature of this result is that the instability of standing waves is
independent of the standing wave frequency correction. To see this, go back to (6.3)
and take the standing wave limit,

A1 (D(ω, k) + a |A1|2 + b |A2|2 + · · · ) = 0,

A2 (D(ω, k) + b |A1|2 + a |A2|2 + · · · ) = 0.
(6.6)

Hence

ωTW = ω0 − a

Dω
|A1|2 + · · · , A2 = 0,

ωSW = ω0 − (a+ b)

Dω
|A1|2 + · · · , A2 = A1.
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Fig. 2. Schematic of the position of the eigenvalues at the threshold of instability for weakly
nonlinear standing waves.

Although the weakly nonlinear correction to the frequency for standing waves
depends on b, the modulation instability at low amplitude is independent of b. Effec-
tively, the stability problem decouples at low amplitude.

To confirm that a weakly nonlinear traveling wave has the same instability con-
dition as the standing wave, we can compare aδ > 0 with the Whitham condition. If
D(ω0(k), k) = 0 and Dω �= 0, then Dωω

′
0(k) +Dk = 0 and so

ω′′
0 (k) =

1

D3
ω

det

⎡
⎢⎢⎢⎣
Dωω Dωk Dω

Dkω Dkk Dk

Dω Dk 0

⎤
⎥⎥⎥⎦ =

1

D3
ω

δ.

From the above expression for the frequency of the traveling waves, ωTW , we have
that ω2 = −a/Dω and so

sign(aδ) = sign
(−ω2Dω ω

′′
0 (k)D4

ω

)
= −sign(ω′′

0 (k)ω2),

showing that aδ > 0 is equivalent to ω′′
0 (k)ω2 < 0.

This instability condition for weakly nonlinear standing waves agrees with the
instability condition derived by Knobloch and Pierce [18], obtained from the coupled
NLS equations with mean-field terms for counterpropagating waves.

For finite-amplitude standing waves, the instability of standing waves will in gen-
eral differ from the instability of traveling waves. It is an interesting open problem
to determine precisely how this instability will change for finite amplitude standing
waves. It can be studied either by carrying the amplitude expansion to the next order
or numerically.

There is another subtle difference between the traveling wave instability and
standing wave instability, which shows up even for weakly nonlinear standing waves.
For the standing wave, the unstable subspace is twice as large as the case of trav-
eling waves. A schematic is shown in Figure 2. This figure shows the temporal
eigenvalues of the linear stability problem for weakly nonlinear standing waves, with



MULTISYMPLECTIC GEOMETRY AND STANDING WAVES 2113

instability arising through a collision of eigenvalues of opposite signature. Note that
each eigenvalue is double, and so the unstable subspace is four-dimensional (whereas
for traveling waves it is two-dimensional). The multiple eigenvalues will not persist
for finite-amplitude standing waves, suggesting that the behavior of the instability for
finite-amplitude standing waves will be more dramatic than traveling waves in general
and weakly nonlinear standing waves in particular.

6.1. Example: Calculations for a scalar nonlinear wave equation. An
elementary example of the theory is obtained by considering the scalar nonlinear wave
equation: (1.1) with m = 1. Let V (u) be any smooth function with leading Taylor
expansion

V (u) =
1

2
a1u

2 +
1

3
a2u

3 +
1

4
a3u

4 + · · · , a1 > 0.

Then a straightforward calculation leads to the reduced Lagrangian

L = µ1|A1|2 + µ2|A2|2 + 1
2σ11|A|4 + σ12|A1|2|A2|2 + 1

2σ22|A2|4 + · · ·
with µj(ω, k) = k2

j − ω2
1 + a1, σ11 = σ22 = − 5

3a1
a2
2 + 9

4a3, and

σ12 = −2a2
2

(
1

a1
+

1

a1 − (ω1 + ω2)2 + (k1 + k2)2
+

1

a1 − (ω1 − ω2)2 + (k1 − k2)2

)
+ 3a3.

Computing the parameter Jacobian (4.8) and taking the limit ω2 → ω1 := ω and
k2 → −k1 := −k we find

D(ω, k) = k2 − ω2 + a1, δ = −8a1, and a = lim
→SWs

σ11 = σ11,

and so aδ = −8a1(− 5
3a1

a2
2 + 9

4a3). Hence both traveling waves and standing wave
solutions of (1.1) are unstable in the weakly nonlinear limit whenever

20a2
2 − 27a1a3 > 0 and a1 > 0.

The instability of finite-amplitude standing wave solutions of even this scalar nonlinear
wave equation is an open problem, but the theory of this paper can be applied, given
(either numerical or analytic) expressions for the finite-amplitude standing waves.

7. Small divisors and the equivariant Lyapunov center theorem. The
obstacle to a rigorous proof of the existence of smooth families of standing waves
and the linear stability theory is a potential small divisor problem. This issue can
be illustrated by considering the scalar version of the nonlinear wave equation (1.1),
which can be written

utt − uxx + a1u = V ′(u) − a1u,

where a1 = V ′′(0) is some positive real number. In application of the implicit function
theorem to the existence of standing waves, linear systems of the type of the left-hand
side have to be inverted on the complement of its kernel, on a space of space-time
periodic functions. Such systems can be written in the general form

Vt = LV + f(x, t), L =

⎡
⎣ 0 I

∂xx − a1 0

⎤
⎦,
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where f(x, t) is a vector-valued periodic function of x and t. Now, the spectrum of L
on a space of 2π-periodic functions is

λn = i
√
n2 + a1 := iωn, n ∈ Z.

The spectrum consists of a countable number of purely imaginary eigenvalues. Now,
a1 can be chosen so that

λ1j − λn �= 0, j ≥ 1, n �= 1,

which is the usual nonresonance condition of the Lyapunov center theorem. However,
the distance |ω1j−ωn| may tend to zero as j, n tend to infinity, creating a small divisor
problem. In other words, a frequency ωn when n is large enough may get arbitrarily
close to a resonant multiple of ω1.

Effectively, what is needed is a version of the Lyapunov center theorem in infinite
dimensions. The first result of this type is due to Craig and Wayne [12] and uses Nash–
Moser theory to overcome the small divisor problem. However, the resulting branches
of periodic solutions are not smooth but lie on a Cantor-like subset of parameter
space.

By imposing the stronger diophantine condition on the frequencies

|ωj − ωn| ≥ γ

j
, j ≥ 1, n ≥ 2, for some γ > 0,

Bambusi [1] and Bambusi and Paleari [4] prove that the ordinary implicit function
can be used, and this leads to partial smoothness of branches of periodic solutions.

These results are encouraging, but they still do not provide sufficient smoothness
for the limits required in section 5. Moreover, the present analysis uses symmetry
in a central way, and so an equivariant version of the Lyapunov center theorem [22]
generalized to infinite dimensions would be required. Some intriguing results in this
direction are given by Bambusi and Gaeta [3].

8. Instability of standing water waves. One of the most interesting examples
of standing waves is standing water waves. These waves are most commonly observed
and studied in the context of sloshing of fluid in a vessel. However, they are also a
central part of pattern formation in the open ocean. The first nonlinear theory for
standing waves was proposed by Rayleigh [27]. Indeed, he showed that they arise
naturally along with traveling waves in any analysis of weakly nonlinear space and
time periodic water waves. Since Rayleigh’s work there has been a wide range of
analytical and numerical theories for standing waves; see [11] for a list of references.

Recently, progress has been made in developing a rigorous theory for existence of
standing waves. In finite depth small divisors arise, and a rigorous proof in this case
for weakly nonlinear standing waves has been given by Plotnikov and Toland [26]. The
proof uses a Nash–Moser framework, and therefore the branches of periodic solutions
are not smooth, certainly not smooth enough to embed them in a higher parameter
family. Surprisingly, the problem in infinite depth is more difficult. The kernel of the
linearized problem is infinite-dimensional and the dispersion relation is algebraic, but
recent significant progress has been made [14, 15].

For weakly nonlinear standing waves, stability results have been reported by Oka-
mura [23] and Knobloch and Pierce [18] using modulation equations. The paper [18]
gives the first correct analytic result for instability of weakly nonlinear standing waves.
For finite-amplitude standing waves, the only results in the literature on the linear
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stability is the work of Mercer and Roberts [21]. There are several interesting results
in [21]. They compute long-wave instabilities at finite amplitude (called subharmonic
instabilities there). They compute the action (A1 here) as a function of frequency (ω1

here) and show that there is a point where ∂ω1A1 = 0. This latter point will have an
effect on the modulation instability at that point.

The theory of this paper suggests a new approach to the numerical computation
of standing waves. The standing waves should be embedded in a four-parameter
family and then the elements of (4.8) computed to study a wider range of stability
properties. This embedding would not increase computation time (for standing waves
or four-parameter two-wave interaction, the solution is expanded in a double Fourier
series) but would increase the range of parameter space. However, it is only the
parameter space near the standing waves that is of interest, and the computation of
the functionals and their parameter dependence is a secondary calculation.

On a formal level one can draw a number of conclusions about the instability of
standing water waves from the theory reported in this paper. First, the water-wave
problem can be formulated as a multisymplectic system [6, 7] and the framework
of this paper applied. For weakly nonlinear standing waves the conclusion for deep
water is immediate: weakly nonlinear standing waves are unstable to a Benjamin–Feir
instability in the same way that traveling waves are unstable. This is in agreement
with the results of [18]. Further numerical calculations would be needed to test the
theory of this paper at large amplitude to compare with and extend the results of [21].

The case of standing waves in finite depth may also have mean flow generation.
For traveling waves, it is well known that reducing the depth creates a mean flow
that stabilizes the Benjamin–Feir instability. Therefore an interesting open problem
would be to determine the effect of mean flow on the stability of standing water
waves in finite depth. Results obtained using modulation equations by Knobloch and
Pierce [18] suggest that the weakly nonlinear finite-depth standing waves are affected
by mean flow in exactly the same way as traveling waves. However, the role of mean
flow in the stability of finite-amplitude standing waves is an open question.

9. Concluding remarks. The basic strategy here—embed a multiperiodic, say,
N -periodic, pattern in an N -wave interaction with 2N parameters, compute parame-
ter Jacobians, then take a limit to the original N -parameter wave to obtain stability
information—has wider applicability. For example, in [10] this idea is generalized to
determine stability conditions for short-crested Stokes waves in three space dimen-
sions.

Short-crested Stokes waves are solutions of the form

Z(x, y, t) = Ẑ(θ1, θ2), θ1 = kx+ y + ωt, θ2 = kx− y + ωt.

They are three-parameter doubly periodic solutions and have been widely studied
by oceanographers and engineers because they arise as a secondary bifurcation from
classical Stokes waves and are known to influence sand transport. Short-crested waves
are a generalization of standing waves in the sense that they can be characterized as
synchronized oblique traveling waves, and in the limit as the angle between the two
waves becomes zero they reduce to standing waves.

There are a number of open questions in the fluid mechanics literature about their
stability. The theory of this paper generalizes to this problem in a straightforward
way. The short-crested wave is embedded in the six-parameter two-phase wavetrain
Z(x, y, t) = Ẑ(θ1, θ2) but with

θj = ωjt+ kjx+ jy + θoj , j = 1, 2.
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These waves, when characterized by a constrained variational principle, generate the
6 × 6 matrix ⎛

⎜⎜⎜⎝
δA
δω

δA
δk

δA
δ�

δB
δω

δB
δk

δB
δ�

δC
δω

δC
δk

δC
δ�

⎞
⎟⎟⎟⎠.

Proceeding as in section 5, a stability theory can be developed that predicts all long-
wave instabilities using the entries of the above matrix. The complete details are
given elsewhere [10].

Another generalization of interest is the study of the stability of hexagonal ocean
patterns by embedding them in a three-phase wave train—with nine parameters—and
then following the strategy in this paper to develop a theory for long-wave instability.

Appendix A. O(2)-invariant Hamiltonian systems and the spherical
pendulum. Some insight into the geometry of nonlinear wave equations on the real
line with periodic boundary conditions and x-reflection symmetry can be gained by
examining the finite-dimensional analogue. This analogy is useful for illustrating the
toral structure, but the analogy can be taken only so far, since the most interesting
consequence for nonlinear wave equations—the geometry of modulational instability—
is absent in finite dimensions.

Consider a Hamiltonian system on R
4 with standard symplectic operator J,

JUt = ∇H(U), U ∈ R
4,(A.1)

and suppose H is smooth and the system is O(2)-equivariant. That is, there is a
representation Γ of O(2) acting on R

4 such that H is Γ-invariant and the action of Γ
is symplectic [22]. Near a Γ-invariant equilibrium there are generically two classes of
periodic solutions: traveling waves and standing waves [22].

The canonical example of an O(2)-equivariant Hamiltonian system is the spherical
pendulum (see [22, 5]), and it is sufficient to restrict attention to this example. For
the spherical pendulum, the geometry and nature of solutions can be seen explicitly.
The traveling waves are the conical pendulum solutions, and standing waves are the
planar pendulum solutions. There are two traveling waves (one rotating clockwise
and one rotating counterclockwise), and there is an SO(2) orbit of standing waves
(the plane of motion of the planar pendulum can be rotated around). The standing
waves of the spherical pendulum have zero angular momentum.

There is another well-known class of solutions of the spherical pendulum: the
toral solutions which have a smoothly varying rotation number and nonzero angular
momentum. These are sometimes called relative periodic orbits. Physically, they
correspond to a precessing planar pendulum.

The solutions of the spherical pendulum can be usefully viewed in the energy-
momentum space, as shown in Figure 3, where E represents the value of the energy
and I represents the value of the momentum. The standing waves are along the I = 0
axis. The traveling waves correspond to minima of the energy restricted to level sets of
the momentum and lie along the two curves shown. There are no solutions associated
with (I, E) values below the traveling wave curves, and the region between the two
curves excluding I = 0 is filled with toral solutions with smoothly varying rotation
number.
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TW TW
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H
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tori tori

Fig. 3. Schematic of the energy-momentum space for the spherical pendulum. The two
highlighted points on the line of zero momentum are the two equilibria (vertical up and vertical
down) of the spherical pendulum.

A periodic solution, of period T = 2π
ω , of a finite-dimensional Hamiltonian system

such as (A.1) can be characterized by a variational principle: a critical point of H
restricted to level sets of the action,

A =
1

2π

∫ 2π

0

A(U) dθ, A(U) =
1

2
〈JUθ, U〉,(A.2)

with the frequency, ω, a Lagrange multiplier. The Lagrange necessary condition for
this variational principle is

∇H − ω∇A = ∇H − ωJUθ = 0, θ = ω t+ θo.

A standing wave state would have the additional requirement that it is invariant under
reflection (the reflection subgroup of O(2)).

Now we come to the main point of this section. Can the limit I → 0 be taken in
the class of toral solutions leading to a standing wave?

Consider embedding the standing wave in a toral solution. Let U(t) = Û(θ1, θ2)
with θj = ωjt+ θoj for j = 1, 2. Then a variational characterization is again natural,
and the Lagrange necessary condition is

∇H − ω1∇A1 − ω2∇A2 = ∇H(Ẑ) − ω1J∂θ1Û − ω2J∂θ2Û = 0, Û : T
2 → R

4.

(A.3)

It follows from standard Lagrange multiplier theory that a state satisfying (A.3) is
nondegenerate when

det

⎡
⎣∂ω1

∂I1
∂ω1

∂I2

∂ω2

∂I1
∂ω2

∂I2

⎤
⎦ �= 0,(A.4)

where I1 and I2 represent values of the two actions. Now, solutions of this variational
principle are smooth functions of the frequencies, away from the singularities (the
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two equilibrium points and the two branches of traveling waves). This can be seen
explicitly using the integrability of the spherical pendulum [13], but it follows more
generally from symmetry. The more surprising smoothness result is that the frequency
map (A.4) exists—in the limit from a toral state to the line I = 0—and is well defined
(away from the two equilibrium points). Suppose I2 represents the angular momentum
in (A.4); then Horosov [13] proves that

lim
I2→0

det

⎡
⎣∂ω1

∂I1
∂ω1

∂I2

∂ω2

∂I1
∂ω2

∂I2

⎤
⎦ = det

⎡
⎢⎣
(
∂ω1

∂I1

)0

0

0
(
∂ω2

∂I2

)0

⎤
⎥⎦ =

(
∂ω1

∂I1

)0(
∂ω2

∂I2

)0

�= 0.(A.5)

Although the limit I2 → 0 results in a degeneration from a toral solution to a periodic
solution, the toral frequency map does not degenerate! This nondegeneracy arises
because the planar pendulum solutions lie on a torus and so the tangent space of
the manifold of standing waves is two-dimensional. The first term in the product on
the right-hand side of (A.5) is the change in frequency with amplitude (or energy) of
the planar pendulum, and the second term in the product just says that the second
frequency changes smoothly in going from negative to positive angular momentum
(or vice versa).

The above geometry is also central to the standing wave problem associated with
nonlinear wave equations on the real line. In the second variational principle in sec-
tion 4, the standing wave is being embedded in a generalized multisymplectic relative-
periodic orbit. In other words, geometrically there should be a smooth variation of
the parameters. This would be true of any finite-dimensional approximation of the
standing wave problem. In the limit as the number of modes goes to infinity, the
small divisor issue again appears.

Appendix B. Multisymplectic Noether theory and momentum conser-
vation. In this appendix, classical Noether theory is applied to the Lagrangian in
the canonical multisymplectic form (1.6). A Lagrangian L =

∫ ∫
L(Z,Zt, Zx) dx∧dt,

with Z(x, t) vector valued, which does not depend explicitly on x, has a symmetry
with generator v = ∂

∂x . Using Noether’s theorem [24, section 4.4], this symmetry
generates a conservation law,

I(Z)t + P(Z)x = 0

with

I(Z) =

〈
Zx,

∂L

∂Zt

〉
and P(Z) =

〈
Zx,

∂L

∂Zx

〉
− L(Z,Zt, Zx),

where 〈·, ·〉 is the standard inner product on R
n. Applying these formulas to L in

canonical form,

L(Z,Zt, Zx) = 1
2 〈MZt, Z〉 + 1

2 〈KZx, Z〉 − S(Z),

leads to

I(Z) = 1
2 〈MZx, Z〉, P(Z) = S(Z) − 1

2 〈MZt, Z〉.
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This conservation law can be confirmed by direct calculation,

I(Z)t =
1

2
〈MZxt, Z〉 +

1

2
〈MZx, Zt〉

=
∂

∂x

(
1

2
〈MZt, Z〉

)
− 〈MZt, Zx〉 (using skew-symmetry of M)

=
∂

∂x

(
1

2
〈MZt, Z〉

)
− 〈∇S(Z) − KZx, Zx〉 (substituting for MZt using (3.1))

=
∂

∂x

(
1

2
〈MZt, Z〉 − S(Z)

)
(using skew-symmetry of K),

and hence I(Z)t + (S(Z) − 1
2 〈MZt, Z〉)x = 0.
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Abstract. In this work we discuss the convergence of an approximation scheme for the solu-
tion, near an attractor, of a discontinuous dynamical system arising in the theory of dislocations in
crystalline solids. It is well known that dislocations can move only along a finite number of crys-
tallographic directions: in two dimensions, the resulting trajectories are piecewise rectilinear paths.
However, in special situations such as near an attractor, dislocations are forced to move along curved
paths: we characterize this class of motions as fine mixtures of crystallographic motions, using the
notion of generalized curves due to Young, and we explicitly compute the parametrized measure
associated to a sequence of polygonals. The result is then used to motivate a simple numerical
scheme and show that it is physically consistent. Numerical simulations based on this scheme are
also presented and discussed.
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1. Introduction. The goal of this work is to study a special problem arising in
the theory of defects in crystalline materials.

Specifically, we are interested in studying the motion of a screw dislocation in a
cylindrical crystalline elastic body. Dislocations are the most common line defects in
crystals, and their mobility is responsible for the plastic behavior and the ductility of
most metals [6], [7], [8].

We use here the model developed by Cermelli and Gurtin [2] to describe the
motion of a dislocation. Under some simplified hypotheses, the motion of a rectilinear
dislocation can be described in terms of the motion of the intersection point of the
defect line with an orthogonal plane. Peculiar to crystalline materials is the fact that
such points are restricted to move along special directions, the so-called glide or slip
directions (glide and slip planes in a general three-dimensional framework).

In elastic materials, a state of stress induces a force on a dislocation, the so-called
Peach–Köhler force (see [2], [3], [4], and [9]) and the defect moves parallel to the
direction on which the projection of this force is maximal (maximum dissipation
criterion). Hence, the motion of a dislocation can be viewed as the solution of a
dynamical system in a plane domain, obtained by projecting the Peach–Köhler force
on the crystallographic directions. Since the number of such directions in a crystal is
finite, it follows that the trajectories are piecewise rectilinear paths.

The general properties of this dynamical system have been studied in [2]; we focus
here on a special situation, namely, the motion near a curve S which is an attractor.
The dislocation is attracted by S: when it reaches it, it cannot escape (since it would
violate the maximum dissipation criterion), but it cannot move along S either, since
it would, in general, violate the crystallographic restriction on the direction of motion.
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Hence, it seems natural to approximate the motion of the defect on S by a sequence
of polygonals, which are piecewise parallel to the crystallographic directions but do
not necessarily satisfy the maximum dissipation criterion at all times.

The main result of this paper is the proof that if such a sequence is a maximizing
sequence for the dissipation, it converges to a unique smooth motion on S, which we
refer to as fine cross slip.1

To study the limits of maximizing sequences we make use of the notion of gen-
eralized curves due to Young, in their recent formulation known as parametrized (or
Young) measures in the literature on the calculus of variations. Young measures pro-
vide a richer characterization of finely oscillating sequences than their weak limits.
We compute the Young measure associated to sequences of polygonals maximizing the
dissipation, and we characterize fine cross slip as a fine mixture of crystallographic
rectilinear motions, with weights depending on the direction of the attractor S.

From the mathematical point of view, the problem is equivalent to finding the
solution of a dynamical system, in a neighborhood of an attracting curve at which
the velocity field is multivalued. If the solution is computed numerically by any time-
discretized scheme, the trajectory oscillates finely near the attractor, on a polygonal
which is only approximately a solution of the original dynamical system. We show
that any approximation scheme based on choosing a time step h determines, as h→ 0,
a maximizing sequence for the dissipation and therefore converges to a unique smooth
motion on S, which can be described as a fine mixture of crystallographic motions.
Further, the limit motion coincides with the fine cross slip introduced above.

Finally, we present the results of numerical simulations of the motion of a screw
dislocation in a domain with a crack or a rigid inclusion, based on the approximation
scheme described above.

We also discuss an explicit example for which the velocity field, the attracting
curves, and the motion by fine cross slip can be computed analytically. The numerical
results support our theoretical considerations: the solution near the attracting curve,
as computed by classical ODE solvers (such as Euler and Runge–Kutta), shows a
good agreement with the limit motion on the attracting curve.

2. Statement of the problem. We summarize in this section the model dis-
cussed in [2]. Consider an elastic cylinder B = Ω × R, where Ω is a domain in R

2.
A screw Volterra dislocation is a singular displacement field on B which can be con-
structed by the following ideal procedure [12]: first cut the cylinder B along a vertical
half-plane Π, then translate one of the faces along the cut by a constant vertical vector
b, glue back the faces along Π, and let the cylinder relax to an elastic equilibrium
state (Figure 2.1). The resulting displacement field, measured with respect to the
initial configuration, is smooth in B \ Π but is discontinuous across Π with constant
jump b. The vertical line ∂Π is called the dislocation line, and b is the Burgers vector.
To avoid dealing with discontinuous displacement fields, it can be shown that a screw
dislocation can be characterized equivalently in terms of a deformation field on B\∂Π,
singular at ∂Π. In simple cases, the deformation field generated by a dislocation is
independent of the vertical coordinate, and the problem admits a two-dimensional
formulation in terms of planar fields on Ω, which are singular at z = ∂Π ∩ Ω [2].

Precisely, let Ω be a domain in R
2, with Cartesian coordinates (x, y) and associ-

ated basis (e1, e2), and let x denote a generic point in Ω.

1Fine cross slip of screw dislocations has indeed been experimentally observed (see, e.g., [5] and
[7]).
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z

Π

b

Ω

Fig. 2.1. A screw Volterra dislocation in the cylinder Ω × R.

Fix a defect position z ∈ Ω and consider the solution u : Ω → R of the Neumann
problem

{
∆u = 0 in Ω,
∂u

∂n
= −g0 · n+ σ0 on ∂Ω,

(2.1)

where ∆ is the Laplace operator, ∂/∂n is the normal time derivative on ∂Ω, n is the
outward unit normal to ∂Ω, and

g0 = g0(x,z) =
b

2π|x− z|2 e3 × (x− z),(2.2)

where b is a real constant, e3 = e1 × e2 is a unit vector in R
3 orthogonal to the

plane containing Ω (so that e3 × (·) represents a counterclockwise π/2-rotation in
the Ω-plane), and σ0 = σ0(x) is an assigned function on ∂Ω. The field u represents the
regular part of the displacement due to the dislocation at z, while g0 is related to the
singular part of the deformation.

For each fixed z ∈ Ω, the Neumann problem (2.1) has a unique smooth solution2

(modulo an additive constant), which we henceforth denote by

u = u(x,z), x ∈ Ω.(2.3)

Consider now the smooth vector field in Ω,

j(x) = b∇u(x,x) × e3, x ∈ Ω,(2.4)

where ∇u(x,x) = ∇xu(x,z)|z=x is the gradient of the solution u(x,z) of (2.1), for
a dislocation located at z = x. The vector field j(x) depends only on the domain Ω
and the boundary conditions σ0 and may be identified to the Peach–Köhler force on
a dislocation located at x ∈ Ω.

2The solution u of (2.1) can be represented explicitly with the help of Green’s formula,

u(x,z) = −
∫
∂Ω

N(x, ξ(s))

(
σ0(ξ(s)) − b

2π|ξ(s) − z|2 n(ξ(s)) · e3 × (ξ(s) − z)

)
ds+ c,

where N(x, ξ) is the Neumann function for the domain Ω, ξ(s) is a parametrization of ∂Ω with arc
length s, and c is a constant.
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F
s1

s2

jF

V = M( j .s1 - F ) s1 

Fig. 2.2. The definition of the vector field V .

Let now t denote time and [0, T ] be the time interval of interest. To study the
behavior of a defect under the action of the force (2.4), consider a dislocation motion

z : [0, T ] → Ω.

Introducing the (finite) set of crystallographic directions

C = {s1, . . . , sn}
with si fixed unit vectors in R

2, the basic physical idea is that a dislocation can only
move parallel to a crystallographic direction s ∈ C on which the projection of the force
j ·s is maximal, provided this is greater than a given threshold F , the so-called Peierls
force (Figure 2.2). Therefore, we write the basic equation governing the motion of a
dislocation as

ż = V (z), z ∈ Ω,(2.5)

where the superposed dot denotes time derivative and where the vector field V is
defined by

V (x) :=

{
0 if j(x) · s ≤ F ∀s ∈ C,
M (j(x) · e(x) − F ) e(x) otherwise,

(2.6)

where M > 0 and F ≥ 0 are given constants and e(x) ∈ C is determined by the
maximum dissipation criterion, i.e., the requirement that the projection of j(x) on
e(x) be maximal, i.e.,

j(x) · e(x) = max
s∈C, j·s>F

{j(x) · s}.(2.7)

Notice that e(x) takes its values in the finite set C and, if not identically constant,
cannot be continuous in the whole Ω, which implies that also V (x) cannot be con-
tinuous in Ω. More precisely, it may happen that at some point x the maximization
problem (2.7) admits two solutions: at such points the field e(x), and by consequence
also V (x), is multivalued. Indeed, j · s can have at most two maxima in C for j
given. Assume in fact that there exist three distinct unit vectors s1, s2, s3 such that
j ·s1 = j ·s2 = j ·s3; then the endpoints of s1, s2, and s3 belong to the same straight
line perpendicular to j, which is impossible since the si are unit vectors.

A detailed analysis of the phase portrait of the dynamical system (2.5) was per-
formed in [2], where it is shown that Ω splits into (i) regions where V (x) = 0, and the
dislocation is stationary; (ii) single slip regions R(s) (open regions in R

2), in which
e(x) = s is constant; and (iii) curves S on which e(x) is multivalued, which can be
further subdivided into cross-slip curves, sources, and attracting curves according to
the relative orientation of the curve S and the vectors e(x) (Figure 2.3).
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R(s1)
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R(s2)

Fig. 2.3. (a) Cross-slip curve; (b) source; (c) attracting curve—separating two single-slip regions.

The motion of a dislocation, solution of (2.5), can be described as follows. Con-
sider, to fix ideas, a dislocation initially at z0 ∈ R(s1). The evolution equation (2.5)
reduces to

ż = V1(z)s1

with V1(z) = M(j(z) · s1 − F ). Hence, the dislocation moves along a straight line
parallel to s1, until it reaches some point at the boundary of R(s1). If this point
belongs to a curve on which e(x) is multivalued, two situations may occur. If the
curve is a cross-slip curve, separating two single slip regions R(s1) and (say) R(s4)
(corresponding to the directions s1 and s4), then the solution can be prolonged across
the curve, and the dislocation moves into R(s4) on a straight line parallel to s4; this
phenomenon is known as cross slip (Figure 2.3(a)). If the curve is an attractor, then
the solution of (2.5) cannot be prolonged into the adjacent region, since it would
violate the maximum dissipation criterion (Figure 2.3(c)).

Hence, the problem seems to be ill-posed in the presence of an attractor. To
remove the ambiguity, it was suggested in [2] that, when the dislocation reaches an
attractor S, it continues to move along it according to an evolution equation of the
form

ż = w(z) with w(z) = V12(z)(α1(z)s1 + α2(z)s2),(2.8)

where V12(z) := j(z) · s1 − F = j(z) · s2 − F , and α1, α2 are determined by solving{
α1 + α2 = 1,
α1(s1 − s2) · (∇j)s1 + α2(s1 − s2) · (∇j)s2 = 0.

(2.9)

The resulting smooth motion of the dislocation, referred to as fine cross slip, is there-
fore noncrystallographic, since it does not occur along a crystallographic direction
s ∈ C. The purpose of the next section is to show that motion by fine cross slip (2.8)
can be realized as the limit of a sequence of infinitesimal cross slips across the attract-
ing curve S and to provide a basis for a numerical scheme based on the maximum
dissipation criterion.

Remark. Letting

V̂ (e, j) :=

{
0 if j · e ≤ F,
M(j · e− F ) if j · e > F,

(2.10)

we may rewrite condition (2.7) as the requirement that motion may occur only in
those directions e which maximize the dissipation V̂ (s, j)j · s, i.e.,

V̂ (e, j) j · e = max
s∈C

[V̂ (s, j) j·s],(2.11)
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provided that V̂ (e, j) > 0. The equivalence of (2.7) and (2.11) follows from the fact
that the function M(ξ − F )ξ is monotonic with respect to ξ for ξ > F .

3. Convergence of sequences of admissible polygonals. We study here the
motion of a dislocation near an attracting curve, in order to justify (2.8) rigorously.
From now on we regard the vector field j(x) in (2.4) as assigned and smooth in Ω.

Let z : [0, T ] → Ω be a given motion (not necessarily a solution of (2.5), (2.7),
and (2.6)). Writing

ż(t) = V (t)e(t), t ∈ [0, T ],(3.1)

with V = |ż| and e = ż/|ż|, we say that z is admissible if
(i) z is continuous and piecewise smooth,
(ii) the direction of motion e(t) belongs to the set of crystallographic directions,

and the velocity is a function of the projection of the force on that direction,3 i.e.,

e(t) ∈ C and V (t) = V̂ (e(t), j(z(t))),(3.2)

at each time t, with V̂ given by (2.10).
An admissible motion does not necessarily satisfy the maximum dissipation cri-

terion at all times, but its trajectory is a polygonal with edges parallel to the crystal-
lographic directions.

We assume from now on that the set of crystallographic directions is

C = {s1, s2,−s1,−s2}(3.3)

with s1 = e1 and s2 = e2, and we consider two adjacent single slip regions R(s1) and
R(s2), connected open sets in Ω such that4 R(s1) ∩ R(s2) �= ∅ and R(s1) ∩ ∂Ω = ∅,
R(s2) ∩ ∂Ω = ∅. By definition, in R(s1) and R(s2) the dissipation is maximal in the
directions s1 and s2, respectively, i.e.,{

x ∈ R(s1) ⇒ s1 · j(x) > s · j(x) ∀s ∈ C, s �= s1,
x ∈ R(s2) ⇒ s2 · j(x) > s · j(x) ∀s ∈ C, s �= s2.

(3.4)

Also, we assume that

j(x)·s1 > F and j(x)·s2 > F, x ∈ R(s1) ∪R(s2).

3.1. The definition of attracting curve. Let

G(x) := (s2 − s1) · j(x),(3.5)

and assume that j is such that ∇G �= 0 in Ω. By definition,

G(x) < 0 for x ∈ R(s1) and G(x) > 0 for x ∈ R(s2),

so that, by the smoothness of G and the fact that ∇G �= 0, the set

S = R(s1) ∩R(s2)

3For z continuous and piecewise smooth, ż is the right time derivative at corner points.
4Here R̄ denotes the closure of a set R ⊂ Ω.
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is a smooth curve on which G vanishes, i.e.,

G(x) = 0 ⇔ s1 · j(x) = s2 · j(x), x ∈ S.(3.6)

We say that S is an attracting curve for R(s1) and R(s2) if it satisfies the supplemen-
tary conditions

s1 · ∇G(x) > 0, s2 · ∇G(x) < 0, x ∈ S.(3.7)

Hence, at an attracting curve, s1 points into R(s2) and s2 points into R(s1) (Figure
2.3(c)). We denote by

τ = e3 × ∇G
|∇G|

the tangent vector to S.
No admissible motion satisfying the maximum dissipation criterion can originate

from an attracting curve S. To see this, consider an admissible motion along s1 with
initial point on S: by (3.7)1, G is increasing along s1, and the dislocation moves
into the single slip region R(s2). But in this region the dissipation is maximal in the
direction s2, and the maximum dissipation criterion is violated.

Moreover, writing{
V1(x) := V̂ (s1, j(x)) = M(s1 · j(x) − F ),

V2(x) := V̂ (s2, j(x)) = M(s2 · j(x) − F )
(3.8)

for the admissible velocities in the directions s1 and s2 at x ∈ R(s1) ∪ R(s2), (3.6)
implies that V1(x) = V2(x) at x ∈ S, and we denote by

V (x) := V1(x) = V2(x), x ∈ S,

their common value. However, since at S the maximum dissipation criterion admits
both s1 and s2 as solutions, the vector field V in (2.6) is multivalued, with values

V (x)s1 and V (x)s2

at x ∈ S.

3.2. Admissible polygonals. We study here admissible motions that do not
necessarily satisfy the maximum dissipation criterion. By definition, an admissible
motion z is a time-parametrized polygonal with sides parallel to the crystallographic
directions si ∈ C and piecewise continuous speed given by (2.10). Restricting to
admissible motions occurring in R(s1) ∪ R(s2) along the directions s1 and s2 only,
we have

either ż(t) = V1(z(t))s1 or ż(t) = V2(z(t))s2

for t ∈ [0, T ], where V1 and V2 are given by (3.8) and ż(t) is the right time derivative
at the corner points of the polygonal.

Hence, an admissible polygonal is a piecewise smooth curve

z(t) = x(t)s1 + y(t)s2
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such that there exists a partition {[τi, τi+1]} of the time interval [0, T ] with i =
0, 1, 2, . . . , for which

x(t) =

⎧⎨
⎩ given by t− τ2j =

∫ x(t)

x(τ2j)

dξ

V1(z(τ2j) + (ξ − x(τ2j))s1)
, t ∈ [τ2j , τ2j+1],

x(τ2j+1), t ∈ [τ2j+1, τ2j+2],

(3.9)

and

y(t) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

y(τ2j), t ∈ [τ2j , τ2j+1],

given by

t− τ2j+1 =

∫ y(t)

y(τ2j+1)

dη

V2(z(τ2j+1) + (η − y(τ2j+1))s2)
, t ∈ [τ2j+1, τ2j+2].

(3.10)

Since V1 and V2 are continuous in R(s1) ∪R(s2), they are also bounded on compact
subsets, and this in turn implies the following property of admissible motions.

Proposition 3.1. For any z0 ∈ R(s1) ∪ R(s2) there exists T > 0 such that the
set of all admissible motions originating from z0 is bounded in W 1,∞((0, T ),R2).

3.3. Sequences of admissible motions. The natural notion of convergence
for sequences of admissible motions should account for the fact that the velocity
oscillates between the directions s1 and s2 and therefore may converge only in average.
Weak-∗ convergence inW 1,∞((0, T ),R2) serves the purpose. We say that a sequence of
Lipschitz motions {zk} converges weak-∗ in W 1,∞((0, T ),R2) if there exists a motion

ξ ∈ W 1,∞((0, T ),R2) such that zk → ξ strongly in C([0, T ],R2) and żk
∗
⇀ ξ̇ in

L∞([0, T ],R2), i.e.,

sup
t∈[0,T ]

|zk(t) − ξ(t)| → 0

and ∫
I

(żk(t) − ξ̇(t)) dt→ 0

for any interval I ⊂ [0, T ], provided {żk(t)} is bounded in L∞([0, T ],R2).
The weak limit of a sequence of admissible motions is characterized by the Young

measure associated to the sequence of the velocities (see Young [13] or, for a more
recent approach, [10]). Consider in fact a sequence {wk : (0, T ) → R

2} converging
weak-∗ to w0 in L∞((0, T ),R2). A Young measure associated with the sequence {wk}
is a family of probability measures {νt}t∈(0,T ) in R

2 which depends measurably on t,
i.e., for any ϕ : R

2 → R continuous, the function

ϕ̄(t) =

∫
R2

ϕ(w)dνt(w)(3.11)

is measurable. The fundamental property of νt is that, for any continuous ϕ, the
sequence {ϕ(wk)} converges (modulo a subsequence) weak-∗ to ϕ̄ in L∞((0, T ),R),
i.e., ∫

I

ϕ(wk(t)) dt→
∫
I

∫
R2

ϕ(w)dνt(w) dt,(3.12)
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for any interval I ⊂ [0, T ], provided that {ϕ(wk)} is bounded in L∞([0, T ],R). In
particular, the weak limit w0 is the expected value of w with respect to νt, i.e.,

w0(t) =

∫
R2

w dνt(w).(3.13)

An explicit characterization of νt is as follows. For every measurable E ⊂ R
2,

νt(E) = lim
R→0

lim
k→+∞

|{s ∈ (t−R, t+R) : wk(s) ∈ E}|
2R

,(3.14)

where | · | denotes the Lebesgue measure on R.
Theorem 3.2. Consider a sequence of admissible polygonals zk(t) in the direc-

tions s1 and s2, converging weak-∗ in W 1,∞((0, T ),R2) as k → +∞ to a Lipschitz
motion ξ ∈ W 1,∞((0, T ),R2). Then the Young measure associated to the sequence
{żk} is

νt = λ1(t) δV1(ξ(t))s1
+ λ2(t) δV2(ξ(t))s2

, t ∈ (0, T ),(3.15)

with δV1(ξ(t))s1
and δV2(ξ(t))s2

Dirac measures localized at V1(ξ(t))s1 and V2(ξ(t))s2,
respectively, and

λ1(t) =
ξ̇(t) · s1

V1(ξ(t))
, λ2(t) =

ξ̇(t) · s2

V2(ξ(t))
.(3.16)

Proof. We use property (3.14) to compute the measure νt associated to {żk}. Fix
t̄ ∈ (0, T ), and consider the sets

E1,ε = {w ∈ R
2 : w = ws1, w ∈ (V1(ξ(t̄)) − ε, V1(ξ(t̄)) + ε)},

E2,ε = {w ∈ R
2 : w = ws2, w ∈ (V2(ξ(t̄)) − ε, V2(ξ(t̄)) + ε)}

for fixed ε > 0, and

E1 = {V1(ξ(t̄))s1}, E2 = {V2(ξ(t̄))s2}.

We want to compute

νt̄(E1,ε) = lim
R→0

lim
k→+∞

|I1,k,ε|
2R

and νt̄(E2,ε) = lim
R→0

lim
k→+∞

|I2,k,ε|
2R

,

where

I1,k,ε = {s ∈ (t̄−R, t̄+R) : żk(s) ∈ E1,ε},
I2,k,ε = {s ∈ (t̄−R, t̄+R) : żk(s) ∈ E2,ε}.

Since every polygonal zk is admissible, it satisfies (3.2), and

either żk(t) = V1(zk(t))s1 or żk(t) = V2(zk(t))s2(3.17)

for t ∈ [0, T ], with V1 and V2 given by (3.8). Hence, since V1(zk(t)) → V1(ξ(t))
and V2(zk(t)) → V2(ξ(t)) uniformly in t it follows that żk(s) ∈ E1,ε ∪ E2,ε for s ∈
(t̄−R, t̄+R) for k sufficiently large and R sufficiently small. Hence, by (3.14), if E does
not contain either E1,ε or E2,ε, then νt̄(E) = 0, so that the measure νt̄ is concentrated
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on E1,ε and E2,ε. Since ε is arbitrary, νt̄(E1,ε) and νt̄(E2,ε) are independent of ε, and
since (see [11])

νt̄(E1) = inf
ε
{νt̄(E1,ε)}, νt̄(E2) = inf

ε
{νt̄(E2,ε)},

it follows that the measure νt̄ is concentrated on E1 and E2, so that (3.15) holds with

λ1(t̄) = νt̄(E1), λ2(t̄) = νt̄(E2).

Moreover, admissibility implies that |I1,k,ε|+|I2,k,ε| = |I1,k,ε∪I2,k,ε| = |(t̄−R, t̄+R)| =
2R, and passing to the limit this in turn implies that

λ1 + λ2 = 1,(3.18)

an identity which is also an immediate consequence of the fact that νt̄ is a probability
measure. Finally, by (3.13),

ξ̇(t̄ ) =

∫
R2

w dνt̄(w) = λ1(t̄ )V1(ξ(t̄ ))s1 + λ2(t̄ )V2(ξ(t̄ ))s2,

from which (3.16) follows.
Notice that since the velocity of the limit motion is

ξ̇(t) = λ1(t)V1(ξ(t))s1 + λ2(t)V2(ξ(t))s2,(3.19)

it follows that the weak limit of a sequence of admissible motions is not necessarily
admissible but can be represented as a fine mixture of crystallographic motions in the
admissible directions s1 and s2.

Corollary 3.3. Let S be an attracting curve separating two single slip regions
R(s1) and R(s2): any sequence of admissible polygonals zk(t) with directions s1 and
s2 such that

dist (zk(t), S) → 0,(3.20)

uniformly in t ∈ [0, T ] as k → +∞, converges weak-∗ in W 1,∞((0, T ),R2) (and, in
particular, uniformly) to a smooth motion ξ(t) on S with velocity

ξ̇(t) =
V (ξ(t))

τ (ξ(t)) · (s1 + s2)
τ (ξ(t)),(3.21)

where τ is the unit tangent vector to S and V (x) := V1(x) = V2(x) the speed evaluated
at x ∈ S (see (3.8)). Moreover, the Young measure associated to the sequence {żk} is

νt = λ1(ξ(t)) δV (ξ(t))s1
+ λ2(ξ(t)) δV (ξ(t))s2

(3.22)

with

λ1(x) =
τ (x) · s1

τ (x) · (s1 + s2)
, λ2(x) =

τ (x) · s2

τ (x) · (s1 + s2)
(3.23)

for a.e. x ∈ S.
Proof. Since every polygonal zk is admissible, it satisfies (3.2) and (2.10), i.e.,

either żk(t) = V1(zk(t))s1 or żk(t) = V2(zk(t))s2,
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for t ∈ [0, T ]. Hence, since V1 and V2 are bounded in a neighborhood of S, the
sequence {zk} is bounded in W 1,∞((0, T ),R2) (see Proposition 3.1), so that there
exists a subsequence (not relabeled) extracted from {zk}, converging weak-∗ to a
parametrized curve ξ ∈W 1,∞((0, T ),R2). By (3.20), ξ(t) ∈ S for all t ∈ T . Writing

ξ̇ = W�,(3.24)

with �(t) = ξ̇(t)/|ξ̇(t)| the unit vector of ξ̇(t), and applying (3.16) and (3.18) we find

λ1 + λ2 =
ξ̇ · s1

V1
+
ξ̇ · s2

V2
= 1,

from which it follows that

W =
V1(ξ)V2(ξ)

� · (V1(ξ)s2 + V2(ξ)s1)
.(3.25)

Also, writing

λ1 =
ξ̇ · s1/V1

ξ̇ · (s1/V1 + s2/V2)
=

V2ξ̇ · s1

ξ̇ · (V2s1 + V1s2)
,

and recalling (3.24), we also obtain the coefficients of the Young measure associated
to {żk} in the form

λ1 =
V2(ξ)� · s1

� · (V2(ξ)s1 + V1(ξ)s2)
, λ2 =

V1(ξ)� · s2

� · (V2(ξ)s1 + V1(ξ)s2)
.(3.26)

Now, the function ξ defines a motion on S; hence � = τ (the unit tangent to S) in
(3.25) and (3.26), and recalling that V1 = V2 =: V on S and S is smooth, we obtain
(3.21), (3.22) and (3.23).

Finally, notice that (3.21) uniquely defines a smooth motion on S, and its expres-
sion does not depend on the subsequence of {zk} used to construct it. Hence, we can
conclude that every converging subsequence has the same limit, so that the original
sequence {zk} converges to ξ.

Notice that although each admissible motion zk(t) does not necessarily satisfy
the maximum dissipation criterion for all t ∈ [0, T ], the sequence zk is a maximizing
sequence for the dissipation, since the limit motion ξ satisfies the maximum dissipation
criterion (recall, however, that the limit motion is not admissible). To see this, let
J(x) := j(x) · s1 = j(x) · s2 and V (x) := V1(x) = V2(x) for x ∈ S (see (3.6)). The
maximum dissipation (among all admissible motions) at x ∈ S is (see (2.11) and (3.4))

max
s∈C

{V̂ (s, j(x)) j(x) · s} = J(x)V (x),(3.27)

while the dissipation relative to the limit motion ξ(t) is

j(ξ(t)) · ξ̇(t) =
V (ξ(t))

τ (ξ(t)) · (s1 + s2)
j(ξ(t)) · τ (ξ(t)) = V (ξ(t))J(ξ(t)),(3.28)

since j = J(s1 + s2), and these expressions coincide at x = ξ(t).
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Also, it is not difficult to prove that (3.21) coincides with (2.8). In fact, solving
system (2.8)2 and recalling (3.5), we obtain

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
α1 =

(s2 − s1) · (∇j)s2

(s2 − s1) · (∇j)s2 − (s2 − s1) · (∇j)s1
=

∇G · s2

∇G · s2 −∇G · s1
,

α2 =
−(s2 − s1) · (∇j)s1

(s2 − s1) · (∇j)s2 − (s2 − s1) · (∇j)s1
= − ∇G · s1

∇G · s2 −∇G · s1
,

with G given by (3.5). Now, noting that ∇G · s2 = ∇G · e3 × s1 = −e3 ×∇G · s1 =
−|∇G|τ · s1, and ∇G · s1 = −∇G · e3 × s2 = e3 ×∇G · s2 = |∇G|τ · s2, we find

α1 =
τ · s1

τ · s1 + τ · s2
, α2 =

τ · s2

τ · s1 + τ · s2
,

which yields (3.21), recalling that V12 coincides with V in our present notation.

3.4. Sequences of admissible polygonals maximizing the dissipation.
In this section we show that every sequence of polygonals maximizing the dissipation
converges to the smooth motion ξ on S given by (3.21).

For x ∈ Ω, let VM (x) and eM (x) denote the speed and direction of motion
selected by the maximum dissipation criterion (2.11) among all admissible velocity
fields, i.e., such that

VM (x)eM (x) · j(x) = max
s∈C

{V̂ (s, j(x)) s · j(x)},(3.29)

where V̂ is given by (2.10). Notice that although eM (x) is in general multivalued at
S, the maximum dissipation (3.29) is single valued everywhere. Consider the function
D: Ω × R

2 → R defined by

D(x,w) = j(x) · (VM (x)eM (x) −w) .(3.30)

For a given motion z ∈ W 1,∞((0, T ),R2) the real function D(z(t), ż(t)) belongs to
L∞((0, T ),R) and measures the difference between the maximum possible dissipation
and the actual dissipation at each time.

Fix z0 ∈ S and consider the set of admissible curves originating from z0:

A =
{
z : [0, T ] → R

2 : z piecewise smooth, z(0) = z0 ∈ S and

either ż(t) = V1(z(t))s1 or ż(t) = V2(z(t))s2, t ∈ [0, T ]} ,

where ż denotes the right time derivative at corner points of the polygonals.
By definition

D(z(t), ż(t)) ≥ 0 ∀z ∈ A,∀t ∈ [0, T ],(3.31)

although D can be negative for some nonadmissible motion.
Consider now the functional associated to D,

E(z) =

∫ T

0

D(z(t), ż(t)) dt =

∫ T

0

j(z(t)) · (VM (z(t))eM (z(t)) − ż(t)) dt,(3.32)
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defined for z ∈ W 1,∞((0, T ),R2). By the discussion following (3.7), no admissible
motion satisfying the maximum dissipation criterion can originate from S, so that E
is strictly positive on A. Indeed, as we shall show in the next section,

inf
z∈A

E(z) = 0,(3.33)

and the infimum is not attained on A.
Theorem 3.4. Any sequence of admissible polygonals {zk} ⊂ A minimizing E

(or, equivalently, maximizing the dissipation), i.e., such that

lim
k→+∞

E(zk) = 0,(3.34)

converges weak-∗ in W 1,∞((0, T ),R2) to the smooth motion ξ(t) on S, whose velocity
is (3.21).

Proof. By Corollary 3.3, it is enough to prove that every sequence of admissible
curves {zk} minimizing E converges to a motion on S.

Notice first that, by Proposition 3.1, A is bounded in W 1,∞((0, T ),R2), and every
sequence {zk} ⊂ A admits a subsequence (not relabeled) which converges weak-∗ in
W 1,∞((0, T ),R2) to a (in general nonadmissible) Lipschitz motion ξ. In particular,

lim
k→+∞

∫
I

żk(t) dt =

∫
I

ξ̇(t) dt

for every interval I ⊂ [0, T ], and by Theorem 3.2 (see (3.19)),

ξ̇(t) = λ1(t)V1(ξ(t))s1 + λ2(t)V2(ξ(t))s2.(3.35)

Assume now that {zk} is a minimizing sequence for E. Since all zk are admissible,
the integrand D(zk(t), żk(t)) is nonnegative for all t, so that (3.34) is equivalent to
weak-∗ convergence of D(zk(t), żk(t)) to zero, i.e.,

lim
k→+∞

∫
I

D(zk(t), żk(t)) dt = 0,

for every interval I ⊂ [0, T ]. Moreover, since D(x,w) is continuous with respect to x
and affine in w, it is continuous under weak-∗ convergence, and

lim
k→+∞

∫
I

D(zk(t), żk(t)) dt =

∫
I

D(ξ(t), ξ̇(t)) dt.

Hence, ∫
I

D(ξ(t), ξ̇(t)) dt = 0(3.36)

for any interval I ⊂ [0, T ].
We now show by contradiction that ξ(t) ∈ S for all t ∈ [0, T ]. Suppose, to fix

ideas, that ξ(t) ∈ R(s1) for t ∈ (0, ε), and recall that ξ(0) ∈ S. Since by definition
VM (x)j(x) · eM (x) = V1(x)s1 · j(x) in R(s1), (3.36) yields∫ ε

0

j(ξ(t)) · (V1(ξ(t))s1 − ξ̇(t)) dt = 0,
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which becomes in turn, by (3.35),

0 =

∫ ε

0

j(ξ(t)) · ((1 − λ1(t))V1(ξ(t))s1 − λ2(t)V2(ξ(t))s2) dt

=

∫ ε

0

(1 − λ1(t)) (V1(ξ(t))s1 · j(ξ(t)) − V2(ξ(t))s2 · j(ξ(t))) dt,

and since V1(ξ(t))s1 · j(ξ(t)) > V2(ξ(t))s2 · j(ξ(t)) in R(s1), the integrand is nonneg-
ative, and we obtain

λ1(t) = 1, λ2(t) = 0,

a.e. in (0, ε). Hence ξ is admissible and

ξ̇(t) = V1(ξ(t))s1 and ξ(0) ∈ S,

which is a contradiction since, by (3.7)2, any admissible motion in the direction s1

originating from S necessarily occurs in the region R(s2) for some time interval con-
taining t = 0. Repeating this argument for any interval [ε, ε′], it follows that ξ(t) ∈ S
for each t ∈ [0, T ], so that, in particular, dist (zk(t), S) → 0 uniformly in t, and we
can apply Corollary 3.3 to obtain the thesis.

4. Explicit construction of a sequence of polygonals maximizing the
dissipation. The results of the previous section provide a theoretical justification of
the evolution equation (2.8) postulated in [2] for a dislocation moving on an attracting
curve, but they can also be used to motivate a simple numerical scheme which involves
only a time-discretized ODE solver of the dynamical system (2.5).

The idea is as follows. Assume that the field j, and by consequence the vector
field V (x) in (2.6), is known. Since, away from the attracting curve, the motion of
the dislocation is a solution of the dynamical system (2.5), it can be computed by any
time-discretized numerical method for ODEs, for instance a simple Euler method. To
be specific, choose an initial point in R(s1), and propagate the dislocation along s1 by
solving numerically (2.5) with time step h. Since S is an attracting curve, the solution
z(t) approaches S as time increases. At some time t0, it happens that z(t0) ∈ R(s1),
but z(t0 + h), which is obtained by propagating z(t0) using V (z(t0)) = V1(z(t0))s1,
belongs to R(s2). In other terms, since the time steps are discretized, the dislocation
crosses S and moves for a time interval strictly smaller than h along s1 into the region
R(s2), thereby violating the maximum dissipation criterion.

At the next iterative step, the point z(t0 + h) ∈ R(s2) is propagated in the s2

direction using the “correct” value V (z(t0 + h)) = V2(z(t0 + h))s2 and again ap-
proaches the attractor S. Iterating the procedure, we obtain a zig-zag approximation
of the motion near the attracting curve S, which only requires the knowledge of the
vector field (2.6) away from S.

This motion is a numerical approximation of an admissible polygonal, which how-
ever does not satisfy the maximum dissipation criterion at all times. The purpose of
this section is to construct a sequence of admissible polygonals consistent with the
above argument and to show that it maximizes the dissipation as the time step h→ 0,
which implies in turn that, by Theorem 3.4, it converges as h→ 0 to the smooth non-
admissible motion on S given by (3.21).

We now make this idea precise. Let S be an attracting curve separating R(s1) and
R(s2) as in section 3.1. Fix h = T/k with k integer, and choose z0 = x0s1 +y0s2 ∈ S.
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s1

s2

zk(h)zk(0)=z0

zk(h+mh+nh)
zk(h+mh) S

R(s2)
R(s1)

zk(h+(m-1)h)

Fig. 4.1. Approximating polygonal.

For t ∈ [0, h), let zk(t) be the rectilinear motion in the direction s1 solution of

ż = V1(z)s1

with initial condition z0, i.e., writing zk(t) = xk(t)s1 + yk(t)s2,⎧⎨
⎩xk(t) is defined by t =

∫ xk(t)

x0

dξ

V1(z0 + (ξ − x0)s1)
,

yk(t) ≡ y0,

t ∈ [0, h).

Since, by (3.7), s1 at S points into the single slip region R(s2), it follows that zk(t) ∈
R(s2) for t ∈ [0, h). Should the motion continue along s1, it would further violate the
maximum dissipation criterion, and therefore at time t = h the motion switches to
the preferred direction s2. Consider now the solution of

ż = V2(z)s2

for t ≥ h, with initial condition zk(h), and denote this solution by z̄(t). Since S is
an attractor for R(s2), there exists a time t̄ such that z̄(t̄) ∈ S, so that there exists
an integer m such that z̄(h + (m − 1)h) ∈ R(s2) but z̄(h + mh) ∈ R(s1). We let
zk(t) = z̄(t) for t ∈ [h, h+mh], i.e.,⎧⎨
⎩
xk(t) ≡ xk(h),

yk(t) defined by t− h =

∫ yk(t)

yk(h)

dη

V2(zk(h) + (η − yk(h))s2)
,

t ∈ [h, h+mh).

Again, since zk(h + mh) ∈ R(s1), to satisfy the maximum dissipation criterion the
motion switches to the preferred direction s1 at time t = h +mh and moves toward
the attractor S (Figure 4.1).

The above procedure can now be iterated, and we obtain an admissible polygonal

zk(t) = xk(t)s1 + yk(t)s2,(4.1)

defined on all [0, T ], where xk(t) and yk(t) are defined by relations analogous to (3.9)
and (3.10), with the τi now integer multiples of h.

Proposition 4.1. The sequence of polygonals {zk} defined by (4.1) converges to
S, i.e.,

dist (zk(t), S) → 0,(4.2)

uniformly in t ∈ [0, T ], as k → +∞.
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s1

s2

zk(τ2i+1)

zk(τ2i+1+mih)

zk(τ2i+1+(mi-1)h)

zk(τ2i+1-h)zk(τ2i)

S

γ

Fig. 4.2. Proof of Proposition 4.1.

Proof. We know that V1(x) and V2(x) are bounded in a neighborhood U of S, and
we denote by W = max(maxU V1,maxU V2) the maximum speed in U . Also, denote
by U = min(minU V1,minU V2) the minimum speed in U , and assume that U > 0.

Consider a typical portion γ of the polygonal zk(t) lying in U between two succes-
sive intersections with S (Figure 4.2). Assume, to fix ideas, that γ ∈ R(s2), so that the
first intersection with S occurs in the portion of γ parallel to s1, with the second in-
tersection occurring in the portion of γ parallel to s2. Let [τ2i, τ2i+1] and [τ2i+1, τ2i+2]
be the time intervals corresponding to the rectilinear segments of zk parallel to s1

and s2, respectively, and such that τ2i+1 − τ2i = nih and τ2i+2 − τ2i−1 = mih, with
ni and mi integers (see (3.9) and (3.10)).

Notice now that (3.7) is equivalent to

s1 · τ (x) > 0, s2 · τ (x) > 0, x ∈ S,

with τ the tangent vector to S, and this in turn implies that, since S is bounded,
there exists α > 0 such that α < s1 · τ (x) and s2 · τ (x) < 1 − α.

Hence, the portion of S between two successive intersections with the polygonal
lies in the shaded rectangle in Figure 4.2, and

dist (x, S) ≤ |zk(τ2i+1 +mih) − zk(τ2i+1 − h)|, x ∈ γ.

But

|zk(τ2i+1 +mih) − zk(τ2i+1 − h)| ≤ |zk(τ2i+1) − zk(τ2i+1 − h)|
+|zk(τ2i+1 +mih) − zk(τ2i+1)| ≤Wh+Wmih = Wh(1 +mi).

To prove the thesis it is enough to show that all mi are bounded as k → +∞ (or
equivalently h→ 0). But this is true since (see Figure 4.2)

U(mi − 1)h

Wh
≤ yk(τ2i+1 + (mi − 1)h) − yk(τ2i+1)

xk(τ2i+1) − xk(τ2i+1 − h)
≤ max

x∈S
s2 · τ (x)

s1 · τ (x)
≤ 1 − α

α
,

an analogous assertion holding for ni. This proves uniform convergence.
We can now apply Corollary 3.3 to conclude that the sequence {zk(t)} converges

uniformly to the smooth motion ξ on S, and the discussion in the paragraph containing
(3.27) and (3.28) can be used to show that {zk(t)} maximizes the dissipation.

The following proposition is an independent proof of the maximizing property.
Proposition 4.2. The sequence of polygonals {zk} defined by (4.1) maximizes

the dissipation, i.e.,

lim
k→+∞

E(zk) = 0.(4.3)
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Proof. Denote by

Dk(t) := D(zk(t), żk(t))

the integrand of E. We shall prove that Dk(t) → 0 uniformly in t (in particular,
strongly in L∞((0, T ),R)). Indeed, for each k, Dk(t) = 0 except when the maximum
dissipation criterion is not satisfied, i.e., for those time intervals Aq, q = 1, . . . , Q, for
which motion occurs in the s1 direction but zk(t) ∈ R(s2), and for those time intervals
Bq, q = 1, . . . , Q, for which motion occurs in the s2 direction but zk(t) ∈ R(s1).
Notice that |Aq|, |Bq| < h by construction. Hence, we can write

Dk(t) =

⎧⎨
⎩

0, t ∈ [0, T ] \ (∪q(Aq ∪Bq)),
j(zk(t)) · (V2(zk(t))s2 − V1(zk(t))s1), t ∈ ∪qAq,
j(zk(t)) · (V1(zk(t))s1 − V2(zk(t))s2), t ∈ ∪qBq.

On the other hand, by (3.8),

j(zk(t)) · (V2(zk(t))s2 − V1(zk(t))s1)

= M
[
j(zk(t)) · (s2 − s1)

] [
j(zk(t)) · (s2 + s1) − F

]
= G(zk(t))Z(t)

with Z(t) = M [j(zk(t)) · (s2 + s1) − F ] and G defined by (3.5). Notice that 0 <
Z(t) < C for some constant C. Hence we can write

Dk(t) =

{
0, t ∈ [0, T ] \ (∪q(Aq ∪Bq)),
Z(t)|G(zk(t))|, t ∈ ∪q(Aq ∪Bq).

Write Aq = [t1, t2], so that zk(t1) ∈ S and zk(t) ∈ R(s2) for t1 < t ≤ t2. Since G is
smooth and zk(t) is also smooth for t ∈ Aq,

G(zk(t)) = G(zk(t1)) +
[∇G(zk(t1)) · s1

] [
V1(zk(t1))(t− t1)

]
+ o(h).

But ∇G and V1 are bounded in a neighborhood of S, and G(zk(t1)) = 0 since zk(t1) ∈
S, and t− t1 < h. Hence there exists a constant K > 0 such that

0 ≤ Dk(t) < Kh ∀t ∈ [0, T ],

and Dk(t) → 0 uniformly in t as k → +∞ (i.e., as h → 0), and the thesis is
proved.

5. Numerical simulations. In this section we present the results of numerical
simulations of (2.1) and (2.5) for two different plane domains. The basic steps are as
follows:

• We solve the Neumann problem (2.1) by a finite element method, for each
position z of the dislocation varying on a square grid in Ω. The result is then
inserted into (2.4) to determine the Peach–Köhler force j on the same grid.

• Once the force field has been determined, the velocity field V in (2.6) re-
sults by projecting the force onto the crystallographic directions si ∈ C and
choosing the actual direction of motion by the maximum dissipation crite-
rion. Plotting V in Ω gives some information about the phase portrait of the
dynamical system (2.5), such as the form of the single slip regions, and the
presence of cross-slip or attracting curves.
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Fig. 5.1. Plot of the vector field j in Ω corresponding to shear stress boundary conditions
σ0 = −1 on the lower side of the square, σ0 = 1 on the upper side, and σ0 = 0 elsewhere. Left:
cracked domain; right: domain clamped to a rigid inclusion.

• Finally, we solve the dynamical system (2.5) numerically for initial conditions
near an attracting curve S. We use Euler and Runge–Kutta methods in which
the values of the velocity field V are determined again by solving (2.1) at each
time step. Indeed, consistent with the discussion in section 4, the solution
oscillates finely along the attracting curve.

In particular, we assume without loss of generality that5

M = 1, F = 0,

and the involved domains have the following form:
(i) The first is a square domain without a wedge of angle ψ0, i.e.,

Ω = Q\
{
(x, y) :

1

2
≤ x ≤ 1,

1

2
−
(

tan
ψ0

2

)(
x− 1

2

)
≤ y ≤ 1

2
+

(
tan

ψ0

2

)(
x− 1

2

)}
,

where Q = [0, 1] × [0, 1], and with boundary conditions

σ0 =

⎧⎨
⎩

+1 on the upper side of Q : {y = 1},
−1 on the lower side of Q : {y = 0},
0 otherwise.

In terms of the original three-dimensional cylindrical body, this corresponds to a shear
force parallel to e3 applied to two opposite sides of the cylinder.

The field j(x) representing the force on a screw dislocation in Ω is plotted in
Figure 5.1 (left).

Assuming that the set C of crystallographic directions is as in (3.3), with s1 and
s2 now given by

s1 =
1√
2
(e1 − e2), s2 =

1√
2
(e1 + e2),(5.1)

5M is the mobility of the dislocation, which can be adjusted by rescaling time; F is the Peierls–
Nabarro threshold: when F > 0 there are regions in which V (x) = 0 and the dislocation does not
move, but elsewhere the phase portrait remains qualitatively the same as when F = 0.
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Fig. 5.2. Plot of the vector field V in Ω (same boundary conditions as above) with crystallo-
graphic directions s1 = 1√

2
(e1 − e2) and s2 = 1√

2
(e1 + e2). Left: cracked domain; right: domain

with a rigid inclusion.

the resulting velocity field V (x) is plotted in Figure 5.2 (left). Notice that as ψ0 → 0
the domain becomes a square with a planar crack. Indeed, near the tip of the wedge,
our results are consistent with the qualitative behavior of the analytical solution (6.2):
the segment S = {0 < x < 1/2, y = 1/2} is an attracting curve (see the next section).

Finally, we show in Figure 5.3 (left) some trajectories of the vector field (2.6).
The trajectories have been computed by the Euler method. Notice that one of the
trajectories is a fine polygonal oscillating near the attracting curve y = 1/2.

(ii) The second domain is a square clamped to a rigid inclusion:

Ω = Q \ Q′ with Q′ =

{
(x, y) :

1

2
− L

2
≤ x ≤ 1

2
+
L

2
,

1

2
− L

2
≤ y ≤ 1

2
+
L

2

}
,

and with Neumann conditions on the boundary of the outer square ∂Q,

σ0 =

⎧⎨
⎩

+1 on the upper side of Q : {y = 1},
−1 on the lower side of Q : {y = 0},
0 on the lateral sides of Q : {x = 0} and {x = 1},

and tangential-derivative conditions on the boundary of the inclusion Q′, of the form

t · ∇u = −g0 · t on ∂Q′,(5.2)

where t is the unit tangent vector to ∂Q′ and g0 is given by (2.2). The bound-
ary conditions (5.2) may be interpreted as displacement boundary conditions, which
correspond to clamping the cylinder to a rigid inclusion.

Notice in fact that, for any fixed z0 ∈ Ω, the loop ∂Q′ does not encircle the
singularity at z0. Hence, letting g = g0(x,z0) + ∇u(x,z0), there exists a function
w on ∂Q′ such that g · t = dw/ds, with s the arc parameter on ∂Q′. Interpreting w
as the total displacement at the boundary of Q′, the condition w = const. on ∂Q′ is
equivalent to dw/ds = 0, which corresponds to (5.2).

The field j(x) representing the force on a screw dislocation is plotted in Figure
5.1 (right). Assuming again that the set of crystallographic directions is as in (5.1),
the resulting velocity field V (x) is plotted in Figure 5.2 (right).
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Fig. 5.3. Some trajectories of the vector field V for a cracked domain and a domain with a
rigid inclusion.

Finally, we show in Figure 5.3 (right) some trajectories of the vector field (2.5).
The trajectories have been computed by the Euler method. As before, notice that one
of the trajectories is a fine polygonal oscillating near the attracting curve y = 1/2.

6. An explicit solution for a dislocation in an infinite domain with a
crack. The dynamical system governing the motion of a single dislocation can be
determined explicitly for some simple geometries, such as an unbounded domain with
a rectilinear crack (corresponding to an unbounded cylinder with a plane crack parallel
to the axis of the cylinder). Consider the plane domain

Ω = R
2\ {x ≥ 0, y = 0}

and rewrite (2.1), with σ0 = 0, in the form{
Div g = 0 in Ω \ {z},
g · n = 0 at ∂Ω

(6.1)

with g = g0 +∇u and z = (x0, y0) ∈ Ω. The explicit solution of (6.1) can be obtained
using complex variables, by the procedure outlined in [1] as follows. Letting

g(x) = g1(x)e1 + g2(x)e2 with x = (x, y),

denote by g = g(w) the complex function defined by

g(w) = g1(w) − ig2(w) with w = x+ iy.

Then it can be proved that [1]

g(w) =
b

2πi

(
h′(w)

h(w) − h(z)
+

h̄(z)h′(w)

1 − h̄(z)h(w)

)
,

where h(w) is a conformal mapping from Ω into the unit disk and z = x0 + iy0. In
particular, we may choose

h(w) =
1 + i

√
w

1 − i
√
w
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with
√
w the principal determination of the complex square root, i.e.,

√
w =

√
reiϕ/2

for w = reiϕ and 0 < ϕ < 2π. We obtain

g(w) =
b

4πi
√
w

√
z −√

z

(
√
w −√

z)(
√
w −√

z)
.

Notice that, near the tip of the crack, for w = reiϕ, the solution is singular:

|g| ∼ 1√
r

as r → 0.

The same technique allows us to compute explicitly the force on the dislocation. Write

j(z) = j1(z)e1 + j2(z)e2,

and consider the corresponding complex function

j(z) = j1(z) − ij2(z) with z = x0 + iy0.

Then it can be proved that [1]

j(z) =
b2

2π

{
h′′(z)
2h′(z)

+
h̄(z)h′(z)
1 − |h(z)|2

}

with h(z) the conformal mapping from Ω into the unit disk introduced above. A
lengthy calculation yields

j(z) =
b2(−3

√
z +

√
z)

8πz(
√
z −√

z)
=

ib2

16πr0 sin(ϕ0/2)
(3e−iϕ0/2 − e−3iϕ0/2)

=
b2

16πr0 sin(ϕ0/2)

{(
3 sin

ϕ0

2
− sin

3ϕ0

2

)
+ i

(
3 cos

ϕ0

2
− cos

3ϕ0

2

)}

for z = r0e
iϕ0 , from which it follows that the Cartesian components of the force on a

dislocation at z = r0(cosϕ0, sinϕ0) are given by

j(z) =
b2

16πr0 sin(ϕ0/2)

{(
3 sin

ϕ0

2
− sin

3ϕ0

2

)
e1 +

(
−3 cos

ϕ0

2
+ cos

3ϕ0

2

)
e2

}
.

(6.2)

Notice that j is singular at the crack tip, as r0 → 0, and at the crack boundary, as
ϕ0 → 0, 2π.

To determine the phase portrait, we must determine the single slip regions and
their boundaries. Assuming that the set C of crystallographic directions is (3.3), with
s1 and s2 given by (5.1), the single slip regions and the attracting curves can be
determined explicitly. In fact, computing j · s1 and j · s2, we obtain

j(r0, ϕ0) · s1 > j(r0, ϕ0) · s2 ⇔ cos
ϕ0

2

(
3 − 2 cos2

ϕ0

2

)
> 0 ⇔ ϕ0 ∈ (0, π),

so that the single slip regions R(s1) and R(s2) are the upper and lower half-plane,
respectively.

The curve S separating R(s1) and R(s2) is an attracting curve, given by the
relation j(r0, ϕ0)·s1 = j(r0, ϕ0)·s2, and is therefore the negative real half-line ϕ0 = π.
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Fig. 6.1. Left: trajectory of an approximating polygonal near the tip of the crack for h = 0.1
(Euler method); right: comparison of the limit motion x(t) and the horizontal component of the
approximating polygonal.

The smooth motion on S corresponding to fine cross-slip can be detemined ex-
plicitly: since

j(r0, π) =
1

4πr0
e1,

letting ξ(t) = x(t)e1, the homogenized evolution equation (3.21) becomes

ẋ0 =
1

8π|x0| ,

whose solution with the initial condition x(0) = −1 is

x(t) = − 1

2π

√
4π − t.(6.3)

Hence the dislocation reaches the tip of the crack at x = 0 in finite time.
In Figure 6.1 we compare the exact solution (6.3) with the horizontal component of

the numerical solution (Euler method) of the dynamical system (2.5). The agreement
is good already for the time step h = 0.1.

REFERENCES

[1] E. Buzano and P. Cermelli, A singular variational problem in dislocation theory, Z. Angew.
Math. Phys., 51 (2000), pp. 968–983.

[2] P. Cermelli and M. E. Gurtin, The motion of screw dislocations in materials undergoing
anti-plane shear: Glide, cross-slip, fine cross-slip, Arch. Ration. Mech. Anal., 148 (1999),
pp. 3–52.

[3] J. D. Eshelby, Energy relations and the energy-momentum tensor in continuum mechanics,
in Inelastic Behavior of Solids, M. Kanninen, W. Adler, A. Rosenfield, and R. Jaffee, eds.,
McGraw–Hill, New York, 1970, pp. 77–115.

[4] M. E. Gurtin, Configurational Forces as Basic Concepts of Continuum Physics, Springer,
New York, 2001.

[5] D. Kuhlmann-Wilsdorf, Theory of plastic deformation: Properties of low energy dislocation
structures, Mater. Sci. Engrg., A113 (1989), pp. 1–41.

[6] P. Haasen, Physical Metallurgy, Cambridge University Press, Cambridge, UK, 1996.
[7] J. P. Hirth and J. Lothe, Theory of Dislocations, 2nd ed., McGraw–Hill, New York, 1982.
[8] F. R. N. Nabarro, Theory of Crystal Dislocations, Clarendon Press, Oxford, UK, 1967.
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RUPTURE OF A SURFACTANT-COVERED THIN LIQUID FILM ON
A FLEXIBLE WALL∗
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Abstract. The rupture of a surfactant-covered thin liquid film on a flexible wall is studied in
this paper. Evolution equations for the deflections of the air-liquid and wall-liquid interfaces and
surfactant surface concentration are derived using lubrication theory, and their linear and nonlinear
stability characteristics are investigated. Our linear stability results indicate that increases in the
level of damping, the longitudinal wall tension, and the relative magnitude of Marangoni stresses
have a stabilizing influence. Numerical simulations of the evolution equations are used to investigate
the nonlinear characteristics of the instability. In all cases considered, the surfactant concentration
decreases in the rupture region as rupture is approached, and the resulting Marangoni flows retard
but do not prevent rupture. Self-similar rupture is examined and power-law scalings are extracted for
different parameter values. These appear to be unchanged from those for rigid substrates, evidently
because the van der Waals forces that drive the instability dominate the rupture dynamics.

Key words. thin liquid films, flexible walls, surfactants, rupture

AMS subject classifications. 74F10, 76D08, 76D45, 76E17
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1. Introduction. Flow in thin viscous films has been the subject of numerous
studies in the literature due to its obvious importance in a wide range of industrial
and biomedical applications [1]. Many of these studies have addressed the problem
of film rupture, where the film either rests on a solid horizontal support [2, 3, 4, 5,
6, 7, 8, 9, 10, 11, 12, 13] or is freely suspended [14, 15, 16, 17, 18, 19, 20, 21, 22].
The former situation, for instance, models the spreading of liquids and surfactant
solutions on the surface of a solid or of another liquid that rests on a solid wall. The
latter situation, on the other hand, represents the rupture of a soap film or of the
continuous film which accompanies the coalescence of two droplets in an emulsion. A
number of these studies have examined the evolution and self-similar nature of film
thickness solutions as rupture is approached in the presence [9, 10, 11] and absence
[4, 15, 13] of surfactant. In all cases, rupture is driven by intermolecular interactions
such as van der Waals, hydration, depletion, or electrostatic forces, which come into
operation for very small film thicknesses, typically on the order of 100 nm or less [23].
Studies of film rupture on solid walls generally assume that the solid is rigid. In this
work, we relax that assumption and examine the rupture of a surfactant-covered thin
liquid film on a flexible wall.

From a scientific standpoint, the rupture of thin liquid films on flexible walls
is of interest because it is a problem of elastohydrodynamics: the study of the in-
teraction between flowing fluids and flexible elastic structures. Such problems have
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been examined by hydrodynamicists for years; examples include the use of flexible
boundaries to delay the transition to turbulence [24], the modeling of airflow in the
lungs [25] and blood flow in the heart [26], the use of rubber-covered rolls in coating
processes to reduce defects [27], and flow instabilities near gel-like polymer interfaces
[28]. Elastohydrodynamic problems are challenging because they involve two coupled
media whose interface is often a free boundary. However, to our knowledge, elas-
tohydrodynamic phenomena associated with film rupture have yet to be examined.
From a practical standpoint, such a study may be relevant to several applications.
The first involves the creation of textured or topographically patterned solids: if thin-
film rupture leads to deformation of the underlying solid, then it may be possible to
use rupture as a way to create surface features on the solid. The second application
involves human lungs, where airways are flexible walls lined with a thin liquid film
[29, 30]. If the film becomes thin enough, intermolecular forces may drive rupture and
this in turn may deform the walls and lead to airway closure. Halpern and Grotberg
have applied lubrication theory to study the instabilities associated with this system,
but their analysis does not include intermolecular forces such as van der Waals inter-
actions [29, 30]. Finally, studies of film rupture on flexible walls may be relevant in
modeling the adhesion of cells and vesicles to solid substrates as discussed by Ramos
de Souza, Gallez, and coworkers [20, 21, 22]. Here, the liquid-air interface would rep-
resent the cell or vesicle membrane, whereas the flexible wall would represent a soft
substrate. If the wall is sufficiently compliant, it could become deformed during film
rupture and this may modify the dynamics of cell or vesicle adhesion.

As a model system in the present work, we consider the linear stability and non-
linear evolution of a thin liquid film covered with an insoluble surfactant that rests
on a flexible wall and is driven to rupture by van der Waals forces. Although other
intermolecular forces may be present and lead to scenarios such as the formation of
steady patterns [20, 21, 22], we restrict ourselves to van der Waals forces in this first
study since our focus is on film rupture. Using lubrication theory, coupled evolution
equations are derived for the deflection of the air-liquid and wall-liquid interfaces
as well as for the surfactant concentration. A linear stability analysis and numeri-
cal simulations are conducted to determine the behavior of the film at the onset of
the instability and as rupture is approached, respectively. This is carried out over
a wide range of system parameters, which encompass the limits of weak and strong
wall damping and longitudinal tension, and in the presence and absence of surfactant.
Our results indicate that increasing the relative significance of wall damping retards
(accelerates) the onset of van der Waals–driven film rupture for low (high) wall ten-
sions; increasing wall tension was also found to delay rupture for all the damping
coefficients examined. Moreover, the presence of Marangoni stresses [31], which arise
due to gradients in the local surfactant concentration, exerts a stabilizing influence,
acting to oppose the van der Waals–driven thinning process.

The rest of this paper is organized as follows. Details of the problem formulation
are given in section 2, while results of the linear stability analysis are presented in
section 3. A discussion of the numerical solutions together with a brief description
of the numerical method employed to carry out the computations are provided in
section 4. Finally, concluding remarks are given in section 5.

2. Formulation.

2.1. Governing equations. We consider a thin film of an incompressible New-
tonian fluid of initial thickness H, lateral extent L, viscosity µ, and density ρ resting
on a flexible wall. The air-liquid interface, which is bounded from above by an invis-
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cid gas, is covered by an initially uniform dilute concentration of insoluble surfactant,
Γm � Γ∞, where Γ∞ represents the concentration at saturation. The analysis in
the present work is restricted to planar geometry with coordinate system (x, y, z) and
velocity field u = (u, 0, w), where x, y, and z denote the horizontal, transverse, and
vertical coordinates, respectively, while u denotes the velocity field in which u and
w represent the horizontal and vertical components of the velocity field, respectively.
The origin of the z coordinate coincides with the midpoint of the initially undis-
turbed film thickness, such that the instantaneous location of the air-liquid interface
is at z = h+H/2, while the wall-liquid interface is located at z = −η−H/2. Here, h
and η denote deflections of the air-liquid and wall-liquid interfaces from their initially
uniform states.

The film dynamics are governed by the equations of conservation of mass and
momentum, respectively, given by

∇ · u = 0,(1)

ρ (ut + u · ∇u) = −∇ (p+ φ) + µ∇2u,(2)

where p represents pressure and φ = A/(H + h + η)3 is an energy per unit volume
corresponding to the van der Waals component of the disjoining pressure, in which A
is the so-called Hamaker constant [23]; subscript notation denotes differentiation with
respect to the spatial variables and time unless otherwise stated. Note that we have
assumed the film to be sufficiently thin so that gravitational effects are negligible.

Equations (1) and (2) are complemented by an appropriate set of boundary con-
ditions. At the air-liquid interface, z = h+H/2, we have the normal and shear stress
balances, respectively, given by

n · T · n = σκ,(3)

n · T · t = ∇sσ · t.(4)

In (3) and (4), σ denotes the local value of the surface tension coefficient; n =
(−hx, 1)/∆ and t = (1, hx)/∆, in which ∆ ≡ (1 + h2

x)
1/2, denote the outward point-

ing unit normal and unit tangent to the air-liquid interface; and κ = ∇s · n is the
curvature where ∇s = (I − nn) · ∇ is the surface gradient operator. Also appearing
in (3) and (4) is the film stress tensor:

T = −pI + µ
(∇u + ∇uT

)
,(5)

where I is the identity tensor. The kinematic boundary condition at z = h+ H/2 is
expressed by

ht + ushx = ws,(6)

where the subscript s represents quantities evaluated at z = h + H/2. The velocity
field in the film must also satisfy the no-slip and kinematic boundary conditions at
the wall-liquid interface, z = −η −H/2:

uw = 0,(7)

ηt + uwηx = −ww,(8)

where the subscript w represents quantities evaluated at z = −η −H/2.
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The dynamics of the surfactant present at z = h+H/2 are governed by the mass
conservation equation [32]

Γt + (∇s · n)Γ(n · u) + ∇s · (usΓ) = Ds∇2
sΓ + J,(9)

where Ds is a surface diffusion coefficient, which we will take to be constant, and J
denotes a sorptive flux, which will be neglected in the present work since insoluble
surfactants are considered. Note that σ depends on Γ through the equation of state
[31],

σ = σo − (−σΓ)Γ=0Γ,(10)

where σo denotes the surface tension of the uncontaminated air-liquid interface while
−σΓ is a measure of surfactant activity.

Our model for the wall dynamics is very similar to that used by Halpern and
Grotberg in their studies of liquid film dynamics inside flexible tubes [29, 30]. The wall
is assumed to be infinitely long, isotropic, and impermeable with thickness δ, density
ρw, and damping coefficient g. In addition, the wall is assumed to be sufficiently thin
so that when a longitudinal (horizontal) tension of magnitude Tl is applied, it acts
uniformly across the wall thickness. (Under these conditions, stresses due to bending
may be neglected [33, 34].)

The film aspect ratio, ε ≡ H/L, is taken to be small, which permits the use of
lubrication theory, and in the limit ε� 1, it can be shown that longitudinal deflections
of the wall are much smaller than those in the vertical direction [35, 33, 29]. The
relevant relation governing the wall deflections is given by

ρwδgηt
∆w

− Tlηxx
∆3
w

= −nw · T · nw,(11)

where nw = (−ηx, 1)/∆w is the unit normal to the wall-liquid interface in which
∆w = (1 + η2

x)
1/2. The relevant scalings are presented next.

2.2. Scaling. The governing equations and boundary conditions are rendered
dimensionless via the scalings for the hydrodynamic variables,

x = Lx̃, z = H(z̃, h̃, η̃), u = U ũ, w = εUw̃, t = (L/U)t̃, p = P p̃,(12)

and for σ and Γ,

Γ = ΓmΓ̃, σ = σm + Sσ̃,(13)

where S ≡ σo − σm is the spreading coefficient in which σm is the surface tension of

the air-liquid interface when Γ = Γm. Here, L ≡ H2 (σm/A)
1/2

, U ≡ A/(µHL), and
P ≡ A/H3, reflecting a balance between van der Waals, capillary, and viscous forces.
Note that for typical values, H ∼ 10−4 cm, A ∼ 10−13 erg, and σm ∼ 10 dyne/cm,
we have ε = H/L ∼ O(10−3).

2.3. Lubrication theory. Substitution of the relevant scalings into the gov-
erning equations and boundary conditions yields the following set of dimensionless
equations for the liquid film and surfactant concentration to leading order in ε (after
suppressing the tilde):

ux + wz = 0,(14)
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0 = − (p+ φ)x + uzz +O(ε2, εRe),(15)

where φ = 1/(1 + h+ η)3,

0 = −pz +O(ε2, ε3Re),(16)

where Re ≡ ρUH/µ is the Reynolds number,

p = −hxx +O(ε2) at z = h+
1

2
,(17)

uz = Mσx +O(ε2) at z = h+
1

2
,(18)

where M ≡ SH2/A is a Marangoni parameter, representing the magnitude of Marangoni
stresses to van der Waals forces,

ht + ushx = ws at z = h+
1

2
,(19)

uw = 0 at z = −η − 1

2
,(20)

ηt = −ww at z = −η − 1

2
,(21)

Γt + (usΓ)x =
Γxx
Pe

at z = h+
1

2
.(22)

Here, Pe ≡ UL/Ds denotes the Peclet number, a ratio of the time scale for surfactant
diffusion to that for surfactant convection.

Integration of (16) and application of (17) leads to the fact that the leading order
pressure is independent of z and is given by

p = −hxx.(23)

Following the integration of (15) and application of (18) and (20), the leading order
horizontal velocity is obtained:

u(x, z, t) = (p+ φ)x

[
z2

2
− z

(
1

2
+ h

)
−
(

1

2
+ η

)(
3

4
+ h+

η

2

)]
+Mσx

(
z +

1

2
+ η

)
.

(24)
Using continuity (and the Leibniz rule), (19) may be reexpressed as

ht + ηt +Qx = 0,(25)

in which Q, the flow rate, is given by

Q =

∫ 1
2+h

−( 1
2+η)

udz.(26)

Substitution of (24) into (26) yields

Q =
1

2
(1 + h+ η)

2
σx − 1

3
(1 + h+ η)

3
(p+ φ)x .(27)
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The dimensionless equation of state relating σ to Γ is given by

σ = 1 − Γ.(28)

Hence, the evolution equation governing the dynamics of h becomes

ht = −ηt +

[
1

2
(1 + h+ η)

2 MΓx − 1

3
(1 + h+ η)

3

(
hxx − 1

(1 + h+ η)3

)
x

]
x

.(29)

The velocity at z = h+ 1/2, us, is given by

us = −1

2
(1 + h+ η)

2
(p+ φ)x + (1 + h+ η)Mσx.(30)

Substitution of (30), along with (28), into (22) yields the following dimensionless
evolution equation for Γ:

Γt =

[
(1 + h+ η)MΓΓx − 1

2
(1 + h+ η)

2
Γ

(
hxx − 1

(1 + h+ η)3

)
x

]
x

+
Γxx
Pe

.(31)

The dimensionless evolution equation governing the wall deflection is given by

ε2RGηt − ε2T ηxx + hxx = 0 +O(ε),(32)

where R ≡ ρwδ/(ρH) represents the ratio of the mass of the wall to that of the fluid,
G ≡ ρgH2/µ reflects the relative importance of wall damping to fluid damping, while
T ≡ TlH2/A corresponds to the ratio of the wall longitudinal tension to van der Waals
forces.

Equation (29) is fully coupled to (31) and (32). Note that in the limit η → 0 and
1 + h → h, (29), (31), and (32) reduce to the evolution equations for a surfactant
covered thin liquid film resting on a rigid support (except for rescalings) [4].

For parameter values typical of terminal bronchioles [29], ρw ∼ 1 g cm−3, δ ∼ 10−3

cm, g ∼ 10 s−1, µ ∼ 10−2 poise, Tl ∼ 10 dynes cm−1, R ∼ O(10), G ∼ O(10−5),
and T ∼ O(106). This suggests that, for this setting, the wall is weakly damped
and highly tensile longitudinally. It may therefore be possible to rescale T such that
T = T̂ /ε2 with T̂ ∼ O(1) and to eliminate the transient term in (32) to leading order:

−T̂ ηxx + hxx = 0 +O(ε2).(33)

In fact, it is possible to consider different situations: ε2RG ∼ O(ε2) or ε2RG ∼
O(1), corresponding to either a weakly or strongly damped wall, respectively, and
ε2T ∼ O(ε2) or ε2T ∼ O(1), which represent weak or strong longitudinal tension,
respectively. These situations will be considered in the following sections. First,
however, the linear stability characteristics of the system are analyzed.

3. Linear stability analysis. To gain insight into the problem and to provide
a useful check on the performance of the numerical scheme utilized for the solution
of the governing equations, a linear stability analysis is conducted. Equations (29),
(31), and (32) are linearized using normal modes:

(h, η,Γ) (x, t) = (0, 0,Γ0) + (H,F,G) eωteikx,(34)

where h = 0, η = 0, and Γ = Γ0 denote the spatially uniform base state and H, F ,
and G denote the amplitude of the initially infinitesimal applied disturbance of (real)
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wavenumber k whose potentially complex growth rate is given by ω. Substitution of
(34) into (29), (31), and (32) and neglecting quadratic and higher order terms in the
perturbations leads to the following coupled algebraic eigenvalue equations:

ωH = −ωF − 1

2
Mk2G− 1

3
k4H + k2 (H + F ) ,(35)

ωG = −
(
MΓ0 +

1

Pe

)
k2G− 1

2
Γ0k

4H +
3

2
Γ0k

2 (H + F ) ,(36)

ε2RGωF = −ε2T k2F + k2H.(37)

Equations (35)–(37) are then expressed in matrix form. Setting the determinant of
this matrix to zero yields a characteristic equation for the growth rate:

(ε2RG)ω3 + k2

(
ε2T + 1 + ε2RG

[
1

Pe
+ MΓ0 +

k2

3
− 1

])
ω2

+ k4

(
1

Pe
+ MΓ0 − 1 + ε2RG

[
1

Pe
+

MΓ0

4

][
k2

3
− 1

]
+ ε2T

[
1

Pe
+ MΓ0 +

k2

3
− 1

])
ω

− k6

(
1

Pe
+

MΓ0

4

)(
1 − ε2T

[
k2

3
− 1

])
= 0.(38)

Solution of this equation using Mathematica yields dispersion curves, which represent
the dependence of Re[ω] on k as a function of system parameters. The existence of a
band of wavenumbers for a given set of parameters over which Re[ω] > 0 signifies the
presence of a linear instability.

For a weakly damped wall, that is, for ε2RG � 1, (38) reduces to

(ε2T + 1)ω2 + k2

(
ε2T

[
1

Pe
+ MΓ0 +

k2

3
− 1

]
+

1

Pe
+ MΓ0 − 1

)
ω

− k4

[
1

Pe
+

MΓ0

4

] [
1 − ε2T

(
k2

3
− 1

)]
= 0,(39)

while for a weakly (longitudinally) tensile wall, (38) reduces to

(
ε2RG)ω3 + k2

(
ε2RG

[
1

Pe
+ MΓ0 +

k2

3
− 1

]
+ 1

)
ω2

+k4

(
ε2RG

[
1

Pe
+

MΓ0

4

] [
k2

3
− 1

]
+

1

Pe
+ MΓ0 − 1

)
ω − k6

(
1

Pe
+

MΓ0

4

)
= 0,

(40)
and, in the absence of surfactant, we have

(ε2RG)ω2 +k2

(
ε2T + 1 + ε2RG

[
k2

3
− 1

])
ω+k4

(
−1 + ε2T

[
k2

3
− 1

])
= 0.(41)

For the case of a very highly damped or a very highly (longitudinally) tensile wall,
corresponding to ε2RG � 1 and ε2T � 1, respectively, (38) reduces to

ω2 + k2

(
1

Pe
+ MΓ0 +

k2

3
− 1

)
ω + k4

(
k2

3
− 1

)(
1

Pe
+

MΓ0

4

)
= 0,(42)
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which corresponds to the equation describing the linear stability characteristics of
a thin viscous film resting on a rigid horizontal support undergoing van der Waals
driven rupture in the presence of surfactant-induced Marangoni stresses [12].

From (38), the wavenumber corresponding to the cutoff mode, kc, for which ω = 0,
is expressed by

kc =

√
3

(
1 + ε2T
ε2T

)
.(43)

Inspection of (43), which represents a generalization of kc for a rupturing thin film
resting on a flexible wall, reveals that the cut-off mode is unaffected either by the
presence of surfactant, in agreement with previous work [3, 4, 12, 36], or the effect
of wall damping. Note that for ε2T � 1, kc =

√
3 [37, 4, 12, 36], which reflects a

balance between van der Waals and capillary forces only. Marangoni stresses and wall
damping effects will, however, have an influence on the magnitude of the wavenum-
ber corresponding to the so-called most dangerous mode and its associated maximal
growth rate. Also note that for ε2T � 1, kc ∼

√
3/(ε2T ), which indicates that the

equations may become ill posed in the limit of very weak longitudinal tension; this
can also be ascertained on inspection of (40). We leave this case aside and concentrate
in the present section on film rupture on a highly tensile wall in the limits of weak
and significant damping, which we consider next.

3.1. Weakly damped, highly tensile wall. Here, we set T = T̂ /ε2 and RG ∼
O(1); (38) becomes

(T̂ + 1)ω2 + k2

(
T̂
[

1

Pe
+ MΓ0 +

k2

3
− 1

]
+

1

Pe
+ MΓ0 − 1

)
ω

− k4

[
1

Pe
+

MΓ0

4

] [
1 − T̂

(
k2

3
− 1

)]
= 0.(44)

Thus, ω is given by

ω± =

(
− k4(T̂ [Q1 + k2

3 − 1] +Q1 − 1)

[
1 ±

(
1 +

4(T̂ +1)Q2

(
1−T̂

(
k2

3 −1
))(

T̂
(
Q1−1+ k2

3

)
+Q1−1

)2
)1/2])

2(T̂ + 1)
,

(45)
in which Q1 ≡ MΓ0 + 1/Pe and Q2 ≡ (MΓ0/4) + 1/Pe; here, kc is given by (43).
In Figure 1, we show the effect of varying T̂ on the behavior of the dispersion curves
with Γ0 = 1, M = 1, and Pe = 100. (We consider only ω+, the dominant mode.)
Clearly, increasing T̂ decreases kc and the magnitudes of the growth rate and most
dangerous mode. Thus, longitudinal tension exerts a stabilizing influence.

Next we investigate the effect of Marangoni stresses on the dispersion curves.
Since the parameters M and Γ0 arise as a product in (45), only one of these parameters
will be varied. Inspection of Figure 2, which shows the effect of varying M on the
linear stability characteristics, reveals that increasing M stabilizes the flow, decreasing
the magnitude of ω+, in agreement with previous studies of film rupture on rigid
solid substrates [3, 4, 12, 36]. It is worthy of mention that the magnitude of kc
remains unaltered, in agreement with (43), and the changes in ω+ rapidly saturate
with increasing M. We have also found that the dispersion curves exhibit a very weak
dependence on Pe (not shown) for physically realizable Pe values.



2152 OMAR K. MATAR AND SATISH KUMAR

Fig. 1. The effect of varying T̂ on the dispersion curves obtained via the solution of (45) with

T̂ = 0.1 (solid lines), T̂ = 0.5 (short-dashed lines), and T̂ = 10 (dashed lines), Γ0 = 1, M = 1, and
Pe = 100.

Fig. 2. The effect of varying M on the dispersion curves obtained via the solution of (45)
with M = 0 (solid lines), M = 1 (short-dashed lines), M = 10 (dashed lines), and M = 105

(long-dashed lines), T̂ = 1, Γ0 = 1, and Pe = 100.

3.2. Strongly damped, highly tensile wall. We turn our attention to the
case of a highly tensile, strongly damped wall. Here, T remains as T = T̂ /ε2 and we
set RG = B̂/ε2 with B̂ ∼ O(1). We note that inclusion of significant wall damping
reintroduces temporal variations of wall deflections, which corresponds to the term
proportional to ω3 in (38); this term had been omitted from the previous section.
Equation (38) then becomes
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Fig. 3. Dispersion curves obtained via the solution of (46) with B̂ = T̂ = M = Γ0 = 1 and
Pe = 100: ω1 (solid line), ω2 (short-dashed line), and ω3 (dashed line), which are the three roots of
(46). Here, ω1 and ω2 are complex conjugates while ω3 is a real root of (46).

B̂ω3 + k2

(
T̂ + 1 + B̂

[
1

Pe
+ MΓ0 +

k2

3
− 1

])
ω2

+ k4

(
1

Pe
+ MΓ0 − 1 + B̂

[
1

Pe
+

MΓ0

4

][
k2

3
− 1

]

+ T̂
[

1

Pe
+ MΓ0 +

k2

3
− 1

])
ω − k6

(
1

Pe
+

MΓ0

4

)(
1 − T̂

[
k2

3
− 1

])
= 0.(46)

Equation (46), which is a third-order polynomial in ω, was solved using standard
Mathematica routines for different parameters. Figure 3 shows the three solutions,
ωi (i = 1, 2, 3), as a function of k for a case where all physical parameters are repre-
sented: B̂ = T̂ = M = Γ0 = 1 and Pe = 100. In subsequent plots in this subsection
only the dominant mode will be shown.

In Figure 4, we show the effect of varying B̂ on the dispersion curves with the
rest of the parameter values remaining unaltered from Figure 3. Increasing B̂, which
corresponds to an increase in the magnitude of wall damping, results in a decrease
of the growth rate and a shift of the most dangerous mode toward smaller wavenum-
bers. Increasing the relative magnitude of longitudinal tension by increasing T̂ has a
stabilizing effect, which is similar to that of increasing B̂; this is shown in Figure 5.
We have also investigated the effect of Marangoni stresses on the linear stability char-
acteristics in the presence of wall damping. Our results (not shown) indicate that
increasing M (or, equivalently, Γ0) and Pe stabilizes the flow in this case as well.

Although linear theory provides insight into the destabilizing mechanisms and
a reasonable estimate of the rupture time, this theory breaks down as rupture is
approached since the magnitude of the disturbances is no longer negligibly small and
nonlinearities become significant. Numerical solution of the fully nonlinear evolution
equations is necessary in that case; this is considered in the following section.

4. Numerical simulations. In this section, we present results from numerical
simulations of the governing equations. We begin with a concise description of the
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Fig. 4. The effect of varying B̂ on the dispersion curves obtained via the solution of (46):

B̂ = 0.01 (solid line), B̂ = 1 (short-dashed line), and B̂ = 100 (dashed line). The rest of the
parameter values are the same as those used to generate Figure 3.

Fig. 5. The effect of varying T̂ on the dispersion curves obtained via the solution of (46):

T̂ = 0.1 (solid line), T̂ = 1 (short-dashed line), and T̂ = 10 (dashed line). The rest of the parameter
values are the same as those used to generate Figure 4.

methods employed in the numerical solution of these equations, and then we examine
in detail the cases of uncontaminated and surfactant-covered films.

4.1. Numerical procedure. We have used an efficient solver, EPDCOL [38,
39], which has been used for the solution of nonlinear parabolic partial differential
equations in related problems involving film rupture and thread breakup [13, 12, 40,
36, 19]. This routine uses finite element collocation to discretize the spatial derivatives
and Gear’s method in time. Typically 6,000 grid points were used on a computational
grid of length L = 3.6 dimensionless units. Convergence was achieved on refinement
of the spatial mesh by increasing the number of grid points up to 10,000.
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Numerical solutions are obtained starting from the initial conditions

h(x, 0) = η(x, 0) = A cos(kx), Γ(x, 0) = Γ0,(47)

which correspond to a periodic disturbance to h = 0 with A ε (10−3, 0.2). These
solutions are subject to the boundary conditions on h and Γ,

hx = hxxx = 0 at x = 0, L,(48)
Γx = 0 at x = 0, L,(49)

and the conditions on η,

either ηx = 0 or η = 0 at x = 0, L.(50)

Physically, the Neumann conditions correspond to a flow which is even about the
origin; these conditions, which will give rise to spatially periodic solutions, are appro-
priate when considering a thin film resting on a wall of infinite lateral extent. The
Dirichlet conditions, on the other hand, correspond to a wall of finite lateral extent,
fixed at both ends. We shall focus mainly on the former case and examine the latter
case only briefly.

We have checked that the numerical solutions are consistent with the predictions
of linear theory. This can be confirmed on inspection of Figure 6, in which the natural
logarithm of δh(t), which is half the difference between the maximal and minimal
values of h at time t, is plotted normalized by its initial value, δh(0). The parameter
values used correspond to the wavenumber associated with the most dangerous mode
with all the relevant mechanisms represented: k = 1.75, A = 10−3, B̂ = T̂ = M =
Γ0 = 1, Pe = 100, and the number of grid points used is 6,000. Inspection of
Figure 6(a) reveals excellent agreement between the numerical solution and linear
theory over the initial stages of the rupture process with deviations occurring at
later stages when the amplitude of the perturbations is large and the nonlinearities
no longer negligible. These deviations coincide with the onset of rapid thinning of
the film, as shown in Figure 6(b), which depicts the evolution of the minimal total
film thickness toward rupture for the same parameter values as in Figure 6(a). The
wavenumber of the initial perturbation used in the validation studies is also used
to generate the results shown in all subsequent figures but with A = 0.1 except for
Figure 7. Note that the most dangerous mode associated with each set of parameters
could have been used. However, to conduct a parametric study in which the effect of
various physical mechanisms is investigated, the same initial conditions were used and
only the relevant parameter is varied. As in the study of other problems involving film
rupture, we have found that the details of the numerical solutions in the initial stages
of the breakup process depend on the choice of initial conditions. The solutions as
rupture is approached in the vicinity of the rupture region, however, are very weakly
dependent on initial conditions.

In the following section, solutions of the evolution equations, (29), (31), and
(32), are presented for a wide range of parameter values with particular attention
paid to the structure of the film near rupture and the dependence of the estimated
rupture time, tr, on system parameters; here, tr corresponds to the time at which
computations were halted since spatial derivatives could not be resolved accurately.
We shall begin by considering the evolution to rupture of a surfactant-covered film.
We then explore the effect of varying B̂ and T̂ on the time to rupture as well as
the structure of contaminated and uncontaminated films near rupture. This is then
followed by a brief examination of self-similar rupture in the presence of surfactant
and wall flexibility.
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Fig. 6. Validation of the numerical procedure. (a) Comparison of the numerical solutions with
the predictions of linear theory; (b) variation of the minimum total film thickness, (1 + h + η)min,

with time. The parameter values are A = 10−3, B̂ = T̂ = M = Γ0 = 1, and Pe = 100; 6,000 grid
points were used.

4.2. Parametric study. We consider first the system in the presence of surfac-
tant and all relevant mechanisms, such as wall damping and longitudinal tension, in
order to examine a typical development of the film thickness and surfactant concen-
tration toward rupture; this is shown in Figure 7 with B̂ = T̂ = M = Γ0 = 1 and
Pe = 100. The magnitude of van der Waals forces rises beneath the depression in
the film, driving fluid away from this region, causing further thinning and, eventually,
film rupture. The thinning of the film is transmitted to the underlying flexible wall
resulting in its deformation; the wall-liquid interface assumes a similar shape to that
of the air-liquid interface. For this choice of parameters, surfactant is also driven away
from the rupture region, resulting in the surfactant concentration increasing on either
side of the thinning region. This then drives a reverse Marangoni flow that opposes
the van der Waals–driven thinning. This flow, however, succeeds only in retarding
rather than preventing film rupture. The parametric dependence of the surfactant
concentration profile on T̂ and B̂ as rupture is approached will be examined below.

Next, we concentrate on uncontaminated films and study the effect of B̂ and T̂
on the estimated rupture time, tr. Figure 8 is a semilog plot of the dependence of
tr on T̂ with B̂ varying parametrically. Inspection of this figure shows clearly that
for a fixed value of B̂, tr is largely independent of T̂ for small T̂ values and increases



LIQUID FILM RUPTURE ON A FLEXIBLE WALL 2157

0 1 2 3
0

0.5

1

1.5
(a)

x

1+
(h

+
η)

 (
x,

t)

0 1 2 3
−1

−0.5

0

0.5
(b)

x

h 
(x

,t)

0 1 2 3

−0.3

−0.2

−0.1

0

0.1

(c)

x

η 
(x

,t)

0 1 2 3
0

0.5

1

1.5
(d)

x

Γ 
(x

,t)

Fig. 7. Evolution of the total film thickness, 1 + h+ η, shown in (a), the deflections of the air-
liquid and liquid-solid interfaces, shown in (b) and (c), respectively, and the surfactant concentration,

Γ, shown in (d), toward rupture. The parameter values are A = 10−3, B̂ = T̂ = M = Γ0 = 1, and
Pe = 100.

significantly beyond T̂ ∼ O(1). This suggests that increasing the magnitude of the
wall longitudinal tension promotes film stability. Furthermore, for a given value of T̂ ,
increasing B̂ results in an increase (decrease) in tr for small (large) T̂ values. Thus,
an increase in wall damping exerts a stabilizing influence on the dynamics in the
case of weak wall tension and accelerates rupture slightly in the limit of significant
wall tension. Note that in the limit of large longitudinal tension and significant wall
damping, the rigid wall dynamics are recovered, as will be shown in section 4.3.

We now examine the effect of B̂ and T̂ on the structure of the film as rupture
is approached. As can be ascertained on inspection of Figure 9, which shows the
variation of the film profile before rupture with T̂ and B̂, small values of T̂ and B̂
give rise to highly localized film rupture accompanied by damped oscillations away
from the rupture location. The amplitude of these oscillations, however, is dampened
further following an increase in either T̂ or B̂. Thus, increasing the magnitude of
either wall damping or longitudinal tension results in localized thinning and eventual
rupture. Moreover, comparison of Figure 9(a) and Figure 10(a) reveals that the overall
structure of the film thickness profile remains qualitatively very similar despite the
absence of surfactant.
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uncontaminated case with A = 0.1.
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Fig. 9. Dependence of the total thickness profile of a surfactant-free film before rupture on T̂
with B̂ varying parametrically and A = 0.1. (a) B̂ = 0.01, (b) B̂ = 1, and (c) B̂ = 10.
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Fig. 10. Dependence of the total thickness and surfactant concentration profiles before rupture
on T̂ and B̂ with A = 0.1, Γ0 = 1, M = 1, and Pe = 100.

The effect of changing T̂ and B̂ on the total film thickness and surfactant con-
centration as rupture is approached is also interesting to explore. In all the cases
considered, the behavior of the surfactant concentration, Γ, appears to mimic closely
that of the total film thickness, as shown in Figure 10. Van der Waals–driven thinning
leads to the advection of fluid and surfactant away from the thinning region, produc-
ing a rapid decrease in the thickness and surfactant concentration in that region of
very similar rate (Figure 11). An increase in the value of T̂ from 0.01 to 1 while keep-
ing B̂ = 0.01 results in considerable damping of the oscillations in the film thickness
and surfactant concentration as rupture is approached (see Figures 10(a) and (b)).
Finally, either increasing B̂ from 0.01 to 1, while leaving T̂ = 0.01 (Figure 10(c)), or
having T̂ = B̂ = 1 (Figure 10(d)) results in a very similar behavior.

We also explore the effect of M on the structure of the total film thickness profile
in two limits: weak damping and longitudinal tension, and significant damping and
longitudinal tension. Figures 12(a) and (b) show that an increase in M with T̂ = B̂ =
1 and T̂ = B̂ = 0.01, respectively, Γ0 = 1, and Pe = 100, results in retardation of the
thinning process. This is due to interface rigidification, which is brought about via
a Marangoni-driven reverse flow that counteracts the van der Waals–driven thinning
process. A similar effect is brought about via an increase in Γ0 or Pe (not shown).
These findings are in line with the predictions of linear theory.
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Fig. 11. Dependence of the total thickness and surfactant concentration at the rupture location
on T̂ and B̂; the rest of the parameter values remain unchanged from Figure 10.
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Fig. 12. Structural dependence of the total film thickness profile on M with Γ0 = 1, and
Pe = 100. (a) T̂ = B̂ = 1 and t = 0.348; (b) T̂ = B̂ = 0.01 and t = 0.077; the value of A = 0.1 was
used in all cases shown.
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Fig. 13. Effect of imposing fixed boundary conditions: the total film thickness and surfactant
concentration at t = 9.869 × 10−2 with T̂ = B̂ = 0.01 are shown in (a) and at t = 0.45515 with

T̂ = B̂ = 1 in (b). The rest of the parameter values are A = 0.1, Γ0 = 1, M = 1, and Pe = 100.

Finally, we examine briefly the effect of altering the boundary conditions on the
dynamics. Figure 13 shows the total film thickness and surfactant concentration
before rupture in the limits of weak tension and wall damping (T̂ = B̂ = 0.01) in (a)
and significant tension and damping (T̂ = B̂ = 1) in (b); the rest of the parameter
values used are Γ0 = M = 1 and Pe = 100. In the weak tension and damping limit,
imposition of fixed boundary conditions on η, η = 0 at x = 0 and L, results in a
relatively large buildup of fluid and surfactant near the boundaries while leaving the
film thickness and surfactant concentration relatively unaltered in the vicinity of the
rupture location. In the limit of significant wall tension and damping, the profiles
bear a close resemblance to those shown in Figure 7, which have been generated
subject to Neumann boundary conditions in the vicinity of the rupture location. Small
discrepancies arise, however, near the edges of the spatial domain due to differences
in the imposed boundary conditions.

4.3. Self-similar rupture. Here, we examine the possibility of self-similar rup-
turing solutions for a thin liquid film resting on a flexible support. Similar studies
have been conducted for the case of thin films on a rigid support [9, 10, 11, 18, 13, 12]
and free films [18, 19] in the presence [13, 12, 19] and absence [9, 10, 11, 18] of surfac-
tant. The growth rate of a perturbation to the interface increases under the action of
van der Waals forces and decreases due to capillarity resulting in a dominant balance,
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which yields Hxx ∼ 1/H3; here, H is the total film thickness. The rate of change of
the total film thickness is then proportional to H/τ ∼ (H/x)4 ∼ (1/x2), from which
it then follows that x ∼ τ2/5 and H ∼ τ1/5, where τ = tr − t in which tr represents
the estimated rupture time. This dominant balance between van der Waals, capillary,
and viscous forces renders the Marangoni terms in the evolution equations subdomi-
nant. As a result, the evolution equations for the surfactant concentration and film
thickness become structurally similar. Consistency of these equations then dictates
that Γ ∼ τ3/10, which is similar to previous findings involving studies of thin-film
stability on a rigid substrate [12, 13].

We compare the above scaling arguments against scalings extracted directly from
the numerical solutions of the evolution equations. In Figure 14 we follow the approach
previously adopted in the literature [9, 18, 19] and show log-log plots of the film
curvature and the surfactant concentration evaluated at the rupture location against
the minimal film thickness; this approach removes the need for an accurate estimate
of the rupture time. Here, the slopes of the curvature and concentration curves
provide an estimate of the ratio of the self-similar exponent of the film thickness
and surfactant concentration, respectively. In all cases considered, the surfactant
concentration decreases sharply as rupture is approached, as shown in Figure 11.
Inspection of Figure 14(b) reveals that the slopes of the curves are in agreement
with the predicted scalings for H and Γ. This, in turn, provides some evidence for
consistency of our numerical simulations with the predicted power-law scalings as
rupture is approached up to the point where the computations were halted due to the
increasingly singular nature of the spatial derivatives.

Finally, we compare our findings in the limit of large wall damping and longitudi-
nal tension with the case of a thin surfactant covered film resting on a rigid substrate
[4, 12]. Inspection of Figure 15, which depicts the temporal variation of the minimal
total film thickness, the total film thickness and concentration profiles before rupture,
and a log-log plot of the curvature and concentration against the minimal thickness
with T̂ = B̂ = 103, Γ0 = M = 1, and Pe = 100, reveals close agreement with the rup-
ture dynamics involving a rigid substrate. In fact, the curves shown in Figure 15 are
virtually indistinguishable. These results, which are to be expected, provide a further
check on the accuracy of the numerical procedure used to carry out the computations.

The results presented in this section indicate that as rupture is approached, the
van der Waals–driven thinning leads to a surfactant-free region. Marangoni stresses
become progressively weaker as rupture is approached, leading to a balance between
van der Waals, capillary, and viscous forces. Similar results were obtained in related
problems involving thin films and slender threads (see, for example, [12, 13, 19, 40]).
Furthermore, due to the 1/h3 dependence of the van der Waals interactions, it is
plausible that these forces would overwhelm wall effects. Thus, it appears that the
wall becomes enslaved to the rupturing film, leaving the self-similar scalings unaltered.

5. Conclusions. In this paper, we have investigated the nonlinear evolution and
rupture of a thin liquid film covered with insoluble surfactant that rests on a flexible
support and is bounded from above by air (inviscid gas). Evolution equations for the
deflection of the air-liquid and wall-liquid interfaces and the surfactant concentration
were derived using lubrication theory. These equations are parameterized by dimen-
sionless groups which reflect the relative importance of wall to fluid damping, wall
longitudinal tension to van der Waals forces, Marangoni stresses to van der Waals
forces, and surface diffusion time to convection time.

Both the linear and the nonlinear stability characteristics of these equations have
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Fig. 14. Log-log plots of the film curvature and surfactant concentration at the rupture location
as a function of the minimal total thickness: parametric dependence of self-similar scalings on T̂
and B̂. (a) T̂ = B̂ = 0.01; (b) T̂ = B̂ = 1. The scalings are shown by the dotted lines of constant
slope. The rest of the parameter values remain unchanged from Figure 13.

been investigated. In the linear regime, increasing the level of wall damping ex-
erted a stabilizing influence, as did an increase in the wall longitudinal tension and
relative magnitude of Marangoni stresses. It is worth noting that the wavenumber
corresponding to the cutoff mode was found to be independent of wall damping and
physicochemical parameters, depending only on the longitudinal tension.

In the nonlinear regime, van der Waals forces grow beneath perturbations and
drive flow away from that region, giving rise to rapid thinning and driving the film
thickness toward rupture. The behavior of the total film thickness and surfactant con-
centration as rupture is approached was similar in all cases considered: the surfactant
concentration decreases in the rupture location as rupture is approached, which drives
a Marangoni reverse flow from the adjoining regions of relatively higher concentration
to the rupturing region that retards but does not prevent rupture. When both wall
longitudinal tension and damping are weak, damped oscillations in the film thick-
ness are observed. For weak longitudinal tension, increasing the damping retards the
rupture time, whereas for strong longitudinal tension, the opposite effect in observed.

The self-similar nature of film rupture on a flexible wall was also briefly examined.
The total film thickness and surfactant concentration exhibit power-law behavior as
rupture is approached with power-law scalings which are consistent with a dominant
balance of van der Waals, capillary, and viscous forces. These scalings are identical
to those obtained by previous investigators who studied the rupture of thin clean and
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Fig. 15. Comparison of the rupture dynamics of a thin film resting on a flexible wall using
T̂ = B̂ = 103 (dotted lines) with that of the rigid wall case (solid lines). (a) Temporal variation of
the minimal total film thickness; (b), (c) total film thickness and surfactant concentration profiles
before rupture at t = 1.78929 and t = 1.79906 for the flexible and rigid cases, respectively; (d) log-log
plots of the total film curvature and surfactant concentration at the rupture location as a function
of the minimal total thickness. The relevant scalings are shown by the dot-dashed lines of constant
slope, and the rest of the parameter values are Γ0 = M = 1, Pe = 100, and A = 0.2.

contaminated liquid films resting on rigid substrates [9, 10, 11, 18, 13, 12]. The reason
for this may be related to the 1/h3 dependence of the van der Waals forces, which
dominates the dynamics as rupture is approached.

Our results may also have consequences for the practical applications that moti-
vated this work. Based on our nonlinear simulations, it appears plausible that film
rupture could be used to create patterns on compliant substrates provided that the
damping and tension in the substrate are not too strong. It is unclear whether film
rupture would promote airway closure in the lungs, given that there is a circumfer-
ential tension in cylindrical airways that does not appear in our planar model; this
tension may have a significant impact on the problem dynamics. Nevertheless, given
that the wall does deform on film rupture, our results raise the question of whether
such a deformation will lead to airway damage. To the extent that film rupture is
important in cell and vesicle adhesion to solid surfaces, it also appears plausible that
adhesion dynamics would be different near a compliant substrate than a rigid one
since the former can undergo significant deformation. Of course, verification of such
a conjecture will require a more detailed model and corresponding experiments.
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Abstract. Inverse scattering series is the only nonlinear, direct inversion method for the multi-
dimensional, acoustic or elastic equation. Recently developed techniques for inverse problems based
on the inverse scattering series [Weglein et al., Geophys., 62 (1997), pp. 1975–1989; Top. Rev. Inverse
Problems, 19 (2003), pp. R27–R83] were shown to require two mappings, one associating nonper-
turbative description of seismic events with their forward scattering series description and a second
relating the construction of events in the forward to their treatment in the inverse scattering series.
This paper extends and further analyzes the first of these two mappings, introduced, for 1D nor-
mal incidence, in Matson [J. Seismic Exploration, 5 (1996), pp. 63–78] and later extended to two
dimensions in Matson [An Inverse Scattering Series for Attenuating Elastic Multiples from Multi-
component Land and Ocean Bottom Seismic Data, Ph.D. thesis, Department of Earth and Ocean
Sciences, University of British Columbia, Vancouver, BC, Canada, 1997]. It brings a new and more
rigorous understanding of the mathematics and physics underlying the calculation of terms in the
forward scattering series and the events in the seismic model. The convergence of the series for 1D
acoustic models is examined, and the earlier precritical analysis is extended to critical and postcrit-
ical reflections. An explanation is proposed for the divergence of the series for postcritical incident
planewaves.
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1. Introduction. Scattering theory is a form of perturbation theory. In seis-
mic exploration, it relates the propagation of a wave in an actual medium with the
propagation of the wave in a reference medium and a perturbation operator which
describes the difference between the two media. The forward problem (or forward
modeling) is to construct the actual wave-field, given the reference wave-field and the
perturbation operator; the inverse problem is to construct the perturbation operator,
given the reference wave-field everywhere and the actual wave-field on a measurement
surface. The relation between these three quantities is nonlinear and cannot be given,
at least so far, in a closed form in either the forward or the inverse problem. This
relationship takes the form of a series which, when convergent, constructs the actual
wave-field and the perturbation operator.

Inverse scattering series is the only nonlinear, direct inversion method for the
multidimensional, acoustic or elastic equation. Early tests on the convergence of the
entire series for an acoustic medium by Carvalho [4] were not favorable for real world
application. Weglein and collaborators then developed the “subseries method” for
the inverse problem (for a description and a complete history, see Weglein et al. [13]
and references therein). The overall undertaking of the inverse scattering series was
broken up into four tasks, which otherwise would be performed simultaneously by the
series acting upon the input data. The four tasks are 1. elimination of the free surface
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multiples, 2. elimination of the internal multiples, 3. locating where rapid changes
in the medium properties occur (imaging), and 4. determining the changes at those
locations (inversion). These tasks were associated with subseries of the full series,
subseries which, if identified, would perform their job as if no other task existed in
the series. Two immediate advantages of this separation of tasks are the favorable
convergence properties of the subseries and the ability to judge the effectiveness of
each step before proceeding on to the next. To facilitate the identification of the task-
specific subseries in the inverse series, two maps have to be constructed (see [12]):
one map associates seismic events with their forward scattering series description,
while the second relates the construction of events in the forward to their usage in the
inverse scattering series. In this paper we advance the analysis of the first of these
mappings, introduced, for 1D (one-dimensional) normal incidence, by Matson [6] and
later extended by Matson to two dimensions [7].

The forward series takes as input the information about the wave-field propagat-
ing through the reference medium and about the perturbation operator and outputs
the wave-field everywhere in the actual medium. This process can be regarded as
creating data (primaries, free surface multiples, internal multiples) for a given model;
in practice, the forward series is never used for this purpose due to its inefficiency:
it takes an infinite number of terms to create any single event. The events recorded
in a seismic experiment are used by the inverse series to find the perturbation and,
although the relation between their creation in the forward and their exploitation in
the inverse series is not one-to-one, certain analogies could provide useful hints or at
least point to where various activities reside in the inverse series. The forward series
does not hint at whether events will be signal or noise in the full inverse series; it only
suggests where one might look for that answer in the subseries. Take multiples, for ex-
ample: it turns out that the inverse scattering subseries made of terms that mimic the
diagrams for multiples in the forward series is responsible for attenuating/removing
such multiples from the data [1].

The forward scattering series models seismic events in a fundamentally differ-
ent way from conventional nonperturbative theory, where seismic waves propagate
through the medium with different velocities and are reflected and transmitted at
media boundaries. To construct one event alone, the forward series needs a sequence
of terms which can be viewed as a succession of propagations in the reference medium
separated by different orders of scattering interactions with a point scatterer; the
different terms in the perturbation series correspond to the number of scattering in-
teractions a wave experiences. Even with these differences taken into account, the
wave-field output by the forward scattering series has to agree, when the series con-
verges, with the well-known nonperturbative results for any given seismic experiment.
Precritical data has been studied by Matson [7], who showed that the expected (from
wave-theory) reflected wave-field is constructed by the convergent forward scattering
series in a 2D (two-dimensional) experiment. This study brings new understanding
about the physical interpretation of these previous results; it also shows that the
same forward series converges for critical angles and diverges for postcritical, and an
explanation of this divergence is proposed.

The plan for this paper is as follows. In section 2 we present the mathematical
description for the forward scattering series for a 3D (three-dimensional) earth, both
in operator and nonoperator form; in section 3, following Matson [7], we apply this
description to a specific, 2D seismic model, and discuss the convergence of the for-
ward scattering series for that model. Section 4 presents an alternative method for
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solving for the terms in the series using saddle point analysis, which, in this setting,
is equivalent to far field approximation. Section 5 presents the physical interpretation
of the approximations performed in section 4. Section 6 shows the convergence of the
forward scattering series for this model at the critical angle, and section 7 proposes
an explanation for the divergence of the series for postcritical events. Some conclu-
sions are given in section 8. Although in this paper we mainly focus on application of
the scattering theory to seismic exploration, we mention that the same methods and
discussions apply to other areas of explorative sciences like medical imaging, whole
earth exploration, etc.

2. Forward scattering series. In operator form, the differential equations de-
scribing wave propagation in an actual and a reference medium can be written as

LG = −I(2.1)

and

L0G0 = −I,(2.2)

where L, L0 and G,G0 are the actual and reference differential and Green’s operators,
respectively, for a single temporal frequency and I is the identity operator. The above
equations (2.1) and (2.2) assume that the source and receiver signatures have been
deconvolved. The perturbation, V, and the scattered field operator, ψs, are defined
as

V = L − L0,(2.3)

ψs = G−G0.(2.4)

The fundamental equation of scattering theory, the Lippmann–Schwinger equation,
relates ψs, G0, V, and G (see, e.g., [10]):

ψs = G−G0 = G0VG.(2.5)

When G corresponds to the pressure field in an inhomogeneous acoustic medium, an
example of L, L0, and V is (see, e.g., [5])

L =
ω2

κ
+ ∇ ·

(
1

ρ
∇
)
,(2.6)

L0 =
ω2

κ0
+ ∇ ·

(
1

ρ0
∇
)
,(2.7)

and

V =ω2

(
1

κ
− 1

κ0

)
+ ∇ ·

[(
1

ρ
− 1

ρ0

)
∇
]
,(2.8)

where κ, κ0, ρ, and ρ0 are the actual and reference bulk moduli and densities, respec-
tively. If the density is constant (ρ = ρ0 = const.) , the above expressions become

L =
ω2

κ
,(2.9)

L0 =
ω2

κ0
,(2.10)
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Fig. 2.1. Graphical representation of the terms in the forward scattering series: the first term
is an integral over all 1-interaction events, the second term is an integral over all 2-interactions
events, etc.

and

V =ω2

(
1

κ
− 1

κ0

)
.(2.11)

For an elastic isotropic actual and a homogeneous reference medium, the expressions
for L, L0, and V are different and given, e.g., in [9].

Equation (2.5) can be expanded in an infinite series by repeatedly substituting
G = G0 − G0VG into the right-hand side to obtain

ψs ≡ G−G0 = G0VG0 + G0VG0VG0 + · · · .(2.12)

This series constructs the scattered field operator ψs as a series of terms formed as
propagations in the reference medium (G0) and interactions with the inhomogeneity
(V). Note that the nth term in this series is of order n in the perturbation operator
V and, in fact, can be written as (ψs)n ≡ G0 (VG0)

n
.

For the previous example (constant density case), define k0 = ω
c0

and α =
(
1− c21

c20

)
,

where c1 and c0 are the actual and the reference medium velocities, respectively; the
series becomes

ψs
(
rg|rs;ω

)
=

∫
V

G0

(
rg|r′;ω

)
k2
0α (r′)G0 (r′|rs;ω) dr′

+

∫
V

G0

(
rg|r′;ω

)
k2
0α (r′)

∫
V

G0 (r′|r′′;ω) k2
0α (r′′)G0 (r′′|rs;ω) dr′′dr′

+ · · · ,(2.13)

where the integrals are 3D volume integrals taken over the inhomogeneity V. For an
easy physical interpretation of this series, consider the perturbation V to be composed
of point scatterers separated by the reference medium. The first term in the series
for the scattered field (2.13) represents a summation over all 1-interaction events,
i.e., events formed from a wave propagating from the source location rs to the scat-
terer location at r′, G0 (r′|rs;ω), interacting with the scatterer at r′, k2

0α (r′), and
propagating to the receiver location at rg, G0(rg|r′;ω). The second term represents
a summation over all 2-interaction events and so on. Note that, as stated before,
the propagations between source, receiver, and scatterers occur only in the reference
medium, i.e., with the Green’s function G0, even though the speed of the wave in the
actual medium is different from the speed of the wave in the reference medium. A
picture of the physical interpretation of these terms is shown in Figure 2.1.
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3. A 2D seismic profile. Matson [6, 7] describes the propagation of a wave-
field in a given 1D or 2D medium, using the forward scattering series. We use the same
2D model in this paper to give an alternate derivation, and a physical interpretation
for that derivation, for the Matson [7] result. The model is a half-space earth with no
lateral variance and an interface at z1; the scattering perturbation for this model is,
therefore,

V (z′) = k2
0αH(z′ − z1),(3.1)

where, as before, α = 1 − c20/c
2
1, c1 is the velocity in the second medium, c0 is the

velocity in the reference medium, and H is the Heaviside step function.
The propagations in the reference medium are described by the 2D Green’s func-

tion (see, e.g., [2])

G0(xg, zg|xs, zs;ω) =
1

2π

∫ ∞

−∞

eiks(xg−xs)eiν0s|zg−zs|

2iν0s
dks,(3.2)

where ks and ν0s are the horizontal and the vertical wavenumber, respectively, of the
reference medium (ν2

0s + k2
s = ω2/c20 ). Rewriting G0 as

G0(xg, zg|xs, zs;ω) =
1

2π

∫ ∞

−∞

e−iksxs

2iν0s
φ0(xg, zg|ks, zs;ω)dks(3.3)

with φ0(xg, zg|ks, zs;ω) = ei(ksxg+ν0s|zg−zs|), it is apparent that G0 represents a super-
position of weighted planewaves. This motivates the use of a planewave component as
the incident wave with the remark that one can construct solutions for point sources
from planewave solutions by performing the above-mentioned weighted integration.
Denote by P the actual wave-field and by P0, P1, etc., the corresponding term in the
forward scattering series. For simplicity consider the source location to be (0, 0); the
Born series takes the form

P (xg, zg|k;ω) = ei(kxg+ν0zg)

+

∫ ∞

z1

∫ ∞

−∞

1

2π

∫ ∞

−∞

eikg(xg−x′)eiν0g|zg−z′|
2iν0

dkgk
2
0αP0(x

′, z′|k;ω)dx′dz′

+

∫ ∞

z1

∫ ∞

−∞

1

2π

∫ ∞

−∞

eikg(xg−x′)eiν0g|zg−z′|
2iν0

dkgk
2
0αP1(x

′, z′ > z1|k;ω)dx′dz′

+ · · · .(3.4)

Note that the incoming wave hits all the scatterers at once; each scatterer then emits
a cylindrical wave which propagates to the receiver or to another scatterer. Each term
in the forward series represents the response, at the receiver, after a certain number
of interactions: the zeroth term represents the direct arrival, the first term represents
the wave-field after one interaction with a point scatterer, and so on. To construct
even the simplest event, one needs an infinite number of terms in the forward series.
To obtain the total wave-field at the receiver we have to solve the integrals in the
previous expression. Following Matson [7], we solve for the first term in the series

P1(xg, zg|k;ω) =

∫ ∞

z1

∫ ∞

−∞

1

2π

∫ ∞

−∞

eikg(xg−x′)eiν0g|zg−z′|
2iν0

dkgk
2
0αe

i(kx′+ν0z′)dx′dz′.

(3.5)
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Begin by switching the order of integration so that the integration with respect to dx′

is performed first. Hence

P1(xg, zg|k;ω) =
1

2π

∫ ∞

z1

∫ ∞

−∞

(∫ ∞

−∞
ei(k−kg)x′

dx′
)
eikgxgeiν0g|zg−z′|eiν0z′ k

2
0α

2iν0g
dkgdz

′.

(3.6)

Using ∫ ∞

−∞
ei(k−kg)x′

dx′ = 2πδ(kg − k),(3.7)

P1 becomes

P1(xg, zg|k;ω) =

∫ ∞

z1

∫ ∞

−∞
δ(kg − k)eikgxgeiν0g|zg−z′|eiν0z′ k

2
0α

2iν0g
dkgdz

′.(3.8)

Using the properties of the delta function, we see that the inside integral switches
kg → k and hence ν0g → ν0, and so the expression becomes

P1(xg, zg|k;ω) =
k2
0α

2iν0
eikxg

∫ ∞

z1

eiν0|zg−z′|eiν0z′dz′.(3.9)

There are two cases to be considered at this point: zg < z1 for the reflected P1 and
zg > z1 for the transmitted part. The first enters into the series for the total reflected
field, while the second is used either in the series for transmitted wave-field or for the
calculation of P2 (reflected or transmitted). We have

P1(xg, zg < z1|k;ω) =
k2
0α

2iν0
eikxge−iν0zg

∫ ∞

z1

eiν02z
′
dz′.(3.10)

The last integral, ∫ ∞

z1

eiν02z
′
dz′,(3.11)

is not defined in the Riemannian sense because the integrand oscillates, preserving its
amplitude towards infinity. We are going to define this integral to be the value of the
antiderivative of the integrand calculated at its finite boundary z1, i.e.,∫ ∞

z1

eiν02z
′
dz′ = −e

iν02z1

2iν0
.(3.12)

This definition is consistent with considering that the reference medium is attenuating
the wave-field which will vanish at infinity. The attenuation is introduced in the
equations through an imaginary part in the velocity c0 (see [2, Chapter 5, equations
5.87 and 5.88] ) so that the new velocity cnew0 is

1

cnew0

=
1

c0
+ iε,

with ε being a small parameter such that ε > 0 for ω > 0. It is easy to see that, with
this new effective velocity, the value of the integral is indeed the one defined in (3.12).
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The final expression for P1 is hence

P1(xg, zg < z1|k;ω) =
k2
0α

4ν2
0

eikxgeiν0(2z1−zg).(3.13)

The same integration procedure is used for the calculation of P2, P3, etc. The calcu-
lated series for the scattered field (also denoted by P ) is

P (xg, zg < z1|k;ω) = eikxgeiν0(2z1−zg)

[
1

4

k2
0α

ν2
0

+
1

8

(
k2
0α

ν2
0

)2

+
5

64

(
k2
0α

ν2
0

)3

+ · · ·
](3.14)

and indicates a certain regularity after some algebraic operations: the series is recog-

nized to be the Taylor series of

√
1 − k2

0α

ν2
0

about
k2
0α

ν2
0

= 0 (a rigorous proof is given

in the appendix). The ratio test indicates that the series converges for
∣∣k2

0α

ν2
0

∣∣ < 1 .

By writing ν0 = k0 cos θ, with θ being the incidence angle of the incoming planewave,
this condition becomes

sin θ <
c0
c1
<
(
1 + cos2 θ

)1/2
.(3.15)

This last relation can be viewed in the following two ways:
1. First, for a fixed incidence angle θ, this is a restriction on the velocity con-

trast between the reference and the actual medium. In particular, for θ = 0
(normal incidence) the left inequality is satisfied for any two velocities; the
right inequality becomes c0 <

√
2c1, a result obtained in Matson [6].

2. Second, for a fixed velocity model, the restriction is on the incident angle.
Note that, given any two velocities c0 and c1, one of the two inequalities is
automatically satisfied. For c0 > c1, the condition reads c0

c1
< (1 + cos2 θ)1/2

or sin2 θ < 1 + α with α < 0.
For c0 < c1, the condition becomes sin θ < c0

c1
or θ < θc, where θc is the critical angle

θc = sin−1(c0/c1). When the series converges, the limit is

2
ν2
0

k2
0α

[
1 −

√
1 − k2

0α

ν2
0

]
− 1 =

ν0 − ν1
ν0 + ν1

,(3.16)

and so the final expression for the reflected field is

P (xg, zg < z1|k;ω) =
ν0 − ν1
ν0 + ν1

eikxgeiν0(2z1−zg),(3.17)

which is the expected result from nonperturbative theory (see, e.g., [2]).

4. An alternative derivation using saddle point approximations. The
calculation of

P1(xg, zg|k;ω) =

∫ ∞

z1

∫ ∞

−∞

1

2π

(∫ ∞

−∞

eikg(xg−x′)eiν0g|zg−z′|
2iν0

dkg

)
k2
0αe

i(kx′+ν0z′)dx′dz′

(4.1)

contains a reordering of integrals: in the original expression the dkg integral should
be solved first, then the dx′, and finally the dz′ integral. As we saw in the previous
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section, the calculations are greatly simplified if the dx′ integration is performed first,
then the dkg, and finally the dz′ integration. However, this kind of operation has to
be performed with great care since it might impose some restrictions, which might
change the result obtained from solving the integrals in the original order.

The theorem which deals with interchanging integrals is Fubini’s theorem. It
states that when a function f is integrable on Rn = Rk × Rm, the iterated integrals
of f over Rk and Rm exist and∫

Rn

f =

∫
Rk

∫
Rm

f(x, y)dydx =

∫
Rm

∫
Rk

f(x, y)dxdy.(4.2)

The theorem gives sufficient conditions for interchanging the order of integrals, but
those conditions are not necessary. For example, you can have a function non-
integrable over Rn for which the integration in both directions would yield the same
result. The only way to show that the interchange of integrals does not hold is to
calculate the integrals in both direction and obtain different results. However, to
calculate the dkg integral first in the expression (4.1) means to find a closed form
for the Green’s function (3.2), which is not possible. For an in-depth analysis of the
cylindrical functions, see [11].

In this section we show that the interchange of integrals yields the same result
as the far field approximation of the integrals in question. The Fubini theorem does
not apply here because the function to be doubly integrated is not integrable. To be
more specific, the integral representation of the Dirac delta function,∫ ∞

−∞
ei(k−kg)x′

dx′,(4.3)

is meaningless in the strict Riemannian sense.
Recalculate P1 using saddle point approximations for the two integrals involved

without switching the order of integration, and show that the result is the one ob-
tained in Matson [7]. Saddle point or stationary phase approximation gives the leading
asymptotic behavior of generalized Fourier integrals, i.e., of the form

∫∞
−∞ F (p)eωf(p)dp,

having stationary points, i.e., points ps such that f ′(ps) = 0. The idea of the method
is to use the analyticity of the integrand to justify deforming the path of integration
to a new path on which f(p) has a constant imaginary path. How the contour is
deformed depends on the singularities and branch cuts of the integrand. Once this
has been done, the integral may be found asymptotically (ω → ∞) to be∫ ∞

−∞
F (p)eωf(p)dp ∼

∣∣∣∣ 2π

ωf ′′(ps)

∣∣∣∣
1/2

F (ps)e
isign(f ′′(ps))π

4 exp [ωf(ps)] .(4.4)

To calculate P1 in (4.1), start by rewriting

G0 =
1

2π

∫ ∞

−∞

eikg(xg−x′)eiν0g|zg−z′|
2iν0

dkg(4.5)

as

G0 =
1

2π

∫ ∞

−∞
F (p)eωf(p)dp,(4.6)

where

F (p) =
1

2i
√

1/c20 − p2
(4.7)
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and

f(p) = i

[
p(xg − x′) + |zg − z′|

√
1

c20
− p2

]
,(4.8)

p being the horizontal slowness p =
kg
ω . Note that, due to the square root, F (p)

defines two branch cuts in the complex p plane; the branch cuts are hyperbolas in
the first and third quadrant and are running very close to the coordinate axis. (For
a full discussion of the branch cuts of F, see [2, Box 6.2].) By definition, branch
cuts are lines of discontinuities for F (p) and here are given by Im

√
1/c20 − p2 = 0.

This means that when the new integration path (see Figure 6.6 in [2]) intersects these
branch cuts, F (p) is discontinuous and hence not analytic. This apparent problem
can be avoided if we relax the condition Im

√
1/c20 − p2 ≥ 0 along the integration

path. Instead we allow Im
√

1/c20 − p2 to change sign at each branch cut intersection
which, for the integration path, is equivalent to a transition to a different Riemann
sheet. The integrand looses physical interpretation while on another Riemann sheet
but gains analyticity. However, the two intersections with the branch cut insure two
sign changes and the emergence of the integrand with the correct sign at the saddle
point. (Eventually the integrand is going to be expanded in a Taylor series at that
point, and the rest of the path is going to be discarded.) To calculate the location of
the saddle point, equate the derivative of f with zero; this gives

ps =
xg − x′

c0d′
,(4.9)

with d′ =
√

(zg − z′)2 + (xg − x′)2. Calculate

f(ps) = i
d′

c0
,(4.10)

f ′′(ps) = − ic0d
′3

|zg − z′|2 ,(4.11)

F (ps) =
c0d

′

2i |zg − z′| ,(4.12)

and plug them into the above formula (4.4) to obtain

G0 ∼ 1

4πi

(
2πc0
iωd′

)1/2

eik0d
′
.(4.13)

(Compare with the approximation for iπH
(1)
0 (ω/c0d

′), the Green’s function for the

2D Helmholtz equation, where H
(1)
0 is the Hankel function of the first kind, given by

formula (5.3.69) in [8].) With this approximation, expression (4.1) for P1 becomes

P1(xg, zg|k;ω) =
1

4πi

∫ ∞

z1

∫ ∞

−∞
eik0d

′
(

2πc0
iωd′

)1/2

k2
0αe

i(kx′+ν0z′)dx′dz′(4.14)
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or

P1(xg, zg|k;ω) =
k

3/2
0 α

2πi

√
π

2i

∫ ∞

z1

eiν0z
′
∫ ∞

−∞

e
iω
(

d′
c0

+ k
ω x

′
)

√
d′

dx′dz′.(4.15)

Again, the innermost integral has the form

I =

∫ ∞

−∞
F (x′)eωf(x′)dx′(4.16)

with F (x′) = 1√
d′

and f(x′) = i( d
′
c0

+ k
ωx

′). Note that the integrand has no branch

cuts this time since d′ =
√

(zg − z′)2 + (xg − x′)2 is always positive; the saddle point
is x′s such that

xg − x′s = |zg − z′| k
ν0
,(4.17)

and so we have

f(x′s) = i

(
ν0
ω

|zg − z′| + k

ω
xg

)
,(4.18)

f ′′(x′s) =
ic20ν

3
0

ω3 |zg − z′| ,(4.19)

and

F (x′s) =
1√|zg − z′|

√
c0ν0
ω

.(4.20)

Using the same high frequency approximation (4.4), we find

∫ ∞

−∞

e
iω
(

d′
c0

+ k
ω x

′
)

√
d′

dx′ ∼ 1

ν0

√
2πiω

c0
ei(ν0|zg−z′|+kxg).(4.21)

Substituting this into the expression (4.15) for P1, we obtain

P1(xg, zg|k;ω) =
k2
0α

2iν0
eikxg

∫ ∞

z1

eiν0|zg−z′|eiν0z′dz′,(4.22)

which is the same result as that obtained before by switching the order of integration.
The rest of the terms in the series for P can be similarly shown to resemble the
expressions given by Matson [7].

5. Physical interpretation of the approximations. The two far field ap-
proximations performed in the previous derivation have an easily understandable
physical interpretation. The approximation of the first integral in the expression
of P1 represents the most important contribution arriving at the receiver from each
point scatterer (see Figure 5.1).
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Source Receiver 

∇

Fig. 5.1. The physical interpretation of the approximation of the first integral in the calculation
of P1.

 

θ

Source Receiver 

∇
Incoming planewave 

Fig. 5.2. The physical interpretation of the approximation of the second integral in the calcu-
lation of P1.

As the figure shows, each scatterer behaves as a point source producing a wave
propagating in all directions described by the Green’s function given by (3.2). How-
ever, when the integral is approximated using saddle point techniques, only the di-
rection of propagation bringing in the highest contribution is kept. The result given
by (4.13),

G0 ∼ 1

4πi

(
2πc0
iωd′

)1/2

eik0d
′
,(5.1)

represents the part arriving from the scatterer to the receiver along the straight line
connecting them, multiplied by a coefficient which accounts for the dismissal of all
the other directions.

The approximation of the second integral in the expression of P1 picks out the
most important contribution arriving at the receiver from the totality of incoming
rays. Here, the main contribution is found to be the one from the rays that make an
angle equal to the incident’s planewave angle with the vertical (see Figure 5.2); this
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can be seen from the expression of the saddle point for the x′ integration:

xg − x′s = |zg − z′| k
′

ν0
.(5.2)

The last integral in the expression of P1 is a 1D integral along the thick line shown in
Figure 5.2. Even though the parameter of integration is z′, there is a certain relation
between z′ and x′, given by (5.2), such that the direction of integration is tilted at an
angle equal to the incident angle rather than vertical. The lack of symmetry in this
last integral is expected since the model is not symmetric: the discussion here is for
a planewave component of a line source and a line receiver. It is anticipated that the
symmetry would be recovered in the line source–line receiver case.

6. Convergence at the critical angle. The forward scattering series for the
reflected wave-field for the model discussed in this paper is (see Matson [7])

P (xg, zg < z1|k;ω) = eikxgeiν0(2z1−zg)

[
1

4

k2
0α

ν2
0

+
1

8

(
k2
0α

ν2
0

)2

+
5

64

(
k2
0α

ν2
0

)3

+ · · ·
]
.

(6.1)

The ratio test shows convergence for |k2
0α

ν2
0
| < 1, divergence for |k2

0α

ν2
0
| > 1, and is

inconclusive for |k2
0α

ν2
0
| = 1. When c0 < c1, this last condition is equivalent to

k2
0α

ν2
0

= 1,

which in turn is equivalent to θ = θc; i.e., the incident angle is the critical angle. In
other words, the forward series is convergent for precritical incidence and divergent
for postcritical incidence; no information is found about the critical incidence. For a
critical incident planewave, the series becomes

P (xg, zg < z1|k;ω) = eikxgeiν0(2z1−zg)

[
1

4
+

1

8
+

5

64
+

7

128
+ · · ·

]
.(6.2)

Rewrite

R =
1

4
+

1

8
+

5

64
+

7

128
+ · · · =

∞∑
n=2

1

n!

1 · 3 · 5 . . . (2n− 3)

2n−1
=

∞∑
n=1

Γ(n+ 1/2)

(n+ 1)!Γ(1/2)
.

(6.3)

Note that the series has the form
∑∞
n=2 an with an = 1

n!
1·3·5...(2n−3)

2n−1 , and so

lim
n→∞n

(
an
an+1

− 1

)
= lim
n→∞n

(
2n+ 2

2n− 1
− 1

)
=

3

2
> 1.(6.4)

Hence Raabe’s convergence test shows convergence. (For a full discussion of this
convergence test, see [3].) The conclusion is that the forward scattering series for this
model converges at the critical angle as well. Note that, in this case, the sum of the
series, which corresponds to the reflection coefficient, is R = 1.

7. Postcritical divergence. For a c0 < c1 model, the forward series converges
for precritical and critical incidence and diverges for postcritical incidence. From wave
nonperturbative theory, the reflection coefficient R, which should be constructed by
the forward scattering series, is

• R = ν0−ν1
ν0+ν1

< 1 for precritical incidence. In this case both ν0 and ν1 are real.
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Fig. 7.1. The graph of ν1 as a function of
αk2

0
ν2
0

.

• R = 1 for critical incidence. In this case ν1 = 0.
• R = ν0−ν1

ν0+ν1
for postcritical incidence. In this case ν1 is purely imaginary, and

hence R is complex. However, |R| = 1, and the complexity of R is attributed
to a phase-shift of the emerging wave after hitting the interface due to the
evanescent waves created in the second medium.

The term αk2
0/ν

2
0 = 1 − ν2

1/ν
2
0 is > 1 exactly when ν1 becomes imaginary. In fact,

if for this case one writes R = eiε, where ε is the phase-shift of the wave-field, then
αk2

0/ν
2
0 = 1 + tan2 ε/2, enforcing the earlier statement that the divergence is due

to the phase-shift of the reflected wave. In other words, it is the impossibility of
constructing a complex number ν1 as a series of real numbers (powers of ν0) which
leads to the divergence of the series. The graph of ν1 as a function of αk2

0/ν
2
0 is shown

in Figure 7.1.
For c0 < c1we have that α > 0, so we are looking at the positive x-axis of the

graph; if the velocity model is fixed, αk2
0 is a constant. The vertical wavenumber of

the propagating wave in the actual medium, ν1, is equal to ν0 when αk2
0/ν

2
0 = 0, i.e.,

at normal incidence. When αk2
0/ν

2
0 = 1 (at critical incidence), ν1 is zero, showing

that there is no propagation into the second medium. When αk2
0/ν

2
0 > 1 (postcritical

incidence), ν1 is complex, and it becomes unrecoverable by a Taylor series written
at αk2

0/ν
2
0 = 0; the series is now divergent. For c0 > c1 it seems like this problem

does not exist. In this case there is no critical angle, and so the vertical wavenumber
ν1 never becomes complex. However, the series inherits the divergent behavior for
αk2

0/ν
2
0 < −1 due to the singularity at αk2

0/ν
2
0 = 1. For any value of αk2

0/ν
2
0 outside the

unit sphere centered at the origin the series will diverge due to that same singularity.

8. Conclusion. We have shown that the interchange of certain integrals in the
calculation of terms in the forward scattering series yields the same result as the
far field approximations of those integrals. The later approach allows the study of
the restrictions imposed on the model by the former approach and provides new
insights and physical interpretations for the terms in the forward scattering series. It
is also anticipated that the new method would be more practical in the study of more
complicated models (e.g., line source and receiver).



2180 B. G. NITA, K. H. MATSON, AND A. B. WEGLEIN

We have also proved the convergence of the forward scattering series at critical
angle for the model of Matson [7] and provided an explanation for the divergence
of the series for postcritical incident angles. The divergence is due to the inability
of the forward scattering series to construct a complex vertical wavenumber from a
series of real terms. Several possibilities for extending this result exist. First, one
could introduce imaginary terms in the calculated series by using more than just the
leading asymptotic behavior of the integral representation of the Hankel function, or of
the dx′ integral involved in the calculations. Second, one could try to make use of the
evanescent part of the wave-field emanating from the scatterers to construct a complex
vertical wavenumber. The evanescent part is always discarded when the asymptotic
behavior of the integral representation of the Hankel function is considered; using it
is attractive because it makes sense intuitively to construct an evanescent wave in the
actual medium using evanescent waves in the reference medium. Third, an imaginary
term in the reference velocity, and hence complex terms in the forward scattering
series, could be brought in by the introduction of an absorptive reference medium.
These ideas will be considered in future research.

Appendix. In section 3 we indicated how to calculate the first few terms in
the forward scattering series for the reflected wave-field in a 2D vertically varying
medium. We stated there that the calculated series for the scattered field for that
specific model is (see (3.14))

P (xg, zg| k;ω) = eikxgeiν0(2z1−zg)

[
1

4

k2
0α

ν2
0

+
1

8

(
k2
0α

ν2
0

)2

+
5

64

(
k2
0α

ν2
0

)3

+ · · ·
]
,

(A.1)

which is recognized to be the Taylor series for
√

1 − k2
0α/ν

2
0 about

k2
0α

ν2
0

= 0 after

some algebraic operations are performed on it. In this section we provide a rigorous
proof of this statement. The proof will proceed as follows: first we will write down the
general term for the transmitted wave-field and show by induction that the expression
is correct; then we will use it to calculate the general term for the reflected wave-field
and show that it corresponds to the general term in the aforementioned Taylor series.
The need for the general term for the transmitted field is obvious since the iteration
step occurs in the transmitted wave rather than the reflected one. Once the general
term for the transmitted wave-field, PTn , is obtained, the general term for the reflected
wave-field, PRn , is obtained by calculating

PRn+1 (xg, zg < z1| k;ω)

=

∫ ∞

z1

dz′
∫ ∞

−∞
dx′

1

2π

(∫ ∞

−∞

eikg(xg−x′)eiν0g|zg−z′|
2iν0

dkg

)
k2
0αP

T
n (x′, z′| k;ω) .(A.2)

To simplify the writing we introduce the notation

k2
0α

ν2
0

= X(A.3)

and

Sn =
Xn

2nn!
(1 +R)

n+1
,(A.4)
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where

(1 +R) =
2

X

[
1 − Taylor

(√
1 −X

)]
(A.5)

and Taylor
(√

1 −X
)

stands for the Taylor series of
√

1 −X about X = 0. Notice
that Sn is a series in X of lowest order n. Also denote by Sjn the coefficient of the jth
order in Sn, and notice that all these coefficients are zero for j < n.

We will prove by induction that the general term for the transmitted wave-field
PTn for n ≥ 1 is

PTn (xg, zg > z1| k;ω) = eikxgeiν0zgXn
n∑
l=0

[−iν0 (zg − z1)]
l
Snl .(A.6)

The first step of the induction is to verify this relation for n = 1, i.e., to check that

PT1 = eikxgeiν0zgX
{
S1

0 + [−iν0 (zg − z1)]S
1
1

}
.(A.7)

Note that S1
0 = 1/4 and S1

1 = 1/2, and hence this is the expression (2.25) found in
Matson [7]. For the second step of the induction we assume that the relation (A.6)
for PTn is true, and we calculate PTn+1 and show that it has the same form; i.e., we
want to prove that

PTn+1 (xg, zg > z1| k;ω) = eikxgeiν0zgXn+1
n+1∑
l=0

[−iν0 (zg − z1)]
l
Sn+1
l .(A.8)

We have

PTn+1 =

∫ ∞

z1

dz′
∫ ∞

−∞
dx′

1

2π

(∫ ∞

−∞

eikg(xg−x′)eiν0g|zg−z′|
2iν0

dkg

)
k2
0αP

T
n (x′, z′| k;ω)

=

∫ ∞

z1

dz′
∫ ∞

−∞
dx′

1

2π

(∫ ∞

−∞

eikg(xg−x′)eiν0g|zg−z′|
2iν0

dkg

)

× k2
0αe

ikx′
eiν0z

′
Xn

n∑
l=0

[−iν0 (z′ − z1)]
l
Snl .(A.9)

We now solve the dkg and the dx′ by either one of the two methods described in the
text and obtain

PTn+1 =

∫ ∞

z1

dz′
k2
0α

2iν0
eikxgeiν0|zg−z′|eiν0z′Xn

n∑
l=0

[−iν0 (z′ − z1)]
l
Snl

= eikxgXn+1 ν0
2i

∫ ∞

z1

dz′eiν0|zg−z′|eiν0z′
n∑
l=0

[−iν0 (z′ − z1)]
l
Snl

= eikxgXn+1 (−iν0)
2

∑n

l=0

∫ ∞

z1

dz′eiν0|zg−z′|eiν0z′ [−iν0 (z′ − z1)]
l
Snl .(A.10)

We split the integral into two integrals in order to be able to evaluate the absolute
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value and get

PTn+1 = eikxgXn+1 (−iν0)
2

n∑
l=0

{∫ zg

z1

dz′eiν0zg [−iν0 (z′ − z1)]
l
Snl

+

∫ ∞

zg

dz′eiν0(2z
′−zg) [−iν0 (z′ − z1)]

l
Snl

}
.(A.11)

The first integral has an easy solution; the second is a bit more tedious since it involves
integration by parts. After solving the two integrals, we find

PTn+1 = eikxgeiν0zgXn+1

{
n∑
l=0

Snl
2(l + 1)

[−iν0 (zg − z1)]
l+1

(A.12)

+
(−iν0)

2

[
Sn0 (−iν0)0

(
− 1

2iν0

)

+ Sn1 (−iν0)1
(
− 1

2iν0
(zg − z1) +

1

(2iν0)2

)

+ Sn2 (−iν0)2
(
− 1

2iν0
(zg − z1)

2 +
2

(2iν0)2
(zg − z1) − 2

(2iν0)3

)
...

+ Snn(−iν0)n
( −1

2iν0
(zg − z1)

n +
n

(2iν0)2
(zg − z1)

n−1 + · · · + (−1)n+1n!

(2iν0)n+1

)]}
.

Grouping together the terms with like powers of [−iν0 (z′ − z1)] in the expression
above, we find

PTn+1 = eikxgeiν0zgXn+1

{
[−iν0 (zg − z1)]

n+1 Snn
2(n+ 1)

(A.13)

+ [−iν0 (zg − z1)]
n

(
Snn−1

2n
+
Snn
2

1

2

)

+ [−iν0 (zg − z1)]
n−1

(
Snn−2

2(n− 1)
+
Snn
2

n

22
+
Snn−1

2

1

2

)

+ [−iν0 (zg − z1)]
n−2

(
Snn−3

2(n− 2)
+
Snn
2

n(n− 1)

23
+
Snn−1

2

n− 1

22
+
Snn−2

2

1

2

)
...

+ [−iν0 (zg − z1)]
1

(
Sn0
2

+
Snn
2

n(n− 1) . . . 2

2n
+
Snn−1

2

(n− 1) . . . 2

2n−1
+ · · · + Sn1

2

1

2

)

+ [−iν0 (zg − z1)]
0

(
0 +

Snn
2

n!

2n+1
+
Snn−1

2

(n− 1)!

2n
+ · · · + Sn1

2

1!

22
+
Sn0
2

1

2

)}
.

We next show that the coefficients of [−iν0 (zg − z1)]
j

in the above expression are
exactly equal to Sn+1

j , and hence this last expression is the one required for the
second step of the induction (see (A.8)).
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For the first coefficient recall that, by definition, we have

Sn =
Xn

2nn!
(1 +R)

n+1
,(A.14)

and hence we can write

Sn+1 =
Xn+1

2n+1(n+ 1)!
(1 +R)

n+2
=

X

2(n+ 1)
(1 +R)Sn.(A.15)

This is an equality of two series, which implies that the coefficients of identical powers
from both sides are equal. By equating the coefficients of the n+ 1 power, we obtain

Sn+1
n+1 =

1

2(n+ 1)
Snn .(A.16)

For the second coefficient we start with the identity

Sn =
Xn

2nn!
(1 +R)

n+1
(A.17)

and rewrite it as

Sn =
Xn

2nn!
(1 +R)

n
(1 +R) =

X

2n
Sn−1 +

Xn

2nn!
R (1 +R)

n
.(A.18)

By equating the coefficients of the n+ 1 power from both sides, we find

Sn+1
n =

1

2n
Snn−1 +

1

4
Snn ,(A.19)

where we have used that the coefficient of the first power of X in the expression for
R is 1/4.

For the third coefficient we start with the identity

Sn−1 =
Xn−1

2n−1(n− 1)!
(1 +R)

n
(A.20)

and rewrite it as

Sn−1 =
X

2(n− 1)
Sn−2 +

Xn−1

2n−1(n− 1)!
R (1 +R)

n−2
+

Xn−1

2n−1(n− 1)!
R2 (1 +R)

n−2
.

(A.21)

By equating the coefficients of the n+ 1 power from both sides, we find

Sn+1
n−1 =

1

2(n− 1)
Snn−2 +

1

4
Snn−1 +

n

8
Snn .(A.22)

For this last expression we have used again the fact that the coefficient of the first
power of X in the expression for R is 1/4.

The procedure outlined for these first three coefficient can be continued without
difficulty to show that all the coefficients in the expression (A.13) coincide with those
in (A.8). This concludes the second step of the induction and hence the proof that
the expression for the transmitted wave-field PTn is

PTn (xg, zg > z1| k;ω) = eikxgeiν0zgXn
n∑
l=0

[−iν0 (zg − z1)]
l
Snl .(A.23)
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The general term in the forward scattering series representation (3.14) for the
reflected wave-field can hence be calculated using the following formula:

PRn+1 (xg, zg < z1| k;ω)

(A.24)

=

∫ ∞

z1

dz′
∫ ∞

−∞
dx′

1

2π

(∫ ∞

−∞

eikg(xg−x′)eiν0g|zg−z′|
2iν0

dkg

)
k2
0αP

T
n (x′, z′| k;ω) .

Introducing the expression for PTn , we find

PRn+1 =

∫ ∞

z1

dz′
∫ ∞

−∞
dx′

1

2π

(∫ ∞

−∞

eikg(xg−x′)eiν0g|zg−z′|
2iν0

dkg

)
k2
0αe

ikx′
eiν0z

′
Xn

×
n∑
l=0

[−iν0 (z′ − z1)]
l
Snl .(A.25)

Solving for the dx′ and the dkg integrals gives

PRn+1 = eikxgXn+1 (−iν0)
2

∫ ∞

z1

dz′
n∑
l=0

[−iν0 (z′ − z1)]
l
Snl e

iν0(2z
′−zg).(A.26)

Notice that this integral has been dealt with before: it is the integral appearing in the
second part of (A.11), and its solution is given in the second part of (A.12). However,
the limits of integration are different: the solution for our integral may be obtained
from the second part of (A.12) by replacing zg with z1. This substitution cancels
most of the terms, and the result is

PRn+1 = eikxgeiν0zgXn+1 (−iν0)
2

[
−Sn0

1

2iν0
− Sn1

1

22iν0
− · · · − Snn

n!

2n+1iν0

]
(A.27)

or

PRn+1 = eikxgeiν0zgXn+1 1

4

[
Sn0 +

Sn1
21

1! +
Sn2
22

2! + · · · + Snn
2n
n!

]
.(A.28)

Again, the sum inside the square brackets is an expression that we have already
analyzed before: it is the coefficient of [−iν0 (zg − z1)]

0
in (A.13). It was shown there

that

1

4

[
Sn0 +

Sn1
21

1! +
Sn2
22

2! + · · · + Snn
2n
n!

]
= Sn+1

0 ,(A.29)

and hence the expression for PRn+1 becomes

PRn+1 (xg, zg < z1| k;ω) = eikxgeiν0zgXn+1Sn+1
0 .(A.30)

Recall from (A.4) and (A.5) that Sn+1
0 represents the coefficient of the n + 1 degree

in the series for 1 +R, and hence it is the coefficient of the n+ 1 degree in the Taylor

series for
√

1 − k2
0α/ν

2
0 about

k2
0α

ν2
0

= 0 after some algebraic operations are performed

on it. The total scattered field P is the summation of all PRn and hence it represents

the full Taylor series for
√

1 − k2
0α/ν

2
0 about

k2
0α

ν2
0

= 0 after some algebraic operations

are performed on it.
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GINZBURG–LANDAU MODEL IN THIN LOOPS WITH
NARROW CONSTRICTIONS∗
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Abstract. We consider the Ginzburg–Landau model for a superconducting thin ring in the
presence of an applied field. The ring is constricted, and we derive an asymptotic form for the energy
as the ring thickness tends to zero. The constriction leads in the limit to a jump condition for the
order parameter, yielding a transmission condition across the weak link of the type postulated by
de Gennes for superconducting/normal/superconducting junctions.

Key words. Ginzburg–Landau energy, asymptotic analysis, constricted rings
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1. Introduction. The Josephson effect models the peculiar flow of currents
through a normal thin layer, called a junction, separating two bulk superconduct-
ing samples. The fundamental feature of this effect is an expression for the current
as a function of the phase difference across the junction:

J = JM sin[φ].(1.1)

The parameter JM is the maximal current that the junction can transmit, and
[φ] denotes the difference between the phase of the superconducting wave function on
the two ends of the junction.

Josephson predicted relation (1.1) from the microscopic Bardeen–Cooper–Schrief-
fer (BCS) theory [14]. Soon thereafter, it was realized that a similar expression, as
well as some other features of the junction, can also be derived by ad hoc models that
are coupled to the macroscopic Ginzburg–Landau (GL) model of superconductivity.
In particular de Gennes [7] modeled the junction through a set of linear conditions
relating the wave function and its derivatives on the two sides of the thin normal
layer. Similar equations were written also in [1]. Alternatively, other authors, and, in
fact, most of the physics literature on the subject (e.g., [21], [2]) use (1.1) as a basic
paradigm and supplement it with equations and arguments based on the GL theory
and classical electromagnetism.

It is therefore desirable to develop a theory for Josephson junctions that is built
up coherently and directly upon the GL model. One way to do so is to model the
normal layer into the GL energy functional. This was done in [5], [9], [10], [12], [11],
and [20]. In particular it was shown in [20] that a large variety of junctions can be
modeled in this way, leading to different types of current flow patterns.

The purpose of the paper is to construct, directly from the GL equations, a “geo-
metrical” Josephson junction. Such junctions, called “weak links” in the literature,
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Villeurbanne Cedex, France (schatz@maply.univ-lyon1.fr).

2186



GINZBURG–LANDAU ENERGY IN LOOPS WITH CONSTRICTIONS 2187

are characterized by a sharp constriction in the thickness of the sample [16]. We
shall show below that under appropriate selection of the sample geometry and its
scaling, the GL model converges to a new model that provides in a natural way the
linear relations postulated by de Gennes. The convergence is established rigorously
in section 2, with the proof inspired in part by an analogous convergence result in
the field of elasticity [6]. In section 3 we discuss some implications of the convergence
result. Finally, we should mention the work in [15], as it also relates to variational
problems in constricted domains, though in the context of micromagnetics. While in
our problem, the asymptotic limit leads us to a one-dimensional problem, the limit in
[15] is in general two-dimensional.

2. Formulation. We begin with a description of the geometry of the region Ωε
to be occupied by the sample. To this end, we introduce a continuous, piecewise
linear function gε : [−π, π] → R

1 that will govern the thickness of the ring. Fixing
any positive number p < 1, we define gε via

gε(y1) = (ε1−p − 2ε) |y1| + 2ε1+p for |y1| ≤ εp,(2.1)

gε(y1) = ε for εp ≤ |y1| ≤ π.(2.2)

We then define a ring-shaped region Ωε ⊂ R
3 of thickness gε as the image of the

cylinder

C = {(y1, y2, y3) : −π ≤ y1 ≤ π, 0 ≤ y2
2 + y2

3 < 1}(2.3)

under the mapping Tε : R
3 → R

3 given by

x = Tε(y1, y2, y3) =
(
(1 + gε(y1)y2) cos y1, (1 + gε(y1)y2) sin y1, gε(y1)y3

)
.(2.4)

That is, Ωε ≡ Tε(C). Note, in particular, that in (x1, x2, x3)-space, the variable y1
corresponds to the polar angle in the x1x2-plane and that the ring Ωε has uniform
thickness ε except near the constriction at y1 = 0. See Figure 1.

We will use the following nondimensional version of the GL energy functional

Gε(u,A) =
1

ε2

∫
Ωε

(
|(i∇ + A)u|2 +

ν2

2

(
|u|2 − µ2

)2
)
dx

+
1

ε2

∫
R3

|∇ × A − He|2 dx.(2.5)

Here u : Ωε → C is the order parameter, A : R
3 → R

3 is the magnetic potential asso-
ciated with the magnetic field H through ∇× A = H, and He is a given, smoothly
varying, applied magnetic field directed along the x3-axis and taken to be independent
of the coordinate x3. The quantities ν and µ are material parameters with µ2 pro-
portional to the difference between the critical temperature Tc and the temperature
of the sample [20]. We assume we are in the superconducting temperature regime
where this difference is positive. One could scale µ out by setting it to be one, but
we retain it in order to use it later on as a bifurcation parameter. The energy Gε has
been scaled so that the minimum energy remains uniformly bounded away from both
zero and infinity for small ε.

We would like to investigate the asymptotic behavior of minimizers to (2.5), and
this will require a precise description of function spaces over which the minimization
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x1

x2

x3

Fig. 1. The constricted ring Ωε.

is to take place. For the order parameter u we shall take competitors in the stan-
dard Sobolev space W 1,2(Ωε; C) consisting of square-integrable functions with square-
integrable first derivatives. For the magnetic potential A we introduce the space H

as the completion of the set

{φ ∈ C∞(R3; R3) : φ compactly supported}

with respect to the norm ‖∇φ‖L2(R3;R3) = (
∫

R3 |∇φ|2 dx)1/2. Then we define H0 to
be

H0 = {φ ∈ H : div φ = 0}

and consider competitors A satisfying A − Ae ∈ H0, where Ae = Ae(x1, x2) is the
applied magnetic potential satisfying

∇× Ae = He and divAe = 0 in R
3,(2.6)

Ae · (0, 0, 1) = 0 in R
3.(2.7)

Condition (2.7) holds by our assumptions on He, while we can arrange for the zero
divergence condition by a suitable choice of gauge.

Through a rather standard application of the direct method in the calculus of
variations, along with standard elliptic regularity theory, one obtains the following.

Theorem 2.1. For all positive ε < 1, there exists a pair (uε,Aε) solving the
variational problem

inf
{u∈W 1,2(Ωε;C),A−Ae∈H0}

Gε(u,A).(2.8)
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The function uε is smooth in Ωε, while the function Aε is smooth in R
3 \ ∂Ωε

and continuously differentiable across ∂Ω. Furthermore, the minimizers satisfy the
GL system

(i∇ + Aε)2uε = ν2(|uε|2 − µ2)uε in Ωε,(2.9)

∇×∇× (Aε − Ae) = −∆(Aε − Ae)

=

{
i
2 (uε∇uε − uε∇uε) − |uε|2 Aε for x ∈ Ωε,

0 for x ∈ R
3 \ Ωε

(2.10)

and the boundary condition

(i∇ + Aε)uε · n = 0 on ∂Ωε.(2.11)

Here · denotes complex conjugation and n denotes the outer unit normal along ∂Ωε.
Finally, the order parameter uε satisfies the condition

|uε| ≤ µ in Ωε.(2.12)

Application of the direct method in establishing the existence of minimizers to
the GL energy can be found, for instance, in [8] or [19]. The regularity theory in this
context can be found, for instance, in [13]. Inequality (2.12) is an easy consequence
of the maximum principle; see, e.g., [8].

Proposition 2.2. There exist positive constants C1 and C2 independent of ε
such that

Gε(u
ε,Aε) ≤ C1 and(2.13) ∫

Ωε

|∇uε|2 dx ≤ C2ε
2.(2.14)

Furthermore, one has the uniform convergence

‖Aε − Ae‖L∞(BR(0);R3) → 0 as ε→ 0 for every R > 0,(2.15)

where BR(0) = {x ∈ R
3 : |x| < R}. Condition (2.15) in particular implies that

sup
y∈C

|Aε(Tε(y)) − Ae(cos y1, sin y1, 0)| → 0 as ε→ 0.(2.16)

Proof. The bound (2.13) follows immediately by comparing the energy of the
minimizer to that of the pair (µ,Ae):

Gε(u
ε,Aε) ≤ Gε(µ,A

e) =
µ2

ε2

∫
Ωε

|Ae|2 dx ≤ µ2vol(Ωε)

ε2
‖Ae‖2

L∞(Ωε)
≤ C1

since vol(Ωε) = O(ε2).
We next establish the convergence (2.15) and the bound (2.14) using (2.13) by

decomposing Gε as

ε2Gε(u
ε,Aε) =

∫
Ωε

|∇uε|2 dx+ i

∫
Ωε

(uε∇uε − uε∇uε) · Aε dx

+

∫
Ωε

|uε|2 |Aε|2 +
ν2

2
(|uε|2 − µ2)2 dx+

∫
R3

|∇ × (Aε − Ae)|2 dx.
(2.17)
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Applying (2.12), we find that∣∣∣∣i
∫

Ωε

(uε∇uε − uε∇uε) · Aε dx

∣∣∣∣ ≤ 2µ

∫
Ωε

|∇uε| |Aε| dx

≤ 1

2

∫
Ωε

|∇uε|2 dx+ C(µ)

∫
Ωε

|Aε|2 dx.

Hence, (2.13) and (2.17) yield the bound∫
Ωε

|∇uε|2 dx ≤ 2C1ε
2 + C(µ)

∫
Ωε

|Aε|2 dx
(2.18)

≤ 2C1ε
2 + C(µ)

(
‖Aε − Ae‖2

L∞(Ωε;R3) + ‖Ae‖2
L∞(Ωε;R3)

)
vol (Ωε).

Now we turn to (2.10) satisfied by the difference Aε−Ae and utilize the fact that this
difference lies in H0. This decay at infinity allows us to express it via the fundamental
solution to the Laplacian in R

3:

Aε − Ae =

∫
Ωε

Γ(x− z)fε(z) dz,(2.19)

where Γ(x) ≡ 1
4π|x| and fε(z) ≡ i

2 (uε∇uε − uε∇uε) − |uε|2 Aε.

Given any R > 0, one readily checks that∫
Ωε

|Γ(x− z)|2 dz ≤ C(R),

provided |x| ≤ R, so that by Hölder’s inequality, we obtain

‖Aε − Ae‖L∞(BR(0);R3) ≤
√
C(R) ‖fε‖L2(Ωε)

.(2.20)

Then writing

fε =
i

2
(uε∇uε − uε∇uε) − |uε|2 (Aε − Ae) − |uε|2 Ae,

we can combine inequalities (2.12), (2.18), and (2.20) to conclude that

‖Aε − Ae‖L∞(BR(0);R3)

≤ C
(
‖∇uε‖L2(Ωε;R3) + ‖Aε − Ae‖L2(Ωε;R3) + ‖Ae‖L2(Ωε;R3)

)
(2.21)

≤ C
(
ε+ ‖Aε − Ae‖L∞(Ωε;R3)

√
vol Ωε + ‖Ae‖L∞(Ωε;R3)

√
vol Ωε

)
,

where again C depends on R. Hence we obtain (2.15) in that

‖Aε − Ae‖L∞(BR(0);R3) ≤ Cε(2.22)

for some constant C independent of ε but depending on R,µ,C1, and Ae. Then (2.14)
follows from (2.15) and (2.18).

Our characterization of the asymptotic behavior of the sequence of minimizers
{uε} is most conveniently carried out using the variables (y1, y2, y3) defined in (2.4).
Thus, we introduce the notation

Uε(y1, y2, y3) := uε(Tε(y1, y2, y3)).(2.23)
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Proposition 2.3. There exists a subsequence {εj} → 0 and a function U0 ∈
BV (C; C) such that Uεj → U0 in L1(C; C). Furthermore, U0 is a function of y1 only.

Here BV (C; C) denotes the space of complex-valued functions of bounded vari-
ation. The compactness assertion is based on the fact that sequences uniformly
bounded in W 1,1(C; C) (hence in BV) contain L1-convergent subsequences; cf., e.g.,
[22, section 5.3].

Proof. To reiterate, the goal is a uniform W 1,1(C; C)-bound on the sequence {Uε}.
Such a bound will come from (2.14) once we express

∫
Ωε

|∇uε|2 dx in terms of Uε.
To this end, one carries out a lengthy but routine calculation to obtain∫

Ωε

|∇uε|2 dx =
1

2

∫
C

aik
(
UεyiU

ε
yk + UεyiU

ε
yk

)
dy,(2.24)

where the 3× 3 matrix A with entries aik = aik(y1, y2, y3) can be written in the form

A =
1

(1 + gε(y1)y2)

(
B +D

)
(2.25)

with

B =

⎛
⎝ gε(y1)

2 −gε(y1)g′ε(y1)y2 −gε(y1)g′ε(y1)y3
−gε(y1)g′ε(y1)y2 1 + g′ε(y1)

2y2
2 g′ε(y1)

2y2y3
−gε(y1)g′ε(y1)y3 g′ε(y1)

2y2y3 1 + g′ε(y1)
2y2

3

⎞
⎠(2.26)

and

D =

⎛
⎝0 0 0

0 0 0
0 0 2gε(y1)y2 + gε(y1)

2y2
2

⎞
⎠ .(2.27)

At this point, we appeal to [6], where the eigenvalues of the matrix B are explicitly
calculated and found to be given by the formulas

λ1 =
1 + gε(y1)

2 + g′ε(y1)
2(y2

2 + y2
3)

2

−
√

[1 + gε(y1)2 + g′ε(y1)2(y2
2 + y2

3)]2 − 4gε(y1)2

2
,(2.28)

λ2 =
1 + gε(y1)

2 + g′ε(y1)
2(y2

2 + y2
3)

2

+

√
[1 + gε(y1)2 + g′ε(y1)2(y2

2 + y2
3)]2 − 4gε(y1)2

2
,(2.29)

λ3 = 1.

Note, in particular, that λ2, λ3 ≥ 1, while expansion of (2.28) reveals that

g2
ε

1 + g2
ε + (g′ε)2

≤ λ1 ≤ g2
ε for small ε.(2.30)

Let us now denote the eigenvalues of A by µ1, µ2, and µ3. Since A is a regular
perturbation of B, it follows easily that

lim
ε→0

|µ2 − λ2| = 0 and lim
ε→0

|µ3 − 1| = 0.(2.31)
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Also, expanding detA along its last row, one readily checks that

(1 + gε(y1)y2)
3 detA = detB + O(g3

ε) as ε→ 0.(2.32)

Then phrasing (2.32) in terms of λi and µi and using (2.30) and (2.31), it is not hard
to verify that

|µ1 − λ1| = o(g2
ε).(2.33)

Hence, up to terms of order o(g2
ε),

g2
ε

1 + g2
ε + (g′ε)2

≤ µ1 ≤ g2
ε .(2.34)

If we then introduce the quantity

aε(y1) :=
gε(y1)

2

ε2
(
1 + gε(y1)2 + (g′ε(y1))2

) ,(2.35)

we can combine (2.14), (2.24), (2.31), and (2.34) to conclude that∫
C

aε
∣∣Uεy1∣∣2 dy ≤ 1

2ε2

∫
C

aik
(
UεyiU

ε
yk + UεyiU

ε
yk

)
dy

=
1

ε2

∫
Ωε

|∇uε|2 dx ≤ C2.(2.36)

Hence, ∫
C

{
gε(y1)

2
∣∣Uεy1∣∣2 +

∣∣Uεy2∣∣2 +
∣∣Uεy3∣∣2} dy ≤ Cε2(2.37)

for some constant C independent of ε. In particular, it follows that∫
C

∣∣Uεy2∣∣2 +
∣∣Uεy3∣∣2 dy → 0 as ε→ 0.(2.38)

Arguing as in [6, Theorem 6.1], this leads to control of {‖∇Uε‖L1(C)} via (2.36),
as follows: ∫

C

|∇Uε| dy =

∫
C

1√
aε

√
aε |∇Uε| dy

≤
(∫

C

1

aε
dy

)1/2(∫
C

aε |∇Uε|2 dy
)1/2

≤ C
1/2
2

(∫
C

1

aε
dy

)1/2

.(2.39)

Referring back to assumptions (2.1)–(2.2), we note that∫ π

−π

1

aε(y1)
dy1 → 2π + 1 as ε→ 0.(2.40)

In light of the bound (2.12), we see that

‖Uε‖W 1,1(C) < C,

and the L1-convergence of a subsequence {Uεj} to a BV (C; C) function U0 follows.
In view of (2.38), one sees that U0 is independent of y2 and y3.
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Next we wish to identify a limiting energy for Gε. To this end, we introduce
notation for the tangential component of the applied potential restricted to the unit
circle:

Ae1(y1) ≡ Ae(cos y1, sin y1, 0) · (− sin y1, cos y1, 0).(2.41)

We also introduce the function λε via the formula

1

aε(y1)
= 1 + λε(y1).(2.42)

One can easily check that the λε dy1
∗
⇀ δ0 weakly as measures so that

1

aε
dy1

∗
⇀ 1 dy1 + δ0.(2.43)

This allows us to establish a generalization of Theorem 6.2 of [6]. To state the result,
we define the functional G0 acting on functions in L1((−π, π); C) by the formula

G0(U)=

⎧⎪⎪⎨
⎪⎪⎩
∫
(−π,π)\{0}

( ∣∣∣(i d
dy1

+Ae1)U
∣∣∣2 + ν2

2 (|U |2 − µ2)2
)
dy1 + |U+ − U−|2

if U ∈W 1,2((−π, π) \ {0}; C), U(−π) = U(π),
+∞ otherwise,

(2.44)

where

U+ = lim
y1→0+

U(y1) and U− = lim
y1→0−

U(y1).

We point out that the condition U ∈W 1,2((−π, π) \ {0}; C) in particular implies that
U can be continuously defined on [−π, 0] and on [0, π]; see, e.g., [22].

We then will prove the following.
Theorem 2.4. The function U0 provided by Proposition 2.3 lies in the space

W 1,2((−π, π) \ {0}; C) and minimizes G0.
Proof. The identification of U0 as a minimizer of G0 will be achieved through two

claims. First we will show that

lim inf
εj→0

Gεj (u
εj ,Aεj ) ≥ πG0(U

0).(2.45)

Then we will show that for any V ∈ L1((−π, π); C), there exists a sequence {vε} ⊂
W 1,2(Ωε; C) such that

lim
ε→0

Gε(v
ε,Ae) = πG0(V ).(2.46)

Using the minimizing property of {(uε,Aε)}, we can then combine (2.45) and (2.46)
to obtain G0(U

0) ≤ G0(V ) as asserted. Of course, it will then also follow that
U0 ∈W 1,2((−π, π) \ {0}; C).

Proof of claim (2.45). For this argument it will be convenient to work in a different
gauge. Specifically, we take an applied magnetic potential to still satisfy condition
(2.7) but now also to satisfy

Ae(x1, x2) · (x1, x2, 0) = 0 for x2
1 + x2

2 = 1.(2.47)



2194 J. RUBINSTEIN, M. SCHATZMAN, AND P. STERNBERG

We can achieve this if we drop the divergence-free requirement and insist only that
divAe = 0 in {x : x2

1 +x2
2 < 1} by replacing Ae with Ae−∇φ, where φ is any smooth

extension to R
3 of the solution to

∆φ = 0 in x2
1 + x2

2 < 1,

∇φ · (x1, x2, 0) = Ae · (x1, x2, 0) on x2
1 + x2

2 = 1.

Note that a solution φ exists in light of the divergence-free condition on Ae inside
the disc, and the solution is independent of x3 since the original Ae was as well.
Consequently, Ae −∇φ will, in particular, still satisfy (2.7).

We observe that as a consequence of (2.7) and (2.47), we have that

|Ae(cos y1, sin y1, 0)| = |Ae1(y1)| for − π ≤ y1 ≤ π(2.48)

(cf. (2.41)).
For the remainder of the proof, we then replace the original Ae by Ae − ∇φ,

Aε by Aε − ∇φ, and uε by uεe−iφ. Of course, through gauge-invariance, we have
that Gε(u

ε,Aε) = Gε(u
εe−iφ,Aε − ∇φ). We will not introduce new notation, but

through an abuse of notation we still denote these three quantities using their original
designations. We should also remark that this change does not affect the estimates
(2.15) and (2.16) measuring the L∞-norm of Aε−Ae since this difference is unchanged
by the gauge transformation.

Discarding the nonnegative term
∫

R3 |∇ × Aεj − He|2 dx, we begin with the de-
composition of Gεj as

Gεj (u
εj ,Aεj ) ≥ 1

ε2j

∫
Ωεj

|∇uεj |2 dx+
1

ε2j

∫
Ωεj

i(uεj∇uεj − uεj∇uεj ) · Aεj dx

+
1

ε2j

∫
Ωεj

|uεj |2 |Aε|2 dx+
1

ε2j

∫
Ωεj

ν2

2
(|uεj |2 − µ2)2 dx.(2.49)

We will analyze the limit of each of the four terms above separately. Most crucial
is the first term, where in light of (2.36) we have

lim inf
εj→0

1

ε2j

∫
Ωεj

|∇uεj |2 dx ≥ lim inf
εj→0

∫
C

aεj (y1)
∣∣Uεjy1 ∣∣2 dy

= lim inf
εj→0

∫
C

∣∣aε(y1)Uεjy1 ∣∣2 1

aεj (y1)
dy.

Then conditions (2.40) and (2.43) allow for an appeal to [6, Theorem 6.2], to
conclude that

lim inf
εj→0

1

ε2j

∫
Ωεj

|∇uεj |2 dx ≥ π

∫
(−π,π)\{0}

∣∣∣∣dU0

d y1

∣∣∣∣
2

dy1 + π
∣∣(U0)+ − (U0)−

∣∣2 .(2.50)

(See also [3] and [4].)
It remains to determine the limits of the last three integrals on the right-hand

side of (2.49). To this end, we fix a positive number δ, and denote by Cδ the set
{y ∈ C : |y1| > δ}. It then follows from (2.37) that {Uε} is bounded uniformly in
W 1,2(Cδ; C). Hence, we conclude from (2.38) and the Sobolev embedding theorem
(see, e.g., [22]) that

Uεjk ⇀ V 0 in W 1,2(Cδ; C) and(2.51)

Uεjk → V 0 in Lq(Cδ; C) for all q < 6(2.52)
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for some W 1,2(Cδ; C) function V 0 that is independent of y2 and y3. In light of Proposi-
tion 2.3, we may then identify V 0 = U0 and observe that the convergences above must
hold along the full sequence {εj}. We caution, however, that the W 1,2(Cδ; C)-norm
of U0 depends on δ, so we should not in general expect that U0 ∈W 1,2(C; C).

Since the Jacobian of the mapping Tε given by (2.4) is found to be gε(y1)
2(1 +

gε(y1)y2), one uses (2.1)–(2.2), (2.12), and (2.52) to calculate the limit of the last
term of (2.49), as follows:

lim
εj→0

∫
Ωεj

ν2

2ε2j
(|uεj |2 − µ2)2 dx

= lim
εj→0

∫
C

ν2

2ε2j
(|Uεj |2 − µ2)2gεj (y1)

2(1 + gε(y1)y2) dy

= lim
εj→0

∫
Cδ

ν2

2
(|Uεj |2 − µ2)2 dy + O(δ)

=

∫
Cδ

ν2

2
(
∣∣U0
∣∣2 − µ2)2 dy + O(δ)

= π

∫
{δ<|y1|<π}

ν2

2
(
∣∣U0
∣∣2 − µ2)2 dy1 + O(δ).(2.53)

Similarly, in light of (2.48), (2.16), and (2.52), we have for the second to last
integral in (2.49) that

lim
εj→0

1

ε2j

∫
Ωεj

|uεj |2 |Aεj |2 dx

= lim
εj→0

1

ε2j

∫
C

|Uεj (y)|2 |Aεj (y)|2 gεj (y1)2(1 + gεj (y1)y2) dy

= lim
εj→0

1

ε2j

∫
C

|Uεj (y)|2 |Ae(cos y1, sin y1, 0)|2 gεj (y1)2(1 + gεj (y1)y2) dy

= lim
εj→0

1

ε2j

∫
C

|Uεj (y)|2 |Ae1(y1)|2 gεj (y1)2(1 + gεj (y1)y2) dy

= lim
εj→0

∫
Cδ

|Uεj |2 |Ae1|2 dy + O(δ)

=

∫
Cδ

∣∣U0
∣∣2 |Ae1|2 dy1 + O(δ)

= π

∫
{δ<|y1|<π}

∣∣U0
∣∣2 |Ae1|2 dy1 + O(δ).(2.54)

Finally, we turn to the limit of the remaining integral in (2.49), namely,

lim inf
εj→0

1

ε2j

∫
Ωεj

i(uεj∇uεj − uεj∇uεj ) · Aεj dx.(2.55)

Another straightforward but laborious calculation based on the change of variables
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x = Tε(y) leads to the fact that∫
Ωεj

i(uεj∇uεj − uεj∇uεj ) · Aεj dx

=

∫
C

i
(
UεjUεjy1 − UεjUεj y1

) [
(− sin y1, cos y1, 0) · Aεj (Tεj )

] gεj (y1)2
ε2j

dy

+

∫
C

i
(
UεjUεjy2 − UεjUεj y2

) [
(cos y1, sin y1, 0) · Aεj (Tεj )

] gεj (y1)
ε2j

dy

+

∫
C

i
(
UεjUεjy2 − UεjUεj y2

) [
(sin y1,− cos y1, 0) · Aεj (Tεj )

] gεj (y1)g′εj (y1)y2
ε2j

dy

+

∫
C

i
(
UεjUεjy3 − UεjUεj y3

) [
(0, 0, 1) · Aεj (Tεj )

] gεj (y1)(1 + gεj (y1)y2)

ε2j
dy

+

∫
C

i
(
UεjUεjy3 − UεjUεj y3

) [
(sin y1,− cos y1, 0) · Aεj (Tεj )

] gεj (y1)g′εj (y1)y3
ε2j

dy

= I + II + III + IV + V.

(2.56)

In light of (2.47) and (2.16), we see that∣∣(cos y1, sin y1, 0) · Aεj (Tεj (y))
∣∣ ≤ |(cos y1, sin y1, 0) · Ae(cos y1, sin y1, 0)|

+
∣∣(cos y1, sin y1, 0) · (Aεj (Tεj (y)) − Ae(cos y1, sin y1, 0)

∣∣
≤ ∥∥Aεj (Tεj (y)) − Ae(cos y1, sin y1, 0)

∥∥
L∞(C)

→ 0 as ε→ 0

and that |(0, 0, 1) · Aεj | → 0 as well, using (2.7). Hence we can apply Hölder’s in-
equality, (2.12), and (2.37) to see that

|II| + |IV | ≤ µ

(∥∥gεj∥∥L∞(0,2π)

ε2j

)
· o(1) ·

(∫
C

∣∣Uεjy2 ∣∣2 +
∣∣Uεjy3 ∣∣2 dy

)1/2

→ 0(2.57)

as ε→ 0.

Next, observe that since |(sin y1,− cos y1, 0) · Aεj | is uniformly bounded in C, and
since |g′εj | = O(ε1−p) (cf. (2.1)), through (2.37) one calculates that

|III + V | ≤ µ

⎛
⎜⎝
∥∥∥gεjg′εj∥∥∥

L∞((0,2π))

ε2j

⎞
⎟⎠
(∫

C

∣∣Uεjy2 ∣∣2 +
∣∣Uεjy3 ∣∣2 dy

)1/2

→ 0(2.58)

as well.

Consequently, we conclude from (2.56), (2.57), and (2.58) that

lim
εj→0

∫
Ωεj

i(uεj∇uεj − uεj∇uεj ) · Aεj dx = lim
εj→0

I.(2.59)

We now split the integral I into two integrals over the regions Cδ and C\Cδ, which
we label as I1 and I2, respectively.
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We first treat the limit of I2. Through (2.12) and (2.16), we find that

|I2| ≤ C

∫ δ

−δ

∫
{y2

2+y2
3<1}

∣∣Uεjy1 ∣∣ gεj (y1)2ε2j
dy2 dy3 dy1.

As a consequence of (2.1) and (2.37), we obtain that

∫ δ

−δ

∫
{y2

2+y2
3<1}

∣∣Uεjy1 ∣∣ gεj (y1)2ε2j
dy2 dy3 dy1

≤
(∫ δ

−δ

∫
{y2

2+y2
3<1}

gεj (y1)
2

ε2j

∣∣Uεjy1 ∣∣2 dy2 dy3 dy1
)1/2(∫ δ

−δ

∫
{y2

2+y2
3<1}

gεj (y1)
2

ε2j
dy2 dy3 dy1

)1/2

≤ C

(∫ δ

−δ

∫
{y2

2+y2
3<1}

1 dy2 dy3 dy1

)1/2
≤ Cδ1/2.

Hence, we conclude that

lim
εj→0

|I2| ≤ Cδ1/2.(2.60)

Turning to I1, through an appeal to (2.2), (2.16), (2.48), (2.51), and (2.52), we
may compute

lim
εj→0

I1

= lim
εj→0

∫
{δ<|y1|<π}

∫
{y2

2+y2
3<1}

i
(
UεjUεjy1 − UεjUεj y1

)
[(− sin y1, cos y1, 0)·Aεj ]

gεj (y1)
2

ε2j
dy

= lim
εj→0

∫
{δ<|y1|<π}

∫
{y2

2+y2
3<1}

i
(
UεjUεjy1 − UεjUεj y1

)
Ae1 dy

=π

∫
{δ<|y1|<π}

∫
{y2

2+y2
3<1}

i
(
U0U0

y1 − U0U0
y1

)
Ae1 dy1.

Applying (2.57), (2.58), (2.60), and (2.61) to (2.56), we finally obtain

lim
εj→0

∫
Ωεj

i(uεj∇uεj − uεj∇uεj ) · Aεj dx

(2.61)

= π

∫
{δ<|y1|<π}

i
(
U0U0

y1 − U0U0
y1

)
Ae1 dy1 + O(δ1/2).

Combining (2.50), (2.53), (2.54), and (2.61) and letting δ → 0, we establish (2.45).
Proof of claim (2.46). We may assume V ∈W 1,2((−π, π) \ {0}; C) and V (−π) =

V (π), since otherwise the construction of a sequence satisfying (2.46) is trivial. In
order to highlight the fact that, in general, V ′ will be singular at y1 = 0, we denote
by h ∈ L2((−π, π); C) the regular part of the derivative of V , that is, the part which
is absolutely continuous with respect to Lebesgue measure. Hence,∫ 0

−π
h(y1) dy1 = V − − V (−π) and

∫ π

0

h(y1) dy1 = V (π) − V +,(2.62)

where V − and V + denote the left- and right-hand limits of V at y1 = 0, respectively.
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We proceed to define a sequence {V ε} ⊂ W 1,2((−π, π); C) satisfying V ε(π) =
V ε(−π) and from this we will define the sequence {vε} ⊂W 1,2(Ωε; C) verifying (2.46)
by viewing the argument of V ε as the polar angle in a cylindrical coordinate system
on R

3. Note that the polar angle is precisely the variable y1 as defined in (2.4).
To this end, recall the definition of the sequence {λε} given in (2.42) and denote

by βε the quantity

βε :=

∫ π

−π
λε(y1) dy1.

A routine calculation shows that∫ εp

−εp
λε(y1) dy1 = 1 + O(εp), while

∫
{|y1|>εp}

λε(y1) dy1 = O(ε2),(2.63)

so, in particular, we have βε = 1 + O(εp).
Now we are prepared to define the sequence {V ε} ⊂ W 1,2((−π, π); C) via the

formula

V ε(y1) =

∫ y1

−π

{
h(s) +

1

βε
(V + − V −)λε(s)

}
ds+ V (−π).(2.64)

This construction follows that found in [4].
With the aid of (2.62) and the periodicity of V , one sees that V ε(−π) = V ε(π),

and with the aid of (2.63), one readily checks that

|V ε − V | + |(V ε)′ − V ′| ≤ Cε2 a.e. on {|y1| > εp},(2.65)

while

|V ε − V | ≤ ∣∣V + − V −∣∣ a.e. on {|y1| < εp}.(2.66)

We also observe that V ε → V in L1((−π, π); C) and that (V ε)′ ∗
⇀ V ′ as measures on

(−π, π).
In light of the periodicity of V ε we can now define the sequence {vε} ⊂W 1,2(Ωε; C)

through the relation vε(x) = V ε(tan−1(x2/x1)) = V ε(y1). We proceed to verify (2.46)
by decomposing the energy Gε(v

ε,Ae) and studying the limit of each term in the same
manner as was done in the proof of claim (2.45).

We write

Gε(v
ε,Ae) =

1

ε2

∫
Ωε

|∇vε|2 dx+
1

ε2

∫
Ωε

i(vε∇vε − vε∇vε) · Ae dx

+
1

ε2

∫
Ωε

|vε|2 |Ae|2 dx+
1

ε2

∫
Ωε

ν2

2
(|vε|2 − µ2)2 dx.(2.67)

First note that through (2.24) one has

1

ε2

∫
Ωε

|∇vε|2 dx =
1

2ε2

∫
C

aik
(
V εyiV

ε
yk + V εyiV

ε
yk

)
dy

= π

∫ π

−π

gε(y1)
2

ε2(1 + gε(y1)y2)

∣∣∣∣d V εd y1

∣∣∣∣
2

dy1

= π

∫ π

−π
aε(y1)

∣∣∣∣d V εd y1

∣∣∣∣
2

dy1 + o(1) as ε→ 0.
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Thus, from (2.42) and (2.64) we see that

1

π
lim
ε→0

1

ε2

∫
Ωε

|∇vε|2 dx

= lim
ε→0

∫ π

−π
aε(y1)

∣∣∣∣h(y1) +
1

βε
(V + − V −)λε(y1)

∣∣∣∣
2

dy1

= lim
ε→0

∫ π

−π

∣∣∣∣aε(y1)h(y1) +
1

βε
(V + − V −)aε(y1)λε(y1)

∣∣∣∣
2

1

aε(y1)
dy1

= lim
ε→0

∫ π

−π

∣∣∣∣aε(y1)h(y1) +
1

βε
(V + − V −)(1 − aε(y1))

∣∣∣∣
2

(1 + λε(y1)) dy1

= lim
ε→0

{∫ π

−π
aε(y1)

2 |h(y1)|2 dy1 +
1

β2
ε

∣∣V + − V −∣∣2 +

∫ π

−π
(1 − aε(y1))fε(y1) dy1

}
,

where in the last integral we have introduced the real-valued function fε so as to
include all the remaining terms coming from expanding the square in the previous
line. One readily checks that ‖fε‖L∞((−π,π)) ≤ C for some C independent of ε. Then,

since aε → 1 in L1((−π, π)) and βε → 1, we conclude that

1

π
lim
ε→0

1

ε2

∫
Ωε

|∇vε|2 dx =

∫ π

−π
|V ′|2 dy1 +

∣∣V + − V −∣∣2 .(2.68)

Turning to the next integral on the right-hand side of (2.67), we see from (2.56),
with uε replaced by vε and Aε replaced by Ae, that∫

Ωε

i(vε∇vε − vε∇vε) · Ae dx

=

∫
C

i
(
V εV εy1 − V εV εy1

)
Ae(Tε) · (− sin y1, cos y1, 0)

gε(y1)
2

ε2
dy

= π

∫ π

−π
i
(
V εV εy1 − V εV εy1

)
Ae1

gε(y1)
2

ε2
dy1 + O(ε).

Here we have used the fact that |Ae(Tε) · (− sin y1, cos y1, 0)| = Ae1 + O(ε).
Hence, from (2.65) we have

1

π

∫
Ωε

i(vε∇vε − vε∇vε) · Ae dx

=

∫
{|y1|>εp}

i
(
V εV εy1 − V εV εy1

)
Ae1

gε(y1)
2

ε2
dy1

+

∫
{|y1|<εp}

• dy1 + O(ε)

=

∫
{|y1|>εp}

i
(
V Vy1 − V V y1

)
Ae1 dy1

+

∫
{|y1|<εp}

i
(
V εV εy1 − V εV εy1

)
Ae1

gε(y1)
2

ε2
dy1 + O(ε).(2.69)
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Now as a consequence of (2.35), (2.42), and (2.64), we can estimate this last term as
follows:∣∣∣∣∣

∫
{|y1|<εp}

i
(
V εV εy1 − V εV εy1

)
Ae1

gε(y1)
2

ε2
dy1

∣∣∣∣∣
≤ C

∫
{|y1|<εp}

aε(y1)
∣∣V εy1∣∣ dy1

≤ C

∫
{|y1|<εp}

aε(y1) |h(y1)| dy1 + C
∣∣V + − V −∣∣ ∫

{|y1|<εp}
aε(y1)

1

βε
|λε(y1)| dy1

= C

∫
{|y1|<εp}

aε(y1) |h(y1)| dy1 + C
∣∣V + − V −∣∣ ∫

{|y1|<εp}

1

βε
|1 − aε(y1)| dy1 = O(εp).

(2.70)

Combining (2.69) and (2.70) and passing to the limit as ε→ 0 we conclude that

lim
ε→0

∫
Ωε

i(vε∇vε − vε∇vε) · Ae dx = π

∫ π

−π
i
(
V Vy1 − V V y1

)
Ae1 dy1.(2.71)

Finally, one finds that the limits of the last two integrals in (2.67) are given by

lim
ε→0

1

ε2

∫
Ωε

{
|vε|2 |Ae|2 +

ν2

2
(|vε|2 − µ2)2

}
dx

= π

∫ π

−π

{
|V |2 |Ae1|2 +

ν2

2
(|V |2 − µ2)2

}
dy1(2.72)

as an easy consequence of (2.65) and (2.66) using a calculation similar to that carried
out in (2.53) and (2.54).

Claim (2.46) follows by combining (2.68), (2.71), and (2.72).

3. Discussion. In this section we discuss some physical implications of the one-
dimensional model (2.44). We start by observing that adding a suitable parameter
to the geometric characterization of the constriction enables us to control the relative
magnitude of the different terms in the limit functional G0 (2.44). For example, if we
replace (2.1)–(2.2) by

gε(y1) = (ε1−p − 2
√
bε) |y1| + 2

√
bε1+p for 0 ≤ |y1| ≤ εp,(3.1)

gε(y1) = ε for εp ≤ |y1| ≤ π,(3.2)

where b is a fixed positive parameter, then we obtain the modified limit functional

G0(U)=

⎧⎪⎪⎨
⎪⎪⎩
∫
(−π,π)\{0}

( ∣∣∣(i d
dy1

+Ae1)U
∣∣∣2 + ν2

2 (|U |2 − µ2)2
)
dy1 + b |U+ − U−|2

if U ∈W 1,2((−π, π) \ {0}; C), U(−π) = U(π),
+∞ otherwise.

(3.3)

To simplify the presentation in this section, we replace Ae1 by A and use θ to
denote the variable y1. Equating the first variation of G0 to zero, we obtain the
following jump condition at the weak point (θ = 0):(

d

dθ
− iA

)
U+ =

(
d

dθ
− iA

)
U− = b

(
U+ − U−) .(3.4)
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Multiplying both sides of (3.4) by U+ and taking the imaginary part of the obtained
complex-valued expression, we find

J+ := Im

((
dU+

dθ
− iAU+

)
U+

)
= −b Im

(
U−U+

)
.(3.5)

The object J+ is the supercurrent immediately after (θ = 0+), the weak link. Similarly
we multiply both sides of (3.4) by U− and obtain

J− := Im

((
dU−

dθ
− iAU−

)
U−
)

= b Im
(
U+U−

)
.(3.6)

We therefore deduce that J+ = J−; i.e., the current is conserved across the junction.
In contrast to the continuity of the supercurrent, the order parameter U and its

derivative are not continuous across the junction. To write the jump in the amplitude’s
derivative, we express U in a polar form, U = ρeiφ. Now, taking the real part of (3.4)
multiplied by U+, we obtain after a quick calculation

dρ+

dθ
= b

(
ρ+ − ρ− cos(φ+ − φ−)

)
,(3.7)

where as before, the superscripts ·+ and ·− denote evaluation on either side of θ = 0.
Similarly we find

dρ−

dθ
= b

(
ρ+ cos(φ+ − φ−) − ρ−

)
.(3.8)

Applying the polar form of U to the current formula (3.5), we get

J+ = J− = bρ+ρ− sin(φ+ − φ−).(3.9)

This is the celebrated Josephson formula (cf. (1.1)). Moreover we derived an explicit
expression for JM . It is important to observe that in contrast to most models of
Josephson junctions (see, e.g., [2] or [21]), in the model being presented here, the
order parameter is not continuous at the junction. We point out that our equations
form a special case of an ad hoc model due to de Gennes (cf. (7.66) of [7]). In this
model, de Gennes postulates that the pair

(
U+, ( ddθ − iA)U+

)
is linearly related to

the pair
(
U−, ( ddθ − iA)U−) through multiplication by a 2 × 2 matrix he denotes by

M . To make the comparison precise, we recast our connection formula across the
junction in the form

U+ = U− +
1

b

(
d

dθ
− iA

)
U−,(3.10)

(
d

dθ
− iA

)
U+ =

(
d

dθ
− iA

)
U−.(3.11)

Using the notation of [7], we can then identify M11 = M22 = 1, M12 = 1
b , M21 = 0.

The collapse of the three-dimensional domain Ωε onto a one-dimensional wire is
analogous to similar limits computed in, e.g., [5] and [18]. The new feature here is
the strong effect of inhomogeneities in the wire. To demonstrate the effect of the
term proportional to b in (3.3), we consider the particular problem of phase transition



2202 J. RUBINSTEIN, M. SCHATZMAN, AND P. STERNBERG

in thin wires with constrictions. It is known that the critical temperature in one-
dimensional rings depends upon the magnetic flux threading the hole bounded by
the ring. This was discovered experimentally by Little and Parks about 40 years ago
and has been well established theoretically since then [17]. We proceed to compute
this dependency using the model given by G0. The critical temperature is associated
with µ, as we explained below (2.5), while µ, in turn, is determined by the eigenvalue
problem that is obtained through linearizing the Euler–Lagrange equation associated
with G0 about the normal state U ≡ 0. We refer to [11] for a justification of this
statement. The linearized equation is

(
d

dθ
− iA

)2

U + (νµ)2U = 0,(3.12)

together with the jump conditions (3.10)–(3.11) enforced at θ = 0 and periodic bound-
ary conditions at the endpoints θ = ±π.

Proceeding as in [11], we make a gauge transformation U(θ) → U(θ)ei
∫ θ
0
A. This

simplifies the eigenvalue problem (3.12) into

d2

dθ2
U + (νµ)2U = 0 for − π < θ < 0 and 0 < θ < π,(3.13)

coupled with the boundary conditions

U(−π) = U(π)eiΦ, U ′(−π) = U ′(π)eiΦ,

U+ = U− +
1

b
(U ′)− at θ = 0,

(U ′)+ = (U ′)− at θ = 0,

where Φ :=
∫ π
−π Adθ is the magnetic flux through the hole bounded by the ring. After

writing U in terms of sines and cosines, we obtain through a simple calculation the
following transcendental equation for µ:

cos(2πνµ) − νµ

2b
sin(2πνµ) = cos Φ.(3.14)

Notice that in the limit b→ ∞, the order parameter is continuous, and (3.14) reduces
to the clean ring limit [11].

We wish to compare (3.14) to the analogous one obtained in [11]. In [11], a
junction is modeled not through a constriction but rather through a modification
of the one-dimensional GL energy in a thin region corresponding to angular values

0 ≤ θ ≤ d, where d � 1. Specifically, one replaces the potential term ν2

2 (|u|2 − µ2)2

in (2.5) for these θ-values with the term α
d |u|2, where α > 0 is a parameter related

to the strength of the junction. Then carrying out an asymptotic analysis of the
normal/superconducting phase transition in the small d limit, one finds that the
corresponding eigenvalue µ solves the transcendental equation

cos 2πµ+
α

2µ
sin 2πµ = cos Φ.(3.15)

A comparison of the two phase transition curves corresponding to (3.14) and
(3.15) with ν = b = α = 1 can be found in Figure 2. We note that qualitatively the two
transition curves coming from the two different models are quite similar, though the
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Fig. 2. Comparison of phase transition curves µ2 versus Φ for the constricted model (solid)
and the modified GL model (dashed).

transition temperature for the model from [11] is lower (higher µ). Another distinction
is that in the model from [11], the curve does not pass through the origin. That is,
even for zero magnetic flux through the ring, the transition temperature in that model
is lower than the critical temperature associated with the normal/superconducting
phase transition in the absence of any applied magnetic field for a ring without normal
inclusions. This is not the case in the constricted model.

Returning to the general question of Josephson junctions, we comment that
de Gennes did not distinguish between different kinds of junctions. Together with
earlier investigations (see [11] and [20]) we are able now to identify two distinguished
kinds of junctions. The first kind is a classical SNS junction, where a thin normal
layer separates two bulk superconducting samples. Under appropriate scaling it can
be shown then that the current is proportional to the sin of the magnetic flux thread-
ing through the hole bounded by the wire, but the amplitude of the order parameter
is continuous [11]. The second class consists of a geometric weak link (our constric-
tion). Here the current is a periodic function of the phase jump, but the topological
constraint implied by the ring is not as strong as in the first class in that the phase
is no longer required to jump by a multiple of 2π along the ring. Finally, we point
out the heuristics behind our construction. For sufficiently narrow constrictions, it is
energetically preferable for the minimizer to have a rapid transition across the link
with less drastic variations in the bulk. In this light, the specific geometry of the
constriction given by the graph of gε is not crucial.

REFERENCES

[1] L. G. Aslamazov and A. I. Larkin, Josephson effect in superconducting point contacts, JETP
Lett., 9 (1969), pp. 87–91.

[2] A. Barone and G. Paterno, Physics and Applications of the Josephson Effect, Wiley, New
York, 1982.
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